From 1619f6655f9ae747d77fcd48873c61516ec8a0a2 Mon Sep 17 00:00:00 2001 From: Vladimir Mandic Date: Sat, 24 Apr 2021 18:43:59 -0400 Subject: [PATCH] enable cross origin isolation --- CHANGELOG.md | 5 +- demo/helpers/three-orbitControls.js | 2 +- demo/index.js | 6 +- dist/human.esm-nobundle.js | 16 +- dist/human.esm-nobundle.js.map | 6 +- dist/human.esm.js | 602 ++++++++++++------------- dist/human.esm.js.map | 6 +- dist/human.js | 602 ++++++++++++------------- dist/human.js.map | 6 +- dist/human.node-gpu.js | 16 +- dist/human.node-gpu.js.map | 6 +- dist/human.node-wasm.js | 16 +- dist/human.node-wasm.js.map | 6 +- dist/human.node.js | 16 +- dist/human.node.js.map | 6 +- package.json | 2 +- server/build.log | 17 + server/serve.js | 39 +- src/blazeface/facepipeline.ts | 2 +- src/config.ts | 38 +- src/faceall.ts | 45 +- src/faceres/faceres.ts | 2 +- src/human.ts | 29 +- typedoc/assets/js/search.js | 2 +- typedoc/classes/human.html | 8 +- typedoc/interfaces/config.html | 45 +- types/age/age.d.ts | 2 - types/config.d.ts | 14 - types/efficientpose/efficientpose.d.ts | 2 - types/embedding/embedding.d.ts | 18 - types/gender/gender.d.ts | 2 - types/human.d.ts | 4 - wiki | 2 +- 33 files changed, 699 insertions(+), 891 deletions(-) delete mode 100644 types/age/age.d.ts delete mode 100644 types/efficientpose/efficientpose.d.ts delete mode 100644 types/embedding/embedding.d.ts delete mode 100644 types/gender/gender.d.ts diff --git a/CHANGELOG.md b/CHANGELOG.md index 89a6faa4..85004d7d 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,6 +1,6 @@ # @vladmandic/human -Version: **1.6.1** +Version: **1.7.0** Description: **Human: AI-powered 3D Face Detection & Rotation Tracking, Face Description & Recognition, Body Pose Tracking, 3D Hand & Finger Tracking, Iris Analysis, Age & Gender & Emotion Prediction, Gesture Recognition** Author: **Vladimir Mandic ** @@ -11,9 +11,6 @@ Repository: **** ### **HEAD -> main** 2021/04/24 mandic00@live.com - -### **origin/main** 2021/04/24 mandic00@live.com - - remove efficientpose - major version rebuild diff --git a/demo/helpers/three-orbitControls.js b/demo/helpers/three-orbitControls.js index b47ab26b..5faedf02 100644 --- a/demo/helpers/three-orbitControls.js +++ b/demo/helpers/three-orbitControls.js @@ -122,7 +122,7 @@ const OrbitControls = function (object, domElement) { // so camera.up is the orbit axis const quat = new Quaternion().setFromUnitVectors(object.up, new Vector3(0, 1, 0)); - const quatInverse = quat.clone().inverse(); + const quatInverse = quat.clone().invert(); const lastPosition = new Vector3(); const lastQuaternion = new Quaternion(); diff --git a/demo/index.js b/demo/index.js index 8b021dfc..0218166e 100644 --- a/demo/index.js +++ b/demo/index.js @@ -505,12 +505,10 @@ function setupMenu() { menu.process.addRange('skip frames', human.config.face.detector, 'skipFrames', 0, 50, 1, (val) => { human.config.face.detector.skipFrames = parseInt(val); human.config.face.emotion.skipFrames = parseInt(val); - human.config.face.age.skipFrames = parseInt(val); human.config.hand.skipFrames = parseInt(val); }); menu.process.addRange('min confidence', human.config.face.detector, 'minConfidence', 0.0, 1.0, 0.05, (val) => { human.config.face.detector.minConfidence = parseFloat(val); - human.config.face.gender.minConfidence = parseFloat(val); human.config.face.emotion.minConfidence = parseFloat(val); human.config.hand.minConfidence = parseFloat(val); }); @@ -536,9 +534,7 @@ function setupMenu() { menu.models.addBool('face detect', human.config.face, 'enabled', (val) => human.config.face.enabled = val); menu.models.addBool('face mesh', human.config.face.mesh, 'enabled', (val) => human.config.face.mesh.enabled = val); menu.models.addBool('face iris', human.config.face.iris, 'enabled', (val) => human.config.face.iris.enabled = val); - menu.models.addBool('face description', human.config.face.description, 'enabled', (val) => human.config.face.age.description = val); - // menu.models.addBool('face age', human.config.face.age, 'enabled', (val) => human.config.face.age.enabled = val); - // menu.models.addBool('face gender', human.config.face.gender, 'enabled', (val) => human.config.face.gender.enabled = val); + menu.models.addBool('face description', human.config.face.description, 'enabled', (val) => human.config.face.description.enabled = val); menu.models.addBool('face emotion', human.config.face.emotion, 'enabled', (val) => human.config.face.emotion.enabled = val); menu.models.addHTML('
'); menu.models.addBool('body pose', human.config.body, 'enabled', (val) => human.config.body.enabled = val); diff --git a/dist/human.esm-nobundle.js b/dist/human.esm-nobundle.js index 644a3532..3023ec84 100644 --- a/dist/human.esm-nobundle.js +++ b/dist/human.esm-nobundle.js @@ -5,14 +5,14 @@ author: ' */ -var it=Object.defineProperty;var y0=Object.prototype.hasOwnProperty,w0=Object.getOwnPropertyNames,l0=Object.getOwnPropertyDescriptor;var J=(e,t)=>{for(var r in t)it(e,r,{get:t[r],enumerable:!0})},w=(e,t,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let A of w0(t))!y0.call(e,A)&&A!=="default"&&it(e,A,{get:()=>t[A],enumerable:!(r=l0(t,A))||r.enumerable});return e};var at=(e,t,r)=>{if(!t.has(e))throw TypeError("Cannot "+r)};var C=(e,t,r)=>(at(e,t,"read from private field"),r?r.call(e):t.get(e)),_e=(e,t,r,A)=>(at(e,t,"write to private field"),A?A.call(e,r):t.set(e,r),r);function W(e,t){let r=e.endsWith("/")?"":"/",_=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${r}${t}`;if(!_.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${_} Expecting JSON file`);return _}function f(...e){let t=new Date,r=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(r,"Human:",...e)}var v=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function U(...e){let t=r=>r&&typeof r=="object";return e.reduce((r,A)=>(Object.keys(A||{}).forEach(_=>{let c=r[_],n=A[_];Array.isArray(c)&&Array.isArray(n)?r[_]=c.concat(...n):t(c)&&t(n)?r[_]=U(c,n):r[_]=n}),r),{})}function xt(){let e,t;if(typeof navigator!="undefined"){let r=navigator.userAgent.match(/\(([^()]+)\)/g);if(r&&r[0]){let A=r[0].match(/\(([^()]+)\)/g);e=A?A[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(r[0],""),e[1]&&(t=t.replace(r[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var o={};J(o,{data:()=>p0,version:()=>u0});w(o,cn);w(o,An);w(o,_n);w(o,on);w(o,sn);w(o,hn);import*as yt from"@tensorflow/tfjs/package.json";import*as wt from"@tensorflow/tfjs-core/package.json";import*as lt from"@tensorflow/tfjs-data/package.json";import*as dt from"@tensorflow/tfjs-layers/package.json";import*as ft from"@tensorflow/tfjs-converter/package.json";import{version_cpu as d0}from"@tensorflow/tfjs-backend-cpu/dist/index.js";import{version_webgl as f0}from"@tensorflow/tfjs-backend-webgl/dist/index.js";import{version_wasm as m0}from"@tensorflow/tfjs-backend-wasm/dist/index.js";import*as cn from"@tensorflow/tfjs-core/dist/index.js";import*as An from"@tensorflow/tfjs-layers/dist/index.js";import*as _n from"@tensorflow/tfjs-converter/dist/index.js";import*as p0 from"@tensorflow/tfjs-data/dist/index.js";import*as on from"@tensorflow/tfjs-backend-cpu/dist/index.js";import*as sn from"@tensorflow/tfjs-backend-webgl/dist/index.js";import*as hn from"@tensorflow/tfjs-backend-wasm/dist/index.js";var u0={tfjs:(yt==null?void 0:yt.version)||void 0,"tfjs-core":(wt==null?void 0:wt.version)||void 0,"tfjs-data":(lt==null?void 0:lt.version)||void 0,"tfjs-layers":(dt==null?void 0:dt.version)||void 0,"tfjs-converter":(ft==null?void 0:ft.version)||void 0,"tfjs-backend-cpu":d0||void 0,"tfjs-backend-webgl":f0||void 0,"tfjs-backend-wasm":m0||void 0};var F={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function mt(){if(!o.findBackend(F.name)){f("backend registration:",F.name);try{F.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(F.width,F.height):document.createElement("canvas")}catch(e){f("error: cannot create canvas:",e);return}try{F.gl=F.canvas.getContext("webgl2",F.webGLattr)}catch(e){f("error: cannot get WebGL2 context:",e);return}try{o.setWebGLContext(2,F.gl)}catch(e){f("error: cannot set WebGL2 context:",e);return}try{let e=new o.GPGPUContext(F.gl);o.registerBackend(F.name,()=>new o.MathBackendWebGL(e),F.priority)}catch(e){f("error: cannot register WebGL backend:",e);return}try{o.getKernelsForBackend("webgl").forEach(t=>{let r={...t,backendName:F.name};o.registerKernel(r)})}catch(e){f("error: cannot update WebGL backend registration:",e);return}try{o.ENV.set("WEBGL_VERSION",2)}catch(e){f("error: cannot set WebGL backend flags:",e);return}f("backend registered:",F.name)}}var o1={};J(o1,{load:()=>s1,predict:()=>je});var Ee={};function L(e,t){if(!t||!t.kernels)return;let r=5,A=t.kernels.filter(n=>n.kernelTimeMs>0).reduce((n,s)=>n+=s.kernelTimeMs,0),_=t.kernels.map((n,s)=>(n.id=s,n)).filter(n=>n.kernelTimeMs>0).sort((n,s)=>s.kernelTimeMs-n.kernelTimeMs),c=t.kernels.map((n,s)=>(n.id=s,n)).filter(n=>n.totalBytesSnapshot>0).sort((n,s)=>s.totalBytesSnapshot-n.totalBytesSnapshot);_.length>r&&(_.length=r),c.length>r&&(c.length=r),Ee[e]={model:e,newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:A,slowestKernelOps:_,largestKernelOps:c},f("profiler",e,Ee[e])}var K,ve={age:0},Re=Number.MAX_SAFE_INTEGER;async function s1(e){return K?e.debug&&f("cached model:",K.modelUrl):(K=await o.loadGraphModel(W(e.modelBasePath,e.face.age.modelPath)),!K||!K.modelUrl?f("load model failed:",e.face.age.modelPath):e.debug&&f("load model:",K.modelUrl)),K}async function je(e,t){return K?Re0?(Re++,ve):(t.videoOptimized?Re=0:Re=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let A=o.image.resizeBilinear(e,[K.inputs[0].shape[2],K.inputs[0].shape[1]],!1),_=o.mul(A,[255]);o.dispose(A);let c,n={age:0};if(!t.profile)t.face.age.enabled&&(c=await K.predict(_));else{let s=t.face.age.enabled?await o.profile(()=>K.predict(_)):{};c=s.result.clone(),s.result.dispose(),L("age",s)}if(_.dispose(),c){let s=c.dataSync();n.age=Math.trunc(10*s[0])/10}c.dispose(),ve=n,r(n)})):null}var h1={};J(h1,{load:()=>y1,predict:()=>We});var Y,i1={gender:""},Se=Number.MAX_SAFE_INTEGER,a1=!1,x1=[.2989,.587,.114];async function y1(e){return Y?e.debug&&f("cached model:",Y.modelUrl):(Y=await o.loadGraphModel(W(e.modelBasePath,e.face.gender.modelPath)),a1=Y.inputs[0].shape[3]===1,!Y||!Y.modelUrl?f("load model failed:",e.face.gender.modelPath):e.debug&&f("load model:",Y.modelUrl)),Y}async function We(e,t){return Y?Se{let A=o.image.resizeBilinear(e,[Y.inputs[0].shape[2],Y.inputs[0].shape[1]],!1),_;a1?_=o.tidy(()=>{let[s,h,a]=o.split(A,3,3),y=o.mul(s,x1[0]),i=o.mul(h,x1[1]),d=o.mul(a,x1[2]);return o.addN([y,i,d]).sub(.5).mul(2)}):_=o.mul(A,[255]),o.dispose(A);let c,n={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(c=await Y.predict(_));else{let s=t.face.gender.enabled?await o.profile(()=>Y.predict(_)):{};c=s.result.clone(),s.result.dispose(),L("gender",s)}if(_.dispose(),c)if(Array.isArray(c)){let s=c[0].dataSync(),h=Math.trunc(200*Math.abs(s[0]-.5))/100;h>t.face.gender.minConfidence&&(n.gender=s[0]<=.5?"female":"male",n.confidence=Math.min(.99,h)),c.forEach(a=>o.dispose(a))}else{let s=c.dataSync();if(a1)(s[0]>t.face.gender.minConfidence||s[1]>t.face.gender.minConfidence)&&(n.gender=s[0]>s[1]?"female":"male",n.confidence=s[0]>s[1]?Math.trunc(100*s[0])/100:Math.trunc(100*s[1])/100);else{let h=Math.trunc(200*Math.abs(s[0]-.5))/100;h>t.face.gender.minConfidence&&(n.gender=s[0]<=.5?"female":"male",n.confidence=Math.min(.99,h))}c.dispose()}i1=n,r(n)})):null}var w1={};J(w1,{load:()=>f1,predict:()=>ke});var b0=["angry","disgust","fear","happy","sad","surprise","neutral"],D,l1=[],Ne=Number.MAX_SAFE_INTEGER,d1=[.2989,.587,.114];async function f1(e){return D?e.debug&&f("cached model:",D.modelUrl):(D=await o.loadGraphModel(W(e.modelBasePath,e.face.emotion.modelPath)),!D||!D.modelUrl?f("load model failed:",e.face.emotion.modelPath):e.debug&&f("load model:",D.modelUrl)),D}async function ke(e,t){return D?Ne0?(Ne++,l1):(t.videoOptimized?Ne=0:Ne=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let A=o.image.resizeBilinear(e,[D.inputs[0].shape[2],D.inputs[0].shape[1]],!1),[_,c,n]=o.split(A,3,3);A.dispose();let s=o.mul(_,d1[0]),h=o.mul(c,d1[1]),a=o.mul(n,d1[2]);_.dispose(),c.dispose(),n.dispose();let y=o.addN([s,h,a]);s.dispose(),h.dispose(),a.dispose();let i=o.tidy(()=>y.sub(.5).mul(2));y.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let T=await o.profile(()=>D.predict(i));p=T.result.dataSync(),T.result.dispose(),L("emotion",T)}else{let T=await D.predict(i);p=T.dataSync(),o.dispose(T)}for(let T=0;Tt.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*p[T])/100),emotion:b0[T]});d.sort((T,x)=>x.score-T.score)}i.dispose(),l1=d,r(d)})):null}var q;async function m1(e){return q?e.debug&&f("cached model:",q.modelUrl):(q=await o.loadGraphModel(W(e.modelBasePath,e.face.embedding.modelPath)),!q||!q.modelUrl?f("load model failed:",e.face.embedding.modelPath):e.debug&&f("load model:",q.modelUrl)),q}function pt(e,t,r=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let A=e.map((c,n)=>Math.abs(e[n]-t[n])**r).reduce((c,n)=>c+n,0)**(1/r);return Math.max(Math.trunc(1e3*(1-A))/1e3,0)}function g0(e){return o.tidy(()=>{let r=[[.05,.15,.85,.85]],A=e.image||e.tensor;if(!(A instanceof o.Tensor))return null;let _=A.shape.length===3?o.image.cropAndResize(o.expandDims(A,0),r,[0],[q.inputs[0].shape[2],q.inputs[0].shape[1]]):o.image.cropAndResize(A,r,[0],[q.inputs[0].shape[2],q.inputs[0].shape[1]]),c=[.2989,.587,.114],[n,s,h]=o.split(_,3,3),a=o.mul(n,c[0]),y=o.mul(s,c[1]),i=o.mul(h,c[2]),d=o.addN([a,y,i]),p=o.stack([d,d,d],3).squeeze(4),T=p.sub(p.min());return T.div(T.max())})}async function p1(e,t){return q?new Promise(async r=>{let A=[];if(t.face.embedding.enabled){let _=g0(e);if(!t.profile)A=o.tidy(()=>[...q.predict(_).reshape([128,2]).logSumExp(1).dataSync()]);else{let c=await o.profile(()=>q.predict({img_inputs:_}));A=[...c.result.dataSync()],c.result.dispose(),L("emotion",c)}o.dispose(_)}r(A)}):[]}var u1={};J(u1,{enhance:()=>T1,load:()=>b1,match:()=>ut,predict:()=>Le,similarity:()=>g1});var B,Ie={age:0},Oe=Number.MAX_SAFE_INTEGER;async function b1(e){return B?e.debug&&f("cached model:",B.modelUrl):(B=await o.loadGraphModel(W(e.modelBasePath,e.face.description.modelPath)),!B||!B.modelUrl?f("load model failed:",e.face.description.modelPath):e.debug&&f("load model:",B.modelUrl)),B}function g1(e,t,r=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let A=5*e.map((c,n)=>Math.abs(e[n]-t[n])**r).reduce((c,n)=>c+n,0)**(1/r);return Math.max(0,100-A)/100}function ut(e,t,r=0){let A={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return A;for(let _ of t)if(_.embedding&&_.name){let c=g1(e,_.embedding);c>r&&c>A.similarity&&(A={..._,similarity:c})}return A}function T1(e){return o.tidy(()=>{let r=e.image||e.tensor||e;if(!(r instanceof o.Tensor))return null;let A=[[.05,.15,.85,.85]];return(r.shape.length===3?o.image.cropAndResize(o.expandDims(r,0),A,[0],[B.inputs[0].shape[2],B.inputs[0].shape[1]]):o.image.cropAndResize(r,A,[0],[B.inputs[0].shape[2],B.inputs[0].shape[1]])).mul(255)})}async function Le(e,t){return B?Oe0?(Oe++,Ie):(t.videoOptimized?Oe=0:Oe=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let A=T1(e),_,c={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};if(!t.profile)t.face.description.enabled&&(_=await B.predict(A));else{let n=t.face.description.enabled?await o.profile(()=>B.predict(A)):{};_=n.result,L("faceres",n)}o.dispose(A),_&&(o.tidy(()=>{let n=_.find(i=>i.shape[1]===1).dataSync(),s=Math.trunc(200*Math.abs(n[0]-.5))/100;s>t.face.gender.minConfidence&&(c.gender=n[0]<=.5?"female":"male",c.genderConfidence=Math.min(.99,s));let h=_.find(i=>i.shape[1]===100).argMax(1).dataSync()[0],a=_.find(i=>i.shape[1]===100).dataSync();c.age=Math.round(a[h-1]>a[h+1]?10*h-100*a[h-1]:10*h+100*a[h+1])/10;let y=_.find(i=>i.shape[1]===1024);c.descriptor=[...y.dataSync()]}),_.forEach(n=>o.dispose(n))),Ie=c,r(c)})):null}var T0=(e,t)=>{let r=m=>m*180/Math.PI,A=m=>{let u=Math.sqrt(m[0]*m[0]+m[1]*m[1]+m[2]*m[2]);return m[0]/=u,m[1]/=u,m[2]/=u,m},_=(m,u)=>{let M=m[0]-u[0],z=m[1]-u[1],j=m[2]-u[2];return[M,z,j]},c=(m,u)=>{let M=m[1]*u[2]-m[2]*u[1],z=m[2]*u[0]-m[0]*u[2],j=m[0]*u[1]-m[1]*u[0];return[M,z,j]},n=m=>{let[u,M,z,j,b,l,g,E,R]=m,I,ce,X;return j<1?j>-1?(X=Math.asin(j),ce=Math.atan2(-g,u),I=Math.atan2(-l,b)):(X=-Math.PI/2,ce=-Math.atan2(E,R),I=0):(X=Math.PI/2,ce=Math.atan2(E,R),I=0),{pitch:2*-I,yaw:2*-ce,roll:2*-X}},s=m=>{let u=(z,j,b,l)=>Math.atan2(l-j,b-z);return{pitch:u(m[10][1],m[10][2],m[152][1],m[152][2]),yaw:u(m[33][0],m[33][2],m[263][0],m[263][2]),roll:u(m[33][0],m[33][1],m[263][0],m[263][1])}},h=e.meshRaw;if(!h||h.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let a=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,y=[h[10],h[152],h[234],h[454]].map(m=>[m[0]*t[0]/a,m[1]*t[1]/a,m[2]]),i=A(_(y[1],y[0])),d=A(_(y[3],y[2])),p=A(c(d,i));d=c(i,p);let T=[d[0],d[1],d[2],i[0],i[1],i[2],p[0],p[1],p[2]];return{angle:n(T),matrix:T}},P1=async(e,t)=>{var y,i,d,p,T,x,m;let r,A,_,c,n,s,h=[];e.state="run:face",r=v();let a=await((y=e.models.face)==null?void 0:y.estimateFaces(t,e.config));if(e.perf.face=Math.trunc(v()-r),!a)return[];for(let u of a){if(e.analyze("Get Face"),!u.image||u.image.isDisposedInternal){f("Face object is disposed:",u.image);continue}let M=T0(u,[t.shape[2],t.shape[1]]);e.analyze("Start Age:"),e.config.async?A=e.config.face.age.enabled?je(u.image,e.config):{}:(e.state="run:age",r=v(),A=e.config.face.age.enabled?await je(u.image,e.config):{},e.perf.age=Math.trunc(v()-r)),e.analyze("Start Gender:"),e.config.async?_=e.config.face.gender.enabled?We(u.image,e.config):{}:(e.state="run:gender",r=v(),_=e.config.face.gender.enabled?await We(u.image,e.config):{},e.perf.gender=Math.trunc(v()-r)),e.analyze("Start Emotion:"),e.config.async?c=e.config.face.emotion.enabled?ke(u.image,e.config):{}:(e.state="run:emotion",r=v(),c=e.config.face.emotion.enabled?await ke(u.image,e.config):{},e.perf.emotion=Math.trunc(v()-r)),e.analyze("End Emotion:"),e.analyze("Start Embedding:"),e.config.async?n=e.config.face.embedding.enabled?p1(u,e.config):[]:(e.state="run:embedding",r=v(),n=e.config.face.embedding.enabled?await p1(u,e.config):[],e.perf.embedding=Math.trunc(v()-r)),e.analyze("End Embedding:"),e.analyze("Start Description:"),e.config.async?s=e.config.face.description.enabled?Le(u,e.config):[]:(e.state="run:description",r=v(),s=e.config.face.description.enabled?await Le(u.image,e.config):[],e.perf.embedding=Math.trunc(v()-r)),e.analyze("End Description:"),e.config.async&&([A,_,c,n,s]=await Promise.all([A,_,c,n,s])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((i=u==null?void 0:u.annotations)==null?void 0:i.leftEyeIris)&&((d=u==null?void 0:u.annotations)==null?void 0:d.rightEyeIris)&&(delete u.annotations.leftEyeIris,delete u.annotations.rightEyeIris);let z=((p=u.annotations)==null?void 0:p.leftEyeIris)&&((T=u.annotations)==null?void 0:T.rightEyeIris)?11.7*Math.max(Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0]),Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])):0;h.push({...u,age:s.age||A.age,gender:s.gender||_.gender,genderConfidence:s.genderConfidence||_.confidence,embedding:s.descriptor||n,emotion:c,iris:z!==0?Math.trunc(z)/100:0,rotation:M,tensor:e.config.face.detector.return?(x=u.image)==null?void 0:x.squeeze():null}),(m=u.image)==null||m.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),h};var j1={};J(j1,{MediaPipeFaceMesh:()=>S1,load:()=>W1,triangulation:()=>jt,uvmap:()=>St});var bt=6;function P0(e){let t={strides:[e/16,e/8],anchors:[2,6]},r=[];for(let A=0;A({startEndTensor:e,startPoint:o.slice(e,[0,0],[-1,2]),endPoint:o.slice(e,[0,2],[-1,2])});function z0(e,t,r){let A=o.slice(e,[0,1],[-1,2]),_=o.add(A,t),c=o.slice(e,[0,3],[-1,2]),n=o.div(c,r),s=o.div(_,r),h=o.div(n,2),a=o.sub(s,h),y=o.add(s,h),i=o.mul(a,r),d=o.mul(y,r);return o.concat2d([i,d],1)}var gt=class{constructor(t,r){this.model=t,this.anchorsData=P0(t.inputs[0].shape[1]),this.anchors=o.tensor2d(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=r}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[r,A,_]=o.tidy(()=>{let d=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),p=this.model.predict(d),T;if(Array.isArray(p)){let M=p.sort((l,g)=>l.size-g.size),z=o.concat([M[0],M[2]],2),j=o.concat([M[1],M[3]],2);T=o.concat([j,z],1).squeeze(0)}else T=p.squeeze();let x=z0(T,this.anchors,[this.inputSize,this.inputSize]),m=o.slice(T,[0,0],[-1,1]),u=o.sigmoid(m).squeeze();return[T,x,u]}),c=await o.image.nonMaxSuppressionAsync(A,_,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),n=c.arraySync();c.dispose();let h=n.map(i=>o.slice(A,[i,0],[1,-1])).map(i=>{let d=i.arraySync();return i.dispose(),d}),a=_.dataSync(),y=[];for(let i=0;ithis.config.face.detector.minConfidence){let T=M0(h[i]),x=this.anchorsData[d],m=o.tidy(()=>o.slice(r,[d,bt-1],[1,-1]).squeeze().reshape([bt,-1]));y.push({box:T,landmarks:m,anchor:x,confidence:p})}}return r.dispose(),A.dispose(),_.dispose(),{boxes:y,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function Tt(e){let t=await o.loadGraphModel(W(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),r=new gt(t,e);return!t||!t.modelUrl?f("load model failed:",e.face.detector.modelPath):e.debug&&f("load model:",t.modelUrl),r}function Pt(e,t){let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],A=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:r,endPoint:A}}function de(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function ae(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function xe(e,t,r){let A=t.shape[1],_=t.shape[2],c=[[e.startPoint[1]/A,e.startPoint[0]/_,e.endPoint[1]/A,e.endPoint[0]/_]];return o.image.cropAndResize(t,c,[0],r)}function Ze(e,t=1.5){let r=ae(e),A=de(e),_=[t*A[0]/2,t*A[1]/2],c=[r[0]-_[0],r[1]-_[1]],n=[r[0]+_[0],r[1]+_[1]];return{startPoint:c,endPoint:n,landmarks:e.landmarks}}function He(e){let t=ae(e),r=de(e),_=Math.max(...r)/2,c=[t[0]-_,t[1]-_],n=[t[0]+_,t[1]+_];return{startPoint:c,endPoint:n,landmarks:e.landmarks}}var Ve=[[1,0,0],[0,1,0],[0,0,1]];function E0(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function M1(e,t){let r=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return E0(r)}function Mt(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function te(e,t){let r=0;for(let A=0;Afe[e]),Jn=j0.map(e=>fe[e]),Cn=S0.map(e=>fe[e]);var E1=Q.leftEyeLower0,v1=Q.rightEyeLower0,ye={leftBounds:[E1[0],E1[E1.length-1]],rightBounds:[v1[0],v1[v1.length-1]]},Fe={count:468,mouth:13,symmetryLine:[13,Q.midwayBetweenEyes[0]]},Rt={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},we={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function qe(e,t,r,A){for(let _=0;_[c[0]/this.meshSize*(i[0]-this.meshSize/2),c[1]/this.meshSize*(i[1]-this.meshSize/2),i[2]]),s=A!==0?Xe(A,[0,0]):Ve,h=A!==0?n.map(i=>[...vt(i,s),i[2]]):n,a=A!==0?Et(_):Ve,y=[...ae({startPoint:r.startPoint,endPoint:r.endPoint}),1];return h.map(i=>[i[0]+te(y,a[0]),i[1]+te(y,a[1]),i[2]])}getLeftToRightEyeDepthDifference(t){let r=t[ye.leftBounds[0]][2],A=t[ye.rightBounds[0]][2];return r-A}getEyeBox(t,r,A,_,c=!1){let n=He(Ze(this.calculateLandmarksBoundingBox([t[A],t[_]]),this.irisEnlarge)),s=de(n),h=o.image.cropAndResize(r,[[n.startPoint[1]/this.meshSize,n.startPoint[0]/this.meshSize,n.endPoint[1]/this.meshSize,n.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return c&&o.ENV.flags.IS_BROWSER&&(h=o.image.flipLeftRight(h)),{box:n,boxSize:s,crop:h}}getEyeCoords(t,r,A,_=!1){let c=[];for(let n=0;n{let a=n;return h===2?a=_:h===4&&(a=c),[s[0],s[1],a]})}async predict(t,r){let A=!1,_;if((this.skipped===0||this.skipped>r.face.detector.skipFrames||!r.face.mesh.enabled||!r.videoOptimized)&&(_=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),r.videoOptimized&&this.skipped++,!r.videoOptimized||_&&_.boxes&&(!r.face.mesh.enabled||_.boxes.length!==this.detectedFaces&&this.detectedFaces!==r.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let n of _.boxes)this.storedBoxes.push({startPoint:n.box.startPoint.dataSync(),endPoint:n.box.endPoint.dataSync(),landmarks:n.landmarks,confidence:n.confidence});this.storedBoxes.length>0&&(A=!0)}if(r.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),A){if(!_||!_.boxes||_.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let n=0;n{n.box.startPoint.dispose(),n.box.endPoint.dispose(),n.landmarks.dispose()});let c=o.tidy(()=>this.storedBoxes.map((n,s)=>{let h=n.confidence,a,y=0,i;if(r.face.detector.rotation&&r.face.mesh.enabled&&o.ENV.flags.IS_BROWSER){let[b,l]=n.landmarks.length>=Fe.count?Fe.symmetryLine:Rt.symmetryLine;y=M1(n.landmarks[b],n.landmarks[l]);let g=ae({startPoint:n.startPoint,endPoint:n.endPoint}),E=[g[0]/t.shape[2],g[1]/t.shape[1]],R=o.image.rotateWithOffset(t,y,0,E);i=Xe(-y,g),r.face.mesh.enabled?a=xe({startPoint:n.startPoint,endPoint:n.endPoint},R,[this.meshSize,this.meshSize]).div(255):a=xe({startPoint:n.startPoint,endPoint:n.endPoint},R,[this.boxSize,this.boxSize]).div(255)}else{i=Ve;let b=t.clone();r.face.mesh.enabled?a=xe({startPoint:n.startPoint,endPoint:n.endPoint},b,[this.meshSize,this.meshSize]).div(255):a=xe({startPoint:n.startPoint,endPoint:n.endPoint},b,[this.boxSize,this.boxSize]).div(255)}if(!r.face.mesh.enabled)return{coords:null,box:n,faceConfidence:null,boxConfidence:h,confidence:n.confidence,image:a};let[,d,p]=this.meshDetector.predict(a),T=d.dataSync()[0];if(T=Fe.count?Fe.symmetryLine:Rt.symmetryLine;y=M1(n.landmarks[b],n.landmarks[l]);let g=ae({startPoint:n.startPoint,endPoint:n.endPoint}),E=[g[0]/t.shape[2],g[1]/t.shape[1]],R=o.image.rotateWithOffset(t.toFloat(),y,0,E);i=Xe(-y,g),a=xe({startPoint:n.startPoint,endPoint:n.endPoint},R,[this.meshSize,this.meshSize]).div(255)}let z={coords:M,box:n,faceConfidence:T,boxConfidence:h,image:a,rawCoords:m},j=He(n);return this.storedBoxes[s]={...j,landmarks:u,confidence:n.confidence,faceConfidence:T},z}));return c=c.filter(n=>n!==null),r.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(n=>n.faceConfidence>r.face.detector.minConfidence)),this.detectedFaces=c.length,c}calculateLandmarksBoundingBox(t){let r=t.map(n=>n[0]),A=t.map(n=>n[1]),_=[Math.min(...r),Math.min(...A)],c=[Math.max(...r),Math.max(...A)];return{startPoint:_,endPoint:c,landmarks:t}}};var S1=class{constructor(t,r,A,_){this.facePipeline=new R1(t,r,A),this.config=_}async estimateFaces(t,r){let A=await this.facePipeline.predict(t,r),_=[];for(let c of A||[]){if(c.isDisposedInternal)continue;let n=c.coords?c.coords.arraySync():[],s=n.map(i=>[i[0]/t.shape[2],i[1]/t.shape[1],i[2]/this.facePipeline.meshSize]),h={};if(n&&n.length>0)for(let i of Object.keys(Q))h[i]=Q[i].map(d=>n[d]);let a=c.box?[Math.max(0,c.box.startPoint[0]),Math.max(0,c.box.startPoint[1]),Math.min(t.shape[2],c.box.endPoint[0])-Math.max(0,c.box.startPoint[0]),Math.min(t.shape[1],c.box.endPoint[1])-Math.max(0,c.box.startPoint[1])]:0,y=c.box?[c.box.startPoint[0]/t.shape[2],c.box.startPoint[1]/t.shape[1],(c.box.endPoint[0]-c.box.startPoint[0])/t.shape[2],(c.box.endPoint[1]-c.box.startPoint[1])/t.shape[1]]:[];_.push({confidence:Math.round(100*c.faceConfidence||100*c.boxConfidence||0)/100,boxConfidence:Math.round(100*c.boxConfidence)/100,faceConfidence:Math.round(100*c.faceConfidence)/100,box:a,boxRaw:y,mesh:n,meshRaw:s,annotations:h,image:c.image?c.image.clone():null}),c.coords&&c.coords.dispose(),c.image&&c.image.dispose()}return _}},O=[null,null,null];async function W1(e){return!O[0]&&e.face.enabled||!O[1]&&e.face.mesh.enabled||!O[2]&&e.face.iris.enabled?(O=await Promise.all([!O[0]&&e.face.enabled?Tt(e):null,!O[1]&&e.face.mesh.enabled?o.loadGraphModel(W(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!O[2]&&e.face.iris.enabled?o.loadGraphModel(W(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!O[1]||!O[1].modelUrl?f("load model failed:",e.face.mesh.modelPath):e.debug&&f("load model:",O[1].modelUrl)),e.face.iris.enabled&&(!O[2]||!O[1].modelUrl?f("load model failed:",e.face.iris.modelPath):e.debug&&f("load model:",O[2].modelUrl))):e.debug&&(f("cached model:",O[0].model.modelUrl),f("cached model:",O[1].modelUrl),f("cached model:",O[2].modelUrl)),new S1(O[0],O[1],O[2],e)}var jt=oe,St=fe;var Z1={};J(Z1,{load:()=>V1,predict:()=>H1});var me=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Wt=me.length,pe=me.reduce((e,t,r)=>(e[t]=r,e),{}),W0=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],N0=W0.map(([e,t])=>[pe[e],pe[t]]),Nt=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function kt(e){let t=e.reduce(({maxX:r,maxY:A,minX:_,minY:c},{position:{x:n,y:s}})=>({maxX:Math.max(r,n),maxY:Math.max(A,s),minX:Math.min(_,n),minY:Math.min(c,s)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function It(e,[t,r],[A,_]){let c=(s,h,a)=>({score:s.score,box:[Math.trunc(s.box[0]*a),Math.trunc(s.box[1]*h),Math.trunc(s.box[2]*a),Math.trunc(s.box[3]*h)],keypoints:s.keypoints.map(({score:y,part:i,position:d})=>({score:y,part:i,position:{x:Math.trunc(d.x*a),y:Math.trunc(d.y*h)}}))});return e.map(s=>c(s,t/A,r/_))}var N1=class{constructor(t,r){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=r}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let r=2*t;if(rr?r:e}function Ot(e,t,r,A){let _=r-e,c=A-t;return _*_+c*c}function L1(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Be=1,Lt=16;function Zt(e,t,r,A,_,c,n,s=2){let h=M=>({y:n.get(M.y,M.x,e),x:n.get(M.y,M.x,n.shape[2]/2+e)}),a=(M,z,j)=>({y:O1(Math.round(M.y/c),0,z-1),x:O1(Math.round(M.x/c),0,j-1)}),[y,i]=A.shape,d=a(t.position,y,i),p=h(d),x=L1(t.position,p);for(let M=0;M[pe[x],pe[m]]),s=n.map(([,x])=>x),h=n.map(([x])=>x),a=t.shape[2],y=s.length,i=new Array(a),{part:d,score:p}=e,T=I1(d,A,r);i[d.id]={score:p,part:me[d.id],position:T};for(let x=y-1;x>=0;--x){let m=s[x],u=h[x];i[m]&&!i[u]&&(i[u]=Zt(x,i[m],u,t,r,A,c))}for(let x=0;xt){s=!1;break}if(!s)break}return s}function O0(e,t){let[r,A,_]=t.shape,c=new N1(r*A*_,({score:n})=>n);for(let n=0;n{let n=c[_].position;return Ot(A,r,n.y,n.x)<=t})}function L0(e,t,r){return r.reduce((_,{position:c,score:n},s)=>(Ht(e,t,c,s)||(_+=n),_),0)/r.length}function Vt(e,t,r,A,_,c,n){let s=[],h=O0(n,t),a=_**2;for(;s.lengthm.score>n),T=L0(s,a,p),x=kt(p);T>n&&s.push({keypoints:p,box:x,score:Math.round(100*T)/100})}return s}var G,Z0=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function H1(e,t){let r=o.tidy(()=>{let s=e.resizeBilinear([G.inputs[0].shape[2],G.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),a=G.execute(s,Z0).map(y=>y.squeeze([0]));return a[1]=a[1].sigmoid(),a}),A=await Promise.all(r.map(n=>n.buffer()));for(let n of r)n.dispose();let _=await Vt(A[0],A[1],A[2],A[3],t.body.nmsRadius,t.body.maxDetections,t.body.scoreThreshold);return It(_,[e.shape[1],e.shape[2]],[G.inputs[0].shape[2],G.inputs[0].shape[1]])}async function V1(e){return G?e.debug&&f("cached model:",G.modelUrl):(G=await o.loadGraphModel(W(e.modelBasePath,e.body.modelPath)),!G||!G.modelUrl?f("load model failed:",e.body.modelPath):e.debug&&f("load model:",G.modelUrl)),G}var U1={};J(U1,{HandPose:()=>J1,load:()=>C1});function Ue(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function ue(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Xt(e,t,r){let A=t.shape[1],_=t.shape[2],c=[[e.startPoint[1]/A,e.startPoint[0]/_,e.endPoint[1]/A,e.endPoint[0]/_]];return o.image.cropAndResize(t,c,[0],r)}function Ft(e,t){let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],A=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],_=e.palmLandmarks.map(c=>[c[0]*t[0],c[1]*t[1]]);return{startPoint:r,endPoint:A,palmLandmarks:_,confidence:e.confidence}}function Ye(e,t=1.5){let r=ue(e),A=Ue(e),_=[t*A[0]/2,t*A[1]/2],c=[r[0]-_[0],r[1]-_[1]],n=[r[0]+_[0],r[1]+_[1]];return{startPoint:c,endPoint:n,palmLandmarks:e.palmLandmarks}}function Je(e){let t=ue(e),r=Ue(e),_=Math.max(...r)/2,c=[t[0]-_,t[1]-_],n=[t[0]+_,t[1]+_];return{startPoint:c,endPoint:n,palmLandmarks:e.palmLandmarks}}var X1=class{constructor(t,r,A){this.model=t,this.anchors=A.map(_=>[_.x_center,_.y_center]),this.anchorsTensor=o.tensor2d(this.anchors),this.inputSize=r,this.inputSizeTensor=o.tensor1d([r,r]),this.doubleInputSizeTensor=o.tensor1d([r*2,r*2])}normalizeBoxes(t){return o.tidy(()=>{let r=o.slice(t,[0,0],[-1,2]),A=o.slice(t,[0,2],[-1,2]),_=o.add(o.div(r,this.inputSizeTensor),this.anchorsTensor),c=o.div(A,this.doubleInputSizeTensor),n=o.mul(o.sub(_,c),this.inputSizeTensor),s=o.mul(o.add(_,c),this.inputSizeTensor);return o.concat2d([n,s],1)})}normalizeLandmarks(t,r){return o.tidy(()=>{let A=o.add(o.div(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[r]);return o.mul(A,this.inputSizeTensor)})}async getBoxes(t,r){let A=this.model.predict(t),_=A.squeeze();A.dispose();let c=o.tidy(()=>o.sigmoid(o.slice(_,[0,0],[-1,1])).squeeze()),n=c.dataSync(),s=o.slice(_,[0,1],[-1,4]),h=this.normalizeBoxes(s);s.dispose();let a=await o.image.nonMaxSuppressionAsync(h,n,r.hand.maxHands,r.hand.iouThreshold,r.hand.scoreThreshold),y=a.arraySync();c.dispose(),a.dispose();let i=[];for(let d of y)if(n[d]>=r.hand.minConfidence){let p=o.slice(h,[d,0],[1,-1]),T=o.slice(_,[d,5],[1,14]),x=o.tidy(()=>this.normalizeLandmarks(T,d).reshape([-1,2]));T.dispose(),i.push({box:p,palmLandmarks:x,confidence:n[d]})}return _.dispose(),h.dispose(),i}async estimateHandBounds(t,r){let A=t.shape[1],_=t.shape[2],c=o.tidy(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),n=await this.getBoxes(c,r);c.dispose();let s=[];if(!n||n.length===0)return s;for(let h of n){let a=h.box.dataSync(),y=a.slice(0,2),i=a.slice(2,4),d=h.palmLandmarks.arraySync();h.box.dispose(),h.palmLandmarks.dispose(),s.push(Ft({startPoint:y,endPoint:i,palmLandmarks:d,confidence:h.confidence},[_/this.inputSize,A/this.inputSize]))}return s}};function H0(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function qt(e,t){let r=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return H0(r)}var Bt=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ne(e,t){let r=0;for(let A=0;Aq1([...c,1],r)),_=this.calculateLandmarksBoundingBox(A);return Ye(Je(_),X0)}getBoxForHandLandmarks(t){let r=this.calculateLandmarksBoundingBox(t),A=Ye(Je(r),Jt);A.palmLandmarks=[];for(let _=0;_[n[0]*(p[0]-this.inputSize/2),n[1]*(p[1]-this.inputSize/2),n[2]*p[2]]),h=F1(A,[0,0]),a=s.map(p=>[...q1(p,h),p[2]]),y=Yt(_),i=[...ue(r),1],d=[ne(i,y[0]),ne(i,y[1])];return a.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,r){let A=!1,_;(this.skipped===0||this.skipped>r.hand.skipFrames||!r.hand.landmarks||!r.videoOptimized)&&(_=await this.handDetector.estimateHandBounds(t,r),this.skipped=0),r.videoOptimized&&this.skipped++,_&&_.length>0&&(_.length!==this.detectedHands&&this.detectedHands!==r.hand.maxHands||!r.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[..._],this.storedBoxes.length>0&&(A=!0));let c=[];r.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let n=0;n=r.hand.minConfidence){let z=o.reshape(u,[-1,3]),j=z.arraySync();u.dispose(),z.dispose();let b=this.transformRawCoords(j,p,h,d),l=this.getBoxForHandLandmarks(b);this.storedBoxes[n]=l;let g={landmarks:b,confidence:M,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};c.push(g)}else this.storedBoxes[n]=null;u.dispose()}else{let h=Ye(Je(s),Jt),a={confidence:s.confidence,box:{topLeft:h.startPoint,bottomRight:h.endPoint}};c.push(a)}}return this.storedBoxes=this.storedBoxes.filter(n=>n!==null),this.detectedHands=c.length,c}calculateLandmarksBoundingBox(t){let r=t.map(n=>n[0]),A=t.map(n=>n[1]),_=[Math.min(...r),Math.min(...A)],c=[Math.max(...r),Math.max(...A)];return{startPoint:_,endPoint:c}}};var Kt=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var Y1={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},J1=class{constructor(t){this.handPipeline=t}static getAnnotations(){return Y1}async estimateHands(t,r){let A=await this.handPipeline.estimateHands(t,r);if(!A)return[];let _=[];for(let c of A){let n={};if(c.landmarks)for(let a of Object.keys(Y1))n[a]=Y1[a].map(y=>c.landmarks[y]);let s=c.box?[Math.max(0,c.box.topLeft[0]),Math.max(0,c.box.topLeft[1]),Math.min(t.shape[2],c.box.bottomRight[0])-Math.max(0,c.box.topLeft[0]),Math.min(t.shape[1],c.box.bottomRight[1])-Math.max(0,c.box.topLeft[1])]:[],h=[c.box.topLeft[0]/t.shape[2],c.box.topLeft[1]/t.shape[1],(c.box.bottomRight[0]-c.box.topLeft[0])/t.shape[2],(c.box.bottomRight[1]-c.box.topLeft[1])/t.shape[1]];_.push({confidence:Math.round(100*c.confidence)/100,box:s,boxRaw:h,landmarks:c.landmarks,annotations:n})}return _}},$,ee;async function C1(e){!$||!ee?([$,ee]=await Promise.all([e.hand.enabled?o.loadGraphModel(W(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?o.loadGraphModel(W(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!$||!$.modelUrl?f("load model failed:",e.hand.detector.modelPath):e.debug&&f("load model:",$.modelUrl),!ee||!ee.modelUrl?f("load model failed:",e.hand.skeleton.modelPath):e.debug&&f("load model:",ee.modelUrl))):(e.debug&&f("cached model:",$.modelUrl),e.debug&&f("cached model:",ee.modelUrl));let t=new X1($,$==null?void 0:$.inputs[0].shape[2],Kt),r=new B1(t,ee,ee==null?void 0:ee.inputs[0].shape[2]);return new J1(r)}var K1={};J(K1,{load:()=>D1,predict:()=>G1});var Dt=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],Gt=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var Z;async function D1(e){return Z?e.debug&&f("cached model:",Z.modelUrl):(Z=await o.loadGraphModel(W(e.modelBasePath,e.body.modelPath)),Z.width=parseInt(Z.signature.inputs["input_1:0"].tensorShape.dim[2].size),Z.height=parseInt(Z.signature.inputs["input_1:0"].tensorShape.dim[1].size),!Z||!Z.modelUrl?f("load model failed:",e.body.modelPath):e.debug&&f("load model:",Z.modelUrl)),Z}async function G1(e,t){if(!Z||!t.body.enabled)return null;let r={width:e.shape[2],height:e.shape[1]},A=o.image.resizeBilinear(e,[Z.width,Z.height],!1),_=o.div(A,[255]);A.dispose();let c;if(t.profile){let y=await o.profile(()=>Z.predict(_));c=y.result.find(i=>i.size===195||i.size===155).dataSync(),y.result.forEach(i=>i.dispose()),L("blazepose",y)}else{let y=await Z.predict(_);c=y.find(i=>i.size===195||i.size===155).dataSync(),y.forEach(i=>i.dispose())}_.dispose();let n=[],s=c.length===195?Dt:Gt,h=5;for(let y=0;yi.score>y?i.score:y,0),keypoints:n}]}var H,be=[],Ce=Number.MAX_SAFE_INTEGER,B0=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function Q1(e){return H?e.debug&&f("cached model:",H.modelUrl):(H=await o.loadGraphModel(W(e.modelBasePath,e.body.modelPath)),!H||!H.modelUrl?f("load model failed:",e.body.modelPath):e.debug&&f("load model:",H.modelUrl)),H}function U0(e,t){let[r,A]=e.shape;return o.tidy(()=>{let _=(s,h)=>o.sub(s,o.mul(o.div(s,o.scalar(h,"int32")),o.scalar(h,"int32"))),c=o.reshape(e,[A*r]),n=o.max(c,0).dataSync()[0];if(n>t){let s=o.argMax(c,0),h=_(s,r).dataSync()[0],a=o.div(s,o.scalar(r,"int32")).dataSync()[0];return[h,a,n]}return[0,0,n]})}async function $1(e,t){return H?Ce0?(Ce++,be):(t.videoOptimized?Ce=0:Ce=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let A=o.tidy(()=>{let n=o.image.resizeBilinear(e,[H.inputs[0].shape[2],H.inputs[0].shape[1]],!1);return o.mul(n,2).sub(1)}),_;if(!t.profile)t.body.enabled&&(_=await H.predict(A));else{let n=t.body.enabled?await o.profile(()=>H.predict(A)):{};_=n.result.clone(),n.result.dispose(),L("body",n)}if(A.dispose(),_){let n=[],s=_.squeeze();o.dispose(_);let h=s.unstack(2);o.dispose(s);for(let a=0;at.body.scoreThreshold&&n.push({id:a,score:Math.round(100*d)/100,part:B0[a],positionRaw:{xRaw:y/H.inputs[0].shape[2],yRaw:i/H.inputs[0].shape[1]},position:{x:Math.round(e.shape[2]*y/H.inputs[0].shape[2]),y:Math.round(e.shape[1]*i/H.inputs[0].shape[1])}})}h.forEach(a=>o.dispose(a)),be=n}let c=be.reduce((n,s)=>s.score>n?s.score:n,0);r([{score:c,keypoints:be}])})):null}var et={};J(et,{load:()=>nt,predict:()=>rt});var Ke=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var V,tt=[],De=Number.MAX_SAFE_INTEGER,Ge=2.5;async function nt(e){if(V)e.debug&&f("cached model:",V.modelUrl);else{V=await o.loadGraphModel(W(e.modelBasePath,e.object.modelPath));let t=Object.values(V.modelSignature.inputs);if(V.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!V.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!V||!V.modelUrl?f("load model failed:",e.object.modelPath):e.debug&&f("load model:",V.modelUrl)}return V}async function Y0(e,t,r,A){let _=0,c=[];for(let a of[1,2,4])o.tidy(()=>{var m,u;let y=a*13,i=(m=e.find(M=>M.shape[1]===y**2&&M.shape[2]===Ke.length))==null?void 0:m.squeeze(),d=(u=e.find(M=>M.shape[1]===y**2&&M.shape[2]A.object.minConfidence&&z!==61){let b=(.5+Math.trunc(M%y))/y,l=(.5+Math.trunc(M/y))/y,g=T[M].map(Ae=>Ae*(y/a/t)),[E,R]=[b-Ge/a*g[0],l-Ge/a*g[1]],[I,ce]=[b+Ge/a*g[2]-E,l+Ge/a*g[3]-R],X=[E,R,I,ce];X=X.map(Ae=>Math.max(0,Math.min(Ae,1)));let _1=[X[0]*r[0],X[1]*r[1],X[2]*r[0],X[3]*r[1]],ze={id:_++,strideSize:a,score:Math.round(100*j)/100,class:z+1,label:Ke[z].label,center:[Math.trunc(r[0]*b),Math.trunc(r[1]*l)],centerRaw:[b,l],box:_1.map(Ae=>Math.trunc(Ae)),boxRaw:X};c.push(ze)}}});e.forEach(a=>o.dispose(a));let n=c.map(a=>a.boxRaw),s=c.map(a=>a.score),h=[];if(n&&n.length>0){let a=await o.image.nonMaxSuppressionAsync(n,s,A.object.maxResults,A.object.iouThreshold,A.object.minConfidence);h=a.dataSync(),o.dispose(a)}return c=c.filter((a,y)=>h.includes(y)).sort((a,y)=>y.score-a.score),c}async function rt(e,t){return V?De0?(De++,tt):(t.videoOptimized?De=0:De=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let A=[e.shape[2],e.shape[1]],_=o.image.resizeBilinear(e,[V.inputSize,V.inputSize],!1),c=_.div(255),n=c.transpose([0,3,1,2]);c.dispose(),_.dispose();let s;if(!t.profile)t.object.enabled&&(s=await V.predict(n));else{let a=t.object.enabled?await o.profile(()=>V.predict(n)):{};s=a.result,L("object",a)}n.dispose();let h=await Y0(s,V.inputSize,A,t);tt=h,r(h)})):null}var Qt=e=>{if(!e)return[];let t=[];for(let r=0;rh.part==="leftWrist"),_=e[r].keypoints.find(h=>h.part==="rightWrist"),c=e[r].keypoints.find(h=>h.part==="nose");c&&A&&_&&A.position.yh.part==="leftShoulder"),s=e[r].keypoints.find(h=>h.part==="rightShoulder");n&&s&&t.push({body:r,gesture:`leaning ${n.position.y>s.position.y?"left":"right"}`})}return t},$t=e=>{if(!e)return[];let t=[];for(let r=0;r0){let A=e[r].mesh[33][2]-e[r].mesh[263][2];Math.abs(A)<10?t.push({face:r,gesture:"facing center"}):t.push({face:r,gesture:`facing ${A<0?"left":"right"}`}),Math.abs(e[r].mesh[374][1]-e[r].mesh[386][1])/Math.abs(e[r].mesh[443][1]-e[r].mesh[450][1])<.2&&t.push({face:r,gesture:"blink left eye"}),Math.abs(e[r].mesh[145][1]-e[r].mesh[159][1])/Math.abs(e[r].mesh[223][1]-e[r].mesh[230][1])<.2&&t.push({face:r,gesture:"blink right eye"});let n=Math.min(100,500*Math.abs(e[r].mesh[13][1]-e[r].mesh[14][1])/Math.abs(e[r].mesh[10][1]-e[r].mesh[152][1]));n>10&&t.push({face:r,gesture:`mouth ${Math.trunc(n)}% open`});let s=e[r].mesh[152][2];Math.abs(s)>10&&t.push({face:r,gesture:`head ${s<0?"up":"down"}`})}return t},e0=e=>{if(!e)return[];let t=[];for(let r=0;r.033||i>.033)&&(a=!1),d>.033&&t.push({iris:r,gesture:"looking right"}),i>.033&&t.push({iris:r,gesture:"looking left"});let p=Math.abs(e[r].mesh[145][1]-e[r].annotations.rightEyeIris[0][1])/e[r].annotations.rightEyeIris[0][1],T=Math.abs(e[r].mesh[374][1]-e[r].annotations.leftEyeIris[0][1])/e[r].annotations.leftEyeIris[0][1];(T<.015||p<.015||T>.03||p>.03)&&(a=!1),(T<.015||p<.015)&&t.push({iris:r,gesture:"looking down"}),(T>.03||p>.03)&&t.push({iris:r,gesture:"looking up"}),a&&t.push({iris:r,gesture:"looking center"})}return t},t0=e=>{if(!e)return[];let t=[];for(let r=0;r0){let _=A.reduce((n,s)=>n.position[2]n.position[1]At});function J0(e,t,r){let A=function(s,h,a){let y=new RegExp("\\b"+h+" \\w+ (\\w+)","ig");s.replace(y,(i,d)=>(a[d]=0,i))},_=function(s,h){let a=e.createShader(h);if(e.shaderSource(a,s),e.compileShader(a),!e.getShaderParameter(a,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(a));return a};this.uniform={},this.attribute={};let c=_(t,e.VERTEX_SHADER),n=_(r,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,c),e.attachShader(this.id,n),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),A(t,"attribute",this.attribute);for(let s in this.attribute)this.attribute[s]=e.getAttribLocation(this.id,s);A(t,"uniform",this.uniform),A(r,"uniform",this.uniform);for(let s in this.uniform)this.uniform[s]=e.getUniformLocation(this.id,s)}function n0(e){e||(e={});let t=0,r=null,A=!1,_=-1,c=[null,null],n=[],s=-1,h=-1,a=null,y=null,i={},d=e.canvas||document.createElement("canvas"),p={},T={INTERMEDIATE:1},x=d.getContext("webgl");if(!x)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let l=Array.prototype.slice.call(arguments,1),g=i[b];n.push({func:g,args:l})},this.reset=function(){n=[]};let m=function(b,l){if(!(b===s&&l===h)){if(d.width=b,s=b,d.height=l,h=l,!a){let g=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);a=x.createBuffer(),x.bindBuffer(x.ARRAY_BUFFER,a),x.bufferData(x.ARRAY_BUFFER,g,x.STATIC_DRAW),x.pixelStorei(x.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}x.viewport(0,0,s,h),c=[null,null]}},u=function(b,l){let g=x.createFramebuffer();x.bindFramebuffer(x.FRAMEBUFFER,g);let E=x.createRenderbuffer();x.bindRenderbuffer(x.RENDERBUFFER,E);let R=x.createTexture();return x.bindTexture(x.TEXTURE_2D,R),x.texImage2D(x.TEXTURE_2D,0,x.RGBA,b,l,0,x.RGBA,x.UNSIGNED_BYTE,null),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_MAG_FILTER,x.LINEAR),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_MIN_FILTER,x.LINEAR),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_WRAP_S,x.CLAMP_TO_EDGE),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_WRAP_T,x.CLAMP_TO_EDGE),x.framebufferTexture2D(x.FRAMEBUFFER,x.COLOR_ATTACHMENT0,x.TEXTURE_2D,R,0),x.bindTexture(x.TEXTURE_2D,null),x.bindFramebuffer(x.FRAMEBUFFER,null),{fbo:g,texture:R}},M=function(b){return c[b]=c[b]||u(s,h),c[b]},z=function(b=null){var R,I;let l=null,g=null,E=!1;t===0?l=r:l=(R=M(_))==null?void 0:R.texture,t++,A&&!(b&T.INTERMEDIATE)?(g=null,E=t%2==0):(_=(_+1)%2,g=(I=M(_))==null?void 0:I.fbo),x.bindTexture(x.TEXTURE_2D,l),x.bindFramebuffer(x.FRAMEBUFFER,g),x.uniform1f(y.uniform.flipY,E?-1:1),x.drawArrays(x.TRIANGLES,0,6)};this.apply=function(b){if(m(b.width,b.height),t=0,r||(r=x.createTexture()),x.bindTexture(x.TEXTURE_2D,r),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_WRAP_S,x.CLAMP_TO_EDGE),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_WRAP_T,x.CLAMP_TO_EDGE),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_MIN_FILTER,x.NEAREST),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_MAG_FILTER,x.NEAREST),x.texImage2D(x.TEXTURE_2D,0,x.RGBA,x.RGBA,x.UNSIGNED_BYTE,b),n.length===0)return z(),d;for(let l=0;l{for(var r in e)F1(t,r,{get:e[r],enumerable:!0})},w=(t,e,r)=>{if(e&&typeof e=="object"||typeof e=="function")for(let c of U0(e))!B0.call(t,c)&&c!=="default"&&F1(t,c,{get:()=>e[c],enumerable:!(r=Y0(e,c))||r.enumerable});return t};var q1=(t,e,r)=>{if(!e.has(t))throw TypeError("Cannot "+r)};var q=(t,e,r)=>(q1(t,e,"read from private field"),r?r.call(t):e.get(t)),ne=(t,e,r,c)=>(q1(t,e,"write to private field"),c?c.call(t,r):e.set(t,r),r);function O(t,e){let r=t.endsWith("/")?"":"/",_=e.startsWith(".")||e.startsWith("/")||e.startsWith("http:")||e.startsWith("https:")||e.startsWith("file:")?`${e}`:`${t}${r}${e}`;if(!_.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${_} Expecting JSON file`);return _}function p(...t){let e=new Date,r=`${e.getHours().toString().padStart(2,"0")}:${e.getMinutes().toString().padStart(2,"0")}:${e.getSeconds().toString().padStart(2,"0")}.${e.getMilliseconds().toString().padStart(3,"0")}`;t&&console.log(r,"Human:",...t)}var j=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function F(...t){let e=r=>r&&typeof r=="object";return t.reduce((r,c)=>(Object.keys(c||{}).forEach(_=>{let A=r[_],n=c[_];Array.isArray(A)&&Array.isArray(n)?r[_]=A.concat(...n):e(A)&&e(n)?r[_]=F(A,n):r[_]=n}),r),{})}function B1(){let t,e;if(typeof navigator!="undefined"){let r=navigator.userAgent.match(/\(([^()]+)\)/g);if(r&&r[0]){let c=r[0].match(/\(([^()]+)\)/g);t=c?c[0].replace(/\(|\)/g,""):"",e=navigator.userAgent.replace(r[0],""),t[1]&&(e=e.replace(r[1],"")),e=e.replace(/ /g," ")}}else typeof process!="undefined"&&(t=`${process.platform} ${process.arch}`,e=`NodeJS ${process.version}`);return{platform:t,agent:e}}var o={};Y(o,{data:()=>D0,version:()=>G0});w(o,Wt);w(o,It);w(o,Nt);w(o,kt);w(o,Ot);w(o,Lt);import*as U1 from"@tensorflow/tfjs/package.json";import*as Y1 from"@tensorflow/tfjs-core/package.json";import*as J1 from"@tensorflow/tfjs-data/package.json";import*as C1 from"@tensorflow/tfjs-layers/package.json";import*as K1 from"@tensorflow/tfjs-converter/package.json";import{version_cpu as J0}from"@tensorflow/tfjs-backend-cpu/dist/index.js";import{version_webgl as C0}from"@tensorflow/tfjs-backend-webgl/dist/index.js";import{version_wasm as K0}from"@tensorflow/tfjs-backend-wasm/dist/index.js";import*as Wt from"@tensorflow/tfjs-core/dist/index.js";import*as It from"@tensorflow/tfjs-layers/dist/index.js";import*as Nt from"@tensorflow/tfjs-converter/dist/index.js";import*as D0 from"@tensorflow/tfjs-data/dist/index.js";import*as kt from"@tensorflow/tfjs-backend-cpu/dist/index.js";import*as Ot from"@tensorflow/tfjs-backend-webgl/dist/index.js";import*as Lt from"@tensorflow/tfjs-backend-wasm/dist/index.js";var G0={tfjs:(U1==null?void 0:U1.version)||void 0,"tfjs-core":(Y1==null?void 0:Y1.version)||void 0,"tfjs-data":(J1==null?void 0:J1.version)||void 0,"tfjs-layers":(C1==null?void 0:C1.version)||void 0,"tfjs-converter":(K1==null?void 0:K1.version)||void 0,"tfjs-backend-cpu":J0||void 0,"tfjs-backend-webgl":C0||void 0,"tfjs-backend-wasm":K0||void 0};var V={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function D1(){if(!o.findBackend(V.name)){p("backend registration:",V.name);try{V.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(V.width,V.height):document.createElement("canvas")}catch(t){p("error: cannot create canvas:",t);return}try{V.gl=V.canvas.getContext("webgl2",V.webGLattr)}catch(t){p("error: cannot get WebGL2 context:",t);return}try{o.setWebGLContext(2,V.gl)}catch(t){p("error: cannot set WebGL2 context:",t);return}try{let t=new o.GPGPUContext(V.gl);o.registerBackend(V.name,()=>new o.MathBackendWebGL(t),V.priority)}catch(t){p("error: cannot register WebGL backend:",t);return}try{o.getKernelsForBackend("webgl").forEach(e=>{let r={...e,backendName:V.name};o.registerKernel(r)})}catch(t){p("error: cannot update WebGL backend registration:",t);return}try{o.ENV.set("WEBGL_VERSION",2)}catch(t){p("error: cannot set WebGL backend flags:",t);return}p("backend registered:",V.name)}}var De={};Y(De,{load:()=>$e,predict:()=>Pe});var ge={};function D(t,e){if(!e||!e.kernels)return;let r=5,c=e.kernels.filter(n=>n.kernelTimeMs>0).reduce((n,h)=>n+=h.kernelTimeMs,0),_=e.kernels.map((n,h)=>(n.id=h,n)).filter(n=>n.kernelTimeMs>0).sort((n,h)=>h.kernelTimeMs-n.kernelTimeMs),A=e.kernels.map((n,h)=>(n.id=h,n)).filter(n=>n.totalBytesSnapshot>0).sort((n,h)=>h.totalBytesSnapshot-n.totalBytesSnapshot);_.length>r&&(_.length=r),A.length>r&&(A.length=r),ge[t]={model:t,newBytes:e.newBytes,newTensors:e.newTensors,peakBytes:e.peakBytes,numKernelOps:e.kernels.length,timeKernelOps:c,slowestKernelOps:_,largestKernelOps:A},p("profiler",t,ge[t])}var Q0=["angry","disgust","fear","happy","sad","surprise","neutral"],B,Ge=[],Te=Number.MAX_SAFE_INTEGER,Qe=[.2989,.587,.114];async function $e(t){return B?t.debug&&p("cached model:",B.modelUrl):(B=await o.loadGraphModel(O(t.modelBasePath,t.face.emotion.modelPath)),!B||!B.modelUrl?p("load model failed:",t.face.emotion.modelPath):t.debug&&p("load model:",B.modelUrl)),B}async function Pe(t,e){return B?Te0?(Te++,Ge):(e.videoOptimized?Te=0:Te=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let c=o.image.resizeBilinear(t,[B.inputs[0].shape[2],B.inputs[0].shape[1]],!1),[_,A,n]=o.split(c,3,3);c.dispose();let h=o.mul(_,Qe[0]),s=o.mul(A,Qe[1]),a=o.mul(n,Qe[2]);_.dispose(),A.dispose(),n.dispose();let y=o.addN([h,s,a]);h.dispose(),s.dispose(),a.dispose();let i=o.tidy(()=>y.sub(.5).mul(2));y.dispose();let d=[];if(e.face.emotion.enabled){let m;if(e.profile){let T=await o.profile(()=>B.predict(i));m=T.result.dataSync(),T.result.dispose(),D("emotion",T)}else{let T=await B.predict(i);m=T.dataSync(),o.dispose(T)}for(let T=0;Te.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*m[T])/100),emotion:Q0[T]});d.sort((T,x)=>x.score-T.score)}i.dispose(),Ge=d,r(d)})):null}var e1={};Y(e1,{enhance:()=>r1,load:()=>t1,match:()=>G1,predict:()=>ze,similarity:()=>n1});var X,Me={age:0},ve=Number.MAX_SAFE_INTEGER;async function t1(t){return X?t.debug&&p("cached model:",X.modelUrl):(X=await o.loadGraphModel(O(t.modelBasePath,t.face.description.modelPath)),!X||!X.modelUrl?p("load model failed:",t.face.description.modelPath):t.debug&&p("load model:",X.modelUrl)),X}function n1(t,e,r=2){if(!t||!e||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)!==(e==null?void 0:e.length))return 0;let c=5*t.map((A,n)=>Math.abs(t[n]-e[n])**r).reduce((A,n)=>A+n,0)**(1/r);return Math.max(0,100-c)/100}function G1(t,e,r=0){let c={similarity:0,name:"",source:"",embedding:[]};if(!t||!e||!Array.isArray(t)||!Array.isArray(e))return c;for(let _ of e)if(_.embedding&&_.name){let A=n1(t,_.embedding);A>r&&A>c.similarity&&(c={..._,similarity:A})}return c}function r1(t){return o.tidy(()=>{let r=t.image||t.tensor||t;if(!(r instanceof o.Tensor))return null;let c=[[.05,.15,.85,.85]];return(r.shape.length===3?o.image.cropAndResize(o.expandDims(r,0),c,[0],[X.inputs[0].shape[2],X.inputs[0].shape[1]]):o.image.cropAndResize(r,c,[0],[X.inputs[0].shape[2],X.inputs[0].shape[1]])).mul(255)})}async function ze(t,e){return X?ve0?(ve++,Me):(e.videoOptimized?ve=0:ve=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let c=r1(t),_,A={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};if(!e.profile)e.face.description.enabled&&(_=await X.predict(c));else{let n=e.face.description.enabled?await o.profile(()=>X.predict(c)):{};_=n.result,D("faceres",n)}o.dispose(c),_&&(o.tidy(()=>{let n=_.find(i=>i.shape[1]===1).dataSync(),h=Math.trunc(200*Math.abs(n[0]-.5))/100;h>e.face.description.minConfidence&&(A.gender=n[0]<=.5?"female":"male",A.genderConfidence=Math.min(.99,h));let s=_.find(i=>i.shape[1]===100).argMax(1).dataSync()[0],a=_.find(i=>i.shape[1]===100).dataSync();A.age=Math.round(a[s-1]>a[s+1]?10*s-100*a[s-1]:10*s+100*a[s+1])/10;let y=_.find(i=>i.shape[1]===1024);A.descriptor=[...y.dataSync()]}),_.forEach(n=>o.dispose(n))),Me=A,r(A)})):null}var $0=(t,e)=>{let r=f=>f*180/Math.PI,c=f=>{let u=Math.sqrt(f[0]*f[0]+f[1]*f[1]+f[2]*f[2]);return f[0]/=u,f[1]/=u,f[2]/=u,f},_=(f,u)=>{let M=f[0]-u[0],v=f[1]-u[1],R=f[2]-u[2];return[M,v,R]},A=(f,u)=>{let M=f[1]*u[2]-f[2]*u[1],v=f[2]*u[0]-f[0]*u[2],R=f[0]*u[1]-f[1]*u[0];return[M,v,R]},n=f=>{let[u,M,v,R,b,l,g,z,E]=f,N,ee,H;return R<1?R>-1?(H=Math.asin(R),ee=Math.atan2(-g,u),N=Math.atan2(-l,b)):(H=-Math.PI/2,ee=-Math.atan2(z,E),N=0):(H=Math.PI/2,ee=Math.atan2(z,E),N=0),{pitch:2*-N,yaw:2*-ee,roll:2*-H}},h=f=>{let u=(v,R,b,l)=>Math.atan2(l-R,b-v);return{pitch:u(f[10][1],f[10][2],f[152][1],f[152][2]),yaw:u(f[33][0],f[33][2],f[263][0],f[263][2]),roll:u(f[33][0],f[33][1],f[263][0],f[263][1])}},s=t.meshRaw;if(!s||s.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let a=Math.max(t.boxRaw[2]*e[0],t.boxRaw[3]*e[1])/1.5,y=[s[10],s[152],s[234],s[454]].map(f=>[f[0]*e[0]/a,f[1]*e[1]/a,f[2]]),i=c(_(y[1],y[0])),d=c(_(y[3],y[2])),m=c(A(d,i));d=A(i,m);let T=[d[0],d[1],d[2],i[0],i[1],i[2],m[0],m[1],m[2]];return{angle:n(T),matrix:T}},A1=async(t,e)=>{var y,i,d,m,T,x,f;let r,c,_,A,n,h,s=[];t.state="run:face",r=j();let a=await((y=t.models.face)==null?void 0:y.estimateFaces(e,t.config));if(t.perf.face=Math.trunc(j()-r),!a)return[];for(let u of a){if(t.analyze("Get Face"),!u.image||u.image.isDisposedInternal){p("Face object is disposed:",u.image);continue}let M=$0(u,[e.shape[2],e.shape[1]]);t.analyze("Start Emotion:"),t.config.async?A=t.config.face.emotion.enabled?Pe(u.image,t.config):{}:(t.state="run:emotion",r=j(),A=t.config.face.emotion.enabled?await Pe(u.image,t.config):{},t.perf.emotion=Math.trunc(j()-r)),t.analyze("End Emotion:"),t.analyze("Start Description:"),t.config.async?h=t.config.face.description.enabled?ze(u,t.config):[]:(t.state="run:description",r=j(),h=t.config.face.description.enabled?await ze(u.image,t.config):[],t.perf.embedding=Math.trunc(j()-r)),t.analyze("End Description:"),t.config.async&&([c,_,A,n,h]=await Promise.all([c,_,A,n,h])),t.analyze("Finish Face:"),!t.config.face.iris.enabled&&((i=u==null?void 0:u.annotations)==null?void 0:i.leftEyeIris)&&((d=u==null?void 0:u.annotations)==null?void 0:d.rightEyeIris)&&(delete u.annotations.leftEyeIris,delete u.annotations.rightEyeIris);let v=((m=u.annotations)==null?void 0:m.leftEyeIris)&&((T=u.annotations)==null?void 0:T.rightEyeIris)?11.7*Math.max(Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0]),Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])):0;s.push({...u,age:h.age,gender:h.gender,genderConfidence:h.genderConfidence,embedding:h.descriptor,emotion:A,iris:v!==0?Math.trunc(v)/100:0,rotation:M,tensor:t.config.face.detector.return?(x=u.image)==null?void 0:x.squeeze():null}),(f=u.image)==null||f.dispose(),t.analyze("End Face")}return t.analyze("End FaceMesh:"),t.config.async&&(t.perf.face&&delete t.perf.face,t.perf.age&&delete t.perf.age,t.perf.gender&&delete t.perf.gender,t.perf.emotion&&delete t.perf.emotion),s};var i1={};Y(i1,{MediaPipeFaceMesh:()=>a1,load:()=>x1,triangulation:()=>o0,uvmap:()=>h0});var Q1=6;function et(t){let e={strides:[t/16,t/8],anchors:[2,6]},r=[];for(let c=0;c({startEndTensor:t,startPoint:o.slice(t,[0,0],[-1,2]),endPoint:o.slice(t,[0,2],[-1,2])});function nt(t,e,r){let c=o.slice(t,[0,1],[-1,2]),_=o.add(c,e),A=o.slice(t,[0,3],[-1,2]),n=o.div(A,r),h=o.div(_,r),s=o.div(n,2),a=o.sub(h,s),y=o.add(h,s),i=o.mul(a,r),d=o.mul(y,r);return o.concat2d([i,d],1)}var $1=class{constructor(e,r){this.model=e,this.anchorsData=et(e.inputs[0].shape[1]),this.anchors=o.tensor2d(this.anchorsData),this.inputSize=e.inputs[0].shape[2],this.config=r}async getBoundingBoxes(e){if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return null;let[r,c,_]=o.tidy(()=>{let d=e.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),m=this.model.predict(d),T;if(Array.isArray(m)){let M=m.sort((l,g)=>l.size-g.size),v=o.concat([M[0],M[2]],2),R=o.concat([M[1],M[3]],2);T=o.concat([R,v],1).squeeze(0)}else T=m.squeeze();let x=nt(T,this.anchors,[this.inputSize,this.inputSize]),f=o.slice(T,[0,0],[-1,1]),u=o.sigmoid(f).squeeze();return[T,x,u]}),A=await o.image.nonMaxSuppressionAsync(c,_,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),n=A.arraySync();A.dispose();let s=n.map(i=>o.slice(c,[i,0],[1,-1])).map(i=>{let d=i.arraySync();return i.dispose(),d}),a=_.dataSync(),y=[];for(let i=0;ithis.config.face.detector.minConfidence){let T=tt(s[i]),x=this.anchorsData[d],f=o.tidy(()=>o.slice(r,[d,Q1-1],[1,-1]).squeeze().reshape([Q1,-1]));y.push({box:T,landmarks:f,anchor:x,confidence:m})}}return r.dispose(),c.dispose(),_.dispose(),{boxes:y,scaleFactor:[e.shape[2]/this.inputSize,e.shape[1]/this.inputSize]}}};async function e0(t){let e=await o.loadGraphModel(O(t.modelBasePath,t.face.detector.modelPath),{fromTFHub:t.face.detector.modelPath.includes("tfhub.dev")}),r=new $1(e,t);return!e||!e.modelUrl?p("load model failed:",t.face.detector.modelPath):t.debug&&p("load model:",e.modelUrl),r}function t0(t,e){let r=[t.startPoint[0]*e[0],t.startPoint[1]*e[1]],c=[t.endPoint[0]*e[0],t.endPoint[1]*e[1]];return{startPoint:r,endPoint:c}}function xe(t){return[Math.abs(t.endPoint[0]-t.startPoint[0]),Math.abs(t.endPoint[1]-t.startPoint[1])]}function oe(t){return[t.startPoint[0]+(t.endPoint[0]-t.startPoint[0])/2,t.startPoint[1]+(t.endPoint[1]-t.startPoint[1])/2]}function he(t,e,r){let c=e.shape[1],_=e.shape[2],A=[[t.startPoint[1]/c,t.startPoint[0]/_,t.endPoint[1]/c,t.endPoint[0]/_]];return o.image.cropAndResize(e,A,[0],r)}function Ee(t,e=1.5){let r=oe(t),c=xe(t),_=[e*c[0]/2,e*c[1]/2],A=[r[0]-_[0],r[1]-_[1]],n=[r[0]+_[0],r[1]+_[1]];return{startPoint:A,endPoint:n,landmarks:t.landmarks}}function Re(t){let e=oe(t),r=xe(t),_=Math.max(...r)/2,A=[e[0]-_,e[1]-_],n=[e[0]+_,e[1]+_];return{startPoint:A,endPoint:n,landmarks:t.landmarks}}var je=[[1,0,0],[0,1,0],[0,0,1]];function rt(t){return t-2*Math.PI*Math.floor((t+Math.PI)/(2*Math.PI))}function c1(t,e){let r=Math.PI/2-Math.atan2(-(e[1]-t[1]),e[0]-t[0]);return rt(r)}function n0(t,e){return[[1,0,t],[0,1,e],[0,0,1]]}function G(t,e){let r=0;for(let c=0;cye[t]),on=_t.map(t=>ye[t]),hn=ot.map(t=>ye[t]);var o1=J.leftEyeLower0,h1=J.rightEyeLower0,se={leftBounds:[o1[0],o1[o1.length-1]],rightBounds:[h1[0],h1[h1.length-1]]},We={count:468,mouth:13,symmetryLine:[13,J.midwayBetweenEyes[0]]},_0={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},ie={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function Ie(t,e,r,c){for(let _=0;_<_1.length;_++){let{key:A,indices:n}=_1[_],h=J[`${r}${A}`];if(!c||c.includes(A))for(let s=0;s[A[0]/this.meshSize*(i[0]-this.meshSize/2),A[1]/this.meshSize*(i[1]-this.meshSize/2),i[2]]),h=c!==0?Se(c,[0,0]):je,s=c!==0?n.map(i=>[...c0(i,h),i[2]]):n,a=c!==0?A0(_):je,y=[...oe({startPoint:r.startPoint,endPoint:r.endPoint}),1];return s.map(i=>[i[0]+G(y,a[0]),i[1]+G(y,a[1]),i[2]])}getLeftToRightEyeDepthDifference(e){let r=e[se.leftBounds[0]][2],c=e[se.rightBounds[0]][2];return r-c}getEyeBox(e,r,c,_,A=!1){let n=Re(Ee(this.calculateLandmarksBoundingBox([e[c],e[_]]),this.irisEnlarge)),h=xe(n),s=o.image.cropAndResize(r,[[n.startPoint[1]/this.meshSize,n.startPoint[0]/this.meshSize,n.endPoint[1]/this.meshSize,n.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return A&&o.ENV.flags.IS_BROWSER&&(s=o.image.flipLeftRight(s)),{box:n,boxSize:h,crop:s}}getEyeCoords(e,r,c,_=!1){let A=[];for(let n=0;n{let a=n;return s===2?a=_:s===4&&(a=A),[h[0],h[1],a]})}async predict(e,r){let c=!1,_;if((this.skipped===0||this.skipped>r.face.detector.skipFrames||!r.face.mesh.enabled||!r.videoOptimized)&&(_=await this.boundingBoxDetector.getBoundingBoxes(e),this.skipped=0),r.videoOptimized&&this.skipped++,!r.videoOptimized||_&&_.boxes&&(!r.face.mesh.enabled||_.boxes.length!==this.detectedFaces&&this.detectedFaces!==r.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let n of _.boxes)this.storedBoxes.push({startPoint:n.box.startPoint.dataSync(),endPoint:n.box.endPoint.dataSync(),landmarks:n.landmarks,confidence:n.confidence});this.storedBoxes.length>0&&(c=!0)}if(r.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),c){if(!_||!_.boxes||_.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let n=0;n{n.box.startPoint.dispose(),n.box.endPoint.dispose(),n.landmarks.dispose()});let A=o.tidy(()=>this.storedBoxes.map((n,h)=>{let s=n.confidence,a,y=0,i;if(r.face.detector.rotation&&r.face.mesh.enabled&&o.ENV.flags.IS_BROWSER){let[b,l]=n.landmarks.length>=We.count?We.symmetryLine:_0.symmetryLine;y=c1(n.landmarks[b],n.landmarks[l]);let g=oe({startPoint:n.startPoint,endPoint:n.endPoint}),z=[g[0]/e.shape[2],g[1]/e.shape[1]],E=o.image.rotateWithOffset(e,y,0,z);i=Se(-y,g),r.face.mesh.enabled?a=he({startPoint:n.startPoint,endPoint:n.endPoint},E,[this.meshSize,this.meshSize]).div(255):a=he({startPoint:n.startPoint,endPoint:n.endPoint},E,[this.boxSize,this.boxSize]).div(255)}else{i=je;let b=e.clone();r.face.mesh.enabled?a=he({startPoint:n.startPoint,endPoint:n.endPoint},b,[this.meshSize,this.meshSize]).div(255):a=he({startPoint:n.startPoint,endPoint:n.endPoint},b,[this.boxSize,this.boxSize]).div(255)}if(!r.face.mesh.enabled)return{coords:null,box:n,faceConfidence:null,boxConfidence:s,confidence:n.confidence,image:a};let[,d,m]=this.meshDetector.predict(a),T=d.dataSync()[0];if(T=We.count?We.symmetryLine:_0.symmetryLine;y=c1(n.landmarks[b],n.landmarks[l]);let g=oe({startPoint:n.startPoint,endPoint:n.endPoint}),z=[g[0]/e.shape[2],g[1]/e.shape[1]],E=o.image.rotateWithOffset(e.toFloat(),y,0,z);i=Se(-y,g),a=he({startPoint:n.startPoint,endPoint:n.endPoint},E,[this.meshSize,this.meshSize]).div(255)}let v={coords:M,box:n,faceConfidence:T,boxConfidence:s,image:a,rawCoords:f},R=Re(n);return this.storedBoxes[h]={...R,landmarks:u,confidence:n.confidence,faceConfidence:T},v}));return A=A.filter(n=>n!==null),r.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(n=>n.faceConfidence>r.face.detector.minConfidence)),this.detectedFaces=A.length,A}calculateLandmarksBoundingBox(e){let r=e.map(n=>n[0]),c=e.map(n=>n[1]),_=[Math.min(...r),Math.min(...c)],A=[Math.max(...r),Math.max(...c)];return{startPoint:_,endPoint:A,landmarks:e}}};var a1=class{constructor(e,r,c,_){this.facePipeline=new s1(e,r,c),this.config=_}async estimateFaces(e,r){let c=await this.facePipeline.predict(e,r),_=[];for(let A of c||[]){if(A.isDisposedInternal)continue;let n=A.coords?A.coords.arraySync():[],h=n.map(i=>[i[0]/e.shape[2],i[1]/e.shape[1],i[2]/this.facePipeline.meshSize]),s={};if(n&&n.length>0)for(let i of Object.keys(J))s[i]=J[i].map(d=>n[d]);let a=A.box?[Math.max(0,A.box.startPoint[0]),Math.max(0,A.box.startPoint[1]),Math.min(e.shape[2],A.box.endPoint[0])-Math.max(0,A.box.startPoint[0]),Math.min(e.shape[1],A.box.endPoint[1])-Math.max(0,A.box.startPoint[1])]:0,y=A.box?[A.box.startPoint[0]/e.shape[2],A.box.startPoint[1]/e.shape[1],(A.box.endPoint[0]-A.box.startPoint[0])/e.shape[2],(A.box.endPoint[1]-A.box.startPoint[1])/e.shape[1]]:[];_.push({confidence:Math.round(100*A.faceConfidence||100*A.boxConfidence||0)/100,boxConfidence:Math.round(100*A.boxConfidence)/100,faceConfidence:Math.round(100*A.faceConfidence)/100,box:a,boxRaw:y,mesh:n,meshRaw:h,annotations:s,image:A.image?A.image.clone():null}),A.coords&&A.coords.dispose(),A.image&&A.image.dispose()}return _}},k=[null,null,null];async function x1(t){return!k[0]&&t.face.enabled||!k[1]&&t.face.mesh.enabled||!k[2]&&t.face.iris.enabled?(k=await Promise.all([!k[0]&&t.face.enabled?e0(t):null,!k[1]&&t.face.mesh.enabled?o.loadGraphModel(O(t.modelBasePath,t.face.mesh.modelPath),{fromTFHub:t.face.mesh.modelPath.includes("tfhub.dev")}):null,!k[2]&&t.face.iris.enabled?o.loadGraphModel(O(t.modelBasePath,t.face.iris.modelPath),{fromTFHub:t.face.iris.modelPath.includes("tfhub.dev")}):null]),t.face.mesh.enabled&&(!k[1]||!k[1].modelUrl?p("load model failed:",t.face.mesh.modelPath):t.debug&&p("load model:",k[1].modelUrl)),t.face.iris.enabled&&(!k[2]||!k[1].modelUrl?p("load model failed:",t.face.iris.modelPath):t.debug&&p("load model:",k[2].modelUrl))):t.debug&&(p("cached model:",k[0].model.modelUrl),p("cached model:",k[1].modelUrl),p("cached model:",k[2].modelUrl)),new a1(k[0],k[1],k[2],t)}var o0=re,h0=ye;var m1={};Y(m1,{load:()=>p1,predict:()=>u1});var we=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],s0=we.length,le=we.reduce((t,e,r)=>(t[e]=r,t),{}),ht=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],st=ht.map(([t,e])=>[le[t],le[e]]),i0=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function a0(t){let e=t.reduce(({maxX:r,maxY:c,minX:_,minY:A},{position:{x:n,y:h}})=>({maxX:Math.max(r,n),maxY:Math.max(c,h),minX:Math.min(_,n),minY:Math.min(A,h)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[e.minX,e.minY,e.maxX-e.minX,e.maxY-e.minY]}function x0(t,[e,r],[c,_]){let A=(h,s,a)=>({score:h.score,box:[Math.trunc(h.box[0]*a),Math.trunc(h.box[1]*s),Math.trunc(h.box[2]*a),Math.trunc(h.box[3]*s)],keypoints:h.keypoints.map(({score:y,part:i,position:d})=>({score:y,part:i,position:{x:Math.trunc(d.x*a),y:Math.trunc(d.y*s)}}))});return t.map(h=>A(h,e/c,r/_))}var y1=class{constructor(e,r){this.priorityQueue=new Array(e),this.numberOfElements=-1,this.getElementValue=r}enqueue(e){this.priorityQueue[++this.numberOfElements]=e,this.swim(this.numberOfElements)}dequeue(){let e=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,e}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(e){for(;e>0&&this.less(Math.floor(e/2),e);)this.exchange(e,Math.floor(e/2)),e=Math.floor(e/2)}sink(e){for(;2*e<=this.numberOfElements;){let r=2*e;if(rr?r:t}function y0(t,e,r,c){let _=r-t,A=c-e;return _*_+A*A}function f1(t,e){return{x:t.x+e.x,y:t.y+e.y}}var Ne=1,w0=16;function l0(t,e,r,c,_,A,n,h=2){let s=M=>({y:n.get(M.y,M.x,t),x:n.get(M.y,M.x,n.shape[2]/2+t)}),a=(M,v,R)=>({y:d1(Math.round(M.y/A),0,v-1),x:d1(Math.round(M.x/A),0,R-1)}),[y,i]=c.shape,d=a(e.position,y,i),m=s(d),x=f1(e.position,m);for(let M=0;M[le[x],le[f]]),h=n.map(([,x])=>x),s=n.map(([x])=>x),a=e.shape[2],y=h.length,i=new Array(a),{part:d,score:m}=t,T=l1(d,c,r);i[d.id]={score:m,part:we[d.id],position:T};for(let x=y-1;x>=0;--x){let f=h[x],u=s[x];i[f]&&!i[u]&&(i[u]=l0(x,i[f],u,e,r,c,A))}for(let x=0;xe){h=!1;break}if(!h)break}return h}function xt(t,e){let[r,c,_]=e.shape,A=new y1(r*c*_,({score:n})=>n);for(let n=0;n{let n=A[_].position;return y0(c,r,n.y,n.x)<=e})}function yt(t,e,r){return r.reduce((_,{position:A,score:n},h)=>(d0(t,e,A,h)||(_+=n),_),0)/r.length}function f0(t,e,r,c,_,A,n){let h=[],s=xt(n,e),a=_**2;for(;h.lengthf.score>n),T=yt(h,a,m),x=a0(m);T>n&&h.push({keypoints:m,box:x,score:Math.round(100*T)/100})}return h}var U,wt=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function u1(t,e){let r=o.tidy(()=>{let h=t.resizeBilinear([U.inputs[0].shape[2],U.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),a=U.execute(h,wt).map(y=>y.squeeze([0]));return a[1]=a[1].sigmoid(),a}),c=await Promise.all(r.map(n=>n.buffer()));for(let n of r)n.dispose();let _=await f0(c[0],c[1],c[2],c[3],e.body.nmsRadius,e.body.maxDetections,e.body.scoreThreshold);return x0(_,[t.shape[1],t.shape[2]],[U.inputs[0].shape[2],U.inputs[0].shape[1]])}async function p1(t){return U?t.debug&&p("cached model:",U.modelUrl):(U=await o.loadGraphModel(O(t.modelBasePath,t.body.modelPath)),!U||!U.modelUrl?p("load model failed:",t.body.modelPath):t.debug&&p("load model:",U.modelUrl)),U}var M1={};Y(M1,{HandPose:()=>z1,load:()=>E1});function ke(t){return[Math.abs(t.endPoint[0]-t.startPoint[0]),Math.abs(t.endPoint[1]-t.startPoint[1])]}function de(t){return[t.startPoint[0]+(t.endPoint[0]-t.startPoint[0])/2,t.startPoint[1]+(t.endPoint[1]-t.startPoint[1])/2]}function m0(t,e,r){let c=e.shape[1],_=e.shape[2],A=[[t.startPoint[1]/c,t.startPoint[0]/_,t.endPoint[1]/c,t.endPoint[0]/_]];return o.image.cropAndResize(e,A,[0],r)}function u0(t,e){let r=[t.startPoint[0]*e[0],t.startPoint[1]*e[1]],c=[t.endPoint[0]*e[0],t.endPoint[1]*e[1]],_=t.palmLandmarks.map(A=>[A[0]*e[0],A[1]*e[1]]);return{startPoint:r,endPoint:c,palmLandmarks:_,confidence:t.confidence}}function Oe(t,e=1.5){let r=de(t),c=ke(t),_=[e*c[0]/2,e*c[1]/2],A=[r[0]-_[0],r[1]-_[1]],n=[r[0]+_[0],r[1]+_[1]];return{startPoint:A,endPoint:n,palmLandmarks:t.palmLandmarks}}function Le(t){let e=de(t),r=ke(t),_=Math.max(...r)/2,A=[e[0]-_,e[1]-_],n=[e[0]+_,e[1]+_];return{startPoint:A,endPoint:n,palmLandmarks:t.palmLandmarks}}var b1=class{constructor(e,r,c){this.model=e,this.anchors=c.map(_=>[_.x_center,_.y_center]),this.anchorsTensor=o.tensor2d(this.anchors),this.inputSize=r,this.inputSizeTensor=o.tensor1d([r,r]),this.doubleInputSizeTensor=o.tensor1d([r*2,r*2])}normalizeBoxes(e){return o.tidy(()=>{let r=o.slice(e,[0,0],[-1,2]),c=o.slice(e,[0,2],[-1,2]),_=o.add(o.div(r,this.inputSizeTensor),this.anchorsTensor),A=o.div(c,this.doubleInputSizeTensor),n=o.mul(o.sub(_,A),this.inputSizeTensor),h=o.mul(o.add(_,A),this.inputSizeTensor);return o.concat2d([n,h],1)})}normalizeLandmarks(e,r){return o.tidy(()=>{let c=o.add(o.div(e.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[r]);return o.mul(c,this.inputSizeTensor)})}async getBoxes(e,r){let c=this.model.predict(e),_=c.squeeze();c.dispose();let A=o.tidy(()=>o.sigmoid(o.slice(_,[0,0],[-1,1])).squeeze()),n=A.dataSync(),h=o.slice(_,[0,1],[-1,4]),s=this.normalizeBoxes(h);h.dispose();let a=await o.image.nonMaxSuppressionAsync(s,n,r.hand.maxHands,r.hand.iouThreshold,r.hand.scoreThreshold),y=a.arraySync();A.dispose(),a.dispose();let i=[];for(let d of y)if(n[d]>=r.hand.minConfidence){let m=o.slice(s,[d,0],[1,-1]),T=o.slice(_,[d,5],[1,14]),x=o.tidy(()=>this.normalizeLandmarks(T,d).reshape([-1,2]));T.dispose(),i.push({box:m,palmLandmarks:x,confidence:n[d]})}return _.dispose(),s.dispose(),i}async estimateHandBounds(e,r){let c=e.shape[1],_=e.shape[2],A=o.tidy(()=>e.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),n=await this.getBoxes(A,r);A.dispose();let h=[];if(!n||n.length===0)return h;for(let s of n){let a=s.box.dataSync(),y=a.slice(0,2),i=a.slice(2,4),d=s.palmLandmarks.arraySync();s.box.dispose(),s.palmLandmarks.dispose(),h.push(u0({startPoint:y,endPoint:i,palmLandmarks:d,confidence:s.confidence},[_/this.inputSize,c/this.inputSize]))}return h}};function lt(t){return t-2*Math.PI*Math.floor((t+Math.PI)/(2*Math.PI))}function p0(t,e){let r=Math.PI/2-Math.atan2(-(e[1]-t[1]),e[0]-t[0]);return lt(r)}var b0=(t,e)=>[[1,0,t],[0,1,e],[0,0,1]];function Q(t,e){let r=0;for(let c=0;cT1([...A,1],r)),_=this.calculateLandmarksBoundingBox(c);return Oe(Le(_),ft)}getBoxForHandLandmarks(e){let r=this.calculateLandmarksBoundingBox(e),c=Oe(Le(r),P0);c.palmLandmarks=[];for(let _=0;_[n[0]*(m[0]-this.inputSize/2),n[1]*(m[1]-this.inputSize/2),n[2]*m[2]]),s=g1(c,[0,0]),a=h.map(m=>[...T1(m,s),m[2]]),y=T0(_),i=[...de(r),1],d=[Q(i,y[0]),Q(i,y[1])];return a.map(m=>[m[0]+d[0],m[1]+d[1],m[2]])}async estimateHands(e,r){let c=!1,_;(this.skipped===0||this.skipped>r.hand.skipFrames||!r.hand.landmarks||!r.videoOptimized)&&(_=await this.handDetector.estimateHandBounds(e,r),this.skipped=0),r.videoOptimized&&this.skipped++,_&&_.length>0&&(_.length!==this.detectedHands&&this.detectedHands!==r.hand.maxHands||!r.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[..._],this.storedBoxes.length>0&&(c=!0));let A=[];r.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let n=0;n=r.hand.minConfidence){let v=o.reshape(u,[-1,3]),R=v.arraySync();u.dispose(),v.dispose();let b=this.transformRawCoords(R,m,s,d),l=this.getBoxForHandLandmarks(b);this.storedBoxes[n]=l;let g={landmarks:b,confidence:M,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};A.push(g)}else this.storedBoxes[n]=null;u.dispose()}else{let s=Oe(Le(h),P0),a={confidence:h.confidence,box:{topLeft:s.startPoint,bottomRight:s.endPoint}};A.push(a)}}return this.storedBoxes=this.storedBoxes.filter(n=>n!==null),this.detectedHands=A.length,A}calculateLandmarksBoundingBox(e){let r=e.map(n=>n[0]),c=e.map(n=>n[1]),_=[Math.min(...r),Math.min(...c)],A=[Math.max(...r),Math.max(...c)];return{startPoint:_,endPoint:A}}};var v0=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var v1={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},z1=class{constructor(e){this.handPipeline=e}static getAnnotations(){return v1}async estimateHands(e,r){let c=await this.handPipeline.estimateHands(e,r);if(!c)return[];let _=[];for(let A of c){let n={};if(A.landmarks)for(let a of Object.keys(v1))n[a]=v1[a].map(y=>A.landmarks[y]);let h=A.box?[Math.max(0,A.box.topLeft[0]),Math.max(0,A.box.topLeft[1]),Math.min(e.shape[2],A.box.bottomRight[0])-Math.max(0,A.box.topLeft[0]),Math.min(e.shape[1],A.box.bottomRight[1])-Math.max(0,A.box.topLeft[1])]:[],s=[A.box.topLeft[0]/e.shape[2],A.box.topLeft[1]/e.shape[1],(A.box.bottomRight[0]-A.box.topLeft[0])/e.shape[2],(A.box.bottomRight[1]-A.box.topLeft[1])/e.shape[1]];_.push({confidence:Math.round(100*A.confidence)/100,box:h,boxRaw:s,landmarks:A.landmarks,annotations:n})}return _}},C,K;async function E1(t){!C||!K?([C,K]=await Promise.all([t.hand.enabled?o.loadGraphModel(O(t.modelBasePath,t.hand.detector.modelPath),{fromTFHub:t.hand.detector.modelPath.includes("tfhub.dev")}):null,t.hand.landmarks?o.loadGraphModel(O(t.modelBasePath,t.hand.skeleton.modelPath),{fromTFHub:t.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),t.hand.enabled&&(!C||!C.modelUrl?p("load model failed:",t.hand.detector.modelPath):t.debug&&p("load model:",C.modelUrl),!K||!K.modelUrl?p("load model failed:",t.hand.skeleton.modelPath):t.debug&&p("load model:",K.modelUrl))):(t.debug&&p("cached model:",C.modelUrl),t.debug&&p("cached model:",K.modelUrl));let e=new b1(C,C==null?void 0:C.inputs[0].shape[2],v0),r=new P1(e,K,K==null?void 0:K.inputs[0].shape[2]);return new z1(r)}var R1={};Y(R1,{load:()=>j1,predict:()=>S1});var z0=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],E0=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var L;async function j1(t){return L?t.debug&&p("cached model:",L.modelUrl):(L=await o.loadGraphModel(O(t.modelBasePath,t.body.modelPath)),L.width=parseInt(L.signature.inputs["input_1:0"].tensorShape.dim[2].size),L.height=parseInt(L.signature.inputs["input_1:0"].tensorShape.dim[1].size),!L||!L.modelUrl?p("load model failed:",t.body.modelPath):t.debug&&p("load model:",L.modelUrl)),L}async function S1(t,e){if(!L||!e.body.enabled)return null;let r={width:t.shape[2],height:t.shape[1]},c=o.image.resizeBilinear(t,[L.width,L.height],!1),_=o.div(c,[255]);c.dispose();let A;if(e.profile){let y=await o.profile(()=>L.predict(_));A=y.result.find(i=>i.size===195||i.size===155).dataSync(),y.result.forEach(i=>i.dispose()),D("blazepose",y)}else{let y=await L.predict(_);A=y.find(i=>i.size===195||i.size===155).dataSync(),y.forEach(i=>i.dispose())}_.dispose();let n=[],h=A.length===195?z0:E0,s=5;for(let y=0;yi.score>y?i.score:y,0),keypoints:n}]}var W1={};Y(W1,{load:()=>N1,predict:()=>k1});var Ze=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Z,I1=[],He=Number.MAX_SAFE_INTEGER,Ve=2.5;async function N1(t){if(Z)t.debug&&p("cached model:",Z.modelUrl);else{Z=await o.loadGraphModel(O(t.modelBasePath,t.object.modelPath));let e=Object.values(Z.modelSignature.inputs);if(Z.inputSize=Array.isArray(e)?parseInt(e[0].tensorShape.dim[2].size):null,!Z.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${t.object.modelPath}`);!Z||!Z.modelUrl?p("load model failed:",t.object.modelPath):t.debug&&p("load model:",Z.modelUrl)}return Z}async function pt(t,e,r,c){let _=0,A=[];for(let a of[1,2,4])o.tidy(()=>{var f,u;let y=a*13,i=(f=t.find(M=>M.shape[1]===y**2&&M.shape[2]===Ze.length))==null?void 0:f.squeeze(),d=(u=t.find(M=>M.shape[1]===y**2&&M.shape[2]c.object.minConfidence&&v!==61){let b=(.5+Math.trunc(M%y))/y,l=(.5+Math.trunc(M/y))/y,g=T[M].map(te=>te*(y/a/e)),[z,E]=[b-Ve/a*g[0],l-Ve/a*g[1]],[N,ee]=[b+Ve/a*g[2]-z,l+Ve/a*g[3]-E],H=[z,E,N,ee];H=H.map(te=>Math.max(0,Math.min(te,1)));let Ke=[H[0]*r[0],H[1]*r[1],H[2]*r[0],H[3]*r[1]],be={id:_++,strideSize:a,score:Math.round(100*R)/100,class:v+1,label:Ze[v].label,center:[Math.trunc(r[0]*b),Math.trunc(r[1]*l)],centerRaw:[b,l],box:Ke.map(te=>Math.trunc(te)),boxRaw:H};A.push(be)}}});t.forEach(a=>o.dispose(a));let n=A.map(a=>a.boxRaw),h=A.map(a=>a.score),s=[];if(n&&n.length>0){let a=await o.image.nonMaxSuppressionAsync(n,h,c.object.maxResults,c.object.iouThreshold,c.object.minConfidence);s=a.dataSync(),o.dispose(a)}return A=A.filter((a,y)=>s.includes(y)).sort((a,y)=>y.score-a.score),A}async function k1(t,e){return Z?He0?(He++,I1):(e.videoOptimized?He=0:He=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let c=[t.shape[2],t.shape[1]],_=o.image.resizeBilinear(t,[Z.inputSize,Z.inputSize],!1),A=_.div(255),n=A.transpose([0,3,1,2]);A.dispose(),_.dispose();let h;if(!e.profile)e.object.enabled&&(h=await Z.predict(n));else{let a=e.object.enabled?await o.profile(()=>Z.predict(n)):{};h=a.result,D("object",a)}n.dispose();let s=await pt(h,Z.inputSize,c,e);I1=s,r(s)})):null}var R0=t=>{if(!t)return[];let e=[];for(let r=0;rs.part==="leftWrist"),_=t[r].keypoints.find(s=>s.part==="rightWrist"),A=t[r].keypoints.find(s=>s.part==="nose");A&&c&&_&&c.position.ys.part==="leftShoulder"),h=t[r].keypoints.find(s=>s.part==="rightShoulder");n&&h&&e.push({body:r,gesture:`leaning ${n.position.y>h.position.y?"left":"right"}`})}return e},j0=t=>{if(!t)return[];let e=[];for(let r=0;r0){let c=t[r].mesh[33][2]-t[r].mesh[263][2];Math.abs(c)<10?e.push({face:r,gesture:"facing center"}):e.push({face:r,gesture:`facing ${c<0?"left":"right"}`}),Math.abs(t[r].mesh[374][1]-t[r].mesh[386][1])/Math.abs(t[r].mesh[443][1]-t[r].mesh[450][1])<.2&&e.push({face:r,gesture:"blink left eye"}),Math.abs(t[r].mesh[145][1]-t[r].mesh[159][1])/Math.abs(t[r].mesh[223][1]-t[r].mesh[230][1])<.2&&e.push({face:r,gesture:"blink right eye"});let n=Math.min(100,500*Math.abs(t[r].mesh[13][1]-t[r].mesh[14][1])/Math.abs(t[r].mesh[10][1]-t[r].mesh[152][1]));n>10&&e.push({face:r,gesture:`mouth ${Math.trunc(n)}% open`});let h=t[r].mesh[152][2];Math.abs(h)>10&&e.push({face:r,gesture:`head ${h<0?"up":"down"}`})}return e},S0=t=>{if(!t)return[];let e=[];for(let r=0;r.033||i>.033)&&(a=!1),d>.033&&e.push({iris:r,gesture:"looking right"}),i>.033&&e.push({iris:r,gesture:"looking left"});let m=Math.abs(t[r].mesh[145][1]-t[r].annotations.rightEyeIris[0][1])/t[r].annotations.rightEyeIris[0][1],T=Math.abs(t[r].mesh[374][1]-t[r].annotations.leftEyeIris[0][1])/t[r].annotations.leftEyeIris[0][1];(T<.015||m<.015||T>.03||m>.03)&&(a=!1),(T<.015||m<.015)&&e.push({iris:r,gesture:"looking down"}),(T>.03||m>.03)&&e.push({iris:r,gesture:"looking up"}),a&&e.push({iris:r,gesture:"looking center"})}return e},W0=t=>{if(!t)return[];let e=[];for(let r=0;r0){let _=c.reduce((n,h)=>n.position[2]n.position[1]L1});function bt(t,e,r){let c=function(h,s,a){let y=new RegExp("\\b"+s+" \\w+ (\\w+)","ig");h.replace(y,(i,d)=>(a[d]=0,i))},_=function(h,s){let a=t.createShader(s);if(t.shaderSource(a,h),t.compileShader(a),!t.getShaderParameter(a,t.COMPILE_STATUS))throw new Error("Filter: GL compile failed",t.getShaderInfoLog(a));return a};this.uniform={},this.attribute={};let A=_(e,t.VERTEX_SHADER),n=_(r,t.FRAGMENT_SHADER);if(this.id=t.createProgram(),t.attachShader(this.id,A),t.attachShader(this.id,n),t.linkProgram(this.id),!t.getProgramParameter(this.id,t.LINK_STATUS))throw new Error("Filter: GL link failed",t.getProgramInfoLog(this.id));t.useProgram(this.id),c(e,"attribute",this.attribute);for(let h in this.attribute)this.attribute[h]=t.getAttribLocation(this.id,h);c(e,"uniform",this.uniform),c(r,"uniform",this.uniform);for(let h in this.uniform)this.uniform[h]=t.getUniformLocation(this.id,h)}function I0(t){t||(t={});let e=0,r=null,c=!1,_=-1,A=[null,null],n=[],h=-1,s=-1,a=null,y=null,i={},d=t.canvas||document.createElement("canvas"),m={},T={INTERMEDIATE:1},x=d.getContext("webgl");if(!x)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let l=Array.prototype.slice.call(arguments,1),g=i[b];n.push({func:g,args:l})},this.reset=function(){n=[]};let f=function(b,l){if(!(b===h&&l===s)){if(d.width=b,h=b,d.height=l,s=l,!a){let g=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);a=x.createBuffer(),x.bindBuffer(x.ARRAY_BUFFER,a),x.bufferData(x.ARRAY_BUFFER,g,x.STATIC_DRAW),x.pixelStorei(x.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}x.viewport(0,0,h,s),A=[null,null]}},u=function(b,l){let g=x.createFramebuffer();x.bindFramebuffer(x.FRAMEBUFFER,g);let z=x.createRenderbuffer();x.bindRenderbuffer(x.RENDERBUFFER,z);let E=x.createTexture();return x.bindTexture(x.TEXTURE_2D,E),x.texImage2D(x.TEXTURE_2D,0,x.RGBA,b,l,0,x.RGBA,x.UNSIGNED_BYTE,null),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_MAG_FILTER,x.LINEAR),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_MIN_FILTER,x.LINEAR),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_WRAP_S,x.CLAMP_TO_EDGE),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_WRAP_T,x.CLAMP_TO_EDGE),x.framebufferTexture2D(x.FRAMEBUFFER,x.COLOR_ATTACHMENT0,x.TEXTURE_2D,E,0),x.bindTexture(x.TEXTURE_2D,null),x.bindFramebuffer(x.FRAMEBUFFER,null),{fbo:g,texture:E}},M=function(b){return A[b]=A[b]||u(h,s),A[b]},v=function(b=null){var E,N;let l=null,g=null,z=!1;e===0?l=r:l=(E=M(_))==null?void 0:E.texture,e++,c&&!(b&T.INTERMEDIATE)?(g=null,z=e%2==0):(_=(_+1)%2,g=(N=M(_))==null?void 0:N.fbo),x.bindTexture(x.TEXTURE_2D,l),x.bindFramebuffer(x.FRAMEBUFFER,g),x.uniform1f(y.uniform.flipY,z?-1:1),x.drawArrays(x.TRIANGLES,0,6)};this.apply=function(b){if(f(b.width,b.height),e=0,r||(r=x.createTexture()),x.bindTexture(x.TEXTURE_2D,r),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_WRAP_S,x.CLAMP_TO_EDGE),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_WRAP_T,x.CLAMP_TO_EDGE),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_MIN_FILTER,x.NEAREST),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_MAG_FILTER,x.NEAREST),x.texImage2D(x.TEXTURE_2D,0,x.RGBA,x.RGBA,x.UNSIGNED_BYTE,b),n.length===0)return v(),d;for(let l=0;l0,c=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,n=_,s=c;if(n>Qe&&(n=Qe,s=n*c/_),s>Qe&&(s=Qe,n=s*_/c),t.filter.width>0?n=t.filter.width:t.filter.height>0&&(n=_*(t.filter.height/c)),t.filter.height>0?s=t.filter.height:t.filter.width>0&&(s=c*(t.filter.width/_)),!n||!s)throw new Error("Human: Input cannot determine dimension");(!P||(P==null?void 0:P.width)!==n||(P==null?void 0:P.height)!==s)&&(P=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,s):document.createElement("canvas"),(P==null?void 0:P.width)!==n&&(P.width=n),(P==null?void 0:P.height)!==s&&(P.height=s));let h=P.getContext("2d");if(e instanceof ImageData?h.putImageData(e,0,0):t.filter.flip&&typeof h.translate!="undefined"?(h.translate(_,0),h.scale(-1,1),h.drawImage(e,0,0,_,c,0,0,P==null?void 0:P.width,P==null?void 0:P.height),h.setTransform(1,0,0,1,0,0)):h.drawImage(e,0,0,_,c,0,0,P==null?void 0:P.width,P==null?void 0:P.height),t.filter.enabled){if((!k||!N||P.width!==N.width||(P==null?void 0:P.height)!==(N==null?void 0:N.height))&&(N=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(P==null?void 0:P.width,P==null?void 0:P.height):document.createElement("canvas"),(N==null?void 0:N.width)!==(P==null?void 0:P.width)&&(N.width=P==null?void 0:P.width),(N==null?void 0:N.height)!==(P==null?void 0:P.height)&&(N.height=P==null?void 0:P.height),k=o.ENV.flags.IS_BROWSER?new n0({canvas:N}):null),!k)return{tensor:null,canvas:P};k.reset(),k.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&k.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&k.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&k.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&k.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&k.addFilter("hue",t.filter.hue),t.filter.negative&&k.addFilter("negative"),t.filter.sepia&&k.addFilter("sepia"),t.filter.vintage&&k.addFilter("brownie"),t.filter.sepia&&k.addFilter("sepia"),t.filter.kodachrome&&k.addFilter("kodachrome"),t.filter.technicolor&&k.addFilter("technicolor"),t.filter.polaroid&&k.addFilter("polaroid"),t.filter.pixelate!==0&&k.addFilter("pixelate",t.filter.pixelate),k.apply(P)}else N=P,k&&(k=null);let a;if(N.data){let i=[N.height,N.width,3];a=o.tensor3d(N.data,i,"int32")}else if(N instanceof ImageData)a=o.browser.fromPixels(N);else if(t.backend==="webgl"||t.backend==="humangl"){let i=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,s):document.createElement("canvas");i.width=n,i.height=s;let d=i.getContext("2d");d==null||d.drawImage(N,0,0),a=o.browser.fromPixels(i)}else{let i=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,s):document.createElement("canvas");i.width=n,i.height=s;let d=i.getContext("2d");d==null||d.drawImage(N,0,0);let p=d==null?void 0:d.getImageData(0,0,n,s);a=o.browser.fromPixels(p)}let y=a.toFloat();r=y.expandDims(0),a.dispose(),y.dispose()}let A=t.filter.return?N:null;return{tensor:r,canvas:A}}var _t={};J(_t,{all:()=>K0,body:()=>A0,canvas:()=>C0,face:()=>c0,gesture:()=>r0,hand:()=>_0,object:()=>o0,options:()=>se});var S={backend:"webgl",modelBasePath:"../models/",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface-back.json",rotation:!1,maxFaces:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,scoreThreshold:.2,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"},age:{enabled:!1,modelPath:"age.json",skipFrames:33},gender:{enabled:!1,minConfidence:.1,modelPath:"gender.json",skipFrames:34},embedding:{enabled:!1,modelPath:"mobileface.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetections:1,scoreThreshold:.2,nmsRadius:20},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxResults:10,skipFrames:41}};var se={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function $e(e,t,r,A=0,_){e.fillStyle=_.useDepth&&A?`rgba(${127.5+2*A}, ${127.5-2*A}, 255, 0.3)`:_.color,e.beginPath(),e.arc(t,r,_.pointSize,0,2*Math.PI),e.fill()}function he(e,t,r,A,_,c){if(e.beginPath(),c.useCurves){let n=(t+t+A)/2,s=(r+r+_)/2;e.ellipse(n,s,A/2,_/2,0,0,2*Math.PI)}else e.lineWidth=c.lineWidth,e.moveTo(t+c.roundRect,r),e.lineTo(t+A-c.roundRect,r),e.quadraticCurveTo(t+A,r,t+A,r+c.roundRect),e.lineTo(t+A,r+_-c.roundRect),e.quadraticCurveTo(t+A,r+_,t+A-c.roundRect,r+_),e.lineTo(t+c.roundRect,r+_),e.quadraticCurveTo(t,r+_,t,r+_-c.roundRect),e.lineTo(t,r+c.roundRect),e.quadraticCurveTo(t,r,t+c.roundRect,r),e.closePath();e.stroke()}function ot(e,t=[],r){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let A of t)e.strokeStyle=r.useDepth&&A[2]?`rgba(${127.5+2*A[2]}, ${127.5-2*A[2]}, 255, 0.3)`:r.color,e.fillStyle=r.useDepth&&A[2]?`rgba(${127.5+2*A[2]}, ${127.5-2*A[2]}, 255, 0.3)`:r.color,e.lineTo(A[0],parseInt(A[1]));e.stroke(),r.fillPolygons&&(e.closePath(),e.fill())}}function ge(e,t=[],r){if(!(t===void 0||t.length===0)){if(!r.useCurves||t.length<=2){ot(e,t,r);return}e.moveTo(t[0][0],t[0][1]);for(let A=0;A1&&h[1].length>0){let a=s[1]>0?`#${s[1]}`:"",y=`${s[0]} ${a}: ${h[1]}`;A.shadowColor&&A.shadowColor!==""&&(_.fillStyle=A.shadowColor,_.fillText(y,8,2+c*A.lineHeight)),_.fillStyle=A.labelColor,_.fillText(y,6,0+c*A.lineHeight),c+=1}}}async function c0(e,t,r){let A=U(se,r);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let _=e.getContext("2d");if(!!_)for(let c of t){_.font=A.font,_.strokeStyle=A.color,_.fillStyle=A.color,A.drawBoxes&&(A.useRawBoxes?he(_,e.width*c.boxRaw[0],e.height*c.boxRaw[1],e.width*c.boxRaw[2],e.height*c.boxRaw[3],A):he(_,c.box[0],c.box[1],c.box[2],c.box[3],A));let n=[];if(n.push(`face confidence: ${Math.trunc(100*c.confidence)}%`),c.genderConfidence&&n.push(`${c.gender||""} ${Math.trunc(100*c.genderConfidence)}% confident`),c.age&&n.push(`age: ${c.age||""}`),c.iris&&n.push(`iris distance: ${c.iris}`),c.emotion&&c.emotion.length>0){let s=c.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);n.push(s.join(" "))}c.rotation&&c.rotation.angle&&c.rotation.angle.roll&&n.push(`roll: ${Math.trunc(100*c.rotation.angle.roll)/100} yaw:${Math.trunc(100*c.rotation.angle.yaw)/100} pitch:${Math.trunc(100*c.rotation.angle.pitch)/100}`),n.length===0&&n.push("face"),_.fillStyle=A.color;for(let s=n.length-1;s>=0;s--){let h=Math.max(c.box[0],0),a=s*A.lineHeight+c.box[1];A.shadowColor&&A.shadowColor!==""&&(_.fillStyle=A.shadowColor,_.fillText(n[s],h+5,a+16)),_.fillStyle=A.labelColor,_.fillText(n[s],h+4,a+15)}if(_.lineWidth=1,c.mesh&&c.mesh.length>0){if(A.drawPoints)for(let s of c.mesh)$e(_,s[0],s[1],s[2],A);if(A.drawPolygons){_.lineWidth=1;for(let s=0;sc.mesh[a]);ot(_,h,A)}if(c.annotations&&c.annotations.leftEyeIris){_.strokeStyle=A.useDepth?"rgba(255, 200, 255, 0.3)":A.color,_.beginPath();let s=Math.abs(c.annotations.leftEyeIris[3][0]-c.annotations.leftEyeIris[1][0])/2,h=Math.abs(c.annotations.leftEyeIris[4][1]-c.annotations.leftEyeIris[2][1])/2;_.ellipse(c.annotations.leftEyeIris[0][0],c.annotations.leftEyeIris[0][1],s,h,0,0,2*Math.PI),_.stroke(),A.fillPolygons&&(_.fillStyle=A.useDepth?"rgba(255, 255, 200, 0.3)":A.color,_.fill())}if(c.annotations&&c.annotations.rightEyeIris){_.strokeStyle=A.useDepth?"rgba(255, 200, 255, 0.3)":A.color,_.beginPath();let s=Math.abs(c.annotations.rightEyeIris[3][0]-c.annotations.rightEyeIris[1][0])/2,h=Math.abs(c.annotations.rightEyeIris[4][1]-c.annotations.rightEyeIris[2][1])/2;_.ellipse(c.annotations.rightEyeIris[0][0],c.annotations.rightEyeIris[0][1],s,h,0,0,2*Math.PI),_.stroke(),A.fillPolygons&&(_.fillStyle=A.useDepth?"rgba(255, 255, 200, 0.3)":A.color,_.fill())}}}}}var re=[];async function A0(e,t,r){let A=U(se,r);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let _=e.getContext("2d");if(!!_){_.lineJoin="round";for(let c=0;ch.part==="leftShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),ge(_,s,A),s.length=0,n=t[c].keypoints.find(h=>h.part==="rightShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightHip"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftHip"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),s.length===4&&ot(_,s,A),s.length=0,n=t[c].keypoints.find(h=>h.part==="leftHip"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftKnee"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftAnkle"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftHeel"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftFoot"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),ge(_,s,A),s.length=0,n=t[c].keypoints.find(h=>h.part==="rightHip"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightKnee"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightAnkle"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightHeel"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightFoot"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),ge(_,s,A),s.length=0,n=t[c].keypoints.find(h=>h.part==="leftShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftElbow"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftWrist"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftPalm"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),ge(_,s,A),s.length=0,n=t[c].keypoints.find(h=>h.part==="rightShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightElbow"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightWrist"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightPalm"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),ge(_,s,A)}}}}async function _0(e,t,r){let A=U(se,r);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let _=e.getContext("2d");if(!!_){_.lineJoin="round",_.font=A.font;for(let c of t){if(A.drawBoxes){_.strokeStyle=A.color,_.fillStyle=A.color;let n;if(!A.calculateHandBox)n=A.useRawBoxes?c.boxRaw:c.box;else if(n=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],c.landmarks&&c.landmarks.length>0){for(let s of c.landmarks)s[0]n[2]&&(n[2]=s[0]),s[1]>n[3]&&(n[3]=s[1]);n[2]-=n[0],n[3]-=n[1]}A.useRawBoxes?he(_,e.width*n[0],e.height*n[1],e.width*n[2],e.height*n[3],A):he(_,n[0],n[1],n[2],n[3],A),A.drawLabels&&(A.shadowColor&&A.shadowColor!==""&&(_.fillStyle=A.shadowColor,_.fillText("hand",n[0]+3,1+n[1]+A.lineHeight,n[2])),_.fillStyle=A.labelColor,_.fillText("hand",n[0]+2,0+n[1]+A.lineHeight,n[2])),_.stroke()}if(A.drawPoints&&c.landmarks&&c.landmarks.length>0)for(let n of c.landmarks)_.fillStyle=A.useDepth?`rgba(${127.5+2*n[2]}, ${127.5-2*n[2]}, 255, 0.5)`:A.color,$e(_,n[0],n[1],0,A);if(A.drawPolygons){let n=s=>{if(!!s)for(let h=0;h0?h-1:0][0],s[h>0?h-1:0][1]),_.lineTo(s[h][0],s[h][1]),_.stroke()};n(c.annotations.indexFinger),n(c.annotations.middleFinger),n(c.annotations.ringFinger),n(c.annotations.pinky),n(c.annotations.thumb)}}}}async function o0(e,t,r){let A=U(se,r);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let _=e.getContext("2d");if(!!_){_.lineJoin="round",_.font=A.font;for(let c of t)if(A.drawBoxes){if(_.strokeStyle=A.color,_.fillStyle=A.color,A.useRawBoxes?he(_,e.width*c.boxRaw[0],e.height*c.boxRaw[1],e.width*c.boxRaw[2],e.height*c.boxRaw[3],A):he(_,c.box[0],c.box[1],c.box[2],c.box[3],A),A.drawLabels){let n=`${Math.round(100*c.score)}% ${c.label}`;A.shadowColor&&A.shadowColor!==""&&(_.fillStyle=A.shadowColor,_.fillText(n,c.box[0]+3,1+c.box[1]+A.lineHeight,c.box[2])),_.fillStyle=A.labelColor,_.fillText(n,c.box[0]+2,0+c.box[1]+A.lineHeight,c.box[2])}_.stroke()}}}async function C0(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let r=e.getContext("2d");r==null||r.drawImage(e,0,0)}async function K0(e,t,r){let A=U(se,r);!t||!e||e instanceof HTMLCanvasElement&&(c0(e,t.face,A),A0(e,t.body,A),_0(e,t.hand,A),r0(e,t.gesture,A),o0(e,t.object,A))}var e1=` +`),i.brightness=function(b){let l=(b||0)+1;i.colorMatrix([l,0,0,0,0,0,l,0,0,0,0,0,l,0,0,0,0,0,1,0])},i.saturation=function(b){let l=(b||0)*2/3+1,g=(l-1)*-.5;i.colorMatrix([l,g,g,0,0,g,l,g,0,0,g,g,l,0,0,0,0,0,1,0])},i.desaturate=function(){i.saturation(-1)},i.contrast=function(b){let l=(b||0)+1,g=-128*(l-1);i.colorMatrix([l,0,0,0,g,0,l,0,0,g,0,0,l,0,g,0,0,0,1,0])},i.negative=function(){i.contrast(-2)},i.hue=function(b){b=(b||0)/180*Math.PI;let l=Math.cos(b),g=Math.sin(b),z=.213,E=.715,N=.072;i.colorMatrix([z+l*(1-z)+g*-z,E+l*-E+g*-E,N+l*-N+g*(1-N),0,0,z+l*-z+g*.143,E+l*(1-E)+g*.14,N+l*-N+g*-.283,0,0,z+l*-z+g*-(1-z),E+l*-E+g*E,N+l*(1-N)+g*N,0,0,0,0,0,1,0])},i.desaturateLuminance=function(){i.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},i.sepia=function(){i.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},i.brownie=function(){i.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},i.vintagePinhole=function(){i.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},i.kodachrome=function(){i.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},i.technicolor=function(){i.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},i.polaroid=function(){i.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},i.shiftToBGR=function(){i.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},i.convolution=function(b){let l=new Float32Array(b),g=1/h,z=1/s,E=R(i.convolution.SHADER);x.uniform1fv(E.uniform.m,l),x.uniform2f(E.uniform.px,g,z),v()},i.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(` +`),i.detectEdges=function(){i.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},i.sobelX=function(){i.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},i.sobelY=function(){i.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},i.sharpen=function(b){let l=b||1;i.convolution.call(this,[0,-1*l,0,-1*l,1+4*l,-1*l,0,-1*l,0])},i.emboss=function(b){let l=b||1;i.convolution.call(this,[-2*l,-1*l,0,-1*l,1,1*l,0,1*l,2*l])},i.blur=function(b){let l=b/7/h,g=b/7/s,z=R(i.blur.SHADER);x.uniform2f(z.uniform.px,0,g),v(T.INTERMEDIATE),x.uniform2f(z.uniform.px,l,0),v()},i.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(` +`),i.pixelate=function(b){let l=b/h,g=b/s,z=R(i.pixelate.SHADER);x.uniform2f(z.uniform.size,l,g),v()},i.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(` +`)}var Xe=2048,P,W,I;function L1(t,e){let r;if(!t)throw new Error("Human: Input is missing");if(!(t instanceof o.Tensor)&&!(typeof Image!="undefined"&&t instanceof Image)&&!(typeof ImageData!="undefined"&&t instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&t instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&t instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&t instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&t instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&t instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&t instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(t instanceof o.Tensor)if(t.shape&&t.shape.length===4&&t.shape[0]===1&&t.shape[3]===3)r=o.clone(t);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${t.shape}`);else{let _=t.naturalWidth||t.videoWidth||t.width||t.shape&&t.shape[1]>0,A=t.naturalHeight||t.videoHeight||t.height||t.shape&&t.shape[2]>0,n=_,h=A;if(n>Xe&&(n=Xe,h=n*A/_),h>Xe&&(h=Xe,n=h*_/A),e.filter.width>0?n=e.filter.width:e.filter.height>0&&(n=_*(e.filter.height/A)),e.filter.height>0?h=e.filter.height:e.filter.width>0&&(h=A*(e.filter.width/_)),!n||!h)throw new Error("Human: Input cannot determine dimension");(!P||(P==null?void 0:P.width)!==n||(P==null?void 0:P.height)!==h)&&(P=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,h):document.createElement("canvas"),(P==null?void 0:P.width)!==n&&(P.width=n),(P==null?void 0:P.height)!==h&&(P.height=h));let s=P.getContext("2d");if(t instanceof ImageData?s.putImageData(t,0,0):e.filter.flip&&typeof s.translate!="undefined"?(s.translate(_,0),s.scale(-1,1),s.drawImage(t,0,0,_,A,0,0,P==null?void 0:P.width,P==null?void 0:P.height),s.setTransform(1,0,0,1,0,0)):s.drawImage(t,0,0,_,A,0,0,P==null?void 0:P.width,P==null?void 0:P.height),e.filter.enabled){if((!I||!W||P.width!==W.width||(P==null?void 0:P.height)!==(W==null?void 0:W.height))&&(W=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(P==null?void 0:P.width,P==null?void 0:P.height):document.createElement("canvas"),(W==null?void 0:W.width)!==(P==null?void 0:P.width)&&(W.width=P==null?void 0:P.width),(W==null?void 0:W.height)!==(P==null?void 0:P.height)&&(W.height=P==null?void 0:P.height),I=o.ENV.flags.IS_BROWSER?new I0({canvas:W}):null),!I)return{tensor:null,canvas:P};I.reset(),I.addFilter("brightness",e.filter.brightness),e.filter.contrast!==0&&I.addFilter("contrast",e.filter.contrast),e.filter.sharpness!==0&&I.addFilter("sharpen",e.filter.sharpness),e.filter.blur!==0&&I.addFilter("blur",e.filter.blur),e.filter.saturation!==0&&I.addFilter("saturation",e.filter.saturation),e.filter.hue!==0&&I.addFilter("hue",e.filter.hue),e.filter.negative&&I.addFilter("negative"),e.filter.sepia&&I.addFilter("sepia"),e.filter.vintage&&I.addFilter("brownie"),e.filter.sepia&&I.addFilter("sepia"),e.filter.kodachrome&&I.addFilter("kodachrome"),e.filter.technicolor&&I.addFilter("technicolor"),e.filter.polaroid&&I.addFilter("polaroid"),e.filter.pixelate!==0&&I.addFilter("pixelate",e.filter.pixelate),I.apply(P)}else W=P,I&&(I=null);let a;if(W.data){let i=[W.height,W.width,3];a=o.tensor3d(W.data,i,"int32")}else if(W instanceof ImageData)a=o.browser.fromPixels(W);else if(e.backend==="webgl"||e.backend==="humangl"){let i=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,h):document.createElement("canvas");i.width=n,i.height=h;let d=i.getContext("2d");d==null||d.drawImage(W,0,0),a=o.browser.fromPixels(i)}else{let i=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,h):document.createElement("canvas");i.width=n,i.height=h;let d=i.getContext("2d");d==null||d.drawImage(W,0,0);let m=d==null?void 0:d.getImageData(0,0,n,h);a=o.browser.fromPixels(m)}let y=a.toFloat();r=y.expandDims(0),a.dispose(),y.dispose()}let c=e.filter.return?W:null;return{tensor:r,canvas:c}}var Z1={};Y(Z1,{all:()=>Tt,body:()=>O0,canvas:()=>gt,face:()=>k0,gesture:()=>N0,hand:()=>L0,object:()=>Z0,options:()=>Ae});var S={backend:"webgl",modelBasePath:"../models/",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface-back.json",rotation:!1,maxFaces:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,scoreThreshold:.2,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetections:1,scoreThreshold:.2,nmsRadius:20},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxResults:10,skipFrames:41}};var Ae={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function Fe(t,e,r,c=0,_){t.fillStyle=_.useDepth&&c?`rgba(${127.5+2*c}, ${127.5-2*c}, 255, 0.3)`:_.color,t.beginPath(),t.arc(e,r,_.pointSize,0,2*Math.PI),t.fill()}function ce(t,e,r,c,_,A){if(t.beginPath(),A.useCurves){let n=(e+e+c)/2,h=(r+r+_)/2;t.ellipse(n,h,c/2,_/2,0,0,2*Math.PI)}else t.lineWidth=A.lineWidth,t.moveTo(e+A.roundRect,r),t.lineTo(e+c-A.roundRect,r),t.quadraticCurveTo(e+c,r,e+c,r+A.roundRect),t.lineTo(e+c,r+_-A.roundRect),t.quadraticCurveTo(e+c,r+_,e+c-A.roundRect,r+_),t.lineTo(e+A.roundRect,r+_),t.quadraticCurveTo(e,r+_,e,r+_-A.roundRect),t.lineTo(e,r+A.roundRect),t.quadraticCurveTo(e,r,e+A.roundRect,r),t.closePath();t.stroke()}function H1(t,e=[],r){if(!(e===void 0||e.length===0)){t.beginPath(),t.moveTo(e[0][0],e[0][1]);for(let c of e)t.strokeStyle=r.useDepth&&c[2]?`rgba(${127.5+2*c[2]}, ${127.5-2*c[2]}, 255, 0.3)`:r.color,t.fillStyle=r.useDepth&&c[2]?`rgba(${127.5+2*c[2]}, ${127.5-2*c[2]}, 255, 0.3)`:r.color,t.lineTo(c[0],parseInt(c[1]));t.stroke(),r.fillPolygons&&(t.closePath(),t.fill())}}function fe(t,e=[],r){if(!(e===void 0||e.length===0)){if(!r.useCurves||e.length<=2){H1(t,e,r);return}t.moveTo(e[0][0],e[0][1]);for(let c=0;c1&&s[1].length>0){let a=h[1]>0?`#${h[1]}`:"",y=`${h[0]} ${a}: ${s[1]}`;c.shadowColor&&c.shadowColor!==""&&(_.fillStyle=c.shadowColor,_.fillText(y,8,2+A*c.lineHeight)),_.fillStyle=c.labelColor,_.fillText(y,6,0+A*c.lineHeight),A+=1}}}async function k0(t,e,r){let c=F(Ae,r);if(!e||!t||!(t instanceof HTMLCanvasElement))return;let _=t.getContext("2d");if(!!_)for(let A of e){_.font=c.font,_.strokeStyle=c.color,_.fillStyle=c.color,c.drawBoxes&&(c.useRawBoxes?ce(_,t.width*A.boxRaw[0],t.height*A.boxRaw[1],t.width*A.boxRaw[2],t.height*A.boxRaw[3],c):ce(_,A.box[0],A.box[1],A.box[2],A.box[3],c));let n=[];if(n.push(`face confidence: ${Math.trunc(100*A.confidence)}%`),A.genderConfidence&&n.push(`${A.gender||""} ${Math.trunc(100*A.genderConfidence)}% confident`),A.age&&n.push(`age: ${A.age||""}`),A.iris&&n.push(`iris distance: ${A.iris}`),A.emotion&&A.emotion.length>0){let h=A.emotion.map(s=>`${Math.trunc(100*s.score)}% ${s.emotion}`);n.push(h.join(" "))}A.rotation&&A.rotation.angle&&A.rotation.angle.roll&&n.push(`roll: ${Math.trunc(100*A.rotation.angle.roll)/100} yaw:${Math.trunc(100*A.rotation.angle.yaw)/100} pitch:${Math.trunc(100*A.rotation.angle.pitch)/100}`),n.length===0&&n.push("face"),_.fillStyle=c.color;for(let h=n.length-1;h>=0;h--){let s=Math.max(A.box[0],0),a=h*c.lineHeight+A.box[1];c.shadowColor&&c.shadowColor!==""&&(_.fillStyle=c.shadowColor,_.fillText(n[h],s+5,a+16)),_.fillStyle=c.labelColor,_.fillText(n[h],s+4,a+15)}if(_.lineWidth=1,A.mesh&&A.mesh.length>0){if(c.drawPoints)for(let h of A.mesh)Fe(_,h[0],h[1],h[2],c);if(c.drawPolygons){_.lineWidth=1;for(let h=0;hA.mesh[a]);H1(_,s,c)}if(A.annotations&&A.annotations.leftEyeIris){_.strokeStyle=c.useDepth?"rgba(255, 200, 255, 0.3)":c.color,_.beginPath();let h=Math.abs(A.annotations.leftEyeIris[3][0]-A.annotations.leftEyeIris[1][0])/2,s=Math.abs(A.annotations.leftEyeIris[4][1]-A.annotations.leftEyeIris[2][1])/2;_.ellipse(A.annotations.leftEyeIris[0][0],A.annotations.leftEyeIris[0][1],h,s,0,0,2*Math.PI),_.stroke(),c.fillPolygons&&(_.fillStyle=c.useDepth?"rgba(255, 255, 200, 0.3)":c.color,_.fill())}if(A.annotations&&A.annotations.rightEyeIris){_.strokeStyle=c.useDepth?"rgba(255, 200, 255, 0.3)":c.color,_.beginPath();let h=Math.abs(A.annotations.rightEyeIris[3][0]-A.annotations.rightEyeIris[1][0])/2,s=Math.abs(A.annotations.rightEyeIris[4][1]-A.annotations.rightEyeIris[2][1])/2;_.ellipse(A.annotations.rightEyeIris[0][0],A.annotations.rightEyeIris[0][1],h,s,0,0,2*Math.PI),_.stroke(),c.fillPolygons&&(_.fillStyle=c.useDepth?"rgba(255, 255, 200, 0.3)":c.color,_.fill())}}}}}var $=[];async function O0(t,e,r){let c=F(Ae,r);if(!e||!t||!(t instanceof HTMLCanvasElement))return;let _=t.getContext("2d");if(!!_){_.lineJoin="round";for(let A=0;As.part==="leftShoulder"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="rightShoulder"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),fe(_,h,c),h.length=0,n=e[A].keypoints.find(s=>s.part==="rightShoulder"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="rightHip"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="leftHip"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="leftShoulder"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),h.length===4&&H1(_,h,c),h.length=0,n=e[A].keypoints.find(s=>s.part==="leftHip"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="leftKnee"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="leftAnkle"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="leftHeel"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="leftFoot"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),fe(_,h,c),h.length=0,n=e[A].keypoints.find(s=>s.part==="rightHip"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="rightKnee"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="rightAnkle"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="rightHeel"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="rightFoot"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),fe(_,h,c),h.length=0,n=e[A].keypoints.find(s=>s.part==="leftShoulder"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="leftElbow"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="leftWrist"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="leftPalm"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),fe(_,h,c),h.length=0,n=e[A].keypoints.find(s=>s.part==="rightShoulder"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="rightElbow"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="rightWrist"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),n=e[A].keypoints.find(s=>s.part==="rightPalm"),n&&n.score>S.body.scoreThreshold&&h.push([n.position.x,n.position.y]),fe(_,h,c)}}}}async function L0(t,e,r){let c=F(Ae,r);if(!e||!t||!(t instanceof HTMLCanvasElement))return;let _=t.getContext("2d");if(!!_){_.lineJoin="round",_.font=c.font;for(let A of e){if(c.drawBoxes){_.strokeStyle=c.color,_.fillStyle=c.color;let n;if(!c.calculateHandBox)n=c.useRawBoxes?A.boxRaw:A.box;else if(n=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],A.landmarks&&A.landmarks.length>0){for(let h of A.landmarks)h[0]n[2]&&(n[2]=h[0]),h[1]>n[3]&&(n[3]=h[1]);n[2]-=n[0],n[3]-=n[1]}c.useRawBoxes?ce(_,t.width*n[0],t.height*n[1],t.width*n[2],t.height*n[3],c):ce(_,n[0],n[1],n[2],n[3],c),c.drawLabels&&(c.shadowColor&&c.shadowColor!==""&&(_.fillStyle=c.shadowColor,_.fillText("hand",n[0]+3,1+n[1]+c.lineHeight,n[2])),_.fillStyle=c.labelColor,_.fillText("hand",n[0]+2,0+n[1]+c.lineHeight,n[2])),_.stroke()}if(c.drawPoints&&A.landmarks&&A.landmarks.length>0)for(let n of A.landmarks)_.fillStyle=c.useDepth?`rgba(${127.5+2*n[2]}, ${127.5-2*n[2]}, 255, 0.5)`:c.color,Fe(_,n[0],n[1],0,c);if(c.drawPolygons){let n=h=>{if(!!h)for(let s=0;s0?s-1:0][0],h[s>0?s-1:0][1]),_.lineTo(h[s][0],h[s][1]),_.stroke()};n(A.annotations.indexFinger),n(A.annotations.middleFinger),n(A.annotations.ringFinger),n(A.annotations.pinky),n(A.annotations.thumb)}}}}async function Z0(t,e,r){let c=F(Ae,r);if(!e||!t||!(t instanceof HTMLCanvasElement))return;let _=t.getContext("2d");if(!!_){_.lineJoin="round",_.font=c.font;for(let A of e)if(c.drawBoxes){if(_.strokeStyle=c.color,_.fillStyle=c.color,c.useRawBoxes?ce(_,t.width*A.boxRaw[0],t.height*A.boxRaw[1],t.width*A.boxRaw[2],t.height*A.boxRaw[3],c):ce(_,A.box[0],A.box[1],A.box[2],A.box[3],c),c.drawLabels){let n=`${Math.round(100*A.score)}% ${A.label}`;c.shadowColor&&c.shadowColor!==""&&(_.fillStyle=c.shadowColor,_.fillText(n,A.box[0]+3,1+A.box[1]+c.lineHeight,A.box[2])),_.fillStyle=c.labelColor,_.fillText(n,A.box[0]+2,0+A.box[1]+c.lineHeight,A.box[2])}_.stroke()}}}async function gt(t,e){if(!t||!e||!(t instanceof HTMLCanvasElement)||!(e instanceof HTMLCanvasElement))return;let r=t.getContext("2d");r==null||r.drawImage(t,0,0)}async function Tt(t,e,r){let c=F(Ae,r);!e||!t||t instanceof HTMLCanvasElement&&(k0(t,e.face,c),O0(t,e.body,c),L0(t,e.hand,c),N0(t,e.gesture,c),Z0(t,e.object,c))}var qe=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob @@ -163,7 +163,7 @@ PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1 8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3 ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY -euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,t1=` +euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,Be=` /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA @@ -731,5 +731,5 @@ AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ -2Q==`;var s0="1.6.1";var le,Te,Pe,ie,n1,Me,r1,c1,A1,G0=class{constructor(t={}){le.set(this,void 0);Te.set(this,void 0);Pe.set(this,void 0);ie.set(this,void 0);this.analyze=(...t)=>{if(!C(this,Te))return;let r=this.tf.engine().state.numTensors,A=C(this,le);_e(this,le,r);let _=r-A;_!==0&&f(...t,_)};n1.set(this,t=>{if(!C(this,Pe))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof o.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(r){return"backend not loaded"}return null});Me.set(this,async(t=!1)=>{var r;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let A=v();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&f("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&f("wasm path:",this.config.wasmPath),typeof((r=this.tf)==null?void 0:r.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let _=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),c=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&f(`wasm execution: ${_?"SIMD":"no SIMD"} ${c?"multithreaded":"singlethreaded"}`),this.config.debug&&!_&&f("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&mt();try{await this.tf.setBackend(this.config.backend)}catch(_){f("error: cannot set backend:",this.config.backend,_)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),this.config.deallocate&&(f("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let _=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&f(`gl version:${_.getParameter(_.VERSION)} renderer:${_.getParameter(_.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(v()-A)}});r1.set(this,async()=>{let t=(_,c="application/octet-stream")=>fetch(`data:${c};base64,${_}`).then(n=>n.blob()),r,A;switch(this.config.warmup){case"face":r=await t(e1);break;case"full":r=await t(t1);break;default:r=null}if(r){let _=await createImageBitmap(r);A=await this.detect(_,this.config),_.close()}return A});c1.set(this,async()=>new Promise(t=>{let r,A=0;switch(this.config.warmup){case"face":A=256,r="data:image/jpeg;base64,"+e1;break;case"full":case"body":A=1200,r="data:image/jpeg;base64,"+t1;break;default:r=null}let _=new Image;_.onload=async()=>{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(A,A):document.createElement("canvas");c.width=_.naturalWidth,c.height=_.naturalHeight;let n=c.getContext("2d");n==null||n.drawImage(_,0,0);let s=await this.detect(c,this.config);t(s)},r?_.src=r:t(null)}));A1.set(this,async()=>{let t=_=>Buffer.from(_,"base64"),r;if(this.config.warmup==="face"&&(r=t(e1)),(this.config.warmup==="body"||this.config.warmup==="full")&&(r=t(t1)),!r)return null;let A;if(typeof o.node!="undefined"){let _=o.node.decodeJpeg(r),c=_.expandDims(0);this.tf.dispose(_),A=await this.detect(c,this.config),this.tf.dispose(c)}else this.config.debug&&f("Warmup tfjs-node not loaded");return A});this.tf=o,this.draw=_t,this.version=s0,this.config=U(S,t),this.state="idle",_e(this,le,0),_e(this,Te,!1),_e(this,Pe,!1),_e(this,ie,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=r=>At(r,this.config),this.classes={facemesh:j1,age:o1,gender:h1,emotion:w1,faceres:u1,body:this.config.body.modelPath.includes("posenet")?Z1:K1,hand:U1,nanodet:et},this.faceTriangulation=jt,this.faceUVMap=St,this.sysinfo=xt()}profileData(){return this.config.profile?Ee:{}}similarity(t,r){return this.config.face.description.enabled?g1(t,r):this.config.face.embedding.enabled?pt(t,r):0}enhance(t){return T1(t)}match(t,r,A=0){return ut(t,r,A)}async load(t={}){this.state="load";let r=v();t&&(this.config=U(this.config,t)),C(this,ie)&&(this.config.debug&&f(`version: ${this.version}`),this.config.debug&&f(`tfjs version: ${this.tf.version_core}`),this.config.debug&&f("platform:",this.sysinfo.platform),this.config.debug&&f("agent:",this.sysinfo.agent),await C(this,Me).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&f("configuration:",this.config),this.config.debug&&f("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.efficientpose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?W1(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?s1(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?y1(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?f1(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?m1(this.config):null),this.models.handpose||(this.config.hand.enabled?C1(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?V1(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?D1(this.config):null),this.models.efficientpose||(this.config.body.enabled&&this.config.body.modelPath.includes("efficientpose")?Q1(this.config):null),this.models.nanodet||(this.config.object.enabled?nt(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?b1(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await W1(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await s1(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await y1(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await f1(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await m1(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await C1(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await V1(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await D1(this.config)),this.config.body.enabled&&!this.models.efficientpose&&this.config.body.modelPath.includes("efficientpose")&&(this.models.efficientpose=await Q1(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await nt(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await b1(this.config))),C(this,ie)&&(this.config.debug&&f("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),_e(this,ie,!1));let A=Math.trunc(v()-r);A>(this.perf.load||0)&&(this.perf.load=A)}async detect(t,r={}){return new Promise(async A=>{var m,u;this.state="config";let _;this.config=U(this.config,r),this.state="check";let c=C(this,n1).call(this,t);c&&(f(c,t),A({error:c}));let n=v();await C(this,Me).call(this),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:");let s;t&&this.config.videoOptimized&&(typeof HTMLImageElement!="undefined"&&t instanceof HTMLImageElement||typeof Image!="undefined"&&t instanceof Image||typeof ImageData!="undefined"&&t instanceof ImageData||typeof ImageBitmap!="undefined"&&ct instanceof ImageBitmap)&&(f("disabling video optimization"),s=this.config.videoOptimized,this.config.videoOptimized=!1),_=v();let h=At(t,this.config);if(!h||!h.tensor){f("could not convert input to tensor"),A({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(v()-_),this.analyze("Get Image:");let a,y,i,d,p;this.config.async?(i=this.config.face.enabled?P1(this,h.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",_=v(),i=this.config.face.enabled?await P1(this,h.tensor):[],p=Math.trunc(v()-_),p>0&&(this.perf.face=p)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?a=this.config.body.enabled?H1(h.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?a=this.config.body.enabled?G1(h.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(a=this.config.body.enabled?$1(h.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",_=v(),this.config.body.modelPath.includes("posenet")?a=this.config.body.enabled?await H1(h.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?a=this.config.body.enabled?await G1(h.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(a=this.config.body.enabled?await $1(h.tensor,this.config):[]),p=Math.trunc(v()-_),p>0&&(this.perf.body=p)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(y=this.config.hand.enabled?(m=this.models.handpose)==null?void 0:m.estimateHands(h.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",_=v(),y=this.config.hand.enabled?await((u=this.models.handpose)==null?void 0:u.estimateHands(h.tensor,this.config)):[],p=Math.trunc(v()-_),p>0&&(this.perf.hand=p)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(d=this.config.object.enabled?rt(h.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",_=v(),d=this.config.object.enabled?await rt(h.tensor,this.config):[],p=Math.trunc(v()-_),p>0&&(this.perf.object=p)),this.analyze("End Object:"),this.config.async&&([i,a,y,d]=await Promise.all([i,a,y,d])),o.dispose(h.tensor),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let T=[];this.config.gesture.enabled&&(_=v(),T=[...$t(i),...Qt(a),...t0(y),...e0(i)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(v()-_)),s&&(this.config.videoOptimized=s),this.perf.total=Math.trunc(v()-n),this.state="idle";let x={face:i,body:a,hand:y,gesture:T,object:d,performance:this.perf,canvas:h.canvas};A(x)})}async warmup(t={}){let r=v();if(t&&(this.config=U(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let A=this.config.videoOptimized;this.config.videoOptimized=!1;let _;typeof createImageBitmap=="function"?_=await C(this,r1).call(this):typeof Image!="undefined"?_=await C(this,c1).call(this):_=await C(this,A1).call(this),this.config.videoOptimized=A;let c=v();return this.config.debug&&f("Warmup",this.config.warmup,Math.round(c-r),"ms",_),_}};le=new WeakMap,Te=new WeakMap,Pe=new WeakMap,ie=new WeakMap,n1=new WeakMap,Me=new WeakMap,r1=new WeakMap,c1=new WeakMap,A1=new WeakMap;export{G0 as Human,G0 as default}; +2Q==`;var H0="1.7.0";var ae,me,ue,_e,Ue,pe,Ye,Je,Ce,Mt=class{constructor(e={}){ae.set(this,void 0);me.set(this,void 0);ue.set(this,void 0);_e.set(this,void 0);this.analyze=(...e)=>{if(!q(this,me))return;let r=this.tf.engine().state.numTensors,c=q(this,ae);ne(this,ae,r);let _=r-c;_!==0&&p(...e,_)};Ue.set(this,e=>{if(!q(this,ue))return null;if(!e)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(e instanceof o.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(r){return"backend not loaded"}return null});pe.set(this,async(e=!1)=>{var r;if(this.config.backend&&this.config.backend.length>0&&e||this.tf.getBackend()!==this.config.backend){let c=j();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&p("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&p("wasm path:",this.config.wasmPath),typeof((r=this.tf)==null?void 0:r.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let _=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),A=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&p(`wasm execution: ${_?"SIMD":"no SIMD"} ${A?"multithreaded":"singlethreaded"}`),this.config.debug&&!_&&p("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&D1();try{await this.tf.setBackend(this.config.backend)}catch(_){p("error: cannot set backend:",this.config.backend,_)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),this.config.deallocate&&(p("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let _=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&p(`gl version:${_.getParameter(_.VERSION)} renderer:${_.getParameter(_.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(j()-c)}});Ye.set(this,async()=>{let e=(_,A="application/octet-stream")=>fetch(`data:${A};base64,${_}`).then(n=>n.blob()),r,c;switch(this.config.warmup){case"face":r=await e(qe);break;case"full":r=await e(Be);break;default:r=null}if(r){let _=await createImageBitmap(r);c=await this.detect(_,this.config),_.close()}return c});Je.set(this,async()=>new Promise(e=>{let r,c=0;switch(this.config.warmup){case"face":c=256,r="data:image/jpeg;base64,"+qe;break;case"full":case"body":c=1200,r="data:image/jpeg;base64,"+Be;break;default:r=null}let _=new Image;_.onload=async()=>{let A=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(c,c):document.createElement("canvas");A.width=_.naturalWidth,A.height=_.naturalHeight;let n=A.getContext("2d");n==null||n.drawImage(_,0,0);let h=await this.detect(A,this.config);e(h)},r?_.src=r:e(null)}));Ce.set(this,async()=>{let e=_=>Buffer.from(_,"base64"),r;if(this.config.warmup==="face"&&(r=e(qe)),(this.config.warmup==="body"||this.config.warmup==="full")&&(r=e(Be)),!r)return null;let c;if(typeof o.node!="undefined"){let _=o.node.decodeJpeg(r),A=_.expandDims(0);this.tf.dispose(_),c=await this.detect(A,this.config),this.tf.dispose(A)}else this.config.debug&&p("Warmup tfjs-node not loaded");return c});this.tf=o,this.draw=Z1,this.version=H0,this.config=F(S,e),this.state="idle",ne(this,ae,0),ne(this,me,!1),ne(this,ue,!1),ne(this,_e,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=r=>L1(r,this.config),this.classes={facemesh:i1,emotion:De,faceres:e1,body:this.config.body.modelPath.includes("posenet")?m1:R1,hand:M1,nanodet:W1},this.faceTriangulation=o0,this.faceUVMap=h0,this.sysinfo=B1()}profileData(){return this.config.profile?ge:{}}similarity(e,r){return n1(e,r)}enhance(e){return r1(e)}match(e,r,c=0){return G1(e,r,c)}async load(e={}){this.state="load";let r=j();e&&(this.config=F(this.config,e)),q(this,_e)&&(this.config.debug&&p(`version: ${this.version}`),this.config.debug&&p(`tfjs version: ${this.tf.version_core}`),this.config.debug&&p("platform:",this.sysinfo.platform),this.config.debug&&p("agent:",this.sysinfo.agent),await q(this,pe).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&p("configuration:",this.config),this.config.debug&&p("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.emotion,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?x1(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?$e(this.config):null),this.models.handpose||(this.config.hand.enabled?E1(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?p1(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?j1(this.config):null),this.models.nanodet||(this.config.object.enabled?N1(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?t1(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await x1(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await $e(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await E1(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await p1(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await j1(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await N1(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await t1(this.config))),q(this,_e)&&(this.config.debug&&p("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),ne(this,_e,!1));let c=Math.trunc(j()-r);c>(this.perf.load||0)&&(this.perf.load=c)}async detect(e,r={}){return new Promise(async c=>{var f,u;this.state="config";let _;this.config=F(this.config,r),this.state="check";let A=q(this,Ue).call(this,e);A&&(p(A,e),c({error:A}));let n=j();await q(this,pe).call(this),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:");let h;e&&this.config.videoOptimized&&(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement||typeof Image!="undefined"&&e instanceof Image||typeof ImageData!="undefined"&&e instanceof ImageData||typeof ImageBitmap!="undefined"&&O1 instanceof ImageBitmap)&&(p("disabling video optimization"),h=this.config.videoOptimized,this.config.videoOptimized=!1),_=j();let s=L1(e,this.config);if(!s||!s.tensor){p("could not convert input to tensor"),c({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(j()-_),this.analyze("Get Image:");let a,y,i,d,m;this.config.async?(i=this.config.face.enabled?A1(this,s.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",_=j(),i=this.config.face.enabled?await A1(this,s.tensor):[],m=Math.trunc(j()-_),m>0&&(this.perf.face=m)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?a=this.config.body.enabled?u1(s.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")&&(a=this.config.body.enabled?S1(s.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",_=j(),this.config.body.modelPath.includes("posenet")?a=this.config.body.enabled?await u1(s.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")&&(a=this.config.body.enabled?await S1(s.tensor,this.config):[]),m=Math.trunc(j()-_),m>0&&(this.perf.body=m)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(y=this.config.hand.enabled?(f=this.models.handpose)==null?void 0:f.estimateHands(s.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",_=j(),y=this.config.hand.enabled?await((u=this.models.handpose)==null?void 0:u.estimateHands(s.tensor,this.config)):[],m=Math.trunc(j()-_),m>0&&(this.perf.hand=m)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(d=this.config.object.enabled?k1(s.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",_=j(),d=this.config.object.enabled?await k1(s.tensor,this.config):[],m=Math.trunc(j()-_),m>0&&(this.perf.object=m)),this.analyze("End Object:"),this.config.async&&([i,a,y,d]=await Promise.all([i,a,y,d])),o.dispose(s.tensor),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let T=[];this.config.gesture.enabled&&(_=j(),T=[...j0(i),...R0(a),...W0(y),...S0(i)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(j()-_)),h&&(this.config.videoOptimized=h),this.perf.total=Math.trunc(j()-n),this.state="idle";let x={face:i,body:a,hand:y,gesture:T,object:d,performance:this.perf,canvas:s.canvas};c(x)})}async warmup(e={}){let r=j();if(e&&(this.config=F(this.config,e)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let c=this.config.videoOptimized;this.config.videoOptimized=!1;let _;typeof createImageBitmap=="function"?_=await q(this,Ye).call(this):typeof Image!="undefined"?_=await q(this,Je).call(this):_=await q(this,Ce).call(this),this.config.videoOptimized=c;let A=j();return this.config.debug&&p("Warmup",this.config.warmup,Math.round(A-r),"ms",_),_}};ae=new WeakMap,me=new WeakMap,ue=new WeakMap,_e=new WeakMap,Ue=new WeakMap,pe=new WeakMap,Ye=new WeakMap,Je=new WeakMap,Ce=new WeakMap;export{Mt as Human,Mt as default}; //# sourceMappingURL=human.esm-nobundle.js.map diff --git a/dist/human.esm-nobundle.js.map b/dist/human.esm-nobundle.js.map index 65edfc19..dbb39ed7 100644 --- a/dist/human.esm-nobundle.js.map +++ b/dist/human.esm-nobundle.js.map @@ -1,7 +1,7 @@ { "version": 3, - "sources": ["../src/helpers.ts", "../src/sysinfo.ts", "../src/tfjs/tf-browser.ts", "../src/tfjs/backend.ts", "../src/age/age.ts", "../src/profile.ts", "../src/gender/gender.ts", "../src/emotion/emotion.ts", "../src/embedding/embedding.ts", "../src/faceres/faceres.ts", "../src/faceall.ts", "../src/blazeface/facemesh.ts", "../src/blazeface/blazeface.ts", "../src/blazeface/box.ts", "../src/blazeface/util.ts", "../src/blazeface/coords.ts", "../src/blazeface/facepipeline.ts", "../src/posenet/posenet.ts", "../src/posenet/keypoints.ts", "../src/posenet/utils.ts", "../src/posenet/poses.ts", "../src/handpose/handpose.ts", "../src/handpose/box.ts", "../src/handpose/handdetector.ts", "../src/handpose/util.ts", "../src/handpose/handpipeline.ts", "../src/handpose/anchors.ts", "../src/blazepose/blazepose.ts", "../src/blazepose/annotations.ts", "../src/efficientpose/efficientpose.ts", "../src/nanodet/nanodet.ts", "../src/nanodet/labels.ts", "../src/gesture/gesture.ts", "../src/image/image.ts", "../src/image/imagefx.js", "../src/draw/draw.ts", "../src/config.ts", "../src/sample.ts", "../src/human.ts"], - "sourcesContent": ["// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`Human: ModelPath Error: ${path} Expecting JSON file`);\n return path;\n}\n\n// helper function: wrapper around console output\nexport function log(...msg) {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n", "export function info(): { platform: string, agent: string } {\n let platform;\n let agent;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n platform = platformMatch ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n agent = navigator.userAgent.replace(raw[0], '');\n if (platform[1]) agent = agent.replace(raw[1], '');\n agent = agent.replace(/ /g, ' ');\n }\n } else if (typeof process !== 'undefined') {\n platform = `${process.platform} ${process.arch}`;\n agent = `NodeJS ${process.version}`;\n }\n return { platform, agent };\n}\n", "// wrapper to load tfjs in a single place so version can be changed quickly\n\n// simplified\n// { modules: 1250, moduleBytes: 4013323, imports: 7, importBytes: 2255, outputBytes: 2991826, outputFiles: 'dist/tfjs.esm.js' }\n// export * from '@tensorflow/tfjs/dist/index.js';\n// export * from '@tensorflow/tfjs-backend-wasm';\n\n// modular\n// { modules: 1253, moduleBytes: 4029357, imports: 7, importBytes: 2285, outputBytes: 2998298, outputFiles: 'dist/tfjs.esm.js' }\n\n// get versions of all packages.\nimport * as packageBundle from '@tensorflow/tfjs/package.json';\nimport * as packageCore from '@tensorflow/tfjs-core/package.json';\nimport * as packageData from '@tensorflow/tfjs-data/package.json';\nimport * as packageLayers from '@tensorflow/tfjs-layers/package.json';\nimport * as packageConverter from '@tensorflow/tfjs-converter/package.json';\n// for backends, get version from source so it can register backend during import\nimport { version_cpu } from '@tensorflow/tfjs-backend-cpu/dist/index.js';\nimport { version_webgl } from '@tensorflow/tfjs-backend-webgl/dist/index.js';\nimport { version_wasm } from '@tensorflow/tfjs-backend-wasm/dist/index.js';\n\n// export all - compiled\nexport * from '@tensorflow/tfjs-core/dist/index.js';\nexport * from '@tensorflow/tfjs-layers/dist/index.js';\nexport * from '@tensorflow/tfjs-converter/dist/index.js';\nexport * as data from '@tensorflow/tfjs-data/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-cpu/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-webgl/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-wasm/dist/index.js';\n\n// export all - sources\n/*\nexport * from '@tensorflow/tfjs-core/src/index';\nexport * from '@tensorflow/tfjs-layers/src/index';\nexport * from '@tensorflow/tfjs-converter/src/index';\nexport * as data from '@tensorflow/tfjs-data/src/index';\nexport * from '@tensorflow/tfjs-backend-cpu/src/index';\nexport * from '@tensorflow/tfjs-backend-webgl/src/index';\nexport * from '@tensorflow/tfjs-backend-wasm/src/index';\n*/\n\n// export versions\nexport const version = {\n tfjs: packageBundle?.version || undefined,\n 'tfjs-core': packageCore?.version || undefined,\n 'tfjs-data': packageData?.version || undefined,\n 'tfjs-layers': packageLayers?.version || undefined,\n 'tfjs-converter': packageConverter?.version || undefined,\n 'tfjs-backend-cpu': version_cpu || undefined,\n 'tfjs-backend-webgl': version_webgl || undefined,\n 'tfjs-backend-wasm': version_wasm || undefined,\n};\n// export const version = {};\n", "import { log } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nexport const config = {\n name: 'humangl',\n priority: 99,\n canvas: null,\n gl: null,\n width: 1024,\n height: 1024,\n webGLattr: { // https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.2\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: false,\n desynchronized: true,\n },\n};\n\nexport function register(): void {\n if (!tf.findBackend(config.name)) {\n log('backend registration:', config.name);\n try {\n config.canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(config.width, config.height) : document.createElement('canvas');\n } catch (err) {\n log('error: cannot create canvas:', err);\n return;\n }\n try {\n config.gl = config.canvas.getContext('webgl2', config.webGLattr);\n } catch (err) {\n log('error: cannot get WebGL2 context:', err);\n return;\n }\n try {\n tf.setWebGLContext(2, config.gl);\n } catch (err) {\n log('error: cannot set WebGL2 context:', err);\n return;\n }\n try {\n const ctx = new tf.GPGPUContext(config.gl);\n tf.registerBackend(config.name, () => new tf.MathBackendWebGL(ctx), config.priority);\n } catch (err) {\n log('error: cannot register WebGL backend:', err);\n return;\n }\n try {\n const kernels = tf.getKernelsForBackend('webgl');\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = { ...kernelConfig, backendName: config.name };\n tf.registerKernel(newKernelConfig);\n });\n } catch (err) {\n log('error: cannot update WebGL backend registration:', err);\n return;\n }\n try {\n tf.ENV.set('WEBGL_VERSION', 2);\n // tf.ENV.set('WEBGL_MAX_TEXTURE_SIZE', config.gl.getParameter(config.gl.MAX_TEXTURE_SIZE));\n // tf.ENV.set('WEBGL_FORCE_F16_TEXTURES', true);\n // tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', true);\n } catch (err) {\n log('error: cannot set WebGL backend flags:', err);\n return;\n }\n log('backend registered:', config.name);\n }\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nlet model;\nlet last = { age: 0 };\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.age.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.age.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.face.age.skipFrames) && config.videoOptimized && last.age && (last.age > 0)) {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, [255.0]);\n tf.dispose(resize);\n\n let ageT;\n const obj = { age: 0 };\n\n if (!config.profile) {\n if (config.face.age.enabled) ageT = await model.predict(enhance);\n } else {\n const profileAge = config.face.age.enabled ? await tf.profile(() => model.predict(enhance)) : {};\n ageT = profileAge.result.clone();\n profileAge.result.dispose();\n profile.run('age', profileAge);\n }\n enhance.dispose();\n\n if (ageT) {\n const data = ageT.dataSync();\n obj.age = Math.trunc(10 * data[0]) / 10;\n }\n ageT.dispose();\n\n last = obj;\n resolve(obj);\n });\n}\n", "import { log } from './helpers';\n\nexport const data = {};\n\nexport function run(modelName: string, profileData: any): void {\n if (!profileData || !profileData.kernels) return;\n const maxResults = 5;\n const time = profileData.kernels\n .filter((a) => a.kernelTimeMs > 0)\n .reduce((a, b) => a += b.kernelTimeMs, 0);\n const slowest = profileData.kernels\n .map((a, i) => { a.id = i; return a; })\n .filter((a) => a.kernelTimeMs > 0)\n .sort((a, b) => b.kernelTimeMs - a.kernelTimeMs);\n const largest = profileData.kernels\n .map((a, i) => { a.id = i; return a; })\n .filter((a) => a.totalBytesSnapshot > 0)\n .sort((a, b) => b.totalBytesSnapshot - a.totalBytesSnapshot);\n if (slowest.length > maxResults) slowest.length = maxResults;\n if (largest.length > maxResults) largest.length = maxResults;\n data[modelName] = {\n model: modelName,\n newBytes: profileData.newBytes,\n newTensors: profileData.newTensors,\n peakBytes: profileData.peakBytes,\n numKernelOps: profileData.kernels.length,\n timeKernelOps: time,\n slowestKernelOps: slowest,\n largestKernelOps: largest,\n };\n log('profiler', modelName, data[modelName]);\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nlet model;\nlet last = { gender: '' };\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet alternative = false;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.gender.modelPath));\n alternative = model.inputs[0].shape[3] === 1;\n if (!model || !model.modelUrl) log('load model failed:', config.face.gender.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.face.gender.skipFrames) && config.videoOptimized && last.gender !== '') {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n let enhance;\n if (alternative) {\n enhance = tf.tidy(() => {\n const [red, green, blue] = tf.split(resize, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const normalize = grayscale.sub(0.5).mul(2); // range grayscale:-1..1\n return normalize;\n });\n } else {\n enhance = tf.mul(resize, [255.0]); // range RGB:0..255\n }\n tf.dispose(resize);\n\n let genderT;\n const obj = { gender: '', confidence: 0 };\n\n if (!config.profile) {\n if (config.face.gender.enabled) genderT = await model.predict(enhance);\n } else {\n const profileGender = config.face.gender.enabled ? await tf.profile(() => model.predict(enhance)) : {};\n genderT = profileGender.result.clone();\n profileGender.result.dispose();\n profile.run('gender', profileGender);\n }\n enhance.dispose();\n\n if (genderT) {\n if (!Array.isArray(genderT)) {\n const data = genderT.dataSync();\n if (alternative) {\n // returns two values 0..1, bigger one is prediction\n if (data[0] > config.face.gender.minConfidence || data[1] > config.face.gender.minConfidence) {\n obj.gender = data[0] > data[1] ? 'female' : 'male';\n obj.confidence = data[0] > data[1] ? (Math.trunc(100 * data[0]) / 100) : (Math.trunc(100 * data[1]) / 100);\n }\n } else {\n // returns one value 0..1, .5 is prediction threshold\n const confidence = Math.trunc(200 * Math.abs((data[0] - 0.5))) / 100;\n if (confidence > config.face.gender.minConfidence) {\n obj.gender = data[0] <= 0.5 ? 'female' : 'male';\n obj.confidence = Math.min(0.99, confidence);\n }\n }\n genderT.dispose();\n } else {\n const gender = genderT[0].dataSync();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > config.face.gender.minConfidence) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.confidence = Math.min(0.99, confidence);\n }\n /*\n let age = genderT[1].argMax(1).dataSync()[0];\n const all = genderT[1].dataSync();\n age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n const descriptor = genderT[1].dataSync();\n */\n genderT.forEach((t) => tf.dispose(t));\n }\n }\n last = obj;\n resolve(obj);\n });\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nconst annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];\nlet model;\nlet last: Array<{ score: number, emotion: string }> = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.emotion.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.emotion.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.face.emotion.skipFrames) && config.videoOptimized && (last.length > 0)) {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const [red, green, blue] = tf.split(resize, 3, 3);\n resize.dispose();\n // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n red.dispose();\n green.dispose();\n blue.dispose();\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n redNorm.dispose();\n greenNorm.dispose();\n blueNorm.dispose();\n const normalize = tf.tidy(() => grayscale.sub(0.5).mul(2));\n grayscale.dispose();\n const obj: Array<{ score: number, emotion: string }> = [];\n if (config.face.emotion.enabled) {\n let data;\n if (!config.profile) {\n const emotionT = await model.predict(normalize); // result is already in range 0..1, no need for additional activation\n data = emotionT.dataSync();\n tf.dispose(emotionT);\n } else {\n const profileData = await tf.profile(() => model.predict(normalize));\n data = profileData.result.dataSync();\n profileData.result.dispose();\n profile.run('emotion', profileData);\n }\n for (let i = 0; i < data.length; i++) {\n if (data[i] > config.face.emotion.minConfidence) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] });\n }\n obj.sort((a, b) => b.score - a.score);\n }\n normalize.dispose();\n last = obj;\n resolve(obj);\n });\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\ntype Tensor = typeof tf.Tensor;\ntype DB = Array<{ name: string, source: string, embedding: number[] }>;\nlet model;\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.embedding.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.embedding.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport function similarity(embedding1, embedding2, order = 2): number {\n if (!embedding1 || !embedding2) return 0;\n if (embedding1?.length === 0 || embedding2?.length === 0) return 0;\n if (embedding1?.length !== embedding2?.length) return 0;\n // general minkowski distance, euclidean distance is limited case where order is 2\n const distance = embedding1\n .map((val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared\n .reduce((sum, now) => (sum + now), 0) // sum all distances\n ** (1 / order); // get root of\n const res = Math.max(Math.trunc(1000 * (1 - distance)) / 1000, 0);\n return res;\n}\n\nexport function match(embedding: Array, db: DB, threshold = 0) {\n let best = { similarity: 0, name: '', source: '', embedding: [] as number[] };\n if (!embedding || !db || !Array.isArray(embedding) || !Array.isArray(db)) return best;\n for (const f of db) {\n if (f.embedding && f.name) {\n const perc = similarity(embedding, f.embedding);\n if (perc > threshold && perc > best.similarity) best = { ...f, similarity: perc };\n }\n }\n return best;\n}\n\nexport function enhance(input): Tensor {\n const image = tf.tidy(() => {\n // input received from detector is already normalized to 0..1\n // input is also assumed to be straightened\n // const data = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n const tensor = input.image || input.tensor;\n if (!(tensor instanceof tf.Tensor)) return null;\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n\n /*\n // optional increase image contrast\n // or do it per-channel so mean is done on each channel\n // or do it based on histogram\n const mean = merge.mean();\n const factor = 5;\n const contrast = merge.sub(mean).mul(factor).add(mean);\n */\n\n // normalize brightness from 0..1\n const darken = merge.sub(merge.min());\n const lighten = darken.div(darken.max());\n\n return lighten;\n });\n return image;\n}\n\nexport async function predict(input, config): Promise {\n if (!model) return [];\n return new Promise(async (resolve) => {\n // let data: Array<[]> = [];\n let data: Array = [];\n if (config.face.embedding.enabled) {\n const image = enhance(input);\n if (!config.profile) {\n data = tf.tidy(() => {\n /*\n // if needed convert from NHWC to NCHW\n const nchw = image.transpose([3, 0, 1, 2]);\n */\n\n const res = model.predict(image);\n\n /*\n // optionally do it twice with flipped image and average results\n const res1 = model.predict(image);\n const flipped = tf.image.flipLeftRight(image);\n const res2 = model.predict(flipped);\n const merge = tf.stack([res1, res2], 2).squeeze();\n const res = reshape.logSumExp(1);\n */\n\n /*\n // optional normalize outputs with l2 normalization\n const scaled = tf.tidy(() => {\n const l2 = res.norm('euclidean');\n const scale = res.div(l2);\n return scale;\n });\n */\n\n // optional reduce feature vector complexity\n const reshape = res.reshape([128, 2]); // split 256 vectors into 128 x 2\n const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it\n\n const output: Array = reduce.dataSync();\n return [...output]; // convert typed array to simple array\n });\n } else {\n const profileData = await tf.profile(() => model.predict({ img_inputs: image }));\n data = [...profileData.result.dataSync()];\n profileData.result.dispose();\n profile.run('emotion', profileData);\n }\n tf.dispose(image);\n }\n resolve(data);\n });\n}\n\n/*\ngit clone https://github.com/becauseofAI/MobileFace\ncd MobileFace/MobileFace_Identification\nmmconvert --srcFramework mxnet --inputWeight MobileFace_Identification_V3-0000.params --inputNetwork MobileFace_Identification_V3-symbol.json --inputShape 3,112,112 --dstFramework tensorflow --outputModel saved\nsaved_model_cli show --dir saved/\ntensorflowjs_converter --input_format tf_saved_model --output_format tfjs_graph_model --saved_model_tags train saved/ graph/\n~/dev/detector/signature.js graph/\n2021-03-12 08:25:12 DATA: created on: 2021-03-12T13:17:11.960Z\n2021-03-12 08:25:12 INFO: graph model: /home/vlado/dev/face/MobileFace/MobileFace_Identification/graph/model.json\n2021-03-12 08:25:12 INFO: size: { unreliable: true, numTensors: 75, numDataBuffers: 75, numBytes: 2183192 }\n2021-03-12 08:25:12 INFO: model inputs based on signature\n2021-03-12 08:25:12 INFO: model outputs based on signature\n2021-03-12 08:25:12 DATA: inputs: [ { name: 'data:0', dtype: 'DT_FLOAT', shape: [ -1, 112, 112, 3, [length]: 4 ] }, [length]: 1 ]\n2021-03-12 08:25:12 DATA: outputs: [ { id: 0, name: 'batchnorm0/add_1:0', dytpe: 'DT_FLOAT', shape: [ -1, 256, [length]: 2 ] }, [length]: 1 ]\n*/\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nlet model;\nlet last = { age: 0 };\nlet skipped = Number.MAX_SAFE_INTEGER;\n\ntype Tensor = typeof tf.Tensor;\ntype DB = Array<{ name: string, source: string, embedding: number[] }>;\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.description.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.description.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport function similarity(embedding1, embedding2, order = 2): number {\n if (!embedding1 || !embedding2) return 0;\n if (embedding1?.length === 0 || embedding2?.length === 0) return 0;\n if (embedding1?.length !== embedding2?.length) return 0;\n // general minkowski distance, euclidean distance is limited case where order is 2\n const distance = 5.0 * embedding1\n .map((val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared\n .reduce((sum, now) => (sum + now), 0) // sum all distances\n ** (1 / order); // get root of\n const res = Math.max(0, 100 - distance) / 100.0;\n return res;\n}\n\nexport function match(embedding: Array, db: DB, threshold = 0) {\n let best = { similarity: 0, name: '', source: '', embedding: [] as number[] };\n if (!embedding || !db || !Array.isArray(embedding) || !Array.isArray(db)) return best;\n for (const f of db) {\n if (f.embedding && f.name) {\n const perc = similarity(embedding, f.embedding);\n if (perc > threshold && perc > best.similarity) best = { ...f, similarity: perc };\n }\n }\n return best;\n}\n\nexport function enhance(input): Tensor {\n const image = tf.tidy(() => {\n // input received from detector is already normalized to 0..1\n // input is also assumed to be straightened\n const tensor = input.image || input.tensor || input;\n if (!(tensor instanceof tf.Tensor)) return null;\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // const box = [[0.0, 0.0, 1.0, 1.0]]; // basically no crop for test\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n // const crop = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n\n /*\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n */\n\n /*\n // optional increase image contrast\n // or do it per-channel so mean is done on each channel\n // or do it based on histogram\n const mean = merge.mean();\n const factor = 5;\n const contrast = merge.sub(mean).mul(factor).add(mean);\n */\n\n /*\n // normalize brightness from 0..1\n const darken = crop.sub(crop.min());\n const lighten = darken.div(darken.max());\n */\n\n const norm = crop.mul(255);\n\n return norm;\n });\n return image;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.face.description.skipFrames) && config.videoOptimized && last.age && (last.age > 0)) {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const enhanced = enhance(image);\n\n let resT;\n const obj = {\n age: 0,\n gender: 'unknown',\n genderConfidence: 0,\n descriptor: [] };\n\n if (!config.profile) {\n if (config.face.description.enabled) resT = await model.predict(enhanced);\n } else {\n const profileDesc = config.face.description.enabled ? await tf.profile(() => model.predict(enhanced)) : {};\n resT = profileDesc.result;\n profile.run('faceres', profileDesc);\n }\n tf.dispose(enhanced);\n\n if (resT) {\n tf.tidy(() => {\n const gender = resT.find((t) => t.shape[1] === 1).dataSync();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > config.face.gender.minConfidence) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.genderConfidence = Math.min(0.99, confidence);\n }\n const age = resT.find((t) => t.shape[1] === 100).argMax(1).dataSync()[0];\n const all = resT.find((t) => t.shape[1] === 100).dataSync();\n obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n\n const desc = resT.find((t) => t.shape[1] === 1024);\n // const reshape = desc.reshape([128, 8]);\n // const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it\n\n obj.descriptor = [...desc.dataSync()];\n });\n resT.forEach((t) => tf.dispose(t));\n }\n\n last = obj;\n resolve(obj);\n });\n}\n", "import { log, now } from './helpers';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as age from './age/age';\nimport * as gender from './gender/gender';\nimport * as emotion from './emotion/emotion';\nimport * as embedding from './embedding/embedding';\nimport * as faceres from './faceres/faceres';\n\ntype Tensor = typeof tf.Tensor;\n\nconst calculateFaceAngle = (face, image_size): { angle: { pitch: number, yaw: number, roll: number }, matrix: [number, number, number, number, number, number, number, number, number] } => {\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const degrees = (theta) => (theta * 180) / Math.PI;\n // const degrees = (theta) => Math.abs(((theta * 180) / Math.PI) % 360);\n const normalize = (v) => { // normalize vector\n const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);\n v[0] /= length;\n v[1] /= length;\n v[2] /= length;\n return v;\n };\n const subVectors = (a, b) => { // vector subtraction (a - b)\n const x = a[0] - b[0];\n const y = a[1] - b[1];\n const z = a[2] - b[2];\n return [x, y, z];\n };\n const crossVectors = (a, b) => { // vector cross product (a x b)\n const x = a[1] * b[2] - a[2] * b[1];\n const y = a[2] * b[0] - a[0] * b[2];\n const z = a[0] * b[1] - a[1] * b[0];\n return [x, y, z];\n };\n // 3x3 rotation matrix to Euler angles based on https://www.geometrictools.com/Documentation/EulerAngles.pdf\n const rotationMatrixToEulerAngle = (r) => {\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const [r00, r01, r02, r10, r11, r12, r20, r21, r22] = r;\n let thetaX; let thetaY; let thetaZ;\n if (r10 < 1) { // YZX calculation\n if (r10 > -1) {\n thetaZ = Math.asin(r10);\n thetaY = Math.atan2(-r20, r00);\n thetaX = Math.atan2(-r12, r11);\n } else {\n thetaZ = -Math.PI / 2;\n thetaY = -Math.atan2(r21, r22);\n thetaX = 0;\n }\n } else {\n thetaZ = Math.PI / 2;\n thetaY = Math.atan2(r21, r22);\n thetaX = 0;\n }\n return { pitch: 2 * -thetaX, yaw: 2 * -thetaY, roll: 2 * -thetaZ };\n };\n // simple Euler angle calculation based existing 3D mesh\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const meshToEulerAngle = (mesh) => {\n const radians = (a1, a2, b1, b2) => Math.atan2(b2 - a2, b1 - a1);\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const angle = {\n // values are in radians in range of -pi/2 to pi/2 which is -90 to +90 degrees\n // value of 0 means center\n // pitch is face move up/down\n pitch: radians(mesh[10][1], mesh[10][2], mesh[152][1], mesh[152][2]), // looking at y,z of top and bottom points of the face\n // yaw is face turn left/right\n yaw: radians(mesh[33][0], mesh[33][2], mesh[263][0], mesh[263][2]), // looking at x,z of outside corners of leftEye and rightEye\n // roll is face lean left/right\n roll: radians(mesh[33][0], mesh[33][1], mesh[263][0], mesh[263][1]), // looking at x,y of outside corners of leftEye and rightEye\n };\n return angle;\n };\n\n const mesh = face.meshRaw;\n if (!mesh || mesh.length < 300) return { angle: { pitch: 0, yaw: 0, roll: 0 }, matrix: [1, 0, 0, 0, 1, 0, 0, 0, 1] };\n\n const size = Math.max(face.boxRaw[2] * image_size[0], face.boxRaw[3] * image_size[1]) / 1.5;\n // top, bottom, left, right\n const pts = [mesh[10], mesh[152], mesh[234], mesh[454]].map((pt) => [\n // make the xyz coordinates proportional, independent of the image/box size\n pt[0] * image_size[0] / size,\n pt[1] * image_size[1] / size,\n pt[2],\n ]);\n\n const y_axis = normalize(subVectors(pts[1], pts[0]));\n let x_axis = normalize(subVectors(pts[3], pts[2]));\n const z_axis = normalize(crossVectors(x_axis, y_axis));\n // adjust x_axis to make sure that all axes are perpendicular to each other\n x_axis = crossVectors(y_axis, z_axis);\n\n // Rotation Matrix from Axis Vectors - http://renderdan.blogspot.com/2006/05/rotation-matrix-from-axis-vectors.html\n // 3x3 rotation matrix is flatten to array in row-major order. Note that the rotation represented by this matrix is inverted.\n const matrix: [number, number, number, number, number, number, number, number, number] = [\n x_axis[0], x_axis[1], x_axis[2],\n y_axis[0], y_axis[1], y_axis[2],\n z_axis[0], z_axis[1], z_axis[2],\n ];\n const angle = rotationMatrixToEulerAngle(matrix);\n // const angle = meshToEulerAngle(mesh);\n return { angle, matrix };\n};\n\nexport const detectFace = async (parent, input): Promise => {\n // run facemesh, includes blazeface and iris\n // eslint-disable-next-line no-async-promise-executor\n let timeStamp;\n let ageRes;\n let genderRes;\n let emotionRes;\n let embeddingRes;\n let descRes;\n const faceRes: Array<{\n confidence: number,\n boxConfidence: number,\n faceConfidence: number,\n box: [number, number, number, number],\n mesh: Array<[number, number, number]>\n meshRaw: Array<[number, number, number]>\n boxRaw: [number, number, number, number],\n annotations: Array<{ part: string, points: Array<[number, number, number]>[] }>,\n age: number,\n gender: string,\n genderConfidence: number,\n emotion: string,\n embedding: number[],\n iris: number,\n rotation: {\n angle: { pitch: number, yaw: number, roll: number },\n matrix: [number, number, number, number, number, number, number, number, number]\n },\n tensor: Tensor,\n }> = [];\n parent.state = 'run:face';\n timeStamp = now();\n const faces = await parent.models.face?.estimateFaces(input, parent.config);\n parent.perf.face = Math.trunc(now() - timeStamp);\n if (!faces) return [];\n for (const face of faces) {\n parent.analyze('Get Face');\n\n // is something went wrong, skip the face\n if (!face.image || face.image.isDisposedInternal) {\n log('Face object is disposed:', face.image);\n continue;\n }\n\n const rotation = calculateFaceAngle(face, [input.shape[2], input.shape[1]]);\n\n // run age, inherits face from blazeface\n parent.analyze('Start Age:');\n if (parent.config.async) {\n ageRes = parent.config.face.age.enabled ? age.predict(face.image, parent.config) : {};\n } else {\n parent.state = 'run:age';\n timeStamp = now();\n ageRes = parent.config.face.age.enabled ? await age.predict(face.image, parent.config) : {};\n parent.perf.age = Math.trunc(now() - timeStamp);\n }\n\n // run gender, inherits face from blazeface\n parent.analyze('Start Gender:');\n if (parent.config.async) {\n genderRes = parent.config.face.gender.enabled ? gender.predict(face.image, parent.config) : {};\n } else {\n parent.state = 'run:gender';\n timeStamp = now();\n genderRes = parent.config.face.gender.enabled ? await gender.predict(face.image, parent.config) : {};\n parent.perf.gender = Math.trunc(now() - timeStamp);\n }\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Emotion:');\n if (parent.config.async) {\n emotionRes = parent.config.face.emotion.enabled ? emotion.predict(face.image, parent.config) : {};\n } else {\n parent.state = 'run:emotion';\n timeStamp = now();\n emotionRes = parent.config.face.emotion.enabled ? await emotion.predict(face.image, parent.config) : {};\n parent.perf.emotion = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Emotion:');\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Embedding:');\n if (parent.config.async) {\n embeddingRes = parent.config.face.embedding.enabled ? embedding.predict(face, parent.config) : [];\n } else {\n parent.state = 'run:embedding';\n timeStamp = now();\n embeddingRes = parent.config.face.embedding.enabled ? await embedding.predict(face, parent.config) : [];\n parent.perf.embedding = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Embedding:');\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Description:');\n if (parent.config.async) {\n descRes = parent.config.face.description.enabled ? faceres.predict(face, parent.config) : [];\n } else {\n parent.state = 'run:description';\n timeStamp = now();\n descRes = parent.config.face.description.enabled ? await faceres.predict(face.image, parent.config) : [];\n parent.perf.embedding = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Description:');\n\n // if async wait for results\n if (parent.config.async) {\n [ageRes, genderRes, emotionRes, embeddingRes, descRes] = await Promise.all([ageRes, genderRes, emotionRes, embeddingRes, descRes]);\n }\n\n parent.analyze('Finish Face:');\n\n // calculate iris distance\n // iris: array[ center, left, top, right, bottom]\n if (!parent.config.face.iris.enabled && face?.annotations?.leftEyeIris && face?.annotations?.rightEyeIris) {\n delete face.annotations.leftEyeIris;\n delete face.annotations.rightEyeIris;\n }\n const irisSize = (face.annotations?.leftEyeIris && face.annotations?.rightEyeIris)\n /* average human iris size is 11.7mm */\n ? 11.7 * Math.max(Math.abs(face.annotations.leftEyeIris[3][0] - face.annotations.leftEyeIris[1][0]), Math.abs(face.annotations.rightEyeIris[4][1] - face.annotations.rightEyeIris[2][1]))\n : 0;\n\n // combine results\n faceRes.push({\n ...face,\n age: descRes.age || ageRes.age,\n gender: descRes.gender || genderRes.gender,\n genderConfidence: descRes.genderConfidence || genderRes.confidence,\n embedding: descRes.descriptor || embeddingRes,\n emotion: emotionRes,\n iris: (irisSize !== 0) ? Math.trunc(irisSize) / 100 : 0,\n rotation,\n tensor: parent.config.face.detector.return ? face.image?.squeeze() : null,\n });\n // dispose original face tensor\n face.image?.dispose();\n\n parent.analyze('End Face');\n }\n parent.analyze('End FaceMesh:');\n if (parent.config.async) {\n if (parent.perf.face) delete parent.perf.face;\n if (parent.perf.age) delete parent.perf.age;\n if (parent.perf.gender) delete parent.perf.gender;\n if (parent.perf.emotion) delete parent.perf.emotion;\n }\n return faceRes;\n};\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as blazeface from './blazeface';\nimport * as facepipeline from './facepipeline';\nimport * as coords from './coords';\n\nexport class MediaPipeFaceMesh {\n facePipeline: any;\n config: any;\n\n constructor(blazeFace, blazeMeshModel, irisModel, config) {\n this.facePipeline = new facepipeline.Pipeline(blazeFace, blazeMeshModel, irisModel);\n this.config = config;\n }\n\n async estimateFaces(input, config): Promise<{ confidence, boxConfidence, faceConfidence, box, mesh, boxRaw, meshRaw, annotations, image }[]> {\n const predictions = await this.facePipeline.predict(input, config);\n const results: Array<{ confidence, boxConfidence, faceConfidence, box, mesh, boxRaw, meshRaw, annotations, image }> = [];\n for (const prediction of (predictions || [])) {\n if (prediction.isDisposedInternal) continue; // guard against disposed tensors on long running operations such as pause in middle of processing\n const mesh = prediction.coords ? prediction.coords.arraySync() : [];\n const meshRaw = mesh.map((pt) => [\n pt[0] / input.shape[2],\n pt[1] / input.shape[1],\n pt[2] / this.facePipeline.meshSize,\n ]);\n const annotations = {};\n if (mesh && mesh.length > 0) {\n for (const key of Object.keys(coords.MESH_ANNOTATIONS)) annotations[key] = coords.MESH_ANNOTATIONS[key].map((index) => mesh[index]);\n }\n const box = prediction.box ? [\n Math.max(0, prediction.box.startPoint[0]),\n Math.max(0, prediction.box.startPoint[1]),\n Math.min(input.shape[2], prediction.box.endPoint[0]) - Math.max(0, prediction.box.startPoint[0]),\n Math.min(input.shape[1], prediction.box.endPoint[1]) - Math.max(0, prediction.box.startPoint[1]),\n ] : 0;\n const boxRaw = prediction.box ? [\n prediction.box.startPoint[0] / input.shape[2],\n prediction.box.startPoint[1] / input.shape[1],\n (prediction.box.endPoint[0] - prediction.box.startPoint[0]) / input.shape[2],\n (prediction.box.endPoint[1] - prediction.box.startPoint[1]) / input.shape[1],\n ] : [];\n results.push({\n confidence: Math.round(100 * prediction.faceConfidence || 100 * prediction.boxConfidence || 0) / 100,\n boxConfidence: Math.round(100 * prediction.boxConfidence) / 100,\n faceConfidence: Math.round(100 * prediction.faceConfidence) / 100,\n box,\n boxRaw,\n mesh,\n meshRaw,\n annotations,\n image: prediction.image ? prediction.image.clone() : null,\n });\n if (prediction.coords) prediction.coords.dispose();\n if (prediction.image) prediction.image.dispose();\n }\n return results;\n }\n}\n\nlet faceModels:[any, any, any] = [null, null, null];\nexport async function load(config): Promise {\n if ((!faceModels[0] && config.face.enabled) || (!faceModels[1] && config.face.mesh.enabled) || (!faceModels[2] && config.face.iris.enabled)) {\n faceModels = await Promise.all([\n (!faceModels[0] && config.face.enabled) ? blazeface.load(config) : null,\n (!faceModels[1] && config.face.mesh.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.mesh.modelPath), { fromTFHub: config.face.mesh.modelPath.includes('tfhub.dev') }) : null,\n (!faceModels[2] && config.face.iris.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.iris.modelPath), { fromTFHub: config.face.iris.modelPath.includes('tfhub.dev') }) : null,\n ]);\n if (config.face.mesh.enabled) {\n if (!faceModels[1] || !faceModels[1].modelUrl) log('load model failed:', config.face.mesh.modelPath);\n else if (config.debug) log('load model:', faceModels[1].modelUrl);\n }\n if (config.face.iris.enabled) {\n if (!faceModels[2] || !faceModels[1].modelUrl) log('load model failed:', config.face.iris.modelPath);\n else if (config.debug) log('load model:', faceModels[2].modelUrl);\n }\n } else if (config.debug) {\n log('cached model:', faceModels[0].model.modelUrl);\n log('cached model:', faceModels[1].modelUrl);\n log('cached model:', faceModels[2].modelUrl);\n }\n const faceMesh = new MediaPipeFaceMesh(faceModels[0], faceModels[1], faceModels[2], config);\n return faceMesh;\n}\n\nexport const triangulation = coords.TRI468;\nexport const uvmap = coords.UV468;\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nconst NUM_LANDMARKS = 6;\n\nfunction generateAnchors(inputSize) {\n const spec = { strides: [inputSize / 16, inputSize / 8], anchors: [2, 6] };\n const anchors: Array<[number, number]> = [];\n for (let i = 0; i < spec.strides.length; i++) {\n const stride = spec.strides[i];\n const gridRows = Math.floor((inputSize + stride - 1) / stride);\n const gridCols = Math.floor((inputSize + stride - 1) / stride);\n const anchorsNum = spec.anchors[i];\n for (let gridY = 0; gridY < gridRows; gridY++) {\n const anchorY = stride * (gridY + 0.5);\n for (let gridX = 0; gridX < gridCols; gridX++) {\n const anchorX = stride * (gridX + 0.5);\n for (let n = 0; n < anchorsNum; n++) {\n anchors.push([anchorX, anchorY]);\n }\n }\n }\n }\n return anchors;\n}\n\nexport const disposeBox = (box) => {\n box.startEndTensor.dispose();\n box.startPoint.dispose();\n box.endPoint.dispose();\n};\n\nconst createBox = (startEndTensor) => ({\n startEndTensor,\n startPoint: tf.slice(startEndTensor, [0, 0], [-1, 2]),\n endPoint: tf.slice(startEndTensor, [0, 2], [-1, 2]),\n});\n\nfunction decodeBounds(boxOutputs, anchors, inputSize) {\n const boxStarts = tf.slice(boxOutputs, [0, 1], [-1, 2]);\n const centers = tf.add(boxStarts, anchors);\n const boxSizes = tf.slice(boxOutputs, [0, 3], [-1, 2]);\n const boxSizesNormalized = tf.div(boxSizes, inputSize);\n const centersNormalized = tf.div(centers, inputSize);\n const halfBoxSize = tf.div(boxSizesNormalized, 2);\n const starts = tf.sub(centersNormalized, halfBoxSize);\n const ends = tf.add(centersNormalized, halfBoxSize);\n const startNormalized = tf.mul(starts, inputSize);\n const endNormalized = tf.mul(ends, inputSize);\n const concatAxis = 1;\n return tf.concat2d([startNormalized, endNormalized], concatAxis);\n}\n\nexport class BlazeFaceModel {\n model: any;\n anchorsData: any;\n anchors: any;\n inputSize: number;\n config: any;\n\n constructor(model, config) {\n this.model = model;\n this.anchorsData = generateAnchors(model.inputs[0].shape[1]);\n this.anchors = tf.tensor2d(this.anchorsData);\n this.inputSize = model.inputs[0].shape[2];\n this.config = config;\n }\n\n async getBoundingBoxes(inputImage) {\n // sanity check on input\n if ((!inputImage) || (inputImage.isDisposedInternal) || (inputImage.shape.length !== 4) || (inputImage.shape[1] < 1) || (inputImage.shape[2] < 1)) return null;\n const [batch, boxes, scores] = tf.tidy(() => {\n const resizedImage = inputImage.resizeBilinear([this.inputSize, this.inputSize]);\n // const normalizedImage = tf.mul(tf.sub(resizedImage.div(255), 0.5), 2);\n const normalizedImage = resizedImage.div(127.5).sub(0.5);\n const batchedPrediction = this.model.predict(normalizedImage);\n let batchOut;\n // are we using tfhub or pinto converted model?\n if (Array.isArray(batchedPrediction)) {\n const sorted = batchedPrediction.sort((a, b) => a.size - b.size);\n const concat384 = tf.concat([sorted[0], sorted[2]], 2); // dim: 384, 1 + 16\n const concat512 = tf.concat([sorted[1], sorted[3]], 2); // dim: 512, 1 + 16\n const concat = tf.concat([concat512, concat384], 1);\n batchOut = concat.squeeze(0);\n } else {\n batchOut = batchedPrediction.squeeze(); // when using tfhub model\n }\n const boxesOut = decodeBounds(batchOut, this.anchors, [this.inputSize, this.inputSize]);\n const logits = tf.slice(batchOut, [0, 0], [-1, 1]);\n const scoresOut = tf.sigmoid(logits).squeeze();\n return [batchOut, boxesOut, scoresOut];\n });\n const boxIndicesTensor = await tf.image.nonMaxSuppressionAsync(boxes, scores, this.config.face.detector.maxFaces, this.config.face.detector.iouThreshold, this.config.face.detector.scoreThreshold);\n const boxIndices = boxIndicesTensor.arraySync();\n boxIndicesTensor.dispose();\n const boundingBoxesMap = boxIndices.map((boxIndex) => tf.slice(boxes, [boxIndex, 0], [1, -1]));\n const boundingBoxes = boundingBoxesMap.map((boundingBox) => {\n const vals = boundingBox.arraySync();\n boundingBox.dispose();\n return vals;\n });\n\n const scoresVal = scores.dataSync();\n const annotatedBoxes: Array<{ box: any, landmarks: any, anchor: any, confidence: number }> = [];\n for (let i = 0; i < boundingBoxes.length; i++) {\n const boxIndex = boxIndices[i];\n const confidence = scoresVal[boxIndex];\n if (confidence > this.config.face.detector.minConfidence) {\n const box = createBox(boundingBoxes[i]);\n const anchor = this.anchorsData[boxIndex];\n const landmarks = tf.tidy(() => tf.slice(batch, [boxIndex, NUM_LANDMARKS - 1], [1, -1]).squeeze().reshape([NUM_LANDMARKS, -1]));\n annotatedBoxes.push({ box, landmarks, anchor, confidence });\n }\n }\n batch.dispose();\n boxes.dispose();\n scores.dispose();\n return {\n boxes: annotatedBoxes,\n scaleFactor: [inputImage.shape[2] / this.inputSize, inputImage.shape[1] / this.inputSize],\n };\n }\n}\n\nexport async function load(config) {\n const model = await tf.loadGraphModel(join(config.modelBasePath, config.face.detector.modelPath), { fromTFHub: config.face.detector.modelPath.includes('tfhub.dev') });\n const blazeFace = new BlazeFaceModel(model, config);\n if (!model || !model.modelUrl) log('load model failed:', config.face.detector.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n return blazeFace;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n return { startPoint, endPoint };\n}\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize];\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n", "export const IDENTITY_MATRIX = [[1, 0, 0], [0, 1, 0], [0, 0, 1]];\n/**\n * Normalizes the provided angle to the range -pi to pi.\n * @param angle The angle in radians to be normalized.\n */\nexport function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\n/**\n * Computes the angle of rotation between two anchor points.\n * @param point1 First anchor point\n * @param point2 Second anchor point\n */\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport function radToDegrees(rad) {\n return rad * 180 / Math.PI;\n}\n\nexport function buildTranslationMatrix(x, y) {\n return [[1, 0, x], [0, 1, y], [0, 0, 1]];\n}\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n\nexport function xyDistanceBetweenPoints(a, b) {\n return Math.sqrt(((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2));\n}\n", "export const MESH_ANNOTATIONS = {\n silhouette: [\n 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,\n 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,\n 172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109,\n ],\n lipsUpperOuter: [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291],\n lipsLowerOuter: [146, 91, 181, 84, 17, 314, 405, 321, 375, 291],\n lipsUpperInner: [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308],\n lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\n rightEyeUpper0: [246, 161, 160, 159, 158, 157, 173],\n rightEyeLower0: [33, 7, 163, 144, 145, 153, 154, 155, 133],\n rightEyeUpper1: [247, 30, 29, 27, 28, 56, 190],\n rightEyeLower1: [130, 25, 110, 24, 23, 22, 26, 112, 243],\n rightEyeUpper2: [113, 225, 224, 223, 222, 221, 189],\n rightEyeLower2: [226, 31, 228, 229, 230, 231, 232, 233, 244],\n rightEyeLower3: [143, 111, 117, 118, 119, 120, 121, 128, 245],\n rightEyebrowUpper: [156, 70, 63, 105, 66, 107, 55, 193],\n rightEyebrowLower: [35, 124, 46, 53, 52, 65],\n rightEyeIris: [473, 474, 475, 476, 477],\n leftEyeUpper0: [466, 388, 387, 386, 385, 384, 398],\n leftEyeLower0: [263, 249, 390, 373, 374, 380, 381, 382, 362],\n leftEyeUpper1: [467, 260, 259, 257, 258, 286, 414],\n leftEyeLower1: [359, 255, 339, 254, 253, 252, 256, 341, 463],\n leftEyeUpper2: [342, 445, 444, 443, 442, 441, 413],\n leftEyeLower2: [446, 261, 448, 449, 450, 451, 452, 453, 464],\n leftEyeLower3: [372, 340, 346, 347, 348, 349, 350, 357, 465],\n leftEyebrowUpper: [383, 300, 293, 334, 296, 336, 285, 417],\n leftEyebrowLower: [265, 353, 276, 283, 282, 295],\n leftEyeIris: [468, 469, 470, 471, 472],\n midwayBetweenEyes: [168],\n noseTip: [1],\n noseBottom: [2],\n noseRightCorner: [98],\n noseLeftCorner: [327],\n rightCheek: [205],\n leftCheek: [425],\n};\n\nexport const MESH_TO_IRIS_INDICES_MAP = [ // A mapping from facemesh model keypoints to iris model keypoints.\n { key: 'EyeUpper0', indices: [9, 10, 11, 12, 13, 14, 15] },\n { key: 'EyeUpper1', indices: [25, 26, 27, 28, 29, 30, 31] },\n { key: 'EyeUpper2', indices: [41, 42, 43, 44, 45, 46, 47] },\n { key: 'EyeLower0', indices: [0, 1, 2, 3, 4, 5, 6, 7, 8] },\n { key: 'EyeLower1', indices: [16, 17, 18, 19, 20, 21, 22, 23, 24] },\n { key: 'EyeLower2', indices: [32, 33, 34, 35, 36, 37, 38, 39, 40] },\n { key: 'EyeLower3', indices: [54, 55, 56, 57, 58, 59, 60, 61, 62] },\n // { key: 'EyebrowUpper', indices: [63, 64, 65, 66, 67, 68, 69, 70] },\n // { key: 'EyebrowLower', indices: [48, 49, 50, 51, 52, 53] },\n];\n\nexport const UV468 = [\n [0.499976992607117, 0.652534008026123],\n [0.500025987625122, 0.547487020492554],\n [0.499974012374878, 0.602371990680695],\n [0.482113003730774, 0.471979022026062],\n [0.500150978565216, 0.527155995368958],\n [0.499909996986389, 0.498252987861633],\n [0.499523013830185, 0.40106201171875],\n [0.289712011814117, 0.380764007568359],\n [0.499954998493195, 0.312398016452789],\n [0.499987006187439, 0.269918978214264],\n [0.500023007392883, 0.107050001621246],\n [0.500023007392883, 0.666234016418457],\n [0.5000159740448, 0.679224014282227],\n [0.500023007392883, 0.692348003387451],\n [0.499976992607117, 0.695277988910675],\n [0.499976992607117, 0.70593398809433],\n [0.499976992607117, 0.719385027885437],\n [0.499976992607117, 0.737019002437592],\n [0.499967992305756, 0.781370997428894],\n [0.499816000461578, 0.562981009483337],\n [0.473773002624512, 0.573909997940063],\n [0.104906998574734, 0.254140973091125],\n [0.365929991006851, 0.409575998783112],\n [0.338757991790771, 0.41302502155304],\n [0.311120003461838, 0.409460008144379],\n [0.274657994508743, 0.389131009578705],\n [0.393361985683441, 0.403706014156342],\n [0.345234006643295, 0.344011008739471],\n [0.370094001293182, 0.346076011657715],\n [0.319321990013123, 0.347265005111694],\n [0.297903001308441, 0.353591024875641],\n [0.24779200553894, 0.410809993743896],\n [0.396889001131058, 0.842755019664764],\n [0.280097991228104, 0.375599980354309],\n [0.106310002505779, 0.399955987930298],\n [0.2099249958992, 0.391353011131287],\n [0.355807989835739, 0.534406006336212],\n [0.471751004457474, 0.65040397644043],\n [0.474155008792877, 0.680191993713379],\n [0.439785003662109, 0.657229006290436],\n [0.414617002010345, 0.66654098033905],\n [0.450374007225037, 0.680860996246338],\n [0.428770989179611, 0.682690978050232],\n [0.374971002340317, 0.727805018424988],\n [0.486716985702515, 0.547628998756409],\n [0.485300987958908, 0.527395009994507],\n [0.257764995098114, 0.314490020275116],\n [0.401223003864288, 0.455172002315521],\n [0.429818987846375, 0.548614978790283],\n [0.421351999044418, 0.533740997314453],\n [0.276895999908447, 0.532056987285614],\n [0.483370006084442, 0.499586999416351],\n [0.33721199631691, 0.282882988452911],\n [0.296391993761063, 0.293242990970612],\n [0.169294998049736, 0.193813979625702],\n [0.447580009698868, 0.302609980106354],\n [0.392390012741089, 0.353887975215912],\n [0.354490011930466, 0.696784019470215],\n [0.067304998636246, 0.730105042457581],\n [0.442739009857178, 0.572826027870178],\n [0.457098007202148, 0.584792017936707],\n [0.381974011659622, 0.694710969924927],\n [0.392388999462128, 0.694203019142151],\n [0.277076005935669, 0.271932005882263],\n [0.422551989555359, 0.563233017921448],\n [0.385919004678726, 0.281364023685455],\n [0.383103013038635, 0.255840003490448],\n [0.331431001424789, 0.119714021682739],\n [0.229923993349075, 0.232002973556519],\n [0.364500999450684, 0.189113974571228],\n [0.229622006416321, 0.299540996551514],\n [0.173287004232407, 0.278747975826263],\n [0.472878992557526, 0.666198015213013],\n [0.446828007698059, 0.668527007102966],\n [0.422762006521225, 0.673889994621277],\n [0.445307999849319, 0.580065965652466],\n [0.388103008270264, 0.693961024284363],\n [0.403039008378983, 0.706539988517761],\n [0.403629004955292, 0.693953037261963],\n [0.460041999816895, 0.557139039039612],\n [0.431158006191254, 0.692366003990173],\n [0.452181994915009, 0.692366003990173],\n [0.475387006998062, 0.692366003990173],\n [0.465828001499176, 0.779190003871918],\n [0.472328990697861, 0.736225962638855],\n [0.473087012767792, 0.717857003211975],\n [0.473122000694275, 0.704625964164734],\n [0.473033010959625, 0.695277988910675],\n [0.427942007780075, 0.695277988910675],\n [0.426479011774063, 0.703539967536926],\n [0.423162013292313, 0.711845993995667],\n [0.4183090031147, 0.720062971115112],\n [0.390094995498657, 0.639572978019714],\n [0.013953999616206, 0.560034036636353],\n [0.499913990497589, 0.58014702796936],\n [0.413199990987778, 0.69539999961853],\n [0.409626007080078, 0.701822996139526],\n [0.468080013990402, 0.601534962654114],\n [0.422728985548019, 0.585985004901886],\n [0.463079988956451, 0.593783974647522],\n [0.37211999297142, 0.47341400384903],\n [0.334562003612518, 0.496073007583618],\n [0.411671012639999, 0.546965003013611],\n [0.242175996303558, 0.14767599105835],\n [0.290776997804642, 0.201445996761322],\n [0.327338010072708, 0.256527006626129],\n [0.399509996175766, 0.748921036720276],\n [0.441727995872498, 0.261676013469696],\n [0.429764986038208, 0.187834024429321],\n [0.412198007106781, 0.108901023864746],\n [0.288955003023148, 0.398952007293701],\n [0.218936994671822, 0.435410976409912],\n [0.41278201341629, 0.398970007896423],\n [0.257135003805161, 0.355440020561218],\n [0.427684992551804, 0.437960982322693],\n [0.448339998722076, 0.536936044692993],\n [0.178560003638268, 0.45755398273468],\n [0.247308000922203, 0.457193970680237],\n [0.286267012357712, 0.467674970626831],\n [0.332827985286713, 0.460712015628815],\n [0.368755996227264, 0.447206974029541],\n [0.398963987827301, 0.432654976844788],\n [0.476410001516342, 0.405806005001068],\n [0.189241006970406, 0.523923993110657],\n [0.228962004184723, 0.348950982093811],\n [0.490725994110107, 0.562400996685028],\n [0.404670000076294, 0.485132992267609],\n [0.019469000399113, 0.401564002037048],\n [0.426243007183075, 0.420431017875671],\n [0.396993011236191, 0.548797011375427],\n [0.266469985246658, 0.376977026462555],\n [0.439121007919312, 0.51895797252655],\n [0.032313998788595, 0.644356966018677],\n [0.419054001569748, 0.387154996395111],\n [0.462783008813858, 0.505746960639954],\n [0.238978996872902, 0.779744982719421],\n [0.198220998048782, 0.831938028335571],\n [0.107550002634525, 0.540755033493042],\n [0.183610007166862, 0.740257024765015],\n [0.134409993886948, 0.333683013916016],\n [0.385764002799988, 0.883153975009918],\n [0.490967005491257, 0.579378008842468],\n [0.382384985685349, 0.508572995662689],\n [0.174399003386497, 0.397670984268188],\n [0.318785011768341, 0.39623498916626],\n [0.343364000320435, 0.400596976280212],\n [0.396100014448166, 0.710216999053955],\n [0.187885001301765, 0.588537991046906],\n [0.430987000465393, 0.944064974784851],\n [0.318993002176285, 0.898285031318665],\n [0.266247987747192, 0.869701027870178],\n [0.500023007392883, 0.190576016902924],\n [0.499976992607117, 0.954452991485596],\n [0.366169989109039, 0.398822009563446],\n [0.393207013607025, 0.39553701877594],\n [0.410373002290726, 0.391080021858215],\n [0.194993004202843, 0.342101991176605],\n [0.388664990663528, 0.362284004688263],\n [0.365961998701096, 0.355970978736877],\n [0.343364000320435, 0.355356991291046],\n [0.318785011768341, 0.35834002494812],\n [0.301414996385574, 0.363156020641327],\n [0.058132998645306, 0.319076001644135],\n [0.301414996385574, 0.387449026107788],\n [0.499987989664078, 0.618434011936188],\n [0.415838003158569, 0.624195992946625],\n [0.445681989192963, 0.566076993942261],\n [0.465844005346298, 0.620640993118286],\n [0.49992299079895, 0.351523995399475],\n [0.288718998432159, 0.819945991039276],\n [0.335278987884521, 0.852819979190826],\n [0.440512001514435, 0.902418971061707],\n [0.128294005990028, 0.791940987110138],\n [0.408771991729736, 0.373893976211548],\n [0.455606997013092, 0.451801002025604],\n [0.499877005815506, 0.908990025520325],\n [0.375436991453171, 0.924192011356354],\n [0.11421000212431, 0.615022003650665],\n [0.448662012815475, 0.695277988910675],\n [0.4480200111866, 0.704632043838501],\n [0.447111994028091, 0.715808033943176],\n [0.444831997156143, 0.730794012546539],\n [0.430011987686157, 0.766808986663818],\n [0.406787008047104, 0.685672998428345],\n [0.400738000869751, 0.681069016456604],\n [0.392399996519089, 0.677703022956848],\n [0.367855995893478, 0.663918972015381],\n [0.247923001646996, 0.601333022117615],\n [0.452769994735718, 0.420849978923798],\n [0.43639200925827, 0.359887003898621],\n [0.416164010763168, 0.368713974952698],\n [0.413385987281799, 0.692366003990173],\n [0.228018000721931, 0.683571994304657],\n [0.468268007040024, 0.352671027183533],\n [0.411361992359161, 0.804327011108398],\n [0.499989002943039, 0.469825029373169],\n [0.479153990745544, 0.442654013633728],\n [0.499974012374878, 0.439637005329132],\n [0.432112008333206, 0.493588984012604],\n [0.499886006116867, 0.866917014122009],\n [0.49991300702095, 0.821729004383087],\n [0.456548988819122, 0.819200992584229],\n [0.344549000263214, 0.745438992977142],\n [0.37890899181366, 0.574010014533997],\n [0.374292999505997, 0.780184984207153],\n [0.319687992334366, 0.570737957954407],\n [0.357154995203018, 0.604269981384277],\n [0.295284003019333, 0.621580958366394],\n [0.447750002145767, 0.862477004528046],\n [0.410986006259918, 0.508723020553589],\n [0.31395098567009, 0.775308012962341],\n [0.354128003120422, 0.812552988529205],\n [0.324548006057739, 0.703992962837219],\n [0.189096003770828, 0.646299958229065],\n [0.279776990413666, 0.71465802192688],\n [0.1338230073452, 0.682700991630554],\n [0.336768001317978, 0.644733011722565],\n [0.429883986711502, 0.466521978378296],\n [0.455527991056442, 0.548622965812683],\n [0.437114000320435, 0.558896005153656],\n [0.467287987470627, 0.529924988746643],\n [0.414712011814117, 0.335219979286194],\n [0.37704598903656, 0.322777986526489],\n [0.344107985496521, 0.320150971412659],\n [0.312875986099243, 0.32233202457428],\n [0.283526003360748, 0.333190023899078],\n [0.241245999932289, 0.382785975933075],\n [0.102986000478268, 0.468762993812561],\n [0.267612010240555, 0.424560010433197],\n [0.297879010438919, 0.433175981044769],\n [0.333433985710144, 0.433878004550934],\n [0.366427004337311, 0.426115989685059],\n [0.396012008190155, 0.416696012020111],\n [0.420121014118195, 0.41022801399231],\n [0.007561000064015, 0.480777025222778],\n [0.432949006557465, 0.569517970085144],\n [0.458638995885849, 0.479089021682739],\n [0.473466008901596, 0.545744001865387],\n [0.476087987422943, 0.563830018043518],\n [0.468472003936768, 0.555056989192963],\n [0.433990985155106, 0.582361996173859],\n [0.483518004417419, 0.562983989715576],\n [0.482482999563217, 0.57784903049469],\n [0.42645001411438, 0.389798998832703],\n [0.438998997211456, 0.39649498462677],\n [0.450067013502121, 0.400434017181396],\n [0.289712011814117, 0.368252992630005],\n [0.276670008897781, 0.363372981548309],\n [0.517862021923065, 0.471948027610779],\n [0.710287988185883, 0.380764007568359],\n [0.526226997375488, 0.573909997940063],\n [0.895093023777008, 0.254140973091125],\n [0.634069979190826, 0.409575998783112],\n [0.661242008209229, 0.41302502155304],\n [0.688880026340485, 0.409460008144379],\n [0.725341975688934, 0.389131009578705],\n [0.606630027294159, 0.40370500087738],\n [0.654766023159027, 0.344011008739471],\n [0.629905998706818, 0.346076011657715],\n [0.680678009986877, 0.347265005111694],\n [0.702096998691559, 0.353591024875641],\n [0.75221198797226, 0.410804986953735],\n [0.602918028831482, 0.842862963676453],\n [0.719901978969574, 0.375599980354309],\n [0.893692970275879, 0.399959981441498],\n [0.790081977844238, 0.391354024410248],\n [0.643998026847839, 0.534487962722778],\n [0.528249025344849, 0.65040397644043],\n [0.525849997997284, 0.680191040039062],\n [0.560214996337891, 0.657229006290436],\n [0.585384011268616, 0.66654098033905],\n [0.549625992774963, 0.680860996246338],\n [0.57122802734375, 0.682691991329193],\n [0.624852001667023, 0.72809898853302],\n [0.513050019741058, 0.547281980514526],\n [0.51509702205658, 0.527251958847046],\n [0.742246985435486, 0.314507007598877],\n [0.598631024360657, 0.454979002475739],\n [0.570338010787964, 0.548575043678284],\n [0.578631997108459, 0.533622980117798],\n [0.723087012767792, 0.532054007053375],\n [0.516445994377136, 0.499638974666595],\n [0.662801027297974, 0.282917976379395],\n [0.70362401008606, 0.293271005153656],\n [0.830704987049103, 0.193813979625702],\n [0.552385985851288, 0.302568018436432],\n [0.607609987258911, 0.353887975215912],\n [0.645429015159607, 0.696707010269165],\n [0.932694971561432, 0.730105042457581],\n [0.557260990142822, 0.572826027870178],\n [0.542901992797852, 0.584792017936707],\n [0.6180260181427, 0.694710969924927],\n [0.607590973377228, 0.694203019142151],\n [0.722943007946014, 0.271963000297546],\n [0.577413976192474, 0.563166975975037],\n [0.614082992076874, 0.281386971473694],\n [0.616907000541687, 0.255886018276215],\n [0.668509006500244, 0.119913995265961],\n [0.770092010498047, 0.232020974159241],\n [0.635536015033722, 0.189248979091644],\n [0.77039098739624, 0.299556016921997],\n [0.826722025871277, 0.278755009174347],\n [0.527121007442474, 0.666198015213013],\n [0.553171992301941, 0.668527007102966],\n [0.577238023281097, 0.673889994621277],\n [0.554691970348358, 0.580065965652466],\n [0.611896991729736, 0.693961024284363],\n [0.59696102142334, 0.706539988517761],\n [0.596370995044708, 0.693953037261963],\n [0.539958000183105, 0.557139039039612],\n [0.568841993808746, 0.692366003990173],\n [0.547818005084991, 0.692366003990173],\n [0.52461302280426, 0.692366003990173],\n [0.534089982509613, 0.779141008853912],\n [0.527670979499817, 0.736225962638855],\n [0.526912987232208, 0.717857003211975],\n [0.526877999305725, 0.704625964164734],\n [0.526966989040375, 0.695277988910675],\n [0.572058022022247, 0.695277988910675],\n [0.573521018028259, 0.703539967536926],\n [0.57683801651001, 0.711845993995667],\n [0.581691026687622, 0.720062971115112],\n [0.609944999217987, 0.639909982681274],\n [0.986046016216278, 0.560034036636353],\n [0.5867999792099, 0.69539999961853],\n [0.590372025966644, 0.701822996139526],\n [0.531915009021759, 0.601536989212036],\n [0.577268004417419, 0.585934996604919],\n [0.536915004253387, 0.593786001205444],\n [0.627542972564697, 0.473352015018463],\n [0.665585994720459, 0.495950996875763],\n [0.588353991508484, 0.546862006187439],\n [0.757824003696442, 0.14767599105835],\n [0.709249973297119, 0.201507985591888],\n [0.672684013843536, 0.256581008434296],\n [0.600408971309662, 0.74900496006012],\n [0.55826598405838, 0.261672019958496],\n [0.570303976535797, 0.187870979309082],\n [0.588165998458862, 0.109044015407562],\n [0.711045026779175, 0.398952007293701],\n [0.781069993972778, 0.435405015945435],\n [0.587247014045715, 0.398931980133057],\n [0.742869973182678, 0.355445981025696],\n [0.572156012058258, 0.437651991844177],\n [0.55186802148819, 0.536570012569427],\n [0.821442008018494, 0.457556009292603],\n [0.752701997756958, 0.457181990146637],\n [0.71375697851181, 0.467626988887787],\n [0.66711300611496, 0.460672974586487],\n [0.631101012229919, 0.447153985500336],\n [0.6008620262146, 0.432473003864288],\n [0.523481011390686, 0.405627012252808],\n [0.810747981071472, 0.523926019668579],\n [0.771045982837677, 0.348959028720856],\n [0.509127020835876, 0.562718033790588],\n [0.595292985439301, 0.485023975372314],\n [0.980530977249146, 0.401564002037048],\n [0.573499977588654, 0.420000016689301],\n [0.602994978427887, 0.548687994480133],\n [0.733529984951019, 0.376977026462555],\n [0.560611009597778, 0.519016981124878],\n [0.967685997486115, 0.644356966018677],\n [0.580985009670258, 0.387160003185272],\n [0.537728011608124, 0.505385041236877],\n [0.760966002941132, 0.779752969741821],\n [0.801778972148895, 0.831938028335571],\n [0.892440974712372, 0.54076099395752],\n [0.816350996494293, 0.740260004997253],\n [0.865594983100891, 0.333687007427216],\n [0.614073991775513, 0.883246004581451],\n [0.508952975273132, 0.579437971115112],\n [0.617941975593567, 0.508316040039062],\n [0.825608015060425, 0.397674977779388],\n [0.681214988231659, 0.39623498916626],\n [0.656635999679565, 0.400596976280212],\n [0.603900015354156, 0.710216999053955],\n [0.81208598613739, 0.588539004325867],\n [0.56801301240921, 0.944564998149872],\n [0.681007981300354, 0.898285031318665],\n [0.733752012252808, 0.869701027870178],\n [0.633830010890961, 0.398822009563446],\n [0.606792986392975, 0.39553701877594],\n [0.589659988880157, 0.391062021255493],\n [0.805015981197357, 0.342108011245728],\n [0.611334979534149, 0.362284004688263],\n [0.634037971496582, 0.355970978736877],\n [0.656635999679565, 0.355356991291046],\n [0.681214988231659, 0.35834002494812],\n [0.698584973812103, 0.363156020641327],\n [0.941866993904114, 0.319076001644135],\n [0.698584973812103, 0.387449026107788],\n [0.584177017211914, 0.624107003211975],\n [0.554318010807037, 0.566076993942261],\n [0.534153997898102, 0.62064003944397],\n [0.711217999458313, 0.819975018501282],\n [0.664629995822906, 0.852871000766754],\n [0.559099972248077, 0.902631998062134],\n [0.871706008911133, 0.791940987110138],\n [0.591234028339386, 0.373893976211548],\n [0.544341027736664, 0.451583981513977],\n [0.624562978744507, 0.924192011356354],\n [0.88577002286911, 0.615028977394104],\n [0.551338016986847, 0.695277988910675],\n [0.551980018615723, 0.704632043838501],\n [0.552887976169586, 0.715808033943176],\n [0.555167973041534, 0.730794012546539],\n [0.569944024085999, 0.767035007476807],\n [0.593203008174896, 0.685675978660583],\n [0.599261999130249, 0.681069016456604],\n [0.607599973678589, 0.677703022956848],\n [0.631937980651855, 0.663500010967255],\n [0.752032995223999, 0.601315021514893],\n [0.547226011753082, 0.420395016670227],\n [0.563543975353241, 0.359827995300293],\n [0.583841025829315, 0.368713974952698],\n [0.586614012718201, 0.692366003990173],\n [0.771915018558502, 0.683578014373779],\n [0.531597018241882, 0.352482974529266],\n [0.588370978832245, 0.804440975189209],\n [0.52079701423645, 0.442565023899078],\n [0.567984998226166, 0.493479013442993],\n [0.543282985687256, 0.819254994392395],\n [0.655317008495331, 0.745514988899231],\n [0.621008992195129, 0.574018001556396],\n [0.625559985637665, 0.78031200170517],\n [0.680198013782501, 0.570719003677368],\n [0.64276397228241, 0.604337990283966],\n [0.704662978649139, 0.621529996395111],\n [0.552012026309967, 0.862591981887817],\n [0.589071989059448, 0.508637011051178],\n [0.685944974422455, 0.775357007980347],\n [0.645735025405884, 0.812640011310577],\n [0.675342977046967, 0.703978002071381],\n [0.810858011245728, 0.646304965019226],\n [0.72012197971344, 0.714666962623596],\n [0.866151988506317, 0.682704985141754],\n [0.663187026977539, 0.644596993923187],\n [0.570082008838654, 0.466325998306274],\n [0.544561982154846, 0.548375964164734],\n [0.562758982181549, 0.558784961700439],\n [0.531987011432648, 0.530140042304993],\n [0.585271000862122, 0.335177004337311],\n [0.622952997684479, 0.32277899980545],\n [0.655896008014679, 0.320163011550903],\n [0.687132000923157, 0.322345972061157],\n [0.716481983661652, 0.333200991153717],\n [0.758756995201111, 0.382786989212036],\n [0.897013008594513, 0.468769013881683],\n [0.732392013072968, 0.424547016620636],\n [0.70211398601532, 0.433162987232208],\n [0.66652500629425, 0.433866024017334],\n [0.633504986763, 0.426087975502014],\n [0.603875994682312, 0.416586995124817],\n [0.579657971858978, 0.409945011138916],\n [0.992439985275269, 0.480777025222778],\n [0.567192018032074, 0.569419980049133],\n [0.54136598110199, 0.478899002075195],\n [0.526564002037048, 0.546118021011353],\n [0.523913025856018, 0.563830018043518],\n [0.531529009342194, 0.555056989192963],\n [0.566035985946655, 0.582329034805298],\n [0.51631098985672, 0.563053965568542],\n [0.5174720287323, 0.577877044677734],\n [0.573594987392426, 0.389806985855103],\n [0.560697972774506, 0.395331978797913],\n [0.549755990505219, 0.399751007556915],\n [0.710287988185883, 0.368252992630005],\n [0.723330020904541, 0.363372981548309],\n];\n\nexport const TRI468 = [\n 127, 34, 139, 11, 0, 37, 232, 231, 120, 72, 37, 39, 128, 121, 47, 232, 121, 128, 104, 69, 67, 175, 171, 148, 157, 154, 155, 118, 50, 101, 73, 39, 40, 9,\n 151, 108, 48, 115, 131, 194, 204, 211, 74, 40, 185, 80, 42, 183, 40, 92, 186, 230, 229, 118, 202, 212, 214, 83, 18, 17, 76, 61, 146, 160, 29, 30, 56,\n 157, 173, 106, 204, 194, 135, 214, 192, 203, 165, 98, 21, 71, 68, 51, 45, 4, 144, 24, 23, 77, 146, 91, 205, 50, 187, 201, 200, 18, 91, 106, 182, 90, 91,\n 181, 85, 84, 17, 206, 203, 36, 148, 171, 140, 92, 40, 39, 193, 189, 244, 159, 158, 28, 247, 246, 161, 236, 3, 196, 54, 68, 104, 193, 168, 8, 117,\n 228, 31, 189, 193, 55, 98, 97, 99, 126, 47, 100, 166, 79, 218, 155, 154, 26, 209, 49, 131, 135, 136, 150, 47, 126, 217, 223, 52, 53, 45, 51, 134, 211,\n 170, 140, 67, 69, 108, 43, 106, 91, 230, 119, 120, 226, 130, 247, 63, 53, 52, 238, 20, 242, 46, 70, 156, 78, 62, 96, 46, 53, 63, 143, 34, 227, 173,\n 155, 133, 123, 117, 111, 44, 125, 19, 236, 134, 51, 216, 206, 205, 154, 153, 22, 39, 37, 167, 200, 201, 208, 36, 142, 100, 57, 212, 202, 20, 60, 99, 28,\n 158, 157, 35, 226, 113, 160, 159, 27, 204, 202, 210, 113, 225, 46, 43, 202, 204, 62, 76, 77, 137, 123, 116, 41, 38, 72, 203, 129, 142, 64, 98, 240, 49,\n 102, 64, 41, 73, 74, 212, 216, 207, 42, 74, 184, 169, 170, 211, 170, 149, 176, 105, 66, 69, 122, 6, 168, 123, 147, 187, 96, 77, 90, 65, 55, 107, 89,\n 90, 180, 101, 100, 120, 63, 105, 104, 93, 137, 227, 15, 86, 85, 129, 102, 49, 14, 87, 86, 55, 8, 9, 100, 47, 121, 145, 23, 22, 88, 89, 179, 6, 122,\n 196, 88, 95, 96, 138, 172, 136, 215, 58, 172, 115, 48, 219, 42, 80, 81, 195, 3, 51, 43, 146, 61, 171, 175, 199, 81, 82, 38, 53, 46, 225, 144, 163, 110,\n 246, 33, 7, 52, 65, 66, 229, 228, 117, 34, 127, 234, 107, 108, 69, 109, 108, 151, 48, 64, 235, 62, 78, 191, 129, 209, 126, 111, 35, 143, 163, 161, 246,\n 117, 123, 50, 222, 65, 52, 19, 125, 141, 221, 55, 65, 3, 195, 197, 25, 7, 33, 220, 237, 44, 70, 71, 139, 122, 193, 245, 247, 130, 33, 71, 21, 162,\n 153, 158, 159, 170, 169, 150, 188, 174, 196, 216, 186, 92, 144, 160, 161, 2, 97, 167, 141, 125, 241, 164, 167, 37, 72, 38, 12, 145, 159, 160, 38, 82, 13,\n 63, 68, 71, 226, 35, 111, 158, 153, 154, 101, 50, 205, 206, 92, 165, 209, 198, 217, 165, 167, 97, 220, 115, 218, 133, 112, 243, 239, 238, 241, 214,\n 135, 169, 190, 173, 133, 171, 208, 32, 125, 44, 237, 86, 87, 178, 85, 86, 179, 84, 85, 180, 83, 84, 181, 201, 83, 182, 137, 93, 132, 76, 62, 183, 61,\n 76, 184, 57, 61, 185, 212, 57, 186, 214, 207, 187, 34, 143, 156, 79, 239, 237, 123, 137, 177, 44, 1, 4, 201, 194, 32, 64, 102, 129, 213, 215, 138, 59,\n 166, 219, 242, 99, 97, 2, 94, 141, 75, 59, 235, 24, 110, 228, 25, 130, 226, 23, 24, 229, 22, 23, 230, 26, 22, 231, 112, 26, 232, 189, 190, 243, 221, 56,\n 190, 28, 56, 221, 27, 28, 222, 29, 27, 223, 30, 29, 224, 247, 30, 225, 238, 79, 20, 166, 59, 75, 60, 75, 240, 147, 177, 215, 20, 79, 166, 187, 147, 213,\n 112, 233, 244, 233, 128, 245, 128, 114, 188, 114, 217, 174, 131, 115, 220, 217, 198, 236, 198, 131, 134, 177, 132, 58, 143, 35, 124, 110, 163, 7, 228,\n 110, 25, 356, 389, 368, 11, 302, 267, 452, 350, 349, 302, 303, 269, 357, 343, 277, 452, 453, 357, 333, 332, 297, 175, 152, 377, 384, 398, 382, 347,\n 348, 330, 303, 304, 270, 9, 336, 337, 278, 279, 360, 418, 262, 431, 304, 408, 409, 310, 415, 407, 270, 409, 410, 450, 348, 347, 422, 430, 434, 313,\n 314, 17, 306, 307, 375, 387, 388, 260, 286, 414, 398, 335, 406, 418, 364, 367, 416, 423, 358, 327, 251, 284, 298, 281, 5, 4, 373, 374, 253, 307, 320,\n 321, 425, 427, 411, 421, 313, 18, 321, 405, 406, 320, 404, 405, 315, 16, 17, 426, 425, 266, 377, 400, 369, 322, 391, 269, 417, 465, 464, 386, 257, 258,\n 466, 260, 388, 456, 399, 419, 284, 332, 333, 417, 285, 8, 346, 340, 261, 413, 441, 285, 327, 460, 328, 355, 371, 329, 392, 439, 438, 382, 341, 256,\n 429, 420, 360, 364, 394, 379, 277, 343, 437, 443, 444, 283, 275, 440, 363, 431, 262, 369, 297, 338, 337, 273, 375, 321, 450, 451, 349, 446, 342, 467,\n 293, 334, 282, 458, 461, 462, 276, 353, 383, 308, 324, 325, 276, 300, 293, 372, 345, 447, 382, 398, 362, 352, 345, 340, 274, 1, 19, 456, 248, 281, 436,\n 427, 425, 381, 256, 252, 269, 391, 393, 200, 199, 428, 266, 330, 329, 287, 273, 422, 250, 462, 328, 258, 286, 384, 265, 353, 342, 387, 259, 257, 424,\n 431, 430, 342, 353, 276, 273, 335, 424, 292, 325, 307, 366, 447, 345, 271, 303, 302, 423, 266, 371, 294, 455, 460, 279, 278, 294, 271, 272, 304, 432,\n 434, 427, 272, 407, 408, 394, 430, 431, 395, 369, 400, 334, 333, 299, 351, 417, 168, 352, 280, 411, 325, 319, 320, 295, 296, 336, 319, 403, 404, 330,\n 348, 349, 293, 298, 333, 323, 454, 447, 15, 16, 315, 358, 429, 279, 14, 15, 316, 285, 336, 9, 329, 349, 350, 374, 380, 252, 318, 402, 403, 6, 197, 419,\n 318, 319, 325, 367, 364, 365, 435, 367, 397, 344, 438, 439, 272, 271, 311, 195, 5, 281, 273, 287, 291, 396, 428, 199, 311, 271, 268, 283, 444, 445,\n 373, 254, 339, 263, 466, 249, 282, 334, 296, 449, 347, 346, 264, 447, 454, 336, 296, 299, 338, 10, 151, 278, 439, 455, 292, 407, 415, 358, 371, 355,\n 340, 345, 372, 390, 249, 466, 346, 347, 280, 442, 443, 282, 19, 94, 370, 441, 442, 295, 248, 419, 197, 263, 255, 359, 440, 275, 274, 300, 383, 368,\n 351, 412, 465, 263, 467, 466, 301, 368, 389, 380, 374, 386, 395, 378, 379, 412, 351, 419, 436, 426, 322, 373, 390, 388, 2, 164, 393, 370, 462, 461,\n 164, 0, 267, 302, 11, 12, 374, 373, 387, 268, 12, 13, 293, 300, 301, 446, 261, 340, 385, 384, 381, 330, 266, 425, 426, 423, 391, 429, 355, 437, 391,\n 327, 326, 440, 457, 438, 341, 382, 362, 459, 457, 461, 434, 430, 394, 414, 463, 362, 396, 369, 262, 354, 461, 457, 316, 403, 402, 315, 404, 403, 314,\n 405, 404, 313, 406, 405, 421, 418, 406, 366, 401, 361, 306, 408, 407, 291, 409, 408, 287, 410, 409, 432, 436, 410, 434, 416, 411, 264, 368, 383, 309,\n 438, 457, 352, 376, 401, 274, 275, 4, 421, 428, 262, 294, 327, 358, 433, 416, 367, 289, 455, 439, 462, 370, 326, 2, 326, 370, 305, 460, 455, 254,\n 449, 448, 255, 261, 446, 253, 450, 449, 252, 451, 450, 256, 452, 451, 341, 453, 452, 413, 464, 463, 441, 413, 414, 258, 442, 441, 257, 443, 442, 259,\n 444, 443, 260, 445, 444, 467, 342, 445, 459, 458, 250, 289, 392, 290, 290, 328, 460, 376, 433, 435, 250, 290, 392, 411, 416, 433, 341, 463, 464, 453,\n 464, 465, 357, 465, 412, 343, 412, 399, 360, 363, 440, 437, 399, 456, 420, 456, 363, 401, 435, 288, 372, 383, 353, 339, 255, 249, 448, 261, 255, 133,\n 243, 190, 133, 155, 112, 33, 246, 247, 33, 130, 25, 398, 384, 286, 362, 398, 414, 362, 463, 341, 263, 359, 467, 263, 249, 255, 466, 467, 260, 75, 60,\n 166, 238, 239, 79, 162, 127, 139, 72, 11, 37, 121, 232, 120, 73, 72, 39, 114, 128, 47, 233, 232, 128, 103, 104, 67, 152, 175, 148, 173, 157, 155,\n 119, 118, 101, 74, 73, 40, 107, 9, 108, 49, 48, 131, 32, 194, 211, 184, 74, 185, 191, 80, 183, 185, 40, 186, 119, 230, 118, 210, 202, 214, 84, 83, 17,\n 77, 76, 146, 161, 160, 30, 190, 56, 173, 182, 106, 194, 138, 135, 192, 129, 203, 98, 54, 21, 68, 5, 51, 4, 145, 144, 23, 90, 77, 91, 207, 205, 187, 83,\n 201, 18, 181, 91, 182, 180, 90, 181, 16, 85, 17, 205, 206, 36, 176, 148, 140, 165, 92, 39, 245, 193, 244, 27, 159, 28, 30, 247, 161, 174, 236, 196,\n 103, 54, 104, 55, 193, 8, 111, 117, 31, 221, 189, 55, 240, 98, 99, 142, 126, 100, 219, 166, 218, 112, 155, 26, 198, 209, 131, 169, 135, 150, 114, 47,\n 217, 224, 223, 53, 220, 45, 134, 32, 211, 140, 109, 67, 108, 146, 43, 91, 231, 230, 120, 113, 226, 247, 105, 63, 52, 241, 238, 242, 124, 46, 156, 95,\n 78, 96, 70, 46, 63, 116, 143, 227, 116, 123, 111, 1, 44, 19, 3, 236, 51, 207, 216, 205, 26, 154, 22, 165, 39, 167, 199, 200, 208, 101, 36, 100, 43,\n 57, 202, 242, 20, 99, 56, 28, 157, 124, 35, 113, 29, 160, 27, 211, 204, 210, 124, 113, 46, 106, 43, 204, 96, 62, 77, 227, 137, 116, 73, 41, 72, 36, 203,\n 142, 235, 64, 240, 48, 49, 64, 42, 41, 74, 214, 212, 207, 183, 42, 184, 210, 169, 211, 140, 170, 176, 104, 105, 69, 193, 122, 168, 50, 123, 187, 89, 96,\n 90, 66, 65, 107, 179, 89, 180, 119, 101, 120, 68, 63, 104, 234, 93, 227, 16, 15, 85, 209, 129, 49, 15, 14, 86, 107, 55, 9, 120, 100, 121, 153, 145, 22,\n 178, 88, 179, 197, 6, 196, 89, 88, 96, 135, 138, 136, 138, 215, 172, 218, 115, 219, 41, 42, 81, 5, 195, 51, 57, 43, 61, 208, 171, 199, 41, 81, 38,\n 224, 53, 225, 24, 144, 110, 105, 52, 66, 118, 229, 117, 227, 34, 234, 66, 107, 69, 10, 109, 151, 219, 48, 235, 183, 62, 191, 142, 129, 126, 116, 111,\n 143, 7, 163, 246, 118, 117, 50, 223, 222, 52, 94, 19, 141, 222, 221, 65, 196, 3, 197, 45, 220, 44, 156, 70, 139, 188, 122, 245, 139, 71, 162, 145,\n 153, 159, 149, 170, 150, 122, 188, 196, 206, 216, 92, 163, 144, 161, 164, 2, 167, 242, 141, 241, 0, 164, 37, 11, 72, 12, 144, 145, 160, 12, 38, 13, 70,\n 63, 71, 31, 226, 111, 157, 158, 154, 36, 101, 205, 203, 206, 165, 126, 209, 217, 98, 165, 97, 237, 220, 218, 237, 239, 241, 210, 214, 169, 140, 171, 32,\n 241, 125, 237, 179, 86, 178, 180, 85, 179, 181, 84, 180, 182, 83, 181, 194, 201, 182, 177, 137, 132, 184, 76, 183, 185, 61, 184, 186, 57, 185, 216, 212,\n 186, 192, 214, 187, 139, 34, 156, 218, 79, 237, 147, 123, 177, 45, 44, 4, 208, 201, 32, 98, 64, 129, 192, 213, 138, 235, 59, 219, 141, 242, 97, 97, 2,\n 141, 240, 75, 235, 229, 24, 228, 31, 25, 226, 230, 23, 229, 231, 22, 230, 232, 26, 231, 233, 112, 232, 244, 189, 243, 189, 221, 190, 222, 28, 221,\n 223, 27, 222, 224, 29, 223, 225, 30, 224, 113, 247, 225, 99, 60, 240, 213, 147, 215, 60, 20, 166, 192, 187, 213, 243, 112, 244, 244, 233, 245, 245,\n 128, 188, 188, 114, 174, 134, 131, 220, 174, 217, 236, 236, 198, 134, 215, 177, 58, 156, 143, 124, 25, 110, 7, 31, 228, 25, 264, 356, 368, 0, 11, 267,\n 451, 452, 349, 267, 302, 269, 350, 357, 277, 350, 452, 357, 299, 333, 297, 396, 175, 377, 381, 384, 382, 280, 347, 330, 269, 303, 270, 151, 9, 337,\n 344, 278, 360, 424, 418, 431, 270, 304, 409, 272, 310, 407, 322, 270, 410, 449, 450, 347, 432, 422, 434, 18, 313, 17, 291, 306, 375, 259, 387, 260,\n 424, 335, 418, 434, 364, 416, 391, 423, 327, 301, 251, 298, 275, 281, 4, 254, 373, 253, 375, 307, 321, 280, 425, 411, 200, 421, 18, 335, 321, 406,\n 321, 320, 405, 314, 315, 17, 423, 426, 266, 396, 377, 369, 270, 322, 269, 413, 417, 464, 385, 386, 258, 248, 456, 419, 298, 284, 333, 168, 417, 8,\n 448, 346, 261, 417, 413, 285, 326, 327, 328, 277, 355, 329, 309, 392, 438, 381, 382, 256, 279, 429, 360, 365, 364, 379, 355, 277, 437, 282, 443, 283,\n 281, 275, 363, 395, 431, 369, 299, 297, 337, 335, 273, 321, 348, 450, 349, 359, 446, 467, 283, 293, 282, 250, 458, 462, 300, 276, 383, 292, 308, 325,\n 283, 276, 293, 264, 372, 447, 346, 352, 340, 354, 274, 19, 363, 456, 281, 426, 436, 425, 380, 381, 252, 267, 269, 393, 421, 200, 428, 371, 266, 329,\n 432, 287, 422, 290, 250, 328, 385, 258, 384, 446, 265, 342, 386, 387, 257, 422, 424, 430, 445, 342, 276, 422, 273, 424, 306, 292, 307, 352, 366, 345,\n 268, 271, 302, 358, 423, 371, 327, 294, 460, 331, 279, 294, 303, 271, 304, 436, 432, 427, 304, 272, 408, 395, 394, 431, 378, 395, 400, 296, 334, 299,\n 6, 351, 168, 376, 352, 411, 307, 325, 320, 285, 295, 336, 320, 319, 404, 329, 330, 349, 334, 293, 333, 366, 323, 447, 316, 15, 315, 331, 358, 279,\n 317, 14, 316, 8, 285, 9, 277, 329, 350, 253, 374, 252, 319, 318, 403, 351, 6, 419, 324, 318, 325, 397, 367, 365, 288, 435, 397, 278, 344, 439, 310,\n 272, 311, 248, 195, 281, 375, 273, 291, 175, 396, 199, 312, 311, 268, 276, 283, 445, 390, 373, 339, 295, 282, 296, 448, 449, 346, 356, 264, 454, 337,\n 336, 299, 337, 338, 151, 294, 278, 455, 308, 292, 415, 429, 358, 355, 265, 340, 372, 388, 390, 466, 352, 346, 280, 295, 442, 282, 354, 19, 370, 285,\n 441, 295, 195, 248, 197, 457, 440, 274, 301, 300, 368, 417, 351, 465, 251, 301, 389, 385, 380, 386, 394, 395, 379, 399, 412, 419, 410, 436, 322, 387,\n 373, 388, 326, 2, 393, 354, 370, 461, 393, 164, 267, 268, 302, 12, 386, 374, 387, 312, 268, 13, 298, 293, 301, 265, 446, 340, 380, 385, 381, 280, 330,\n 425, 322, 426, 391, 420, 429, 437, 393, 391, 326, 344, 440, 438, 458, 459, 461, 364, 434, 394, 428, 396, 262, 274, 354, 457, 317, 316, 402, 316, 315,\n 403, 315, 314, 404, 314, 313, 405, 313, 421, 406, 323, 366, 361, 292, 306, 407, 306, 291, 408, 291, 287, 409, 287, 432, 410, 427, 434, 411, 372, 264,\n 383, 459, 309, 457, 366, 352, 401, 1, 274, 4, 418, 421, 262, 331, 294, 358, 435, 433, 367, 392, 289, 439, 328, 462, 326, 94, 2, 370, 289, 305, 455, 339,\n 254, 448, 359, 255, 446, 254, 253, 449, 253, 252, 450, 252, 256, 451, 256, 341, 452, 414, 413, 463, 286, 441, 414, 286, 258, 441, 258, 257, 442, 257,\n 259, 443, 259, 260, 444, 260, 467, 445, 309, 459, 250, 305, 289, 290, 305, 290, 460, 401, 376, 435, 309, 250, 392, 376, 411, 433, 453, 341, 464, 357,\n 453, 465, 343, 357, 412, 437, 343, 399, 344, 360, 440, 420, 437, 456, 360, 420, 363, 361, 401, 288, 265, 372, 353, 390, 339, 249, 339, 448, 255];\n\nexport const TRI68 = [0, 1, 36, 0, 36, 17, 1, 2, 41, 1, 41, 36, 2, 3, 31, 2, 31, 41, 3, 4, 48, 3, 48, 31, 4, 5, 48, 5, 6, 48, 6, 7, 59, 6, 59, 48, 7, 8, 58, 7, 58, 59,\n 8, 9, 56, 8, 56, 57, 8, 57, 58, 9, 10, 55, 9, 55, 56, 10, 11, 54, 10, 54, 55, 11, 12, 54, 12, 13, 54, 13, 14, 35, 13, 35, 54, 14, 15, 46, 14, 46, 35, 15, 16,\n 45, 15, 45, 46, 16, 26, 45, 17, 36, 18, 18, 37, 19, 18, 36, 37, 19, 38, 20, 19, 37, 38, 20, 39, 21, 20, 38, 39, 21, 39, 27, 22, 42, 23, 22, 27, 42, 23, 43, 24,\n 23, 42, 43, 24, 44, 25, 24, 43, 44, 25, 45, 26, 25, 44, 45, 27, 39, 28, 27, 28, 42, 28, 39, 29, 28, 29, 42, 29, 31, 30, 29, 30, 35, 29, 40, 31, 29, 35, 47, 29,\n 39, 40, 29, 47, 42, 30, 31, 32, 30, 32, 33, 30, 33, 34, 30, 34, 35, 31, 50, 32, 31, 40, 41, 31, 48, 49, 31, 49, 50, 32, 51, 33, 32, 50, 51, 33, 51, 34, 34, 52,\n 35, 34, 51, 52, 35, 46, 47, 35, 52, 53, 35, 53, 54, 36, 41, 37, 37, 40, 38, 37, 41, 40, 38, 40, 39, 42, 47, 43, 43, 47, 44, 44, 46, 45, 44, 47, 46, 48, 60, 49,\n 48, 59, 60, 49, 61, 50, 49, 60, 61, 50, 62, 51, 50, 61, 62, 51, 62, 52, 52, 63, 53, 52, 62, 63, 53, 64, 54, 53, 63, 64, 54, 64, 55, 55, 65, 56, 55, 64, 65, 56,\n 66, 57, 56, 65, 66, 57, 66, 58, 58, 67, 59, 58, 66, 67, 59, 67, 60, 60, 67, 61, 61, 66, 62, 61, 67, 66, 62, 66, 63, 63, 65, 64, 63, 66, 65, 21, 27, 22];\n\nexport const TRI33 = [\n /* eyes */ 0, 8, 7, 7, 8, 1, 2, 10, 9, 9, 10, 3,\n /* brows */ 17, 0, 18, 18, 0, 7, 18, 7, 19, 19, 7, 1, 19, 1, 11, 19, 11, 20, 21, 3, 22, 21, 9, 3, 20, 9, 21, 20, 2, 9, 20, 11, 2,\n /* 4head */ 23, 17, 18, 25, 21, 22, 24, 19, 20, 24, 18, 19, 24, 20, 21, 24, 23, 18, 24, 21, 25,\n /* nose */ 11, 12, 4, 11, 4, 13, 1, 12, 11, 11, 13, 2, 12, 14, 4, 4, 14, 13,\n /* up-lip */ 14, 5, 15, 14, 15, 6, 12, 5, 14, 14, 6, 13,\n /* cheeks */ 8, 12, 1, 2, 13, 10, 8, 26, 12, 10, 13, 27, 26, 5, 12, 13, 6, 27, 0, 26, 8, 10, 27, 3,\n /* chin */ 5, 32, 16, 16, 32, 6, 5, 30, 32, 6, 32, 31,\n /* cont */ 26, 30, 5, 27, 6, 31, 0, 28, 26, 3, 27, 29, 17, 28, 0, 3, 29, 22, 23, 28, 17, 22, 29, 25, 28, 30, 26, 27, 31, 29,\n];\n\nexport const TRI7 = [0, 4, 1, 2, 4, 3, 4, 5, 6];\n\nexport const VTX68 = [\n /* cont */ 127, 234, 132, 58, 172, 150, 149, 148, 152, 377, 378, 379, 397, 288, 361, 454, 356,\n /* brows */ 70, 63, 105, 66, 107, 336, 296, 334, 293, 300,\n /* nose */ 168, 6, 195, 4, 98, 97, 2, 326, 327,\n /* eyes */ 33, 160, 158, 133, 153, 144, 362, 385, 387, 263, 373, 380,\n /* lip */ 57, 40, 37, 0, 267, 270, 287, 321, 314, 17, 84, 91,\n /* mouth */ 78, 81, 13, 311, 308, 402, 14, 178,\n];\n\nexport const VTX33 = [33, 133, 362, 263, 1, 62, 308, 159, 145, 386, 374, 6, 102, 331, 2, 13, 14, 70, 105, 107, 336, 334, 300, 54, 10, 284, 50, 280, 234, 454, 58, 288, 152];\n\nexport const VTX7 = [33, 133, 362, 263, 1, 78, 308];\n\nexport const UV68 = VTX68.map((x) => UV468[x]);\n\nexport const UV33 = VTX33.map((x) => UV468[x]);\n\nexport const UV7 = VTX7.map((x) => UV468[x]);\n", "/* eslint-disable class-methods-use-this */\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as bounding from './box';\nimport * as util from './util';\nimport * as coords from './coords';\n\nconst leftOutline = coords.MESH_ANNOTATIONS['leftEyeLower0'];\nconst rightOutline = coords.MESH_ANNOTATIONS['rightEyeLower0'];\n\nconst eyeLandmarks = {\n leftBounds: [leftOutline[0], leftOutline[leftOutline.length - 1]],\n rightBounds: [rightOutline[0], rightOutline[rightOutline.length - 1]],\n};\n\nconst meshLandmarks = {\n count: 468,\n mouth: 13,\n symmetryLine: [13, coords.MESH_ANNOTATIONS['midwayBetweenEyes'][0]],\n};\n\nconst blazeFaceLandmarks = {\n leftEye: 0,\n rightEye: 1,\n nose: 2,\n mouth: 3,\n leftEar: 4,\n rightEar: 5,\n symmetryLine: [3, 2],\n};\n\nconst irisLandmarks = {\n upperCenter: 3,\n lowerCenter: 4,\n index: 71,\n numCoordinates: 76,\n};\n\n// Replace the raw coordinates returned by facemesh with refined iris model coordinates\n// Update the z coordinate to be an average of the original and the new.\nfunction replaceRawCoordinates(rawCoords, newCoords, prefix, keys) {\n for (let i = 0; i < coords.MESH_TO_IRIS_INDICES_MAP.length; i++) {\n const { key, indices } = coords.MESH_TO_IRIS_INDICES_MAP[i];\n const originalIndices = coords.MESH_ANNOTATIONS[`${prefix}${key}`];\n if (!keys || keys.includes(key)) {\n for (let j = 0; j < indices.length; j++) {\n const index = indices[j];\n rawCoords[originalIndices[j]] = [\n newCoords[index][0], newCoords[index][1],\n (newCoords[index][2] + rawCoords[originalIndices[j]][2]) / 2,\n ];\n }\n }\n }\n}\n// The Pipeline coordinates between the bounding box and skeleton models.\nexport class Pipeline {\n storedBoxes: any;\n boundingBoxDetector: any;\n meshDetector: any;\n irisModel: any;\n boxSize: number;\n meshSize: number;\n irisSize: number;\n irisEnlarge: number;\n skipped: number;\n detectedFaces: number;\n\n constructor(boundingBoxDetector, meshDetector, irisModel) {\n // An array of facial bounding boxes.\n this.storedBoxes = [];\n this.boundingBoxDetector = boundingBoxDetector;\n this.meshDetector = meshDetector;\n this.irisModel = irisModel;\n this.boxSize = boundingBoxDetector?.model?.inputs[0].shape[2] || 0;\n this.meshSize = meshDetector?.inputs[0].shape[2] || boundingBoxDetector?.model?.inputs[0].shape[2];\n this.irisSize = irisModel?.inputs[0].shape[1] || 0;\n this.irisEnlarge = 2.3;\n this.skipped = 0;\n this.detectedFaces = 0;\n }\n\n transformRawCoords(rawCoords, box, angle, rotationMatrix) {\n const boxSize = bounding.getBoxSize({ startPoint: box.startPoint, endPoint: box.endPoint });\n const coordsScaled = rawCoords.map((coord) => ([\n boxSize[0] / this.meshSize * (coord[0] - this.meshSize / 2),\n boxSize[1] / this.meshSize * (coord[1] - this.meshSize / 2),\n coord[2],\n ]));\n const coordsRotationMatrix = (angle !== 0) ? util.buildRotationMatrix(angle, [0, 0]) : util.IDENTITY_MATRIX;\n const coordsRotated = (angle !== 0) ? coordsScaled.map((coord) => ([...util.rotatePoint(coord, coordsRotationMatrix), coord[2]])) : coordsScaled;\n const inverseRotationMatrix = (angle !== 0) ? util.invertTransformMatrix(rotationMatrix) : util.IDENTITY_MATRIX;\n const boxCenter = [...bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint }), 1];\n return coordsRotated.map((coord) => ([\n coord[0] + util.dot(boxCenter, inverseRotationMatrix[0]),\n coord[1] + util.dot(boxCenter, inverseRotationMatrix[1]),\n coord[2],\n ]));\n }\n\n getLeftToRightEyeDepthDifference(rawCoords) {\n const leftEyeZ = rawCoords[eyeLandmarks.leftBounds[0]][2];\n const rightEyeZ = rawCoords[eyeLandmarks.rightBounds[0]][2];\n return leftEyeZ - rightEyeZ;\n }\n\n // Returns a box describing a cropped region around the eye fit for passing to the iris model.\n getEyeBox(rawCoords, face, eyeInnerCornerIndex, eyeOuterCornerIndex, flip = false) {\n const box = bounding.squarifyBox(bounding.enlargeBox(this.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), this.irisEnlarge));\n const boxSize = bounding.getBoxSize(box);\n let crop = tf.image.cropAndResize(face, [[\n box.startPoint[1] / this.meshSize,\n box.startPoint[0] / this.meshSize, box.endPoint[1] / this.meshSize,\n box.endPoint[0] / this.meshSize,\n ]], [0], [this.irisSize, this.irisSize]);\n if (flip && tf.ENV.flags.IS_BROWSER) {\n crop = tf.image.flipLeftRight(crop); // flipLeftRight is not defined for tfjs-node\n }\n return { box, boxSize, crop };\n }\n\n // Given a cropped image of an eye, returns the coordinates of the contours surrounding the eye and the iris.\n getEyeCoords(eyeData, eyeBox, eyeBoxSize, flip = false) {\n const eyeRawCoords: Array = [];\n for (let i = 0; i < irisLandmarks.numCoordinates; i++) {\n const x = eyeData[i * 3];\n const y = eyeData[i * 3 + 1];\n const z = eyeData[i * 3 + 2];\n eyeRawCoords.push([\n (flip ? (1 - (x / this.irisSize)) : (x / this.irisSize)) * eyeBoxSize[0] + eyeBox.startPoint[0],\n (y / this.irisSize) * eyeBoxSize[1] + eyeBox.startPoint[1], z,\n ]);\n }\n return { rawCoords: eyeRawCoords, iris: eyeRawCoords.slice(irisLandmarks.index) };\n }\n\n // The z-coordinates returned for the iris are unreliable, so we take the z values from the surrounding keypoints.\n getAdjustedIrisCoords(rawCoords, irisCoords, direction) {\n const upperCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeUpper0`][irisLandmarks.upperCenter]][2];\n const lowerCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeLower0`][irisLandmarks.lowerCenter]][2];\n const averageZ = (upperCenterZ + lowerCenterZ) / 2;\n // Iris indices: 0: center | 1: right | 2: above | 3: left | 4: below\n return irisCoords.map((coord, i) => {\n let z = averageZ;\n if (i === 2) {\n z = upperCenterZ;\n } else if (i === 4) {\n z = lowerCenterZ;\n }\n return [coord[0], coord[1], z];\n });\n }\n\n async predict(input, config) {\n let useFreshBox = false;\n // run new detector every skipFrames unless we only want box to start with\n let detector;\n if ((this.skipped === 0) || (this.skipped > config.face.detector.skipFrames) || !config.face.mesh.enabled || !config.videoOptimized) {\n detector = await this.boundingBoxDetector.getBoundingBoxes(input);\n this.skipped = 0;\n }\n if (config.videoOptimized) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (!config.videoOptimized || (detector && detector.boxes && (!config.face.mesh.enabled || (detector.boxes.length !== this.detectedFaces) && (this.detectedFaces !== config.face.detector.maxFaces)))) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n for (const possible of detector.boxes) {\n this.storedBoxes.push({ startPoint: possible.box.startPoint.dataSync(), endPoint: possible.box.endPoint.dataSync(), landmarks: possible.landmarks, confidence: possible.confidence });\n }\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n\n if (config.face.detector.skipInitial && this.detectedFaces === 0) this.skipped = 0;\n\n if (useFreshBox) {\n if (!detector || !detector.boxes || (detector.boxes.length === 0)) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n return null;\n }\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const scaledBox = bounding.scaleBoxCoordinates({ startPoint: this.storedBoxes[i].startPoint, endPoint: this.storedBoxes[i].endPoint }, detector.scaleFactor);\n const enlargedBox = bounding.enlargeBox(scaledBox);\n const squarifiedBox = bounding.squarifyBox(enlargedBox);\n const landmarks = this.storedBoxes[i].landmarks.arraySync();\n const confidence = this.storedBoxes[i].confidence;\n this.storedBoxes[i] = { ...squarifiedBox, confidence, landmarks };\n }\n }\n if (detector && detector.boxes) {\n detector.boxes.forEach((prediction) => {\n prediction.box.startPoint.dispose();\n prediction.box.endPoint.dispose();\n prediction.landmarks.dispose();\n });\n }\n\n let results = tf.tidy(() => this.storedBoxes.map((box, i) => {\n const boxConfidence = box.confidence;\n\n // The facial bounding box landmarks could come either from blazeface (if we are using a fresh box), or from the mesh model (if we are reusing an old box).\n let face;\n let angle = 0;\n let rotationMatrix;\n\n if (config.face.detector.rotation && config.face.mesh.enabled && tf.ENV.flags.IS_BROWSER) {\n const [indexOfMouth, indexOfForehead] = (box.landmarks.length >= meshLandmarks.count) ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;\n angle = util.computeRotation(box.landmarks[indexOfMouth], box.landmarks[indexOfForehead]);\n const faceCenter = bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint });\n const faceCenterNormalized = [faceCenter[0] / input.shape[2], faceCenter[1] / input.shape[1]];\n const rotatedImage = tf.image.rotateWithOffset(input, angle, 0, faceCenterNormalized); // rotateWithOffset is not defined for tfjs-node\n rotationMatrix = util.buildRotationMatrix(-angle, faceCenter);\n if (config.face.mesh.enabled) face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.meshSize, this.meshSize]).div(255);\n else face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.boxSize, this.boxSize]).div(255);\n } else {\n rotationMatrix = util.IDENTITY_MATRIX;\n const clonedImage = input.clone();\n if (config.face.mesh.enabled) face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.meshSize, this.meshSize]).div(255);\n else face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.boxSize, this.boxSize]).div(255);\n }\n\n // if we're not going to produce mesh, don't spend time with further processing\n if (!config.face.mesh.enabled) {\n const prediction = {\n coords: null,\n box,\n faceConfidence: null,\n boxConfidence,\n confidence: box.confidence,\n image: face,\n };\n return prediction;\n }\n\n const [, confidence, contourCoords] = this.meshDetector.predict(face); // The first returned tensor represents facial contours which are already included in the coordinates.\n const faceConfidence = confidence.dataSync()[0];\n if (faceConfidence < config.face.detector.minConfidence) return null; // if below confidence just exit\n const coordsReshaped = tf.reshape(contourCoords, [-1, 3]);\n let rawCoords = coordsReshaped.arraySync();\n\n if (config.face.iris.enabled) {\n const { box: leftEyeBox, boxSize: leftEyeBoxSize, crop: leftEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.leftBounds[0], eyeLandmarks.leftBounds[1], true);\n const { box: rightEyeBox, boxSize: rightEyeBoxSize, crop: rightEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.rightBounds[0], eyeLandmarks.rightBounds[1]);\n const eyePredictions = this.irisModel.predict(tf.concat([leftEyeCrop, rightEyeCrop]));\n const eyePredictionsData = eyePredictions.dataSync();\n const leftEyeData = eyePredictionsData.slice(0, irisLandmarks.numCoordinates * 3);\n const { rawCoords: leftEyeRawCoords, iris: leftIrisRawCoords } = this.getEyeCoords(leftEyeData, leftEyeBox, leftEyeBoxSize, true);\n const rightEyeData = eyePredictionsData.slice(irisLandmarks.numCoordinates * 3);\n const { rawCoords: rightEyeRawCoords, iris: rightIrisRawCoords } = this.getEyeCoords(rightEyeData, rightEyeBox, rightEyeBoxSize);\n const leftToRightEyeDepthDifference = this.getLeftToRightEyeDepthDifference(rawCoords);\n if (Math.abs(leftToRightEyeDepthDifference) < 30) { // User is looking straight ahead.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', null);\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', null);\n // If the user is looking to the left or to the right, the iris coordinates tend to diverge too much from the mesh coordinates for them to be merged\n // So we only update a single contour line above and below the eye.\n } else if (leftToRightEyeDepthDifference < 1) { // User is looking towards the right.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', ['EyeUpper0', 'EyeLower0']);\n } else { // User is looking towards the left.\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', ['EyeUpper0', 'EyeLower0']);\n }\n const adjustedLeftIrisCoords = this.getAdjustedIrisCoords(rawCoords, leftIrisRawCoords, 'left');\n const adjustedRightIrisCoords = this.getAdjustedIrisCoords(rawCoords, rightIrisRawCoords, 'right');\n rawCoords = rawCoords.concat(adjustedLeftIrisCoords).concat(adjustedRightIrisCoords);\n }\n\n // override box from detection with one calculated from mesh\n const transformedCoordsData = this.transformRawCoords(rawCoords, box, angle, rotationMatrix);\n box = bounding.enlargeBox(this.calculateLandmarksBoundingBox(transformedCoordsData), 1.5); // redefine box with mesh calculated one\n const transformedCoords = tf.tensor2d(transformedCoordsData);\n\n // do rotation one more time with mesh keypoints if we want to return perfect image\n if (config.face.detector.rotation && config.face.mesh.enabled && (config.face.description.enabled || config.face.embedding.enabled) && tf.ENV.flags.IS_BROWSER) {\n const [indexOfMouth, indexOfForehead] = (box.landmarks.length >= meshLandmarks.count) ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;\n angle = util.computeRotation(box.landmarks[indexOfMouth], box.landmarks[indexOfForehead]);\n const faceCenter = bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint });\n const faceCenterNormalized = [faceCenter[0] / input.shape[2], faceCenter[1] / input.shape[1]];\n const rotatedImage = tf.image.rotateWithOffset(input.toFloat(), angle, 0, faceCenterNormalized); // rotateWithOffset is not defined for tfjs-node\n rotationMatrix = util.buildRotationMatrix(-angle, faceCenter);\n face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.meshSize, this.meshSize]).div(255);\n }\n\n const prediction = {\n coords: transformedCoords,\n box,\n faceConfidence,\n boxConfidence,\n image: face,\n rawCoords,\n };\n\n // updated stored cache values\n const squarifiedLandmarksBox = bounding.squarifyBox(box);\n this.storedBoxes[i] = { ...squarifiedLandmarksBox, landmarks: transformedCoordsData, confidence: box.confidence, faceConfidence };\n\n return prediction;\n }));\n\n results = results.filter((a) => a !== null);\n // remove cache entries for detected boxes on low confidence\n if (config.face.mesh.enabled) this.storedBoxes = this.storedBoxes.filter((a) => a.faceConfidence > config.face.detector.minConfidence);\n this.detectedFaces = results.length;\n\n return results;\n }\n\n calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint, landmarks };\n }\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as poses from './poses';\nimport * as util from './utils';\n\nlet model;\nconst poseNetOutputs = ['MobilenetV1/offset_2/BiasAdd'/* offsets */, 'MobilenetV1/heatmap_2/BiasAdd'/* heatmapScores */, 'MobilenetV1/displacement_fwd_2/BiasAdd'/* displacementFwd */, 'MobilenetV1/displacement_bwd_2/BiasAdd'/* displacementBwd */];\n\nexport async function predict(input, config) {\n const res = tf.tidy(() => {\n const resized = input.resizeBilinear([model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const normalized = resized.toFloat().div(127.5).sub(1.0);\n const results = model.execute(normalized, poseNetOutputs);\n const results3d = results.map((y) => y.squeeze([0]));\n results3d[1] = results3d[1].sigmoid(); // apply sigmoid on scores\n return results3d;\n });\n\n const buffers = await Promise.all(res.map((tensor) => tensor.buffer()));\n for (const t of res) t.dispose();\n\n const decoded = await poses.decode(buffers[0], buffers[1], buffers[2], buffers[3], config.body.nmsRadius, config.body.maxDetections, config.body.scoreThreshold);\n const scaled = util.scalePoses(decoded, [input.shape[1], input.shape[2]], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n\n return scaled;\n}\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n", "export const partNames = [\n 'nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder',\n 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist',\n 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle',\n];\n\nexport const count = partNames.length; // 17 keypoints\n\nexport const partIds = partNames.reduce((result, jointName, i) => {\n result[jointName] = i;\n return result;\n}, {});\n\nconst connectedPartNames = [\n ['leftHip', 'leftShoulder'], ['leftElbow', 'leftShoulder'],\n ['leftElbow', 'leftWrist'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['rightHip', 'rightShoulder'],\n ['rightElbow', 'rightShoulder'], ['rightElbow', 'rightWrist'],\n ['rightHip', 'rightKnee'], ['rightKnee', 'rightAnkle'],\n ['leftShoulder', 'rightShoulder'], ['leftHip', 'rightHip'],\n];\nexport const connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => ([partIds[jointNameA], partIds[jointNameB]]));\n\nexport const poseChain = [\n ['nose', 'leftEye'], ['leftEye', 'leftEar'], ['nose', 'rightEye'],\n ['rightEye', 'rightEar'], ['nose', 'leftShoulder'],\n ['leftShoulder', 'leftElbow'], ['leftElbow', 'leftWrist'],\n ['leftShoulder', 'leftHip'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['nose', 'rightShoulder'],\n ['rightShoulder', 'rightElbow'], ['rightElbow', 'rightWrist'],\n ['rightShoulder', 'rightHip'], ['rightHip', 'rightKnee'],\n ['rightKnee', 'rightAnkle'],\n];\n", "import * as kpt from './keypoints';\n\nexport function eitherPointDoesntMeetConfidence(a, b, minConfidence) {\n return (a < minConfidence || b < minConfidence);\n}\n\nexport function getAdjacentKeyPoints(keypoints, minConfidence) {\n return kpt.connectedPartIndices.reduce((result, [leftJoint, rightJoint]) => {\n if (eitherPointDoesntMeetConfidence(keypoints[leftJoint].score, keypoints[rightJoint].score, minConfidence)) {\n return result;\n }\n result.push([keypoints[leftJoint], keypoints[rightJoint]]);\n return result;\n }, []);\n}\n\nexport function getBoundingBox(keypoints) {\n const coord = keypoints.reduce(({ maxX, maxY, minX, minY }, { position: { x, y } }) => ({\n maxX: Math.max(maxX, x),\n maxY: Math.max(maxY, y),\n minX: Math.min(minX, x),\n minY: Math.min(minY, y),\n }), {\n maxX: Number.NEGATIVE_INFINITY,\n maxY: Number.NEGATIVE_INFINITY,\n minX: Number.POSITIVE_INFINITY,\n minY: Number.POSITIVE_INFINITY,\n });\n return [coord.minX, coord.minY, coord.maxX - coord.minX, coord.maxY - coord.minY];\n}\n\nexport function scalePoses(poses, [height, width], [inputResolutionHeight, inputResolutionWidth]) {\n const scalePose = (pose, scaleY, scaleX) => ({\n score: pose.score,\n box: [Math.trunc(pose.box[0] * scaleX), Math.trunc(pose.box[1] * scaleY), Math.trunc(pose.box[2] * scaleX), Math.trunc(pose.box[3] * scaleY)],\n keypoints: pose.keypoints.map(({ score, part, position }) => ({\n score,\n part,\n position: { x: Math.trunc(position.x * scaleX), y: Math.trunc(position.y * scaleY) },\n })),\n });\n\n const scaledPoses = poses.map((pose) => scalePose(pose, height / inputResolutionHeight, width / inputResolutionWidth));\n return scaledPoses;\n}\n\n// algorithm based on Coursera Lecture from Algorithms, Part 1: https://www.coursera.org/learn/algorithms-part1/lecture/ZjoSM/heapsort\nexport class MaxHeap {\n priorityQueue: any;\n numberOfElements: number;\n getElementValue: any;\n\n constructor(maxSize, getElementValue) {\n this.priorityQueue = new Array(maxSize);\n this.numberOfElements = -1;\n this.getElementValue = getElementValue;\n }\n\n enqueue(x) {\n this.priorityQueue[++this.numberOfElements] = x;\n this.swim(this.numberOfElements);\n }\n\n dequeue() {\n const max = this.priorityQueue[0];\n this.exchange(0, this.numberOfElements--);\n this.sink(0);\n this.priorityQueue[this.numberOfElements + 1] = null;\n return max;\n }\n\n empty() { return this.numberOfElements === -1; }\n\n size() { return this.numberOfElements + 1; }\n\n all() { return this.priorityQueue.slice(0, this.numberOfElements + 1); }\n\n max() { return this.priorityQueue[0]; }\n\n swim(k) {\n while (k > 0 && this.less(Math.floor(k / 2), k)) {\n this.exchange(k, Math.floor(k / 2));\n k = Math.floor(k / 2);\n }\n }\n\n sink(k) {\n while (2 * k <= this.numberOfElements) {\n let j = 2 * k;\n if (j < this.numberOfElements && this.less(j, j + 1)) j++;\n if (!this.less(k, j)) break;\n this.exchange(k, j);\n k = j;\n }\n }\n\n getValueAt(i) {\n return this.getElementValue(this.priorityQueue[i]);\n }\n\n less(i, j) {\n return this.getValueAt(i) < this.getValueAt(j);\n }\n\n exchange(i, j) {\n const t = this.priorityQueue[i];\n this.priorityQueue[i] = this.priorityQueue[j];\n this.priorityQueue[j] = t;\n }\n}\n\nexport function getOffsetPoint(y, x, keypoint, offsets) {\n return {\n y: offsets.get(y, x, keypoint),\n x: offsets.get(y, x, keypoint + kpt.count),\n };\n}\n\nexport function getImageCoords(part, outputStride, offsets) {\n const { heatmapY, heatmapX, id: keypoint } = part;\n const { y, x } = getOffsetPoint(heatmapY, heatmapX, keypoint, offsets);\n return {\n x: part.heatmapX * outputStride + x,\n y: part.heatmapY * outputStride + y,\n };\n}\n\nexport function fillArray(element, size) {\n const result = new Array(size);\n for (let i = 0; i < size; i++) {\n result[i] = element;\n }\n return result;\n}\n\nexport function clamp(a, min, max) {\n if (a < min) return min;\n if (a > max) return max;\n return a;\n}\n\nexport function squaredDistance(y1, x1, y2, x2) {\n const dy = y2 - y1;\n const dx = x2 - x1;\n return dy * dy + dx * dx;\n}\n\nexport function addVectors(a, b) {\n return { x: a.x + b.x, y: a.y + b.y };\n}\n\nexport function clampVector(a, min, max) {\n return { y: clamp(a.y, min, max), x: clamp(a.x, min, max) };\n}\n", "import * as utils from './utils';\nimport * as kpt from './keypoints';\n\nconst localMaximumRadius = 1;\nconst defaultOutputStride = 16;\n\nfunction traverseToTargetKeypoint(edgeId, sourceKeypoint, targetKeypointId, scoresBuffer, offsets, outputStride, displacements, offsetRefineStep = 2) {\n const getDisplacement = (point) => ({\n y: displacements.get(point.y, point.x, edgeId),\n x: displacements.get(point.y, point.x, (displacements.shape[2] / 2) + edgeId),\n });\n const getStridedIndexNearPoint = (point, height, width) => ({\n y: utils.clamp(Math.round(point.y / outputStride), 0, height - 1),\n x: utils.clamp(Math.round(point.x / outputStride), 0, width - 1),\n });\n\n const [height, width] = scoresBuffer.shape;\n // Nearest neighbor interpolation for the source->target displacements.\n const sourceKeypointIndices = getStridedIndexNearPoint(sourceKeypoint.position, height, width);\n const displacement = getDisplacement(sourceKeypointIndices);\n const displacedPoint = utils.addVectors(sourceKeypoint.position, displacement);\n let targetKeypoint = displacedPoint;\n for (let i = 0; i < offsetRefineStep; i++) {\n const targetKeypointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const offsetPoint = utils.getOffsetPoint(targetKeypointIndices.y, targetKeypointIndices.x, targetKeypointId, offsets);\n targetKeypoint = utils.addVectors({\n x: targetKeypointIndices.x * outputStride,\n y: targetKeypointIndices.y * outputStride,\n }, { x: offsetPoint.x, y: offsetPoint.y });\n }\n const targetKeyPointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const score = scoresBuffer.get(targetKeyPointIndices.y, targetKeyPointIndices.x, targetKeypointId);\n return { position: targetKeypoint, part: kpt.partNames[targetKeypointId], score };\n}\n\nexport function decodePose(root, scores, offsets, outputStride, displacementsFwd, displacementsBwd) {\n const parentChildrenTuples = kpt.poseChain.map(([parentJoinName, childJoinName]) => ([kpt.partIds[parentJoinName], kpt.partIds[childJoinName]]));\n const parentToChildEdges = parentChildrenTuples.map(([, childJointId]) => childJointId);\n const childToParentEdges = parentChildrenTuples.map(([parentJointId]) => parentJointId);\n const numParts = scores.shape[2];\n const numEdges = parentToChildEdges.length;\n const instanceKeypoints = new Array(numParts);\n // Start a new detection instance at the position of the root.\n const { part: rootPart, score: rootScore } = root;\n const rootPoint = utils.getImageCoords(rootPart, outputStride, offsets);\n instanceKeypoints[rootPart.id] = {\n score: rootScore,\n part: kpt.partNames[rootPart.id],\n position: rootPoint,\n };\n // Decode the part positions upwards in the tree, following the backward displacements.\n for (let edge = numEdges - 1; edge >= 0; --edge) {\n const sourceKeypointId = parentToChildEdges[edge];\n const targetKeypointId = childToParentEdges[edge];\n if (instanceKeypoints[sourceKeypointId] && !instanceKeypoints[targetKeypointId]) {\n instanceKeypoints[targetKeypointId] = traverseToTargetKeypoint(edge, instanceKeypoints[sourceKeypointId], targetKeypointId, scores, offsets, outputStride, displacementsBwd);\n }\n }\n // Decode the part positions downwards in the tree, following the forward displacements.\n for (let edge = 0; edge < numEdges; ++edge) {\n const sourceKeypointId = childToParentEdges[edge];\n const targetKeypointId = parentToChildEdges[edge];\n if (instanceKeypoints[sourceKeypointId] && !instanceKeypoints[targetKeypointId]) {\n instanceKeypoints[targetKeypointId] = traverseToTargetKeypoint(edge, instanceKeypoints[sourceKeypointId], targetKeypointId, scores, offsets, outputStride, displacementsFwd);\n }\n }\n return instanceKeypoints;\n}\n\nfunction scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores) {\n const [height, width] = scores.shape;\n let localMaximum = true;\n const yStart = Math.max(heatmapY - localMaximumRadius, 0);\n const yEnd = Math.min(heatmapY + localMaximumRadius + 1, height);\n for (let yCurrent = yStart; yCurrent < yEnd; ++yCurrent) {\n const xStart = Math.max(heatmapX - localMaximumRadius, 0);\n const xEnd = Math.min(heatmapX + localMaximumRadius + 1, width);\n for (let xCurrent = xStart; xCurrent < xEnd; ++xCurrent) {\n if (scores.get(yCurrent, xCurrent, keypointId) > score) {\n localMaximum = false;\n break;\n }\n }\n if (!localMaximum) break;\n }\n return localMaximum;\n}\n\nexport function buildPartWithScoreQueue(scoreThreshold, scores) {\n const [height, width, numKeypoints] = scores.shape;\n const queue = new utils.MaxHeap(height * width * numKeypoints, ({ score }) => score);\n for (let heatmapY = 0; heatmapY < height; ++heatmapY) {\n for (let heatmapX = 0; heatmapX < width; ++heatmapX) {\n for (let keypointId = 0; keypointId < numKeypoints; ++keypointId) {\n const score = scores.get(heatmapY, heatmapX, keypointId);\n // Only consider parts with score greater or equal to threshold as root candidates.\n if (score < scoreThreshold) continue;\n // Only consider keypoints whose score is maximum in a local window.\n if (scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores)) queue.enqueue({ score, part: { heatmapY, heatmapX, id: keypointId } });\n }\n }\n }\n return queue;\n}\n\nfunction withinRadius(poses, squaredNmsRadius, { x, y }, keypointId) {\n return poses.some(({ keypoints }) => {\n const correspondingKeypoint = keypoints[keypointId].position;\n return utils.squaredDistance(y, x, correspondingKeypoint.y, correspondingKeypoint.x) <= squaredNmsRadius;\n });\n}\n\nfunction getInstanceScore(existingPoses, squaredNmsRadius, instanceKeypoints) {\n const notOverlappedKeypointScores = instanceKeypoints.reduce((result, { position, score }, keypointId) => {\n if (!withinRadius(existingPoses, squaredNmsRadius, position, keypointId)) result += score;\n return result;\n }, 0.0);\n return notOverlappedKeypointScores / instanceKeypoints.length;\n}\n\nexport function decode(offsetsBuffer, scoresBuffer, displacementsFwdBuffer, displacementsBwdBuffer, nmsRadius, maxDetections, scoreThreshold) {\n const poses: Array<{ keypoints: any, box: any, score: number }> = [];\n const queue = buildPartWithScoreQueue(scoreThreshold, scoresBuffer);\n const squaredNmsRadius = nmsRadius ** 2;\n // Generate at most maxDetections object instances per image in decreasing root part score order.\n while (poses.length < maxDetections && !queue.empty()) {\n // The top element in the queue is the next root candidate.\n const root = queue.dequeue();\n // Part-based non-maximum suppression: We reject a root candidate if it is within a disk of `nmsRadius` pixels from the corresponding part of a previously detected instance.\n const rootImageCoords = utils.getImageCoords(root.part, defaultOutputStride, offsetsBuffer);\n if (withinRadius(poses, squaredNmsRadius, rootImageCoords, root.part.id)) continue;\n // Else start a new detection instance at the position of the root.\n const allKeypoints = decodePose(root, scoresBuffer, offsetsBuffer, defaultOutputStride, displacementsFwdBuffer, displacementsBwdBuffer);\n const keypoints = allKeypoints.filter((a) => a.score > scoreThreshold);\n const score = getInstanceScore(poses, squaredNmsRadius, keypoints);\n const box = utils.getBoundingBox(keypoints);\n if (score > scoreThreshold) poses.push({ keypoints, box, score: Math.round(100 * score) / 100 });\n }\n return poses;\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as handdetector from './handdetector';\nimport * as handpipeline from './handpipeline';\nimport * as anchors from './anchors';\n\nconst MESH_ANNOTATIONS = {\n thumb: [1, 2, 3, 4],\n indexFinger: [5, 6, 7, 8],\n middleFinger: [9, 10, 11, 12],\n ringFinger: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n palmBase: [0],\n};\n\nexport class HandPose {\n handPipeline: any;\n\n constructor(handPipeline) {\n this.handPipeline = handPipeline;\n }\n\n static getAnnotations() {\n return MESH_ANNOTATIONS;\n }\n\n async estimateHands(input, config) {\n const predictions = await this.handPipeline.estimateHands(input, config);\n if (!predictions) return [];\n const hands: Array<{ confidence: number, box: any, boxRaw: any, landmarks: any, annotations: any }> = [];\n for (const prediction of predictions) {\n const annotations = {};\n if (prediction.landmarks) {\n for (const key of Object.keys(MESH_ANNOTATIONS)) {\n annotations[key] = MESH_ANNOTATIONS[key].map((index) => prediction.landmarks[index]);\n }\n }\n const box = prediction.box ? [\n Math.max(0, prediction.box.topLeft[0]),\n Math.max(0, prediction.box.topLeft[1]),\n Math.min(input.shape[2], prediction.box.bottomRight[0]) - Math.max(0, prediction.box.topLeft[0]),\n Math.min(input.shape[1], prediction.box.bottomRight[1]) - Math.max(0, prediction.box.topLeft[1]),\n ] : [];\n const boxRaw = [\n (prediction.box.topLeft[0]) / input.shape[2],\n (prediction.box.topLeft[1]) / input.shape[1],\n (prediction.box.bottomRight[0] - prediction.box.topLeft[0]) / input.shape[2],\n (prediction.box.bottomRight[1] - prediction.box.topLeft[1]) / input.shape[1],\n ];\n hands.push({ confidence: Math.round(100 * prediction.confidence) / 100, box, boxRaw, landmarks: prediction.landmarks, annotations });\n }\n return hands;\n }\n}\n\nlet handDetectorModel;\nlet handPoseModel;\nexport async function load(config): Promise {\n if (!handDetectorModel || !handPoseModel) {\n [handDetectorModel, handPoseModel] = await Promise.all([\n config.hand.enabled ? tf.loadGraphModel(join(config.modelBasePath, config.hand.detector.modelPath), { fromTFHub: config.hand.detector.modelPath.includes('tfhub.dev') }) : null,\n config.hand.landmarks ? tf.loadGraphModel(join(config.modelBasePath, config.hand.skeleton.modelPath), { fromTFHub: config.hand.skeleton.modelPath.includes('tfhub.dev') }) : null,\n ]);\n if (config.hand.enabled) {\n if (!handDetectorModel || !handDetectorModel.modelUrl) log('load model failed:', config.hand.detector.modelPath);\n else if (config.debug) log('load model:', handDetectorModel.modelUrl);\n if (!handPoseModel || !handPoseModel.modelUrl) log('load model failed:', config.hand.skeleton.modelPath);\n else if (config.debug) log('load model:', handPoseModel.modelUrl);\n }\n } else {\n if (config.debug) log('cached model:', handDetectorModel.modelUrl);\n if (config.debug) log('cached model:', handPoseModel.modelUrl);\n }\n const handDetector = new handdetector.HandDetector(handDetectorModel, handDetectorModel?.inputs[0].shape[2], anchors.anchors);\n const handPipeline = new handpipeline.HandPipeline(handDetector, handPoseModel, handPoseModel?.inputs[0].shape[2]);\n const handPose = new HandPose(handPipeline);\n return handPose;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n const palmLandmarks = box.palmLandmarks.map((coord) => {\n const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];\n return scaledCoord;\n });\n return { startPoint, endPoint, palmLandmarks, confidence: box.confidence };\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize];\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function shiftBox(box, shiftFactor) {\n const boxSize = [\n box.endPoint[0] - box.startPoint[0],\n box.endPoint[1] - box.startPoint[1],\n ];\n const shiftVector = [boxSize[0] * shiftFactor[0], boxSize[1] * shiftFactor[1]];\n const startPoint = [box.startPoint[0] + shiftVector[0], box.startPoint[1] + shiftVector[1]];\n const endPoint = [box.endPoint[0] + shiftVector[0], box.endPoint[1] + shiftVector[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\n\nexport class HandDetector {\n model: any;\n anchors: any;\n anchorsTensor: any;\n inputSize: number;\n inputSizeTensor: any;\n doubleInputSizeTensor: any;\n\n constructor(model, inputSize, anchorsAnnotated) {\n this.model = model;\n this.anchors = anchorsAnnotated.map((anchor) => [anchor.x_center, anchor.y_center]);\n this.anchorsTensor = tf.tensor2d(this.anchors);\n this.inputSize = inputSize;\n this.inputSizeTensor = tf.tensor1d([inputSize, inputSize]);\n this.doubleInputSizeTensor = tf.tensor1d([inputSize * 2, inputSize * 2]);\n }\n\n normalizeBoxes(boxes) {\n return tf.tidy(() => {\n const boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);\n const boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);\n const boxCenterPoints = tf.add(tf.div(boxOffsets, this.inputSizeTensor), this.anchorsTensor);\n const halfBoxSizes = tf.div(boxSizes, this.doubleInputSizeTensor);\n const startPoints = tf.mul(tf.sub(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n const endPoints = tf.mul(tf.add(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n return tf.concat2d([startPoints, endPoints], 1);\n });\n }\n\n normalizeLandmarks(rawPalmLandmarks, index) {\n return tf.tidy(() => {\n const landmarks = tf.add(tf.div(rawPalmLandmarks.reshape([-1, 7, 2]), this.inputSizeTensor), this.anchors[index]);\n return tf.mul(landmarks, this.inputSizeTensor);\n });\n }\n\n async getBoxes(input, config) {\n const batched = this.model.predict(input);\n const predictions = batched.squeeze();\n batched.dispose();\n const scoresT = tf.tidy(() => tf.sigmoid(tf.slice(predictions, [0, 0], [-1, 1])).squeeze());\n const scores = scoresT.dataSync();\n const rawBoxes = tf.slice(predictions, [0, 1], [-1, 4]);\n const boxes = this.normalizeBoxes(rawBoxes);\n rawBoxes.dispose();\n const filteredT = await tf.image.nonMaxSuppressionAsync(boxes, scores, config.hand.maxHands, config.hand.iouThreshold, config.hand.scoreThreshold);\n const filtered = filteredT.arraySync();\n\n scoresT.dispose();\n filteredT.dispose();\n const hands: Array<{ box: any, palmLandmarks: any, confidence: number }> = [];\n for (const index of filtered) {\n if (scores[index] >= config.hand.minConfidence) {\n const matchingBox = tf.slice(boxes, [index, 0], [1, -1]);\n const rawPalmLandmarks = tf.slice(predictions, [index, 5], [1, 14]);\n const palmLandmarks = tf.tidy(() => this.normalizeLandmarks(rawPalmLandmarks, index).reshape([-1, 2]));\n rawPalmLandmarks.dispose();\n hands.push({ box: matchingBox, palmLandmarks, confidence: scores[index] });\n }\n }\n predictions.dispose();\n boxes.dispose();\n return hands;\n }\n\n async estimateHandBounds(input, config) {\n const inputHeight = input.shape[1];\n const inputWidth = input.shape[2];\n const image = tf.tidy(() => input.resizeBilinear([this.inputSize, this.inputSize]).div(127.5).sub(1));\n const predictions = await this.getBoxes(image, config);\n image.dispose();\n const hands: Array<{}> = [];\n if (!predictions || predictions.length === 0) return hands;\n for (const prediction of predictions) {\n const boxes = prediction.box.dataSync();\n const startPoint = boxes.slice(0, 2);\n const endPoint = boxes.slice(2, 4);\n const palmLandmarks = prediction.palmLandmarks.arraySync();\n prediction.box.dispose();\n prediction.palmLandmarks.dispose();\n hands.push(box.scaleBoxCoordinates({ startPoint, endPoint, palmLandmarks, confidence: prediction.confidence }, [inputWidth / this.inputSize, inputHeight / this.inputSize]));\n }\n return hands;\n }\n}\n", "export function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as util from './util';\n\n// const PALM_BOX_SHIFT_VECTOR = [0, -0.4];\nconst PALM_BOX_ENLARGE_FACTOR = 5; // default 3\n// const HAND_BOX_SHIFT_VECTOR = [0, -0.1]; // move detected hand box by x,y to ease landmark detection\nconst HAND_BOX_ENLARGE_FACTOR = 1.65; // default 1.65\nconst PALM_LANDMARK_IDS = [0, 5, 9, 13, 17, 1, 2];\nconst PALM_LANDMARKS_INDEX_OF_PALM_BASE = 0;\nconst PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE = 2;\n\nexport class HandPipeline {\n handDetector: any;\n landmarkDetector: any;\n inputSize: number;\n storedBoxes: any;\n skipped: number;\n detectedHands: number;\n\n constructor(handDetector, landmarkDetector, inputSize) {\n this.handDetector = handDetector;\n this.landmarkDetector = landmarkDetector;\n this.inputSize = inputSize;\n this.storedBoxes = [];\n this.skipped = 0;\n this.detectedHands = 0;\n }\n\n getBoxForPalmLandmarks(palmLandmarks, rotationMatrix) {\n const rotatedPalmLandmarks = palmLandmarks.map((coord) => util.rotatePoint([...coord, 1], rotationMatrix));\n const boxAroundPalm = this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);\n // return box.enlargeBox(box.squarifyBox(box.shiftBox(boxAroundPalm, PALM_BOX_SHIFT_VECTOR)), PALM_BOX_ENLARGE_FACTOR);\n return box.enlargeBox(box.squarifyBox(boxAroundPalm), PALM_BOX_ENLARGE_FACTOR);\n }\n\n getBoxForHandLandmarks(landmarks) {\n const boundingBox = this.calculateLandmarksBoundingBox(landmarks);\n // const boxAroundHand = box.enlargeBox(box.squarifyBox(box.shiftBox(boundingBox, HAND_BOX_SHIFT_VECTOR)), HAND_BOX_ENLARGE_FACTOR);\n const boxAroundHand = box.enlargeBox(box.squarifyBox(boundingBox), HAND_BOX_ENLARGE_FACTOR);\n boxAroundHand.palmLandmarks = [];\n for (let i = 0; i < PALM_LANDMARK_IDS.length; i++) {\n boxAroundHand.palmLandmarks.push(landmarks[PALM_LANDMARK_IDS[i]].slice(0, 2));\n }\n return boxAroundHand;\n }\n\n transformRawCoords(rawCoords, box2, angle, rotationMatrix) {\n const boxSize = box.getBoxSize(box2);\n const scaleFactor = [boxSize[0] / this.inputSize, boxSize[1] / this.inputSize, (boxSize[0] + boxSize[1]) / this.inputSize / 2];\n const coordsScaled = rawCoords.map((coord) => [\n scaleFactor[0] * (coord[0] - this.inputSize / 2),\n scaleFactor[1] * (coord[1] - this.inputSize / 2),\n scaleFactor[2] * coord[2],\n ]);\n const coordsRotationMatrix = util.buildRotationMatrix(angle, [0, 0]);\n const coordsRotated = coordsScaled.map((coord) => {\n const rotated = util.rotatePoint(coord, coordsRotationMatrix);\n return [...rotated, coord[2]];\n });\n const inverseRotationMatrix = util.invertTransformMatrix(rotationMatrix);\n const boxCenter = [...box.getBoxCenter(box2), 1];\n const originalBoxCenter = [\n util.dot(boxCenter, inverseRotationMatrix[0]),\n util.dot(boxCenter, inverseRotationMatrix[1]),\n ];\n return coordsRotated.map((coord) => [\n coord[0] + originalBoxCenter[0],\n coord[1] + originalBoxCenter[1],\n coord[2],\n ]);\n }\n\n async estimateHands(image, config) {\n let useFreshBox = false;\n\n // run new detector every skipFrames unless we only want box to start with\n let boxes;\n if ((this.skipped === 0) || (this.skipped > config.hand.skipFrames) || !config.hand.landmarks || !config.videoOptimized) {\n boxes = await this.handDetector.estimateHandBounds(image, config);\n this.skipped = 0;\n }\n if (config.videoOptimized) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.hand.maxHands) || !config.hand.landmarks)) {\n this.detectedHands = 0;\n this.storedBoxes = [...boxes];\n // for (const possible of boxes) this.storedBoxes.push(possible);\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n const hands: Array<{}> = [];\n\n if (config.hand.skipInitial && this.detectedHands === 0) this.skipped = 0;\n\n // go through working set of boxes\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const currentBox = this.storedBoxes[i];\n if (!currentBox) continue;\n if (config.hand.landmarks) {\n const angle = config.hand.rotation ? util.computeRotation(currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_PALM_BASE], currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE]) : 0;\n const palmCenter = box.getBoxCenter(currentBox);\n const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];\n const rotatedImage = config.hand.rotation ? tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized) : image.clone();\n const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);\n const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;\n const croppedInput = box.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);\n const handImage = croppedInput.div(255);\n croppedInput.dispose();\n rotatedImage.dispose();\n const [confidenceT, keypoints] = await this.landmarkDetector.predict(handImage);\n handImage.dispose();\n const confidence = confidenceT.dataSync()[0];\n confidenceT.dispose();\n if (confidence >= config.hand.minConfidence) {\n const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);\n const rawCoords = keypointsReshaped.arraySync();\n keypoints.dispose();\n keypointsReshaped.dispose();\n const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);\n const nextBoundingBox = this.getBoxForHandLandmarks(coords);\n this.storedBoxes[i] = nextBoundingBox;\n const result = {\n landmarks: coords,\n confidence,\n box: { topLeft: nextBoundingBox.startPoint, bottomRight: nextBoundingBox.endPoint },\n };\n hands.push(result);\n } else {\n this.storedBoxes[i] = null;\n }\n keypoints.dispose();\n } else {\n // const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), HAND_BOX_ENLARGE_FACTOR);\n const enlarged = box.enlargeBox(box.squarifyBox(currentBox), HAND_BOX_ENLARGE_FACTOR);\n const result = {\n confidence: currentBox.confidence,\n box: { topLeft: enlarged.startPoint, bottomRight: enlarged.endPoint },\n };\n hands.push(result);\n }\n }\n this.storedBoxes = this.storedBoxes.filter((a) => a !== null);\n this.detectedHands = hands.length;\n return hands;\n }\n\n // eslint-disable-next-line class-methods-use-this\n calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint };\n }\n}\n", "export const anchors = [\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n];\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\nimport * as annotations from './annotations';\n\nlet model;\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n model.width = parseInt(model.signature.inputs['input_1:0'].tensorShape.dim[2].size);\n model.height = parseInt(model.signature.inputs['input_1:0'].tensorShape.dim[1].size);\n if (!model || !model.modelUrl) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if (!config.body.enabled) return null;\n const imgSize = { width: image.shape[2], height: image.shape[1] };\n const resize = tf.image.resizeBilinear(image, [model.width, model.height], false);\n const normalize = tf.div(resize, [255.0]);\n resize.dispose();\n let points;\n if (!config.profile) { // run through profiler or just execute\n const resT = await model.predict(normalize);\n // const segmentationT = resT.find((t) => (t.size === 16384))?.squeeze();\n // const segmentation = segmentationT.arraySync(); // array 128 x 128\n // segmentationT.dispose();\n points = resT.find((t) => (t.size === 195 || t.size === 155)).dataSync(); // order of output tensors may change between models, full has 195 and upper has 155 items\n resT.forEach((t) => t.dispose());\n } else {\n const profileData = await tf.profile(() => model.predict(normalize));\n points = profileData.result.find((t) => (t.size === 195 || t.size === 155)).dataSync();\n profileData.result.forEach((t) => t.dispose());\n profile.run('blazepose', profileData);\n }\n normalize.dispose();\n const keypoints: Array<{ id, part, position: { x, y, z }, score, presence }> = [];\n const labels = points.length === 195 ? annotations.full : annotations.upper; // full model has 39 keypoints, upper has 31 keypoints\n const depth = 5; // each points has x,y,z,visibility,presence\n for (let i = 0; i < points.length / depth; i++) {\n keypoints.push({\n id: i,\n part: labels[i],\n position: {\n x: Math.trunc(imgSize.width * points[depth * i + 0] / 255), // return normalized x value istead of 0..255\n y: Math.trunc(imgSize.height * points[depth * i + 1] / 255), // return normalized y value istead of 0..255\n z: Math.trunc(points[depth * i + 2]) + 0, // fix negative zero\n },\n score: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 3])))) / 100, // reverse sigmoid value\n presence: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 4])))) / 100, // reverse sigmoid value\n });\n }\n const score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n return [{ score, keypoints }];\n}\n", "export const full = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'leftWrist',\n 'rightWrist',\n 'leftPalm',\n 'rightPalm',\n 'leftIndex',\n 'rightIndex',\n 'leftPinky',\n 'rightPinky',\n 'leftHip',\n 'rightHip',\n 'leftKnee',\n 'rightKnee',\n 'leftAnkle',\n 'rightAnkle',\n 'leftHeel',\n 'rightHeel',\n 'leftFoot',\n 'rightFoot',\n 'midHip',\n 'forehead',\n 'leftThumb',\n 'leftHand',\n 'rightThumb',\n 'rightHand',\n];\n\nexport const upper = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'left:15',\n 'right:16',\n 'left:17',\n 'right:18',\n 'left:19',\n 'right:20',\n 'left:21',\n 'right:22',\n 'leftChest',\n 'rightChest',\n 'neck',\n 'forehead',\n 'left:27',\n 'right:28',\n 'left:29',\n 'right:30',\n];\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nlet model;\nlet keypoints: Array = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst bodyParts = ['head', 'neck', 'rightShoulder', 'rightElbow', 'rightWrist', 'chest', 'leftShoulder', 'leftElbow', 'leftWrist', 'pelvis', 'rightHip', 'rightKnee', 'rightAnkle', 'leftHip', 'leftKnee', 'leftAnkle'];\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\n// performs argmax and max functions on a 2d tensor\nfunction max2d(inputs, minScore) {\n const [width, height] = inputs.shape;\n return tf.tidy(() => {\n // modulus op implemented in tf\n const mod = (a, b) => tf.sub(a, tf.mul(tf.div(a, tf.scalar(b, 'int32')), tf.scalar(b, 'int32')));\n // combine all data\n const reshaped = tf.reshape(inputs, [height * width]);\n // get highest score\n const score = tf.max(reshaped, 0).dataSync()[0];\n if (score > minScore) {\n // skip coordinate calculation is score is too low\n const coords = tf.argMax(reshaped, 0);\n const x = mod(coords, width).dataSync()[0];\n const y = tf.div(coords, tf.scalar(width, 'int32')).dataSync()[0];\n return [x, y, score];\n }\n return [0, 0, score];\n });\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.body.skipFrames) && config.videoOptimized && Object.keys(keypoints).length > 0) {\n skipped++;\n return keypoints;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, 2);\n const norm = enhance.sub(1);\n return norm;\n });\n\n let resT;\n\n if (!config.profile) {\n if (config.body.enabled) resT = await model.predict(tensor);\n } else {\n const profileT = config.body.enabled ? await tf.profile(() => model.predict(tensor)) : {};\n resT = profileT.result.clone();\n profileT.result.dispose();\n profile.run('body', profileT);\n }\n tensor.dispose();\n\n if (resT) {\n const parts: Array<{ id, score, part, position: { x, y }, positionRaw: { xRaw, yRaw} }> = [];\n const squeeze = resT.squeeze();\n tf.dispose(resT);\n // body parts are basically just a stack of 2d tensors\n const stack = squeeze.unstack(2);\n tf.dispose(squeeze);\n // process each unstacked tensor as a separate body part\n for (let id = 0; id < stack.length; id++) {\n // actual processing to get coordinates and score\n const [x, y, score] = max2d(stack[id], config.body.scoreThreshold);\n if (score > config.body.scoreThreshold) {\n parts.push({\n id,\n score: Math.round(100 * score) / 100,\n part: bodyParts[id],\n positionRaw: {\n xRaw: x / model.inputs[0].shape[2], // x normalized to 0..1\n yRaw: y / model.inputs[0].shape[1], // y normalized to 0..1\n },\n position: {\n x: Math.round(image.shape[2] * x / model.inputs[0].shape[2]), // x normalized to input image size\n y: Math.round(image.shape[1] * y / model.inputs[0].shape[1]), // y normalized to input image size\n },\n });\n }\n }\n stack.forEach((s) => tf.dispose(s));\n keypoints = parts;\n }\n const score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n resolve([{ score, keypoints }]);\n });\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\nimport { labels } from './labels';\n\nlet model;\nlet last: Array<{}> = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst scaleBox = 2.5; // increase box size\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.object.modelPath));\n const inputs = Object.values(model.modelSignature['inputs']);\n model.inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : null;\n if (!model.inputSize) throw new Error(`Human: Cannot determine model inputSize: ${config.object.modelPath}`);\n if (!model || !model.modelUrl) log('load model failed:', config.object.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nasync function process(res, inputSize, outputShape, config) {\n let id = 0;\n let results: Array<{ score: number, strideSize: number, class: number, label: string, center: number[], centerRaw: number[], box: number[], boxRaw: number[] }> = [];\n for (const strideSize of [1, 2, 4]) { // try each stride size as it detects large/medium/small objects\n // find scores, boxes, classes\n tf.tidy(() => { // wrap in tidy to automatically deallocate temp tensors\n const baseSize = strideSize * 13; // 13x13=169, 26x26=676, 52x52=2704\n // find boxes and scores output depending on stride\n const scoresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] === labels.length))?.squeeze();\n const featuresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] < labels.length))?.squeeze();\n const boxesMax = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); // reshape [output] to [4, output / 4] where number is number of different features inside each stride\n const boxIdx = boxesMax.argMax(2).arraySync(); // what we need is indexes of features with highest scores, not values itself\n const scores = scoresT.arraySync(); // optionally use exponential scores or just as-is\n for (let i = 0; i < scoresT.shape[0]; i++) { // total strides (x * y matrix)\n for (let j = 0; j < scoresT.shape[1]; j++) { // one score for each class\n const score = scores[i][j]; // get score for current position\n if (score > config.object.minConfidence && j !== 61) {\n const cx = (0.5 + Math.trunc(i % baseSize)) / baseSize; // center.x normalized to range 0..1\n const cy = (0.5 + Math.trunc(i / baseSize)) / baseSize; // center.y normalized to range 0..1\n const boxOffset = boxIdx[i].map((a) => a * (baseSize / strideSize / inputSize)); // just grab indexes of features with highest scores\n const [x, y] = [\n cx - (scaleBox / strideSize * boxOffset[0]),\n cy - (scaleBox / strideSize * boxOffset[1]),\n ];\n const [w, h] = [\n cx + (scaleBox / strideSize * boxOffset[2]) - x,\n cy + (scaleBox / strideSize * boxOffset[3]) - y,\n ];\n let boxRaw = [x, y, w, h]; // results normalized to range 0..1\n boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))); // fix out-of-bounds coords\n const box = [ // results normalized to input image pixels\n boxRaw[0] * outputShape[0],\n boxRaw[1] * outputShape[1],\n boxRaw[2] * outputShape[0],\n boxRaw[3] * outputShape[1],\n ];\n const result = {\n id: id++,\n strideSize,\n score: Math.round(100 * score) / 100,\n class: j + 1,\n label: labels[j].label,\n center: [Math.trunc(outputShape[0] * cx), Math.trunc(outputShape[1] * cy)],\n centerRaw: [cx, cy],\n box: box.map((a) => Math.trunc(a)),\n boxRaw,\n };\n results.push(result);\n }\n }\n }\n });\n }\n // deallocate tensors\n res.forEach((t) => tf.dispose(t));\n\n // normally nms is run on raw results, but since boxes need to be calculated this way we skip calulcation of\n // unnecessary boxes and run nms only on good candidates (basically it just does IOU analysis as scores are already filtered)\n const nmsBoxes = results.map((a) => a.boxRaw);\n const nmsScores = results.map((a) => a.score);\n let nmsIdx: any[] = [];\n if (nmsBoxes && nmsBoxes.length > 0) {\n const nms = await tf.image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config.object.maxResults, config.object.iouThreshold, config.object.minConfidence);\n nmsIdx = nms.dataSync();\n tf.dispose(nms);\n }\n\n // filter & sort results\n results = results\n .filter((a, idx) => nmsIdx.includes(idx))\n .sort((a, b) => (b.score - a.score));\n\n return results;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n // console.log(skipped, config.object.skipFrames, config.videoOptimized, ((skipped < config.object.skipFrames) && config.videoOptimized && (last.length > 0)));\n if ((skipped < config.object.skipFrames) && config.videoOptimized && (last.length > 0)) {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const outputSize = [image.shape[2], image.shape[1]];\n const resize = tf.image.resizeBilinear(image, [model.inputSize, model.inputSize], false);\n const norm = resize.div(255);\n const transpose = norm.transpose([0, 3, 1, 2]);\n norm.dispose();\n resize.dispose();\n\n let objectT;\n if (!config.profile) {\n if (config.object.enabled) objectT = await model.predict(transpose);\n } else {\n const profileObject = config.object.enabled ? await tf.profile(() => model.predict(transpose)) : {};\n objectT = profileObject.result;\n profile.run('object', profileObject);\n }\n transpose.dispose();\n\n const obj = await process(objectT, model.inputSize, outputSize, config);\n last = obj;\n resolve(obj);\n });\n}\n", "export const labels = [\n { class: 1, label: 'person' },\n { class: 2, label: 'bicycle' },\n { class: 3, label: 'car' },\n { class: 4, label: 'motorcycle' },\n { class: 5, label: 'airplane' },\n { class: 6, label: 'bus' },\n { class: 7, label: 'train' },\n { class: 8, label: 'truck' },\n { class: 9, label: 'boat' },\n { class: 10, label: 'traffic light' },\n { class: 11, label: 'fire hydrant' },\n { class: 12, label: 'stop sign' },\n { class: 13, label: 'parking meter' },\n { class: 14, label: 'bench' },\n { class: 15, label: 'bird' },\n { class: 16, label: 'cat' },\n { class: 17, label: 'dog' },\n { class: 18, label: 'horse' },\n { class: 19, label: 'sheep' },\n { class: 20, label: 'cow' },\n { class: 21, label: 'elephant' },\n { class: 22, label: 'bear' },\n { class: 23, label: 'zebra' },\n { class: 24, label: 'giraffe' },\n { class: 25, label: 'backpack' },\n { class: 26, label: 'umbrella' },\n { class: 27, label: 'handbag' },\n { class: 28, label: 'tie' },\n { class: 29, label: 'suitcase' },\n { class: 30, label: 'frisbee' },\n { class: 31, label: 'skis' },\n { class: 32, label: 'snowboard' },\n { class: 33, label: 'sports ball' },\n { class: 34, label: 'kite' },\n { class: 35, label: 'baseball bat' },\n { class: 36, label: 'baseball glove' },\n { class: 37, label: 'skateboard' },\n { class: 38, label: 'surfboard' },\n { class: 39, label: 'tennis racket' },\n { class: 40, label: 'bottle' },\n { class: 41, label: 'wine glass' },\n { class: 42, label: 'cup' },\n { class: 43, label: 'fork' },\n { class: 44, label: 'knife' },\n { class: 45, label: 'spoon' },\n { class: 46, label: 'bowl' },\n { class: 47, label: 'banana' },\n { class: 48, label: 'apple' },\n { class: 49, label: 'sandwich' },\n { class: 50, label: 'orange' },\n { class: 51, label: 'broccoli' },\n { class: 52, label: 'carrot' },\n { class: 53, label: 'hot dog' },\n { class: 54, label: 'pizza' },\n { class: 55, label: 'donut' },\n { class: 56, label: 'cake' },\n { class: 57, label: 'chair' },\n { class: 58, label: 'couch' },\n { class: 59, label: 'potted plant' },\n { class: 60, label: 'bed' },\n { class: 61, label: 'dining table' },\n { class: 62, label: 'toilet' },\n { class: 63, label: 'tv' },\n { class: 64, label: 'laptop' },\n { class: 65, label: 'mouse' },\n { class: 66, label: 'remote' },\n { class: 67, label: 'keyboard' },\n { class: 68, label: 'cell phone' },\n { class: 69, label: 'microwave' },\n { class: 70, label: 'oven' },\n { class: 71, label: 'toaster' },\n { class: 72, label: 'sink' },\n { class: 73, label: 'refrigerator' },\n { class: 74, label: 'book' },\n { class: 75, label: 'clock' },\n { class: 76, label: 'vase' },\n { class: 77, label: 'scissors' },\n { class: 78, label: 'teddy bear' },\n { class: 79, label: 'hair drier' },\n { class: 80, label: 'toothbrush' },\n];\n", "export const body = (res) => {\n if (!res) return [];\n const gestures: Array<{ body: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n // raising hands\n const leftWrist = res[i].keypoints.find((a) => (a.part === 'leftWrist'));\n const rightWrist = res[i].keypoints.find((a) => (a.part === 'rightWrist'));\n const nose = res[i].keypoints.find((a) => (a.part === 'nose'));\n if (nose && leftWrist && rightWrist && (leftWrist.position.y < nose.position.y) && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'i give up' });\n else if (nose && leftWrist && (leftWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise left hand' });\n else if (nose && rightWrist && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise right hand' });\n\n // leaning\n const leftShoulder = res[i].keypoints.find((a) => (a.part === 'leftShoulder'));\n const rightShoulder = res[i].keypoints.find((a) => (a.part === 'rightShoulder'));\n if (leftShoulder && rightShoulder) gestures.push({ body: i, gesture: `leaning ${(leftShoulder.position.y > rightShoulder.position.y) ? 'left' : 'right'}` });\n }\n return gestures;\n};\n\nexport const face = (res) => {\n if (!res) return [];\n const gestures: Array<{ face: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n if (res[i].mesh && res[i].mesh.length > 0) {\n const eyeFacing = res[i].mesh[33][2] - res[i].mesh[263][2];\n if (Math.abs(eyeFacing) < 10) gestures.push({ face: i, gesture: 'facing center' });\n else gestures.push({ face: i, gesture: `facing ${eyeFacing < 0 ? 'left' : 'right'}` });\n const openLeft = Math.abs(res[i].mesh[374][1] - res[i].mesh[386][1]) / Math.abs(res[i].mesh[443][1] - res[i].mesh[450][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openLeft < 0.2) gestures.push({ face: i, gesture: 'blink left eye' });\n const openRight = Math.abs(res[i].mesh[145][1] - res[i].mesh[159][1]) / Math.abs(res[i].mesh[223][1] - res[i].mesh[230][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openRight < 0.2) gestures.push({ face: i, gesture: 'blink right eye' });\n const mouthOpen = Math.min(100, 500 * Math.abs(res[i].mesh[13][1] - res[i].mesh[14][1]) / Math.abs(res[i].mesh[10][1] - res[i].mesh[152][1]));\n if (mouthOpen > 10) gestures.push({ face: i, gesture: `mouth ${Math.trunc(mouthOpen)}% open` });\n const chinDepth = res[i].mesh[152][2];\n if (Math.abs(chinDepth) > 10) gestures.push({ face: i, gesture: `head ${chinDepth < 0 ? 'up' : 'down'}` });\n }\n }\n return gestures;\n};\n\nexport const iris = (res) => {\n if (!res) return [];\n const gestures: Array<{ iris: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n if (!res[i].annotations || !res[i].annotations.leftEyeIris || !res[i].annotations.rightEyeIris) continue;\n const sizeXLeft = res[i].annotations.leftEyeIris[3][0] - res[i].annotations.leftEyeIris[1][0];\n const sizeYLeft = res[i].annotations.leftEyeIris[4][1] - res[i].annotations.leftEyeIris[2][1];\n const areaLeft = Math.abs(sizeXLeft * sizeYLeft);\n\n const sizeXRight = res[i].annotations.rightEyeIris[3][0] - res[i].annotations.rightEyeIris[1][0];\n const sizeYRight = res[i].annotations.rightEyeIris[4][1] - res[i].annotations.rightEyeIris[2][1];\n const areaRight = Math.abs(sizeXRight * sizeYRight);\n\n let center = false;\n const difference = Math.abs(areaLeft - areaRight) / Math.max(areaLeft, areaRight);\n if (difference < 0.25) {\n center = true;\n gestures.push({ iris: i, gesture: 'facing center' });\n }\n\n const rightIrisCenterX = Math.abs(res[i].mesh[33][0] - res[i].annotations.rightEyeIris[0][0]) / res[i].annotations.rightEyeIris[0][0];\n const leftIrisCenterX = Math.abs(res[i].mesh[263][0] - res[i].annotations.leftEyeIris[0][0]) / res[i].annotations.leftEyeIris[0][0];\n if (leftIrisCenterX > 0.033 || rightIrisCenterX > 0.033) center = false;\n if (leftIrisCenterX > 0.033) gestures.push({ iris: i, gesture: 'looking right' });\n if (rightIrisCenterX > 0.033) gestures.push({ iris: i, gesture: 'looking left' });\n\n const rightIrisCenterY = Math.abs(res[i].mesh[145][1] - res[i].annotations.rightEyeIris[0][1]) / res[i].annotations.rightEyeIris[0][1];\n const leftIrisCenterY = Math.abs(res[i].mesh[374][1] - res[i].annotations.leftEyeIris[0][1]) / res[i].annotations.leftEyeIris[0][1];\n if (leftIrisCenterY < 0.015 || rightIrisCenterY < 0.015 || leftIrisCenterY > 0.030 || rightIrisCenterY > 0.030) center = false;\n if (leftIrisCenterY < 0.015 || rightIrisCenterY < 0.015) gestures.push({ iris: i, gesture: 'looking down' });\n if (leftIrisCenterY > 0.030 || rightIrisCenterY > 0.030) gestures.push({ iris: i, gesture: 'looking up' });\n\n // still center;\n if (center) gestures.push({ iris: i, gesture: 'looking center' });\n }\n return gestures;\n};\n\nexport const hand = (res) => {\n if (!res) return [];\n const gestures: Array<{ hand: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n const fingers: Array<{ name: string, position: number }> = [];\n for (const [finger, pos] of Object.entries(res[i]['annotations'])) {\n if (finger !== 'palmBase' && Array.isArray(pos)) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger\n }\n if (fingers && fingers.length > 0) {\n const closest = fingers.reduce((best, a) => (best.position[2] < a.position[2] ? best : a));\n const highest = fingers.reduce((best, a) => (best.position[1] < a.position[1] ? best : a));\n gestures.push({ hand: i, gesture: `${closest.name} forward ${highest.name} up` });\n }\n }\n return gestures;\n};\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as fxImage from './imagefx';\n\nconst maxSize = 2048;\n// internal temp canvases\nlet inCanvas;\nlet outCanvas;\n// instance of fximage\nlet fx;\n\n// process input image and return tensor\n// input can be tensor, imagedata, htmlimageelement, htmlvideoelement\n// input is resized and run through imagefx filter\nexport function process(input, config): { tensor: typeof tf.Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement } {\n let tensor;\n if (!input) throw new Error('Human: Input is missing');\n // sanity checks since different browsers do not implement all dom elements\n if (\n !(input instanceof tf.Tensor)\n && !(typeof Image !== 'undefined' && input instanceof Image)\n && !(typeof ImageData !== 'undefined' && input instanceof ImageData)\n && !(typeof ImageBitmap !== 'undefined' && input instanceof ImageBitmap)\n && !(typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n && !(typeof HTMLMediaElement !== 'undefined' && input instanceof HTMLMediaElement)\n && !(typeof HTMLVideoElement !== 'undefined' && input instanceof HTMLVideoElement)\n && !(typeof HTMLCanvasElement !== 'undefined' && input instanceof HTMLCanvasElement)\n && !(typeof OffscreenCanvas !== 'undefined' && input instanceof OffscreenCanvas)\n ) {\n throw new Error('Human: Input type is not recognized');\n }\n if (input instanceof tf.Tensor) {\n // if input is tensor, use as-is\n if (input.shape && input.shape.length === 4 && input.shape[0] === 1 && input.shape[3] === 3) tensor = tf.clone(input);\n else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${input.shape}`);\n } else {\n // check if resizing will be needed\n const originalWidth = input['naturalWidth'] || input['videoWidth'] || input['width'] || (input['shape'] && (input['shape'][1] > 0));\n const originalHeight = input['naturalHeight'] || input['videoHeight'] || input['height'] || (input['shape'] && (input['shape'][2] > 0));\n let targetWidth = originalWidth;\n let targetHeight = originalHeight;\n if (targetWidth > maxSize) {\n targetWidth = maxSize;\n targetHeight = targetWidth * originalHeight / originalWidth;\n }\n if (targetHeight > maxSize) {\n targetHeight = maxSize;\n targetWidth = targetHeight * originalWidth / originalHeight;\n }\n\n // create our canvas and resize it if needed\n if (config.filter.width > 0) targetWidth = config.filter.width;\n else if (config.filter.height > 0) targetWidth = originalWidth * (config.filter.height / originalHeight);\n if (config.filter.height > 0) targetHeight = config.filter.height;\n else if (config.filter.width > 0) targetHeight = originalHeight * (config.filter.width / originalWidth);\n if (!targetWidth || !targetHeight) throw new Error('Human: Input cannot determine dimension');\n if (!inCanvas || (inCanvas?.width !== targetWidth) || (inCanvas?.height !== targetHeight)) {\n inCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n if (inCanvas?.width !== targetWidth) inCanvas.width = targetWidth;\n if (inCanvas?.height !== targetHeight) inCanvas.height = targetHeight;\n }\n\n // draw input to our canvas\n const ctx = inCanvas.getContext('2d');\n if (input instanceof ImageData) {\n ctx.putImageData(input, 0, 0);\n } else {\n if (config.filter.flip && typeof ctx.translate !== 'undefined') {\n ctx.translate(originalWidth, 0);\n ctx.scale(-1, 1);\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n ctx.setTransform(1, 0, 0, 1, 0, 0); // resets transforms to defaults\n } else {\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n }\n }\n\n // imagefx transforms using gl\n if (config.filter.enabled) {\n if (!fx || !outCanvas || (inCanvas.width !== outCanvas.width) || (inCanvas?.height !== outCanvas?.height)) {\n outCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(inCanvas?.width, inCanvas?.height) : document.createElement('canvas');\n if (outCanvas?.width !== inCanvas?.width) outCanvas.width = inCanvas?.width;\n if (outCanvas?.height !== inCanvas?.height) outCanvas.height = inCanvas?.height;\n // log('created FX filter');\n fx = tf.ENV.flags.IS_BROWSER ? new fxImage.GLImageFilter({ canvas: outCanvas }) : null; // && (typeof document !== 'undefined')\n }\n if (!fx) return { tensor: null, canvas: inCanvas };\n fx.reset();\n fx.addFilter('brightness', config.filter.brightness); // must have at least one filter enabled\n if (config.filter.contrast !== 0) fx.addFilter('contrast', config.filter.contrast);\n if (config.filter.sharpness !== 0) fx.addFilter('sharpen', config.filter.sharpness);\n if (config.filter.blur !== 0) fx.addFilter('blur', config.filter.blur);\n if (config.filter.saturation !== 0) fx.addFilter('saturation', config.filter.saturation);\n if (config.filter.hue !== 0) fx.addFilter('hue', config.filter.hue);\n if (config.filter.negative) fx.addFilter('negative');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.vintage) fx.addFilter('brownie');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.kodachrome) fx.addFilter('kodachrome');\n if (config.filter.technicolor) fx.addFilter('technicolor');\n if (config.filter.polaroid) fx.addFilter('polaroid');\n if (config.filter.pixelate !== 0) fx.addFilter('pixelate', config.filter.pixelate);\n fx.apply(inCanvas);\n // read pixel data\n /*\n const gl = outCanvas.getContext('webgl');\n if (gl) {\n const glBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 4);\n const pixBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 3);\n gl.readPixels(0, 0, outCanvas.width, outCanvas.height, gl.RGBA, gl.UNSIGNED_BYTE, glBuffer);\n // gl returns rbga while we only need rgb, so discarding alpha channel\n // gl returns starting point as lower left, so need to invert vertical\n let i = 0;\n for (let y = outCanvas.height - 1; y >= 0; y--) {\n for (let x = 0; x < outCanvas.width; x++) {\n const index = (x + y * outCanvas.width) * 4;\n pixBuffer[i++] = glBuffer[index + 0];\n pixBuffer[i++] = glBuffer[index + 1];\n pixBuffer[i++] = glBuffer[index + 2];\n }\n }\n outCanvas.data = pixBuffer;\n }\n */\n } else {\n outCanvas = inCanvas;\n if (fx) fx = null;\n }\n\n // create tensor from image\n let pixels;\n if (outCanvas.data) { // if we have data, just convert to tensor\n const shape = [outCanvas.height, outCanvas.width, 3];\n pixels = tf.tensor3d(outCanvas.data, shape, 'int32');\n } else if (outCanvas instanceof ImageData) { // if input is imagedata, just use it\n pixels = tf.browser.fromPixels(outCanvas);\n } else if (config.backend === 'webgl' || config.backend === 'humangl') { // tf kernel-optimized method to get imagedata\n // we can use canvas as-is as it already has a context, so we do a silly one more canvas\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n pixels = tf.browser.fromPixels(tempCanvas);\n } else { // cpu and wasm kernel does not implement efficient fromPixels method\n // we can use canvas as-is as it already has a context, so we do a silly one more canvas\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n const data = tempCtx?.getImageData(0, 0, targetWidth, targetHeight);\n pixels = tf.browser.fromPixels(data);\n }\n const casted = pixels.toFloat();\n tensor = casted.expandDims(0);\n pixels.dispose();\n casted.dispose();\n }\n const canvas = config.filter.return ? outCanvas : null;\n return { tensor, canvas };\n}\n", "/*\nWebGLImageFilter - MIT Licensed\n2013, Dominic Szablewski - phoboslab.org\n\n*/\n\nfunction GLProgram(gl, vertexSource, fragmentSource) {\n const _collect = function (source, prefix, collection) {\n const r = new RegExp('\\\\b' + prefix + ' \\\\w+ (\\\\w+)', 'ig');\n source.replace(r, (match, name) => {\n collection[name] = 0;\n return match;\n });\n };\n\n const _compile = function (source, type) {\n const shader = gl.createShader(type);\n gl.shaderSource(shader, source);\n gl.compileShader(shader);\n if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) throw new Error('Filter: GL compile failed', gl.getShaderInfoLog(shader));\n return shader;\n };\n\n this.uniform = {};\n this.attribute = {};\n const _vsh = _compile(vertexSource, gl.VERTEX_SHADER);\n const _fsh = _compile(fragmentSource, gl.FRAGMENT_SHADER);\n this.id = gl.createProgram();\n gl.attachShader(this.id, _vsh);\n gl.attachShader(this.id, _fsh);\n gl.linkProgram(this.id);\n\n if (!gl.getProgramParameter(this.id, gl.LINK_STATUS)) throw new Error('Filter: GL link failed', gl.getProgramInfoLog(this.id));\n\n gl.useProgram(this.id);\n // Collect attributes\n _collect(vertexSource, 'attribute', this.attribute);\n for (const a in this.attribute) this.attribute[a] = gl.getAttribLocation(this.id, a);\n // Collect uniforms\n _collect(vertexSource, 'uniform', this.uniform);\n _collect(fragmentSource, 'uniform', this.uniform);\n for (const u in this.uniform) this.uniform[u] = gl.getUniformLocation(this.id, u);\n}\n\n// export const GLImageFilter = function (params) {\nexport function GLImageFilter(params) {\n if (!params) params = { };\n let _drawCount = 0;\n let _sourceTexture = null;\n let _lastInChain = false;\n let _currentFramebufferIndex = -1;\n let _tempFramebuffers = [null, null];\n let _filterChain = [];\n let _width = -1;\n let _height = -1;\n let _vertexBuffer = null;\n let _currentProgram = null;\n const _filter = {};\n const _canvas = params.canvas || document.createElement('canvas');\n // key is the shader program source, value is the compiled program\n const _shaderProgramCache = { };\n const DRAW = { INTERMEDIATE: 1 };\n const gl = _canvas.getContext('webgl');\n if (!gl) throw new Error('Filter: getContext() failed');\n\n this.addFilter = function (name) {\n // eslint-disable-next-line prefer-rest-params\n const args = Array.prototype.slice.call(arguments, 1);\n const filter = _filter[name];\n _filterChain.push({ func: filter, args });\n };\n\n this.reset = function () {\n _filterChain = [];\n };\n\n const _resize = function (width, height) {\n // Same width/height? Nothing to do here\n if (width === _width && height === _height) { return; }\n _canvas.width = width;\n _width = width;\n _canvas.height = height;\n _height = height;\n // Create the context if we don't have it yet\n if (!_vertexBuffer) {\n // Create the vertex buffer for the two triangles [x, y, u, v] * 6\n const vertices = new Float32Array([\n -1, -1, 0, 1, 1, -1, 1, 1, -1, 1, 0, 0,\n -1, 1, 0, 0, 1, -1, 1, 1, 1, 1, 1, 0,\n ]);\n // eslint-disable-next-line no-unused-expressions\n (_vertexBuffer = gl.createBuffer(), gl.bindBuffer(gl.ARRAY_BUFFER, _vertexBuffer));\n gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);\n gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);\n }\n gl.viewport(0, 0, _width, _height);\n // Delete old temp framebuffers\n _tempFramebuffers = [null, null];\n };\n\n const _createFramebufferTexture = function (width, height) {\n const fbo = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);\n const renderbuffer = gl.createRenderbuffer();\n gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n return { fbo, texture };\n };\n\n const _getTempFramebuffer = function (index) {\n _tempFramebuffers[index] = _tempFramebuffers[index] || _createFramebufferTexture(_width, _height);\n return _tempFramebuffers[index];\n };\n\n const _draw = function (flags = null) {\n let source = null;\n let target = null;\n let flipY = false;\n // Set up the source\n if (_drawCount === 0) {\n // First draw call - use the source texture\n source = _sourceTexture;\n } else {\n // All following draw calls use the temp buffer last drawn to\n source = _getTempFramebuffer(_currentFramebufferIndex)?.texture;\n }\n _drawCount++;\n // Set up the target\n if (_lastInChain && !(flags & DRAW.INTERMEDIATE)) {\n // Last filter in our chain - draw directly to the WebGL Canvas. We may\n // also have to flip the image vertically now\n target = null;\n flipY = _drawCount % 2 === 0;\n } else {\n // Intermediate draw call - get a temp buffer to draw to\n _currentFramebufferIndex = (_currentFramebufferIndex + 1) % 2;\n target = _getTempFramebuffer(_currentFramebufferIndex)?.fbo;\n }\n // Bind the source and target and draw the two triangles\n gl.bindTexture(gl.TEXTURE_2D, source);\n gl.bindFramebuffer(gl.FRAMEBUFFER, target);\n gl.uniform1f(_currentProgram.uniform.flipY, (flipY ? -1 : 1));\n gl.drawArrays(gl.TRIANGLES, 0, 6);\n };\n\n this.apply = function (image) {\n _resize(image.width, image.height);\n _drawCount = 0;\n // Create the texture for the input image if we haven't yet\n if (!_sourceTexture) _sourceTexture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, _sourceTexture);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);\n // No filters? Just draw\n if (_filterChain.length === 0) {\n // const program = _compileShader(SHADER.FRAGMENT_IDENTITY);\n _draw();\n return _canvas;\n }\n for (let i = 0; i < _filterChain.length; i++) {\n _lastInChain = (i === _filterChain.length - 1);\n const f = _filterChain[i];\n f.func.apply(this, f.args || []);\n }\n return _canvas;\n };\n\n const _compileShader = function (fragmentSource) {\n if (_shaderProgramCache[fragmentSource]) {\n _currentProgram = _shaderProgramCache[fragmentSource];\n gl.useProgram(_currentProgram.id);\n return _currentProgram;\n }\n // Compile shaders\n const SHADER = {};\n SHADER.VERTEX_IDENTITY = [\n 'precision highp float;',\n 'attribute vec2 pos;',\n 'attribute vec2 uv;',\n 'varying vec2 vUv;',\n 'uniform float flipY;',\n 'void main(void) {',\n 'vUv = uv;',\n 'gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);',\n '}',\n ].join('\\n');\n SHADER.FRAGMENT_IDENTITY = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'void main(void) {',\n 'gl_FragColor = texture2D(texture, vUv);',\n '}',\n ].join('\\n');\n _currentProgram = new GLProgram(gl, SHADER.VERTEX_IDENTITY, fragmentSource);\n const floatSize = Float32Array.BYTES_PER_ELEMENT;\n const vertSize = 4 * floatSize;\n gl.enableVertexAttribArray(_currentProgram.attribute.pos);\n gl.vertexAttribPointer(_currentProgram.attribute.pos, 2, gl.FLOAT, false, vertSize, 0 * floatSize);\n gl.enableVertexAttribArray(_currentProgram.attribute.uv);\n gl.vertexAttribPointer(_currentProgram.attribute.uv, 2, gl.FLOAT, false, vertSize, 2 * floatSize);\n _shaderProgramCache[fragmentSource] = _currentProgram;\n return _currentProgram;\n };\n\n // -------------------------------------------------------------------------\n // Color Matrix Filter\n _filter.colorMatrix = function (matrix) {\n // Create a Float32 Array and normalize the offset component to 0-1\n const m = new Float32Array(matrix);\n m[4] /= 255;\n m[9] /= 255;\n m[14] /= 255;\n m[19] /= 255;\n // Can we ignore the alpha value? Makes things a bit faster.\n const shader = (m[18] === 1 && m[3] === 0 && m[8] === 0 && m[13] === 0 && m[15] === 0 && m[16] === 0 && m[17] === 0 && m[19] === 0)\n ? _filter.colorMatrix.SHADER.WITHOUT_ALPHA\n : _filter.colorMatrix.SHADER.WITH_ALPHA;\n const program = _compileShader(shader);\n gl.uniform1fv(program.uniform.m, m);\n _draw();\n };\n _filter.colorMatrix.SHADER = {};\n _filter.colorMatrix.SHADER.WITH_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];',\n 'gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];',\n '}',\n ].join('\\n');\n _filter.colorMatrix.SHADER.WITHOUT_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];',\n 'gl_FragColor.a = c.a;',\n '}',\n ].join('\\n');\n\n _filter.brightness = function (brightness) {\n const b = (brightness || 0) + 1;\n _filter.colorMatrix([\n b, 0, 0, 0, 0,\n 0, b, 0, 0, 0,\n 0, 0, b, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.saturation = function (amount) {\n const x = (amount || 0) * 2 / 3 + 1;\n const y = ((x - 1) * -0.5);\n _filter.colorMatrix([\n x, y, y, 0, 0,\n y, x, y, 0, 0,\n y, y, x, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturate = function () {\n _filter.saturation(-1);\n };\n\n _filter.contrast = function (amount) {\n const v = (amount || 0) + 1;\n const o = -128 * (v - 1);\n\n _filter.colorMatrix([\n v, 0, 0, 0, o,\n 0, v, 0, 0, o,\n 0, 0, v, 0, o,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.negative = function () {\n _filter.contrast(-2);\n };\n\n _filter.hue = function (rotation) {\n rotation = (rotation || 0) / 180 * Math.PI;\n const cos = Math.cos(rotation);\n const sin = Math.sin(rotation);\n const lumR = 0.213;\n const lumG = 0.715;\n const lumB = 0.072;\n\n _filter.colorMatrix([\n lumR + cos * (1 - lumR) + sin * (-lumR), lumG + cos * (-lumG) + sin * (-lumG), lumB + cos * (-lumB) + sin * (1 - lumB), 0, 0,\n lumR + cos * (-lumR) + sin * (0.143), lumG + cos * (1 - lumG) + sin * (0.140), lumB + cos * (-lumB) + sin * (-0.283), 0, 0,\n lumR + cos * (-lumR) + sin * (-(1 - lumR)), lumG + cos * (-lumG) + sin * (lumG), lumB + cos * (1 - lumB) + sin * (lumB), 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturateLuminance = function () {\n _filter.colorMatrix([\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.sepia = function () {\n _filter.colorMatrix([\n 0.393, 0.7689999, 0.18899999, 0, 0,\n 0.349, 0.6859999, 0.16799999, 0, 0,\n 0.272, 0.5339999, 0.13099999, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.brownie = function () {\n _filter.colorMatrix([\n 0.5997023498159715, 0.34553243048391263, -0.2708298674538042, 0, 47.43192855600873,\n -0.037703249837783157, 0.8609577587992641, 0.15059552388459913, 0, -36.96841498319127,\n 0.24113635128153335, -0.07441037908422492, 0.44972182064877153, 0, -7.562075277591283,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.vintagePinhole = function () {\n _filter.colorMatrix([\n 0.6279345635605994, 0.3202183420819367, -0.03965408211312453, 0, 9.651285835294123,\n 0.02578397704808868, 0.6441188644374771, 0.03259127616149294, 0, 7.462829176470591,\n 0.0466055556782719, -0.0851232987247891, 0.5241648018700465, 0, 5.159190588235296,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.kodachrome = function () {\n _filter.colorMatrix([\n 1.1285582396593525, -0.3967382283601348, -0.03992559172921793, 0, 63.72958762196502,\n -0.16404339962244616, 1.0835251566291304, -0.05498805115633132, 0, 24.732407896706203,\n -0.16786010706155763, -0.5603416277695248, 1.6014850761964943, 0, 35.62982807460946,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.technicolor = function () {\n _filter.colorMatrix([\n 1.9125277891456083, -0.8545344976951645, -0.09155508482755585, 0, 11.793603434377337,\n -0.3087833385928097, 1.7658908555458428, -0.10601743074722245, 0, -70.35205161461398,\n -0.231103377548616, -0.7501899197440212, 1.847597816108189, 0, 30.950940869491138,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.polaroid = function () {\n _filter.colorMatrix([\n 1.438, -0.062, -0.062, 0, 0,\n -0.122, 1.378, -0.122, 0, 0,\n -0.016, -0.016, 1.483, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.shiftToBGR = function () {\n _filter.colorMatrix([\n 0, 0, 1, 0, 0,\n 0, 1, 0, 0, 0,\n 1, 0, 0, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Convolution Filter\n _filter.convolution = function (matrix) {\n const m = new Float32Array(matrix);\n const pixelSizeX = 1 / _width;\n const pixelSizeY = 1 / _height;\n const program = _compileShader(_filter.convolution.SHADER);\n gl.uniform1fv(program.uniform.m, m);\n gl.uniform2f(program.uniform.px, pixelSizeX, pixelSizeY);\n _draw();\n };\n\n _filter.convolution.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'uniform float m[9];',\n 'void main(void) {',\n 'vec4 c11 = texture2D(texture, vUv - px);', // top left\n 'vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));', // top center\n 'vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));', // top right\n 'vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );', // mid left\n 'vec4 c22 = texture2D(texture, vUv);', // mid center\n 'vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );', // mid right\n 'vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );', // bottom left\n 'vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );', // bottom center\n 'vec4 c33 = texture2D(texture, vUv + px );', // bottom right\n 'gl_FragColor = ',\n 'c11 * m[0] + c12 * m[1] + c22 * m[2] +',\n 'c21 * m[3] + c22 * m[4] + c23 * m[5] +',\n 'c31 * m[6] + c32 * m[7] + c33 * m[8];',\n 'gl_FragColor.a = c22.a;',\n '}',\n ].join('\\n');\n\n _filter.detectEdges = function () {\n _filter.convolution.call(this, [\n 0, 1, 0,\n 1, -4, 1,\n 0, 1, 0,\n ]);\n };\n\n _filter.sobelX = function () {\n _filter.convolution.call(this, [\n -1, 0, 1,\n -2, 0, 2,\n -1, 0, 1,\n ]);\n };\n\n _filter.sobelY = function () {\n _filter.convolution.call(this, [\n -1, -2, -1,\n 0, 0, 0,\n 1, 2, 1,\n ]);\n };\n\n _filter.sharpen = function (amount) {\n const a = amount || 1;\n _filter.convolution.call(this, [\n 0, -1 * a, 0,\n -1 * a, 1 + 4 * a, -1 * a,\n 0, -1 * a, 0,\n ]);\n };\n\n _filter.emboss = function (size) {\n const s = size || 1;\n _filter.convolution.call(this, [\n -2 * s, -1 * s, 0,\n -1 * s, 1, 1 * s,\n 0, 1 * s, 2 * s,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Blur Filter\n _filter.blur = function (size) {\n const blurSizeX = (size / 7) / _width;\n const blurSizeY = (size / 7) / _height;\n const program = _compileShader(_filter.blur.SHADER);\n // Vertical\n gl.uniform2f(program.uniform.px, 0, blurSizeY);\n _draw(DRAW.INTERMEDIATE);\n // Horizontal\n gl.uniform2f(program.uniform.px, blurSizeX, 0);\n _draw();\n };\n\n _filter.blur.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv )*0.159576912161;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;',\n '}',\n ].join('\\n');\n\n // -------------------------------------------------------------------------\n // Pixelate Filter\n _filter.pixelate = function (size) {\n const blurSizeX = (size) / _width;\n const blurSizeY = (size) / _height;\n const program = _compileShader(_filter.pixelate.SHADER);\n // Horizontal\n gl.uniform2f(program.uniform.size, blurSizeX, blurSizeY);\n _draw();\n };\n\n _filter.pixelate.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform vec2 size;',\n 'uniform sampler2D texture;',\n 'vec2 pixelate(vec2 coord, vec2 size) {',\n 'return floor( coord / size ) * size;',\n '}',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'vec2 coord = pixelate(vUv, size);',\n 'gl_FragColor += texture2D(texture, coord);',\n '}',\n ].join('\\n');\n}\n", "import { defaults } from '../config';\nimport { TRI468 as triangulation } from '../blazeface/coords';\nimport { mergeDeep } from '../helpers';\n\n/**\n * Draw Options\n * Accessed via `human.draw.options` or provided per each draw method as the drawOptions optional parameter\n * -color: draw color\n * -labelColor: color for labels\n * -shadowColor: optional shadow color for labels\n * -font: font for labels\n * -lineHeight: line height for labels, used for multi-line labels,\n * -lineWidth: width of any lines,\n * -pointSize: size of any point,\n * -roundRect: for boxes, round corners by this many pixels,\n * -drawPoints: should points be drawn,\n * -drawLabels: should labels be drawn,\n * -drawBoxes: should boxes be drawn,\n * -drawPolygons: should polygons be drawn,\n * -fillPolygons: should drawn polygons be filled,\n * -useDepth: use z-axis coordinate as color shade,\n * -useCurves: draw polygons as cures or as lines,\n * -bufferedOutput: experimental: allows to call draw methods multiple times for each detection and interpolate results between results thus achieving smoother animations\n * -useRawBoxes: Boolean: internal: use non-normalized coordinates when performing draw methods,\n */\nexport interface DrawOptions {\n color: string,\n labelColor: string,\n shadowColor: string,\n font: string,\n lineHeight: number,\n lineWidth: number,\n pointSize: number,\n roundRect: number,\n drawPoints: Boolean,\n drawLabels: Boolean,\n drawBoxes: Boolean,\n drawPolygons: Boolean,\n fillPolygons: Boolean,\n useDepth: Boolean,\n useCurves: Boolean,\n bufferedOutput: Boolean,\n useRawBoxes: Boolean,\n calculateHandBox: Boolean,\n}\n\nexport const options: DrawOptions = {\n color: 'rgba(173, 216, 230, 0.3)', // 'lightblue' with light alpha channel\n labelColor: 'rgba(173, 216, 230, 1)', // 'lightblue' with dark alpha channel\n shadowColor: 'black',\n font: 'small-caps 16px \"Segoe UI\"',\n lineHeight: 24,\n lineWidth: 6,\n pointSize: 2,\n roundRect: 28,\n drawPoints: false,\n drawLabels: true,\n drawBoxes: false,\n drawPolygons: true,\n fillPolygons: false,\n useDepth: true,\n useCurves: false,\n bufferedOutput: false,\n useRawBoxes: false,\n calculateHandBox: true,\n};\n\nfunction point(ctx, x, y, z = 0, localOptions) {\n ctx.fillStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.beginPath();\n ctx.arc(x, y, localOptions.pointSize, 0, 2 * Math.PI);\n ctx.fill();\n}\n\nfunction rect(ctx, x, y, width, height, localOptions) {\n ctx.beginPath();\n if (localOptions.useCurves) {\n const cx = (x + x + width) / 2;\n const cy = (y + y + height) / 2;\n ctx.ellipse(cx, cy, width / 2, height / 2, 0, 0, 2 * Math.PI);\n } else {\n ctx.lineWidth = localOptions.lineWidth;\n ctx.moveTo(x + localOptions.roundRect, y);\n ctx.lineTo(x + width - localOptions.roundRect, y);\n ctx.quadraticCurveTo(x + width, y, x + width, y + localOptions.roundRect);\n ctx.lineTo(x + width, y + height - localOptions.roundRect);\n ctx.quadraticCurveTo(x + width, y + height, x + width - localOptions.roundRect, y + height);\n ctx.lineTo(x + localOptions.roundRect, y + height);\n ctx.quadraticCurveTo(x, y + height, x, y + height - localOptions.roundRect);\n ctx.lineTo(x, y + localOptions.roundRect);\n ctx.quadraticCurveTo(x, y, x + localOptions.roundRect, y);\n ctx.closePath();\n }\n ctx.stroke();\n}\n\nfunction lines(ctx, points: number[] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n ctx.beginPath();\n ctx.moveTo(points[0][0], points[0][1]);\n for (const pt of points) {\n ctx.strokeStyle = localOptions.useDepth && pt[2] ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.3)` : localOptions.color;\n ctx.fillStyle = localOptions.useDepth && pt[2] ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.3)` : localOptions.color;\n ctx.lineTo(pt[0], parseInt(pt[1]));\n }\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nfunction curves(ctx, points: number[] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n if (!localOptions.useCurves || points.length <= 2) {\n lines(ctx, points, localOptions);\n return;\n }\n ctx.moveTo(points[0][0], points[0][1]);\n for (let i = 0; i < points.length - 2; i++) {\n const xc = (points[i][0] + points[i + 1][0]) / 2;\n const yc = (points[i][1] + points[i + 1][1]) / 2;\n ctx.quadraticCurveTo(points[i][0], points[i][1], xc, yc);\n }\n ctx.quadraticCurveTo(points[points.length - 2][0], points[points.length - 2][1], points[points.length - 1][0], points[points.length - 1][1]);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport async function gesture(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.font = localOptions.font;\n ctx.fillStyle = localOptions.color;\n let i = 1;\n for (let j = 0; j < result.length; j++) {\n let where:any[] = [];\n let what:any[] = [];\n [where, what] = Object.entries(result[j]);\n if ((what.length > 1) && (what[1].length > 0)) {\n const person = where[1] > 0 ? `#${where[1]}` : '';\n const label = `${where[0]} ${person}: ${what[1]}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, 8, 2 + (i * localOptions.lineHeight));\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, 6, 0 + (i * localOptions.lineHeight));\n i += 1;\n }\n }\n}\n\nexport async function face(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n for (const f of result) {\n ctx.font = localOptions.font;\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n if (localOptions.drawBoxes) {\n if (localOptions.useRawBoxes) rect(ctx, inCanvas.width * f.boxRaw[0], inCanvas.height * f.boxRaw[1], inCanvas.width * f.boxRaw[2], inCanvas.height * f.boxRaw[3], localOptions);\n else rect(ctx, f.box[0], f.box[1], f.box[2], f.box[3], localOptions);\n }\n // silly hack since fillText does not suport new line\n const labels:string[] = [];\n labels.push(`face confidence: ${Math.trunc(100 * f.confidence)}%`);\n if (f.genderConfidence) labels.push(`${f.gender || ''} ${Math.trunc(100 * f.genderConfidence)}% confident`);\n // if (f.genderConfidence) labels.push(f.gender);\n if (f.age) labels.push(`age: ${f.age || ''}`);\n if (f.iris) labels.push(`iris distance: ${f.iris}`);\n if (f.emotion && f.emotion.length > 0) {\n const emotion = f.emotion.map((a) => `${Math.trunc(100 * a.score)}% ${a.emotion}`);\n labels.push(emotion.join(' '));\n }\n if (f.rotation && f.rotation.angle && f.rotation.angle.roll) labels.push(`roll: ${Math.trunc(100 * f.rotation.angle.roll) / 100} yaw:${Math.trunc(100 * f.rotation.angle.yaw) / 100} pitch:${Math.trunc(100 * f.rotation.angle.pitch) / 100}`);\n if (labels.length === 0) labels.push('face');\n ctx.fillStyle = localOptions.color;\n for (let i = labels.length - 1; i >= 0; i--) {\n const x = Math.max(f.box[0], 0);\n const y = i * localOptions.lineHeight + f.box[1];\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(labels[i], x + 5, y + 16);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(labels[i], x + 4, y + 15);\n }\n ctx.lineWidth = 1;\n if (f.mesh && f.mesh.length > 0) {\n if (localOptions.drawPoints) {\n for (const pt of f.mesh) point(ctx, pt[0], pt[1], pt[2], localOptions);\n // for (const pt of f.meshRaw) point(ctx, pt[0] * inCanvas.offsetWidth, pt[1] * inCanvas.offsetHeight, pt[2]);\n }\n if (localOptions.drawPolygons) {\n ctx.lineWidth = 1;\n for (let i = 0; i < triangulation.length / 3; i++) {\n const points = [\n triangulation[i * 3 + 0],\n triangulation[i * 3 + 1],\n triangulation[i * 3 + 2],\n ].map((index) => f.mesh[index]);\n lines(ctx, points, localOptions);\n }\n // iris: array[center, left, top, right, bottom]\n if (f.annotations && f.annotations.leftEyeIris) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.leftEyeIris[3][0] - f.annotations.leftEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.leftEyeIris[4][1] - f.annotations.leftEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.leftEyeIris[0][0], f.annotations.leftEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n if (f.annotations && f.annotations.rightEyeIris) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.rightEyeIris[3][0] - f.annotations.rightEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.rightEyeIris[4][1] - f.annotations.rightEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.rightEyeIris[0][0], f.annotations.rightEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n }\n }\n }\n}\n\nconst lastDrawnPose:any[] = [];\nexport async function body(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n for (let i = 0; i < result.length; i++) {\n // result[i].keypoints = result[i].keypoints.filter((a) => a.score > 0.5);\n if (!lastDrawnPose[i] && localOptions.bufferedOutput) lastDrawnPose[i] = { ...result[i] };\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n ctx.lineWidth = localOptions.lineWidth;\n ctx.font = localOptions.font;\n if (localOptions.drawBoxes) {\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n }\n if (localOptions.drawPoints) {\n for (let pt = 0; pt < result[i].keypoints.length; pt++) {\n ctx.fillStyle = localOptions.useDepth && result[i].keypoints[pt].position.z ? `rgba(${127.5 + (2 * result[i].keypoints[pt].position.z)}, ${127.5 - (2 * result[i].keypoints[pt].position.z)}, 255, 0.5)` : localOptions.color;\n if (localOptions.bufferedOutput) {\n lastDrawnPose[i].keypoints[pt][0] = (lastDrawnPose[i].keypoints[pt][0] + result[i].keypoints[pt].position.x) / 2;\n lastDrawnPose[i].keypoints[pt][1] = (lastDrawnPose[i].keypoints[pt][1] + result[i].keypoints[pt].position.y) / 2;\n point(ctx, lastDrawnPose[i].keypoints[pt][0], lastDrawnPose[i].keypoints[pt][1], 0, localOptions);\n } else {\n point(ctx, result[i].keypoints[pt].position.x, result[i].keypoints[pt].position.y, 0, localOptions);\n }\n }\n }\n if (localOptions.drawLabels) {\n ctx.font = localOptions.font;\n if (result[i].keypoints) {\n for (const pt of result[i].keypoints) {\n ctx.fillStyle = localOptions.useDepth && pt.position.z ? `rgba(${127.5 + (2 * pt.position.z)}, ${127.5 - (2 * pt.position.z)}, 255, 0.5)` : localOptions.color;\n ctx.fillText(`${pt.part} ${Math.trunc(100 * pt.score)}%`, pt.position.x + 4, pt.position.y + 4);\n }\n }\n }\n if (localOptions.drawPolygons && result[i].keypoints) {\n let part;\n const points: any[] = [];\n // shoulder line\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // torso main\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n if (points.length === 4) lines(ctx, points, localOptions); // only draw if we have complete torso\n // leg left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftKnee');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftAnkle');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftHeel');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftFoot');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // leg right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightKnee');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightAnkle');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightHeel');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightFoot');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // arm left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftElbow');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftWrist');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftPalm');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // arm right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightElbow');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightWrist');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightPalm');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // draw all\n }\n }\n}\n\nexport async function hand(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n let box;\n if (!localOptions.calculateHandBox) {\n box = localOptions.useRawBoxes ? h.boxRaw : h.box;\n } else {\n box = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0];\n if (h.landmarks && h.landmarks.length > 0) {\n for (const pt of h.landmarks) {\n if (pt[0] < box[0]) box[0] = pt[0];\n if (pt[1] < box[1]) box[1] = pt[1];\n if (pt[0] > box[2]) box[2] = pt[0];\n if (pt[1] > box[3]) box[3] = pt[1];\n }\n box[2] -= box[0];\n box[3] -= box[1];\n }\n }\n if (localOptions.useRawBoxes) rect(ctx, inCanvas.width * box[0], inCanvas.height * box[1], inCanvas.width * box[2], inCanvas.height * box[3], localOptions);\n else rect(ctx, box[0], box[1], box[2], box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText('hand', box[0] + 3, 1 + box[1] + localOptions.lineHeight, box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText('hand', box[0] + 2, 0 + box[1] + localOptions.lineHeight, box[2]);\n }\n ctx.stroke();\n }\n if (localOptions.drawPoints) {\n if (h.landmarks && h.landmarks.length > 0) {\n for (const pt of h.landmarks) {\n ctx.fillStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.5)` : localOptions.color;\n point(ctx, pt[0], pt[1], 0, localOptions);\n }\n }\n }\n if (localOptions.drawPolygons) {\n const addPart = (part) => {\n if (!part) return;\n for (let i = 0; i < part.length; i++) {\n ctx.lineWidth = localOptions.lineWidth;\n ctx.beginPath();\n ctx.strokeStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * part[i][2])}, ${127.5 - (2 * part[i][2])}, 255, 0.5)` : localOptions.color;\n ctx.moveTo(part[i > 0 ? i - 1 : 0][0], part[i > 0 ? i - 1 : 0][1]);\n ctx.lineTo(part[i][0], part[i][1]);\n ctx.stroke();\n }\n };\n addPart(h.annotations.indexFinger);\n addPart(h.annotations.middleFinger);\n addPart(h.annotations.ringFinger);\n addPart(h.annotations.pinky);\n addPart(h.annotations.thumb);\n // addPart(hand.annotations.palmBase);\n }\n }\n}\n\nexport async function object(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n if (localOptions.useRawBoxes) rect(ctx, inCanvas.width * h.boxRaw[0], inCanvas.height * h.boxRaw[1], inCanvas.width * h.boxRaw[2], inCanvas.height * h.boxRaw[3], localOptions);\n else rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `${Math.round(100 * h.score)}% ${h.label}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\nexport async function canvas(inCanvas: HTMLCanvasElement, outCanvas: HTMLCanvasElement) {\n if (!inCanvas || !outCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement) || !(outCanvas instanceof HTMLCanvasElement)) return;\n const outCtx = inCanvas.getContext('2d');\n outCtx?.drawImage(inCanvas, 0, 0);\n}\n\nexport async function all(inCanvas: HTMLCanvasElement, result:any, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n face(inCanvas, result.face, localOptions);\n body(inCanvas, result.body, localOptions);\n hand(inCanvas, result.hand, localOptions);\n gesture(inCanvas, result.gesture, localOptions);\n object(inCanvas, result.object, localOptions);\n}\n", "/* eslint-disable indent */\n/* eslint-disable no-multi-spaces */\n\n/**\n * Configuration interface definition for **Human** library\n *\n * Contains all configurable parameters\n */\nexport interface Config {\n /** Backend used for TFJS operations */\n backend: null | '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow',\n /** Path to *.wasm files if backend is set to `wasm` */\n wasmPath: string,\n /** Print debug statements to console */\n debug: boolean,\n /** Perform model loading and inference concurrently or sequentially */\n async: boolean,\n /** Collect and print profiling data during inference operations */\n profile: boolean,\n /** Internal: Use aggressive GPU memory deallocator when backend is set to `webgl` or `humangl` */\n deallocate: boolean,\n /** Internal: Run all inference operations in an explicit local scope run to avoid memory leaks */\n scoped: boolean,\n /** Perform additional optimizations when input is video,\n * - must be disabled for images\n * - automatically disabled for Image, ImageData, ImageBitmap and Tensor inputs\n * - skips boundary detection for every `skipFrames` frames specified for each model\n * - while maintaining in-box detection since objects don't change definition as fast */\n videoOptimized: boolean,\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n warmup: 'none' | 'face' | 'full' | 'body',\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are joined to this path\n */\n modelBasePath: string,\n /** Run input through image filters before inference\n * - image filters run with near-zero latency as they are executed on the GPU\n */\n filter: {\n enabled: boolean,\n /** Resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** Resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** Return processed canvas imagedata in result */\n return: boolean,\n /** Flip input as mirror image */\n flip: boolean,\n /** Range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** Range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** Range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** Range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** Range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** Range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** Image negative */\n negative: boolean,\n /** Image sepia colors */\n sepia: boolean,\n /** Image vintage colors */\n vintage: boolean,\n /** Image kodachrome colors */\n kodachrome: boolean,\n /** Image technicolor colors */\n technicolor: boolean,\n /** Image polaroid camera effect */\n polaroid: boolean,\n /** Range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n },\n // type definition end\n\n /** Controlls gesture detection */\n gesture: {\n enabled: boolean,\n },\n /** Controlls and configures all face-specific options:\n * - face detection, face mesh detection, age, gender, emotion detection and face description\n * Parameters:\n * - enabled: true/false\n * - modelPath: path for individual face model\n * - rotation: use calculated rotated face image or just box with rotation as-is, false means higher performance, but incorrect mesh mapping on higher face angles\n * - maxFaces: maximum number of faces detected in the input, should be set to the minimum number for performance\n * - skipFrames: how many frames to go without re-running the face detector and just run modified face mesh analysis, only valid if videoOptimized is set to true\n * - skipInitial: if previous detection resulted in no faces detected, should skipFrames be reset immediately to force new detection cycle\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: threshold for deciding whether boxes overlap too much in non-maximum suppression\n * - scoreThreshold: threshold for deciding when to remove boxes based on score in non-maximum suppression\n * - return extracted face as tensor for futher user processing\n */\n face: {\n enabled: boolean,\n detector: {\n modelPath: string,\n rotation: boolean,\n maxFaces: number,\n skipFrames: number,\n skipInitial: boolean,\n minConfidence: number,\n iouThreshold: number,\n scoreThreshold: number,\n return: boolean,\n },\n mesh: {\n enabled: boolean,\n modelPath: string,\n },\n iris: {\n enabled: boolean,\n modelPath: string,\n },\n description: {\n enabled: boolean,\n modelPath: string,\n skipFrames: number,\n },\n age: {\n enabled: boolean,\n modelPath: string,\n skipFrames: number,\n },\n gender: {\n enabled: boolean,\n minConfidence: number,\n modelPath: string,\n skipFrames: number,\n },\n emotion: {\n enabled: boolean,\n minConfidence: number,\n skipFrames: number,\n modelPath: string,\n },\n embedding: {\n enabled: boolean,\n modelPath: string,\n },\n },\n /** Controlls and configures all body detection specific options\n * - enabled: true/false\n * - modelPath: paths for both hand detector model and hand skeleton model\n * - maxDetections: maximum number of people detected in the input, should be set to the minimum number for performance\n * - scoreThreshold: threshold for deciding when to remove people based on score in non-maximum suppression\n * - nmsRadius: threshold for deciding whether body parts overlap too much in non-maximum suppression\n */\n body: {\n enabled: boolean,\n modelPath: string,\n maxDetections: number,\n scoreThreshold: number,\n nmsRadius: number,\n },\n /** Controlls and configures all hand detection specific options\n * - enabled: true/false\n * - modelPath: paths for both hand detector model and hand skeleton model\n * - rotation: use best-guess rotated hand image or just box with rotation as-is, false means higher performance, but incorrect finger mapping if hand is inverted\n * - skipFrames: how many frames to go without re-running the hand bounding box detector and just run modified hand skeleton detector, only valid if videoOptimized is set to true\n * - skipInitial: if previous detection resulted in no hands detected, should skipFrames be reset immediately to force new detection cycle\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: threshold for deciding whether boxes overlap too much in non-maximum suppression\n * - scoreThreshold: threshold for deciding when to remove boxes based on score in non-maximum suppression\n * - maxHands: maximum number of hands detected in the input, should be set to the minimum number for performance\n * - landmarks: detect hand landmarks or just hand boundary box\n */\n hand: {\n enabled: boolean,\n rotation: boolean,\n skipFrames: number,\n skipInitial: boolean,\n minConfidence: number,\n iouThreshold: number,\n scoreThreshold: number,\n maxHands: number,\n landmarks: boolean,\n detector: {\n modelPath: string,\n },\n skeleton: {\n modelPath: string,\n },\n },\n /** Controlls and configures all object detection specific options\n * - minConfidence: minimum score that detection must have to return as valid object\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxResults: maximum number of detections to return\n * - skipFrames: run object detection every n input frames, only valid if videoOptimized is set to true\n */\n object: {\n enabled: boolean,\n modelPath: string,\n minConfidence: number,\n iouThreshold: number,\n maxResults: number,\n skipFrames: number,\n },\n}\n\nconst config: Config = {\n backend: 'webgl', // select tfjs backend to use\n // can be 'webgl', 'wasm', 'cpu', or 'humangl' which is a custom version of webgl\n // leave as empty string to continue using default backend\n // when backend is set outside of Human library\n modelBasePath: '../models/', // base path for all models\n wasmPath: '../assets/', // path for wasm binaries\n // only used for backend: wasm\n debug: true, // print additional status messages to console\n async: true, // execute enabled models in parallel\n // this disables per-model performance data but\n // slightly increases performance\n // cannot be used if profiling is enabled\n profile: false, // internal: enable tfjs profiling\n // this has significant performance impact\n // only enable for debugging purposes\n // currently only implemented for age,gender,emotion models\n deallocate: false, // internal: aggresively deallocate gpu memory after each usage\n // only valid for webgl and humangl backend and only during first call\n // cannot be changed unless library is reloaded\n // this has significant performance impact\n // only enable on low-memory devices\n scoped: false, // internal: enable scoped runs\n // some models *may* have memory leaks,\n // this wrapps everything in a local scope at a cost of performance\n // typically not needed\n videoOptimized: true, // perform additional optimizations when input is video,\n // must be disabled for images\n // automatically disabled for Image, ImageData, ImageBitmap and Tensor inputs\n // skips boundary detection for every n frames\n // while maintaining in-box detection since objects cannot move that fast\n warmup: 'face', // what to use for human.warmup(), can be 'none', 'face', 'full'\n // warmup pre-initializes all models for faster inference but can take\n // significant time on startup\n // only used for `webgl` and `humangl` backends\n filter: { // run input through image filters before inference\n // image filters run with near-zero latency as they are executed on the GPU\n enabled: true, // enable image pre-processing filters\n width: 0, // resize input width\n height: 0, // resize input height\n // if both width and height are set to 0, there is no resizing\n // if just one is set, second one is scaled automatically\n // if both are set, values are used as-is\n flip: false, // flip input as mirror image\n return: true, // return processed canvas imagedata in result\n brightness: 0, // range: -1 (darken) to 1 (lighten)\n contrast: 0, // range: -1 (reduce contrast) to 1 (increase contrast)\n sharpness: 0, // range: 0 (no sharpening) to 1 (maximum sharpening)\n blur: 0, // range: 0 (no blur) to N (blur radius in pixels)\n saturation: 0, // range: -1 (reduce saturation) to 1 (increase saturation)\n hue: 0, // range: 0 (no change) to 360 (hue rotation in degrees)\n negative: false, // image negative\n sepia: false, // image sepia colors\n vintage: false, // image vintage colors\n kodachrome: false, // image kodachrome colors\n technicolor: false, // image technicolor colors\n polaroid: false, // image polaroid camera effect\n pixelate: 0, // range: 0 (no pixelate) to N (number of pixels to pixelate)\n },\n\n gesture: {\n enabled: true, // enable simple gesture recognition\n },\n\n face: {\n enabled: true, // controls if specified modul is enabled\n // face.enabled is required for all face models:\n // detector, mesh, iris, age, gender, emotion\n // (note: module is not loaded until it is required)\n detector: {\n modelPath: 'blazeface-back.json', // detector model\n // can be either absolute path or relative to modelBasePath\n rotation: false, // use best-guess rotated face image or just box with rotation as-is\n // false means higher performance, but incorrect mesh mapping if face angle is above 20 degrees\n // this parameter is not valid in nodejs\n maxFaces: 10, // maximum number of faces detected in the input\n // should be set to the minimum number for performance\n skipFrames: 21, // how many frames to go without re-running the face bounding box detector\n // only used for video inputs\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated face analysis as the head probably hasn't moved much\n // in short time (10 * 1/25 = 0.25 sec)\n skipInitial: false, // if previous detection resulted in no faces detected,\n // should skipFrames be reset immediately to force new detection cycle\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.1, // threshold for deciding whether boxes overlap too much in\n // non-maximum suppression (0.1 means drop if overlap 10%)\n scoreThreshold: 0.2, // threshold for deciding when to remove boxes based on score\n // in non-maximum suppression,\n // this is applied on detection objects only and before minConfidence\n return: false, // return extracted face as tensor\n },\n\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json', // facemesh model\n // can be either absolute path or relative to modelBasePath\n },\n\n iris: {\n enabled: true,\n modelPath: 'iris.json', // face iris model\n // can be either absolute path or relative to modelBasePath\n },\n\n description: {\n enabled: true, // to improve accuracy of face description extraction it is\n // recommended to enable detector.rotation and mesh.enabled\n modelPath: 'faceres.json', // face description model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 31, // how many frames to go without re-running the detector\n // only used for video inputs\n },\n\n emotion: {\n enabled: true,\n minConfidence: 0.1, // threshold for discarding a prediction\n skipFrames: 32, // how many frames to go without re-running the detector\n modelPath: 'emotion.json', // face emotion model\n // can be either absolute path or relative to modelBasePath\n },\n\n age: {\n enabled: false, // obsolete, replaced by description module\n modelPath: 'age.json', // age model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 33, // how many frames to go without re-running the detector\n // only used for video inputs\n },\n\n gender: {\n enabled: false, // obsolete, replaced by description module\n minConfidence: 0.1, // threshold for discarding a prediction\n modelPath: 'gender.json', // gender model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 34, // how many frames to go without re-running the detector\n // only used for video inputs\n },\n\n embedding: {\n enabled: false, // obsolete, replaced by description module\n modelPath: 'mobileface.json', // face descriptor model\n // can be either absolute path or relative to modelBasePath\n },\n },\n\n body: {\n enabled: true,\n modelPath: 'posenet.json', // body model\n // can be either absolute path or relative to modelBasePath\n // can be 'posenet', 'blazepose' or 'efficientpose'\n // 'blazepose' and 'efficientpose' are experimental\n maxDetections: 1, // maximum number of people detected in the input\n // should be set to the minimum number for performance\n // only valid for posenet as blazepose only detects single pose\n scoreThreshold: 0.2, // threshold for deciding when to remove boxes based on score\n // in non-maximum suppression\n // only valid for posenet as blazepose only detects single pose\n nmsRadius: 20, // radius for deciding points are too close in non-maximum suppression\n // only valid for posenet as blazepose only detects single pose\n },\n\n hand: {\n enabled: true,\n rotation: false, // use best-guess rotated hand image or just box with rotation as-is\n // false means higher performance, but incorrect finger mapping if hand is inverted\n skipFrames: 12, // how many frames to go without re-running the hand bounding box detector\n // only used for video inputs\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated hand skeleton analysis as the hand probably\n // hasn't moved much in short time (10 * 1/25 = 0.25 sec)\n skipInitial: false, // if previous detection resulted in no hands detected,\n // should skipFrames be reset immediately to force new detection cycle\n minConfidence: 0.1, // threshold for discarding a prediction\n iouThreshold: 0.1, // threshold for deciding whether boxes overlap too much\n // in non-maximum suppression\n scoreThreshold: 0.5, // threshold for deciding when to remove boxes based on\n // score in non-maximum suppression\n maxHands: 1, // maximum number of hands detected in the input\n // should be set to the minimum number for performance\n landmarks: true, // detect hand landmarks or just hand boundary box\n detector: {\n modelPath: 'handdetect.json', // hand detector model\n // can be either absolute path or relative to modelBasePath\n },\n skeleton: {\n modelPath: 'handskeleton.json', // hand skeleton model\n // can be either absolute path or relative to modelBasePath\n },\n },\n\n object: {\n enabled: false,\n modelPath: 'nanodet.json', // object detection model\n // can be either absolute path or relative to modelBasePath\n // 'nanodet' is experimental\n minConfidence: 0.20, // threshold for discarding a prediction\n iouThreshold: 0.40, // threshold for deciding whether boxes overlap too much\n // in non-maximum suppression\n maxResults: 10, // maximum number of objects detected in the input\n skipFrames: 41, // how many frames to go without re-running the detector\n },\n};\nexport { config as defaults };\n", "// data:image/jpeg;base64,\nexport const face = `\n/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA\nAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu\nbmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob\nIxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo\nKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E\nAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB\nAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET\nIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla\nY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG\nx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML\nXp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF\nPUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/\nAJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z\n5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9\nzZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO\ntHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6\n8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W\nwA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk\nEtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6\nGhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT\nA7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep\nrBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb\nLCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ\nih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K\nKAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l\npBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x\nUqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4\nHaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr\nxL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS\nNO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD\n1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX\n+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3\nGBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K\nq4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0\nnhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm\nuic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH\nArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV\nwF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8\n87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P\nFQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD\nYNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv\nJmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ\nQmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el\nUJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681\nly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly\nCK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc\nUDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF\n63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x\nXY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2\nZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk\nXb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK\ncBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef\neNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4\n/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5\nrl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru\n/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A\nzviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO\nI4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1\njfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ\nGRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG\ncZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb\nWmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis\nZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH\nckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi\nlbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO\nxuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK\nJtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX\nPaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c\nW0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t\nC6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk\n4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn\nxHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW\nvHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi\nqr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV\nhamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F\nj4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6\nwqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm\noy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ\nk7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg\nnQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP\n1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1\nH1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ\n1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx\nzSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt\nfFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp\nOxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj\nVtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy\nrFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe\n5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D\nd/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69\nMlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ\nFbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ\nMA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP\nByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn\n0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU\nyOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is\npNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz\nTSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu\nuCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem\ngGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk\nHvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy\ns9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu\nm6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb\n0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz\n9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN\nDNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n\nR6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk\nnmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu\n6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd\n9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb\nSms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S\nMSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz\nFEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8\nVSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx\nY0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ\nmupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+\n5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh\n05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd\nua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ\n5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR\nMqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8\n1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4\nB9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag\nBc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA\n3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn\n3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx\n1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU\ntzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6\nf3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA\nbvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ\nzyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup\n6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM\n350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0\n/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a\nYfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ\nagBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO\nmAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl\nmOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR\nnqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo\nEPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt\n4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ\nScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p\niMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj\nPQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l\nc6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1\n8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3\nylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY\neuPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`;\n\n// data:image/jpeg;base64,\nexport const body = `\n/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk\nJyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF\nRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA\nAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA\nAQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA\nAAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA\nAhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj\n+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt\nFh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR\nPLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl\nmZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp\n+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa\nzhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D\nh1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2\nex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67\nd4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y\nRv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP\nLd3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC\nvy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi\neSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/\nMx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+\nr3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO\nO0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s\ntfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN\nTmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc\n0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj\nq83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w\n+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s\nd8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t\ncI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4\nYibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe\nbzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi\nKxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6\nrNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ\n9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf\nJvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V\nbxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q\nVbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM\nlorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/\n/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme\nE4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv\nfauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6\njkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN\n+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk\nRvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK\ncGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop\nyW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn\nE8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX\n12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW\niI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS\nRWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf\n0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx\nDS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL\nG8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK\nxC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ\na9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4\nZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6\ntvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+\nfJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE\nerk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR\nMd5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9\nlcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD\nj8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV\n5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt\nCu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/\n+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c\nvUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p\njrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0\n77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP\nSel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8\n5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe\nY0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R\nHwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV\nrWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU\nz7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8\nto6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X\ny8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt\nstcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/\nw9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT\nDpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l\nXV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t\nydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS\n34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX\ne09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn\n26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf\n3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q\n6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P\nNbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO\nyZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN\n3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8\n2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h\ndqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx\nkr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t\nDHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb\neFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc\n1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka\nc258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE\nxEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu\ns5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK\n0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9\ndM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt\nPXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T\nMd/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T\nadq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b\nSVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt\npdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm\nvfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr\nEejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N\nvwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh\nZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I\ntkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW\nd43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe\nN4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218\n8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG\nPNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY\nV1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw\nw18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT\nEx5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1\naxqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/\ntDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I\nmbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe\nXRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1\nizjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2\ncrFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4\nOadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2\nr8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx\nzc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz\n+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v\nMevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu\nryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095\nYZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE\n9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8\nmNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O\nuSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O\nfft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6\nOlty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT\nuTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3\n6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1\nMb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF\nfeH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq\nxVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v\ned7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ\nmtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz\nmWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP\nB39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0\n5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1\nmkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt\nmxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO\n1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq\nZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q\nky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7\nROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK\nGEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i\ntMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T\n+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+\nO8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO\nesd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es\nvPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz\nXV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1\n+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY\n36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL\nq555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY\n3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz\np7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr\n1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV\nxUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt\npCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS\nfP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH\nmMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z\n1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+\nn3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d\nMRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df\nzXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl\nJ2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs\nzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH\nDpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ\ndHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR\ntER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j\nadmFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC\nb2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X\nqdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh\nydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O\n8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L\nT7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0\nZa1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr\nvNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer\nrWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL\noNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq\nj/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh\nodZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8\n8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1\nlNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+\noza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL\nknU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK\nEtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N\nmtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm\n9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N\nIpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W\nMYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2\n+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql\no+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37\nO99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE\nTE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1\nL7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4\nizsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt\n1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb\nV5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum\nL37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12\nCvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE\nebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo\nGvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu\nL8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh\n5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3\n6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9\nXO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM\nfeKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj\nSZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF\nXaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr\n79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h\nyeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT\nOC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223\n2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt\nadohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y\ncnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX\nDpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p\n7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso\nS24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l\nbPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe\nvVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG\nH6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7\nx3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz\n5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY\nq+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn\nvLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2\nIjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK\nz0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ\nYYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON\nZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW\nekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf\ncjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c\nbiuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO\nCkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw\ny1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi\nQXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E\nbL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r\ntv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t\nLRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP\nRqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm\ns7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el\nXX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1\nvK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq\nqrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v\nVYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0\nZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q\nmT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm\n6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG\nf63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo\ndPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22\ngtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M\nMoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb\nc2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX\n6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn\n1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK\nfOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ\nEqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u\n7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT\nqPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa\nS2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf\nLp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU\nIiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O\n8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c\nvU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx\n5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V\nKTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm\n2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu\nj8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB\nTTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9\nRUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL\nCWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA\nAAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8\ncTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj\nqKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF\n0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK\nZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK\n66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu\nXT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9\nXOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN\nM2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv\nVrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK\n7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI\n3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m\nXY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m\n1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A\nJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC\nEgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9\n8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL\nOrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H\nM+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA\nTsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8\nelpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp\nBjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS\nCRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r\nrcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY\njbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW\nUsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB\nKUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb\nSz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL\n+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v\nT471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM\nsfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj\nFontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl\n5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q\n7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv\n6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa\n0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/\nAOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM\nd8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5\n6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP\nbFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu\nLJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy\nwt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX\n0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK\n3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn\nKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0\nvobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t\nzya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps\nuOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi\nFdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2\nO3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z\naK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz\n0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb\nT/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l\nqMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t\ntrJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn\nmvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa\neq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe\nPwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of\nTdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O\n1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG\nf/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi\n0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY\n5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc\nV2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L\n/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM\nt/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd\nVknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD\nKLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R\nfwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3\nVxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ\nDJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ\n3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv\nx7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD\nweqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI\n6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew\nPnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk\nj3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm\nOqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/\nAKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez\nN9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ\n92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp\n+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue\nV9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv\navHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0\nvQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP\n8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt\nn1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw\nnUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3\n7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P\n0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U\nx8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG\n0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L\nfaQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ\nQKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA\nBAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A\ntLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv\n9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr\njn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm\nb7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB\nACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk\ndEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1\nrMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+\nx+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA\nAAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr\nYvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4\n5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V\nkK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg\nBIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA\nAAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g\nWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx\nOEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2\nH/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF\n+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V\nh6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA\nEgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu\nZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml\nHMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl\nn0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN\n3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi\n/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00\n+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC\nUACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2\nM2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp\n5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn\nN1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS\nOjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL\n/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo\nstLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3\nGyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA\nAAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4\nqmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy\nWEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a\nfJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI\nrTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2\nrz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc\n3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3\nTur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA\nAAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx\nskA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F\no7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx\nNO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h\n2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te\npSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7\ncvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7\nmZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA\nAAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA\nhGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J\nqx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI\nXRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy\nRHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX\nqNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX\nkaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P\nya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC\nExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA\nlAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA\nAAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o\nb9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP\ny6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae\nkzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu\n9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ\nk7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1\n8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp\nDXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh\nnyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ\nAAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA\nAAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO\nyvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5\nPM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii\nIpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r\nO3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE\nyTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX\n6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2\nJgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS\nAAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA\nAAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx\nWa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI\n6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5\nK2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7\nVv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id\nPW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ\n2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4\neF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7\npiVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR\nACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ\nJQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i\nUiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61\nrZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq\nZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2\nf0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO\nIjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts\nbAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA\nAAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA\nBAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2\nSbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T\nlBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/\n2Q==`;\n", "import { log, now, mergeDeep } from './helpers';\nimport * as sysinfo from './sysinfo';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as backend from './tfjs/backend';\nimport * as faceall from './faceall';\nimport * as facemesh from './blazeface/facemesh';\nimport * as age from './age/age';\nimport * as gender from './gender/gender';\nimport * as faceres from './faceres/faceres';\nimport * as emotion from './emotion/emotion';\nimport * as embedding from './embedding/embedding';\nimport * as posenet from './posenet/posenet';\nimport * as handpose from './handpose/handpose';\nimport * as blazepose from './blazepose/blazepose';\nimport * as efficientpose from './efficientpose/efficientpose';\nimport * as nanodet from './nanodet/nanodet';\nimport * as gesture from './gesture/gesture';\nimport * as image from './image/image';\nimport * as draw from './draw/draw';\nimport * as profile from './profile';\nimport { Config, defaults } from './config';\nimport { Result } from './result';\nimport * as sample from './sample';\nimport * as app from '../package.json';\n\n/** Generic Tensor object type */\nexport type Tensor = typeof tf.Tensor;\n\nexport type { Config } from './config';\nexport type { Result } from './result';\nexport type { DrawOptions } from './draw/draw';\n\n/** Defines all possible input types for **Human** detection */\nexport type Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\n/** Error message */\nexport type Error = { error: string };\n\n/** Instance of TensorFlow/JS */\nexport type TensorFlow = typeof tf;\n\n/** Generic Model object type, holds instance of individual models */\ntype Model = Object;\n\n/**\n * **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n */\nexport class Human {\n /** Current version of Human library in semver format */\n version: string;\n /** Current configuration\n * - Details: {@link Config}\n */\n config: Config;\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n */\n state: string;\n /** Internal: Instance of current image being processed */\n image: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement | null };\n /** Internal: Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n */\n tf: TensorFlow;\n /** Draw helper classes that can draw detected objects on canvas using specified draw styles\n * - options: global settings for all draw operations, can be overriden for each draw method, for details see {@link DrawOptions}\n * - face: draw detected faces\n * - body: draw detected people and body parts\n * - hand: draw detected hands and hand parts\n * - canvas: draw processed canvas which is a processed copy of the input\n * - all: meta-function that performs: canvas, face, body, hand\n */\n draw: {\n options: draw.DrawOptions,\n gesture: typeof draw.gesture,\n face: typeof draw.face,\n body: typeof draw.body,\n hand: typeof draw.hand,\n canvas: typeof draw.canvas,\n all: typeof draw.all,\n };\n /** Internal: Currently loaded models */\n models: {\n face: facemesh.MediaPipeFaceMesh | Model | null,\n posenet: Model | null,\n blazepose: Model | null,\n efficientpose: Model | null,\n handpose: handpose.HandPose | null,\n iris: Model | null,\n age: Model | null,\n gender: Model | null,\n emotion: Model | null,\n embedding: Model | null,\n nanodet: Model | null,\n faceres: Model | null,\n };\n /** Internal: Currently loaded classes */\n classes: {\n facemesh: typeof facemesh;\n age: typeof age;\n gender: typeof gender;\n emotion: typeof emotion;\n body: typeof posenet | typeof blazepose;\n hand: typeof handpose;\n nanodet: typeof nanodet;\n faceres: typeof faceres;\n };\n /** Face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: typeof facemesh.triangulation;\n /** UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: typeof facemesh.uvmap;\n /** Platform and agent information detected by Human */\n sysinfo: { platform: string, agent: string };\n /** Performance object that contains values for all recently performed operations */\n perf: any;\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n #firstRun: boolean;\n\n // definition end\n\n /**\n * Creates instance of Human library that is futher used for all operations\n * - @param userConfig: {@link Config}\n */\n constructor(userConfig: Config | Object = {}) {\n this.tf = tf;\n this.draw = draw;\n this.version = app.version;\n this.config = mergeDeep(defaults, userConfig);\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.#firstRun = true;\n this.perf = {};\n // object that contains all initialized models\n this.models = {\n face: null,\n posenet: null,\n blazepose: null,\n efficientpose: null,\n handpose: null,\n iris: null,\n age: null,\n gender: null,\n emotion: null,\n embedding: null,\n nanodet: null,\n faceres: null,\n };\n // export access to image processing\n // @ts-ignore eslint-typescript cannot correctly infer type in anonymous function\n this.image = (input: Input) => image.process(input, this.config);\n // export raw access to underlying models\n this.classes = {\n facemesh,\n age,\n gender,\n emotion,\n faceres,\n body: this.config.body.modelPath.includes('posenet') ? posenet : blazepose,\n hand: handpose,\n nanodet,\n };\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // include platform info\n this.sysinfo = sysinfo.info();\n }\n\n /** Internal: ProfileData method returns last known profiling information\n * - Requires human.config.profile set to true\n */\n profileData(): { newBytes, newTensors, peakBytes, numKernelOps, timeKernelOps, slowestKernelOps, largestKernelOps } | {} {\n if (this.config.profile) return profile.data;\n return {};\n }\n\n // helper function: measure tensor leak\n /** @hidden */\n analyze = (...msg) => {\n if (!this.#analyzeMemoryLeaks) return;\n const current = this.tf.engine().state.numTensors;\n const previous = this.#numTensors;\n this.#numTensors = current;\n const leaked = current - previous;\n if (leaked !== 0) log(...msg, leaked);\n }\n\n // quick sanity check on inputs\n /** @hidden */\n #sanity = (input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.tf.ENV.flags.IS_NODE && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n }\n\n /** Simmilarity method calculates simmilarity between two provided face descriptors (face embeddings)\n * - Calculation is based on normalized Minkowski distance between\n */\n similarity(embedding1: Array, embedding2: Array): number {\n if (this.config.face.description.enabled) return faceres.similarity(embedding1, embedding2);\n if (this.config.face.embedding.enabled) return embedding.similarity(embedding1, embedding2);\n return 0;\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n * @param input Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n // eslint-disable-next-line class-methods-use-this\n enhance(input: Tensor): Tensor | null {\n return faceres.enhance(input);\n }\n\n /**\n * Math method find best match between provided face descriptor and predefined database of known descriptors\n * @param faceEmbedding: face descriptor previsouly calculated on any face\n * @param db: array of mapping of face descriptors to known values\n * @param threshold: minimum score for matching to be considered in the result\n * @returns best match\n */\n // eslint-disable-next-line class-methods-use-this\n match(faceEmbedding: Array, db: Array<{ name: string, source: string, embedding: number[] }>, threshold = 0): { name: string, source: string, similarity: number, embedding: number[] } {\n return faceres.match(faceEmbedding, db, threshold);\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n */\n async load(userConfig: Config | Object = {}) {\n this.state = 'load';\n const timeStamp = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n\n if (this.#firstRun) {\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version_core}`);\n if (this.config.debug) log('platform:', this.sysinfo.platform);\n if (this.config.debug) log('agent:', this.sysinfo.agent);\n\n await this.#checkBackend(true);\n if (this.tf.ENV.flags.IS_BROWSER) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('tf flags:', this.tf.ENV.flags);\n }\n }\n if (this.config.async) {\n [\n this.models.face,\n this.models.age,\n this.models.gender,\n this.models.emotion,\n this.models.embedding,\n this.models.handpose,\n this.models.posenet,\n this.models.blazepose,\n this.models.efficientpose,\n this.models.nanodet,\n this.models.faceres,\n ] = await Promise.all([\n this.models.face || (this.config.face.enabled ? facemesh.load(this.config) : null),\n this.models.age || ((this.config.face.enabled && this.config.face.age.enabled) ? age.load(this.config) : null),\n this.models.gender || ((this.config.face.enabled && this.config.face.gender.enabled) ? gender.load(this.config) : null),\n this.models.emotion || ((this.config.face.enabled && this.config.face.emotion.enabled) ? emotion.load(this.config) : null),\n this.models.embedding || ((this.config.face.enabled && this.config.face.embedding.enabled) ? embedding.load(this.config) : null),\n this.models.handpose || (this.config.hand.enabled ? handpose.load(this.config) : null),\n this.models.posenet || (this.config.body.enabled && this.config.body.modelPath.includes('posenet') ? posenet.load(this.config) : null),\n this.models.blazepose || (this.config.body.enabled && this.config.body.modelPath.includes('blazepose') ? blazepose.load(this.config) : null),\n this.models.efficientpose || (this.config.body.enabled && this.config.body.modelPath.includes('efficientpose') ? efficientpose.load(this.config) : null),\n this.models.nanodet || (this.config.object.enabled ? nanodet.load(this.config) : null),\n this.models.faceres || ((this.config.face.enabled && this.config.face.description.enabled) ? faceres.load(this.config) : null),\n ]);\n } else {\n if (this.config.face.enabled && !this.models.face) this.models.face = await facemesh.load(this.config);\n if (this.config.face.enabled && this.config.face.age.enabled && !this.models.age) this.models.age = await age.load(this.config);\n if (this.config.face.enabled && this.config.face.gender.enabled && !this.models.gender) this.models.gender = await gender.load(this.config);\n if (this.config.face.enabled && this.config.face.emotion.enabled && !this.models.emotion) this.models.emotion = await emotion.load(this.config);\n if (this.config.face.enabled && this.config.face.embedding.enabled && !this.models.embedding) this.models.embedding = await embedding.load(this.config);\n if (this.config.hand.enabled && !this.models.handpose) this.models.handpose = await handpose.load(this.config);\n if (this.config.body.enabled && !this.models.posenet && this.config.body.modelPath.includes('posenet')) this.models.posenet = await posenet.load(this.config);\n if (this.config.body.enabled && !this.models.blazepose && this.config.body.modelPath.includes('blazepose')) this.models.blazepose = await blazepose.load(this.config);\n if (this.config.body.enabled && !this.models.efficientpose && this.config.body.modelPath.includes('efficientpose')) this.models.efficientpose = await efficientpose.load(this.config);\n if (this.config.object.enabled && !this.models.nanodet) this.models.nanodet = await nanodet.load(this.config);\n if (this.config.face.enabled && this.config.face.description.enabled && !this.models.faceres) this.models.faceres = await faceres.load(this.config);\n }\n\n if (this.#firstRun) {\n if (this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors');\n this.#firstRun = false;\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.perf.load || 0)) this.perf.load = current;\n }\n\n // check if backend needs initialization if it changed\n /** @hidden */\n #checkBackend = async (force = false) => {\n if (this.config.backend && (this.config.backend.length > 0) && force || (this.tf.getBackend() !== this.config.backend)) {\n const timeStamp = now();\n this.state = 'backend';\n /* force backend reload\n if (this.config.backend in tf.engine().registry) {\n const backendFactory = tf.findBackendFactory(this.config.backend);\n tf.removeBackend(this.config.backend);\n tf.registerBackend(this.config.backend, backendFactory);\n } else {\n log('Backend not registred:', this.config.backend);\n }\n */\n\n if (this.config.backend && this.config.backend.length > 0) {\n // force browser vs node backend\n if (this.tf.ENV.flags.IS_BROWSER && this.config.backend === 'tensorflow') this.config.backend = 'webgl';\n if (this.tf.ENV.flags.IS_NODE && (this.config.backend === 'webgl' || this.config.backend === 'humangl')) this.config.backend = 'tensorflow';\n\n if (this.config.debug) log('setting backend:', this.config.backend);\n\n if (this.config.backend === 'wasm') {\n if (this.config.debug) log('wasm path:', this.config.wasmPath);\n if (typeof this.tf?.setWasmPaths !== 'undefined') this.tf.setWasmPaths(this.config.wasmPath);\n else throw new Error('Human: WASM backend is not loaded');\n const simd = await this.tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n const mt = await this.tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n if (this.config.debug) log(`wasm execution: ${simd ? 'SIMD' : 'no SIMD'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (this.config.debug && !simd) log('warning: wasm simd support is not enabled');\n }\n\n if (this.config.backend === 'humangl') backend.register();\n try {\n await this.tf.setBackend(this.config.backend);\n } catch (err) {\n log('error: cannot set backend:', this.config.backend, err);\n }\n }\n this.tf.enableProdMode();\n // this.tf.enableDebugMode();\n if (this.tf.getBackend() === 'webgl' || this.tf.getBackend() === 'humangl') {\n this.tf.ENV.set('CHECK_COMPUTATION_FOR_ERRORS', false);\n this.tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', true);\n if (this.config.deallocate) {\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', this.config.deallocate);\n this.tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', this.config.deallocate ? 0 : -1);\n }\n const gl = await this.tf.backend().getGPGPUContext().gl;\n if (this.config.debug) log(`gl version:${gl.getParameter(gl.VERSION)} renderer:${gl.getParameter(gl.RENDERER)}`);\n }\n await this.tf.ready();\n this.perf.backend = Math.trunc(now() - timeStamp);\n }\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n */\n async detect(input: Input, userConfig: Config | Object = {}): Promise {\n // detection happens inside a promise\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig);\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n resolve({ error });\n }\n\n const timeStart = now();\n\n // configure backend\n await this.#checkBackend();\n\n // load models if enabled\n await this.load();\n\n if (this.config.scoped) this.tf.engine().startScope();\n this.analyze('Start Scope:');\n\n // disable video optimization for inputs of type image\n let previousVideoOptimized;\n if (input && this.config.videoOptimized && (\n (typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n || (typeof Image !== 'undefined' && input instanceof Image)\n || (typeof ImageData !== 'undefined' && input instanceof ImageData)\n || (typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap))\n ) {\n log('disabling video optimization');\n previousVideoOptimized = this.config.videoOptimized;\n this.config.videoOptimized = false;\n }\n\n timeStamp = now();\n const process = image.process(input, this.config);\n if (!process || !process.tensor) {\n log('could not convert input to tensor');\n resolve({ error: 'could not convert input to tensor' });\n return;\n }\n this.perf.image = Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n // prepare where to store model results\n let bodyRes;\n let handRes;\n let faceRes;\n let objectRes;\n let current;\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n if (this.config.async) {\n faceRes = this.config.face.enabled ? faceall.detectFace(this, process.tensor) : [];\n if (this.perf.face) delete this.perf.face;\n } else {\n this.state = 'run:face';\n timeStamp = now();\n faceRes = this.config.face.enabled ? await faceall.detectFace(this, process.tensor) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.face = current;\n }\n\n // run body: can be posenet or blazepose\n this.analyze('Start Body:');\n if (this.config.async) {\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(process.tensor, this.config) : [];\n if (this.perf.body) delete this.perf.body;\n } else {\n this.state = 'run:body';\n timeStamp = now();\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.body = current;\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n if (this.config.async) {\n handRes = this.config.hand.enabled ? this.models.handpose?.estimateHands(process.tensor, this.config) : [];\n if (this.perf.hand) delete this.perf.hand;\n } else {\n this.state = 'run:hand';\n timeStamp = now();\n handRes = this.config.hand.enabled ? await this.models.handpose?.estimateHands(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.hand = current;\n }\n this.analyze('End Hand:');\n\n // run nanodet\n this.analyze('Start Object:');\n if (this.config.async) {\n objectRes = this.config.object.enabled ? nanodet.predict(process.tensor, this.config) : [];\n if (this.perf.object) delete this.perf.object;\n } else {\n this.state = 'run:object';\n timeStamp = now();\n objectRes = this.config.object.enabled ? await nanodet.predict(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.object = current;\n }\n this.analyze('End Object:');\n\n // if async wait for results\n if (this.config.async) {\n [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n }\n tf.dispose(process.tensor);\n\n if (this.config.scoped) this.tf.engine().endScope();\n this.analyze('End Scope:');\n\n // run gesture analysis last\n let gestureRes: any[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes), ...gesture.body(bodyRes), ...gesture.hand(handRes), ...gesture.iris(faceRes)];\n if (!this.config.async) this.perf.gesture = Math.trunc(now() - timeStamp);\n else if (this.perf.gesture) delete this.perf.gesture;\n }\n\n // restore video optimizations if previously disabled\n if (previousVideoOptimized) this.config.videoOptimized = previousVideoOptimized;\n\n this.perf.total = Math.trunc(now() - timeStart);\n this.state = 'idle';\n const result = {\n face: faceRes,\n body: bodyRes,\n hand: handRes,\n gesture: gestureRes,\n object: objectRes,\n performance: this.perf,\n canvas: process.canvas,\n };\n // log('Result:', result);\n resolve(result);\n });\n }\n\n /** @hidden */\n #warmupBitmap = async () => {\n const b64toBlob = (base64, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob;\n let res;\n switch (this.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await this.detect(bitmap, this.config);\n bitmap.close();\n }\n return res;\n }\n\n /** @hidden */\n #warmupCanvas = async () => new Promise((resolve) => {\n let src;\n let size = 0;\n switch (this.config.warmup) {\n case 'face':\n size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = null;\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n const img = new Image();\n img.onload = async () => {\n const canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(size, size) : document.createElement('canvas');\n canvas.width = img.naturalWidth;\n canvas.height = img.naturalHeight;\n const ctx = canvas.getContext('2d');\n ctx?.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const res = await this.detect(canvas, this.config);\n resolve(res);\n };\n if (src) img.src = src;\n else resolve(null);\n });\n\n /** @hidden */\n #warmupNode = async () => {\n const atob = (str) => Buffer.from(str, 'base64');\n let img;\n if (this.config.warmup === 'face') img = atob(sample.face);\n if (this.config.warmup === 'body' || this.config.warmup === 'full') img = atob(sample.body);\n if (!img) return null;\n let res;\n if (typeof tf['node'] !== 'undefined') {\n const data = tf['node'].decodeJpeg(img);\n const expanded = data.expandDims(0);\n this.tf.dispose(data);\n // log('Input:', expanded);\n res = await this.detect(expanded, this.config);\n this.tf.dispose(expanded);\n } else {\n if (this.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await this.detect(input, this.config);\n */\n }\n return res;\n }\n\n /** Warmup metho pre-initializes all models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n async warmup(userConfig: Config | Object = {}): Promise {\n const t0 = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n if (!this.config.warmup || this.config.warmup === 'none') return { error: 'null' };\n const save = this.config.videoOptimized;\n this.config.videoOptimized = false;\n let res;\n if (typeof createImageBitmap === 'function') res = await this.#warmupBitmap();\n else if (typeof Image !== 'undefined') res = await this.#warmupCanvas();\n else res = await this.#warmupNode();\n this.config.videoOptimized = save;\n const t1 = now();\n if (this.config.debug) log('Warmup', this.config.warmup, Math.round(t1 - t0), 'ms', res);\n return res;\n }\n}\n\n/**\n * Class Human is also available as default export\n */\nexport { Human as default };\n"], - "mappings": ";;;;;;;ukBACO,WAAc,EAAgB,EAAsB,CACzD,GAAM,GAAY,EAAO,SAAS,KAAO,GAAK,IAExC,EAAO,AADI,EAAK,WAAW,MAAQ,EAAK,WAAW,MAAQ,EAAK,WAAW,UAAY,EAAK,WAAW,WAAa,EAAK,WAAW,SAClH,GAAG,IAAS,GAAG,IAAS,IAAY,IAC5D,GAAI,CAAC,EAAK,oBAAoB,SAAS,SAAU,KAAM,IAAI,OAAM,2BAA2B,yBAC5F,MAAO,GAIF,cAAgB,EAAK,CAC1B,GAAM,GAAK,GAAI,MACT,EAAK,GAAG,EAAG,WAAW,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,kBAAkB,WAAW,SAAS,EAAG,OAErM,AAAI,GAAK,QAAQ,IAAI,EAAI,SAAU,GAAG,GAIjC,GAAM,GAAM,IACb,MAAO,cAAgB,YAAoB,YAAY,MACpD,SAAU,QAAO,QAAQ,OAAO,UAAY,IAAO,KAAM,YAI3D,cAAsB,EAAS,CACpC,GAAM,GAAW,AAAC,GAAQ,GAAO,MAAO,IAAQ,SAChD,MAAO,GAAQ,OAAO,CAAC,EAAM,IAC3B,QAAO,KAAK,GAAO,IAAI,QAAQ,AAAC,GAAQ,CACtC,GAAM,GAAO,EAAK,GACZ,EAAO,EAAI,GACjB,AAAI,MAAM,QAAQ,IAAS,MAAM,QAAQ,GAAO,EAAK,GAAO,EAAK,OAAO,GAAG,GACtE,AAAI,EAAS,IAAS,EAAS,GAAO,EAAK,GAAO,EAAU,EAAM,GAClE,EAAK,GAAO,IAEZ,GACN,ICnCE,aAAqD,CAC1D,GAAI,GACA,EACJ,GAAI,MAAO,YAAc,YAAa,CACpC,GAAM,GAAM,UAAU,UAAU,MAAM,iBACtC,GAAI,GAAO,EAAI,GAAI,CACjB,GAAM,GAAgB,EAAI,GAAG,MAAM,iBACnC,EAAW,EAAgB,EAAc,GAAG,QAAQ,SAAU,IAAM,GACpE,EAAQ,UAAU,UAAU,QAAQ,EAAI,GAAI,IACxC,EAAS,IAAI,GAAQ,EAAM,QAAQ,EAAI,GAAI,KAC/C,EAAQ,EAAM,QAAQ,MAAO,UAE1B,AAAI,OAAO,UAAY,aAC5B,GAAW,GAAG,QAAQ,YAAY,QAAQ,OAC1C,EAAQ,UAAU,QAAQ,WAE5B,MAAO,CAAE,WAAU,oDCMrB,QACA,QACA,QAEA,QACA,QACA,QAjBA,iDACA,sDACA,sDACA,wDACA,2DAEA,0EACA,8EACA,4EAGA,uDACA,yDACA,4DACA,uDACA,8DACA,gEACA,+DAcO,GAAM,IAAU,CACrB,KAAM,KAAA,KAAA,OAAe,aAAW,OAChC,YAAa,KAAA,KAAA,OAAa,aAAW,OACrC,YAAa,KAAA,KAAA,OAAa,aAAW,OACrC,cAAe,KAAA,KAAA,OAAe,aAAW,OACzC,iBAAkB,KAAA,KAAA,OAAkB,aAAW,OAC/C,mBAAoB,IAAe,OACnC,qBAAsB,IAAiB,OACvC,oBAAqB,IAAgB,QC/ChC,GAAM,GAAS,CACpB,KAAM,UACN,SAAU,GACV,OAAoD,KACpD,GAAS,KACT,MAAO,KACP,OAAQ,KACR,UAAW,CACT,MAAO,GACP,UAAW,GACX,mBAAoB,GACpB,sBAAuB,GACvB,MAAO,GACP,QAAS,GACT,6BAA8B,GAC9B,eAAgB,KAIb,aAA0B,CAC/B,GAAI,CAAC,AAAG,cAAY,EAAO,MAAO,CAChC,EAAI,wBAAyB,EAAO,MACpC,GAAI,CACF,EAAO,OAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,MAAO,EAAO,QAAU,SAAS,cAAc,gBAC9H,EAAP,CACA,EAAI,+BAAgC,GACpC,OAEF,GAAI,CACF,EAAO,GAAK,EAAO,OAAO,WAAW,SAAU,EAAO,iBAC/C,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,AAAG,kBAAgB,EAAG,EAAO,UACtB,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,GAAM,GAAM,GAAO,gBAAa,EAAO,IACvC,AAAG,kBAAgB,EAAO,KAAM,IAAM,GAAO,oBAAiB,GAAM,EAAO,gBACpE,EAAP,CACA,EAAI,wCAAyC,GAC7C,OAEF,GAAI,CAEF,AADgB,AAAG,uBAAqB,SAChC,QAAQ,AAAC,GAAiB,CAChC,GAAM,GAAkB,IAAK,EAAc,YAAa,EAAO,MAC/D,AAAG,iBAAe,WAEb,EAAP,CACA,EAAI,mDAAoD,GACxD,OAEF,GAAI,CACF,AAAG,MAAI,IAAI,gBAAiB,SAIrB,EAAP,CACA,EAAI,yCAA0C,GAC9C,OAEF,EAAI,sBAAuB,EAAO,OCrEtC,6CCEO,GAAM,IAAO,GAEb,WAAa,EAAmB,EAAwB,CAC7D,GAAI,CAAC,GAAe,CAAC,EAAY,QAAS,OAC1C,GAAM,GAAa,EACb,EAAO,EAAY,QACtB,OAAO,AAAC,GAAM,EAAE,aAAe,GAC/B,OAAO,CAAC,EAAG,IAAM,GAAK,EAAE,aAAc,GACnC,EAAU,EAAY,QACzB,IAAI,CAAC,EAAG,IAAQ,GAAE,GAAK,EAAU,IACjC,OAAO,AAAC,GAAM,EAAE,aAAe,GAC/B,KAAK,CAAC,EAAG,IAAM,EAAE,aAAe,EAAE,cAC/B,EAAU,EAAY,QACzB,IAAI,CAAC,EAAG,IAAQ,GAAE,GAAK,EAAU,IACjC,OAAO,AAAC,GAAM,EAAE,mBAAqB,GACrC,KAAK,CAAC,EAAG,IAAM,EAAE,mBAAqB,EAAE,oBAC3C,AAAI,EAAQ,OAAS,GAAY,GAAQ,OAAS,GAC9C,EAAQ,OAAS,GAAY,GAAQ,OAAS,GAClD,GAAK,GAAa,CAChB,MAAO,EACP,SAAU,EAAY,SACtB,WAAY,EAAY,WACxB,UAAW,EAAY,UACvB,aAAc,EAAY,QAAQ,OAClC,cAAe,EACf,iBAAkB,EAClB,iBAAkB,GAEpB,EAAI,WAAY,EAAW,GAAK,ID1BlC,GAAI,GACA,GAAO,CAAE,IAAK,GACd,GAAU,OAAO,iBAErB,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,IAAI,YAC3E,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,IAAI,WAChE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,IAAI,YAAe,EAAO,gBAAkB,GAAK,KAAQ,GAAK,IAAM,EAC7F,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAC9F,EAAU,AAAG,MAAI,EAAQ,CAAC,MAChC,AAAG,UAAQ,GAEX,GAAI,GACE,EAAM,CAAE,IAAK,GAEnB,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,KAAK,IAAI,SAAS,GAAO,KAAM,GAAM,QAAQ,QACnD,CACL,GAAM,GAAa,EAAO,KAAK,IAAI,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAY,GAC9F,EAAO,EAAW,OAAO,QACzB,EAAW,OAAO,UAClB,AAAQ,EAAI,MAAO,GAIrB,GAFA,EAAQ,UAEJ,EAAM,CACR,GAAM,GAAO,EAAK,WAClB,EAAI,IAAM,KAAK,MAAM,GAAK,EAAK,IAAM,GAEvC,EAAK,UAEL,GAAO,EACP,EAAQ,MAhCS,KElBrB,6CAIA,GAAI,GACA,GAAO,CAAE,OAAQ,IACjB,GAAU,OAAO,iBACjB,GAAc,GAGZ,GAAM,CAAC,MAAQ,KAAQ,MAE7B,kBAA2B,EAAQ,CACjC,MAAK,GAKM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAJlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,OAAO,YAC9E,GAAc,EAAM,OAAO,GAAG,MAAM,KAAO,EAC3C,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,OAAO,WACnE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,OAAO,YAAe,EAAO,gBAAkB,GAAK,SAAW,GACxF,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAChG,EACJ,AAAI,GACF,EAAU,AAAG,OAAK,IAAM,CACtB,GAAM,CAAC,EAAK,EAAO,GAAQ,AAAG,QAAM,EAAQ,EAAG,GACzC,EAAU,AAAG,MAAI,EAAK,GAAI,IAC1B,EAAY,AAAG,MAAI,EAAO,GAAI,IAC9B,EAAW,AAAG,MAAI,EAAM,GAAI,IAGlC,MADkB,AADA,AAAG,QAAK,CAAC,EAAS,EAAW,IACnB,IAAI,IAAK,IAAI,KAI3C,EAAU,AAAG,MAAI,EAAQ,CAAC,MAE5B,AAAG,UAAQ,GAEX,GAAI,GACE,EAAM,CAAE,OAAQ,GAAI,WAAY,GAEtC,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,KAAK,OAAO,SAAS,GAAU,KAAM,GAAM,QAAQ,QACzD,CACL,GAAM,GAAgB,EAAO,KAAK,OAAO,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAY,GACpG,EAAU,EAAc,OAAO,QAC/B,EAAc,OAAO,UACrB,AAAQ,EAAI,SAAU,GAIxB,GAFA,EAAQ,UAEJ,EACF,GAAK,MAAM,QAAQ,GAiBZ,CACL,GAAM,GAAS,EAAQ,GAAG,WACpB,EAAa,KAAK,MAAM,IAAM,KAAK,IAAK,EAAO,GAAK,KAAS,IACnE,AAAI,EAAa,EAAO,KAAK,OAAO,eAClC,GAAI,OAAS,EAAO,IAAM,GAAM,SAAW,OAC3C,EAAI,WAAa,KAAK,IAAI,IAAM,IAQlC,EAAQ,QAAQ,AAAC,GAAM,AAAG,UAAQ,QA9BP,CAC3B,GAAM,GAAO,EAAQ,WACrB,GAAI,GAEF,AAAI,GAAK,GAAK,EAAO,KAAK,OAAO,eAAiB,EAAK,GAAK,EAAO,KAAK,OAAO,gBAC7E,GAAI,OAAS,EAAK,GAAK,EAAK,GAAK,SAAW,OAC5C,EAAI,WAAa,EAAK,GAAK,EAAK,GAAM,KAAK,MAAM,IAAM,EAAK,IAAM,IAAQ,KAAK,MAAM,IAAM,EAAK,IAAM,SAEnG,CAEL,GAAM,GAAa,KAAK,MAAM,IAAM,KAAK,IAAK,EAAK,GAAK,KAAS,IACjE,AAAI,EAAa,EAAO,KAAK,OAAO,eAClC,GAAI,OAAS,EAAK,IAAM,GAAM,SAAW,OACzC,EAAI,WAAa,KAAK,IAAI,IAAM,IAGpC,EAAQ,UAiBZ,GAAO,EACP,EAAQ,MAzES,KCvBrB,6CAIA,GAAM,IAAc,CAAC,QAAS,UAAW,OAAQ,QAAS,MAAO,WAAY,WACzE,EACA,GAAkD,GAClD,GAAU,OAAO,iBAGf,GAAM,CAAC,MAAQ,KAAQ,MAE7B,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,QAAQ,YAC/E,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,QAAQ,WACpE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,QAAQ,YAAe,EAAO,gBAAmB,GAAK,OAAS,EACxF,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAC9F,CAAC,EAAK,EAAO,GAAQ,AAAG,QAAM,EAAQ,EAAG,GAC/C,EAAO,UAEP,GAAM,GAAU,AAAG,MAAI,EAAK,GAAI,IAC1B,EAAY,AAAG,MAAI,EAAO,GAAI,IAC9B,EAAW,AAAG,MAAI,EAAM,GAAI,IAClC,EAAI,UACJ,EAAM,UACN,EAAK,UACL,GAAM,GAAY,AAAG,OAAK,CAAC,EAAS,EAAW,IAC/C,EAAQ,UACR,EAAU,UACV,EAAS,UACT,GAAM,GAAY,AAAG,OAAK,IAAM,EAAU,IAAI,IAAK,IAAI,IACvD,EAAU,UACV,GAAM,GAAiD,GACvD,GAAI,EAAO,KAAK,QAAQ,QAAS,CAC/B,GAAI,GACJ,GAAK,EAAO,QAIL,CACL,GAAM,GAAc,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IACzD,EAAO,EAAY,OAAO,WAC1B,EAAY,OAAO,UACnB,AAAQ,EAAI,UAAW,OARJ,CACnB,GAAM,GAAW,KAAM,GAAM,QAAQ,GACrC,EAAO,EAAS,WAChB,AAAG,UAAQ,GAOb,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,AAAI,EAAK,GAAK,EAAO,KAAK,QAAQ,eAAe,EAAI,KAAK,CAAE,MAAO,KAAK,IAAI,IAAM,KAAK,MAAM,IAAM,EAAK,IAAM,KAAM,QAAS,GAAY,KAE3I,EAAI,KAAK,CAAC,EAAG,IAAM,EAAE,MAAQ,EAAE,OAEjC,EAAU,UACV,GAAO,EACP,EAAQ,MA5CS,KChBrB,GAAI,GAEJ,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,UAAU,YACjF,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,UAAU,WACtE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGF,YAAoB,EAAY,EAAY,EAAQ,EAAW,CAGpE,GAFI,CAAC,GAAc,CAAC,GAChB,kBAAY,UAAW,GAAK,kBAAY,UAAW,GACnD,kBAAY,UAAW,kBAAY,QAAQ,MAAO,GAEtD,GAAM,GAAW,EACd,IAAI,CAAC,EAAK,IAAO,KAAK,IAAI,EAAW,GAAK,EAAW,KAAO,GAC5D,OAAO,CAAC,EAAK,IAAS,EAAM,EAAM,IAC/B,GAAI,GAEV,MADY,MAAK,IAAI,KAAK,MAAM,IAAQ,GAAI,IAAa,IAAM,GAgB1D,YAAiB,EAAe,CAqCrC,MApCc,AAAG,QAAK,IAAM,CAK1B,GAAM,GAAM,CAAC,CAAC,IAAM,IAAM,IAAM,MAC1B,EAAS,EAAM,OAAS,EAAM,OACpC,GAAI,CAAE,aAAqB,WAAS,MAAO,MAC3C,GAAM,GAAQ,EAAO,MAAM,SAAW,EAClC,AAAG,QAAM,cAAc,AAAG,aAAW,EAAQ,GAAI,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAC5G,AAAG,QAAM,cAAc,EAAQ,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAGxF,EAAM,CAAC,MAAQ,KAAQ,MACvB,CAAC,EAAK,EAAO,GAAQ,AAAG,QAAM,EAAM,EAAG,GACvC,EAAU,AAAG,MAAI,EAAK,EAAI,IAC1B,EAAY,AAAG,MAAI,EAAO,EAAI,IAC9B,EAAW,AAAG,MAAI,EAAM,EAAI,IAC5B,EAAY,AAAG,OAAK,CAAC,EAAS,EAAW,IACzC,EAAQ,AAAG,QAAM,CAAC,EAAW,EAAW,GAAY,GAAG,QAAQ,GAY/D,EAAS,EAAM,IAAI,EAAM,OAG/B,MAFgB,GAAO,IAAI,EAAO,SAOtC,kBAA8B,EAAO,EAA2B,CAC9D,MAAK,GACE,GAAI,SAAQ,KAAO,IAAY,CAEpC,GAAI,GAAsB,GAC1B,GAAI,EAAO,KAAK,UAAU,QAAS,CACjC,GAAM,GAAQ,GAAQ,GACtB,GAAI,CAAC,EAAO,QACV,EAAO,AAAG,OAAK,IA+BN,CAAC,GADsB,AAFf,AADC,AArBJ,EAAM,QAAQ,GAqBN,QAAQ,CAAC,IAAK,IACX,UAAU,GAEI,iBAGlC,CACL,GAAM,GAAc,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,CAAE,WAAY,KACvE,EAAO,CAAC,GAAG,EAAY,OAAO,YAC9B,EAAY,OAAO,UACnB,AAAQ,EAAI,UAAW,GAEzB,AAAG,UAAQ,GAEb,EAAQ,KAhDS,GCnFrB,2FAIA,GAAI,GACA,GAAO,CAAE,IAAK,GACd,GAAU,OAAO,iBAKrB,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YAAY,YACnF,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,YAAY,WACxE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGF,YAAoB,EAAY,EAAY,EAAQ,EAAW,CAGpE,GAFI,CAAC,GAAc,CAAC,GAChB,kBAAY,UAAW,GAAK,kBAAY,UAAW,GACnD,kBAAY,UAAW,kBAAY,QAAQ,MAAO,GAEtD,GAAM,GAAW,EAAM,EACpB,IAAI,CAAC,EAAK,IAAO,KAAK,IAAI,EAAW,GAAK,EAAW,KAAO,GAC5D,OAAO,CAAC,EAAK,IAAS,EAAM,EAAM,IAC/B,GAAI,GAEV,MADY,MAAK,IAAI,EAAG,IAAM,GAAY,IAIrC,YAAe,EAA0B,EAAQ,EAAY,EAAG,CACrE,GAAI,GAAO,CAAE,WAAY,EAAG,KAAM,GAAI,OAAQ,GAAI,UAAW,IAC7D,GAAI,CAAC,GAAa,CAAC,GAAM,CAAC,MAAM,QAAQ,IAAc,CAAC,MAAM,QAAQ,GAAK,MAAO,GACjF,OAAW,KAAK,GACd,GAAI,EAAE,WAAa,EAAE,KAAM,CACzB,GAAM,GAAO,GAAW,EAAW,EAAE,WACrC,AAAI,EAAO,GAAa,EAAO,EAAK,YAAY,GAAO,IAAK,EAAG,WAAY,IAG/E,MAAO,GAGF,YAAiB,EAAe,CA4CrC,MA3Cc,AAAG,QAAK,IAAM,CAG1B,GAAM,GAAS,EAAM,OAAS,EAAM,QAAU,EAC9C,GAAI,CAAE,aAAqB,WAAS,MAAO,MAE3C,GAAM,GAAM,CAAC,CAAC,IAAM,IAAM,IAAM,MAmChC,MAFa,AA/BC,GAAO,MAAM,SAAW,EAClC,AAAG,QAAM,cAAc,AAAG,aAAW,EAAQ,GAAI,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAC5G,AAAG,QAAM,cAAc,EAAQ,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,MA6B5E,IAAI,OAO1B,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,YAAY,YAAe,EAAO,gBAAkB,GAAK,KAAQ,GAAK,IAAM,EACrG,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAW,GAAQ,GAErB,EACE,EAAM,CACV,IAAa,EACb,OAAgB,UAChB,iBAA0B,EAC1B,WAAsB,IAExB,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,KAAK,YAAY,SAAS,GAAO,KAAM,GAAM,QAAQ,QAC3D,CACL,GAAM,GAAc,EAAO,KAAK,YAAY,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAa,GACxG,EAAO,EAAY,OACnB,AAAQ,EAAI,UAAW,GAEzB,AAAG,UAAQ,GAEP,GACF,CAAG,OAAK,IAAM,CACZ,GAAM,GAAS,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,GAAG,WAC5C,EAAa,KAAK,MAAM,IAAM,KAAK,IAAK,EAAO,GAAK,KAAS,IACnE,AAAI,EAAa,EAAO,KAAK,OAAO,eAClC,GAAI,OAAS,EAAO,IAAM,GAAM,SAAW,OAC3C,EAAI,iBAAmB,KAAK,IAAI,IAAM,IAExC,GAAM,GAAM,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAK,OAAO,GAAG,WAAW,GAChE,EAAM,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAK,WACjD,EAAI,IAAM,KAAK,MAAM,EAAI,EAAM,GAAK,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,IAAM,GAEpH,GAAM,GAAO,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,MAI7C,EAAI,WAAa,CAAC,GAAG,EAAK,cAE5B,EAAK,QAAQ,AAAC,GAAM,AAAG,UAAQ,KAGjC,GAAO,EACP,EAAQ,MAhDS,KCnFrB,GAAM,IAAqB,CAAC,EAAM,IAA0J,CAE1L,GAAM,GAAU,AAAC,GAAW,EAAQ,IAAO,KAAK,GAE1C,EAAY,AAAC,GAAM,CACvB,GAAM,GAAS,KAAK,KAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,IAC9D,SAAE,IAAM,EACR,EAAE,IAAM,EACR,EAAE,IAAM,EACD,GAEH,EAAa,CAAC,EAAG,IAAM,CAC3B,GAAM,GAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACnB,MAAO,CAAC,EAAG,EAAG,IAEV,EAAe,CAAC,EAAG,IAAM,CAC7B,GAAM,GAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GACjC,MAAO,CAAC,EAAG,EAAG,IAGV,EAA6B,AAAC,GAAM,CAExC,GAAM,CAAC,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,GAAO,EAClD,EAAY,GAAY,EAC5B,MAAI,GAAM,EACR,AAAI,EAAM,GACR,GAAS,KAAK,KAAK,GACnB,GAAS,KAAK,MAAM,CAAC,EAAK,GAC1B,EAAS,KAAK,MAAM,CAAC,EAAK,IAE1B,GAAS,CAAC,KAAK,GAAK,EACpB,GAAS,CAAC,KAAK,MAAM,EAAK,GAC1B,EAAS,GAGX,GAAS,KAAK,GAAK,EACnB,GAAS,KAAK,MAAM,EAAK,GACzB,EAAS,GAEJ,CAAE,MAAO,EAAI,CAAC,EAAQ,IAAK,EAAI,CAAC,GAAQ,KAAM,EAAI,CAAC,IAItD,EAAmB,AAAC,GAAS,CACjC,GAAM,GAAU,CAAC,EAAI,EAAI,EAAI,IAAO,KAAK,MAAM,EAAK,EAAI,EAAK,GAY7D,MAVc,CAIZ,MAAO,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAEjE,IAAK,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAE/D,KAAM,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,MAK9D,EAAO,EAAK,QAClB,GAAI,CAAC,GAAQ,EAAK,OAAS,IAAK,MAAO,CAAE,MAAO,CAAE,MAAO,EAAG,IAAK,EAAG,KAAM,GAAK,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,IAEhH,GAAM,GAAO,KAAK,IAAI,EAAK,OAAO,GAAK,EAAW,GAAI,EAAK,OAAO,GAAK,EAAW,IAAM,IAElF,EAAM,CAAC,EAAK,IAAK,EAAK,KAAM,EAAK,KAAM,EAAK,MAAM,IAAI,AAAC,GAAO,CAElE,EAAG,GAAK,EAAW,GAAK,EACxB,EAAG,GAAK,EAAW,GAAK,EACxB,EAAG,KAGC,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KAC5C,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KACxC,EAAS,EAAU,EAAa,EAAQ,IAE9C,EAAS,EAAa,EAAQ,GAI9B,GAAM,GAAmF,CACvF,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,IAI/B,MAAO,CAAE,MAFK,EAA2B,GAEzB,WAGL,GAAa,MAAO,EAAQ,IAAwB,CAvGjE,kBA0GE,GAAI,GACA,EACA,EACA,EACA,EACA,EACE,EAoBC,GACP,EAAO,MAAQ,WACf,EAAY,IACZ,GAAM,GAAQ,KAAM,MAAO,OAAO,OAAd,cAAoB,cAAc,EAAO,EAAO,SAEpE,GADA,EAAO,KAAK,KAAO,KAAK,MAAM,IAAQ,GAClC,CAAC,EAAO,MAAO,GACnB,OAAW,KAAQ,GAAO,CAIxB,GAHA,EAAO,QAAQ,YAGX,CAAC,EAAK,OAAS,EAAK,MAAM,mBAAoB,CAChD,EAAI,2BAA4B,EAAK,OACrC,SAGF,GAAM,GAAW,GAAmB,EAAM,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,KAGvE,EAAO,QAAQ,cACf,AAAI,EAAO,OAAO,MAChB,EAAS,EAAO,OAAO,KAAK,IAAI,QAAU,AAAI,GAAQ,EAAK,MAAO,EAAO,QAAU,GAEnF,GAAO,MAAQ,UACf,EAAY,IACZ,EAAS,EAAO,OAAO,KAAK,IAAI,QAAU,KAAM,AAAI,IAAQ,EAAK,MAAO,EAAO,QAAU,GACzF,EAAO,KAAK,IAAM,KAAK,MAAM,IAAQ,IAIvC,EAAO,QAAQ,iBACf,AAAI,EAAO,OAAO,MAChB,EAAY,EAAO,OAAO,KAAK,OAAO,QAAU,AAAO,GAAQ,EAAK,MAAO,EAAO,QAAU,GAE5F,GAAO,MAAQ,aACf,EAAY,IACZ,EAAY,EAAO,OAAO,KAAK,OAAO,QAAU,KAAM,AAAO,IAAQ,EAAK,MAAO,EAAO,QAAU,GAClG,EAAO,KAAK,OAAS,KAAK,MAAM,IAAQ,IAI1C,EAAO,QAAQ,kBACf,AAAI,EAAO,OAAO,MAChB,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,AAAQ,GAAQ,EAAK,MAAO,EAAO,QAAU,GAE/F,GAAO,MAAQ,cACf,EAAY,IACZ,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,KAAM,AAAQ,IAAQ,EAAK,MAAO,EAAO,QAAU,GACrG,EAAO,KAAK,QAAU,KAAK,MAAM,IAAQ,IAE3C,EAAO,QAAQ,gBAGf,EAAO,QAAQ,oBACf,AAAI,EAAO,OAAO,MAChB,EAAe,EAAO,OAAO,KAAK,UAAU,QAAU,AAAU,GAAQ,EAAM,EAAO,QAAU,GAE/F,GAAO,MAAQ,gBACf,EAAY,IACZ,EAAe,EAAO,OAAO,KAAK,UAAU,QAAU,KAAM,AAAU,IAAQ,EAAM,EAAO,QAAU,GACrG,EAAO,KAAK,UAAY,KAAK,MAAM,IAAQ,IAE7C,EAAO,QAAQ,kBAGf,EAAO,QAAQ,sBACf,AAAI,EAAO,OAAO,MAChB,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,AAAQ,GAAQ,EAAM,EAAO,QAAU,GAE1F,GAAO,MAAQ,kBACf,EAAY,IACZ,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,KAAM,AAAQ,IAAQ,EAAK,MAAO,EAAO,QAAU,GACtG,EAAO,KAAK,UAAY,KAAK,MAAM,IAAQ,IAE7C,EAAO,QAAQ,oBAGX,EAAO,OAAO,OAChB,EAAC,EAAQ,EAAW,EAAY,EAAc,GAAW,KAAM,SAAQ,IAAI,CAAC,EAAQ,EAAW,EAAY,EAAc,KAG3H,EAAO,QAAQ,gBAIX,CAAC,EAAO,OAAO,KAAK,KAAK,SAAW,qBAAM,cAAN,cAAmB,cAAe,qBAAM,cAAN,cAAmB,eAC3F,OAAO,GAAK,YAAY,YACxB,MAAO,GAAK,YAAY,cAE1B,GAAM,GAAY,MAAK,cAAL,cAAkB,cAAe,MAAK,cAAL,cAAkB,cAEjE,KAAO,KAAK,IAAI,KAAK,IAAI,EAAK,YAAY,YAAY,GAAG,GAAK,EAAK,YAAY,YAAY,GAAG,IAAK,KAAK,IAAI,EAAK,YAAY,aAAa,GAAG,GAAK,EAAK,YAAY,aAAa,GAAG,KACnL,EAGJ,EAAQ,KAAK,IACR,EACH,IAAK,EAAQ,KAAO,EAAO,IAC3B,OAAQ,EAAQ,QAAU,EAAU,OACpC,iBAAkB,EAAQ,kBAAoB,EAAU,WACxD,UAAW,EAAQ,YAAc,EACjC,QAAS,EACT,KAAO,IAAa,EAAK,KAAK,MAAM,GAAY,IAAM,EACtD,WACA,OAAQ,EAAO,OAAO,KAAK,SAAS,OAAS,KAAK,QAAL,cAAY,UAAY,OAGvE,KAAK,QAAL,QAAY,UAEZ,EAAO,QAAQ,YAEjB,SAAO,QAAQ,iBACX,EAAO,OAAO,OACZ,GAAO,KAAK,MAAM,MAAO,GAAO,KAAK,KACrC,EAAO,KAAK,KAAK,MAAO,GAAO,KAAK,IACpC,EAAO,KAAK,QAAQ,MAAO,GAAO,KAAK,OACvC,EAAO,KAAK,SAAS,MAAO,GAAO,KAAK,SAEvC,GCzPT,yFCGA,GAAM,IAAgB,EAEtB,YAAyB,EAAW,CAClC,GAAM,GAAO,CAAE,QAAS,CAAC,EAAY,GAAI,EAAY,GAAI,QAAS,CAAC,EAAG,IAChE,EAAmC,GACzC,OAAS,GAAI,EAAG,EAAI,EAAK,QAAQ,OAAQ,IAAK,CAC5C,GAAM,GAAS,EAAK,QAAQ,GACtB,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAa,EAAK,QAAQ,GAChC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAI,EAAG,EAAI,EAAY,IAC9B,EAAQ,KAAK,CAAC,EAAS,MAK/B,MAAO,GAST,GAAM,IAAY,AAAC,GAAoB,EACrC,iBACA,WAAY,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,IAClD,SAAU,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,MAGlD,YAAsB,EAAY,EAAS,EAAW,CACpD,GAAM,GAAY,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAU,AAAG,MAAI,EAAW,GAC5B,EAAW,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC7C,EAAqB,AAAG,MAAI,EAAU,GACtC,EAAoB,AAAG,MAAI,EAAS,GACpC,EAAc,AAAG,MAAI,EAAoB,GACzC,EAAS,AAAG,MAAI,EAAmB,GACnC,EAAO,AAAG,MAAI,EAAmB,GACjC,EAAkB,AAAG,MAAI,EAAQ,GACjC,EAAgB,AAAG,MAAI,EAAM,GAEnC,MAAO,AAAG,YAAS,CAAC,EAAiB,GADlB,GAId,YAAqB,CAO1B,YAAY,EAAO,EAAQ,CACzB,KAAK,MAAQ,EACb,KAAK,YAAc,GAAgB,EAAM,OAAO,GAAG,MAAM,IACzD,KAAK,QAAU,AAAG,WAAS,KAAK,aAChC,KAAK,UAAY,EAAM,OAAO,GAAG,MAAM,GACvC,KAAK,OAAS,OAGV,kBAAiB,EAAY,CAEjC,GAAK,CAAC,GAAgB,EAAW,oBAAwB,EAAW,MAAM,SAAW,GAAO,EAAW,MAAM,GAAK,GAAO,EAAW,MAAM,GAAK,EAAI,MAAO,MAC1J,GAAM,CAAC,EAAO,EAAO,GAAU,AAAG,OAAK,IAAM,CAG3C,GAAM,GAAkB,AAFH,EAAW,eAAe,CAAC,KAAK,UAAW,KAAK,YAEhC,IAAI,OAAO,IAAI,IAC9C,EAAoB,KAAK,MAAM,QAAQ,GACzC,EAEJ,GAAI,MAAM,QAAQ,GAAoB,CACpC,GAAM,GAAS,EAAkB,KAAK,CAAC,EAAG,IAAM,EAAE,KAAO,EAAE,MACrD,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAC9C,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAEpD,EAAW,AADI,AAAG,SAAO,CAAC,EAAW,GAAY,GAC/B,QAAQ,OAE1B,GAAW,EAAkB,UAE/B,GAAM,GAAW,GAAa,EAAU,KAAK,QAAS,CAAC,KAAK,UAAW,KAAK,YACtE,EAAS,AAAG,QAAM,EAAU,CAAC,EAAG,GAAI,CAAC,GAAI,IACzC,EAAY,AAAG,UAAQ,GAAQ,UACrC,MAAO,CAAC,EAAU,EAAU,KAExB,EAAmB,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,KAAK,OAAO,KAAK,SAAS,SAAU,KAAK,OAAO,KAAK,SAAS,aAAc,KAAK,OAAO,KAAK,SAAS,gBAC9K,EAAa,EAAiB,YACpC,EAAiB,UAEjB,GAAM,GAAgB,AADG,EAAW,IAAI,AAAC,GAAa,AAAG,QAAM,EAAO,CAAC,EAAU,GAAI,CAAC,EAAG,MAClD,IAAI,AAAC,GAAgB,CAC1D,GAAM,GAAO,EAAY,YACzB,SAAY,UACL,IAGH,EAAY,EAAO,WACnB,EAAuF,GAC7F,OAAS,GAAI,EAAG,EAAI,EAAc,OAAQ,IAAK,CAC7C,GAAM,GAAW,EAAW,GACtB,EAAa,EAAU,GAC7B,GAAI,EAAa,KAAK,OAAO,KAAK,SAAS,cAAe,CACxD,GAAM,GAAM,GAAU,EAAc,IAC9B,EAAS,KAAK,YAAY,GAC1B,EAAY,AAAG,OAAK,IAAM,AAAG,QAAM,EAAO,CAAC,EAAU,GAAgB,GAAI,CAAC,EAAG,KAAK,UAAU,QAAQ,CAAC,GAAe,MAC1H,EAAe,KAAK,CAAE,MAAK,YAAW,SAAQ,gBAGlD,SAAM,UACN,EAAM,UACN,EAAO,UACA,CACL,MAAO,EACP,YAAa,CAAC,EAAW,MAAM,GAAK,KAAK,UAAW,EAAW,MAAM,GAAK,KAAK,cAKrF,kBAA2B,EAAQ,CACjC,GAAM,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eACjJ,EAAY,GAAI,IAAe,EAAO,GAC5C,MAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACrE,EAAO,OAAO,EAAI,cAAe,EAAM,UACzC,EC/HF,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IACxE,MAAO,CAAE,aAAY,YAGhB,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WAGzC,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GAClD,EAAW,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GACtD,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WClDzC,GAAM,IAAkB,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAKtD,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAQjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAOnB,YAAgC,EAAG,EAAG,CAC3C,MAAO,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAGhC,YAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,GAAI,EAAkB,GAAI,GAC3B,CAAC,GAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,GAAI,EAAuB,EAAe,IAC1C,GAAI,EAAuB,EAAe,KClFvC,GAAM,GAAmB,CAC9B,WAAY,CACV,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACvD,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,KAEpD,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,KAC7D,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC3D,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,KAC1C,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,KACpD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACzD,kBAAmB,CAAC,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,KACnD,kBAAmB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,IACzC,aAAc,CAAC,IAAK,IAAK,IAAK,IAAK,KACnC,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,KAC5C,YAAa,CAAC,IAAK,IAAK,IAAK,IAAK,KAClC,kBAAmB,CAAC,KACpB,QAAS,CAAC,GACV,WAAY,CAAC,GACb,gBAAiB,CAAC,IAClB,eAAgB,CAAC,KACjB,WAAY,CAAC,KACb,UAAW,CAAC,MAGD,GAA2B,CACtC,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,GAAI,GAAI,GAAI,GAAI,GAAI,KACrD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,IACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,MAKnD,GAAQ,CACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,iBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,iBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,cAAgB,kBACjB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,mBAGT,GAAS,CACpB,IAAK,GAAI,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,EACtJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GACrJ,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAC7I,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAClJ,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GACrJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GACpJ,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GACjJ,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,EAAG,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,EAAG,IAC/I,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,GAAI,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GACtJ,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAClJ,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACnJ,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,IAClJ,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,EAAG,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GACnJ,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,EAAG,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,EAAG,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAClJ,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAChJ,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IACpJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GACrJ,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GACpJ,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EACpJ,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAC9I,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAC9I,IAAK,GAAI,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAwBvI,GAAM,IAAQ,CACP,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/E,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC1C,IAAK,EAAG,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,IAChC,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAChD,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,KAGhC,GAAQ,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,KAE1J,GAAO,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,KAElC,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAM,GAAK,IAAI,AAAC,GAAM,GAAM,ICjoBzC,GAAM,IAAc,AAAO,EAAiB,cACtC,GAAe,AAAO,EAAiB,eAEvC,GAAe,CACnB,WAAY,CAAC,GAAY,GAAI,GAAY,GAAY,OAAS,IAC9D,YAAa,CAAC,GAAa,GAAI,GAAa,GAAa,OAAS,KAG9D,GAAgB,CACpB,MAAO,IACP,MAAO,GACP,aAAc,CAAC,GAAI,AAAO,EAAiB,kBAAqB,KAG5D,GAAqB,CACzB,QAAS,EACT,SAAU,EACV,KAAM,EACN,MAAO,EACP,QAAS,EACT,SAAU,EACV,aAAc,CAAC,EAAG,IAGd,GAAgB,CACpB,YAAa,EACb,YAAa,EACb,MAAO,GACP,eAAgB,IAKlB,YAA+B,EAAW,EAAW,EAAQ,EAAM,CACjE,OAAS,GAAI,EAAG,EAAI,AAAO,GAAyB,OAAQ,IAAK,CAC/D,GAAM,CAAE,MAAK,WAAY,AAAO,GAAyB,GACnD,EAAkB,AAAO,EAAiB,GAAG,IAAS,KAC5D,GAAI,CAAC,GAAQ,EAAK,SAAS,GACzB,OAAS,GAAI,EAAG,EAAI,EAAQ,OAAQ,IAAK,CACvC,GAAM,GAAQ,EAAQ,GACtB,EAAU,EAAgB,IAAM,CAC9B,EAAU,GAAO,GAAI,EAAU,GAAO,GACrC,GAAU,GAAO,GAAK,EAAU,EAAgB,IAAI,IAAM,KAO9D,YAAe,CAYpB,YAAY,EAAqB,EAAc,EAAW,CAnE5D,QAqEI,KAAK,YAAc,GACnB,KAAK,oBAAsB,EAC3B,KAAK,aAAe,EACpB,KAAK,UAAY,EACjB,KAAK,QAAU,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,KAAM,EACjE,KAAK,SAAW,kBAAc,OAAO,GAAG,MAAM,KAAM,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,IAChG,KAAK,SAAW,kBAAW,OAAO,GAAG,MAAM,KAAM,EACjD,KAAK,YAAc,IACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAGvB,mBAAmB,EAAW,EAAK,EAAO,EAAgB,CACxD,GAAM,GAAU,AAAS,GAAW,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC1E,EAAe,EAAU,IAAI,AAAC,GAAW,CAC7C,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAM,KAEF,EAAwB,IAAU,EAAK,AAAK,GAAoB,EAAO,CAAC,EAAG,IAAW,GACtF,EAAiB,IAAU,EAAK,EAAa,IAAI,AAAC,GAAW,CAAC,GAAG,AAAK,GAAY,EAAO,GAAuB,EAAM,KAAQ,EAC9H,EAAyB,IAAU,EAAK,AAAK,GAAsB,GAAuB,GAC1F,EAAY,CAAC,GAAG,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAAa,GACrG,MAAO,GAAc,IAAI,AAAC,GAAW,CACnC,EAAM,GAAK,AAAK,GAAI,EAAW,EAAsB,IACrD,EAAM,GAAK,AAAK,GAAI,EAAW,EAAsB,IACrD,EAAM,KAIV,iCAAiC,EAAW,CAC1C,GAAM,GAAW,EAAU,GAAa,WAAW,IAAI,GACjD,EAAY,EAAU,GAAa,YAAY,IAAI,GACzD,MAAO,GAAW,EAIpB,UAAU,EAAW,EAAM,EAAqB,EAAqB,EAAO,GAAO,CACjF,GAAM,GAAM,AAAS,GAAY,AAAS,GAAW,KAAK,8BAA8B,CAAC,EAAU,GAAsB,EAAU,KAAwB,KAAK,cAC1J,EAAU,AAAS,GAAW,GAChC,EAAO,AAAG,QAAM,cAAc,EAAM,CAAC,CACvC,EAAI,WAAW,GAAK,KAAK,SACzB,EAAI,WAAW,GAAK,KAAK,SAAU,EAAI,SAAS,GAAK,KAAK,SAC1D,EAAI,SAAS,GAAK,KAAK,WACrB,CAAC,GAAI,CAAC,KAAK,SAAU,KAAK,WAC9B,MAAI,IAAQ,AAAG,MAAI,MAAM,YACvB,GAAO,AAAG,QAAM,cAAc,IAEzB,CAAE,MAAK,UAAS,QAIzB,aAAa,EAAS,EAAQ,EAAY,EAAO,GAAO,CACtD,GAAM,GAA6B,GACnC,OAAS,GAAI,EAAG,EAAI,GAAc,eAAgB,IAAK,CACrD,GAAM,GAAI,EAAQ,EAAI,GAChB,EAAI,EAAQ,EAAI,EAAI,GACpB,EAAI,EAAQ,EAAI,EAAI,GAC1B,EAAa,KAAK,CACf,GAAQ,EAAK,EAAI,KAAK,SAAc,EAAI,KAAK,UAAa,EAAW,GAAK,EAAO,WAAW,GAC5F,EAAI,KAAK,SAAY,EAAW,GAAK,EAAO,WAAW,GAAI,IAGhE,MAAO,CAAE,UAAW,EAAc,KAAM,EAAa,MAAM,GAAc,QAI3E,sBAAsB,EAAW,EAAY,EAAW,CACtD,GAAM,GAAe,EAAU,AAAO,EAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAe,EAAU,AAAO,EAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAY,GAAe,GAAgB,EAEjD,MAAO,GAAW,IAAI,CAAC,EAAO,IAAM,CAClC,GAAI,GAAI,EACR,MAAI,KAAM,EACR,EAAI,EACK,IAAM,GACf,GAAI,GAEC,CAAC,EAAM,GAAI,EAAM,GAAI,UAI1B,SAAQ,EAAO,EAAQ,CAC3B,GAAI,GAAc,GAEd,EAQJ,GAPK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,SAAS,YAAe,CAAC,EAAO,KAAK,KAAK,SAAW,CAAC,EAAO,iBACnH,GAAW,KAAM,MAAK,oBAAoB,iBAAiB,GAC3D,KAAK,QAAU,GAEb,EAAO,gBAAgB,KAAK,UAG5B,CAAC,EAAO,gBAAmB,GAAY,EAAS,OAAU,EAAC,EAAO,KAAK,KAAK,SAAY,EAAS,MAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,SAAS,UAAa,CACrM,KAAK,YAAc,GACnB,KAAK,cAAgB,EACrB,OAAW,KAAY,GAAS,MAC9B,KAAK,YAAY,KAAK,CAAE,WAAY,EAAS,IAAI,WAAW,WAAY,SAAU,EAAS,IAAI,SAAS,WAAY,UAAW,EAAS,UAAW,WAAY,EAAS,aAE1K,AAAI,KAAK,YAAY,OAAS,GAAG,GAAc,IAKjD,GAFI,EAAO,KAAK,SAAS,aAAe,KAAK,gBAAkB,GAAG,MAAK,QAAU,GAE7E,EAAa,CACf,GAAI,CAAC,GAAY,CAAC,EAAS,OAAU,EAAS,MAAM,SAAW,EAC7D,YAAK,YAAc,GACnB,KAAK,cAAgB,EACd,KAET,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAY,AAAS,GAAoB,CAAE,WAAY,KAAK,YAAY,GAAG,WAAY,SAAU,KAAK,YAAY,GAAG,UAAY,EAAS,aAC1I,EAAc,AAAS,GAAW,GAClC,EAAgB,AAAS,GAAY,GACrC,EAAY,KAAK,YAAY,GAAG,UAAU,YAC1C,EAAa,KAAK,YAAY,GAAG,WACvC,KAAK,YAAY,GAAK,IAAK,EAAe,aAAY,cAG1D,AAAI,GAAY,EAAS,OACvB,EAAS,MAAM,QAAQ,AAAC,GAAe,CACrC,EAAW,IAAI,WAAW,UAC1B,EAAW,IAAI,SAAS,UACxB,EAAW,UAAU,YAIzB,GAAI,GAAU,AAAG,OAAK,IAAM,KAAK,YAAY,IAAI,CAAC,EAAK,IAAM,CAC3D,GAAM,GAAgB,EAAI,WAGtB,EACA,EAAQ,EACR,EAEJ,GAAI,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAW,AAAG,MAAI,MAAM,WAAY,CACxF,GAAM,CAAC,EAAc,GAAoB,EAAI,UAAU,QAAU,GAAc,MAAS,GAAc,aAAe,GAAmB,aACxI,EAAQ,AAAK,GAAgB,EAAI,UAAU,GAAe,EAAI,UAAU,IACxE,GAAM,GAAa,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC/E,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAChE,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,AAAI,EAAO,KAAK,KAAK,QAAS,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAC5K,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,QAAS,KAAK,UAAU,IAAI,SACjJ,CACL,EAAsB,GACtB,GAAM,GAAc,EAAM,QAC1B,AAAI,EAAO,KAAK,KAAK,QAAS,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAC3K,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,QAAS,KAAK,UAAU,IAAI,KAIvJ,GAAI,CAAC,EAAO,KAAK,KAAK,QASpB,MARmB,CACjB,OAAQ,KACR,MACA,eAAgB,KAChB,gBACA,WAAY,EAAI,WAChB,MAAO,GAKX,GAAM,CAAC,CAAE,EAAY,GAAiB,KAAK,aAAa,QAAQ,GAC1D,EAAiB,EAAW,WAAW,GAC7C,GAAI,EAAiB,EAAO,KAAK,SAAS,cAAe,MAAO,MAEhE,GAAI,GAAY,AADO,AAAG,UAAQ,EAAe,CAAC,GAAI,IACvB,YAE/B,GAAI,EAAO,KAAK,KAAK,QAAS,CAC5B,GAAM,CAAE,IAAK,EAAY,QAAS,EAAgB,KAAM,GAAgB,KAAK,UAAU,EAAW,EAAM,GAAa,WAAW,GAAI,GAAa,WAAW,GAAI,IAC1J,CAAE,IAAK,EAAa,QAAS,EAAiB,KAAM,GAAiB,KAAK,UAAU,EAAW,EAAM,GAAa,YAAY,GAAI,GAAa,YAAY,IAE3J,EAAqB,AADJ,KAAK,UAAU,QAAQ,AAAG,SAAO,CAAC,EAAa,KAC5B,WACpC,GAAc,EAAmB,MAAM,EAAG,GAAc,eAAiB,GACzE,CAAE,UAAW,GAAkB,KAAM,IAAsB,KAAK,aAAa,GAAa,EAAY,EAAgB,IACtH,GAAe,EAAmB,MAAM,GAAc,eAAiB,GACvE,CAAE,UAAW,GAAmB,KAAM,IAAuB,KAAK,aAAa,GAAc,EAAa,GAC1G,GAAgC,KAAK,iCAAiC,GAC5E,AAAI,KAAK,IAAI,IAAiC,GAC5C,IAAsB,EAAW,GAAkB,OAAQ,MAC3D,GAAsB,EAAW,GAAmB,QAAS,OAGxD,AAAI,GAAgC,EACzC,GAAsB,EAAW,GAAkB,OAAQ,CAAC,YAAa,cAEzE,GAAsB,EAAW,GAAmB,QAAS,CAAC,YAAa,cAE7E,GAAM,IAAyB,KAAK,sBAAsB,EAAW,GAAmB,QAClF,GAA0B,KAAK,sBAAsB,EAAW,GAAoB,SAC1F,EAAY,EAAU,OAAO,IAAwB,OAAO,IAI9D,GAAM,GAAwB,KAAK,mBAAmB,EAAW,EAAK,EAAO,GAC7E,EAAM,AAAS,GAAW,KAAK,8BAA8B,GAAwB,KACrF,GAAM,GAAoB,AAAG,WAAS,GAGtC,GAAI,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAY,GAAO,KAAK,YAAY,SAAW,EAAO,KAAK,UAAU,UAAY,AAAG,MAAI,MAAM,WAAY,CAC9J,GAAM,CAAC,EAAc,GAAoB,EAAI,UAAU,QAAU,GAAc,MAAS,GAAc,aAAe,GAAmB,aACxI,EAAQ,AAAK,GAAgB,EAAI,UAAU,GAAe,EAAI,UAAU,IACxE,GAAM,GAAa,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC/E,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,AAAG,QAAM,iBAAiB,EAAM,UAAW,EAAO,EAAG,GAC1E,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAGrJ,GAAM,GAAa,CACjB,OAAQ,EACR,MACA,iBACA,gBACA,MAAO,EACP,aAII,EAAyB,AAAS,GAAY,GACpD,YAAK,YAAY,GAAK,IAAK,EAAwB,UAAW,EAAuB,WAAY,EAAI,WAAY,kBAE1G,KAGT,SAAU,EAAQ,OAAO,AAAC,GAAM,IAAM,MAElC,EAAO,KAAK,KAAK,SAAS,MAAK,YAAc,KAAK,YAAY,OAAO,AAAC,GAAM,EAAE,eAAiB,EAAO,KAAK,SAAS,gBACxH,KAAK,cAAgB,EAAQ,OAEtB,EAGT,8BAA8B,EAAW,CACvC,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,WAAU,eLhT5B,YAAwB,CAI7B,YAAY,EAAW,EAAgB,EAAW,EAAQ,CACxD,KAAK,aAAe,GAAiB,IAAS,EAAW,EAAgB,GACzE,KAAK,OAAS,OAGV,eAAc,EAAO,EAAkH,CAC3I,GAAM,GAAc,KAAM,MAAK,aAAa,QAAQ,EAAO,GACrD,EAAgH,GACtH,OAAW,KAAe,IAAe,GAAK,CAC5C,GAAI,EAAW,mBAAoB,SACnC,GAAM,GAAO,EAAW,OAAS,EAAW,OAAO,YAAc,GAC3D,EAAU,EAAK,IAAI,AAAC,GAAO,CAC/B,EAAG,GAAK,EAAM,MAAM,GACpB,EAAG,GAAK,EAAM,MAAM,GACpB,EAAG,GAAK,KAAK,aAAa,WAEtB,EAAc,GACpB,GAAI,GAAQ,EAAK,OAAS,EACxB,OAAW,KAAO,QAAO,KAAY,GAAmB,EAAY,GAAO,AAAO,EAAiB,GAAK,IAAI,AAAC,GAAU,EAAK,IAE9H,GAAM,GAAM,EAAW,IAAM,CAC3B,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,IACtC,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,IACtC,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,IAC7F,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KAC3F,EACE,EAAS,EAAW,IAAM,CAC9B,EAAW,IAAI,WAAW,GAAK,EAAM,MAAM,GAC3C,EAAW,IAAI,WAAW,GAAK,EAAM,MAAM,GAC1C,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAM,EAAM,MAAM,GACzE,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAM,EAAM,MAAM,IACxE,GACJ,EAAQ,KAAK,CACX,WAAY,KAAK,MAAM,IAAM,EAAW,gBAAkB,IAAM,EAAW,eAAiB,GAAK,IACjG,cAAe,KAAK,MAAM,IAAM,EAAW,eAAiB,IAC5D,eAAgB,KAAK,MAAM,IAAM,EAAW,gBAAkB,IAC9D,MACA,SACA,OACA,UACA,cACA,MAAO,EAAW,MAAQ,EAAW,MAAM,QAAU,OAEnD,EAAW,QAAQ,EAAW,OAAO,UACrC,EAAW,OAAO,EAAW,MAAM,UAEzC,MAAO,KAIP,EAA6B,CAAC,KAAM,KAAM,MAC9C,kBAA2B,EAAoC,CAC7D,MAAK,CAAC,EAAW,IAAM,EAAO,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QACjI,GAAa,KAAM,SAAQ,IAAI,CAC5B,CAAC,EAAW,IAAM,EAAO,KAAK,QAAW,AAAU,GAAK,GAAU,KAClE,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAAkB,KAC3L,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAAkB,OAE1L,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAU,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACjF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,WAEtD,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAU,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACjF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,YAEjD,EAAO,OAChB,GAAI,gBAAiB,EAAW,GAAG,MAAM,UACzC,EAAI,gBAAiB,EAAW,GAAG,UACnC,EAAI,gBAAiB,EAAW,GAAG,WAEpB,GAAI,IAAkB,EAAW,GAAI,EAAW,GAAI,EAAW,GAAI,GAI/E,GAAM,IAAuB,GACvB,GAAe,GMtF5B,6CCAO,GAAM,IAAY,CACvB,OAAQ,UAAW,WAAY,UAAW,WAAY,eACtD,gBAAiB,YAAa,aAAc,YAAa,aACzD,UAAW,WAAY,WAAY,YAAa,YAAa,cAGlD,GAAQ,GAAU,OAElB,GAAU,GAAU,OAAO,CAAC,EAAQ,EAAW,IAC1D,GAAO,GAAa,EACb,GACN,IAEG,GAAqB,CACzB,CAAC,UAAW,gBAAiB,CAAC,YAAa,gBAC3C,CAAC,YAAa,aAAc,CAAC,UAAW,YACxC,CAAC,WAAY,aAAc,CAAC,WAAY,iBACxC,CAAC,aAAc,iBAAkB,CAAC,aAAc,cAChD,CAAC,WAAY,aAAc,CAAC,YAAa,cACzC,CAAC,eAAgB,iBAAkB,CAAC,UAAW,aAEpC,GAAuB,GAAmB,IAAI,CAAC,CAAC,EAAY,KAAiB,CAAC,GAAQ,GAAa,GAAQ,KAE3G,GAAY,CACvB,CAAC,OAAQ,WAAY,CAAC,UAAW,WAAY,CAAC,OAAQ,YACtD,CAAC,WAAY,YAAa,CAAC,OAAQ,gBACnC,CAAC,eAAgB,aAAc,CAAC,YAAa,aAC7C,CAAC,eAAgB,WAAY,CAAC,UAAW,YACzC,CAAC,WAAY,aAAc,CAAC,OAAQ,iBACpC,CAAC,gBAAiB,cAAe,CAAC,aAAc,cAChD,CAAC,gBAAiB,YAAa,CAAC,WAAY,aAC5C,CAAC,YAAa,eCfT,YAAwB,EAAW,CACxC,GAAM,GAAQ,EAAU,OAAO,CAAC,CAAE,OAAM,OAAM,OAAM,QAAQ,CAAE,SAAU,CAAE,IAAG,QAAW,EACtF,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,KACnB,CACF,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,oBAEf,MAAO,CAAC,EAAM,KAAM,EAAM,KAAM,EAAM,KAAO,EAAM,KAAM,EAAM,KAAO,EAAM,MAGvE,YAAoB,EAAO,CAAC,EAAQ,GAAQ,CAAC,EAAuB,GAAuB,CAChG,GAAM,GAAY,CAAC,EAAM,EAAQ,IAAY,EAC3C,MAAO,EAAK,MACZ,IAAK,CAAC,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,IACrI,UAAW,EAAK,UAAU,IAAI,CAAC,CAAE,QAAO,OAAM,cAAgB,EAC5D,QACA,OACA,SAAU,CAAE,EAAG,KAAK,MAAM,EAAS,EAAI,GAAS,EAAG,KAAK,MAAM,EAAS,EAAI,SAK/E,MADoB,GAAM,IAAI,AAAC,GAAS,EAAU,EAAM,EAAS,EAAuB,EAAQ,IAK3F,YAAc,CAKnB,YAAY,EAAS,EAAiB,CACpC,KAAK,cAAgB,GAAI,OAAM,GAC/B,KAAK,iBAAmB,GACxB,KAAK,gBAAkB,EAGzB,QAAQ,EAAG,CACT,KAAK,cAAc,EAAE,KAAK,kBAAoB,EAC9C,KAAK,KAAK,KAAK,kBAGjB,SAAU,CACR,GAAM,GAAM,KAAK,cAAc,GAC/B,YAAK,SAAS,EAAG,KAAK,oBACtB,KAAK,KAAK,GACV,KAAK,cAAc,KAAK,iBAAmB,GAAK,KACzC,EAGT,OAAQ,CAAE,MAAO,MAAK,mBAAqB,GAE3C,MAAO,CAAE,MAAO,MAAK,iBAAmB,EAExC,KAAM,CAAE,MAAO,MAAK,cAAc,MAAM,EAAG,KAAK,iBAAmB,GAEnE,KAAM,CAAE,MAAO,MAAK,cAAc,GAElC,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,KAAK,KAAK,MAAM,EAAI,GAAI,IAC3C,KAAK,SAAS,EAAG,KAAK,MAAM,EAAI,IAChC,EAAI,KAAK,MAAM,EAAI,GAIvB,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,kBAAkB,CACrC,GAAI,GAAI,EAAI,EAEZ,GADI,EAAI,KAAK,kBAAoB,KAAK,KAAK,EAAG,EAAI,IAAI,IAClD,CAAC,KAAK,KAAK,EAAG,GAAI,MACtB,KAAK,SAAS,EAAG,GACjB,EAAI,GAIR,WAAW,EAAG,CACZ,MAAO,MAAK,gBAAgB,KAAK,cAAc,IAGjD,KAAK,EAAG,EAAG,CACT,MAAO,MAAK,WAAW,GAAK,KAAK,WAAW,GAG9C,SAAS,EAAG,EAAG,CACb,GAAM,GAAI,KAAK,cAAc,GAC7B,KAAK,cAAc,GAAK,KAAK,cAAc,GAC3C,KAAK,cAAc,GAAK,IAIrB,YAAwB,EAAG,EAAG,EAAU,EAAS,CACtD,MAAO,CACL,EAAG,EAAQ,IAAI,EAAG,EAAG,GACrB,EAAG,EAAQ,IAAI,EAAG,EAAG,EAAe,KAIjC,YAAwB,EAAM,EAAc,EAAS,CAC1D,GAAM,CAAE,WAAU,WAAU,GAAI,GAAa,EACvC,CAAE,IAAG,KAAM,GAAe,EAAU,EAAU,EAAU,GAC9D,MAAO,CACL,EAAG,EAAK,SAAW,EAAe,EAClC,EAAG,EAAK,SAAW,EAAe,GAY/B,YAAe,EAAG,EAAK,EAAK,CACjC,MAAI,GAAI,EAAY,EAChB,EAAI,EAAY,EACb,EAGF,YAAyB,EAAI,EAAI,EAAI,EAAI,CAC9C,GAAM,GAAK,EAAK,EACV,EAAK,EAAK,EAChB,MAAO,GAAK,EAAK,EAAK,EAGjB,YAAoB,EAAG,EAAG,CAC/B,MAAO,CAAE,EAAG,EAAE,EAAI,EAAE,EAAG,EAAG,EAAE,EAAI,EAAE,GCjJpC,GAAM,IAAqB,EACrB,GAAsB,GAE5B,YAAkC,EAAQ,EAAgB,EAAkB,EAAc,EAAS,EAAc,EAAe,EAAmB,EAAG,CACpJ,GAAM,GAAkB,AAAC,GAAW,EAClC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAG,GACvC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAI,EAAc,MAAM,GAAK,EAAK,KAElE,EAA2B,CAAC,EAAO,EAAQ,IAAW,EAC1D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,GAAe,EAAG,EAAS,GAC/D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,GAAe,EAAG,EAAQ,KAG1D,CAAC,EAAQ,GAAS,EAAa,MAE/B,EAAwB,EAAyB,EAAe,SAAU,EAAQ,GAClF,EAAe,EAAgB,GAEjC,EADmB,AAAM,GAAW,EAAe,SAAU,GAEjE,OAAS,GAAI,EAAG,EAAI,EAAkB,IAAK,CACzC,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,GACzE,EAAc,AAAM,GAAe,EAAsB,EAAG,EAAsB,EAAG,EAAkB,GAC7G,EAAiB,AAAM,GAAW,CAChC,EAAG,EAAsB,EAAI,EAC7B,EAAG,EAAsB,EAAI,GAC5B,CAAE,EAAG,EAAY,EAAG,EAAG,EAAY,IAExC,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,GACzE,EAAQ,EAAa,IAAI,EAAsB,EAAG,EAAsB,EAAG,GACjF,MAAO,CAAE,SAAU,EAAgB,KAAM,AAAI,GAAU,GAAmB,SAGrE,YAAoB,EAAM,EAAQ,EAAS,EAAc,EAAkB,EAAkB,CAClG,GAAM,GAAuB,AAAI,GAAU,IAAI,CAAC,CAAC,EAAgB,KAAoB,CAAC,AAAI,GAAQ,GAAiB,AAAI,GAAQ,KACzH,EAAqB,EAAqB,IAAI,CAAC,CAAC,CAAE,KAAkB,GACpE,EAAqB,EAAqB,IAAI,CAAC,CAAC,KAAmB,GACnE,EAAW,EAAO,MAAM,GACxB,EAAW,EAAmB,OAC9B,EAAoB,GAAI,OAAM,GAE9B,CAAE,KAAM,EAAU,MAAO,GAAc,EACvC,EAAY,AAAM,GAAe,EAAU,EAAc,GAC/D,EAAkB,EAAS,IAAM,CAC/B,MAAO,EACP,KAAM,AAAI,GAAU,EAAS,IAC7B,SAAU,GAGZ,OAAS,GAAO,EAAW,EAAG,GAAQ,EAAG,EAAE,EAAM,CAC/C,GAAM,GAAmB,EAAmB,GACtC,EAAmB,EAAmB,GAC5C,AAAI,EAAkB,IAAqB,CAAC,EAAkB,IAC5D,GAAkB,GAAoB,GAAyB,EAAM,EAAkB,GAAmB,EAAkB,EAAQ,EAAS,EAAc,IAI/J,OAAS,GAAO,EAAG,EAAO,EAAU,EAAE,EAAM,CAC1C,GAAM,GAAmB,EAAmB,GACtC,EAAmB,EAAmB,GAC5C,AAAI,EAAkB,IAAqB,CAAC,EAAkB,IAC5D,GAAkB,GAAoB,GAAyB,EAAM,EAAkB,GAAmB,EAAkB,EAAQ,EAAS,EAAc,IAG/J,MAAO,GAGT,YAAqC,EAAY,EAAO,EAAU,EAAU,EAAQ,CAClF,GAAM,CAAC,EAAQ,GAAS,EAAO,MAC3B,EAAe,GACb,EAAS,KAAK,IAAI,EAAW,GAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAAU,CACvD,GAAM,GAAS,KAAK,IAAI,EAAW,GAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAC7C,GAAI,EAAO,IAAI,EAAU,EAAU,GAAc,EAAO,CACtD,EAAe,GACf,MAGJ,GAAI,CAAC,EAAc,MAErB,MAAO,GAGF,YAAiC,EAAgB,EAAQ,CAC9D,GAAM,CAAC,EAAQ,EAAO,GAAgB,EAAO,MACvC,EAAQ,GAAU,IAAQ,EAAS,EAAQ,EAAc,CAAC,CAAE,WAAY,GAC9E,OAAS,GAAW,EAAG,EAAW,EAAQ,EAAE,EAC1C,OAAS,GAAW,EAAG,EAAW,EAAO,EAAE,EACzC,OAAS,GAAa,EAAG,EAAa,EAAc,EAAE,EAAY,CAChE,GAAM,GAAQ,EAAO,IAAI,EAAU,EAAU,GAE7C,AAAI,EAAQ,GAER,GAA4B,EAAY,EAAO,EAAU,EAAU,IAAS,EAAM,QAAQ,CAAE,QAAO,KAAM,CAAE,WAAU,WAAU,GAAI,KAI7I,MAAO,GAGT,YAAsB,EAAO,EAAkB,CAAE,IAAG,KAAK,EAAY,CACnE,MAAO,GAAM,KAAK,CAAC,CAAE,eAAgB,CACnC,GAAM,GAAwB,EAAU,GAAY,SACpD,MAAO,AAAM,IAAgB,EAAG,EAAG,EAAsB,EAAG,EAAsB,IAAM,IAI5F,YAA0B,EAAe,EAAkB,EAAmB,CAK5E,MAAO,AAJ6B,GAAkB,OAAO,CAAC,EAAQ,CAAE,WAAU,SAAS,IACpF,IAAa,EAAe,EAAkB,EAAU,IAAa,IAAU,GAC7E,GACN,GACkC,EAAkB,OAGlD,YAAgB,EAAe,EAAc,EAAwB,EAAwB,EAAW,EAAe,EAAgB,CAC5I,GAAM,GAA4D,GAC5D,EAAQ,GAAwB,EAAgB,GAChD,EAAmB,GAAa,EAEtC,KAAO,EAAM,OAAS,GAAiB,CAAC,EAAM,SAAS,CAErD,GAAM,GAAO,EAAM,UAEb,EAAkB,AAAM,GAAe,EAAK,KAAM,GAAqB,GAC7E,GAAI,GAAa,EAAO,EAAkB,EAAiB,EAAK,KAAK,IAAK,SAG1E,GAAM,GAAY,AADG,GAAW,EAAM,EAAc,EAAe,GAAqB,EAAwB,GACjF,OAAO,AAAC,GAAM,EAAE,MAAQ,GACjD,EAAQ,GAAiB,EAAO,EAAkB,GAClD,EAAM,AAAM,GAAe,GACjC,AAAI,EAAQ,GAAgB,EAAM,KAAK,CAAE,YAAW,MAAK,MAAO,KAAK,MAAM,IAAM,GAAS,MAE5F,MAAO,GHrIT,GAAI,GACE,GAAiB,CAAC,+BAA6C,gCAAoD,yCAA+D,0CAExL,kBAA8B,EAAO,EAAQ,CAC3C,GAAM,GAAM,AAAG,OAAK,IAAM,CAExB,GAAM,GAAa,AADH,EAAM,eAAe,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAC3D,UAAU,IAAI,OAAO,IAAI,GAE9C,EAAY,AADF,EAAM,QAAQ,EAAY,IAChB,IAAI,AAAC,GAAM,EAAE,QAAQ,CAAC,KAChD,SAAU,GAAK,EAAU,GAAG,UACrB,IAGH,EAAU,KAAM,SAAQ,IAAI,EAAI,IAAI,AAAC,GAAW,EAAO,WAC7D,OAAW,KAAK,GAAK,EAAE,UAEvB,GAAM,GAAU,KAAM,AAAM,IAAO,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAO,KAAK,UAAW,EAAO,KAAK,cAAe,EAAO,KAAK,gBAGjJ,MAFe,AAAK,IAAW,EAAS,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAAK,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAK7H,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,WAC5D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EIjCT,8CCEO,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IAClE,EAAgB,EAAI,cAAc,IAAI,AAAC,GACvB,CAAC,EAAM,GAAK,EAAO,GAAI,EAAM,GAAK,EAAO,KAG/D,MAAO,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAI,YAGzD,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eAG7C,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GAClD,EAAW,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GACtD,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eCnD7C,YAAmB,CAQxB,YAAY,EAAO,EAAW,EAAkB,CAC9C,KAAK,MAAQ,EACb,KAAK,QAAU,EAAiB,IAAI,AAAC,GAAW,CAAC,EAAO,SAAU,EAAO,WACzE,KAAK,cAAgB,AAAG,WAAS,KAAK,SACtC,KAAK,UAAY,EACjB,KAAK,gBAAkB,AAAG,WAAS,CAAC,EAAW,IAC/C,KAAK,sBAAwB,AAAG,WAAS,CAAC,EAAY,EAAG,EAAY,IAGvE,eAAe,EAAO,CACpB,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAa,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IAC1C,EAAW,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IACxC,EAAkB,AAAG,MAAI,AAAG,MAAI,EAAY,KAAK,iBAAkB,KAAK,eACxE,EAAe,AAAG,MAAI,EAAU,KAAK,uBACrC,EAAc,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACjE,EAAY,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACrE,MAAO,AAAG,YAAS,CAAC,EAAa,GAAY,KAIjD,mBAAmB,EAAkB,EAAO,CAC1C,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAY,AAAG,MAAI,AAAG,MAAI,EAAiB,QAAQ,CAAC,GAAI,EAAG,IAAK,KAAK,iBAAkB,KAAK,QAAQ,IAC1G,MAAO,AAAG,OAAI,EAAW,KAAK,wBAI5B,UAAS,EAAO,EAAQ,CAC5B,GAAM,GAAU,KAAK,MAAM,QAAQ,GAC7B,EAAc,EAAQ,UAC5B,EAAQ,UACR,GAAM,GAAU,AAAG,OAAK,IAAM,AAAG,UAAQ,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,KAAK,WAC3E,EAAS,EAAQ,WACjB,EAAW,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAQ,KAAK,eAAe,GAClC,EAAS,UACT,GAAM,GAAY,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,EAAO,KAAK,SAAU,EAAO,KAAK,aAAc,EAAO,KAAK,gBAC7H,EAAW,EAAU,YAE3B,EAAQ,UACR,EAAU,UACV,GAAM,GAAqE,GAC3E,OAAW,KAAS,GAClB,GAAI,EAAO,IAAU,EAAO,KAAK,cAAe,CAC9C,GAAM,GAAc,AAAG,QAAM,EAAO,CAAC,EAAO,GAAI,CAAC,EAAG,KAC9C,EAAmB,AAAG,QAAM,EAAa,CAAC,EAAO,GAAI,CAAC,EAAG,KACzD,EAAgB,AAAG,OAAK,IAAM,KAAK,mBAAmB,EAAkB,GAAO,QAAQ,CAAC,GAAI,KAClG,EAAiB,UACjB,EAAM,KAAK,CAAE,IAAK,EAAa,gBAAe,WAAY,EAAO,KAGrE,SAAY,UACZ,EAAM,UACC,OAGH,oBAAmB,EAAO,EAAQ,CACtC,GAAM,GAAc,EAAM,MAAM,GAC1B,EAAa,EAAM,MAAM,GACzB,EAAQ,AAAG,OAAK,IAAM,EAAM,eAAe,CAAC,KAAK,UAAW,KAAK,YAAY,IAAI,OAAO,IAAI,IAC5F,EAAc,KAAM,MAAK,SAAS,EAAO,GAC/C,EAAM,UACN,GAAM,GAAmB,GACzB,GAAI,CAAC,GAAe,EAAY,SAAW,EAAG,MAAO,GACrD,OAAW,KAAc,GAAa,CACpC,GAAM,GAAQ,EAAW,IAAI,WACvB,EAAa,EAAM,MAAM,EAAG,GAC5B,EAAW,EAAM,MAAM,EAAG,GAC1B,EAAgB,EAAW,cAAc,YAC/C,EAAW,IAAI,UACf,EAAW,cAAc,UACzB,EAAM,KAAK,AAAI,GAAoB,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAW,YAAc,CAAC,EAAa,KAAK,UAAW,EAAc,KAAK,aAElK,MAAO,KCrFJ,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAGjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAGnB,GAAM,IAAyB,CAAC,EAAG,IAAM,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAEvE,YAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,GAAI,EAAkB,GAAI,GAC3B,CAAC,GAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,GAAI,EAAuB,EAAe,IAC1C,GAAI,EAAuB,EAAe,KC7D9C,GAAM,IAA0B,EAE1B,GAA0B,KAC1B,GAAoB,CAAC,EAAG,EAAG,EAAG,GAAI,GAAI,EAAG,GACzC,GAAoC,EACpC,GAA6C,EAE5C,QAAmB,CAQxB,YAAY,EAAc,EAAkB,EAAW,CACrD,KAAK,aAAe,EACpB,KAAK,iBAAmB,EACxB,KAAK,UAAY,EACjB,KAAK,YAAc,GACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAGvB,uBAAuB,EAAe,EAAgB,CACpD,GAAM,GAAuB,EAAc,IAAI,AAAC,GAAU,AAAK,GAAY,CAAC,GAAG,EAAO,GAAI,IACpF,EAAgB,KAAK,8BAA8B,GAEzD,MAAO,AAAI,IAAW,AAAI,GAAY,GAAgB,IAGxD,uBAAuB,EAAW,CAChC,GAAM,GAAc,KAAK,8BAA8B,GAEjD,EAAgB,AAAI,GAAW,AAAI,GAAY,GAAc,IACnE,EAAc,cAAgB,GAC9B,OAAS,GAAI,EAAG,EAAI,GAAkB,OAAQ,IAC5C,EAAc,cAAc,KAAK,EAAU,GAAkB,IAAI,MAAM,EAAG,IAE5E,MAAO,GAGT,mBAAmB,EAAW,EAAM,EAAO,EAAgB,CACzD,GAAM,GAAU,AAAI,GAAW,GACzB,EAAc,CAAC,EAAQ,GAAK,KAAK,UAAW,EAAQ,GAAK,KAAK,UAAY,GAAQ,GAAK,EAAQ,IAAM,KAAK,UAAY,GACtH,EAAe,EAAU,IAAI,AAAC,GAAU,CAC5C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAK,EAAM,KAEnB,EAAuB,AAAK,GAAoB,EAAO,CAAC,EAAG,IAC3D,EAAgB,EAAa,IAAI,AAAC,GAE/B,CAAC,GADQ,AAAK,GAAY,EAAO,GACpB,EAAM,KAEtB,EAAwB,AAAK,GAAsB,GACnD,EAAY,CAAC,GAAG,AAAI,GAAa,GAAO,GACxC,EAAoB,CACxB,AAAK,GAAI,EAAW,EAAsB,IAC1C,AAAK,GAAI,EAAW,EAAsB,KAE5C,MAAO,GAAc,IAAI,AAAC,GAAU,CAClC,EAAM,GAAK,EAAkB,GAC7B,EAAM,GAAK,EAAkB,GAC7B,EAAM,UAIJ,eAAc,EAAO,EAAQ,CACjC,GAAI,GAAc,GAGd,EACJ,AAAK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,YAAe,CAAC,EAAO,KAAK,WAAa,CAAC,EAAO,iBACvG,GAAQ,KAAM,MAAK,aAAa,mBAAmB,EAAO,GAC1D,KAAK,QAAU,GAEb,EAAO,gBAAgB,KAAK,UAG5B,GAAU,EAAM,OAAS,GAAQ,GAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,UAAa,CAAC,EAAO,KAAK,YACzI,MAAK,cAAgB,EACrB,KAAK,YAAc,CAAC,GAAG,GAEnB,KAAK,YAAY,OAAS,GAAG,GAAc,KAEjD,GAAM,GAAmB,GAEzB,AAAI,EAAO,KAAK,aAAe,KAAK,gBAAkB,GAAG,MAAK,QAAU,GAGxE,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAa,KAAK,YAAY,GACpC,GAAI,EAAC,EACL,GAAI,EAAO,KAAK,UAAW,CACzB,GAAM,GAAQ,EAAO,KAAK,SAAW,AAAK,GAAgB,EAAW,cAAc,IAAoC,EAAW,cAAc,KAA+C,EACzL,EAAa,AAAI,GAAa,GAC9B,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,EAAO,KAAK,SAAW,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAAwB,EAAM,QAC/G,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAS,EAAc,KAAK,uBAAuB,EAAW,cAAe,GAAkB,EAC/F,EAAe,AAAI,GAAyB,EAAQ,EAAc,CAAC,KAAK,UAAW,KAAK,YACxF,EAAY,EAAa,IAAI,KACnC,EAAa,UACb,EAAa,UACb,GAAM,CAAC,EAAa,GAAa,KAAM,MAAK,iBAAiB,QAAQ,GACrE,EAAU,UACV,GAAM,GAAa,EAAY,WAAW,GAE1C,GADA,EAAY,UACR,GAAc,EAAO,KAAK,cAAe,CAC3C,GAAM,GAAoB,AAAG,UAAQ,EAAW,CAAC,GAAI,IAC/C,EAAY,EAAkB,YACpC,EAAU,UACV,EAAkB,UAClB,GAAM,GAAS,KAAK,mBAAmB,EAAW,EAAQ,EAAO,GAC3D,EAAkB,KAAK,uBAAuB,GACpD,KAAK,YAAY,GAAK,EACtB,GAAM,GAAS,CACb,UAAW,EACX,aACA,IAAK,CAAE,QAAS,EAAgB,WAAY,YAAa,EAAgB,WAE3E,EAAM,KAAK,OAEX,MAAK,YAAY,GAAK,KAExB,EAAU,cACL,CAEL,GAAM,GAAW,AAAI,GAAW,AAAI,GAAY,GAAa,IACvD,EAAS,CACb,WAAY,EAAW,WACvB,IAAK,CAAE,QAAS,EAAS,WAAY,YAAa,EAAS,WAE7D,EAAM,KAAK,IAGf,YAAK,YAAc,KAAK,YAAY,OAAO,AAAC,GAAM,IAAM,MACxD,KAAK,cAAgB,EAAM,OACpB,EAIT,8BAA8B,EAAW,CACvC,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,cCzJlB,GAAM,IAAU,CACrB,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,QLzviBd,GAAM,IAAmB,CACvB,MAAO,CAAC,EAAG,EAAG,EAAG,GACjB,YAAa,CAAC,EAAG,EAAG,EAAG,GACvB,aAAc,CAAC,EAAG,GAAI,GAAI,IAC1B,WAAY,CAAC,GAAI,GAAI,GAAI,IACzB,MAAO,CAAC,GAAI,GAAI,GAAI,IACpB,SAAU,CAAC,IAGN,QAAe,CAGpB,YAAY,EAAc,CACxB,KAAK,aAAe,QAGf,iBAAiB,CACtB,MAAO,SAGH,eAAc,EAAO,EAAQ,CACjC,GAAM,GAAc,KAAM,MAAK,aAAa,cAAc,EAAO,GACjE,GAAI,CAAC,EAAa,MAAO,GACzB,GAAM,GAAgG,GACtG,OAAW,KAAc,GAAa,CACpC,GAAM,GAAc,GACpB,GAAI,EAAW,UACb,OAAW,KAAO,QAAO,KAAK,IAC5B,EAAY,GAAO,GAAiB,GAAK,IAAI,AAAC,GAAU,EAAW,UAAU,IAGjF,GAAM,GAAM,EAAW,IAAM,CAC3B,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,IACnC,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,IACnC,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,IAC7F,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,KAC3F,GACE,EAAS,CACZ,EAAW,IAAI,QAAQ,GAAM,EAAM,MAAM,GACzC,EAAW,IAAI,QAAQ,GAAM,EAAM,MAAM,GACzC,GAAW,IAAI,YAAY,GAAK,EAAW,IAAI,QAAQ,IAAM,EAAM,MAAM,GACzE,GAAW,IAAI,YAAY,GAAK,EAAW,IAAI,QAAQ,IAAM,EAAM,MAAM,IAE5E,EAAM,KAAK,CAAE,WAAY,KAAK,MAAM,IAAM,EAAW,YAAc,IAAK,MAAK,SAAQ,UAAW,EAAW,UAAW,gBAExH,MAAO,KAIP,EACA,GACJ,kBAA2B,EAA2B,CACpD,AAAI,CAAC,GAAqB,CAAC,GACzB,EAAC,EAAmB,IAAiB,KAAM,SAAQ,IAAI,CACrD,EAAO,KAAK,QAAU,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAAkB,KAC3K,EAAO,KAAK,UAAY,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAAkB,OAE3K,EAAO,KAAK,SACd,CAAI,CAAC,GAAqB,CAAC,EAAkB,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WAC7F,EAAO,OAAO,EAAI,cAAe,EAAkB,UAC5D,AAAI,CAAC,IAAiB,CAAC,GAAc,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACrF,EAAO,OAAO,EAAI,cAAe,GAAc,YAGtD,GAAO,OAAO,EAAI,gBAAiB,EAAkB,UACrD,EAAO,OAAO,EAAI,gBAAiB,GAAc,WAEvD,GAAM,GAAe,GAAiB,IAAa,EAAmB,iBAAmB,OAAO,GAAG,MAAM,GAAY,IAC/G,EAAe,GAAiB,IAAa,EAAc,GAAe,mBAAe,OAAO,GAAG,MAAM,IAE/G,MADiB,IAAI,IAAS,GM3EhC,6CCAO,GAAM,IAAO,CAClB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,YACA,aACA,WACA,YACA,YACA,aACA,YACA,aACA,UACA,WACA,WACA,YACA,YACA,aACA,WACA,YACA,WACA,YACA,SACA,WACA,YACA,WACA,aACA,aAGW,GAAQ,CACnB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,UACA,WACA,UACA,WACA,UACA,WACA,UACA,WACA,YACA,aACA,OACA,WACA,UACA,WACA,UACA,YDpEF,GAAI,GAEJ,kBAA2B,EAAQ,CACjC,MAAK,GAMM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UALlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,EAAM,MAAQ,SAAS,EAAM,UAAU,OAAO,aAAa,YAAY,IAAI,GAAG,MAC9E,EAAM,OAAS,SAAS,EAAM,UAAU,OAAO,aAAa,YAAY,IAAI,GAAG,MAC/E,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,WAC5D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAO,EAAQ,CAE3C,GADI,CAAC,GACD,CAAC,EAAO,KAAK,QAAS,MAAO,MACjC,GAAM,GAAU,CAAE,MAAO,EAAM,MAAM,GAAI,OAAQ,EAAM,MAAM,IACvD,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,MAAO,EAAM,QAAS,IACrE,EAAY,AAAG,MAAI,EAAQ,CAAC,MAClC,EAAO,UACP,GAAI,GACJ,GAAK,EAAO,QAOL,CACL,GAAM,GAAc,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IACzD,EAAS,EAAY,OAAO,KAAK,AAAC,GAAO,EAAE,OAAS,KAAO,EAAE,OAAS,KAAM,WAC5E,EAAY,OAAO,QAAQ,AAAC,GAAM,EAAE,WACpC,AAAQ,EAAI,YAAa,OAXN,CACnB,GAAM,GAAO,KAAM,GAAM,QAAQ,GAIjC,EAAS,EAAK,KAAK,AAAC,GAAO,EAAE,OAAS,KAAO,EAAE,OAAS,KAAM,WAC9D,EAAK,QAAQ,AAAC,GAAM,EAAE,WAOxB,EAAU,UACV,GAAM,GAAyE,GACzE,EAAS,EAAO,SAAW,IAAkB,GAAmB,GAChE,EAAQ,EACd,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAO,IACzC,EAAU,KAAK,CACb,GAAI,EACJ,KAAM,EAAO,GACb,SAAU,CACR,EAAG,KAAK,MAAM,EAAQ,MAAQ,EAAO,EAAQ,EAAI,GAAK,KACtD,EAAG,KAAK,MAAM,EAAQ,OAAS,EAAO,EAAQ,EAAI,GAAK,KACvD,EAAG,KAAK,MAAM,EAAO,EAAQ,EAAI,IAAM,GAEzC,MAAQ,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,IACzE,SAAW,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,MAIhF,MAAO,CAAC,CAAE,MADI,EAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GACvE,cErDnB,GAAI,GACA,GAAwB,GACxB,GAAU,OAAO,iBAEf,GAAY,CAAC,OAAQ,OAAQ,gBAAiB,aAAc,aAAc,QAAS,eAAgB,YAAa,YAAa,SAAU,WAAY,YAAa,aAAc,UAAW,WAAY,aAE3M,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,WAC5D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAIT,YAAe,EAAQ,EAAU,CAC/B,GAAM,CAAC,EAAO,GAAU,EAAO,MAC/B,MAAO,AAAG,QAAK,IAAM,CAEnB,GAAM,GAAM,CAAC,EAAG,IAAM,AAAG,MAAI,EAAG,AAAG,MAAI,AAAG,MAAI,EAAG,AAAG,SAAO,EAAG,UAAW,AAAG,SAAO,EAAG,WAEhF,EAAW,AAAG,UAAQ,EAAQ,CAAC,EAAS,IAExC,EAAQ,AAAG,MAAI,EAAU,GAAG,WAAW,GAC7C,GAAI,EAAQ,EAAU,CAEpB,GAAM,GAAS,AAAG,SAAO,EAAU,GAC7B,EAAI,EAAI,EAAQ,GAAO,WAAW,GAClC,EAAI,AAAG,MAAI,EAAQ,AAAG,SAAO,EAAO,UAAU,WAAW,GAC/D,MAAO,CAAC,EAAG,EAAG,GAEhB,MAAO,CAAC,EAAG,EAAG,KAIlB,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,YAAe,EAAO,gBAAkB,OAAO,KAAK,IAAW,OAAS,EACjG,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,OAAK,IAAM,CAC3B,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAGpG,MADa,AADG,AAAG,OAAI,EAAQ,GACV,IAAI,KAIvB,EAEJ,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,KAAK,SAAS,GAAO,KAAM,GAAM,QAAQ,QAC/C,CACL,GAAM,GAAW,EAAO,KAAK,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAW,GACvF,EAAO,EAAS,OAAO,QACvB,EAAS,OAAO,UAChB,AAAQ,EAAI,OAAQ,GAItB,GAFA,EAAO,UAEH,EAAM,CACR,GAAM,GAAoF,GACpF,EAAU,EAAK,UACrB,AAAG,UAAQ,GAEX,GAAM,GAAQ,EAAQ,QAAQ,GAC9B,AAAG,UAAQ,GAEX,OAAS,GAAK,EAAG,EAAK,EAAM,OAAQ,IAAM,CAExC,GAAM,CAAC,EAAG,EAAG,GAAS,GAAM,EAAM,GAAK,EAAO,KAAK,gBACnD,AAAI,EAAQ,EAAO,KAAK,gBACtB,EAAM,KAAK,CACT,KACA,MAAO,KAAK,MAAM,IAAM,GAAS,IACjC,KAAM,GAAU,GAChB,YAAa,CACX,KAAM,EAAI,EAAM,OAAO,GAAG,MAAM,GAChC,KAAM,EAAI,EAAM,OAAO,GAAG,MAAM,IAElC,SAAU,CACR,EAAG,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,EAAM,OAAO,GAAG,MAAM,IACzD,EAAG,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,EAAM,OAAO,GAAG,MAAM,OAKjE,EAAM,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAChC,GAAY,EAEd,GAAM,GAAQ,GAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GACxF,EAAQ,CAAC,CAAE,QAAO,mBA1DD,KCzCrB,6CCAO,GAAM,IAAS,CACpB,CAAE,MAAO,EAAG,MAAO,UACnB,CAAE,MAAO,EAAG,MAAO,WACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,cACnB,CAAE,MAAO,EAAG,MAAO,YACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,QACnB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,eACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,kBACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,MACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,eD3EtB,GAAI,GACA,GAAkB,GAClB,GAAU,OAAO,iBAEf,GAAW,IAEjB,kBAA2B,EAAQ,CACjC,GAAK,EAOE,AAAI,EAAO,OAAO,EAAI,gBAAiB,EAAM,cAPxC,CACV,EAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,OAAO,YACzE,GAAM,GAAS,OAAO,OAAO,EAAM,eAAe,QAElD,GADA,EAAM,UAAY,MAAM,QAAQ,GAAU,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,MAAQ,KACpF,CAAC,EAAM,UAAW,KAAM,IAAI,OAAM,4CAA4C,EAAO,OAAO,aAChG,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,OAAO,WAC9D,EAAO,OAAO,EAAI,cAAe,EAAM,UAElD,MAAO,GAGT,kBAAuB,EAAK,EAAW,EAAa,EAAQ,CAC1D,GAAI,GAAK,EACL,EAA8J,GAClK,OAAW,KAAc,CAAC,EAAG,EAAG,GAE9B,AAAG,OAAK,IAAM,CA5BlB,QA6BM,GAAM,GAAW,EAAa,GAExB,EAAU,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,KAAO,GAAO,UAAzE,cAAmF,UAC7F,EAAY,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,GAAK,GAAO,UAAvE,cAAiF,UAE7F,EAAS,AADE,EAAU,QAAQ,CAAC,GAAI,EAAG,EAAU,MAAM,GAAK,IACxC,OAAO,GAAG,YAC5B,EAAS,EAAQ,YACvB,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IACpC,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IAAK,CACzC,GAAM,GAAQ,EAAO,GAAG,GACxB,GAAI,EAAQ,EAAO,OAAO,eAAiB,IAAM,GAAI,CACnD,GAAM,GAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAY,EAAO,GAAG,IAAI,AAAC,IAAM,GAAK,GAAW,EAAa,IAC9D,CAAC,EAAG,GAAK,CACb,EAAM,GAAW,EAAa,EAAU,GACxC,EAAM,GAAW,EAAa,EAAU,IAEpC,CAAC,EAAG,IAAK,CACb,EAAM,GAAW,EAAa,EAAU,GAAM,EAC9C,EAAM,GAAW,EAAa,EAAU,GAAM,GAE5C,EAAS,CAAC,EAAG,EAAG,EAAG,IACvB,EAAS,EAAO,IAAI,AAAC,IAAM,KAAK,IAAI,EAAG,KAAK,IAAI,GAAG,KACnD,GAAM,IAAM,CACV,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,IAEpB,GAAS,CACb,GAAI,IACJ,aACA,MAAO,KAAK,MAAM,IAAM,GAAS,IACjC,MAAO,EAAI,EACX,MAAO,GAAO,GAAG,MACjB,OAAQ,CAAC,KAAK,MAAM,EAAY,GAAK,GAAK,KAAK,MAAM,EAAY,GAAK,IACtE,UAAW,CAAC,EAAI,GAChB,IAAK,GAAI,IAAI,AAAC,IAAM,KAAK,MAAM,KAC/B,UAEF,EAAQ,KAAK,QAOvB,EAAI,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAI9B,GAAM,GAAW,EAAQ,IAAI,AAAC,GAAM,EAAE,QAChC,EAAY,EAAQ,IAAI,AAAC,GAAM,EAAE,OACnC,EAAgB,GACpB,GAAI,GAAY,EAAS,OAAS,EAAG,CACnC,GAAM,GAAM,KAAM,AAAG,SAAM,uBAAuB,EAAU,EAAW,EAAO,OAAO,WAAY,EAAO,OAAO,aAAc,EAAO,OAAO,eAC3I,EAAS,EAAI,WACb,AAAG,UAAQ,GAIb,SAAU,EACP,OAAO,CAAC,EAAG,IAAQ,EAAO,SAAS,IACnC,KAAK,CAAC,EAAG,IAAO,EAAE,MAAQ,EAAE,OAExB,EAGT,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GAEA,GAAU,EAAO,OAAO,YAAe,EAAO,gBAAmB,GAAK,OAAS,EAClF,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAa,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAC1C,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,UAAW,EAAM,WAAY,IAC5E,EAAO,EAAO,IAAI,KAClB,EAAY,EAAK,UAAU,CAAC,EAAG,EAAG,EAAG,IAC3C,EAAK,UACL,EAAO,UAEP,GAAI,GACJ,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,OAAO,SAAS,GAAU,KAAM,GAAM,QAAQ,QACpD,CACL,GAAM,GAAgB,EAAO,OAAO,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAc,GACjG,EAAU,EAAc,OACxB,AAAQ,EAAI,SAAU,GAExB,EAAU,UAEV,GAAM,GAAM,KAAM,IAAQ,EAAS,EAAM,UAAW,EAAY,GAChE,GAAO,EACP,EAAQ,MA5BS,KEnGd,GAAM,IAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CAEnC,GAAM,GAAY,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,aACrD,EAAa,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,cACtD,EAAO,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,QACtD,AAAI,GAAQ,GAAa,GAAe,EAAU,SAAS,EAAI,EAAK,SAAS,GAAO,EAAW,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,cAC3J,AAAI,GAAQ,GAAc,EAAU,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACjG,GAAQ,GAAe,EAAW,SAAS,EAAI,EAAK,SAAS,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,qBAG5G,GAAM,GAAe,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,gBACxD,EAAgB,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,iBAC/D,AAAI,GAAgB,GAAe,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,WAAY,EAAa,SAAS,EAAI,EAAc,SAAS,EAAK,OAAS,YAElJ,MAAO,IAGI,GAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,GAAI,EAAI,GAAG,MAAQ,EAAI,GAAG,KAAK,OAAS,EAAG,CACzC,GAAM,GAAY,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,GACxD,AAAI,KAAK,IAAI,GAAa,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC3D,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,UAAU,EAAY,EAAI,OAAS,YAEtE,AADa,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAElD,AADc,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACvD,GAAM,GAAY,KAAK,IAAI,IAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,IAAI,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,KACzI,AAAI,EAAY,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,SAAS,KAAK,MAAM,aAC1E,GAAM,GAAY,EAAI,GAAG,KAAK,KAAK,GACnC,AAAI,KAAK,IAAI,GAAa,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,QAAQ,EAAY,EAAI,KAAO,WAGnG,MAAO,IAGI,GAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAI,CAAC,EAAI,GAAG,aAAe,CAAC,EAAI,GAAG,YAAY,aAAe,CAAC,EAAI,GAAG,YAAY,aAAc,SAChG,GAAM,GAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAW,KAAK,IAAI,EAAY,GAEhC,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAY,KAAK,IAAI,EAAa,GAEpC,EAAS,GAEb,AAAI,AADe,KAAK,IAAI,EAAW,GAAa,KAAK,IAAI,EAAU,GACtD,KACf,GAAS,GACT,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAGpC,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,YAAY,aAAa,GAAG,GAC7H,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,YAAY,YAAY,GAAG,GACjI,AAAI,GAAkB,MAAS,EAAmB,OAAO,GAAS,IAC9D,EAAkB,MAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC3D,EAAmB,MAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBAEhE,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,YAAY,aAAa,GAAG,GAC9H,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,YAAY,YAAY,GAAG,GACjI,AAAI,GAAkB,MAAS,EAAmB,MAAS,EAAkB,KAAS,EAAmB,MAAO,GAAS,IACrH,GAAkB,MAAS,EAAmB,OAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBACvF,GAAkB,KAAS,EAAmB,MAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,eAGvF,GAAQ,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAEhD,MAAO,IAGI,GAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAM,GAAqD,GAC3D,OAAW,CAAC,EAAQ,IAAQ,QAAO,QAAQ,EAAI,GAAG,aAChD,AAAI,IAAW,YAAc,MAAM,QAAQ,IAAM,EAAQ,KAAK,CAAE,KAAM,EAAO,cAAe,SAAU,EAAI,KAE5G,GAAI,GAAW,EAAQ,OAAS,EAAG,CACjC,GAAM,GAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACjF,EAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACvF,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,GAAG,EAAQ,gBAAgB,EAAQ,aAGzE,MAAO,IC7FT,iCCMA,YAAmB,EAAI,EAAc,EAAgB,CACnD,GAAM,GAAW,SAAU,EAAQ,EAAQ,EAAY,CACrD,GAAM,GAAI,GAAI,QAAO,MAAQ,EAAS,eAAgB,MACtD,EAAO,QAAQ,EAAG,CAAC,EAAO,IACxB,GAAW,GAAQ,EACZ,KAIL,EAAW,SAAU,EAAQ,EAAM,CACvC,GAAM,GAAS,EAAG,aAAa,GAG/B,GAFA,EAAG,aAAa,EAAQ,GACxB,EAAG,cAAc,GACb,CAAC,EAAG,mBAAmB,EAAQ,EAAG,gBAAiB,KAAM,IAAI,OAAM,4BAA6B,EAAG,iBAAiB,IACxH,MAAO,IAGT,KAAK,QAAU,GACf,KAAK,UAAY,GACjB,GAAM,GAAO,EAAS,EAAc,EAAG,eACjC,EAAO,EAAS,EAAgB,EAAG,iBAMzC,GALA,KAAK,GAAK,EAAG,gBACb,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,YAAY,KAAK,IAEhB,CAAC,EAAG,oBAAoB,KAAK,GAAI,EAAG,aAAc,KAAM,IAAI,OAAM,yBAA0B,EAAG,kBAAkB,KAAK,KAE1H,EAAG,WAAW,KAAK,IAEnB,EAAS,EAAc,YAAa,KAAK,WACzC,OAAW,KAAK,MAAK,UAAW,KAAK,UAAU,GAAK,EAAG,kBAAkB,KAAK,GAAI,GAElF,EAAS,EAAc,UAAW,KAAK,SACvC,EAAS,EAAgB,UAAW,KAAK,SACzC,OAAW,KAAK,MAAK,QAAS,KAAK,QAAQ,GAAK,EAAG,mBAAmB,KAAK,GAAI,GAI1E,YAAuB,EAAQ,CACpC,AAAK,GAAQ,GAAS,IACtB,GAAI,GAAa,EACb,EAAiB,KACjB,EAAe,GACf,EAA2B,GAC3B,EAAoB,CAAC,KAAM,MAC3B,EAAe,GACf,EAAS,GACT,EAAU,GACV,EAAgB,KAChB,EAAkB,KAChB,EAAU,GACV,EAAU,EAAO,QAAU,SAAS,cAAc,UAElD,EAAsB,GACtB,EAAO,CAAE,aAAc,GACvB,EAAK,EAAQ,WAAW,SAC9B,GAAI,CAAC,EAAI,KAAM,IAAI,OAAM,+BAEzB,KAAK,UAAY,SAAU,EAAM,CAE/B,GAAM,GAAO,MAAM,UAAU,MAAM,KAAK,UAAW,GAC7C,EAAS,EAAQ,GACvB,EAAa,KAAK,CAAE,KAAM,EAAQ,UAGpC,KAAK,MAAQ,UAAY,CACvB,EAAe,IAGjB,GAAM,GAAU,SAAU,EAAO,EAAQ,CAEvC,GAAI,MAAU,GAAU,IAAW,GAMnC,IALA,EAAQ,MAAQ,EAChB,EAAS,EACT,EAAQ,OAAS,EACjB,EAAU,EAEN,CAAC,EAAe,CAElB,GAAM,GAAW,GAAI,cAAa,CAChC,GAAI,GAAI,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,GAAI,EAAG,EAAG,EACrC,GAAI,EAAG,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,EAAG,EAAG,IAGrC,AAAC,EAAgB,EAAG,eAAgB,EAAG,WAAW,EAAG,aAAc,GACnE,EAAG,WAAW,EAAG,aAAc,EAAU,EAAG,aAC5C,EAAG,YAAY,EAAG,+BAAgC,IAEpD,EAAG,SAAS,EAAG,EAAG,EAAQ,GAE1B,EAAoB,CAAC,KAAM,QAGvB,EAA4B,SAAU,EAAO,EAAQ,CACzD,GAAM,GAAM,EAAG,oBACf,EAAG,gBAAgB,EAAG,YAAa,GACnC,GAAM,GAAe,EAAG,qBACxB,EAAG,iBAAiB,EAAG,aAAc,GACrC,GAAM,GAAU,EAAG,gBACnB,SAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAO,EAAQ,EAAG,EAAG,KAAM,EAAG,cAAe,MACtF,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,qBAAqB,EAAG,YAAa,EAAG,kBAAmB,EAAG,WAAY,EAAS,GACtF,EAAG,YAAY,EAAG,WAAY,MAC9B,EAAG,gBAAgB,EAAG,YAAa,MAC5B,CAAE,MAAK,YAGV,EAAsB,SAAU,EAAO,CAC3C,SAAkB,GAAS,EAAkB,IAAU,EAA0B,EAAQ,GAClF,EAAkB,IAGrB,EAAQ,SAAU,EAAQ,KAAM,CA3HxC,QA4HI,GAAI,GAAS,KACT,EAAS,KACT,EAAQ,GAEZ,AAAI,IAAe,EAEjB,EAAS,EAGT,EAAS,KAAoB,KAApB,cAA+C,QAE1D,IAEA,AAAI,GAAgB,CAAE,GAAQ,EAAK,cAGjC,GAAS,KACT,EAAQ,EAAa,GAAM,GAG3B,GAA4B,GAA2B,GAAK,EAC5D,EAAS,KAAoB,KAApB,cAA+C,KAG1D,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,gBAAgB,EAAG,YAAa,GACnC,EAAG,UAAU,EAAgB,QAAQ,MAAQ,EAAQ,GAAK,GAC1D,EAAG,WAAW,EAAG,UAAW,EAAG,IAGjC,KAAK,MAAQ,SAAU,EAAO,CAY5B,GAXA,EAAQ,EAAM,MAAO,EAAM,QAC3B,EAAa,EAER,GAAgB,GAAiB,EAAG,iBACzC,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAG,KAAM,EAAG,cAAe,GAEhE,EAAa,SAAW,EAE1B,WACO,EAET,OAAS,GAAI,EAAG,EAAI,EAAa,OAAQ,IAAK,CAC5C,EAAgB,IAAM,EAAa,OAAS,EAC5C,GAAM,GAAI,EAAa,GACvB,EAAE,KAAK,MAAM,KAAM,EAAE,MAAQ,IAE/B,MAAO,IAGT,GAAM,GAAiB,SAAU,EAAgB,CAC/C,GAAI,EAAoB,GACtB,SAAkB,EAAoB,GACtC,EAAG,WAAW,EAAgB,IACvB,EAGT,GAAM,GAAS,GACf,EAAO,gBAAkB,CACvB,yBACA,sBACA,qBACA,oBACA,uBACA,oBACA,YACA,mDACA,KACA,KAAK;AAAA,GACP,EAAO,kBAAoB,CACzB,yBACA,oBACA,6BACA,oBACA,0CACA,KACA,KAAK;AAAA,GACP,EAAkB,GAAI,IAAU,EAAI,EAAO,gBAAiB,GAC5D,GAAM,GAAY,aAAa,kBACzB,EAAW,EAAI,EACrB,SAAG,wBAAwB,EAAgB,UAAU,KACrD,EAAG,oBAAoB,EAAgB,UAAU,IAAK,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACxF,EAAG,wBAAwB,EAAgB,UAAU,IACrD,EAAG,oBAAoB,EAAgB,UAAU,GAAI,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACvF,EAAoB,GAAkB,EAC/B,GAKT,EAAQ,YAAc,SAAU,EAAQ,CAEtC,GAAM,GAAI,GAAI,cAAa,GAC3B,EAAE,IAAM,IACR,EAAE,IAAM,IACR,EAAE,KAAO,IACT,EAAE,KAAO,IAET,GAAM,GAAU,EAAE,MAAQ,GAAK,EAAE,KAAO,GAAK,EAAE,KAAO,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,EAC7H,EAAQ,YAAY,OAAO,cAC3B,EAAQ,YAAY,OAAO,WACzB,EAAU,EAAe,GAC/B,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,KAEF,EAAQ,YAAY,OAAS,GAC7B,EAAQ,YAAY,OAAO,WAAa,CACtC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,6EACA,6EACA,kFACA,kFACA,KACA,KAAK;AAAA,GACP,EAAQ,YAAY,OAAO,cAAgB,CACzC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,gEACA,gEACA,oEACA,wBACA,KACA,KAAK;AAAA,GAEP,EAAQ,WAAa,SAAU,EAAY,CACzC,GAAM,GAAK,IAAc,GAAK,EAC9B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,SAAU,EAAQ,CACrC,GAAM,GAAK,IAAU,GAAK,EAAI,EAAI,EAC5B,EAAM,GAAI,GAAK,IACrB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,WAAW,KAGrB,EAAQ,SAAW,SAAU,EAAQ,CACnC,GAAM,GAAK,IAAU,GAAK,EACpB,EAAI,KAAQ,GAAI,GAEtB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,SAAS,KAGnB,EAAQ,IAAM,SAAU,EAAU,CAChC,EAAY,IAAY,GAAK,IAAM,KAAK,GACxC,GAAM,GAAM,KAAK,IAAI,GACf,EAAM,KAAK,IAAI,GACf,EAAO,KACP,EAAO,KACP,EAAO,KAEb,EAAQ,YAAY,CAClB,EAAO,EAAO,GAAI,GAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,GAAI,GAAO,EAAG,EAC3H,EAAO,EAAO,CAAC,EAAQ,EAAO,KAAQ,EAAO,EAAO,GAAI,GAAQ,EAAO,IAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,MAAS,EAAG,EACzH,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAE,GAAI,GAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,EAAO,EAAO,EAAO,GAAI,GAAQ,EAAO,EAAO,EAAG,EAC5H,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,oBAAsB,UAAY,CACxC,EAAQ,YAAY,CAClB,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,MAAQ,UAAY,CAC1B,EAAQ,YAAY,CAClB,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,QAAU,UAAY,CAC5B,EAAQ,YAAY,CAClB,kBAAoB,mBAAqB,mBAAqB,EAAG,kBACjE,qBAAuB,kBAAoB,mBAAqB,EAAG,mBACnE,mBAAqB,oBAAsB,mBAAqB,EAAG,mBACnE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,eAAiB,UAAY,CACnC,EAAQ,YAAY,CAClB,kBAAoB,kBAAoB,oBAAsB,EAAG,kBACjE,mBAAqB,kBAAoB,mBAAqB,EAAG,kBACjE,kBAAoB,mBAAqB,kBAAoB,EAAG,kBAChE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,kBAClE,oBAAsB,mBAAoB,oBAAsB,EAAG,mBACnE,oBAAsB,mBAAqB,mBAAoB,EAAG,kBAClE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,mBAClE,mBAAqB,mBAAoB,oBAAsB,EAAG,mBAClE,kBAAoB,mBAAqB,kBAAmB,EAAG,mBAC/D,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,YAAY,CAClB,MAAO,MAAQ,MAAQ,EAAG,EAC1B,MAAQ,MAAO,MAAQ,EAAG,EAC1B,MAAQ,MAAQ,MAAO,EAAG,EAC1B,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAMhB,EAAQ,YAAc,SAAU,EAAQ,CACtC,GAAM,GAAI,GAAI,cAAa,GACrB,EAAa,EAAI,EACjB,EAAa,EAAI,EACjB,EAAU,EAAe,EAAQ,YAAY,QACnD,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAY,GAC7C,KAGF,EAAQ,YAAY,OAAS,CAC3B,yBACA,oBACA,6BACA,mBACA,sBACA,oBACA,2CACA,4DACA,mEACA,6DACA,sCACA,6DACA,oEACA,6DACA,4CACA,kBACA,yCACA,yCACA,wCACA,0BACA,KACA,KAAK;AAAA,GAEP,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,EAAG,EACN,EAAG,GAAI,EACP,EAAG,EAAG,KAIV,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,EAAG,EACP,GAAI,EAAG,EACP,GAAI,EAAG,KAIX,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,GAAI,GACR,EAAG,EAAG,EACN,EAAG,EAAG,KAIV,EAAQ,QAAU,SAAU,EAAQ,CAClC,GAAM,GAAI,GAAU,EACpB,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,GAAK,EAAG,EACX,GAAK,EAAG,EAAI,EAAI,EAAG,GAAK,EACxB,EAAG,GAAK,EAAG,KAIf,EAAQ,OAAS,SAAU,EAAM,CAC/B,GAAM,GAAI,GAAQ,EAClB,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAK,EAAG,GAAK,EAAG,EAChB,GAAK,EAAG,EAAG,EAAI,EACf,EAAG,EAAI,EAAG,EAAI,KAMlB,EAAQ,KAAO,SAAU,EAAM,CAC7B,GAAM,GAAa,EAAO,EAAK,EACzB,EAAa,EAAO,EAAK,EACzB,EAAU,EAAe,EAAQ,KAAK,QAE5C,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAG,GACpC,EAAM,EAAK,cAEX,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAW,GAC5C,KAGF,EAAQ,KAAK,OAAS,CACpB,yBACA,oBACA,6BACA,mBACA,oBACA,4BACA,8FACA,yFACA,wFACA,wFACA,wFACA,uFACA,uFACA,uFACA,uFACA,uFACA,wFACA,wFACA,wFACA,yFACA,8FACA,KACA,KAAK;AAAA,GAIP,EAAQ,SAAW,SAAU,EAAM,CACjC,GAAM,GAAa,EAAQ,EACrB,EAAa,EAAQ,EACrB,EAAU,EAAe,EAAQ,SAAS,QAEhD,EAAG,UAAU,EAAQ,QAAQ,KAAM,EAAW,GAC9C,KAGF,EAAQ,SAAS,OAAS,CACxB,yBACA,oBACA,qBACA,6BACA,yCACA,uCACA,IACA,oBACA,4BACA,oCACA,6CACA,KACA,KAAK;GDjhBT,GAAM,IAAU,KAEZ,EACA,EAEA,EAKG,YAAiB,EAAO,EAA0F,CACvH,GAAI,GACJ,GAAI,CAAC,EAAO,KAAM,IAAI,OAAM,2BAE5B,GACE,CAAE,aAAoB,YACnB,CAAE,OAAO,QAAU,aAAe,YAAiB,SACnD,CAAE,OAAO,YAAc,aAAe,YAAiB,aACvD,CAAE,OAAO,cAAgB,aAAe,YAAiB,eACzD,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,oBAAsB,aAAe,YAAiB,qBAC/D,CAAE,OAAO,kBAAoB,aAAe,YAAiB,kBAEhE,KAAM,IAAI,OAAM,uCAElB,GAAI,YAAoB,UAEtB,GAAI,EAAM,OAAS,EAAM,MAAM,SAAW,GAAK,EAAM,MAAM,KAAO,GAAK,EAAM,MAAM,KAAO,EAAG,EAAS,AAAG,QAAM,OAC1G,MAAM,IAAI,OAAM,2EAA2E,EAAM,aACjG,CAEL,GAAM,GAAgB,EAAM,cAAmB,EAAM,YAAiB,EAAM,OAAa,EAAM,OAAa,EAAM,MAAS,GAAK,EAC1H,EAAiB,EAAM,eAAoB,EAAM,aAAkB,EAAM,QAAc,EAAM,OAAa,EAAM,MAAS,GAAK,EAChI,EAAc,EACd,EAAe,EAenB,GAdI,EAAc,IAChB,GAAc,GACd,EAAe,EAAc,EAAiB,GAE5C,EAAe,IACjB,GAAe,GACf,EAAc,EAAe,EAAgB,GAI/C,AAAI,EAAO,OAAO,MAAQ,EAAG,EAAc,EAAO,OAAO,MAChD,EAAO,OAAO,OAAS,GAAG,GAAc,EAAiB,GAAO,OAAO,OAAS,IACzF,AAAI,EAAO,OAAO,OAAS,EAAG,EAAe,EAAO,OAAO,OAClD,EAAO,OAAO,MAAQ,GAAG,GAAe,EAAkB,GAAO,OAAO,MAAQ,IACrF,CAAC,GAAe,CAAC,EAAc,KAAM,IAAI,OAAM,2CACnD,AAAI,EAAC,GAAa,kBAAU,SAAU,GAAiB,kBAAU,UAAW,IAC1E,GAAY,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UAC1H,kBAAU,SAAU,GAAa,GAAS,MAAQ,GAClD,kBAAU,UAAW,GAAc,GAAS,OAAS,IAI3D,GAAM,GAAM,EAAS,WAAW,MAehC,GAdA,AAAI,YAAiB,WACnB,EAAI,aAAa,EAAO,EAAG,GAE3B,AAAI,EAAO,OAAO,MAAQ,MAAO,GAAI,WAAc,YACjD,GAAI,UAAU,EAAe,GAC7B,EAAI,MAAM,GAAI,GACd,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAC3F,EAAI,aAAa,EAAG,EAAG,EAAG,EAAG,EAAG,IAEhC,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAK3F,EAAO,OAAO,QAAS,CAQzB,GAPI,EAAC,GAAM,CAAC,GAAc,EAAS,QAAU,EAAU,OAAW,kBAAU,UAAW,kBAAW,UAChG,GAAa,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,iBAAU,MAAO,iBAAU,QAAU,SAAS,cAAc,UACnI,kBAAW,SAAU,kBAAU,QAAO,GAAU,MAAQ,iBAAU,OAClE,kBAAW,UAAW,kBAAU,SAAQ,GAAU,OAAS,iBAAU,QAEzE,EAAK,AAAG,MAAI,MAAM,WAAa,GAAY,IAAc,CAAE,OAAQ,IAAe,MAEhF,CAAC,EAAI,MAAO,CAAE,OAAQ,KAAM,OAAQ,GACxC,EAAG,QACH,EAAG,UAAU,aAAc,EAAO,OAAO,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACrE,EAAO,OAAO,YAAc,GAAG,EAAG,UAAU,UAAW,EAAO,OAAO,WACrE,EAAO,OAAO,OAAS,GAAG,EAAG,UAAU,OAAQ,EAAO,OAAO,MAC7D,EAAO,OAAO,aAAe,GAAG,EAAG,UAAU,aAAc,EAAO,OAAO,YACzE,EAAO,OAAO,MAAQ,GAAG,EAAG,UAAU,MAAO,EAAO,OAAO,KAC3D,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,SAAS,EAAG,UAAU,WACpC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,YAAY,EAAG,UAAU,cACvC,EAAO,OAAO,aAAa,EAAG,UAAU,eACxC,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACzE,EAAG,MAAM,OAuBT,GAAY,EACR,GAAI,GAAK,MAIf,GAAI,GACJ,GAAI,EAAU,KAAM,CAClB,GAAM,GAAQ,CAAC,EAAU,OAAQ,EAAU,MAAO,GAClD,EAAS,AAAG,WAAS,EAAU,KAAM,EAAO,iBACnC,YAAqB,WAC9B,EAAS,AAAG,UAAQ,WAAW,WACtB,EAAO,UAAY,SAAW,EAAO,UAAY,UAAW,CAErE,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,EAAS,AAAG,UAAQ,WAAW,OAC1B,CAEL,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,GAAM,GAAO,iBAAS,aAAa,EAAG,EAAG,EAAa,GACtD,EAAS,AAAG,UAAQ,WAAW,GAEjC,GAAM,GAAS,EAAO,UACtB,EAAS,EAAO,WAAW,GAC3B,EAAO,UACP,EAAO,UAET,GAAM,GAAS,EAAO,OAAO,OAAS,EAAY,KAClD,MAAO,CAAE,SAAQ,UE/JnB,2HCqNA,GAAM,GAAiB,CACrB,QAAS,QAIT,cAAe,aACf,SAAU,aAEV,MAAO,GACP,MAAO,GAIP,QAAS,GAIT,WAAY,GAKZ,OAAQ,GAIR,eAAgB,GAKhB,OAAQ,OAIR,OAAQ,CAEN,QAAS,GACT,MAAO,EACP,OAAQ,EAIR,KAAM,GACN,OAAQ,GACR,WAAY,EACZ,SAAU,EACV,UAAW,EACX,KAAM,EACN,WAAY,EACZ,IAAK,EACL,SAAU,GACV,MAAO,GACP,QAAS,GACT,WAAY,GACZ,YAAa,GACb,SAAU,GACV,SAAU,GAGZ,QAAS,CACP,QAAS,IAGX,KAAM,CACJ,QAAS,GAIT,SAAU,CACR,UAAW,sBAEX,SAAU,GAGV,SAAU,GAEV,WAAY,GAKZ,YAAa,GAEb,cAAe,GACf,aAAc,GAEd,eAAgB,GAGhB,OAAQ,IAGV,KAAM,CACJ,QAAS,GACT,UAAW,iBAIb,KAAM,CACJ,QAAS,GACT,UAAW,aAIb,YAAa,CACX,QAAS,GAET,UAAW,eAEX,WAAY,IAId,QAAS,CACP,QAAS,GACT,cAAe,GACf,WAAY,GACZ,UAAW,gBAIb,IAAK,CACH,QAAS,GACT,UAAW,WAEX,WAAY,IAId,OAAQ,CACN,QAAS,GACT,cAAe,GACf,UAAW,cAEX,WAAY,IAId,UAAW,CACT,QAAS,GACT,UAAW,oBAKf,KAAM,CACJ,QAAS,GACT,UAAW,eAIX,cAAe,EAGf,eAAgB,GAGhB,UAAW,IAIb,KAAM,CACJ,QAAS,GACT,SAAU,GAEV,WAAY,GAKZ,YAAa,GAEb,cAAe,GACf,aAAc,GAEd,eAAgB,GAEhB,SAAU,EAEV,UAAW,GACX,SAAU,CACR,UAAW,mBAGb,SAAU,CACR,UAAW,sBAKf,OAAQ,CACN,QAAS,GACT,UAAW,eAGX,cAAe,GACf,aAAc,GAEd,WAAY,GACZ,WAAY,KD/WT,GAAM,IAAuB,CAClC,MAAe,2BACf,WAAoB,yBACpB,YAAqB,QACrB,KAAc,6BACd,WAAoB,GACpB,UAAmB,EACnB,UAAmB,EACnB,UAAmB,GACnB,WAAqB,GACrB,WAAqB,GACrB,UAAoB,GACpB,aAAuB,GACvB,aAAuB,GACvB,SAAmB,GACnB,UAAoB,GACpB,eAAyB,GACzB,YAAsB,GACtB,iBAA2B,IAG7B,YAAe,EAAK,EAAG,EAAG,EAAI,EAAG,EAAc,CAC7C,EAAI,UAAY,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACrH,EAAI,YACJ,EAAI,IAAI,EAAG,EAAG,EAAa,UAAW,EAAG,EAAI,KAAK,IAClD,EAAI,OAGN,YAAc,EAAK,EAAG,EAAG,EAAO,EAAQ,EAAc,CAEpD,GADA,EAAI,YACA,EAAa,UAAW,CAC1B,GAAM,GAAM,GAAI,EAAI,GAAS,EACvB,EAAM,GAAI,EAAI,GAAU,EAC9B,EAAI,QAAQ,EAAI,EAAI,EAAQ,EAAG,EAAS,EAAG,EAAG,EAAG,EAAI,KAAK,QAE1D,GAAI,UAAY,EAAa,UAC7B,EAAI,OAAO,EAAI,EAAa,UAAW,GACvC,EAAI,OAAO,EAAI,EAAQ,EAAa,UAAW,GAC/C,EAAI,iBAAiB,EAAI,EAAO,EAAG,EAAI,EAAO,EAAI,EAAa,WAC/D,EAAI,OAAO,EAAI,EAAO,EAAI,EAAS,EAAa,WAChD,EAAI,iBAAiB,EAAI,EAAO,EAAI,EAAQ,EAAI,EAAQ,EAAa,UAAW,EAAI,GACpF,EAAI,OAAO,EAAI,EAAa,UAAW,EAAI,GAC3C,EAAI,iBAAiB,EAAG,EAAI,EAAQ,EAAG,EAAI,EAAS,EAAa,WACjE,EAAI,OAAO,EAAG,EAAI,EAAa,WAC/B,EAAI,iBAAiB,EAAG,EAAG,EAAI,EAAa,UAAW,GACvD,EAAI,YAEN,EAAI,SAGN,YAAe,EAAK,EAAmB,GAAI,EAAc,CACvD,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,GAAI,YACJ,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAW,KAAM,GACf,EAAI,YAAc,EAAa,UAAY,EAAG,GAAK,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACnI,EAAI,UAAY,EAAa,UAAY,EAAG,GAAK,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACjI,EAAI,OAAO,EAAG,GAAI,SAAS,EAAG,KAEhC,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,YAAgB,EAAK,EAAmB,GAAI,EAAc,CACxD,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,IAAI,CAAC,EAAa,WAAa,EAAO,QAAU,EAAG,CACjD,GAAM,EAAK,EAAQ,GACnB,OAEF,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAG,IAAK,CAC1C,GAAM,GAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EACzC,EAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EAC/C,EAAI,iBAAiB,EAAO,GAAG,GAAI,EAAO,GAAG,GAAI,EAAI,GAEvD,EAAI,iBAAiB,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,IACzI,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,kBAA8B,EAA6B,EAAoB,EAA2B,CACxG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,CAAC,EAAK,OACV,EAAI,KAAO,EAAa,KACxB,EAAI,UAAY,EAAa,MAC7B,GAAI,GAAI,EACR,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CACtC,GAAI,GAAc,GACd,EAAa,GAEjB,GADA,CAAC,EAAO,GAAQ,OAAO,QAAQ,EAAO,IACjC,EAAK,OAAS,GAAO,EAAK,GAAG,OAAS,EAAI,CAC7C,GAAM,GAAS,EAAM,GAAK,EAAI,IAAI,EAAM,KAAO,GACzC,EAAQ,GAAG,EAAM,MAAM,MAAW,EAAK,KAC7C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,aAE/C,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,YAC7C,GAAK,IAKX,kBAA2B,EAA6B,EAAoB,EAA2B,CACrG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,OAAW,KAAK,GAAQ,CACtB,EAAI,KAAO,EAAa,KACxB,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MACzB,EAAa,WACf,CAAI,EAAa,YAAa,GAAK,EAAK,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,GAC7J,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,IAGzD,GAAM,GAAkB,GAMxB,GALA,EAAO,KAAK,oBAAoB,KAAK,MAAM,IAAM,EAAE,gBAC/C,EAAE,kBAAkB,EAAO,KAAK,GAAG,EAAE,QAAU,MAAM,KAAK,MAAM,IAAM,EAAE,gCAExE,EAAE,KAAK,EAAO,KAAK,QAAQ,EAAE,KAAO,MACpC,EAAE,MAAM,EAAO,KAAK,kBAAkB,EAAE,QACxC,EAAE,SAAW,EAAE,QAAQ,OAAS,EAAG,CACrC,GAAM,GAAU,EAAE,QAAQ,IAAI,AAAC,GAAM,GAAG,KAAK,MAAM,IAAM,EAAE,WAAW,EAAE,WACxE,EAAO,KAAK,EAAQ,KAAK,MAE3B,AAAI,EAAE,UAAY,EAAE,SAAS,OAAS,EAAE,SAAS,MAAM,MAAM,EAAO,KAAK,SAAS,KAAK,MAAM,IAAM,EAAE,SAAS,MAAM,MAAQ,WAAW,KAAK,MAAM,IAAM,EAAE,SAAS,MAAM,KAAO,aAAa,KAAK,MAAM,IAAM,EAAE,SAAS,MAAM,OAAS,OACpO,EAAO,SAAW,GAAG,EAAO,KAAK,QACrC,EAAI,UAAY,EAAa,MAC7B,OAAS,GAAI,EAAO,OAAS,EAAG,GAAK,EAAG,IAAK,CAC3C,GAAM,GAAI,KAAK,IAAI,EAAE,IAAI,GAAI,GACvB,EAAI,EAAI,EAAa,WAAa,EAAE,IAAI,GAC9C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,KAErC,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,IAGrC,GADA,EAAI,UAAY,EACZ,EAAE,MAAQ,EAAE,KAAK,OAAS,EAAG,CAC/B,GAAI,EAAa,WACf,OAAW,KAAM,GAAE,KAAM,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAAI,GAG3D,GAAI,EAAa,aAAc,CAC7B,EAAI,UAAY,EAChB,OAAS,GAAI,EAAG,EAAI,GAAc,OAAS,EAAG,IAAK,CACjD,GAAM,GAAS,CACb,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,IACtB,IAAI,AAAC,GAAU,EAAE,KAAK,IACxB,GAAM,EAAK,EAAQ,GAGrB,GAAI,EAAE,aAAe,EAAE,YAAY,YAAa,CAC9C,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,YAAY,GAAG,GAAK,EAAE,YAAY,YAAY,GAAG,IAAM,EACtF,EAAQ,KAAK,IAAI,EAAE,YAAY,YAAY,GAAG,GAAK,EAAE,YAAY,YAAY,GAAG,IAAM,EAC5F,EAAI,QAAQ,EAAE,YAAY,YAAY,GAAG,GAAI,EAAE,YAAY,YAAY,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IAC3G,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,QAGR,GAAI,EAAE,aAAe,EAAE,YAAY,aAAc,CAC/C,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,aAAa,GAAG,GAAK,EAAE,YAAY,aAAa,GAAG,IAAM,EACxF,EAAQ,KAAK,IAAI,EAAE,YAAY,aAAa,GAAG,GAAK,EAAE,YAAY,aAAa,GAAG,IAAM,EAC9F,EAAI,QAAQ,EAAE,YAAY,aAAa,GAAG,GAAI,EAAE,YAAY,aAAa,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IAC7G,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,YAQhB,GAAM,IAAsB,GAC5B,kBAA2B,EAA6B,EAAoB,EAA2B,CACrG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CAkBtC,GAhBI,CAAC,GAAc,IAAM,EAAa,gBAAgB,IAAc,GAAK,IAAK,EAAO,KACrF,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,EAAI,UAAY,EAAa,UAC7B,EAAI,KAAO,EAAa,KACpB,EAAa,WACf,IAAK,EAAK,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,GAC9E,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,KAErI,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,MAGnI,EAAa,WACf,OAAS,GAAK,EAAG,EAAK,EAAO,GAAG,UAAU,OAAQ,IAChD,EAAI,UAAY,EAAa,UAAY,EAAO,GAAG,UAAU,GAAI,SAAS,EAAI,QAAQ,MAAS,EAAI,EAAO,GAAG,UAAU,GAAI,SAAS,MAAO,MAAS,EAAI,EAAO,GAAG,UAAU,GAAI,SAAS,eAAkB,EAAa,MACxN,AAAI,EAAa,eACf,IAAc,GAAG,UAAU,GAAI,GAAM,IAAc,GAAG,UAAU,GAAI,GAAK,EAAO,GAAG,UAAU,GAAI,SAAS,GAAK,EAC/G,GAAc,GAAG,UAAU,GAAI,GAAM,IAAc,GAAG,UAAU,GAAI,GAAK,EAAO,GAAG,UAAU,GAAI,SAAS,GAAK,EAC/G,GAAM,EAAK,GAAc,GAAG,UAAU,GAAI,GAAI,GAAc,GAAG,UAAU,GAAI,GAAI,EAAG,IAEpF,GAAM,EAAK,EAAO,GAAG,UAAU,GAAI,SAAS,EAAG,EAAO,GAAG,UAAU,GAAI,SAAS,EAAG,EAAG,GAI5F,GAAI,EAAa,YACf,GAAI,KAAO,EAAa,KACpB,EAAO,GAAG,WACZ,OAAW,KAAM,GAAO,GAAG,UACzB,EAAI,UAAY,EAAa,UAAY,EAAG,SAAS,EAAI,QAAQ,MAAS,EAAI,EAAG,SAAS,MAAO,MAAS,EAAI,EAAG,SAAS,eAAkB,EAAa,MACzJ,EAAI,SAAS,GAAG,EAAG,QAAQ,KAAK,MAAM,IAAM,EAAG,UAAW,EAAG,SAAS,EAAI,EAAG,EAAG,SAAS,EAAI,GAInG,GAAI,EAAa,cAAgB,EAAO,GAAG,UAAW,CACpD,GAAI,GACE,EAAgB,GAEtB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IAC/F,EAAO,SAAW,GAAG,GAAM,EAAK,EAAQ,GAE5C,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,MAM1B,kBAA2B,EAA6B,EAAoB,EAA2B,CACrG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GAAQ,CACtB,GAAI,EAAa,UAAW,CAC1B,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAI,GACJ,GAAI,CAAC,EAAa,iBAChB,EAAM,EAAa,YAAc,EAAE,OAAS,EAAE,YAE9C,EAAM,CAAC,OAAO,iBAAkB,OAAO,iBAAkB,EAAG,GACxD,EAAE,WAAa,EAAE,UAAU,OAAS,EAAG,CACzC,OAAW,KAAM,GAAE,UACjB,AAAI,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAElC,EAAI,IAAM,EAAI,GACd,EAAI,IAAM,EAAI,GAGlB,AAAI,EAAa,YAAa,GAAK,EAAK,EAAS,MAAQ,EAAI,GAAI,EAAS,OAAS,EAAI,GAAI,EAAS,MAAQ,EAAI,GAAI,EAAS,OAAS,EAAI,GAAI,GACzI,GAAK,EAAK,EAAI,GAAI,EAAI,GAAI,EAAI,GAAI,EAAI,GAAI,GAC3C,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,OAAQ,EAAI,GAAK,EAAG,EAAI,EAAI,GAAK,EAAa,WAAY,EAAI,KAE7E,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,OAAQ,EAAI,GAAK,EAAG,EAAI,EAAI,GAAK,EAAa,WAAY,EAAI,KAE7E,EAAI,SAEN,GAAI,EAAa,YACX,EAAE,WAAa,EAAE,UAAU,OAAS,EACtC,OAAW,KAAM,GAAE,UACjB,EAAI,UAAY,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACxH,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAIlC,GAAI,EAAa,aAAc,CAC7B,GAAM,GAAU,AAAC,GAAS,CACxB,GAAI,EAAC,EACL,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,EAAI,UAAY,EAAa,UAC7B,EAAI,YACJ,EAAI,YAAc,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAK,GAAG,OAAQ,MAAS,EAAI,EAAK,GAAG,gBAAmB,EAAa,MACpI,EAAI,OAAO,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,GAAI,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,IAC/D,EAAI,OAAO,EAAK,GAAG,GAAI,EAAK,GAAG,IAC/B,EAAI,UAGR,EAAQ,EAAE,YAAY,aACtB,EAAQ,EAAE,YAAY,cACtB,EAAQ,EAAE,YAAY,YACtB,EAAQ,EAAE,YAAY,OACtB,EAAQ,EAAE,YAAY,UAM5B,kBAA6B,EAA6B,EAAoB,EAA2B,CACvG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GACd,GAAI,EAAa,UAAW,CAK1B,GAJA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,AAAI,EAAa,YAAa,GAAK,EAAK,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,GAC7J,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GACnD,EAAa,WAAY,CAC3B,GAAM,GAAQ,GAAG,KAAK,MAAM,IAAM,EAAE,WAAW,EAAE,QACjD,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAElF,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,IAElF,EAAI,WAKV,kBAA6B,EAA6B,EAA8B,CAEtF,GADI,CAAC,GAAY,CAAC,GACd,CAAE,aAAoB,qBAAsB,CAAE,aAAqB,oBAAoB,OAC3F,GAAM,GAAS,EAAS,WAAW,MACnC,WAAQ,UAAU,EAAU,EAAG,GAGjC,kBAA0B,EAA6B,EAAY,EAA2B,CAC5F,GAAM,GAAe,EAAU,GAAS,GACxC,AAAI,CAAC,GAAU,CAAC,GACV,YAAoB,oBAC1B,IAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAQ,EAAU,EAAO,QAAS,GAClC,GAAO,EAAU,EAAO,OAAQ,IE5d3B,GAAM,IAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kEA0JP,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;qBC3JpB,+BAqDO,QAAY,CA+EjB,YAAY,EAA8B,GAAI,CAX9C,oBACA,oBACA,oBACA,oBAgEA,aAAU,IAAI,IAAQ,CACpB,GAAI,CAAC,OAAK,IAAqB,OAC/B,GAAM,GAAU,KAAK,GAAG,SAAS,MAAM,WACjC,EAAW,OAAK,IACtB,QAAK,GAAc,GACnB,GAAM,GAAS,EAAU,EACzB,AAAI,IAAW,GAAG,EAAI,GAAG,EAAK,IAKhC,YAAU,AAAC,GAAyB,CAClC,GAAI,CAAC,OAAK,IAAc,MAAO,MAC/B,GAAI,CAAC,EAAO,MAAO,uBACnB,GAAI,KAAK,GAAG,IAAI,MAAM,SAAW,CAAE,aAAoB,WAAS,MAAO,yBACvE,GAAI,CACF,KAAK,GAAG,mBACF,EAAN,CACA,MAAO,qBAET,MAAO,QAwGT,YAAgB,MAAO,EAAQ,KAAU,CAxT3C,MAyTI,GAAI,KAAK,OAAO,SAAY,KAAK,OAAO,QAAQ,OAAS,GAAM,GAAU,KAAK,GAAG,eAAiB,KAAK,OAAO,QAAU,CACtH,GAAM,GAAY,IAYlB,GAXA,KAAK,MAAQ,UAWT,KAAK,OAAO,SAAW,KAAK,OAAO,QAAQ,OAAS,EAAG,CAOzD,GALI,KAAK,GAAG,IAAI,MAAM,YAAc,KAAK,OAAO,UAAY,cAAc,MAAK,OAAO,QAAU,SAC5F,KAAK,GAAG,IAAI,MAAM,SAAY,MAAK,OAAO,UAAY,SAAW,KAAK,OAAO,UAAY,YAAY,MAAK,OAAO,QAAU,cAE3H,KAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,OAAO,SAEvD,KAAK,OAAO,UAAY,OAAQ,CAElC,GADI,KAAK,OAAO,OAAO,EAAI,aAAc,KAAK,OAAO,UACjD,MAAO,SAAK,KAAL,cAAS,eAAiB,YAAa,KAAK,GAAG,aAAa,KAAK,OAAO,cAC9E,MAAM,IAAI,OAAM,qCACrB,GAAM,GAAO,KAAM,MAAK,GAAG,MAAM,SAAS,yBACpC,EAAK,KAAM,MAAK,GAAG,MAAM,SAAS,gCACxC,AAAI,KAAK,OAAO,OAAO,EAAI,mBAAmB,EAAO,OAAS,aAAa,EAAK,gBAAkB,oBAC9F,KAAK,OAAO,OAAS,CAAC,GAAM,EAAI,6CAGtC,AAAI,KAAK,OAAO,UAAY,WAAW,AAAQ,KAC/C,GAAI,CACF,KAAM,MAAK,GAAG,WAAW,KAAK,OAAO,eAC9B,EAAP,CACA,EAAI,6BAA8B,KAAK,OAAO,QAAS,IAK3D,GAFA,KAAK,GAAG,iBAEJ,KAAK,GAAG,eAAiB,SAAW,KAAK,GAAG,eAAiB,UAAW,CAC1E,KAAK,GAAG,IAAI,IAAI,+BAAgC,IAChD,KAAK,GAAG,IAAI,IAAI,2BAA4B,IACxC,KAAK,OAAO,YACd,GAAI,kDAAmD,KAAK,OAAO,YACnE,KAAK,GAAG,IAAI,IAAI,iCAAkC,KAAK,OAAO,WAAa,EAAI,KAEjF,GAAM,GAAK,KAAM,MAAK,GAAG,UAAU,kBAAkB,GACrD,AAAI,KAAK,OAAO,OAAO,EAAI,cAAc,EAAG,aAAa,EAAG,qBAAqB,EAAG,aAAa,EAAG,aAEtG,KAAM,MAAK,GAAG,QACd,KAAK,KAAK,QAAU,KAAK,MAAM,IAAQ,MAoK3C,YAAgB,SAAY,CAC1B,GAAM,GAAY,CAAC,EAAQ,EAAO,6BAA+B,MAAM,QAAQ,YAAe,KAAU,KAAK,AAAC,GAAQ,EAAI,QACtH,EACA,EACJ,OAAQ,KAAK,OAAO,YACb,OAAQ,EAAO,KAAM,GAAiB,IAAO,UAC7C,OAAQ,EAAO,KAAM,GAAiB,IAAO,cACzC,EAAO,KAElB,GAAI,EAAM,CACR,GAAM,GAAS,KAAM,mBAAkB,GACvC,EAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QACrC,EAAO,QAET,MAAO,KAIT,YAAgB,SAAY,GAAI,SAAQ,AAAC,GAAY,CACnD,GAAI,GACA,EAAO,EACX,OAAQ,KAAK,OAAO,YACb,OACH,EAAO,IACP,EAAM,0BAAmC,GACzC,UACG,WACA,OACH,EAAO,KACP,EAAM,0BAAmC,GACzC,cAEA,EAAM,KAGV,GAAM,GAAM,GAAI,OAChB,EAAI,OAAS,SAAY,CACvB,GAAM,GAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAM,GAAQ,SAAS,cAAc,UACnH,EAAO,MAAQ,EAAI,aACnB,EAAO,OAAS,EAAI,cACpB,GAAM,GAAM,EAAO,WAAW,MAC9B,WAAK,UAAU,EAAK,EAAG,GAEvB,GAAM,GAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QAC3C,EAAQ,IAEV,AAAI,EAAK,EAAI,IAAM,EACd,EAAQ,SAIf,YAAc,SAAY,CACxB,GAAM,GAAO,AAAC,GAAQ,OAAO,KAAK,EAAK,UACnC,EAGJ,GAFI,KAAK,OAAO,SAAW,QAAQ,GAAM,EAAY,KACjD,MAAK,OAAO,SAAW,QAAU,KAAK,OAAO,SAAW,SAAQ,GAAM,EAAY,KAClF,CAAC,EAAK,MAAO,MACjB,GAAI,GACJ,GAAI,MAAU,SAAY,YAAa,CACrC,GAAM,GAAO,AAAG,OAAQ,WAAW,GAC7B,EAAW,EAAK,WAAW,GACjC,KAAK,GAAG,QAAQ,GAEhB,EAAM,KAAM,MAAK,OAAO,EAAU,KAAK,QACvC,KAAK,GAAG,QAAQ,OAEhB,AAAI,MAAK,OAAO,OAAO,EAAI,+BAS7B,MAAO,KArdP,KAAK,GAAK,EACV,KAAK,KAAO,GACZ,KAAK,QAAc,GACnB,KAAK,OAAS,EAAU,EAAU,GAClC,KAAK,MAAQ,OACb,QAAK,GAAc,GACnB,QAAK,GAAsB,IAC3B,QAAK,GAAe,IACpB,QAAK,GAAY,IACjB,KAAK,KAAO,GAEZ,KAAK,OAAS,CACZ,KAAM,KACN,QAAS,KACT,UAAW,KACX,cAAe,KACf,SAAU,KACV,KAAM,KACN,IAAK,KACL,OAAQ,KACR,QAAS,KACT,UAAW,KACX,QAAS,KACT,QAAS,MAIX,KAAK,MAAQ,AAAC,GAAiB,AAAM,GAAQ,EAAO,KAAK,QAEzD,KAAK,QAAU,CACb,YACA,OACA,UACA,WACA,WACA,KAAM,KAAK,OAAO,KAAK,UAAU,SAAS,WAAa,GAAU,GACjE,KAAM,GACN,YAEF,KAAK,kBAA6B,GAClC,KAAK,UAAqB,GAE1B,KAAK,QAAU,AAAQ,KAMzB,aAAyH,CACvH,MAAI,MAAK,OAAO,QAAwB,GACjC,GA+BT,WAAW,EAA2B,EAAmC,CACvE,MAAI,MAAK,OAAO,KAAK,YAAY,QAAgB,AAAQ,GAAW,EAAY,GAC5E,KAAK,OAAO,KAAK,UAAU,QAAgB,AAAU,GAAW,EAAY,GACzE,EAQT,QAAQ,EAA8B,CACpC,MAAO,AAAQ,IAAQ,GAWzB,MAAM,EAA8B,EAAkE,EAAY,EAA8E,CAC9L,MAAO,AAAQ,IAAM,EAAe,EAAI,QAMpC,MAAK,EAA8B,GAAI,CAC3C,KAAK,MAAQ,OACb,GAAM,GAAY,IAClB,AAAI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IAEjD,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,YAAY,KAAK,WACxC,KAAK,OAAO,OAAO,EAAI,iBAAiB,KAAK,GAAG,gBAChD,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,QAAQ,UACjD,KAAK,OAAO,OAAO,EAAI,SAAU,KAAK,QAAQ,OAElD,KAAM,QAAK,IAAL,UAAmB,IACrB,KAAK,GAAG,IAAI,MAAM,YAChB,MAAK,OAAO,OAAO,EAAI,iBAAkB,KAAK,QAC9C,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,GAAG,IAAI,SAGxD,AAAI,KAAK,OAAO,MACd,CACE,KAAK,OAAO,KACZ,KAAK,OAAO,IACZ,KAAK,OAAO,OACZ,KAAK,OAAO,QACZ,KAAK,OAAO,UACZ,KAAK,OAAO,SACZ,KAAK,OAAO,QACZ,KAAK,OAAO,UACZ,KAAK,OAAO,cACZ,KAAK,OAAO,QACZ,KAAK,OAAO,SACV,KAAM,SAAQ,IAAI,CACpB,KAAK,OAAO,MAAS,MAAK,OAAO,KAAK,QAAU,AAAS,GAAK,KAAK,QAAU,MAC7E,KAAK,OAAO,KAAS,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,IAAI,QAAW,AAAI,GAAK,KAAK,QAAU,MACzG,KAAK,OAAO,QAAY,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,OAAO,QAAW,AAAO,GAAK,KAAK,QAAU,MAClH,KAAK,OAAO,SAAa,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,QAAQ,QAAW,AAAQ,GAAK,KAAK,QAAU,MACrH,KAAK,OAAO,WAAe,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,QAAW,AAAU,GAAK,KAAK,QAAU,MAC3H,KAAK,OAAO,UAAa,MAAK,OAAO,KAAK,QAAU,AAAS,GAAK,KAAK,QAAU,MACjF,KAAK,OAAO,SAAY,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,SAAS,WAAkB,AAAQ,GAAK,KAAK,QAAU,MACtI,KAAK,OAAO,WAAc,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,SAAS,aAAe,AAAU,GAAK,KAAK,QAAU,MACvI,KAAK,OAAO,eAAkB,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,SAAS,iBAAmB,AAAc,GAAK,KAAK,QAAU,MACnJ,KAAK,OAAO,SAAY,MAAK,OAAO,OAAO,QAAU,AAAQ,GAAK,KAAK,QAAU,MACjF,KAAK,OAAO,SAAa,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,YAAY,QAAW,AAAQ,GAAK,KAAK,QAAU,QAGvH,MAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,MAAM,MAAK,OAAO,KAAO,KAAM,AAAS,IAAK,KAAK,SAC3F,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,IAAI,SAAW,CAAC,KAAK,OAAO,KAAK,MAAK,OAAO,IAAM,KAAM,AAAI,IAAK,KAAK,SACpH,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,OAAO,SAAW,CAAC,KAAK,OAAO,QAAQ,MAAK,OAAO,OAAS,KAAM,AAAO,IAAK,KAAK,SAChI,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,QAAQ,SAAW,CAAC,KAAK,OAAO,SAAS,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,SACpI,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,SAAW,CAAC,KAAK,OAAO,WAAW,MAAK,OAAO,UAAY,KAAM,AAAU,IAAK,KAAK,SAC5I,KAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,UAAU,MAAK,OAAO,SAAW,KAAM,AAAS,IAAK,KAAK,SACnG,KAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,SAAW,KAAK,OAAO,KAAK,UAAU,SAAS,YAAY,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,SAClJ,KAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,WAAa,KAAK,OAAO,KAAK,UAAU,SAAS,cAAc,MAAK,OAAO,UAAY,KAAM,AAAU,IAAK,KAAK,SAC1J,KAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,eAAiB,KAAK,OAAO,KAAK,UAAU,SAAS,kBAAkB,MAAK,OAAO,cAAgB,KAAM,AAAc,IAAK,KAAK,SAC1K,KAAK,OAAO,OAAO,SAAW,CAAC,KAAK,OAAO,SAAS,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,SAClG,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,YAAY,SAAW,CAAC,KAAK,OAAO,SAAS,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,UAG1I,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,GAAG,SAAS,MAAM,SAAU,QAAS,KAAK,GAAG,SAAS,MAAM,WAAY,WAC5H,QAAK,GAAY,KAGnB,GAAM,GAAU,KAAK,MAAM,IAAQ,GACnC,AAAI,EAAW,MAAK,KAAK,MAAQ,IAAI,MAAK,KAAK,KAAO,QAkElD,QAAO,EAAc,EAA8B,GAA6B,CAEpF,MAAO,IAAI,SAAQ,KAAO,IAAY,CAvX1C,QAwXM,KAAK,MAAQ,SACb,GAAI,GAGJ,KAAK,OAAS,EAAU,KAAK,OAAQ,GAGrC,KAAK,MAAQ,QACb,GAAM,GAAQ,OAAK,IAAL,UAAa,GAC3B,AAAI,GACF,GAAI,EAAO,GACX,EAAQ,CAAE,WAGZ,GAAM,GAAY,IAGlB,KAAM,QAAK,IAAL,WAGN,KAAM,MAAK,OAEP,KAAK,OAAO,QAAQ,KAAK,GAAG,SAAS,aACzC,KAAK,QAAQ,gBAGb,GAAI,GACJ,AAAI,GAAS,KAAK,OAAO,gBACtB,OAAO,mBAAqB,aAAe,YAAiB,mBACzD,MAAO,QAAU,aAAe,YAAiB,QACjD,MAAO,YAAc,aAAe,YAAiB,YACrD,MAAO,cAAgB,aAAe,aAAiB,eAE3D,GAAI,gCACJ,EAAyB,KAAK,OAAO,eACrC,KAAK,OAAO,eAAiB,IAG/B,EAAY,IACZ,GAAM,GAAU,AAAM,GAAQ,EAAO,KAAK,QAC1C,GAAI,CAAC,GAAW,CAAC,EAAQ,OAAQ,CAC/B,EAAI,qCACJ,EAAQ,CAAE,MAAO,sCACjB,OAEF,KAAK,KAAK,MAAQ,KAAK,MAAM,IAAQ,GACrC,KAAK,QAAQ,cAGb,GAAI,GACA,EACA,EACA,EACA,EAGJ,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAW,KAAM,EAAQ,QAAU,GAC5E,KAAK,KAAK,MAAM,MAAO,MAAK,KAAK,MAErC,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAW,KAAM,EAAQ,QAAU,GACtF,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,KAAO,IAIpC,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,CAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACnI,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,AAAU,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACxI,KAAK,OAAO,KAAK,UAAU,SAAS,kBAAkB,GAAU,KAAK,OAAO,KAAK,QAAU,AAAc,GAAQ,EAAQ,OAAQ,KAAK,QAAU,IACrJ,KAAK,KAAK,MAAM,MAAO,MAAK,KAAK,MAErC,MAAK,MAAQ,WACb,EAAY,IACZ,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GACzI,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAU,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC9I,KAAK,OAAO,KAAK,UAAU,SAAS,kBAAkB,GAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAc,IAAQ,EAAQ,OAAQ,KAAK,QAAU,IAC/J,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,KAAO,IAEpC,KAAK,QAAQ,aAGb,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,QAAK,OAAO,WAAZ,cAAsB,cAAc,EAAQ,OAAQ,KAAK,QAAU,GACpG,KAAK,KAAK,MAAM,MAAO,MAAK,KAAK,MAErC,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,SAAK,OAAO,WAAZ,cAAsB,cAAc,EAAQ,OAAQ,KAAK,SAAU,GAC9G,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,KAAO,IAEpC,KAAK,QAAQ,aAGb,KAAK,QAAQ,iBACb,AAAI,KAAK,OAAO,MACd,GAAY,KAAK,OAAO,OAAO,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACpF,KAAK,KAAK,QAAQ,MAAO,MAAK,KAAK,QAEvC,MAAK,MAAQ,aACb,EAAY,IACZ,EAAY,KAAK,OAAO,OAAO,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC9F,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,OAAS,IAEtC,KAAK,QAAQ,eAGT,KAAK,OAAO,OACd,EAAC,EAAS,EAAS,EAAS,GAAa,KAAM,SAAQ,IAAI,CAAC,EAAS,EAAS,EAAS,KAEzF,AAAG,UAAQ,EAAQ,QAEf,KAAK,OAAO,QAAQ,KAAK,GAAG,SAAS,WACzC,KAAK,QAAQ,cAGb,GAAI,GAAoB,GACxB,AAAI,KAAK,OAAO,QAAQ,SACtB,GAAY,IACZ,EAAa,CAAC,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,IAC5G,AAAK,KAAK,OAAO,MACR,KAAK,KAAK,SAAS,MAAO,MAAK,KAAK,QADrB,KAAK,KAAK,QAAU,KAAK,MAAM,IAAQ,IAK7D,GAAwB,MAAK,OAAO,eAAiB,GAEzD,KAAK,KAAK,MAAQ,KAAK,MAAM,IAAQ,GACrC,KAAK,MAAQ,OACb,GAAM,GAAS,CACb,KAAM,EACN,KAAM,EACN,KAAM,EACN,QAAS,EACT,OAAQ,EACR,YAAa,KAAK,KAClB,OAAQ,EAAQ,QAGlB,EAAQ,UAuFN,QAAO,EAA8B,GAAiC,CAC1E,GAAM,GAAK,IAEX,GADI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IACjD,CAAC,KAAK,OAAO,QAAU,KAAK,OAAO,SAAW,OAAQ,MAAO,CAAE,MAAO,QAC1E,GAAM,GAAO,KAAK,OAAO,eACzB,KAAK,OAAO,eAAiB,GAC7B,GAAI,GACJ,AAAI,MAAO,oBAAsB,WAAY,EAAM,KAAM,QAAK,IAAL,WACpD,AAAI,MAAO,QAAU,YAAa,EAAM,KAAM,QAAK,IAAL,WAC9C,EAAM,KAAM,QAAK,IAAL,WACjB,KAAK,OAAO,eAAiB,EAC7B,GAAM,GAAK,IACX,MAAI,MAAK,OAAO,OAAO,EAAI,SAAU,KAAK,OAAO,OAAQ,KAAK,MAAM,EAAK,GAAK,KAAM,GAC7E,IArfT,eACA,eACA,eACA,eA2EA,eAiHA,eAuNA,eAkBA,eAiCA", + "sources": ["../src/helpers.ts", "../src/sysinfo.ts", "../src/tfjs/tf-browser.ts", "../src/tfjs/backend.ts", "../src/emotion/emotion.ts", "../src/profile.ts", "../src/faceres/faceres.ts", "../src/faceall.ts", "../src/blazeface/facemesh.ts", "../src/blazeface/blazeface.ts", "../src/blazeface/box.ts", "../src/blazeface/util.ts", "../src/blazeface/coords.ts", "../src/blazeface/facepipeline.ts", "../src/posenet/posenet.ts", "../src/posenet/keypoints.ts", "../src/posenet/utils.ts", "../src/posenet/poses.ts", "../src/handpose/handpose.ts", "../src/handpose/box.ts", "../src/handpose/handdetector.ts", "../src/handpose/util.ts", "../src/handpose/handpipeline.ts", "../src/handpose/anchors.ts", "../src/blazepose/blazepose.ts", "../src/blazepose/annotations.ts", "../src/nanodet/nanodet.ts", "../src/nanodet/labels.ts", "../src/gesture/gesture.ts", "../src/image/image.ts", "../src/image/imagefx.js", "../src/draw/draw.ts", "../src/config.ts", "../src/sample.ts", "../src/human.ts"], + "sourcesContent": ["// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`Human: ModelPath Error: ${path} Expecting JSON file`);\n return path;\n}\n\n// helper function: wrapper around console output\nexport function log(...msg) {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n", "export function info(): { platform: string, agent: string } {\n let platform;\n let agent;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n platform = platformMatch ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n agent = navigator.userAgent.replace(raw[0], '');\n if (platform[1]) agent = agent.replace(raw[1], '');\n agent = agent.replace(/ /g, ' ');\n }\n } else if (typeof process !== 'undefined') {\n platform = `${process.platform} ${process.arch}`;\n agent = `NodeJS ${process.version}`;\n }\n return { platform, agent };\n}\n", "// wrapper to load tfjs in a single place so version can be changed quickly\n\n// simplified\n// { modules: 1250, moduleBytes: 4013323, imports: 7, importBytes: 2255, outputBytes: 2991826, outputFiles: 'dist/tfjs.esm.js' }\n// export * from '@tensorflow/tfjs/dist/index.js';\n// export * from '@tensorflow/tfjs-backend-wasm';\n\n// modular\n// { modules: 1253, moduleBytes: 4029357, imports: 7, importBytes: 2285, outputBytes: 2998298, outputFiles: 'dist/tfjs.esm.js' }\n\n// get versions of all packages.\nimport * as packageBundle from '@tensorflow/tfjs/package.json';\nimport * as packageCore from '@tensorflow/tfjs-core/package.json';\nimport * as packageData from '@tensorflow/tfjs-data/package.json';\nimport * as packageLayers from '@tensorflow/tfjs-layers/package.json';\nimport * as packageConverter from '@tensorflow/tfjs-converter/package.json';\n// for backends, get version from source so it can register backend during import\nimport { version_cpu } from '@tensorflow/tfjs-backend-cpu/dist/index.js';\nimport { version_webgl } from '@tensorflow/tfjs-backend-webgl/dist/index.js';\nimport { version_wasm } from '@tensorflow/tfjs-backend-wasm/dist/index.js';\n\n// export all - compiled\nexport * from '@tensorflow/tfjs-core/dist/index.js';\nexport * from '@tensorflow/tfjs-layers/dist/index.js';\nexport * from '@tensorflow/tfjs-converter/dist/index.js';\nexport * as data from '@tensorflow/tfjs-data/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-cpu/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-webgl/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-wasm/dist/index.js';\n\n// export all - sources\n/*\nexport * from '@tensorflow/tfjs-core/src/index';\nexport * from '@tensorflow/tfjs-layers/src/index';\nexport * from '@tensorflow/tfjs-converter/src/index';\nexport * as data from '@tensorflow/tfjs-data/src/index';\nexport * from '@tensorflow/tfjs-backend-cpu/src/index';\nexport * from '@tensorflow/tfjs-backend-webgl/src/index';\nexport * from '@tensorflow/tfjs-backend-wasm/src/index';\n*/\n\n// export versions\nexport const version = {\n tfjs: packageBundle?.version || undefined,\n 'tfjs-core': packageCore?.version || undefined,\n 'tfjs-data': packageData?.version || undefined,\n 'tfjs-layers': packageLayers?.version || undefined,\n 'tfjs-converter': packageConverter?.version || undefined,\n 'tfjs-backend-cpu': version_cpu || undefined,\n 'tfjs-backend-webgl': version_webgl || undefined,\n 'tfjs-backend-wasm': version_wasm || undefined,\n};\n// export const version = {};\n", "import { log } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nexport const config = {\n name: 'humangl',\n priority: 99,\n canvas: null,\n gl: null,\n width: 1024,\n height: 1024,\n webGLattr: { // https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.2\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: false,\n desynchronized: true,\n },\n};\n\nexport function register(): void {\n if (!tf.findBackend(config.name)) {\n log('backend registration:', config.name);\n try {\n config.canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(config.width, config.height) : document.createElement('canvas');\n } catch (err) {\n log('error: cannot create canvas:', err);\n return;\n }\n try {\n config.gl = config.canvas.getContext('webgl2', config.webGLattr);\n } catch (err) {\n log('error: cannot get WebGL2 context:', err);\n return;\n }\n try {\n tf.setWebGLContext(2, config.gl);\n } catch (err) {\n log('error: cannot set WebGL2 context:', err);\n return;\n }\n try {\n const ctx = new tf.GPGPUContext(config.gl);\n tf.registerBackend(config.name, () => new tf.MathBackendWebGL(ctx), config.priority);\n } catch (err) {\n log('error: cannot register WebGL backend:', err);\n return;\n }\n try {\n const kernels = tf.getKernelsForBackend('webgl');\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = { ...kernelConfig, backendName: config.name };\n tf.registerKernel(newKernelConfig);\n });\n } catch (err) {\n log('error: cannot update WebGL backend registration:', err);\n return;\n }\n try {\n tf.ENV.set('WEBGL_VERSION', 2);\n // tf.ENV.set('WEBGL_MAX_TEXTURE_SIZE', config.gl.getParameter(config.gl.MAX_TEXTURE_SIZE));\n // tf.ENV.set('WEBGL_FORCE_F16_TEXTURES', true);\n // tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', true);\n } catch (err) {\n log('error: cannot set WebGL backend flags:', err);\n return;\n }\n log('backend registered:', config.name);\n }\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nconst annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];\nlet model;\nlet last: Array<{ score: number, emotion: string }> = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.emotion.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.emotion.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.face.emotion.skipFrames) && config.videoOptimized && (last.length > 0)) {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const [red, green, blue] = tf.split(resize, 3, 3);\n resize.dispose();\n // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n red.dispose();\n green.dispose();\n blue.dispose();\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n redNorm.dispose();\n greenNorm.dispose();\n blueNorm.dispose();\n const normalize = tf.tidy(() => grayscale.sub(0.5).mul(2));\n grayscale.dispose();\n const obj: Array<{ score: number, emotion: string }> = [];\n if (config.face.emotion.enabled) {\n let data;\n if (!config.profile) {\n const emotionT = await model.predict(normalize); // result is already in range 0..1, no need for additional activation\n data = emotionT.dataSync();\n tf.dispose(emotionT);\n } else {\n const profileData = await tf.profile(() => model.predict(normalize));\n data = profileData.result.dataSync();\n profileData.result.dispose();\n profile.run('emotion', profileData);\n }\n for (let i = 0; i < data.length; i++) {\n if (data[i] > config.face.emotion.minConfidence) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] });\n }\n obj.sort((a, b) => b.score - a.score);\n }\n normalize.dispose();\n last = obj;\n resolve(obj);\n });\n}\n", "import { log } from './helpers';\n\nexport const data = {};\n\nexport function run(modelName: string, profileData: any): void {\n if (!profileData || !profileData.kernels) return;\n const maxResults = 5;\n const time = profileData.kernels\n .filter((a) => a.kernelTimeMs > 0)\n .reduce((a, b) => a += b.kernelTimeMs, 0);\n const slowest = profileData.kernels\n .map((a, i) => { a.id = i; return a; })\n .filter((a) => a.kernelTimeMs > 0)\n .sort((a, b) => b.kernelTimeMs - a.kernelTimeMs);\n const largest = profileData.kernels\n .map((a, i) => { a.id = i; return a; })\n .filter((a) => a.totalBytesSnapshot > 0)\n .sort((a, b) => b.totalBytesSnapshot - a.totalBytesSnapshot);\n if (slowest.length > maxResults) slowest.length = maxResults;\n if (largest.length > maxResults) largest.length = maxResults;\n data[modelName] = {\n model: modelName,\n newBytes: profileData.newBytes,\n newTensors: profileData.newTensors,\n peakBytes: profileData.peakBytes,\n numKernelOps: profileData.kernels.length,\n timeKernelOps: time,\n slowestKernelOps: slowest,\n largestKernelOps: largest,\n };\n log('profiler', modelName, data[modelName]);\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nlet model;\nlet last = { age: 0 };\nlet skipped = Number.MAX_SAFE_INTEGER;\n\ntype Tensor = typeof tf.Tensor;\ntype DB = Array<{ name: string, source: string, embedding: number[] }>;\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.description.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.description.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport function similarity(embedding1, embedding2, order = 2): number {\n if (!embedding1 || !embedding2) return 0;\n if (embedding1?.length === 0 || embedding2?.length === 0) return 0;\n if (embedding1?.length !== embedding2?.length) return 0;\n // general minkowski distance, euclidean distance is limited case where order is 2\n const distance = 5.0 * embedding1\n .map((val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared\n .reduce((sum, now) => (sum + now), 0) // sum all distances\n ** (1 / order); // get root of\n const res = Math.max(0, 100 - distance) / 100.0;\n return res;\n}\n\nexport function match(embedding: Array, db: DB, threshold = 0) {\n let best = { similarity: 0, name: '', source: '', embedding: [] as number[] };\n if (!embedding || !db || !Array.isArray(embedding) || !Array.isArray(db)) return best;\n for (const f of db) {\n if (f.embedding && f.name) {\n const perc = similarity(embedding, f.embedding);\n if (perc > threshold && perc > best.similarity) best = { ...f, similarity: perc };\n }\n }\n return best;\n}\n\nexport function enhance(input): Tensor {\n const image = tf.tidy(() => {\n // input received from detector is already normalized to 0..1\n // input is also assumed to be straightened\n const tensor = input.image || input.tensor || input;\n if (!(tensor instanceof tf.Tensor)) return null;\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // const box = [[0.0, 0.0, 1.0, 1.0]]; // basically no crop for test\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n // const crop = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n\n /*\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n */\n\n /*\n // optional increase image contrast\n // or do it per-channel so mean is done on each channel\n // or do it based on histogram\n const mean = merge.mean();\n const factor = 5;\n const contrast = merge.sub(mean).mul(factor).add(mean);\n */\n\n /*\n // normalize brightness from 0..1\n const darken = crop.sub(crop.min());\n const lighten = darken.div(darken.max());\n */\n\n const norm = crop.mul(255);\n\n return norm;\n });\n return image;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.face.description.skipFrames) && config.videoOptimized && last.age && (last.age > 0)) {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const enhanced = enhance(image);\n\n let resT;\n const obj = {\n age: 0,\n gender: 'unknown',\n genderConfidence: 0,\n descriptor: [] };\n\n if (!config.profile) {\n if (config.face.description.enabled) resT = await model.predict(enhanced);\n } else {\n const profileDesc = config.face.description.enabled ? await tf.profile(() => model.predict(enhanced)) : {};\n resT = profileDesc.result;\n profile.run('faceres', profileDesc);\n }\n tf.dispose(enhanced);\n\n if (resT) {\n tf.tidy(() => {\n const gender = resT.find((t) => t.shape[1] === 1).dataSync();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > config.face.description.minConfidence) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.genderConfidence = Math.min(0.99, confidence);\n }\n const age = resT.find((t) => t.shape[1] === 100).argMax(1).dataSync()[0];\n const all = resT.find((t) => t.shape[1] === 100).dataSync();\n obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n\n const desc = resT.find((t) => t.shape[1] === 1024);\n // const reshape = desc.reshape([128, 8]);\n // const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it\n\n obj.descriptor = [...desc.dataSync()];\n });\n resT.forEach((t) => tf.dispose(t));\n }\n\n last = obj;\n resolve(obj);\n });\n}\n", "import { log, now } from './helpers';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as emotion from './emotion/emotion';\nimport * as faceres from './faceres/faceres';\n\ntype Tensor = typeof tf.Tensor;\n\nconst calculateFaceAngle = (face, image_size): { angle: { pitch: number, yaw: number, roll: number }, matrix: [number, number, number, number, number, number, number, number, number] } => {\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const degrees = (theta) => (theta * 180) / Math.PI;\n // const degrees = (theta) => Math.abs(((theta * 180) / Math.PI) % 360);\n const normalize = (v) => { // normalize vector\n const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);\n v[0] /= length;\n v[1] /= length;\n v[2] /= length;\n return v;\n };\n const subVectors = (a, b) => { // vector subtraction (a - b)\n const x = a[0] - b[0];\n const y = a[1] - b[1];\n const z = a[2] - b[2];\n return [x, y, z];\n };\n const crossVectors = (a, b) => { // vector cross product (a x b)\n const x = a[1] * b[2] - a[2] * b[1];\n const y = a[2] * b[0] - a[0] * b[2];\n const z = a[0] * b[1] - a[1] * b[0];\n return [x, y, z];\n };\n // 3x3 rotation matrix to Euler angles based on https://www.geometrictools.com/Documentation/EulerAngles.pdf\n const rotationMatrixToEulerAngle = (r) => {\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const [r00, r01, r02, r10, r11, r12, r20, r21, r22] = r;\n let thetaX; let thetaY; let thetaZ;\n if (r10 < 1) { // YZX calculation\n if (r10 > -1) {\n thetaZ = Math.asin(r10);\n thetaY = Math.atan2(-r20, r00);\n thetaX = Math.atan2(-r12, r11);\n } else {\n thetaZ = -Math.PI / 2;\n thetaY = -Math.atan2(r21, r22);\n thetaX = 0;\n }\n } else {\n thetaZ = Math.PI / 2;\n thetaY = Math.atan2(r21, r22);\n thetaX = 0;\n }\n return { pitch: 2 * -thetaX, yaw: 2 * -thetaY, roll: 2 * -thetaZ };\n };\n // simple Euler angle calculation based existing 3D mesh\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const meshToEulerAngle = (mesh) => {\n const radians = (a1, a2, b1, b2) => Math.atan2(b2 - a2, b1 - a1);\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const angle = {\n // values are in radians in range of -pi/2 to pi/2 which is -90 to +90 degrees\n // value of 0 means center\n // pitch is face move up/down\n pitch: radians(mesh[10][1], mesh[10][2], mesh[152][1], mesh[152][2]), // looking at y,z of top and bottom points of the face\n // yaw is face turn left/right\n yaw: radians(mesh[33][0], mesh[33][2], mesh[263][0], mesh[263][2]), // looking at x,z of outside corners of leftEye and rightEye\n // roll is face lean left/right\n roll: radians(mesh[33][0], mesh[33][1], mesh[263][0], mesh[263][1]), // looking at x,y of outside corners of leftEye and rightEye\n };\n return angle;\n };\n\n const mesh = face.meshRaw;\n if (!mesh || mesh.length < 300) return { angle: { pitch: 0, yaw: 0, roll: 0 }, matrix: [1, 0, 0, 0, 1, 0, 0, 0, 1] };\n\n const size = Math.max(face.boxRaw[2] * image_size[0], face.boxRaw[3] * image_size[1]) / 1.5;\n // top, bottom, left, right\n const pts = [mesh[10], mesh[152], mesh[234], mesh[454]].map((pt) => [\n // make the xyz coordinates proportional, independent of the image/box size\n pt[0] * image_size[0] / size,\n pt[1] * image_size[1] / size,\n pt[2],\n ]);\n\n const y_axis = normalize(subVectors(pts[1], pts[0]));\n let x_axis = normalize(subVectors(pts[3], pts[2]));\n const z_axis = normalize(crossVectors(x_axis, y_axis));\n // adjust x_axis to make sure that all axes are perpendicular to each other\n x_axis = crossVectors(y_axis, z_axis);\n\n // Rotation Matrix from Axis Vectors - http://renderdan.blogspot.com/2006/05/rotation-matrix-from-axis-vectors.html\n // 3x3 rotation matrix is flatten to array in row-major order. Note that the rotation represented by this matrix is inverted.\n const matrix: [number, number, number, number, number, number, number, number, number] = [\n x_axis[0], x_axis[1], x_axis[2],\n y_axis[0], y_axis[1], y_axis[2],\n z_axis[0], z_axis[1], z_axis[2],\n ];\n const angle = rotationMatrixToEulerAngle(matrix);\n // const angle = meshToEulerAngle(mesh);\n return { angle, matrix };\n};\n\nexport const detectFace = async (parent, input): Promise => {\n // run facemesh, includes blazeface and iris\n // eslint-disable-next-line no-async-promise-executor\n let timeStamp;\n let ageRes;\n let genderRes;\n let emotionRes;\n let embeddingRes;\n let descRes;\n const faceRes: Array<{\n confidence: number,\n boxConfidence: number,\n faceConfidence: number,\n box: [number, number, number, number],\n mesh: Array<[number, number, number]>\n meshRaw: Array<[number, number, number]>\n boxRaw: [number, number, number, number],\n annotations: Array<{ part: string, points: Array<[number, number, number]>[] }>,\n age: number,\n gender: string,\n genderConfidence: number,\n emotion: string,\n embedding: number[],\n iris: number,\n rotation: {\n angle: { pitch: number, yaw: number, roll: number },\n matrix: [number, number, number, number, number, number, number, number, number]\n },\n tensor: Tensor,\n }> = [];\n parent.state = 'run:face';\n timeStamp = now();\n const faces = await parent.models.face?.estimateFaces(input, parent.config);\n parent.perf.face = Math.trunc(now() - timeStamp);\n if (!faces) return [];\n for (const face of faces) {\n parent.analyze('Get Face');\n\n // is something went wrong, skip the face\n if (!face.image || face.image.isDisposedInternal) {\n log('Face object is disposed:', face.image);\n continue;\n }\n\n const rotation = calculateFaceAngle(face, [input.shape[2], input.shape[1]]);\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Emotion:');\n if (parent.config.async) {\n emotionRes = parent.config.face.emotion.enabled ? emotion.predict(face.image, parent.config) : {};\n } else {\n parent.state = 'run:emotion';\n timeStamp = now();\n emotionRes = parent.config.face.emotion.enabled ? await emotion.predict(face.image, parent.config) : {};\n parent.perf.emotion = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Emotion:');\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Description:');\n if (parent.config.async) {\n descRes = parent.config.face.description.enabled ? faceres.predict(face, parent.config) : [];\n } else {\n parent.state = 'run:description';\n timeStamp = now();\n descRes = parent.config.face.description.enabled ? await faceres.predict(face.image, parent.config) : [];\n parent.perf.embedding = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Description:');\n\n // if async wait for results\n if (parent.config.async) {\n [ageRes, genderRes, emotionRes, embeddingRes, descRes] = await Promise.all([ageRes, genderRes, emotionRes, embeddingRes, descRes]);\n }\n\n parent.analyze('Finish Face:');\n\n // calculate iris distance\n // iris: array[ center, left, top, right, bottom]\n if (!parent.config.face.iris.enabled && face?.annotations?.leftEyeIris && face?.annotations?.rightEyeIris) {\n delete face.annotations.leftEyeIris;\n delete face.annotations.rightEyeIris;\n }\n const irisSize = (face.annotations?.leftEyeIris && face.annotations?.rightEyeIris)\n /* average human iris size is 11.7mm */\n ? 11.7 * Math.max(Math.abs(face.annotations.leftEyeIris[3][0] - face.annotations.leftEyeIris[1][0]), Math.abs(face.annotations.rightEyeIris[4][1] - face.annotations.rightEyeIris[2][1]))\n : 0;\n\n // combine results\n faceRes.push({\n ...face,\n age: descRes.age,\n gender: descRes.gender,\n genderConfidence: descRes.genderConfidence,\n embedding: descRes.descriptor,\n emotion: emotionRes,\n iris: (irisSize !== 0) ? Math.trunc(irisSize) / 100 : 0,\n rotation,\n tensor: parent.config.face.detector.return ? face.image?.squeeze() : null,\n });\n // dispose original face tensor\n face.image?.dispose();\n\n parent.analyze('End Face');\n }\n parent.analyze('End FaceMesh:');\n if (parent.config.async) {\n if (parent.perf.face) delete parent.perf.face;\n if (parent.perf.age) delete parent.perf.age;\n if (parent.perf.gender) delete parent.perf.gender;\n if (parent.perf.emotion) delete parent.perf.emotion;\n }\n return faceRes;\n};\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as blazeface from './blazeface';\nimport * as facepipeline from './facepipeline';\nimport * as coords from './coords';\n\nexport class MediaPipeFaceMesh {\n facePipeline: any;\n config: any;\n\n constructor(blazeFace, blazeMeshModel, irisModel, config) {\n this.facePipeline = new facepipeline.Pipeline(blazeFace, blazeMeshModel, irisModel);\n this.config = config;\n }\n\n async estimateFaces(input, config): Promise<{ confidence, boxConfidence, faceConfidence, box, mesh, boxRaw, meshRaw, annotations, image }[]> {\n const predictions = await this.facePipeline.predict(input, config);\n const results: Array<{ confidence, boxConfidence, faceConfidence, box, mesh, boxRaw, meshRaw, annotations, image }> = [];\n for (const prediction of (predictions || [])) {\n if (prediction.isDisposedInternal) continue; // guard against disposed tensors on long running operations such as pause in middle of processing\n const mesh = prediction.coords ? prediction.coords.arraySync() : [];\n const meshRaw = mesh.map((pt) => [\n pt[0] / input.shape[2],\n pt[1] / input.shape[1],\n pt[2] / this.facePipeline.meshSize,\n ]);\n const annotations = {};\n if (mesh && mesh.length > 0) {\n for (const key of Object.keys(coords.MESH_ANNOTATIONS)) annotations[key] = coords.MESH_ANNOTATIONS[key].map((index) => mesh[index]);\n }\n const box = prediction.box ? [\n Math.max(0, prediction.box.startPoint[0]),\n Math.max(0, prediction.box.startPoint[1]),\n Math.min(input.shape[2], prediction.box.endPoint[0]) - Math.max(0, prediction.box.startPoint[0]),\n Math.min(input.shape[1], prediction.box.endPoint[1]) - Math.max(0, prediction.box.startPoint[1]),\n ] : 0;\n const boxRaw = prediction.box ? [\n prediction.box.startPoint[0] / input.shape[2],\n prediction.box.startPoint[1] / input.shape[1],\n (prediction.box.endPoint[0] - prediction.box.startPoint[0]) / input.shape[2],\n (prediction.box.endPoint[1] - prediction.box.startPoint[1]) / input.shape[1],\n ] : [];\n results.push({\n confidence: Math.round(100 * prediction.faceConfidence || 100 * prediction.boxConfidence || 0) / 100,\n boxConfidence: Math.round(100 * prediction.boxConfidence) / 100,\n faceConfidence: Math.round(100 * prediction.faceConfidence) / 100,\n box,\n boxRaw,\n mesh,\n meshRaw,\n annotations,\n image: prediction.image ? prediction.image.clone() : null,\n });\n if (prediction.coords) prediction.coords.dispose();\n if (prediction.image) prediction.image.dispose();\n }\n return results;\n }\n}\n\nlet faceModels:[any, any, any] = [null, null, null];\nexport async function load(config): Promise {\n if ((!faceModels[0] && config.face.enabled) || (!faceModels[1] && config.face.mesh.enabled) || (!faceModels[2] && config.face.iris.enabled)) {\n faceModels = await Promise.all([\n (!faceModels[0] && config.face.enabled) ? blazeface.load(config) : null,\n (!faceModels[1] && config.face.mesh.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.mesh.modelPath), { fromTFHub: config.face.mesh.modelPath.includes('tfhub.dev') }) : null,\n (!faceModels[2] && config.face.iris.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.iris.modelPath), { fromTFHub: config.face.iris.modelPath.includes('tfhub.dev') }) : null,\n ]);\n if (config.face.mesh.enabled) {\n if (!faceModels[1] || !faceModels[1].modelUrl) log('load model failed:', config.face.mesh.modelPath);\n else if (config.debug) log('load model:', faceModels[1].modelUrl);\n }\n if (config.face.iris.enabled) {\n if (!faceModels[2] || !faceModels[1].modelUrl) log('load model failed:', config.face.iris.modelPath);\n else if (config.debug) log('load model:', faceModels[2].modelUrl);\n }\n } else if (config.debug) {\n log('cached model:', faceModels[0].model.modelUrl);\n log('cached model:', faceModels[1].modelUrl);\n log('cached model:', faceModels[2].modelUrl);\n }\n const faceMesh = new MediaPipeFaceMesh(faceModels[0], faceModels[1], faceModels[2], config);\n return faceMesh;\n}\n\nexport const triangulation = coords.TRI468;\nexport const uvmap = coords.UV468;\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nconst NUM_LANDMARKS = 6;\n\nfunction generateAnchors(inputSize) {\n const spec = { strides: [inputSize / 16, inputSize / 8], anchors: [2, 6] };\n const anchors: Array<[number, number]> = [];\n for (let i = 0; i < spec.strides.length; i++) {\n const stride = spec.strides[i];\n const gridRows = Math.floor((inputSize + stride - 1) / stride);\n const gridCols = Math.floor((inputSize + stride - 1) / stride);\n const anchorsNum = spec.anchors[i];\n for (let gridY = 0; gridY < gridRows; gridY++) {\n const anchorY = stride * (gridY + 0.5);\n for (let gridX = 0; gridX < gridCols; gridX++) {\n const anchorX = stride * (gridX + 0.5);\n for (let n = 0; n < anchorsNum; n++) {\n anchors.push([anchorX, anchorY]);\n }\n }\n }\n }\n return anchors;\n}\n\nexport const disposeBox = (box) => {\n box.startEndTensor.dispose();\n box.startPoint.dispose();\n box.endPoint.dispose();\n};\n\nconst createBox = (startEndTensor) => ({\n startEndTensor,\n startPoint: tf.slice(startEndTensor, [0, 0], [-1, 2]),\n endPoint: tf.slice(startEndTensor, [0, 2], [-1, 2]),\n});\n\nfunction decodeBounds(boxOutputs, anchors, inputSize) {\n const boxStarts = tf.slice(boxOutputs, [0, 1], [-1, 2]);\n const centers = tf.add(boxStarts, anchors);\n const boxSizes = tf.slice(boxOutputs, [0, 3], [-1, 2]);\n const boxSizesNormalized = tf.div(boxSizes, inputSize);\n const centersNormalized = tf.div(centers, inputSize);\n const halfBoxSize = tf.div(boxSizesNormalized, 2);\n const starts = tf.sub(centersNormalized, halfBoxSize);\n const ends = tf.add(centersNormalized, halfBoxSize);\n const startNormalized = tf.mul(starts, inputSize);\n const endNormalized = tf.mul(ends, inputSize);\n const concatAxis = 1;\n return tf.concat2d([startNormalized, endNormalized], concatAxis);\n}\n\nexport class BlazeFaceModel {\n model: any;\n anchorsData: any;\n anchors: any;\n inputSize: number;\n config: any;\n\n constructor(model, config) {\n this.model = model;\n this.anchorsData = generateAnchors(model.inputs[0].shape[1]);\n this.anchors = tf.tensor2d(this.anchorsData);\n this.inputSize = model.inputs[0].shape[2];\n this.config = config;\n }\n\n async getBoundingBoxes(inputImage) {\n // sanity check on input\n if ((!inputImage) || (inputImage.isDisposedInternal) || (inputImage.shape.length !== 4) || (inputImage.shape[1] < 1) || (inputImage.shape[2] < 1)) return null;\n const [batch, boxes, scores] = tf.tidy(() => {\n const resizedImage = inputImage.resizeBilinear([this.inputSize, this.inputSize]);\n // const normalizedImage = tf.mul(tf.sub(resizedImage.div(255), 0.5), 2);\n const normalizedImage = resizedImage.div(127.5).sub(0.5);\n const batchedPrediction = this.model.predict(normalizedImage);\n let batchOut;\n // are we using tfhub or pinto converted model?\n if (Array.isArray(batchedPrediction)) {\n const sorted = batchedPrediction.sort((a, b) => a.size - b.size);\n const concat384 = tf.concat([sorted[0], sorted[2]], 2); // dim: 384, 1 + 16\n const concat512 = tf.concat([sorted[1], sorted[3]], 2); // dim: 512, 1 + 16\n const concat = tf.concat([concat512, concat384], 1);\n batchOut = concat.squeeze(0);\n } else {\n batchOut = batchedPrediction.squeeze(); // when using tfhub model\n }\n const boxesOut = decodeBounds(batchOut, this.anchors, [this.inputSize, this.inputSize]);\n const logits = tf.slice(batchOut, [0, 0], [-1, 1]);\n const scoresOut = tf.sigmoid(logits).squeeze();\n return [batchOut, boxesOut, scoresOut];\n });\n const boxIndicesTensor = await tf.image.nonMaxSuppressionAsync(boxes, scores, this.config.face.detector.maxFaces, this.config.face.detector.iouThreshold, this.config.face.detector.scoreThreshold);\n const boxIndices = boxIndicesTensor.arraySync();\n boxIndicesTensor.dispose();\n const boundingBoxesMap = boxIndices.map((boxIndex) => tf.slice(boxes, [boxIndex, 0], [1, -1]));\n const boundingBoxes = boundingBoxesMap.map((boundingBox) => {\n const vals = boundingBox.arraySync();\n boundingBox.dispose();\n return vals;\n });\n\n const scoresVal = scores.dataSync();\n const annotatedBoxes: Array<{ box: any, landmarks: any, anchor: any, confidence: number }> = [];\n for (let i = 0; i < boundingBoxes.length; i++) {\n const boxIndex = boxIndices[i];\n const confidence = scoresVal[boxIndex];\n if (confidence > this.config.face.detector.minConfidence) {\n const box = createBox(boundingBoxes[i]);\n const anchor = this.anchorsData[boxIndex];\n const landmarks = tf.tidy(() => tf.slice(batch, [boxIndex, NUM_LANDMARKS - 1], [1, -1]).squeeze().reshape([NUM_LANDMARKS, -1]));\n annotatedBoxes.push({ box, landmarks, anchor, confidence });\n }\n }\n batch.dispose();\n boxes.dispose();\n scores.dispose();\n return {\n boxes: annotatedBoxes,\n scaleFactor: [inputImage.shape[2] / this.inputSize, inputImage.shape[1] / this.inputSize],\n };\n }\n}\n\nexport async function load(config) {\n const model = await tf.loadGraphModel(join(config.modelBasePath, config.face.detector.modelPath), { fromTFHub: config.face.detector.modelPath.includes('tfhub.dev') });\n const blazeFace = new BlazeFaceModel(model, config);\n if (!model || !model.modelUrl) log('load model failed:', config.face.detector.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n return blazeFace;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n return { startPoint, endPoint };\n}\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize];\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n", "export const IDENTITY_MATRIX = [[1, 0, 0], [0, 1, 0], [0, 0, 1]];\n/**\n * Normalizes the provided angle to the range -pi to pi.\n * @param angle The angle in radians to be normalized.\n */\nexport function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\n/**\n * Computes the angle of rotation between two anchor points.\n * @param point1 First anchor point\n * @param point2 Second anchor point\n */\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport function radToDegrees(rad) {\n return rad * 180 / Math.PI;\n}\n\nexport function buildTranslationMatrix(x, y) {\n return [[1, 0, x], [0, 1, y], [0, 0, 1]];\n}\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n\nexport function xyDistanceBetweenPoints(a, b) {\n return Math.sqrt(((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2));\n}\n", "export const MESH_ANNOTATIONS = {\n silhouette: [\n 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,\n 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,\n 172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109,\n ],\n lipsUpperOuter: [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291],\n lipsLowerOuter: [146, 91, 181, 84, 17, 314, 405, 321, 375, 291],\n lipsUpperInner: [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308],\n lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\n rightEyeUpper0: [246, 161, 160, 159, 158, 157, 173],\n rightEyeLower0: [33, 7, 163, 144, 145, 153, 154, 155, 133],\n rightEyeUpper1: [247, 30, 29, 27, 28, 56, 190],\n rightEyeLower1: [130, 25, 110, 24, 23, 22, 26, 112, 243],\n rightEyeUpper2: [113, 225, 224, 223, 222, 221, 189],\n rightEyeLower2: [226, 31, 228, 229, 230, 231, 232, 233, 244],\n rightEyeLower3: [143, 111, 117, 118, 119, 120, 121, 128, 245],\n rightEyebrowUpper: [156, 70, 63, 105, 66, 107, 55, 193],\n rightEyebrowLower: [35, 124, 46, 53, 52, 65],\n rightEyeIris: [473, 474, 475, 476, 477],\n leftEyeUpper0: [466, 388, 387, 386, 385, 384, 398],\n leftEyeLower0: [263, 249, 390, 373, 374, 380, 381, 382, 362],\n leftEyeUpper1: [467, 260, 259, 257, 258, 286, 414],\n leftEyeLower1: [359, 255, 339, 254, 253, 252, 256, 341, 463],\n leftEyeUpper2: [342, 445, 444, 443, 442, 441, 413],\n leftEyeLower2: [446, 261, 448, 449, 450, 451, 452, 453, 464],\n leftEyeLower3: [372, 340, 346, 347, 348, 349, 350, 357, 465],\n leftEyebrowUpper: [383, 300, 293, 334, 296, 336, 285, 417],\n leftEyebrowLower: [265, 353, 276, 283, 282, 295],\n leftEyeIris: [468, 469, 470, 471, 472],\n midwayBetweenEyes: [168],\n noseTip: [1],\n noseBottom: [2],\n noseRightCorner: [98],\n noseLeftCorner: [327],\n rightCheek: [205],\n leftCheek: [425],\n};\n\nexport const MESH_TO_IRIS_INDICES_MAP = [ // A mapping from facemesh model keypoints to iris model keypoints.\n { key: 'EyeUpper0', indices: [9, 10, 11, 12, 13, 14, 15] },\n { key: 'EyeUpper1', indices: [25, 26, 27, 28, 29, 30, 31] },\n { key: 'EyeUpper2', indices: [41, 42, 43, 44, 45, 46, 47] },\n { key: 'EyeLower0', indices: [0, 1, 2, 3, 4, 5, 6, 7, 8] },\n { key: 'EyeLower1', indices: [16, 17, 18, 19, 20, 21, 22, 23, 24] },\n { key: 'EyeLower2', indices: [32, 33, 34, 35, 36, 37, 38, 39, 40] },\n { key: 'EyeLower3', indices: [54, 55, 56, 57, 58, 59, 60, 61, 62] },\n // { key: 'EyebrowUpper', indices: [63, 64, 65, 66, 67, 68, 69, 70] },\n // { key: 'EyebrowLower', indices: [48, 49, 50, 51, 52, 53] },\n];\n\nexport const UV468 = [\n [0.499976992607117, 0.652534008026123],\n [0.500025987625122, 0.547487020492554],\n [0.499974012374878, 0.602371990680695],\n [0.482113003730774, 0.471979022026062],\n [0.500150978565216, 0.527155995368958],\n [0.499909996986389, 0.498252987861633],\n [0.499523013830185, 0.40106201171875],\n [0.289712011814117, 0.380764007568359],\n [0.499954998493195, 0.312398016452789],\n [0.499987006187439, 0.269918978214264],\n [0.500023007392883, 0.107050001621246],\n [0.500023007392883, 0.666234016418457],\n [0.5000159740448, 0.679224014282227],\n [0.500023007392883, 0.692348003387451],\n [0.499976992607117, 0.695277988910675],\n [0.499976992607117, 0.70593398809433],\n [0.499976992607117, 0.719385027885437],\n [0.499976992607117, 0.737019002437592],\n [0.499967992305756, 0.781370997428894],\n [0.499816000461578, 0.562981009483337],\n [0.473773002624512, 0.573909997940063],\n [0.104906998574734, 0.254140973091125],\n [0.365929991006851, 0.409575998783112],\n [0.338757991790771, 0.41302502155304],\n [0.311120003461838, 0.409460008144379],\n [0.274657994508743, 0.389131009578705],\n [0.393361985683441, 0.403706014156342],\n [0.345234006643295, 0.344011008739471],\n [0.370094001293182, 0.346076011657715],\n [0.319321990013123, 0.347265005111694],\n [0.297903001308441, 0.353591024875641],\n [0.24779200553894, 0.410809993743896],\n [0.396889001131058, 0.842755019664764],\n [0.280097991228104, 0.375599980354309],\n [0.106310002505779, 0.399955987930298],\n [0.2099249958992, 0.391353011131287],\n [0.355807989835739, 0.534406006336212],\n [0.471751004457474, 0.65040397644043],\n [0.474155008792877, 0.680191993713379],\n [0.439785003662109, 0.657229006290436],\n [0.414617002010345, 0.66654098033905],\n [0.450374007225037, 0.680860996246338],\n [0.428770989179611, 0.682690978050232],\n [0.374971002340317, 0.727805018424988],\n [0.486716985702515, 0.547628998756409],\n [0.485300987958908, 0.527395009994507],\n [0.257764995098114, 0.314490020275116],\n [0.401223003864288, 0.455172002315521],\n [0.429818987846375, 0.548614978790283],\n [0.421351999044418, 0.533740997314453],\n [0.276895999908447, 0.532056987285614],\n [0.483370006084442, 0.499586999416351],\n [0.33721199631691, 0.282882988452911],\n [0.296391993761063, 0.293242990970612],\n [0.169294998049736, 0.193813979625702],\n [0.447580009698868, 0.302609980106354],\n [0.392390012741089, 0.353887975215912],\n [0.354490011930466, 0.696784019470215],\n [0.067304998636246, 0.730105042457581],\n [0.442739009857178, 0.572826027870178],\n [0.457098007202148, 0.584792017936707],\n [0.381974011659622, 0.694710969924927],\n [0.392388999462128, 0.694203019142151],\n [0.277076005935669, 0.271932005882263],\n [0.422551989555359, 0.563233017921448],\n [0.385919004678726, 0.281364023685455],\n [0.383103013038635, 0.255840003490448],\n [0.331431001424789, 0.119714021682739],\n [0.229923993349075, 0.232002973556519],\n [0.364500999450684, 0.189113974571228],\n [0.229622006416321, 0.299540996551514],\n [0.173287004232407, 0.278747975826263],\n [0.472878992557526, 0.666198015213013],\n [0.446828007698059, 0.668527007102966],\n [0.422762006521225, 0.673889994621277],\n [0.445307999849319, 0.580065965652466],\n [0.388103008270264, 0.693961024284363],\n [0.403039008378983, 0.706539988517761],\n [0.403629004955292, 0.693953037261963],\n [0.460041999816895, 0.557139039039612],\n [0.431158006191254, 0.692366003990173],\n [0.452181994915009, 0.692366003990173],\n [0.475387006998062, 0.692366003990173],\n [0.465828001499176, 0.779190003871918],\n [0.472328990697861, 0.736225962638855],\n [0.473087012767792, 0.717857003211975],\n [0.473122000694275, 0.704625964164734],\n [0.473033010959625, 0.695277988910675],\n [0.427942007780075, 0.695277988910675],\n [0.426479011774063, 0.703539967536926],\n [0.423162013292313, 0.711845993995667],\n [0.4183090031147, 0.720062971115112],\n [0.390094995498657, 0.639572978019714],\n [0.013953999616206, 0.560034036636353],\n [0.499913990497589, 0.58014702796936],\n [0.413199990987778, 0.69539999961853],\n [0.409626007080078, 0.701822996139526],\n [0.468080013990402, 0.601534962654114],\n [0.422728985548019, 0.585985004901886],\n [0.463079988956451, 0.593783974647522],\n [0.37211999297142, 0.47341400384903],\n [0.334562003612518, 0.496073007583618],\n [0.411671012639999, 0.546965003013611],\n [0.242175996303558, 0.14767599105835],\n [0.290776997804642, 0.201445996761322],\n [0.327338010072708, 0.256527006626129],\n [0.399509996175766, 0.748921036720276],\n [0.441727995872498, 0.261676013469696],\n [0.429764986038208, 0.187834024429321],\n [0.412198007106781, 0.108901023864746],\n [0.288955003023148, 0.398952007293701],\n [0.218936994671822, 0.435410976409912],\n [0.41278201341629, 0.398970007896423],\n [0.257135003805161, 0.355440020561218],\n [0.427684992551804, 0.437960982322693],\n [0.448339998722076, 0.536936044692993],\n [0.178560003638268, 0.45755398273468],\n [0.247308000922203, 0.457193970680237],\n [0.286267012357712, 0.467674970626831],\n [0.332827985286713, 0.460712015628815],\n [0.368755996227264, 0.447206974029541],\n [0.398963987827301, 0.432654976844788],\n [0.476410001516342, 0.405806005001068],\n [0.189241006970406, 0.523923993110657],\n [0.228962004184723, 0.348950982093811],\n [0.490725994110107, 0.562400996685028],\n [0.404670000076294, 0.485132992267609],\n [0.019469000399113, 0.401564002037048],\n [0.426243007183075, 0.420431017875671],\n [0.396993011236191, 0.548797011375427],\n [0.266469985246658, 0.376977026462555],\n [0.439121007919312, 0.51895797252655],\n [0.032313998788595, 0.644356966018677],\n [0.419054001569748, 0.387154996395111],\n [0.462783008813858, 0.505746960639954],\n [0.238978996872902, 0.779744982719421],\n [0.198220998048782, 0.831938028335571],\n [0.107550002634525, 0.540755033493042],\n [0.183610007166862, 0.740257024765015],\n [0.134409993886948, 0.333683013916016],\n [0.385764002799988, 0.883153975009918],\n [0.490967005491257, 0.579378008842468],\n [0.382384985685349, 0.508572995662689],\n [0.174399003386497, 0.397670984268188],\n [0.318785011768341, 0.39623498916626],\n [0.343364000320435, 0.400596976280212],\n [0.396100014448166, 0.710216999053955],\n [0.187885001301765, 0.588537991046906],\n [0.430987000465393, 0.944064974784851],\n [0.318993002176285, 0.898285031318665],\n [0.266247987747192, 0.869701027870178],\n [0.500023007392883, 0.190576016902924],\n [0.499976992607117, 0.954452991485596],\n [0.366169989109039, 0.398822009563446],\n [0.393207013607025, 0.39553701877594],\n [0.410373002290726, 0.391080021858215],\n [0.194993004202843, 0.342101991176605],\n [0.388664990663528, 0.362284004688263],\n [0.365961998701096, 0.355970978736877],\n [0.343364000320435, 0.355356991291046],\n [0.318785011768341, 0.35834002494812],\n [0.301414996385574, 0.363156020641327],\n [0.058132998645306, 0.319076001644135],\n [0.301414996385574, 0.387449026107788],\n [0.499987989664078, 0.618434011936188],\n [0.415838003158569, 0.624195992946625],\n [0.445681989192963, 0.566076993942261],\n [0.465844005346298, 0.620640993118286],\n [0.49992299079895, 0.351523995399475],\n [0.288718998432159, 0.819945991039276],\n [0.335278987884521, 0.852819979190826],\n [0.440512001514435, 0.902418971061707],\n [0.128294005990028, 0.791940987110138],\n [0.408771991729736, 0.373893976211548],\n [0.455606997013092, 0.451801002025604],\n [0.499877005815506, 0.908990025520325],\n [0.375436991453171, 0.924192011356354],\n [0.11421000212431, 0.615022003650665],\n [0.448662012815475, 0.695277988910675],\n [0.4480200111866, 0.704632043838501],\n [0.447111994028091, 0.715808033943176],\n [0.444831997156143, 0.730794012546539],\n [0.430011987686157, 0.766808986663818],\n [0.406787008047104, 0.685672998428345],\n [0.400738000869751, 0.681069016456604],\n [0.392399996519089, 0.677703022956848],\n [0.367855995893478, 0.663918972015381],\n [0.247923001646996, 0.601333022117615],\n [0.452769994735718, 0.420849978923798],\n [0.43639200925827, 0.359887003898621],\n [0.416164010763168, 0.368713974952698],\n [0.413385987281799, 0.692366003990173],\n [0.228018000721931, 0.683571994304657],\n [0.468268007040024, 0.352671027183533],\n [0.411361992359161, 0.804327011108398],\n [0.499989002943039, 0.469825029373169],\n [0.479153990745544, 0.442654013633728],\n [0.499974012374878, 0.439637005329132],\n [0.432112008333206, 0.493588984012604],\n [0.499886006116867, 0.866917014122009],\n [0.49991300702095, 0.821729004383087],\n [0.456548988819122, 0.819200992584229],\n [0.344549000263214, 0.745438992977142],\n [0.37890899181366, 0.574010014533997],\n [0.374292999505997, 0.780184984207153],\n [0.319687992334366, 0.570737957954407],\n [0.357154995203018, 0.604269981384277],\n [0.295284003019333, 0.621580958366394],\n [0.447750002145767, 0.862477004528046],\n [0.410986006259918, 0.508723020553589],\n [0.31395098567009, 0.775308012962341],\n [0.354128003120422, 0.812552988529205],\n [0.324548006057739, 0.703992962837219],\n [0.189096003770828, 0.646299958229065],\n [0.279776990413666, 0.71465802192688],\n [0.1338230073452, 0.682700991630554],\n [0.336768001317978, 0.644733011722565],\n [0.429883986711502, 0.466521978378296],\n [0.455527991056442, 0.548622965812683],\n [0.437114000320435, 0.558896005153656],\n [0.467287987470627, 0.529924988746643],\n [0.414712011814117, 0.335219979286194],\n [0.37704598903656, 0.322777986526489],\n [0.344107985496521, 0.320150971412659],\n [0.312875986099243, 0.32233202457428],\n [0.283526003360748, 0.333190023899078],\n [0.241245999932289, 0.382785975933075],\n [0.102986000478268, 0.468762993812561],\n [0.267612010240555, 0.424560010433197],\n [0.297879010438919, 0.433175981044769],\n [0.333433985710144, 0.433878004550934],\n [0.366427004337311, 0.426115989685059],\n [0.396012008190155, 0.416696012020111],\n [0.420121014118195, 0.41022801399231],\n [0.007561000064015, 0.480777025222778],\n [0.432949006557465, 0.569517970085144],\n [0.458638995885849, 0.479089021682739],\n [0.473466008901596, 0.545744001865387],\n [0.476087987422943, 0.563830018043518],\n [0.468472003936768, 0.555056989192963],\n [0.433990985155106, 0.582361996173859],\n [0.483518004417419, 0.562983989715576],\n [0.482482999563217, 0.57784903049469],\n [0.42645001411438, 0.389798998832703],\n [0.438998997211456, 0.39649498462677],\n [0.450067013502121, 0.400434017181396],\n [0.289712011814117, 0.368252992630005],\n [0.276670008897781, 0.363372981548309],\n [0.517862021923065, 0.471948027610779],\n [0.710287988185883, 0.380764007568359],\n [0.526226997375488, 0.573909997940063],\n [0.895093023777008, 0.254140973091125],\n [0.634069979190826, 0.409575998783112],\n [0.661242008209229, 0.41302502155304],\n [0.688880026340485, 0.409460008144379],\n [0.725341975688934, 0.389131009578705],\n [0.606630027294159, 0.40370500087738],\n [0.654766023159027, 0.344011008739471],\n [0.629905998706818, 0.346076011657715],\n [0.680678009986877, 0.347265005111694],\n [0.702096998691559, 0.353591024875641],\n [0.75221198797226, 0.410804986953735],\n [0.602918028831482, 0.842862963676453],\n [0.719901978969574, 0.375599980354309],\n [0.893692970275879, 0.399959981441498],\n [0.790081977844238, 0.391354024410248],\n [0.643998026847839, 0.534487962722778],\n [0.528249025344849, 0.65040397644043],\n [0.525849997997284, 0.680191040039062],\n [0.560214996337891, 0.657229006290436],\n [0.585384011268616, 0.66654098033905],\n [0.549625992774963, 0.680860996246338],\n [0.57122802734375, 0.682691991329193],\n [0.624852001667023, 0.72809898853302],\n [0.513050019741058, 0.547281980514526],\n [0.51509702205658, 0.527251958847046],\n [0.742246985435486, 0.314507007598877],\n [0.598631024360657, 0.454979002475739],\n [0.570338010787964, 0.548575043678284],\n [0.578631997108459, 0.533622980117798],\n [0.723087012767792, 0.532054007053375],\n [0.516445994377136, 0.499638974666595],\n [0.662801027297974, 0.282917976379395],\n [0.70362401008606, 0.293271005153656],\n [0.830704987049103, 0.193813979625702],\n [0.552385985851288, 0.302568018436432],\n [0.607609987258911, 0.353887975215912],\n [0.645429015159607, 0.696707010269165],\n [0.932694971561432, 0.730105042457581],\n [0.557260990142822, 0.572826027870178],\n [0.542901992797852, 0.584792017936707],\n [0.6180260181427, 0.694710969924927],\n [0.607590973377228, 0.694203019142151],\n [0.722943007946014, 0.271963000297546],\n [0.577413976192474, 0.563166975975037],\n [0.614082992076874, 0.281386971473694],\n [0.616907000541687, 0.255886018276215],\n [0.668509006500244, 0.119913995265961],\n [0.770092010498047, 0.232020974159241],\n [0.635536015033722, 0.189248979091644],\n [0.77039098739624, 0.299556016921997],\n [0.826722025871277, 0.278755009174347],\n [0.527121007442474, 0.666198015213013],\n [0.553171992301941, 0.668527007102966],\n [0.577238023281097, 0.673889994621277],\n [0.554691970348358, 0.580065965652466],\n [0.611896991729736, 0.693961024284363],\n [0.59696102142334, 0.706539988517761],\n [0.596370995044708, 0.693953037261963],\n [0.539958000183105, 0.557139039039612],\n [0.568841993808746, 0.692366003990173],\n [0.547818005084991, 0.692366003990173],\n [0.52461302280426, 0.692366003990173],\n [0.534089982509613, 0.779141008853912],\n [0.527670979499817, 0.736225962638855],\n [0.526912987232208, 0.717857003211975],\n [0.526877999305725, 0.704625964164734],\n [0.526966989040375, 0.695277988910675],\n [0.572058022022247, 0.695277988910675],\n [0.573521018028259, 0.703539967536926],\n [0.57683801651001, 0.711845993995667],\n [0.581691026687622, 0.720062971115112],\n [0.609944999217987, 0.639909982681274],\n [0.986046016216278, 0.560034036636353],\n [0.5867999792099, 0.69539999961853],\n [0.590372025966644, 0.701822996139526],\n [0.531915009021759, 0.601536989212036],\n [0.577268004417419, 0.585934996604919],\n [0.536915004253387, 0.593786001205444],\n [0.627542972564697, 0.473352015018463],\n [0.665585994720459, 0.495950996875763],\n [0.588353991508484, 0.546862006187439],\n [0.757824003696442, 0.14767599105835],\n [0.709249973297119, 0.201507985591888],\n [0.672684013843536, 0.256581008434296],\n [0.600408971309662, 0.74900496006012],\n [0.55826598405838, 0.261672019958496],\n [0.570303976535797, 0.187870979309082],\n [0.588165998458862, 0.109044015407562],\n [0.711045026779175, 0.398952007293701],\n [0.781069993972778, 0.435405015945435],\n [0.587247014045715, 0.398931980133057],\n [0.742869973182678, 0.355445981025696],\n [0.572156012058258, 0.437651991844177],\n [0.55186802148819, 0.536570012569427],\n [0.821442008018494, 0.457556009292603],\n [0.752701997756958, 0.457181990146637],\n [0.71375697851181, 0.467626988887787],\n [0.66711300611496, 0.460672974586487],\n [0.631101012229919, 0.447153985500336],\n [0.6008620262146, 0.432473003864288],\n [0.523481011390686, 0.405627012252808],\n [0.810747981071472, 0.523926019668579],\n [0.771045982837677, 0.348959028720856],\n [0.509127020835876, 0.562718033790588],\n [0.595292985439301, 0.485023975372314],\n [0.980530977249146, 0.401564002037048],\n [0.573499977588654, 0.420000016689301],\n [0.602994978427887, 0.548687994480133],\n [0.733529984951019, 0.376977026462555],\n [0.560611009597778, 0.519016981124878],\n [0.967685997486115, 0.644356966018677],\n [0.580985009670258, 0.387160003185272],\n [0.537728011608124, 0.505385041236877],\n [0.760966002941132, 0.779752969741821],\n [0.801778972148895, 0.831938028335571],\n [0.892440974712372, 0.54076099395752],\n [0.816350996494293, 0.740260004997253],\n [0.865594983100891, 0.333687007427216],\n [0.614073991775513, 0.883246004581451],\n [0.508952975273132, 0.579437971115112],\n [0.617941975593567, 0.508316040039062],\n [0.825608015060425, 0.397674977779388],\n [0.681214988231659, 0.39623498916626],\n [0.656635999679565, 0.400596976280212],\n [0.603900015354156, 0.710216999053955],\n [0.81208598613739, 0.588539004325867],\n [0.56801301240921, 0.944564998149872],\n [0.681007981300354, 0.898285031318665],\n [0.733752012252808, 0.869701027870178],\n [0.633830010890961, 0.398822009563446],\n [0.606792986392975, 0.39553701877594],\n [0.589659988880157, 0.391062021255493],\n [0.805015981197357, 0.342108011245728],\n [0.611334979534149, 0.362284004688263],\n [0.634037971496582, 0.355970978736877],\n [0.656635999679565, 0.355356991291046],\n [0.681214988231659, 0.35834002494812],\n [0.698584973812103, 0.363156020641327],\n [0.941866993904114, 0.319076001644135],\n [0.698584973812103, 0.387449026107788],\n [0.584177017211914, 0.624107003211975],\n [0.554318010807037, 0.566076993942261],\n [0.534153997898102, 0.62064003944397],\n [0.711217999458313, 0.819975018501282],\n [0.664629995822906, 0.852871000766754],\n [0.559099972248077, 0.902631998062134],\n [0.871706008911133, 0.791940987110138],\n [0.591234028339386, 0.373893976211548],\n [0.544341027736664, 0.451583981513977],\n [0.624562978744507, 0.924192011356354],\n [0.88577002286911, 0.615028977394104],\n [0.551338016986847, 0.695277988910675],\n [0.551980018615723, 0.704632043838501],\n [0.552887976169586, 0.715808033943176],\n [0.555167973041534, 0.730794012546539],\n [0.569944024085999, 0.767035007476807],\n [0.593203008174896, 0.685675978660583],\n [0.599261999130249, 0.681069016456604],\n [0.607599973678589, 0.677703022956848],\n [0.631937980651855, 0.663500010967255],\n [0.752032995223999, 0.601315021514893],\n [0.547226011753082, 0.420395016670227],\n [0.563543975353241, 0.359827995300293],\n [0.583841025829315, 0.368713974952698],\n [0.586614012718201, 0.692366003990173],\n [0.771915018558502, 0.683578014373779],\n [0.531597018241882, 0.352482974529266],\n [0.588370978832245, 0.804440975189209],\n [0.52079701423645, 0.442565023899078],\n [0.567984998226166, 0.493479013442993],\n [0.543282985687256, 0.819254994392395],\n [0.655317008495331, 0.745514988899231],\n [0.621008992195129, 0.574018001556396],\n [0.625559985637665, 0.78031200170517],\n [0.680198013782501, 0.570719003677368],\n [0.64276397228241, 0.604337990283966],\n [0.704662978649139, 0.621529996395111],\n [0.552012026309967, 0.862591981887817],\n [0.589071989059448, 0.508637011051178],\n [0.685944974422455, 0.775357007980347],\n [0.645735025405884, 0.812640011310577],\n [0.675342977046967, 0.703978002071381],\n [0.810858011245728, 0.646304965019226],\n [0.72012197971344, 0.714666962623596],\n [0.866151988506317, 0.682704985141754],\n [0.663187026977539, 0.644596993923187],\n [0.570082008838654, 0.466325998306274],\n [0.544561982154846, 0.548375964164734],\n [0.562758982181549, 0.558784961700439],\n [0.531987011432648, 0.530140042304993],\n [0.585271000862122, 0.335177004337311],\n [0.622952997684479, 0.32277899980545],\n [0.655896008014679, 0.320163011550903],\n [0.687132000923157, 0.322345972061157],\n [0.716481983661652, 0.333200991153717],\n [0.758756995201111, 0.382786989212036],\n [0.897013008594513, 0.468769013881683],\n [0.732392013072968, 0.424547016620636],\n [0.70211398601532, 0.433162987232208],\n [0.66652500629425, 0.433866024017334],\n [0.633504986763, 0.426087975502014],\n [0.603875994682312, 0.416586995124817],\n [0.579657971858978, 0.409945011138916],\n [0.992439985275269, 0.480777025222778],\n [0.567192018032074, 0.569419980049133],\n [0.54136598110199, 0.478899002075195],\n [0.526564002037048, 0.546118021011353],\n [0.523913025856018, 0.563830018043518],\n [0.531529009342194, 0.555056989192963],\n [0.566035985946655, 0.582329034805298],\n [0.51631098985672, 0.563053965568542],\n [0.5174720287323, 0.577877044677734],\n [0.573594987392426, 0.389806985855103],\n [0.560697972774506, 0.395331978797913],\n [0.549755990505219, 0.399751007556915],\n [0.710287988185883, 0.368252992630005],\n [0.723330020904541, 0.363372981548309],\n];\n\nexport const TRI468 = [\n 127, 34, 139, 11, 0, 37, 232, 231, 120, 72, 37, 39, 128, 121, 47, 232, 121, 128, 104, 69, 67, 175, 171, 148, 157, 154, 155, 118, 50, 101, 73, 39, 40, 9,\n 151, 108, 48, 115, 131, 194, 204, 211, 74, 40, 185, 80, 42, 183, 40, 92, 186, 230, 229, 118, 202, 212, 214, 83, 18, 17, 76, 61, 146, 160, 29, 30, 56,\n 157, 173, 106, 204, 194, 135, 214, 192, 203, 165, 98, 21, 71, 68, 51, 45, 4, 144, 24, 23, 77, 146, 91, 205, 50, 187, 201, 200, 18, 91, 106, 182, 90, 91,\n 181, 85, 84, 17, 206, 203, 36, 148, 171, 140, 92, 40, 39, 193, 189, 244, 159, 158, 28, 247, 246, 161, 236, 3, 196, 54, 68, 104, 193, 168, 8, 117,\n 228, 31, 189, 193, 55, 98, 97, 99, 126, 47, 100, 166, 79, 218, 155, 154, 26, 209, 49, 131, 135, 136, 150, 47, 126, 217, 223, 52, 53, 45, 51, 134, 211,\n 170, 140, 67, 69, 108, 43, 106, 91, 230, 119, 120, 226, 130, 247, 63, 53, 52, 238, 20, 242, 46, 70, 156, 78, 62, 96, 46, 53, 63, 143, 34, 227, 173,\n 155, 133, 123, 117, 111, 44, 125, 19, 236, 134, 51, 216, 206, 205, 154, 153, 22, 39, 37, 167, 200, 201, 208, 36, 142, 100, 57, 212, 202, 20, 60, 99, 28,\n 158, 157, 35, 226, 113, 160, 159, 27, 204, 202, 210, 113, 225, 46, 43, 202, 204, 62, 76, 77, 137, 123, 116, 41, 38, 72, 203, 129, 142, 64, 98, 240, 49,\n 102, 64, 41, 73, 74, 212, 216, 207, 42, 74, 184, 169, 170, 211, 170, 149, 176, 105, 66, 69, 122, 6, 168, 123, 147, 187, 96, 77, 90, 65, 55, 107, 89,\n 90, 180, 101, 100, 120, 63, 105, 104, 93, 137, 227, 15, 86, 85, 129, 102, 49, 14, 87, 86, 55, 8, 9, 100, 47, 121, 145, 23, 22, 88, 89, 179, 6, 122,\n 196, 88, 95, 96, 138, 172, 136, 215, 58, 172, 115, 48, 219, 42, 80, 81, 195, 3, 51, 43, 146, 61, 171, 175, 199, 81, 82, 38, 53, 46, 225, 144, 163, 110,\n 246, 33, 7, 52, 65, 66, 229, 228, 117, 34, 127, 234, 107, 108, 69, 109, 108, 151, 48, 64, 235, 62, 78, 191, 129, 209, 126, 111, 35, 143, 163, 161, 246,\n 117, 123, 50, 222, 65, 52, 19, 125, 141, 221, 55, 65, 3, 195, 197, 25, 7, 33, 220, 237, 44, 70, 71, 139, 122, 193, 245, 247, 130, 33, 71, 21, 162,\n 153, 158, 159, 170, 169, 150, 188, 174, 196, 216, 186, 92, 144, 160, 161, 2, 97, 167, 141, 125, 241, 164, 167, 37, 72, 38, 12, 145, 159, 160, 38, 82, 13,\n 63, 68, 71, 226, 35, 111, 158, 153, 154, 101, 50, 205, 206, 92, 165, 209, 198, 217, 165, 167, 97, 220, 115, 218, 133, 112, 243, 239, 238, 241, 214,\n 135, 169, 190, 173, 133, 171, 208, 32, 125, 44, 237, 86, 87, 178, 85, 86, 179, 84, 85, 180, 83, 84, 181, 201, 83, 182, 137, 93, 132, 76, 62, 183, 61,\n 76, 184, 57, 61, 185, 212, 57, 186, 214, 207, 187, 34, 143, 156, 79, 239, 237, 123, 137, 177, 44, 1, 4, 201, 194, 32, 64, 102, 129, 213, 215, 138, 59,\n 166, 219, 242, 99, 97, 2, 94, 141, 75, 59, 235, 24, 110, 228, 25, 130, 226, 23, 24, 229, 22, 23, 230, 26, 22, 231, 112, 26, 232, 189, 190, 243, 221, 56,\n 190, 28, 56, 221, 27, 28, 222, 29, 27, 223, 30, 29, 224, 247, 30, 225, 238, 79, 20, 166, 59, 75, 60, 75, 240, 147, 177, 215, 20, 79, 166, 187, 147, 213,\n 112, 233, 244, 233, 128, 245, 128, 114, 188, 114, 217, 174, 131, 115, 220, 217, 198, 236, 198, 131, 134, 177, 132, 58, 143, 35, 124, 110, 163, 7, 228,\n 110, 25, 356, 389, 368, 11, 302, 267, 452, 350, 349, 302, 303, 269, 357, 343, 277, 452, 453, 357, 333, 332, 297, 175, 152, 377, 384, 398, 382, 347,\n 348, 330, 303, 304, 270, 9, 336, 337, 278, 279, 360, 418, 262, 431, 304, 408, 409, 310, 415, 407, 270, 409, 410, 450, 348, 347, 422, 430, 434, 313,\n 314, 17, 306, 307, 375, 387, 388, 260, 286, 414, 398, 335, 406, 418, 364, 367, 416, 423, 358, 327, 251, 284, 298, 281, 5, 4, 373, 374, 253, 307, 320,\n 321, 425, 427, 411, 421, 313, 18, 321, 405, 406, 320, 404, 405, 315, 16, 17, 426, 425, 266, 377, 400, 369, 322, 391, 269, 417, 465, 464, 386, 257, 258,\n 466, 260, 388, 456, 399, 419, 284, 332, 333, 417, 285, 8, 346, 340, 261, 413, 441, 285, 327, 460, 328, 355, 371, 329, 392, 439, 438, 382, 341, 256,\n 429, 420, 360, 364, 394, 379, 277, 343, 437, 443, 444, 283, 275, 440, 363, 431, 262, 369, 297, 338, 337, 273, 375, 321, 450, 451, 349, 446, 342, 467,\n 293, 334, 282, 458, 461, 462, 276, 353, 383, 308, 324, 325, 276, 300, 293, 372, 345, 447, 382, 398, 362, 352, 345, 340, 274, 1, 19, 456, 248, 281, 436,\n 427, 425, 381, 256, 252, 269, 391, 393, 200, 199, 428, 266, 330, 329, 287, 273, 422, 250, 462, 328, 258, 286, 384, 265, 353, 342, 387, 259, 257, 424,\n 431, 430, 342, 353, 276, 273, 335, 424, 292, 325, 307, 366, 447, 345, 271, 303, 302, 423, 266, 371, 294, 455, 460, 279, 278, 294, 271, 272, 304, 432,\n 434, 427, 272, 407, 408, 394, 430, 431, 395, 369, 400, 334, 333, 299, 351, 417, 168, 352, 280, 411, 325, 319, 320, 295, 296, 336, 319, 403, 404, 330,\n 348, 349, 293, 298, 333, 323, 454, 447, 15, 16, 315, 358, 429, 279, 14, 15, 316, 285, 336, 9, 329, 349, 350, 374, 380, 252, 318, 402, 403, 6, 197, 419,\n 318, 319, 325, 367, 364, 365, 435, 367, 397, 344, 438, 439, 272, 271, 311, 195, 5, 281, 273, 287, 291, 396, 428, 199, 311, 271, 268, 283, 444, 445,\n 373, 254, 339, 263, 466, 249, 282, 334, 296, 449, 347, 346, 264, 447, 454, 336, 296, 299, 338, 10, 151, 278, 439, 455, 292, 407, 415, 358, 371, 355,\n 340, 345, 372, 390, 249, 466, 346, 347, 280, 442, 443, 282, 19, 94, 370, 441, 442, 295, 248, 419, 197, 263, 255, 359, 440, 275, 274, 300, 383, 368,\n 351, 412, 465, 263, 467, 466, 301, 368, 389, 380, 374, 386, 395, 378, 379, 412, 351, 419, 436, 426, 322, 373, 390, 388, 2, 164, 393, 370, 462, 461,\n 164, 0, 267, 302, 11, 12, 374, 373, 387, 268, 12, 13, 293, 300, 301, 446, 261, 340, 385, 384, 381, 330, 266, 425, 426, 423, 391, 429, 355, 437, 391,\n 327, 326, 440, 457, 438, 341, 382, 362, 459, 457, 461, 434, 430, 394, 414, 463, 362, 396, 369, 262, 354, 461, 457, 316, 403, 402, 315, 404, 403, 314,\n 405, 404, 313, 406, 405, 421, 418, 406, 366, 401, 361, 306, 408, 407, 291, 409, 408, 287, 410, 409, 432, 436, 410, 434, 416, 411, 264, 368, 383, 309,\n 438, 457, 352, 376, 401, 274, 275, 4, 421, 428, 262, 294, 327, 358, 433, 416, 367, 289, 455, 439, 462, 370, 326, 2, 326, 370, 305, 460, 455, 254,\n 449, 448, 255, 261, 446, 253, 450, 449, 252, 451, 450, 256, 452, 451, 341, 453, 452, 413, 464, 463, 441, 413, 414, 258, 442, 441, 257, 443, 442, 259,\n 444, 443, 260, 445, 444, 467, 342, 445, 459, 458, 250, 289, 392, 290, 290, 328, 460, 376, 433, 435, 250, 290, 392, 411, 416, 433, 341, 463, 464, 453,\n 464, 465, 357, 465, 412, 343, 412, 399, 360, 363, 440, 437, 399, 456, 420, 456, 363, 401, 435, 288, 372, 383, 353, 339, 255, 249, 448, 261, 255, 133,\n 243, 190, 133, 155, 112, 33, 246, 247, 33, 130, 25, 398, 384, 286, 362, 398, 414, 362, 463, 341, 263, 359, 467, 263, 249, 255, 466, 467, 260, 75, 60,\n 166, 238, 239, 79, 162, 127, 139, 72, 11, 37, 121, 232, 120, 73, 72, 39, 114, 128, 47, 233, 232, 128, 103, 104, 67, 152, 175, 148, 173, 157, 155,\n 119, 118, 101, 74, 73, 40, 107, 9, 108, 49, 48, 131, 32, 194, 211, 184, 74, 185, 191, 80, 183, 185, 40, 186, 119, 230, 118, 210, 202, 214, 84, 83, 17,\n 77, 76, 146, 161, 160, 30, 190, 56, 173, 182, 106, 194, 138, 135, 192, 129, 203, 98, 54, 21, 68, 5, 51, 4, 145, 144, 23, 90, 77, 91, 207, 205, 187, 83,\n 201, 18, 181, 91, 182, 180, 90, 181, 16, 85, 17, 205, 206, 36, 176, 148, 140, 165, 92, 39, 245, 193, 244, 27, 159, 28, 30, 247, 161, 174, 236, 196,\n 103, 54, 104, 55, 193, 8, 111, 117, 31, 221, 189, 55, 240, 98, 99, 142, 126, 100, 219, 166, 218, 112, 155, 26, 198, 209, 131, 169, 135, 150, 114, 47,\n 217, 224, 223, 53, 220, 45, 134, 32, 211, 140, 109, 67, 108, 146, 43, 91, 231, 230, 120, 113, 226, 247, 105, 63, 52, 241, 238, 242, 124, 46, 156, 95,\n 78, 96, 70, 46, 63, 116, 143, 227, 116, 123, 111, 1, 44, 19, 3, 236, 51, 207, 216, 205, 26, 154, 22, 165, 39, 167, 199, 200, 208, 101, 36, 100, 43,\n 57, 202, 242, 20, 99, 56, 28, 157, 124, 35, 113, 29, 160, 27, 211, 204, 210, 124, 113, 46, 106, 43, 204, 96, 62, 77, 227, 137, 116, 73, 41, 72, 36, 203,\n 142, 235, 64, 240, 48, 49, 64, 42, 41, 74, 214, 212, 207, 183, 42, 184, 210, 169, 211, 140, 170, 176, 104, 105, 69, 193, 122, 168, 50, 123, 187, 89, 96,\n 90, 66, 65, 107, 179, 89, 180, 119, 101, 120, 68, 63, 104, 234, 93, 227, 16, 15, 85, 209, 129, 49, 15, 14, 86, 107, 55, 9, 120, 100, 121, 153, 145, 22,\n 178, 88, 179, 197, 6, 196, 89, 88, 96, 135, 138, 136, 138, 215, 172, 218, 115, 219, 41, 42, 81, 5, 195, 51, 57, 43, 61, 208, 171, 199, 41, 81, 38,\n 224, 53, 225, 24, 144, 110, 105, 52, 66, 118, 229, 117, 227, 34, 234, 66, 107, 69, 10, 109, 151, 219, 48, 235, 183, 62, 191, 142, 129, 126, 116, 111,\n 143, 7, 163, 246, 118, 117, 50, 223, 222, 52, 94, 19, 141, 222, 221, 65, 196, 3, 197, 45, 220, 44, 156, 70, 139, 188, 122, 245, 139, 71, 162, 145,\n 153, 159, 149, 170, 150, 122, 188, 196, 206, 216, 92, 163, 144, 161, 164, 2, 167, 242, 141, 241, 0, 164, 37, 11, 72, 12, 144, 145, 160, 12, 38, 13, 70,\n 63, 71, 31, 226, 111, 157, 158, 154, 36, 101, 205, 203, 206, 165, 126, 209, 217, 98, 165, 97, 237, 220, 218, 237, 239, 241, 210, 214, 169, 140, 171, 32,\n 241, 125, 237, 179, 86, 178, 180, 85, 179, 181, 84, 180, 182, 83, 181, 194, 201, 182, 177, 137, 132, 184, 76, 183, 185, 61, 184, 186, 57, 185, 216, 212,\n 186, 192, 214, 187, 139, 34, 156, 218, 79, 237, 147, 123, 177, 45, 44, 4, 208, 201, 32, 98, 64, 129, 192, 213, 138, 235, 59, 219, 141, 242, 97, 97, 2,\n 141, 240, 75, 235, 229, 24, 228, 31, 25, 226, 230, 23, 229, 231, 22, 230, 232, 26, 231, 233, 112, 232, 244, 189, 243, 189, 221, 190, 222, 28, 221,\n 223, 27, 222, 224, 29, 223, 225, 30, 224, 113, 247, 225, 99, 60, 240, 213, 147, 215, 60, 20, 166, 192, 187, 213, 243, 112, 244, 244, 233, 245, 245,\n 128, 188, 188, 114, 174, 134, 131, 220, 174, 217, 236, 236, 198, 134, 215, 177, 58, 156, 143, 124, 25, 110, 7, 31, 228, 25, 264, 356, 368, 0, 11, 267,\n 451, 452, 349, 267, 302, 269, 350, 357, 277, 350, 452, 357, 299, 333, 297, 396, 175, 377, 381, 384, 382, 280, 347, 330, 269, 303, 270, 151, 9, 337,\n 344, 278, 360, 424, 418, 431, 270, 304, 409, 272, 310, 407, 322, 270, 410, 449, 450, 347, 432, 422, 434, 18, 313, 17, 291, 306, 375, 259, 387, 260,\n 424, 335, 418, 434, 364, 416, 391, 423, 327, 301, 251, 298, 275, 281, 4, 254, 373, 253, 375, 307, 321, 280, 425, 411, 200, 421, 18, 335, 321, 406,\n 321, 320, 405, 314, 315, 17, 423, 426, 266, 396, 377, 369, 270, 322, 269, 413, 417, 464, 385, 386, 258, 248, 456, 419, 298, 284, 333, 168, 417, 8,\n 448, 346, 261, 417, 413, 285, 326, 327, 328, 277, 355, 329, 309, 392, 438, 381, 382, 256, 279, 429, 360, 365, 364, 379, 355, 277, 437, 282, 443, 283,\n 281, 275, 363, 395, 431, 369, 299, 297, 337, 335, 273, 321, 348, 450, 349, 359, 446, 467, 283, 293, 282, 250, 458, 462, 300, 276, 383, 292, 308, 325,\n 283, 276, 293, 264, 372, 447, 346, 352, 340, 354, 274, 19, 363, 456, 281, 426, 436, 425, 380, 381, 252, 267, 269, 393, 421, 200, 428, 371, 266, 329,\n 432, 287, 422, 290, 250, 328, 385, 258, 384, 446, 265, 342, 386, 387, 257, 422, 424, 430, 445, 342, 276, 422, 273, 424, 306, 292, 307, 352, 366, 345,\n 268, 271, 302, 358, 423, 371, 327, 294, 460, 331, 279, 294, 303, 271, 304, 436, 432, 427, 304, 272, 408, 395, 394, 431, 378, 395, 400, 296, 334, 299,\n 6, 351, 168, 376, 352, 411, 307, 325, 320, 285, 295, 336, 320, 319, 404, 329, 330, 349, 334, 293, 333, 366, 323, 447, 316, 15, 315, 331, 358, 279,\n 317, 14, 316, 8, 285, 9, 277, 329, 350, 253, 374, 252, 319, 318, 403, 351, 6, 419, 324, 318, 325, 397, 367, 365, 288, 435, 397, 278, 344, 439, 310,\n 272, 311, 248, 195, 281, 375, 273, 291, 175, 396, 199, 312, 311, 268, 276, 283, 445, 390, 373, 339, 295, 282, 296, 448, 449, 346, 356, 264, 454, 337,\n 336, 299, 337, 338, 151, 294, 278, 455, 308, 292, 415, 429, 358, 355, 265, 340, 372, 388, 390, 466, 352, 346, 280, 295, 442, 282, 354, 19, 370, 285,\n 441, 295, 195, 248, 197, 457, 440, 274, 301, 300, 368, 417, 351, 465, 251, 301, 389, 385, 380, 386, 394, 395, 379, 399, 412, 419, 410, 436, 322, 387,\n 373, 388, 326, 2, 393, 354, 370, 461, 393, 164, 267, 268, 302, 12, 386, 374, 387, 312, 268, 13, 298, 293, 301, 265, 446, 340, 380, 385, 381, 280, 330,\n 425, 322, 426, 391, 420, 429, 437, 393, 391, 326, 344, 440, 438, 458, 459, 461, 364, 434, 394, 428, 396, 262, 274, 354, 457, 317, 316, 402, 316, 315,\n 403, 315, 314, 404, 314, 313, 405, 313, 421, 406, 323, 366, 361, 292, 306, 407, 306, 291, 408, 291, 287, 409, 287, 432, 410, 427, 434, 411, 372, 264,\n 383, 459, 309, 457, 366, 352, 401, 1, 274, 4, 418, 421, 262, 331, 294, 358, 435, 433, 367, 392, 289, 439, 328, 462, 326, 94, 2, 370, 289, 305, 455, 339,\n 254, 448, 359, 255, 446, 254, 253, 449, 253, 252, 450, 252, 256, 451, 256, 341, 452, 414, 413, 463, 286, 441, 414, 286, 258, 441, 258, 257, 442, 257,\n 259, 443, 259, 260, 444, 260, 467, 445, 309, 459, 250, 305, 289, 290, 305, 290, 460, 401, 376, 435, 309, 250, 392, 376, 411, 433, 453, 341, 464, 357,\n 453, 465, 343, 357, 412, 437, 343, 399, 344, 360, 440, 420, 437, 456, 360, 420, 363, 361, 401, 288, 265, 372, 353, 390, 339, 249, 339, 448, 255];\n\nexport const TRI68 = [0, 1, 36, 0, 36, 17, 1, 2, 41, 1, 41, 36, 2, 3, 31, 2, 31, 41, 3, 4, 48, 3, 48, 31, 4, 5, 48, 5, 6, 48, 6, 7, 59, 6, 59, 48, 7, 8, 58, 7, 58, 59,\n 8, 9, 56, 8, 56, 57, 8, 57, 58, 9, 10, 55, 9, 55, 56, 10, 11, 54, 10, 54, 55, 11, 12, 54, 12, 13, 54, 13, 14, 35, 13, 35, 54, 14, 15, 46, 14, 46, 35, 15, 16,\n 45, 15, 45, 46, 16, 26, 45, 17, 36, 18, 18, 37, 19, 18, 36, 37, 19, 38, 20, 19, 37, 38, 20, 39, 21, 20, 38, 39, 21, 39, 27, 22, 42, 23, 22, 27, 42, 23, 43, 24,\n 23, 42, 43, 24, 44, 25, 24, 43, 44, 25, 45, 26, 25, 44, 45, 27, 39, 28, 27, 28, 42, 28, 39, 29, 28, 29, 42, 29, 31, 30, 29, 30, 35, 29, 40, 31, 29, 35, 47, 29,\n 39, 40, 29, 47, 42, 30, 31, 32, 30, 32, 33, 30, 33, 34, 30, 34, 35, 31, 50, 32, 31, 40, 41, 31, 48, 49, 31, 49, 50, 32, 51, 33, 32, 50, 51, 33, 51, 34, 34, 52,\n 35, 34, 51, 52, 35, 46, 47, 35, 52, 53, 35, 53, 54, 36, 41, 37, 37, 40, 38, 37, 41, 40, 38, 40, 39, 42, 47, 43, 43, 47, 44, 44, 46, 45, 44, 47, 46, 48, 60, 49,\n 48, 59, 60, 49, 61, 50, 49, 60, 61, 50, 62, 51, 50, 61, 62, 51, 62, 52, 52, 63, 53, 52, 62, 63, 53, 64, 54, 53, 63, 64, 54, 64, 55, 55, 65, 56, 55, 64, 65, 56,\n 66, 57, 56, 65, 66, 57, 66, 58, 58, 67, 59, 58, 66, 67, 59, 67, 60, 60, 67, 61, 61, 66, 62, 61, 67, 66, 62, 66, 63, 63, 65, 64, 63, 66, 65, 21, 27, 22];\n\nexport const TRI33 = [\n /* eyes */ 0, 8, 7, 7, 8, 1, 2, 10, 9, 9, 10, 3,\n /* brows */ 17, 0, 18, 18, 0, 7, 18, 7, 19, 19, 7, 1, 19, 1, 11, 19, 11, 20, 21, 3, 22, 21, 9, 3, 20, 9, 21, 20, 2, 9, 20, 11, 2,\n /* 4head */ 23, 17, 18, 25, 21, 22, 24, 19, 20, 24, 18, 19, 24, 20, 21, 24, 23, 18, 24, 21, 25,\n /* nose */ 11, 12, 4, 11, 4, 13, 1, 12, 11, 11, 13, 2, 12, 14, 4, 4, 14, 13,\n /* up-lip */ 14, 5, 15, 14, 15, 6, 12, 5, 14, 14, 6, 13,\n /* cheeks */ 8, 12, 1, 2, 13, 10, 8, 26, 12, 10, 13, 27, 26, 5, 12, 13, 6, 27, 0, 26, 8, 10, 27, 3,\n /* chin */ 5, 32, 16, 16, 32, 6, 5, 30, 32, 6, 32, 31,\n /* cont */ 26, 30, 5, 27, 6, 31, 0, 28, 26, 3, 27, 29, 17, 28, 0, 3, 29, 22, 23, 28, 17, 22, 29, 25, 28, 30, 26, 27, 31, 29,\n];\n\nexport const TRI7 = [0, 4, 1, 2, 4, 3, 4, 5, 6];\n\nexport const VTX68 = [\n /* cont */ 127, 234, 132, 58, 172, 150, 149, 148, 152, 377, 378, 379, 397, 288, 361, 454, 356,\n /* brows */ 70, 63, 105, 66, 107, 336, 296, 334, 293, 300,\n /* nose */ 168, 6, 195, 4, 98, 97, 2, 326, 327,\n /* eyes */ 33, 160, 158, 133, 153, 144, 362, 385, 387, 263, 373, 380,\n /* lip */ 57, 40, 37, 0, 267, 270, 287, 321, 314, 17, 84, 91,\n /* mouth */ 78, 81, 13, 311, 308, 402, 14, 178,\n];\n\nexport const VTX33 = [33, 133, 362, 263, 1, 62, 308, 159, 145, 386, 374, 6, 102, 331, 2, 13, 14, 70, 105, 107, 336, 334, 300, 54, 10, 284, 50, 280, 234, 454, 58, 288, 152];\n\nexport const VTX7 = [33, 133, 362, 263, 1, 78, 308];\n\nexport const UV68 = VTX68.map((x) => UV468[x]);\n\nexport const UV33 = VTX33.map((x) => UV468[x]);\n\nexport const UV7 = VTX7.map((x) => UV468[x]);\n", "/* eslint-disable class-methods-use-this */\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as bounding from './box';\nimport * as util from './util';\nimport * as coords from './coords';\n\nconst leftOutline = coords.MESH_ANNOTATIONS['leftEyeLower0'];\nconst rightOutline = coords.MESH_ANNOTATIONS['rightEyeLower0'];\n\nconst eyeLandmarks = {\n leftBounds: [leftOutline[0], leftOutline[leftOutline.length - 1]],\n rightBounds: [rightOutline[0], rightOutline[rightOutline.length - 1]],\n};\n\nconst meshLandmarks = {\n count: 468,\n mouth: 13,\n symmetryLine: [13, coords.MESH_ANNOTATIONS['midwayBetweenEyes'][0]],\n};\n\nconst blazeFaceLandmarks = {\n leftEye: 0,\n rightEye: 1,\n nose: 2,\n mouth: 3,\n leftEar: 4,\n rightEar: 5,\n symmetryLine: [3, 2],\n};\n\nconst irisLandmarks = {\n upperCenter: 3,\n lowerCenter: 4,\n index: 71,\n numCoordinates: 76,\n};\n\n// Replace the raw coordinates returned by facemesh with refined iris model coordinates\n// Update the z coordinate to be an average of the original and the new.\nfunction replaceRawCoordinates(rawCoords, newCoords, prefix, keys) {\n for (let i = 0; i < coords.MESH_TO_IRIS_INDICES_MAP.length; i++) {\n const { key, indices } = coords.MESH_TO_IRIS_INDICES_MAP[i];\n const originalIndices = coords.MESH_ANNOTATIONS[`${prefix}${key}`];\n if (!keys || keys.includes(key)) {\n for (let j = 0; j < indices.length; j++) {\n const index = indices[j];\n rawCoords[originalIndices[j]] = [\n newCoords[index][0], newCoords[index][1],\n (newCoords[index][2] + rawCoords[originalIndices[j]][2]) / 2,\n ];\n }\n }\n }\n}\n// The Pipeline coordinates between the bounding box and skeleton models.\nexport class Pipeline {\n storedBoxes: any;\n boundingBoxDetector: any;\n meshDetector: any;\n irisModel: any;\n boxSize: number;\n meshSize: number;\n irisSize: number;\n irisEnlarge: number;\n skipped: number;\n detectedFaces: number;\n\n constructor(boundingBoxDetector, meshDetector, irisModel) {\n // An array of facial bounding boxes.\n this.storedBoxes = [];\n this.boundingBoxDetector = boundingBoxDetector;\n this.meshDetector = meshDetector;\n this.irisModel = irisModel;\n this.boxSize = boundingBoxDetector?.model?.inputs[0].shape[2] || 0;\n this.meshSize = meshDetector?.inputs[0].shape[2] || boundingBoxDetector?.model?.inputs[0].shape[2];\n this.irisSize = irisModel?.inputs[0].shape[1] || 0;\n this.irisEnlarge = 2.3;\n this.skipped = 0;\n this.detectedFaces = 0;\n }\n\n transformRawCoords(rawCoords, box, angle, rotationMatrix) {\n const boxSize = bounding.getBoxSize({ startPoint: box.startPoint, endPoint: box.endPoint });\n const coordsScaled = rawCoords.map((coord) => ([\n boxSize[0] / this.meshSize * (coord[0] - this.meshSize / 2),\n boxSize[1] / this.meshSize * (coord[1] - this.meshSize / 2),\n coord[2],\n ]));\n const coordsRotationMatrix = (angle !== 0) ? util.buildRotationMatrix(angle, [0, 0]) : util.IDENTITY_MATRIX;\n const coordsRotated = (angle !== 0) ? coordsScaled.map((coord) => ([...util.rotatePoint(coord, coordsRotationMatrix), coord[2]])) : coordsScaled;\n const inverseRotationMatrix = (angle !== 0) ? util.invertTransformMatrix(rotationMatrix) : util.IDENTITY_MATRIX;\n const boxCenter = [...bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint }), 1];\n return coordsRotated.map((coord) => ([\n coord[0] + util.dot(boxCenter, inverseRotationMatrix[0]),\n coord[1] + util.dot(boxCenter, inverseRotationMatrix[1]),\n coord[2],\n ]));\n }\n\n getLeftToRightEyeDepthDifference(rawCoords) {\n const leftEyeZ = rawCoords[eyeLandmarks.leftBounds[0]][2];\n const rightEyeZ = rawCoords[eyeLandmarks.rightBounds[0]][2];\n return leftEyeZ - rightEyeZ;\n }\n\n // Returns a box describing a cropped region around the eye fit for passing to the iris model.\n getEyeBox(rawCoords, face, eyeInnerCornerIndex, eyeOuterCornerIndex, flip = false) {\n const box = bounding.squarifyBox(bounding.enlargeBox(this.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), this.irisEnlarge));\n const boxSize = bounding.getBoxSize(box);\n let crop = tf.image.cropAndResize(face, [[\n box.startPoint[1] / this.meshSize,\n box.startPoint[0] / this.meshSize, box.endPoint[1] / this.meshSize,\n box.endPoint[0] / this.meshSize,\n ]], [0], [this.irisSize, this.irisSize]);\n if (flip && tf.ENV.flags.IS_BROWSER) {\n crop = tf.image.flipLeftRight(crop); // flipLeftRight is not defined for tfjs-node\n }\n return { box, boxSize, crop };\n }\n\n // Given a cropped image of an eye, returns the coordinates of the contours surrounding the eye and the iris.\n getEyeCoords(eyeData, eyeBox, eyeBoxSize, flip = false) {\n const eyeRawCoords: Array = [];\n for (let i = 0; i < irisLandmarks.numCoordinates; i++) {\n const x = eyeData[i * 3];\n const y = eyeData[i * 3 + 1];\n const z = eyeData[i * 3 + 2];\n eyeRawCoords.push([\n (flip ? (1 - (x / this.irisSize)) : (x / this.irisSize)) * eyeBoxSize[0] + eyeBox.startPoint[0],\n (y / this.irisSize) * eyeBoxSize[1] + eyeBox.startPoint[1], z,\n ]);\n }\n return { rawCoords: eyeRawCoords, iris: eyeRawCoords.slice(irisLandmarks.index) };\n }\n\n // The z-coordinates returned for the iris are unreliable, so we take the z values from the surrounding keypoints.\n getAdjustedIrisCoords(rawCoords, irisCoords, direction) {\n const upperCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeUpper0`][irisLandmarks.upperCenter]][2];\n const lowerCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeLower0`][irisLandmarks.lowerCenter]][2];\n const averageZ = (upperCenterZ + lowerCenterZ) / 2;\n // Iris indices: 0: center | 1: right | 2: above | 3: left | 4: below\n return irisCoords.map((coord, i) => {\n let z = averageZ;\n if (i === 2) {\n z = upperCenterZ;\n } else if (i === 4) {\n z = lowerCenterZ;\n }\n return [coord[0], coord[1], z];\n });\n }\n\n async predict(input, config) {\n let useFreshBox = false;\n // run new detector every skipFrames unless we only want box to start with\n let detector;\n if ((this.skipped === 0) || (this.skipped > config.face.detector.skipFrames) || !config.face.mesh.enabled || !config.videoOptimized) {\n detector = await this.boundingBoxDetector.getBoundingBoxes(input);\n this.skipped = 0;\n }\n if (config.videoOptimized) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (!config.videoOptimized || (detector && detector.boxes && (!config.face.mesh.enabled || (detector.boxes.length !== this.detectedFaces) && (this.detectedFaces !== config.face.detector.maxFaces)))) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n for (const possible of detector.boxes) {\n this.storedBoxes.push({ startPoint: possible.box.startPoint.dataSync(), endPoint: possible.box.endPoint.dataSync(), landmarks: possible.landmarks, confidence: possible.confidence });\n }\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n\n if (config.face.detector.skipInitial && this.detectedFaces === 0) this.skipped = 0;\n\n if (useFreshBox) {\n if (!detector || !detector.boxes || (detector.boxes.length === 0)) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n return null;\n }\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const scaledBox = bounding.scaleBoxCoordinates({ startPoint: this.storedBoxes[i].startPoint, endPoint: this.storedBoxes[i].endPoint }, detector.scaleFactor);\n const enlargedBox = bounding.enlargeBox(scaledBox);\n const squarifiedBox = bounding.squarifyBox(enlargedBox);\n const landmarks = this.storedBoxes[i].landmarks.arraySync();\n const confidence = this.storedBoxes[i].confidence;\n this.storedBoxes[i] = { ...squarifiedBox, confidence, landmarks };\n }\n }\n if (detector && detector.boxes) {\n detector.boxes.forEach((prediction) => {\n prediction.box.startPoint.dispose();\n prediction.box.endPoint.dispose();\n prediction.landmarks.dispose();\n });\n }\n\n let results = tf.tidy(() => this.storedBoxes.map((box, i) => {\n const boxConfidence = box.confidence;\n\n // The facial bounding box landmarks could come either from blazeface (if we are using a fresh box), or from the mesh model (if we are reusing an old box).\n let face;\n let angle = 0;\n let rotationMatrix;\n\n if (config.face.detector.rotation && config.face.mesh.enabled && tf.ENV.flags.IS_BROWSER) {\n const [indexOfMouth, indexOfForehead] = (box.landmarks.length >= meshLandmarks.count) ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;\n angle = util.computeRotation(box.landmarks[indexOfMouth], box.landmarks[indexOfForehead]);\n const faceCenter = bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint });\n const faceCenterNormalized = [faceCenter[0] / input.shape[2], faceCenter[1] / input.shape[1]];\n const rotatedImage = tf.image.rotateWithOffset(input, angle, 0, faceCenterNormalized); // rotateWithOffset is not defined for tfjs-node\n rotationMatrix = util.buildRotationMatrix(-angle, faceCenter);\n if (config.face.mesh.enabled) face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.meshSize, this.meshSize]).div(255);\n else face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.boxSize, this.boxSize]).div(255);\n } else {\n rotationMatrix = util.IDENTITY_MATRIX;\n const clonedImage = input.clone();\n if (config.face.mesh.enabled) face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.meshSize, this.meshSize]).div(255);\n else face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.boxSize, this.boxSize]).div(255);\n }\n\n // if we're not going to produce mesh, don't spend time with further processing\n if (!config.face.mesh.enabled) {\n const prediction = {\n coords: null,\n box,\n faceConfidence: null,\n boxConfidence,\n confidence: box.confidence,\n image: face,\n };\n return prediction;\n }\n\n const [, confidence, contourCoords] = this.meshDetector.predict(face); // The first returned tensor represents facial contours which are already included in the coordinates.\n const faceConfidence = confidence.dataSync()[0];\n if (faceConfidence < config.face.detector.minConfidence) return null; // if below confidence just exit\n const coordsReshaped = tf.reshape(contourCoords, [-1, 3]);\n let rawCoords = coordsReshaped.arraySync();\n\n if (config.face.iris.enabled) {\n const { box: leftEyeBox, boxSize: leftEyeBoxSize, crop: leftEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.leftBounds[0], eyeLandmarks.leftBounds[1], true);\n const { box: rightEyeBox, boxSize: rightEyeBoxSize, crop: rightEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.rightBounds[0], eyeLandmarks.rightBounds[1]);\n const eyePredictions = this.irisModel.predict(tf.concat([leftEyeCrop, rightEyeCrop]));\n const eyePredictionsData = eyePredictions.dataSync();\n const leftEyeData = eyePredictionsData.slice(0, irisLandmarks.numCoordinates * 3);\n const { rawCoords: leftEyeRawCoords, iris: leftIrisRawCoords } = this.getEyeCoords(leftEyeData, leftEyeBox, leftEyeBoxSize, true);\n const rightEyeData = eyePredictionsData.slice(irisLandmarks.numCoordinates * 3);\n const { rawCoords: rightEyeRawCoords, iris: rightIrisRawCoords } = this.getEyeCoords(rightEyeData, rightEyeBox, rightEyeBoxSize);\n const leftToRightEyeDepthDifference = this.getLeftToRightEyeDepthDifference(rawCoords);\n if (Math.abs(leftToRightEyeDepthDifference) < 30) { // User is looking straight ahead.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', null);\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', null);\n // If the user is looking to the left or to the right, the iris coordinates tend to diverge too much from the mesh coordinates for them to be merged\n // So we only update a single contour line above and below the eye.\n } else if (leftToRightEyeDepthDifference < 1) { // User is looking towards the right.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', ['EyeUpper0', 'EyeLower0']);\n } else { // User is looking towards the left.\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', ['EyeUpper0', 'EyeLower0']);\n }\n const adjustedLeftIrisCoords = this.getAdjustedIrisCoords(rawCoords, leftIrisRawCoords, 'left');\n const adjustedRightIrisCoords = this.getAdjustedIrisCoords(rawCoords, rightIrisRawCoords, 'right');\n rawCoords = rawCoords.concat(adjustedLeftIrisCoords).concat(adjustedRightIrisCoords);\n }\n\n // override box from detection with one calculated from mesh\n const transformedCoordsData = this.transformRawCoords(rawCoords, box, angle, rotationMatrix);\n box = bounding.enlargeBox(this.calculateLandmarksBoundingBox(transformedCoordsData), 1.5); // redefine box with mesh calculated one\n const transformedCoords = tf.tensor2d(transformedCoordsData);\n\n // do rotation one more time with mesh keypoints if we want to return perfect image\n if (config.face.detector.rotation && config.face.mesh.enabled && config.face.description.enabled && tf.ENV.flags.IS_BROWSER) {\n const [indexOfMouth, indexOfForehead] = (box.landmarks.length >= meshLandmarks.count) ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;\n angle = util.computeRotation(box.landmarks[indexOfMouth], box.landmarks[indexOfForehead]);\n const faceCenter = bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint });\n const faceCenterNormalized = [faceCenter[0] / input.shape[2], faceCenter[1] / input.shape[1]];\n const rotatedImage = tf.image.rotateWithOffset(input.toFloat(), angle, 0, faceCenterNormalized); // rotateWithOffset is not defined for tfjs-node\n rotationMatrix = util.buildRotationMatrix(-angle, faceCenter);\n face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.meshSize, this.meshSize]).div(255);\n }\n\n const prediction = {\n coords: transformedCoords,\n box,\n faceConfidence,\n boxConfidence,\n image: face,\n rawCoords,\n };\n\n // updated stored cache values\n const squarifiedLandmarksBox = bounding.squarifyBox(box);\n this.storedBoxes[i] = { ...squarifiedLandmarksBox, landmarks: transformedCoordsData, confidence: box.confidence, faceConfidence };\n\n return prediction;\n }));\n\n results = results.filter((a) => a !== null);\n // remove cache entries for detected boxes on low confidence\n if (config.face.mesh.enabled) this.storedBoxes = this.storedBoxes.filter((a) => a.faceConfidence > config.face.detector.minConfidence);\n this.detectedFaces = results.length;\n\n return results;\n }\n\n calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint, landmarks };\n }\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as poses from './poses';\nimport * as util from './utils';\n\nlet model;\nconst poseNetOutputs = ['MobilenetV1/offset_2/BiasAdd'/* offsets */, 'MobilenetV1/heatmap_2/BiasAdd'/* heatmapScores */, 'MobilenetV1/displacement_fwd_2/BiasAdd'/* displacementFwd */, 'MobilenetV1/displacement_bwd_2/BiasAdd'/* displacementBwd */];\n\nexport async function predict(input, config) {\n const res = tf.tidy(() => {\n const resized = input.resizeBilinear([model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const normalized = resized.toFloat().div(127.5).sub(1.0);\n const results = model.execute(normalized, poseNetOutputs);\n const results3d = results.map((y) => y.squeeze([0]));\n results3d[1] = results3d[1].sigmoid(); // apply sigmoid on scores\n return results3d;\n });\n\n const buffers = await Promise.all(res.map((tensor) => tensor.buffer()));\n for (const t of res) t.dispose();\n\n const decoded = await poses.decode(buffers[0], buffers[1], buffers[2], buffers[3], config.body.nmsRadius, config.body.maxDetections, config.body.scoreThreshold);\n const scaled = util.scalePoses(decoded, [input.shape[1], input.shape[2]], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n\n return scaled;\n}\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n", "export const partNames = [\n 'nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder',\n 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist',\n 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle',\n];\n\nexport const count = partNames.length; // 17 keypoints\n\nexport const partIds = partNames.reduce((result, jointName, i) => {\n result[jointName] = i;\n return result;\n}, {});\n\nconst connectedPartNames = [\n ['leftHip', 'leftShoulder'], ['leftElbow', 'leftShoulder'],\n ['leftElbow', 'leftWrist'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['rightHip', 'rightShoulder'],\n ['rightElbow', 'rightShoulder'], ['rightElbow', 'rightWrist'],\n ['rightHip', 'rightKnee'], ['rightKnee', 'rightAnkle'],\n ['leftShoulder', 'rightShoulder'], ['leftHip', 'rightHip'],\n];\nexport const connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => ([partIds[jointNameA], partIds[jointNameB]]));\n\nexport const poseChain = [\n ['nose', 'leftEye'], ['leftEye', 'leftEar'], ['nose', 'rightEye'],\n ['rightEye', 'rightEar'], ['nose', 'leftShoulder'],\n ['leftShoulder', 'leftElbow'], ['leftElbow', 'leftWrist'],\n ['leftShoulder', 'leftHip'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['nose', 'rightShoulder'],\n ['rightShoulder', 'rightElbow'], ['rightElbow', 'rightWrist'],\n ['rightShoulder', 'rightHip'], ['rightHip', 'rightKnee'],\n ['rightKnee', 'rightAnkle'],\n];\n", "import * as kpt from './keypoints';\n\nexport function eitherPointDoesntMeetConfidence(a, b, minConfidence) {\n return (a < minConfidence || b < minConfidence);\n}\n\nexport function getAdjacentKeyPoints(keypoints, minConfidence) {\n return kpt.connectedPartIndices.reduce((result, [leftJoint, rightJoint]) => {\n if (eitherPointDoesntMeetConfidence(keypoints[leftJoint].score, keypoints[rightJoint].score, minConfidence)) {\n return result;\n }\n result.push([keypoints[leftJoint], keypoints[rightJoint]]);\n return result;\n }, []);\n}\n\nexport function getBoundingBox(keypoints) {\n const coord = keypoints.reduce(({ maxX, maxY, minX, minY }, { position: { x, y } }) => ({\n maxX: Math.max(maxX, x),\n maxY: Math.max(maxY, y),\n minX: Math.min(minX, x),\n minY: Math.min(minY, y),\n }), {\n maxX: Number.NEGATIVE_INFINITY,\n maxY: Number.NEGATIVE_INFINITY,\n minX: Number.POSITIVE_INFINITY,\n minY: Number.POSITIVE_INFINITY,\n });\n return [coord.minX, coord.minY, coord.maxX - coord.minX, coord.maxY - coord.minY];\n}\n\nexport function scalePoses(poses, [height, width], [inputResolutionHeight, inputResolutionWidth]) {\n const scalePose = (pose, scaleY, scaleX) => ({\n score: pose.score,\n box: [Math.trunc(pose.box[0] * scaleX), Math.trunc(pose.box[1] * scaleY), Math.trunc(pose.box[2] * scaleX), Math.trunc(pose.box[3] * scaleY)],\n keypoints: pose.keypoints.map(({ score, part, position }) => ({\n score,\n part,\n position: { x: Math.trunc(position.x * scaleX), y: Math.trunc(position.y * scaleY) },\n })),\n });\n\n const scaledPoses = poses.map((pose) => scalePose(pose, height / inputResolutionHeight, width / inputResolutionWidth));\n return scaledPoses;\n}\n\n// algorithm based on Coursera Lecture from Algorithms, Part 1: https://www.coursera.org/learn/algorithms-part1/lecture/ZjoSM/heapsort\nexport class MaxHeap {\n priorityQueue: any;\n numberOfElements: number;\n getElementValue: any;\n\n constructor(maxSize, getElementValue) {\n this.priorityQueue = new Array(maxSize);\n this.numberOfElements = -1;\n this.getElementValue = getElementValue;\n }\n\n enqueue(x) {\n this.priorityQueue[++this.numberOfElements] = x;\n this.swim(this.numberOfElements);\n }\n\n dequeue() {\n const max = this.priorityQueue[0];\n this.exchange(0, this.numberOfElements--);\n this.sink(0);\n this.priorityQueue[this.numberOfElements + 1] = null;\n return max;\n }\n\n empty() { return this.numberOfElements === -1; }\n\n size() { return this.numberOfElements + 1; }\n\n all() { return this.priorityQueue.slice(0, this.numberOfElements + 1); }\n\n max() { return this.priorityQueue[0]; }\n\n swim(k) {\n while (k > 0 && this.less(Math.floor(k / 2), k)) {\n this.exchange(k, Math.floor(k / 2));\n k = Math.floor(k / 2);\n }\n }\n\n sink(k) {\n while (2 * k <= this.numberOfElements) {\n let j = 2 * k;\n if (j < this.numberOfElements && this.less(j, j + 1)) j++;\n if (!this.less(k, j)) break;\n this.exchange(k, j);\n k = j;\n }\n }\n\n getValueAt(i) {\n return this.getElementValue(this.priorityQueue[i]);\n }\n\n less(i, j) {\n return this.getValueAt(i) < this.getValueAt(j);\n }\n\n exchange(i, j) {\n const t = this.priorityQueue[i];\n this.priorityQueue[i] = this.priorityQueue[j];\n this.priorityQueue[j] = t;\n }\n}\n\nexport function getOffsetPoint(y, x, keypoint, offsets) {\n return {\n y: offsets.get(y, x, keypoint),\n x: offsets.get(y, x, keypoint + kpt.count),\n };\n}\n\nexport function getImageCoords(part, outputStride, offsets) {\n const { heatmapY, heatmapX, id: keypoint } = part;\n const { y, x } = getOffsetPoint(heatmapY, heatmapX, keypoint, offsets);\n return {\n x: part.heatmapX * outputStride + x,\n y: part.heatmapY * outputStride + y,\n };\n}\n\nexport function fillArray(element, size) {\n const result = new Array(size);\n for (let i = 0; i < size; i++) {\n result[i] = element;\n }\n return result;\n}\n\nexport function clamp(a, min, max) {\n if (a < min) return min;\n if (a > max) return max;\n return a;\n}\n\nexport function squaredDistance(y1, x1, y2, x2) {\n const dy = y2 - y1;\n const dx = x2 - x1;\n return dy * dy + dx * dx;\n}\n\nexport function addVectors(a, b) {\n return { x: a.x + b.x, y: a.y + b.y };\n}\n\nexport function clampVector(a, min, max) {\n return { y: clamp(a.y, min, max), x: clamp(a.x, min, max) };\n}\n", "import * as utils from './utils';\nimport * as kpt from './keypoints';\n\nconst localMaximumRadius = 1;\nconst defaultOutputStride = 16;\n\nfunction traverseToTargetKeypoint(edgeId, sourceKeypoint, targetKeypointId, scoresBuffer, offsets, outputStride, displacements, offsetRefineStep = 2) {\n const getDisplacement = (point) => ({\n y: displacements.get(point.y, point.x, edgeId),\n x: displacements.get(point.y, point.x, (displacements.shape[2] / 2) + edgeId),\n });\n const getStridedIndexNearPoint = (point, height, width) => ({\n y: utils.clamp(Math.round(point.y / outputStride), 0, height - 1),\n x: utils.clamp(Math.round(point.x / outputStride), 0, width - 1),\n });\n\n const [height, width] = scoresBuffer.shape;\n // Nearest neighbor interpolation for the source->target displacements.\n const sourceKeypointIndices = getStridedIndexNearPoint(sourceKeypoint.position, height, width);\n const displacement = getDisplacement(sourceKeypointIndices);\n const displacedPoint = utils.addVectors(sourceKeypoint.position, displacement);\n let targetKeypoint = displacedPoint;\n for (let i = 0; i < offsetRefineStep; i++) {\n const targetKeypointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const offsetPoint = utils.getOffsetPoint(targetKeypointIndices.y, targetKeypointIndices.x, targetKeypointId, offsets);\n targetKeypoint = utils.addVectors({\n x: targetKeypointIndices.x * outputStride,\n y: targetKeypointIndices.y * outputStride,\n }, { x: offsetPoint.x, y: offsetPoint.y });\n }\n const targetKeyPointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const score = scoresBuffer.get(targetKeyPointIndices.y, targetKeyPointIndices.x, targetKeypointId);\n return { position: targetKeypoint, part: kpt.partNames[targetKeypointId], score };\n}\n\nexport function decodePose(root, scores, offsets, outputStride, displacementsFwd, displacementsBwd) {\n const parentChildrenTuples = kpt.poseChain.map(([parentJoinName, childJoinName]) => ([kpt.partIds[parentJoinName], kpt.partIds[childJoinName]]));\n const parentToChildEdges = parentChildrenTuples.map(([, childJointId]) => childJointId);\n const childToParentEdges = parentChildrenTuples.map(([parentJointId]) => parentJointId);\n const numParts = scores.shape[2];\n const numEdges = parentToChildEdges.length;\n const instanceKeypoints = new Array(numParts);\n // Start a new detection instance at the position of the root.\n const { part: rootPart, score: rootScore } = root;\n const rootPoint = utils.getImageCoords(rootPart, outputStride, offsets);\n instanceKeypoints[rootPart.id] = {\n score: rootScore,\n part: kpt.partNames[rootPart.id],\n position: rootPoint,\n };\n // Decode the part positions upwards in the tree, following the backward displacements.\n for (let edge = numEdges - 1; edge >= 0; --edge) {\n const sourceKeypointId = parentToChildEdges[edge];\n const targetKeypointId = childToParentEdges[edge];\n if (instanceKeypoints[sourceKeypointId] && !instanceKeypoints[targetKeypointId]) {\n instanceKeypoints[targetKeypointId] = traverseToTargetKeypoint(edge, instanceKeypoints[sourceKeypointId], targetKeypointId, scores, offsets, outputStride, displacementsBwd);\n }\n }\n // Decode the part positions downwards in the tree, following the forward displacements.\n for (let edge = 0; edge < numEdges; ++edge) {\n const sourceKeypointId = childToParentEdges[edge];\n const targetKeypointId = parentToChildEdges[edge];\n if (instanceKeypoints[sourceKeypointId] && !instanceKeypoints[targetKeypointId]) {\n instanceKeypoints[targetKeypointId] = traverseToTargetKeypoint(edge, instanceKeypoints[sourceKeypointId], targetKeypointId, scores, offsets, outputStride, displacementsFwd);\n }\n }\n return instanceKeypoints;\n}\n\nfunction scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores) {\n const [height, width] = scores.shape;\n let localMaximum = true;\n const yStart = Math.max(heatmapY - localMaximumRadius, 0);\n const yEnd = Math.min(heatmapY + localMaximumRadius + 1, height);\n for (let yCurrent = yStart; yCurrent < yEnd; ++yCurrent) {\n const xStart = Math.max(heatmapX - localMaximumRadius, 0);\n const xEnd = Math.min(heatmapX + localMaximumRadius + 1, width);\n for (let xCurrent = xStart; xCurrent < xEnd; ++xCurrent) {\n if (scores.get(yCurrent, xCurrent, keypointId) > score) {\n localMaximum = false;\n break;\n }\n }\n if (!localMaximum) break;\n }\n return localMaximum;\n}\n\nexport function buildPartWithScoreQueue(scoreThreshold, scores) {\n const [height, width, numKeypoints] = scores.shape;\n const queue = new utils.MaxHeap(height * width * numKeypoints, ({ score }) => score);\n for (let heatmapY = 0; heatmapY < height; ++heatmapY) {\n for (let heatmapX = 0; heatmapX < width; ++heatmapX) {\n for (let keypointId = 0; keypointId < numKeypoints; ++keypointId) {\n const score = scores.get(heatmapY, heatmapX, keypointId);\n // Only consider parts with score greater or equal to threshold as root candidates.\n if (score < scoreThreshold) continue;\n // Only consider keypoints whose score is maximum in a local window.\n if (scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores)) queue.enqueue({ score, part: { heatmapY, heatmapX, id: keypointId } });\n }\n }\n }\n return queue;\n}\n\nfunction withinRadius(poses, squaredNmsRadius, { x, y }, keypointId) {\n return poses.some(({ keypoints }) => {\n const correspondingKeypoint = keypoints[keypointId].position;\n return utils.squaredDistance(y, x, correspondingKeypoint.y, correspondingKeypoint.x) <= squaredNmsRadius;\n });\n}\n\nfunction getInstanceScore(existingPoses, squaredNmsRadius, instanceKeypoints) {\n const notOverlappedKeypointScores = instanceKeypoints.reduce((result, { position, score }, keypointId) => {\n if (!withinRadius(existingPoses, squaredNmsRadius, position, keypointId)) result += score;\n return result;\n }, 0.0);\n return notOverlappedKeypointScores / instanceKeypoints.length;\n}\n\nexport function decode(offsetsBuffer, scoresBuffer, displacementsFwdBuffer, displacementsBwdBuffer, nmsRadius, maxDetections, scoreThreshold) {\n const poses: Array<{ keypoints: any, box: any, score: number }> = [];\n const queue = buildPartWithScoreQueue(scoreThreshold, scoresBuffer);\n const squaredNmsRadius = nmsRadius ** 2;\n // Generate at most maxDetections object instances per image in decreasing root part score order.\n while (poses.length < maxDetections && !queue.empty()) {\n // The top element in the queue is the next root candidate.\n const root = queue.dequeue();\n // Part-based non-maximum suppression: We reject a root candidate if it is within a disk of `nmsRadius` pixels from the corresponding part of a previously detected instance.\n const rootImageCoords = utils.getImageCoords(root.part, defaultOutputStride, offsetsBuffer);\n if (withinRadius(poses, squaredNmsRadius, rootImageCoords, root.part.id)) continue;\n // Else start a new detection instance at the position of the root.\n const allKeypoints = decodePose(root, scoresBuffer, offsetsBuffer, defaultOutputStride, displacementsFwdBuffer, displacementsBwdBuffer);\n const keypoints = allKeypoints.filter((a) => a.score > scoreThreshold);\n const score = getInstanceScore(poses, squaredNmsRadius, keypoints);\n const box = utils.getBoundingBox(keypoints);\n if (score > scoreThreshold) poses.push({ keypoints, box, score: Math.round(100 * score) / 100 });\n }\n return poses;\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as handdetector from './handdetector';\nimport * as handpipeline from './handpipeline';\nimport * as anchors from './anchors';\n\nconst MESH_ANNOTATIONS = {\n thumb: [1, 2, 3, 4],\n indexFinger: [5, 6, 7, 8],\n middleFinger: [9, 10, 11, 12],\n ringFinger: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n palmBase: [0],\n};\n\nexport class HandPose {\n handPipeline: any;\n\n constructor(handPipeline) {\n this.handPipeline = handPipeline;\n }\n\n static getAnnotations() {\n return MESH_ANNOTATIONS;\n }\n\n async estimateHands(input, config) {\n const predictions = await this.handPipeline.estimateHands(input, config);\n if (!predictions) return [];\n const hands: Array<{ confidence: number, box: any, boxRaw: any, landmarks: any, annotations: any }> = [];\n for (const prediction of predictions) {\n const annotations = {};\n if (prediction.landmarks) {\n for (const key of Object.keys(MESH_ANNOTATIONS)) {\n annotations[key] = MESH_ANNOTATIONS[key].map((index) => prediction.landmarks[index]);\n }\n }\n const box = prediction.box ? [\n Math.max(0, prediction.box.topLeft[0]),\n Math.max(0, prediction.box.topLeft[1]),\n Math.min(input.shape[2], prediction.box.bottomRight[0]) - Math.max(0, prediction.box.topLeft[0]),\n Math.min(input.shape[1], prediction.box.bottomRight[1]) - Math.max(0, prediction.box.topLeft[1]),\n ] : [];\n const boxRaw = [\n (prediction.box.topLeft[0]) / input.shape[2],\n (prediction.box.topLeft[1]) / input.shape[1],\n (prediction.box.bottomRight[0] - prediction.box.topLeft[0]) / input.shape[2],\n (prediction.box.bottomRight[1] - prediction.box.topLeft[1]) / input.shape[1],\n ];\n hands.push({ confidence: Math.round(100 * prediction.confidence) / 100, box, boxRaw, landmarks: prediction.landmarks, annotations });\n }\n return hands;\n }\n}\n\nlet handDetectorModel;\nlet handPoseModel;\nexport async function load(config): Promise {\n if (!handDetectorModel || !handPoseModel) {\n [handDetectorModel, handPoseModel] = await Promise.all([\n config.hand.enabled ? tf.loadGraphModel(join(config.modelBasePath, config.hand.detector.modelPath), { fromTFHub: config.hand.detector.modelPath.includes('tfhub.dev') }) : null,\n config.hand.landmarks ? tf.loadGraphModel(join(config.modelBasePath, config.hand.skeleton.modelPath), { fromTFHub: config.hand.skeleton.modelPath.includes('tfhub.dev') }) : null,\n ]);\n if (config.hand.enabled) {\n if (!handDetectorModel || !handDetectorModel.modelUrl) log('load model failed:', config.hand.detector.modelPath);\n else if (config.debug) log('load model:', handDetectorModel.modelUrl);\n if (!handPoseModel || !handPoseModel.modelUrl) log('load model failed:', config.hand.skeleton.modelPath);\n else if (config.debug) log('load model:', handPoseModel.modelUrl);\n }\n } else {\n if (config.debug) log('cached model:', handDetectorModel.modelUrl);\n if (config.debug) log('cached model:', handPoseModel.modelUrl);\n }\n const handDetector = new handdetector.HandDetector(handDetectorModel, handDetectorModel?.inputs[0].shape[2], anchors.anchors);\n const handPipeline = new handpipeline.HandPipeline(handDetector, handPoseModel, handPoseModel?.inputs[0].shape[2]);\n const handPose = new HandPose(handPipeline);\n return handPose;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n const palmLandmarks = box.palmLandmarks.map((coord) => {\n const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];\n return scaledCoord;\n });\n return { startPoint, endPoint, palmLandmarks, confidence: box.confidence };\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize];\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function shiftBox(box, shiftFactor) {\n const boxSize = [\n box.endPoint[0] - box.startPoint[0],\n box.endPoint[1] - box.startPoint[1],\n ];\n const shiftVector = [boxSize[0] * shiftFactor[0], boxSize[1] * shiftFactor[1]];\n const startPoint = [box.startPoint[0] + shiftVector[0], box.startPoint[1] + shiftVector[1]];\n const endPoint = [box.endPoint[0] + shiftVector[0], box.endPoint[1] + shiftVector[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\n\nexport class HandDetector {\n model: any;\n anchors: any;\n anchorsTensor: any;\n inputSize: number;\n inputSizeTensor: any;\n doubleInputSizeTensor: any;\n\n constructor(model, inputSize, anchorsAnnotated) {\n this.model = model;\n this.anchors = anchorsAnnotated.map((anchor) => [anchor.x_center, anchor.y_center]);\n this.anchorsTensor = tf.tensor2d(this.anchors);\n this.inputSize = inputSize;\n this.inputSizeTensor = tf.tensor1d([inputSize, inputSize]);\n this.doubleInputSizeTensor = tf.tensor1d([inputSize * 2, inputSize * 2]);\n }\n\n normalizeBoxes(boxes) {\n return tf.tidy(() => {\n const boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);\n const boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);\n const boxCenterPoints = tf.add(tf.div(boxOffsets, this.inputSizeTensor), this.anchorsTensor);\n const halfBoxSizes = tf.div(boxSizes, this.doubleInputSizeTensor);\n const startPoints = tf.mul(tf.sub(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n const endPoints = tf.mul(tf.add(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n return tf.concat2d([startPoints, endPoints], 1);\n });\n }\n\n normalizeLandmarks(rawPalmLandmarks, index) {\n return tf.tidy(() => {\n const landmarks = tf.add(tf.div(rawPalmLandmarks.reshape([-1, 7, 2]), this.inputSizeTensor), this.anchors[index]);\n return tf.mul(landmarks, this.inputSizeTensor);\n });\n }\n\n async getBoxes(input, config) {\n const batched = this.model.predict(input);\n const predictions = batched.squeeze();\n batched.dispose();\n const scoresT = tf.tidy(() => tf.sigmoid(tf.slice(predictions, [0, 0], [-1, 1])).squeeze());\n const scores = scoresT.dataSync();\n const rawBoxes = tf.slice(predictions, [0, 1], [-1, 4]);\n const boxes = this.normalizeBoxes(rawBoxes);\n rawBoxes.dispose();\n const filteredT = await tf.image.nonMaxSuppressionAsync(boxes, scores, config.hand.maxHands, config.hand.iouThreshold, config.hand.scoreThreshold);\n const filtered = filteredT.arraySync();\n\n scoresT.dispose();\n filteredT.dispose();\n const hands: Array<{ box: any, palmLandmarks: any, confidence: number }> = [];\n for (const index of filtered) {\n if (scores[index] >= config.hand.minConfidence) {\n const matchingBox = tf.slice(boxes, [index, 0], [1, -1]);\n const rawPalmLandmarks = tf.slice(predictions, [index, 5], [1, 14]);\n const palmLandmarks = tf.tidy(() => this.normalizeLandmarks(rawPalmLandmarks, index).reshape([-1, 2]));\n rawPalmLandmarks.dispose();\n hands.push({ box: matchingBox, palmLandmarks, confidence: scores[index] });\n }\n }\n predictions.dispose();\n boxes.dispose();\n return hands;\n }\n\n async estimateHandBounds(input, config) {\n const inputHeight = input.shape[1];\n const inputWidth = input.shape[2];\n const image = tf.tidy(() => input.resizeBilinear([this.inputSize, this.inputSize]).div(127.5).sub(1));\n const predictions = await this.getBoxes(image, config);\n image.dispose();\n const hands: Array<{}> = [];\n if (!predictions || predictions.length === 0) return hands;\n for (const prediction of predictions) {\n const boxes = prediction.box.dataSync();\n const startPoint = boxes.slice(0, 2);\n const endPoint = boxes.slice(2, 4);\n const palmLandmarks = prediction.palmLandmarks.arraySync();\n prediction.box.dispose();\n prediction.palmLandmarks.dispose();\n hands.push(box.scaleBoxCoordinates({ startPoint, endPoint, palmLandmarks, confidence: prediction.confidence }, [inputWidth / this.inputSize, inputHeight / this.inputSize]));\n }\n return hands;\n }\n}\n", "export function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as util from './util';\n\n// const PALM_BOX_SHIFT_VECTOR = [0, -0.4];\nconst PALM_BOX_ENLARGE_FACTOR = 5; // default 3\n// const HAND_BOX_SHIFT_VECTOR = [0, -0.1]; // move detected hand box by x,y to ease landmark detection\nconst HAND_BOX_ENLARGE_FACTOR = 1.65; // default 1.65\nconst PALM_LANDMARK_IDS = [0, 5, 9, 13, 17, 1, 2];\nconst PALM_LANDMARKS_INDEX_OF_PALM_BASE = 0;\nconst PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE = 2;\n\nexport class HandPipeline {\n handDetector: any;\n landmarkDetector: any;\n inputSize: number;\n storedBoxes: any;\n skipped: number;\n detectedHands: number;\n\n constructor(handDetector, landmarkDetector, inputSize) {\n this.handDetector = handDetector;\n this.landmarkDetector = landmarkDetector;\n this.inputSize = inputSize;\n this.storedBoxes = [];\n this.skipped = 0;\n this.detectedHands = 0;\n }\n\n getBoxForPalmLandmarks(palmLandmarks, rotationMatrix) {\n const rotatedPalmLandmarks = palmLandmarks.map((coord) => util.rotatePoint([...coord, 1], rotationMatrix));\n const boxAroundPalm = this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);\n // return box.enlargeBox(box.squarifyBox(box.shiftBox(boxAroundPalm, PALM_BOX_SHIFT_VECTOR)), PALM_BOX_ENLARGE_FACTOR);\n return box.enlargeBox(box.squarifyBox(boxAroundPalm), PALM_BOX_ENLARGE_FACTOR);\n }\n\n getBoxForHandLandmarks(landmarks) {\n const boundingBox = this.calculateLandmarksBoundingBox(landmarks);\n // const boxAroundHand = box.enlargeBox(box.squarifyBox(box.shiftBox(boundingBox, HAND_BOX_SHIFT_VECTOR)), HAND_BOX_ENLARGE_FACTOR);\n const boxAroundHand = box.enlargeBox(box.squarifyBox(boundingBox), HAND_BOX_ENLARGE_FACTOR);\n boxAroundHand.palmLandmarks = [];\n for (let i = 0; i < PALM_LANDMARK_IDS.length; i++) {\n boxAroundHand.palmLandmarks.push(landmarks[PALM_LANDMARK_IDS[i]].slice(0, 2));\n }\n return boxAroundHand;\n }\n\n transformRawCoords(rawCoords, box2, angle, rotationMatrix) {\n const boxSize = box.getBoxSize(box2);\n const scaleFactor = [boxSize[0] / this.inputSize, boxSize[1] / this.inputSize, (boxSize[0] + boxSize[1]) / this.inputSize / 2];\n const coordsScaled = rawCoords.map((coord) => [\n scaleFactor[0] * (coord[0] - this.inputSize / 2),\n scaleFactor[1] * (coord[1] - this.inputSize / 2),\n scaleFactor[2] * coord[2],\n ]);\n const coordsRotationMatrix = util.buildRotationMatrix(angle, [0, 0]);\n const coordsRotated = coordsScaled.map((coord) => {\n const rotated = util.rotatePoint(coord, coordsRotationMatrix);\n return [...rotated, coord[2]];\n });\n const inverseRotationMatrix = util.invertTransformMatrix(rotationMatrix);\n const boxCenter = [...box.getBoxCenter(box2), 1];\n const originalBoxCenter = [\n util.dot(boxCenter, inverseRotationMatrix[0]),\n util.dot(boxCenter, inverseRotationMatrix[1]),\n ];\n return coordsRotated.map((coord) => [\n coord[0] + originalBoxCenter[0],\n coord[1] + originalBoxCenter[1],\n coord[2],\n ]);\n }\n\n async estimateHands(image, config) {\n let useFreshBox = false;\n\n // run new detector every skipFrames unless we only want box to start with\n let boxes;\n if ((this.skipped === 0) || (this.skipped > config.hand.skipFrames) || !config.hand.landmarks || !config.videoOptimized) {\n boxes = await this.handDetector.estimateHandBounds(image, config);\n this.skipped = 0;\n }\n if (config.videoOptimized) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.hand.maxHands) || !config.hand.landmarks)) {\n this.detectedHands = 0;\n this.storedBoxes = [...boxes];\n // for (const possible of boxes) this.storedBoxes.push(possible);\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n const hands: Array<{}> = [];\n\n if (config.hand.skipInitial && this.detectedHands === 0) this.skipped = 0;\n\n // go through working set of boxes\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const currentBox = this.storedBoxes[i];\n if (!currentBox) continue;\n if (config.hand.landmarks) {\n const angle = config.hand.rotation ? util.computeRotation(currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_PALM_BASE], currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE]) : 0;\n const palmCenter = box.getBoxCenter(currentBox);\n const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];\n const rotatedImage = config.hand.rotation ? tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized) : image.clone();\n const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);\n const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;\n const croppedInput = box.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);\n const handImage = croppedInput.div(255);\n croppedInput.dispose();\n rotatedImage.dispose();\n const [confidenceT, keypoints] = await this.landmarkDetector.predict(handImage);\n handImage.dispose();\n const confidence = confidenceT.dataSync()[0];\n confidenceT.dispose();\n if (confidence >= config.hand.minConfidence) {\n const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);\n const rawCoords = keypointsReshaped.arraySync();\n keypoints.dispose();\n keypointsReshaped.dispose();\n const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);\n const nextBoundingBox = this.getBoxForHandLandmarks(coords);\n this.storedBoxes[i] = nextBoundingBox;\n const result = {\n landmarks: coords,\n confidence,\n box: { topLeft: nextBoundingBox.startPoint, bottomRight: nextBoundingBox.endPoint },\n };\n hands.push(result);\n } else {\n this.storedBoxes[i] = null;\n }\n keypoints.dispose();\n } else {\n // const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), HAND_BOX_ENLARGE_FACTOR);\n const enlarged = box.enlargeBox(box.squarifyBox(currentBox), HAND_BOX_ENLARGE_FACTOR);\n const result = {\n confidence: currentBox.confidence,\n box: { topLeft: enlarged.startPoint, bottomRight: enlarged.endPoint },\n };\n hands.push(result);\n }\n }\n this.storedBoxes = this.storedBoxes.filter((a) => a !== null);\n this.detectedHands = hands.length;\n return hands;\n }\n\n // eslint-disable-next-line class-methods-use-this\n calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint };\n }\n}\n", "export const anchors = [\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n];\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\nimport * as annotations from './annotations';\n\nlet model;\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n model.width = parseInt(model.signature.inputs['input_1:0'].tensorShape.dim[2].size);\n model.height = parseInt(model.signature.inputs['input_1:0'].tensorShape.dim[1].size);\n if (!model || !model.modelUrl) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if (!config.body.enabled) return null;\n const imgSize = { width: image.shape[2], height: image.shape[1] };\n const resize = tf.image.resizeBilinear(image, [model.width, model.height], false);\n const normalize = tf.div(resize, [255.0]);\n resize.dispose();\n let points;\n if (!config.profile) { // run through profiler or just execute\n const resT = await model.predict(normalize);\n // const segmentationT = resT.find((t) => (t.size === 16384))?.squeeze();\n // const segmentation = segmentationT.arraySync(); // array 128 x 128\n // segmentationT.dispose();\n points = resT.find((t) => (t.size === 195 || t.size === 155)).dataSync(); // order of output tensors may change between models, full has 195 and upper has 155 items\n resT.forEach((t) => t.dispose());\n } else {\n const profileData = await tf.profile(() => model.predict(normalize));\n points = profileData.result.find((t) => (t.size === 195 || t.size === 155)).dataSync();\n profileData.result.forEach((t) => t.dispose());\n profile.run('blazepose', profileData);\n }\n normalize.dispose();\n const keypoints: Array<{ id, part, position: { x, y, z }, score, presence }> = [];\n const labels = points.length === 195 ? annotations.full : annotations.upper; // full model has 39 keypoints, upper has 31 keypoints\n const depth = 5; // each points has x,y,z,visibility,presence\n for (let i = 0; i < points.length / depth; i++) {\n keypoints.push({\n id: i,\n part: labels[i],\n position: {\n x: Math.trunc(imgSize.width * points[depth * i + 0] / 255), // return normalized x value istead of 0..255\n y: Math.trunc(imgSize.height * points[depth * i + 1] / 255), // return normalized y value istead of 0..255\n z: Math.trunc(points[depth * i + 2]) + 0, // fix negative zero\n },\n score: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 3])))) / 100, // reverse sigmoid value\n presence: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 4])))) / 100, // reverse sigmoid value\n });\n }\n const score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n return [{ score, keypoints }];\n}\n", "export const full = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'leftWrist',\n 'rightWrist',\n 'leftPalm',\n 'rightPalm',\n 'leftIndex',\n 'rightIndex',\n 'leftPinky',\n 'rightPinky',\n 'leftHip',\n 'rightHip',\n 'leftKnee',\n 'rightKnee',\n 'leftAnkle',\n 'rightAnkle',\n 'leftHeel',\n 'rightHeel',\n 'leftFoot',\n 'rightFoot',\n 'midHip',\n 'forehead',\n 'leftThumb',\n 'leftHand',\n 'rightThumb',\n 'rightHand',\n];\n\nexport const upper = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'left:15',\n 'right:16',\n 'left:17',\n 'right:18',\n 'left:19',\n 'right:20',\n 'left:21',\n 'right:22',\n 'leftChest',\n 'rightChest',\n 'neck',\n 'forehead',\n 'left:27',\n 'right:28',\n 'left:29',\n 'right:30',\n];\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\nimport { labels } from './labels';\n\nlet model;\nlet last: Array<{}> = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst scaleBox = 2.5; // increase box size\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.object.modelPath));\n const inputs = Object.values(model.modelSignature['inputs']);\n model.inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : null;\n if (!model.inputSize) throw new Error(`Human: Cannot determine model inputSize: ${config.object.modelPath}`);\n if (!model || !model.modelUrl) log('load model failed:', config.object.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nasync function process(res, inputSize, outputShape, config) {\n let id = 0;\n let results: Array<{ score: number, strideSize: number, class: number, label: string, center: number[], centerRaw: number[], box: number[], boxRaw: number[] }> = [];\n for (const strideSize of [1, 2, 4]) { // try each stride size as it detects large/medium/small objects\n // find scores, boxes, classes\n tf.tidy(() => { // wrap in tidy to automatically deallocate temp tensors\n const baseSize = strideSize * 13; // 13x13=169, 26x26=676, 52x52=2704\n // find boxes and scores output depending on stride\n const scoresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] === labels.length))?.squeeze();\n const featuresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] < labels.length))?.squeeze();\n const boxesMax = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); // reshape [output] to [4, output / 4] where number is number of different features inside each stride\n const boxIdx = boxesMax.argMax(2).arraySync(); // what we need is indexes of features with highest scores, not values itself\n const scores = scoresT.arraySync(); // optionally use exponential scores or just as-is\n for (let i = 0; i < scoresT.shape[0]; i++) { // total strides (x * y matrix)\n for (let j = 0; j < scoresT.shape[1]; j++) { // one score for each class\n const score = scores[i][j]; // get score for current position\n if (score > config.object.minConfidence && j !== 61) {\n const cx = (0.5 + Math.trunc(i % baseSize)) / baseSize; // center.x normalized to range 0..1\n const cy = (0.5 + Math.trunc(i / baseSize)) / baseSize; // center.y normalized to range 0..1\n const boxOffset = boxIdx[i].map((a) => a * (baseSize / strideSize / inputSize)); // just grab indexes of features with highest scores\n const [x, y] = [\n cx - (scaleBox / strideSize * boxOffset[0]),\n cy - (scaleBox / strideSize * boxOffset[1]),\n ];\n const [w, h] = [\n cx + (scaleBox / strideSize * boxOffset[2]) - x,\n cy + (scaleBox / strideSize * boxOffset[3]) - y,\n ];\n let boxRaw = [x, y, w, h]; // results normalized to range 0..1\n boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))); // fix out-of-bounds coords\n const box = [ // results normalized to input image pixels\n boxRaw[0] * outputShape[0],\n boxRaw[1] * outputShape[1],\n boxRaw[2] * outputShape[0],\n boxRaw[3] * outputShape[1],\n ];\n const result = {\n id: id++,\n strideSize,\n score: Math.round(100 * score) / 100,\n class: j + 1,\n label: labels[j].label,\n center: [Math.trunc(outputShape[0] * cx), Math.trunc(outputShape[1] * cy)],\n centerRaw: [cx, cy],\n box: box.map((a) => Math.trunc(a)),\n boxRaw,\n };\n results.push(result);\n }\n }\n }\n });\n }\n // deallocate tensors\n res.forEach((t) => tf.dispose(t));\n\n // normally nms is run on raw results, but since boxes need to be calculated this way we skip calulcation of\n // unnecessary boxes and run nms only on good candidates (basically it just does IOU analysis as scores are already filtered)\n const nmsBoxes = results.map((a) => a.boxRaw);\n const nmsScores = results.map((a) => a.score);\n let nmsIdx: any[] = [];\n if (nmsBoxes && nmsBoxes.length > 0) {\n const nms = await tf.image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config.object.maxResults, config.object.iouThreshold, config.object.minConfidence);\n nmsIdx = nms.dataSync();\n tf.dispose(nms);\n }\n\n // filter & sort results\n results = results\n .filter((a, idx) => nmsIdx.includes(idx))\n .sort((a, b) => (b.score - a.score));\n\n return results;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n // console.log(skipped, config.object.skipFrames, config.videoOptimized, ((skipped < config.object.skipFrames) && config.videoOptimized && (last.length > 0)));\n if ((skipped < config.object.skipFrames) && config.videoOptimized && (last.length > 0)) {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const outputSize = [image.shape[2], image.shape[1]];\n const resize = tf.image.resizeBilinear(image, [model.inputSize, model.inputSize], false);\n const norm = resize.div(255);\n const transpose = norm.transpose([0, 3, 1, 2]);\n norm.dispose();\n resize.dispose();\n\n let objectT;\n if (!config.profile) {\n if (config.object.enabled) objectT = await model.predict(transpose);\n } else {\n const profileObject = config.object.enabled ? await tf.profile(() => model.predict(transpose)) : {};\n objectT = profileObject.result;\n profile.run('object', profileObject);\n }\n transpose.dispose();\n\n const obj = await process(objectT, model.inputSize, outputSize, config);\n last = obj;\n resolve(obj);\n });\n}\n", "export const labels = [\n { class: 1, label: 'person' },\n { class: 2, label: 'bicycle' },\n { class: 3, label: 'car' },\n { class: 4, label: 'motorcycle' },\n { class: 5, label: 'airplane' },\n { class: 6, label: 'bus' },\n { class: 7, label: 'train' },\n { class: 8, label: 'truck' },\n { class: 9, label: 'boat' },\n { class: 10, label: 'traffic light' },\n { class: 11, label: 'fire hydrant' },\n { class: 12, label: 'stop sign' },\n { class: 13, label: 'parking meter' },\n { class: 14, label: 'bench' },\n { class: 15, label: 'bird' },\n { class: 16, label: 'cat' },\n { class: 17, label: 'dog' },\n { class: 18, label: 'horse' },\n { class: 19, label: 'sheep' },\n { class: 20, label: 'cow' },\n { class: 21, label: 'elephant' },\n { class: 22, label: 'bear' },\n { class: 23, label: 'zebra' },\n { class: 24, label: 'giraffe' },\n { class: 25, label: 'backpack' },\n { class: 26, label: 'umbrella' },\n { class: 27, label: 'handbag' },\n { class: 28, label: 'tie' },\n { class: 29, label: 'suitcase' },\n { class: 30, label: 'frisbee' },\n { class: 31, label: 'skis' },\n { class: 32, label: 'snowboard' },\n { class: 33, label: 'sports ball' },\n { class: 34, label: 'kite' },\n { class: 35, label: 'baseball bat' },\n { class: 36, label: 'baseball glove' },\n { class: 37, label: 'skateboard' },\n { class: 38, label: 'surfboard' },\n { class: 39, label: 'tennis racket' },\n { class: 40, label: 'bottle' },\n { class: 41, label: 'wine glass' },\n { class: 42, label: 'cup' },\n { class: 43, label: 'fork' },\n { class: 44, label: 'knife' },\n { class: 45, label: 'spoon' },\n { class: 46, label: 'bowl' },\n { class: 47, label: 'banana' },\n { class: 48, label: 'apple' },\n { class: 49, label: 'sandwich' },\n { class: 50, label: 'orange' },\n { class: 51, label: 'broccoli' },\n { class: 52, label: 'carrot' },\n { class: 53, label: 'hot dog' },\n { class: 54, label: 'pizza' },\n { class: 55, label: 'donut' },\n { class: 56, label: 'cake' },\n { class: 57, label: 'chair' },\n { class: 58, label: 'couch' },\n { class: 59, label: 'potted plant' },\n { class: 60, label: 'bed' },\n { class: 61, label: 'dining table' },\n { class: 62, label: 'toilet' },\n { class: 63, label: 'tv' },\n { class: 64, label: 'laptop' },\n { class: 65, label: 'mouse' },\n { class: 66, label: 'remote' },\n { class: 67, label: 'keyboard' },\n { class: 68, label: 'cell phone' },\n { class: 69, label: 'microwave' },\n { class: 70, label: 'oven' },\n { class: 71, label: 'toaster' },\n { class: 72, label: 'sink' },\n { class: 73, label: 'refrigerator' },\n { class: 74, label: 'book' },\n { class: 75, label: 'clock' },\n { class: 76, label: 'vase' },\n { class: 77, label: 'scissors' },\n { class: 78, label: 'teddy bear' },\n { class: 79, label: 'hair drier' },\n { class: 80, label: 'toothbrush' },\n];\n", "export const body = (res) => {\n if (!res) return [];\n const gestures: Array<{ body: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n // raising hands\n const leftWrist = res[i].keypoints.find((a) => (a.part === 'leftWrist'));\n const rightWrist = res[i].keypoints.find((a) => (a.part === 'rightWrist'));\n const nose = res[i].keypoints.find((a) => (a.part === 'nose'));\n if (nose && leftWrist && rightWrist && (leftWrist.position.y < nose.position.y) && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'i give up' });\n else if (nose && leftWrist && (leftWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise left hand' });\n else if (nose && rightWrist && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise right hand' });\n\n // leaning\n const leftShoulder = res[i].keypoints.find((a) => (a.part === 'leftShoulder'));\n const rightShoulder = res[i].keypoints.find((a) => (a.part === 'rightShoulder'));\n if (leftShoulder && rightShoulder) gestures.push({ body: i, gesture: `leaning ${(leftShoulder.position.y > rightShoulder.position.y) ? 'left' : 'right'}` });\n }\n return gestures;\n};\n\nexport const face = (res) => {\n if (!res) return [];\n const gestures: Array<{ face: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n if (res[i].mesh && res[i].mesh.length > 0) {\n const eyeFacing = res[i].mesh[33][2] - res[i].mesh[263][2];\n if (Math.abs(eyeFacing) < 10) gestures.push({ face: i, gesture: 'facing center' });\n else gestures.push({ face: i, gesture: `facing ${eyeFacing < 0 ? 'left' : 'right'}` });\n const openLeft = Math.abs(res[i].mesh[374][1] - res[i].mesh[386][1]) / Math.abs(res[i].mesh[443][1] - res[i].mesh[450][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openLeft < 0.2) gestures.push({ face: i, gesture: 'blink left eye' });\n const openRight = Math.abs(res[i].mesh[145][1] - res[i].mesh[159][1]) / Math.abs(res[i].mesh[223][1] - res[i].mesh[230][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openRight < 0.2) gestures.push({ face: i, gesture: 'blink right eye' });\n const mouthOpen = Math.min(100, 500 * Math.abs(res[i].mesh[13][1] - res[i].mesh[14][1]) / Math.abs(res[i].mesh[10][1] - res[i].mesh[152][1]));\n if (mouthOpen > 10) gestures.push({ face: i, gesture: `mouth ${Math.trunc(mouthOpen)}% open` });\n const chinDepth = res[i].mesh[152][2];\n if (Math.abs(chinDepth) > 10) gestures.push({ face: i, gesture: `head ${chinDepth < 0 ? 'up' : 'down'}` });\n }\n }\n return gestures;\n};\n\nexport const iris = (res) => {\n if (!res) return [];\n const gestures: Array<{ iris: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n if (!res[i].annotations || !res[i].annotations.leftEyeIris || !res[i].annotations.rightEyeIris) continue;\n const sizeXLeft = res[i].annotations.leftEyeIris[3][0] - res[i].annotations.leftEyeIris[1][0];\n const sizeYLeft = res[i].annotations.leftEyeIris[4][1] - res[i].annotations.leftEyeIris[2][1];\n const areaLeft = Math.abs(sizeXLeft * sizeYLeft);\n\n const sizeXRight = res[i].annotations.rightEyeIris[3][0] - res[i].annotations.rightEyeIris[1][0];\n const sizeYRight = res[i].annotations.rightEyeIris[4][1] - res[i].annotations.rightEyeIris[2][1];\n const areaRight = Math.abs(sizeXRight * sizeYRight);\n\n let center = false;\n const difference = Math.abs(areaLeft - areaRight) / Math.max(areaLeft, areaRight);\n if (difference < 0.25) {\n center = true;\n gestures.push({ iris: i, gesture: 'facing center' });\n }\n\n const rightIrisCenterX = Math.abs(res[i].mesh[33][0] - res[i].annotations.rightEyeIris[0][0]) / res[i].annotations.rightEyeIris[0][0];\n const leftIrisCenterX = Math.abs(res[i].mesh[263][0] - res[i].annotations.leftEyeIris[0][0]) / res[i].annotations.leftEyeIris[0][0];\n if (leftIrisCenterX > 0.033 || rightIrisCenterX > 0.033) center = false;\n if (leftIrisCenterX > 0.033) gestures.push({ iris: i, gesture: 'looking right' });\n if (rightIrisCenterX > 0.033) gestures.push({ iris: i, gesture: 'looking left' });\n\n const rightIrisCenterY = Math.abs(res[i].mesh[145][1] - res[i].annotations.rightEyeIris[0][1]) / res[i].annotations.rightEyeIris[0][1];\n const leftIrisCenterY = Math.abs(res[i].mesh[374][1] - res[i].annotations.leftEyeIris[0][1]) / res[i].annotations.leftEyeIris[0][1];\n if (leftIrisCenterY < 0.015 || rightIrisCenterY < 0.015 || leftIrisCenterY > 0.030 || rightIrisCenterY > 0.030) center = false;\n if (leftIrisCenterY < 0.015 || rightIrisCenterY < 0.015) gestures.push({ iris: i, gesture: 'looking down' });\n if (leftIrisCenterY > 0.030 || rightIrisCenterY > 0.030) gestures.push({ iris: i, gesture: 'looking up' });\n\n // still center;\n if (center) gestures.push({ iris: i, gesture: 'looking center' });\n }\n return gestures;\n};\n\nexport const hand = (res) => {\n if (!res) return [];\n const gestures: Array<{ hand: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n const fingers: Array<{ name: string, position: number }> = [];\n for (const [finger, pos] of Object.entries(res[i]['annotations'])) {\n if (finger !== 'palmBase' && Array.isArray(pos)) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger\n }\n if (fingers && fingers.length > 0) {\n const closest = fingers.reduce((best, a) => (best.position[2] < a.position[2] ? best : a));\n const highest = fingers.reduce((best, a) => (best.position[1] < a.position[1] ? best : a));\n gestures.push({ hand: i, gesture: `${closest.name} forward ${highest.name} up` });\n }\n }\n return gestures;\n};\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as fxImage from './imagefx';\n\nconst maxSize = 2048;\n// internal temp canvases\nlet inCanvas;\nlet outCanvas;\n// instance of fximage\nlet fx;\n\n// process input image and return tensor\n// input can be tensor, imagedata, htmlimageelement, htmlvideoelement\n// input is resized and run through imagefx filter\nexport function process(input, config): { tensor: typeof tf.Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement } {\n let tensor;\n if (!input) throw new Error('Human: Input is missing');\n // sanity checks since different browsers do not implement all dom elements\n if (\n !(input instanceof tf.Tensor)\n && !(typeof Image !== 'undefined' && input instanceof Image)\n && !(typeof ImageData !== 'undefined' && input instanceof ImageData)\n && !(typeof ImageBitmap !== 'undefined' && input instanceof ImageBitmap)\n && !(typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n && !(typeof HTMLMediaElement !== 'undefined' && input instanceof HTMLMediaElement)\n && !(typeof HTMLVideoElement !== 'undefined' && input instanceof HTMLVideoElement)\n && !(typeof HTMLCanvasElement !== 'undefined' && input instanceof HTMLCanvasElement)\n && !(typeof OffscreenCanvas !== 'undefined' && input instanceof OffscreenCanvas)\n ) {\n throw new Error('Human: Input type is not recognized');\n }\n if (input instanceof tf.Tensor) {\n // if input is tensor, use as-is\n if (input.shape && input.shape.length === 4 && input.shape[0] === 1 && input.shape[3] === 3) tensor = tf.clone(input);\n else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${input.shape}`);\n } else {\n // check if resizing will be needed\n const originalWidth = input['naturalWidth'] || input['videoWidth'] || input['width'] || (input['shape'] && (input['shape'][1] > 0));\n const originalHeight = input['naturalHeight'] || input['videoHeight'] || input['height'] || (input['shape'] && (input['shape'][2] > 0));\n let targetWidth = originalWidth;\n let targetHeight = originalHeight;\n if (targetWidth > maxSize) {\n targetWidth = maxSize;\n targetHeight = targetWidth * originalHeight / originalWidth;\n }\n if (targetHeight > maxSize) {\n targetHeight = maxSize;\n targetWidth = targetHeight * originalWidth / originalHeight;\n }\n\n // create our canvas and resize it if needed\n if (config.filter.width > 0) targetWidth = config.filter.width;\n else if (config.filter.height > 0) targetWidth = originalWidth * (config.filter.height / originalHeight);\n if (config.filter.height > 0) targetHeight = config.filter.height;\n else if (config.filter.width > 0) targetHeight = originalHeight * (config.filter.width / originalWidth);\n if (!targetWidth || !targetHeight) throw new Error('Human: Input cannot determine dimension');\n if (!inCanvas || (inCanvas?.width !== targetWidth) || (inCanvas?.height !== targetHeight)) {\n inCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n if (inCanvas?.width !== targetWidth) inCanvas.width = targetWidth;\n if (inCanvas?.height !== targetHeight) inCanvas.height = targetHeight;\n }\n\n // draw input to our canvas\n const ctx = inCanvas.getContext('2d');\n if (input instanceof ImageData) {\n ctx.putImageData(input, 0, 0);\n } else {\n if (config.filter.flip && typeof ctx.translate !== 'undefined') {\n ctx.translate(originalWidth, 0);\n ctx.scale(-1, 1);\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n ctx.setTransform(1, 0, 0, 1, 0, 0); // resets transforms to defaults\n } else {\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n }\n }\n\n // imagefx transforms using gl\n if (config.filter.enabled) {\n if (!fx || !outCanvas || (inCanvas.width !== outCanvas.width) || (inCanvas?.height !== outCanvas?.height)) {\n outCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(inCanvas?.width, inCanvas?.height) : document.createElement('canvas');\n if (outCanvas?.width !== inCanvas?.width) outCanvas.width = inCanvas?.width;\n if (outCanvas?.height !== inCanvas?.height) outCanvas.height = inCanvas?.height;\n // log('created FX filter');\n fx = tf.ENV.flags.IS_BROWSER ? new fxImage.GLImageFilter({ canvas: outCanvas }) : null; // && (typeof document !== 'undefined')\n }\n if (!fx) return { tensor: null, canvas: inCanvas };\n fx.reset();\n fx.addFilter('brightness', config.filter.brightness); // must have at least one filter enabled\n if (config.filter.contrast !== 0) fx.addFilter('contrast', config.filter.contrast);\n if (config.filter.sharpness !== 0) fx.addFilter('sharpen', config.filter.sharpness);\n if (config.filter.blur !== 0) fx.addFilter('blur', config.filter.blur);\n if (config.filter.saturation !== 0) fx.addFilter('saturation', config.filter.saturation);\n if (config.filter.hue !== 0) fx.addFilter('hue', config.filter.hue);\n if (config.filter.negative) fx.addFilter('negative');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.vintage) fx.addFilter('brownie');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.kodachrome) fx.addFilter('kodachrome');\n if (config.filter.technicolor) fx.addFilter('technicolor');\n if (config.filter.polaroid) fx.addFilter('polaroid');\n if (config.filter.pixelate !== 0) fx.addFilter('pixelate', config.filter.pixelate);\n fx.apply(inCanvas);\n // read pixel data\n /*\n const gl = outCanvas.getContext('webgl');\n if (gl) {\n const glBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 4);\n const pixBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 3);\n gl.readPixels(0, 0, outCanvas.width, outCanvas.height, gl.RGBA, gl.UNSIGNED_BYTE, glBuffer);\n // gl returns rbga while we only need rgb, so discarding alpha channel\n // gl returns starting point as lower left, so need to invert vertical\n let i = 0;\n for (let y = outCanvas.height - 1; y >= 0; y--) {\n for (let x = 0; x < outCanvas.width; x++) {\n const index = (x + y * outCanvas.width) * 4;\n pixBuffer[i++] = glBuffer[index + 0];\n pixBuffer[i++] = glBuffer[index + 1];\n pixBuffer[i++] = glBuffer[index + 2];\n }\n }\n outCanvas.data = pixBuffer;\n }\n */\n } else {\n outCanvas = inCanvas;\n if (fx) fx = null;\n }\n\n // create tensor from image\n let pixels;\n if (outCanvas.data) { // if we have data, just convert to tensor\n const shape = [outCanvas.height, outCanvas.width, 3];\n pixels = tf.tensor3d(outCanvas.data, shape, 'int32');\n } else if (outCanvas instanceof ImageData) { // if input is imagedata, just use it\n pixels = tf.browser.fromPixels(outCanvas);\n } else if (config.backend === 'webgl' || config.backend === 'humangl') { // tf kernel-optimized method to get imagedata\n // we can use canvas as-is as it already has a context, so we do a silly one more canvas\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n pixels = tf.browser.fromPixels(tempCanvas);\n } else { // cpu and wasm kernel does not implement efficient fromPixels method\n // we can use canvas as-is as it already has a context, so we do a silly one more canvas\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n const data = tempCtx?.getImageData(0, 0, targetWidth, targetHeight);\n pixels = tf.browser.fromPixels(data);\n }\n const casted = pixels.toFloat();\n tensor = casted.expandDims(0);\n pixels.dispose();\n casted.dispose();\n }\n const canvas = config.filter.return ? outCanvas : null;\n return { tensor, canvas };\n}\n", "/*\nWebGLImageFilter - MIT Licensed\n2013, Dominic Szablewski - phoboslab.org\n\n*/\n\nfunction GLProgram(gl, vertexSource, fragmentSource) {\n const _collect = function (source, prefix, collection) {\n const r = new RegExp('\\\\b' + prefix + ' \\\\w+ (\\\\w+)', 'ig');\n source.replace(r, (match, name) => {\n collection[name] = 0;\n return match;\n });\n };\n\n const _compile = function (source, type) {\n const shader = gl.createShader(type);\n gl.shaderSource(shader, source);\n gl.compileShader(shader);\n if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) throw new Error('Filter: GL compile failed', gl.getShaderInfoLog(shader));\n return shader;\n };\n\n this.uniform = {};\n this.attribute = {};\n const _vsh = _compile(vertexSource, gl.VERTEX_SHADER);\n const _fsh = _compile(fragmentSource, gl.FRAGMENT_SHADER);\n this.id = gl.createProgram();\n gl.attachShader(this.id, _vsh);\n gl.attachShader(this.id, _fsh);\n gl.linkProgram(this.id);\n\n if (!gl.getProgramParameter(this.id, gl.LINK_STATUS)) throw new Error('Filter: GL link failed', gl.getProgramInfoLog(this.id));\n\n gl.useProgram(this.id);\n // Collect attributes\n _collect(vertexSource, 'attribute', this.attribute);\n for (const a in this.attribute) this.attribute[a] = gl.getAttribLocation(this.id, a);\n // Collect uniforms\n _collect(vertexSource, 'uniform', this.uniform);\n _collect(fragmentSource, 'uniform', this.uniform);\n for (const u in this.uniform) this.uniform[u] = gl.getUniformLocation(this.id, u);\n}\n\n// export const GLImageFilter = function (params) {\nexport function GLImageFilter(params) {\n if (!params) params = { };\n let _drawCount = 0;\n let _sourceTexture = null;\n let _lastInChain = false;\n let _currentFramebufferIndex = -1;\n let _tempFramebuffers = [null, null];\n let _filterChain = [];\n let _width = -1;\n let _height = -1;\n let _vertexBuffer = null;\n let _currentProgram = null;\n const _filter = {};\n const _canvas = params.canvas || document.createElement('canvas');\n // key is the shader program source, value is the compiled program\n const _shaderProgramCache = { };\n const DRAW = { INTERMEDIATE: 1 };\n const gl = _canvas.getContext('webgl');\n if (!gl) throw new Error('Filter: getContext() failed');\n\n this.addFilter = function (name) {\n // eslint-disable-next-line prefer-rest-params\n const args = Array.prototype.slice.call(arguments, 1);\n const filter = _filter[name];\n _filterChain.push({ func: filter, args });\n };\n\n this.reset = function () {\n _filterChain = [];\n };\n\n const _resize = function (width, height) {\n // Same width/height? Nothing to do here\n if (width === _width && height === _height) { return; }\n _canvas.width = width;\n _width = width;\n _canvas.height = height;\n _height = height;\n // Create the context if we don't have it yet\n if (!_vertexBuffer) {\n // Create the vertex buffer for the two triangles [x, y, u, v] * 6\n const vertices = new Float32Array([\n -1, -1, 0, 1, 1, -1, 1, 1, -1, 1, 0, 0,\n -1, 1, 0, 0, 1, -1, 1, 1, 1, 1, 1, 0,\n ]);\n // eslint-disable-next-line no-unused-expressions\n (_vertexBuffer = gl.createBuffer(), gl.bindBuffer(gl.ARRAY_BUFFER, _vertexBuffer));\n gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);\n gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);\n }\n gl.viewport(0, 0, _width, _height);\n // Delete old temp framebuffers\n _tempFramebuffers = [null, null];\n };\n\n const _createFramebufferTexture = function (width, height) {\n const fbo = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);\n const renderbuffer = gl.createRenderbuffer();\n gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n return { fbo, texture };\n };\n\n const _getTempFramebuffer = function (index) {\n _tempFramebuffers[index] = _tempFramebuffers[index] || _createFramebufferTexture(_width, _height);\n return _tempFramebuffers[index];\n };\n\n const _draw = function (flags = null) {\n let source = null;\n let target = null;\n let flipY = false;\n // Set up the source\n if (_drawCount === 0) {\n // First draw call - use the source texture\n source = _sourceTexture;\n } else {\n // All following draw calls use the temp buffer last drawn to\n source = _getTempFramebuffer(_currentFramebufferIndex)?.texture;\n }\n _drawCount++;\n // Set up the target\n if (_lastInChain && !(flags & DRAW.INTERMEDIATE)) {\n // Last filter in our chain - draw directly to the WebGL Canvas. We may\n // also have to flip the image vertically now\n target = null;\n flipY = _drawCount % 2 === 0;\n } else {\n // Intermediate draw call - get a temp buffer to draw to\n _currentFramebufferIndex = (_currentFramebufferIndex + 1) % 2;\n target = _getTempFramebuffer(_currentFramebufferIndex)?.fbo;\n }\n // Bind the source and target and draw the two triangles\n gl.bindTexture(gl.TEXTURE_2D, source);\n gl.bindFramebuffer(gl.FRAMEBUFFER, target);\n gl.uniform1f(_currentProgram.uniform.flipY, (flipY ? -1 : 1));\n gl.drawArrays(gl.TRIANGLES, 0, 6);\n };\n\n this.apply = function (image) {\n _resize(image.width, image.height);\n _drawCount = 0;\n // Create the texture for the input image if we haven't yet\n if (!_sourceTexture) _sourceTexture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, _sourceTexture);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);\n // No filters? Just draw\n if (_filterChain.length === 0) {\n // const program = _compileShader(SHADER.FRAGMENT_IDENTITY);\n _draw();\n return _canvas;\n }\n for (let i = 0; i < _filterChain.length; i++) {\n _lastInChain = (i === _filterChain.length - 1);\n const f = _filterChain[i];\n f.func.apply(this, f.args || []);\n }\n return _canvas;\n };\n\n const _compileShader = function (fragmentSource) {\n if (_shaderProgramCache[fragmentSource]) {\n _currentProgram = _shaderProgramCache[fragmentSource];\n gl.useProgram(_currentProgram.id);\n return _currentProgram;\n }\n // Compile shaders\n const SHADER = {};\n SHADER.VERTEX_IDENTITY = [\n 'precision highp float;',\n 'attribute vec2 pos;',\n 'attribute vec2 uv;',\n 'varying vec2 vUv;',\n 'uniform float flipY;',\n 'void main(void) {',\n 'vUv = uv;',\n 'gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);',\n '}',\n ].join('\\n');\n SHADER.FRAGMENT_IDENTITY = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'void main(void) {',\n 'gl_FragColor = texture2D(texture, vUv);',\n '}',\n ].join('\\n');\n _currentProgram = new GLProgram(gl, SHADER.VERTEX_IDENTITY, fragmentSource);\n const floatSize = Float32Array.BYTES_PER_ELEMENT;\n const vertSize = 4 * floatSize;\n gl.enableVertexAttribArray(_currentProgram.attribute.pos);\n gl.vertexAttribPointer(_currentProgram.attribute.pos, 2, gl.FLOAT, false, vertSize, 0 * floatSize);\n gl.enableVertexAttribArray(_currentProgram.attribute.uv);\n gl.vertexAttribPointer(_currentProgram.attribute.uv, 2, gl.FLOAT, false, vertSize, 2 * floatSize);\n _shaderProgramCache[fragmentSource] = _currentProgram;\n return _currentProgram;\n };\n\n // -------------------------------------------------------------------------\n // Color Matrix Filter\n _filter.colorMatrix = function (matrix) {\n // Create a Float32 Array and normalize the offset component to 0-1\n const m = new Float32Array(matrix);\n m[4] /= 255;\n m[9] /= 255;\n m[14] /= 255;\n m[19] /= 255;\n // Can we ignore the alpha value? Makes things a bit faster.\n const shader = (m[18] === 1 && m[3] === 0 && m[8] === 0 && m[13] === 0 && m[15] === 0 && m[16] === 0 && m[17] === 0 && m[19] === 0)\n ? _filter.colorMatrix.SHADER.WITHOUT_ALPHA\n : _filter.colorMatrix.SHADER.WITH_ALPHA;\n const program = _compileShader(shader);\n gl.uniform1fv(program.uniform.m, m);\n _draw();\n };\n _filter.colorMatrix.SHADER = {};\n _filter.colorMatrix.SHADER.WITH_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];',\n 'gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];',\n '}',\n ].join('\\n');\n _filter.colorMatrix.SHADER.WITHOUT_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];',\n 'gl_FragColor.a = c.a;',\n '}',\n ].join('\\n');\n\n _filter.brightness = function (brightness) {\n const b = (brightness || 0) + 1;\n _filter.colorMatrix([\n b, 0, 0, 0, 0,\n 0, b, 0, 0, 0,\n 0, 0, b, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.saturation = function (amount) {\n const x = (amount || 0) * 2 / 3 + 1;\n const y = ((x - 1) * -0.5);\n _filter.colorMatrix([\n x, y, y, 0, 0,\n y, x, y, 0, 0,\n y, y, x, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturate = function () {\n _filter.saturation(-1);\n };\n\n _filter.contrast = function (amount) {\n const v = (amount || 0) + 1;\n const o = -128 * (v - 1);\n\n _filter.colorMatrix([\n v, 0, 0, 0, o,\n 0, v, 0, 0, o,\n 0, 0, v, 0, o,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.negative = function () {\n _filter.contrast(-2);\n };\n\n _filter.hue = function (rotation) {\n rotation = (rotation || 0) / 180 * Math.PI;\n const cos = Math.cos(rotation);\n const sin = Math.sin(rotation);\n const lumR = 0.213;\n const lumG = 0.715;\n const lumB = 0.072;\n\n _filter.colorMatrix([\n lumR + cos * (1 - lumR) + sin * (-lumR), lumG + cos * (-lumG) + sin * (-lumG), lumB + cos * (-lumB) + sin * (1 - lumB), 0, 0,\n lumR + cos * (-lumR) + sin * (0.143), lumG + cos * (1 - lumG) + sin * (0.140), lumB + cos * (-lumB) + sin * (-0.283), 0, 0,\n lumR + cos * (-lumR) + sin * (-(1 - lumR)), lumG + cos * (-lumG) + sin * (lumG), lumB + cos * (1 - lumB) + sin * (lumB), 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturateLuminance = function () {\n _filter.colorMatrix([\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.sepia = function () {\n _filter.colorMatrix([\n 0.393, 0.7689999, 0.18899999, 0, 0,\n 0.349, 0.6859999, 0.16799999, 0, 0,\n 0.272, 0.5339999, 0.13099999, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.brownie = function () {\n _filter.colorMatrix([\n 0.5997023498159715, 0.34553243048391263, -0.2708298674538042, 0, 47.43192855600873,\n -0.037703249837783157, 0.8609577587992641, 0.15059552388459913, 0, -36.96841498319127,\n 0.24113635128153335, -0.07441037908422492, 0.44972182064877153, 0, -7.562075277591283,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.vintagePinhole = function () {\n _filter.colorMatrix([\n 0.6279345635605994, 0.3202183420819367, -0.03965408211312453, 0, 9.651285835294123,\n 0.02578397704808868, 0.6441188644374771, 0.03259127616149294, 0, 7.462829176470591,\n 0.0466055556782719, -0.0851232987247891, 0.5241648018700465, 0, 5.159190588235296,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.kodachrome = function () {\n _filter.colorMatrix([\n 1.1285582396593525, -0.3967382283601348, -0.03992559172921793, 0, 63.72958762196502,\n -0.16404339962244616, 1.0835251566291304, -0.05498805115633132, 0, 24.732407896706203,\n -0.16786010706155763, -0.5603416277695248, 1.6014850761964943, 0, 35.62982807460946,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.technicolor = function () {\n _filter.colorMatrix([\n 1.9125277891456083, -0.8545344976951645, -0.09155508482755585, 0, 11.793603434377337,\n -0.3087833385928097, 1.7658908555458428, -0.10601743074722245, 0, -70.35205161461398,\n -0.231103377548616, -0.7501899197440212, 1.847597816108189, 0, 30.950940869491138,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.polaroid = function () {\n _filter.colorMatrix([\n 1.438, -0.062, -0.062, 0, 0,\n -0.122, 1.378, -0.122, 0, 0,\n -0.016, -0.016, 1.483, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.shiftToBGR = function () {\n _filter.colorMatrix([\n 0, 0, 1, 0, 0,\n 0, 1, 0, 0, 0,\n 1, 0, 0, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Convolution Filter\n _filter.convolution = function (matrix) {\n const m = new Float32Array(matrix);\n const pixelSizeX = 1 / _width;\n const pixelSizeY = 1 / _height;\n const program = _compileShader(_filter.convolution.SHADER);\n gl.uniform1fv(program.uniform.m, m);\n gl.uniform2f(program.uniform.px, pixelSizeX, pixelSizeY);\n _draw();\n };\n\n _filter.convolution.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'uniform float m[9];',\n 'void main(void) {',\n 'vec4 c11 = texture2D(texture, vUv - px);', // top left\n 'vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));', // top center\n 'vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));', // top right\n 'vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );', // mid left\n 'vec4 c22 = texture2D(texture, vUv);', // mid center\n 'vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );', // mid right\n 'vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );', // bottom left\n 'vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );', // bottom center\n 'vec4 c33 = texture2D(texture, vUv + px );', // bottom right\n 'gl_FragColor = ',\n 'c11 * m[0] + c12 * m[1] + c22 * m[2] +',\n 'c21 * m[3] + c22 * m[4] + c23 * m[5] +',\n 'c31 * m[6] + c32 * m[7] + c33 * m[8];',\n 'gl_FragColor.a = c22.a;',\n '}',\n ].join('\\n');\n\n _filter.detectEdges = function () {\n _filter.convolution.call(this, [\n 0, 1, 0,\n 1, -4, 1,\n 0, 1, 0,\n ]);\n };\n\n _filter.sobelX = function () {\n _filter.convolution.call(this, [\n -1, 0, 1,\n -2, 0, 2,\n -1, 0, 1,\n ]);\n };\n\n _filter.sobelY = function () {\n _filter.convolution.call(this, [\n -1, -2, -1,\n 0, 0, 0,\n 1, 2, 1,\n ]);\n };\n\n _filter.sharpen = function (amount) {\n const a = amount || 1;\n _filter.convolution.call(this, [\n 0, -1 * a, 0,\n -1 * a, 1 + 4 * a, -1 * a,\n 0, -1 * a, 0,\n ]);\n };\n\n _filter.emboss = function (size) {\n const s = size || 1;\n _filter.convolution.call(this, [\n -2 * s, -1 * s, 0,\n -1 * s, 1, 1 * s,\n 0, 1 * s, 2 * s,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Blur Filter\n _filter.blur = function (size) {\n const blurSizeX = (size / 7) / _width;\n const blurSizeY = (size / 7) / _height;\n const program = _compileShader(_filter.blur.SHADER);\n // Vertical\n gl.uniform2f(program.uniform.px, 0, blurSizeY);\n _draw(DRAW.INTERMEDIATE);\n // Horizontal\n gl.uniform2f(program.uniform.px, blurSizeX, 0);\n _draw();\n };\n\n _filter.blur.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv )*0.159576912161;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;',\n '}',\n ].join('\\n');\n\n // -------------------------------------------------------------------------\n // Pixelate Filter\n _filter.pixelate = function (size) {\n const blurSizeX = (size) / _width;\n const blurSizeY = (size) / _height;\n const program = _compileShader(_filter.pixelate.SHADER);\n // Horizontal\n gl.uniform2f(program.uniform.size, blurSizeX, blurSizeY);\n _draw();\n };\n\n _filter.pixelate.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform vec2 size;',\n 'uniform sampler2D texture;',\n 'vec2 pixelate(vec2 coord, vec2 size) {',\n 'return floor( coord / size ) * size;',\n '}',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'vec2 coord = pixelate(vUv, size);',\n 'gl_FragColor += texture2D(texture, coord);',\n '}',\n ].join('\\n');\n}\n", "import { defaults } from '../config';\nimport { TRI468 as triangulation } from '../blazeface/coords';\nimport { mergeDeep } from '../helpers';\n\n/**\n * Draw Options\n * Accessed via `human.draw.options` or provided per each draw method as the drawOptions optional parameter\n * -color: draw color\n * -labelColor: color for labels\n * -shadowColor: optional shadow color for labels\n * -font: font for labels\n * -lineHeight: line height for labels, used for multi-line labels,\n * -lineWidth: width of any lines,\n * -pointSize: size of any point,\n * -roundRect: for boxes, round corners by this many pixels,\n * -drawPoints: should points be drawn,\n * -drawLabels: should labels be drawn,\n * -drawBoxes: should boxes be drawn,\n * -drawPolygons: should polygons be drawn,\n * -fillPolygons: should drawn polygons be filled,\n * -useDepth: use z-axis coordinate as color shade,\n * -useCurves: draw polygons as cures or as lines,\n * -bufferedOutput: experimental: allows to call draw methods multiple times for each detection and interpolate results between results thus achieving smoother animations\n * -useRawBoxes: Boolean: internal: use non-normalized coordinates when performing draw methods,\n */\nexport interface DrawOptions {\n color: string,\n labelColor: string,\n shadowColor: string,\n font: string,\n lineHeight: number,\n lineWidth: number,\n pointSize: number,\n roundRect: number,\n drawPoints: Boolean,\n drawLabels: Boolean,\n drawBoxes: Boolean,\n drawPolygons: Boolean,\n fillPolygons: Boolean,\n useDepth: Boolean,\n useCurves: Boolean,\n bufferedOutput: Boolean,\n useRawBoxes: Boolean,\n calculateHandBox: Boolean,\n}\n\nexport const options: DrawOptions = {\n color: 'rgba(173, 216, 230, 0.3)', // 'lightblue' with light alpha channel\n labelColor: 'rgba(173, 216, 230, 1)', // 'lightblue' with dark alpha channel\n shadowColor: 'black',\n font: 'small-caps 16px \"Segoe UI\"',\n lineHeight: 24,\n lineWidth: 6,\n pointSize: 2,\n roundRect: 28,\n drawPoints: false,\n drawLabels: true,\n drawBoxes: false,\n drawPolygons: true,\n fillPolygons: false,\n useDepth: true,\n useCurves: false,\n bufferedOutput: false,\n useRawBoxes: false,\n calculateHandBox: true,\n};\n\nfunction point(ctx, x, y, z = 0, localOptions) {\n ctx.fillStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.beginPath();\n ctx.arc(x, y, localOptions.pointSize, 0, 2 * Math.PI);\n ctx.fill();\n}\n\nfunction rect(ctx, x, y, width, height, localOptions) {\n ctx.beginPath();\n if (localOptions.useCurves) {\n const cx = (x + x + width) / 2;\n const cy = (y + y + height) / 2;\n ctx.ellipse(cx, cy, width / 2, height / 2, 0, 0, 2 * Math.PI);\n } else {\n ctx.lineWidth = localOptions.lineWidth;\n ctx.moveTo(x + localOptions.roundRect, y);\n ctx.lineTo(x + width - localOptions.roundRect, y);\n ctx.quadraticCurveTo(x + width, y, x + width, y + localOptions.roundRect);\n ctx.lineTo(x + width, y + height - localOptions.roundRect);\n ctx.quadraticCurveTo(x + width, y + height, x + width - localOptions.roundRect, y + height);\n ctx.lineTo(x + localOptions.roundRect, y + height);\n ctx.quadraticCurveTo(x, y + height, x, y + height - localOptions.roundRect);\n ctx.lineTo(x, y + localOptions.roundRect);\n ctx.quadraticCurveTo(x, y, x + localOptions.roundRect, y);\n ctx.closePath();\n }\n ctx.stroke();\n}\n\nfunction lines(ctx, points: number[] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n ctx.beginPath();\n ctx.moveTo(points[0][0], points[0][1]);\n for (const pt of points) {\n ctx.strokeStyle = localOptions.useDepth && pt[2] ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.3)` : localOptions.color;\n ctx.fillStyle = localOptions.useDepth && pt[2] ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.3)` : localOptions.color;\n ctx.lineTo(pt[0], parseInt(pt[1]));\n }\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nfunction curves(ctx, points: number[] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n if (!localOptions.useCurves || points.length <= 2) {\n lines(ctx, points, localOptions);\n return;\n }\n ctx.moveTo(points[0][0], points[0][1]);\n for (let i = 0; i < points.length - 2; i++) {\n const xc = (points[i][0] + points[i + 1][0]) / 2;\n const yc = (points[i][1] + points[i + 1][1]) / 2;\n ctx.quadraticCurveTo(points[i][0], points[i][1], xc, yc);\n }\n ctx.quadraticCurveTo(points[points.length - 2][0], points[points.length - 2][1], points[points.length - 1][0], points[points.length - 1][1]);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport async function gesture(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.font = localOptions.font;\n ctx.fillStyle = localOptions.color;\n let i = 1;\n for (let j = 0; j < result.length; j++) {\n let where:any[] = [];\n let what:any[] = [];\n [where, what] = Object.entries(result[j]);\n if ((what.length > 1) && (what[1].length > 0)) {\n const person = where[1] > 0 ? `#${where[1]}` : '';\n const label = `${where[0]} ${person}: ${what[1]}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, 8, 2 + (i * localOptions.lineHeight));\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, 6, 0 + (i * localOptions.lineHeight));\n i += 1;\n }\n }\n}\n\nexport async function face(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n for (const f of result) {\n ctx.font = localOptions.font;\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n if (localOptions.drawBoxes) {\n if (localOptions.useRawBoxes) rect(ctx, inCanvas.width * f.boxRaw[0], inCanvas.height * f.boxRaw[1], inCanvas.width * f.boxRaw[2], inCanvas.height * f.boxRaw[3], localOptions);\n else rect(ctx, f.box[0], f.box[1], f.box[2], f.box[3], localOptions);\n }\n // silly hack since fillText does not suport new line\n const labels:string[] = [];\n labels.push(`face confidence: ${Math.trunc(100 * f.confidence)}%`);\n if (f.genderConfidence) labels.push(`${f.gender || ''} ${Math.trunc(100 * f.genderConfidence)}% confident`);\n // if (f.genderConfidence) labels.push(f.gender);\n if (f.age) labels.push(`age: ${f.age || ''}`);\n if (f.iris) labels.push(`iris distance: ${f.iris}`);\n if (f.emotion && f.emotion.length > 0) {\n const emotion = f.emotion.map((a) => `${Math.trunc(100 * a.score)}% ${a.emotion}`);\n labels.push(emotion.join(' '));\n }\n if (f.rotation && f.rotation.angle && f.rotation.angle.roll) labels.push(`roll: ${Math.trunc(100 * f.rotation.angle.roll) / 100} yaw:${Math.trunc(100 * f.rotation.angle.yaw) / 100} pitch:${Math.trunc(100 * f.rotation.angle.pitch) / 100}`);\n if (labels.length === 0) labels.push('face');\n ctx.fillStyle = localOptions.color;\n for (let i = labels.length - 1; i >= 0; i--) {\n const x = Math.max(f.box[0], 0);\n const y = i * localOptions.lineHeight + f.box[1];\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(labels[i], x + 5, y + 16);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(labels[i], x + 4, y + 15);\n }\n ctx.lineWidth = 1;\n if (f.mesh && f.mesh.length > 0) {\n if (localOptions.drawPoints) {\n for (const pt of f.mesh) point(ctx, pt[0], pt[1], pt[2], localOptions);\n // for (const pt of f.meshRaw) point(ctx, pt[0] * inCanvas.offsetWidth, pt[1] * inCanvas.offsetHeight, pt[2]);\n }\n if (localOptions.drawPolygons) {\n ctx.lineWidth = 1;\n for (let i = 0; i < triangulation.length / 3; i++) {\n const points = [\n triangulation[i * 3 + 0],\n triangulation[i * 3 + 1],\n triangulation[i * 3 + 2],\n ].map((index) => f.mesh[index]);\n lines(ctx, points, localOptions);\n }\n // iris: array[center, left, top, right, bottom]\n if (f.annotations && f.annotations.leftEyeIris) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.leftEyeIris[3][0] - f.annotations.leftEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.leftEyeIris[4][1] - f.annotations.leftEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.leftEyeIris[0][0], f.annotations.leftEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n if (f.annotations && f.annotations.rightEyeIris) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.rightEyeIris[3][0] - f.annotations.rightEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.rightEyeIris[4][1] - f.annotations.rightEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.rightEyeIris[0][0], f.annotations.rightEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n }\n }\n }\n}\n\nconst lastDrawnPose:any[] = [];\nexport async function body(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n for (let i = 0; i < result.length; i++) {\n // result[i].keypoints = result[i].keypoints.filter((a) => a.score > 0.5);\n if (!lastDrawnPose[i] && localOptions.bufferedOutput) lastDrawnPose[i] = { ...result[i] };\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n ctx.lineWidth = localOptions.lineWidth;\n ctx.font = localOptions.font;\n if (localOptions.drawBoxes) {\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n }\n if (localOptions.drawPoints) {\n for (let pt = 0; pt < result[i].keypoints.length; pt++) {\n ctx.fillStyle = localOptions.useDepth && result[i].keypoints[pt].position.z ? `rgba(${127.5 + (2 * result[i].keypoints[pt].position.z)}, ${127.5 - (2 * result[i].keypoints[pt].position.z)}, 255, 0.5)` : localOptions.color;\n if (localOptions.bufferedOutput) {\n lastDrawnPose[i].keypoints[pt][0] = (lastDrawnPose[i].keypoints[pt][0] + result[i].keypoints[pt].position.x) / 2;\n lastDrawnPose[i].keypoints[pt][1] = (lastDrawnPose[i].keypoints[pt][1] + result[i].keypoints[pt].position.y) / 2;\n point(ctx, lastDrawnPose[i].keypoints[pt][0], lastDrawnPose[i].keypoints[pt][1], 0, localOptions);\n } else {\n point(ctx, result[i].keypoints[pt].position.x, result[i].keypoints[pt].position.y, 0, localOptions);\n }\n }\n }\n if (localOptions.drawLabels) {\n ctx.font = localOptions.font;\n if (result[i].keypoints) {\n for (const pt of result[i].keypoints) {\n ctx.fillStyle = localOptions.useDepth && pt.position.z ? `rgba(${127.5 + (2 * pt.position.z)}, ${127.5 - (2 * pt.position.z)}, 255, 0.5)` : localOptions.color;\n ctx.fillText(`${pt.part} ${Math.trunc(100 * pt.score)}%`, pt.position.x + 4, pt.position.y + 4);\n }\n }\n }\n if (localOptions.drawPolygons && result[i].keypoints) {\n let part;\n const points: any[] = [];\n // shoulder line\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // torso main\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n if (points.length === 4) lines(ctx, points, localOptions); // only draw if we have complete torso\n // leg left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftKnee');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftAnkle');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftHeel');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftFoot');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // leg right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightKnee');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightAnkle');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightHeel');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightFoot');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // arm left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftElbow');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftWrist');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftPalm');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // arm right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightElbow');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightWrist');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightPalm');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // draw all\n }\n }\n}\n\nexport async function hand(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n let box;\n if (!localOptions.calculateHandBox) {\n box = localOptions.useRawBoxes ? h.boxRaw : h.box;\n } else {\n box = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0];\n if (h.landmarks && h.landmarks.length > 0) {\n for (const pt of h.landmarks) {\n if (pt[0] < box[0]) box[0] = pt[0];\n if (pt[1] < box[1]) box[1] = pt[1];\n if (pt[0] > box[2]) box[2] = pt[0];\n if (pt[1] > box[3]) box[3] = pt[1];\n }\n box[2] -= box[0];\n box[3] -= box[1];\n }\n }\n if (localOptions.useRawBoxes) rect(ctx, inCanvas.width * box[0], inCanvas.height * box[1], inCanvas.width * box[2], inCanvas.height * box[3], localOptions);\n else rect(ctx, box[0], box[1], box[2], box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText('hand', box[0] + 3, 1 + box[1] + localOptions.lineHeight, box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText('hand', box[0] + 2, 0 + box[1] + localOptions.lineHeight, box[2]);\n }\n ctx.stroke();\n }\n if (localOptions.drawPoints) {\n if (h.landmarks && h.landmarks.length > 0) {\n for (const pt of h.landmarks) {\n ctx.fillStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.5)` : localOptions.color;\n point(ctx, pt[0], pt[1], 0, localOptions);\n }\n }\n }\n if (localOptions.drawPolygons) {\n const addPart = (part) => {\n if (!part) return;\n for (let i = 0; i < part.length; i++) {\n ctx.lineWidth = localOptions.lineWidth;\n ctx.beginPath();\n ctx.strokeStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * part[i][2])}, ${127.5 - (2 * part[i][2])}, 255, 0.5)` : localOptions.color;\n ctx.moveTo(part[i > 0 ? i - 1 : 0][0], part[i > 0 ? i - 1 : 0][1]);\n ctx.lineTo(part[i][0], part[i][1]);\n ctx.stroke();\n }\n };\n addPart(h.annotations.indexFinger);\n addPart(h.annotations.middleFinger);\n addPart(h.annotations.ringFinger);\n addPart(h.annotations.pinky);\n addPart(h.annotations.thumb);\n // addPart(hand.annotations.palmBase);\n }\n }\n}\n\nexport async function object(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n if (localOptions.useRawBoxes) rect(ctx, inCanvas.width * h.boxRaw[0], inCanvas.height * h.boxRaw[1], inCanvas.width * h.boxRaw[2], inCanvas.height * h.boxRaw[3], localOptions);\n else rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `${Math.round(100 * h.score)}% ${h.label}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\nexport async function canvas(inCanvas: HTMLCanvasElement, outCanvas: HTMLCanvasElement) {\n if (!inCanvas || !outCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement) || !(outCanvas instanceof HTMLCanvasElement)) return;\n const outCtx = inCanvas.getContext('2d');\n outCtx?.drawImage(inCanvas, 0, 0);\n}\n\nexport async function all(inCanvas: HTMLCanvasElement, result:any, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n face(inCanvas, result.face, localOptions);\n body(inCanvas, result.body, localOptions);\n hand(inCanvas, result.hand, localOptions);\n gesture(inCanvas, result.gesture, localOptions);\n object(inCanvas, result.object, localOptions);\n}\n", "/* eslint-disable indent */\n/* eslint-disable no-multi-spaces */\n\n/**\n * Configuration interface definition for **Human** library\n *\n * Contains all configurable parameters\n */\nexport interface Config {\n /** Backend used for TFJS operations */\n backend: null | '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow',\n /** Path to *.wasm files if backend is set to `wasm` */\n wasmPath: string,\n /** Print debug statements to console */\n debug: boolean,\n /** Perform model loading and inference concurrently or sequentially */\n async: boolean,\n /** Collect and print profiling data during inference operations */\n profile: boolean,\n /** Internal: Use aggressive GPU memory deallocator when backend is set to `webgl` or `humangl` */\n deallocate: boolean,\n /** Internal: Run all inference operations in an explicit local scope run to avoid memory leaks */\n scoped: boolean,\n /** Perform additional optimizations when input is video,\n * - must be disabled for images\n * - automatically disabled for Image, ImageData, ImageBitmap and Tensor inputs\n * - skips boundary detection for every `skipFrames` frames specified for each model\n * - while maintaining in-box detection since objects don't change definition as fast */\n videoOptimized: boolean,\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n warmup: 'none' | 'face' | 'full' | 'body',\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are joined to this path\n */\n modelBasePath: string,\n /** Run input through image filters before inference\n * - image filters run with near-zero latency as they are executed on the GPU\n */\n filter: {\n enabled: boolean,\n /** Resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** Resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** Return processed canvas imagedata in result */\n return: boolean,\n /** Flip input as mirror image */\n flip: boolean,\n /** Range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** Range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** Range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** Range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** Range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** Range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** Image negative */\n negative: boolean,\n /** Image sepia colors */\n sepia: boolean,\n /** Image vintage colors */\n vintage: boolean,\n /** Image kodachrome colors */\n kodachrome: boolean,\n /** Image technicolor colors */\n technicolor: boolean,\n /** Image polaroid camera effect */\n polaroid: boolean,\n /** Range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n },\n // type definition end\n\n /** Controlls gesture detection */\n gesture: {\n enabled: boolean,\n },\n /** Controlls and configures all face-specific options:\n * - face detection, face mesh detection, age, gender, emotion detection and face description\n * Parameters:\n * - enabled: true/false\n * - modelPath: path for individual face model\n * - rotation: use calculated rotated face image or just box with rotation as-is, false means higher performance, but incorrect mesh mapping on higher face angles\n * - maxFaces: maximum number of faces detected in the input, should be set to the minimum number for performance\n * - skipFrames: how many frames to go without re-running the face detector and just run modified face mesh analysis, only valid if videoOptimized is set to true\n * - skipInitial: if previous detection resulted in no faces detected, should skipFrames be reset immediately to force new detection cycle\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: threshold for deciding whether boxes overlap too much in non-maximum suppression\n * - scoreThreshold: threshold for deciding when to remove boxes based on score in non-maximum suppression\n * - return extracted face as tensor for futher user processing\n */\n face: {\n enabled: boolean,\n detector: {\n modelPath: string,\n rotation: boolean,\n maxFaces: number,\n skipFrames: number,\n skipInitial: boolean,\n minConfidence: number,\n iouThreshold: number,\n scoreThreshold: number,\n return: boolean,\n },\n mesh: {\n enabled: boolean,\n modelPath: string,\n },\n iris: {\n enabled: boolean,\n modelPath: string,\n },\n description: {\n enabled: boolean,\n modelPath: string,\n skipFrames: number,\n minConfidence: number,\n },\n emotion: {\n enabled: boolean,\n minConfidence: number,\n skipFrames: number,\n modelPath: string,\n },\n },\n /** Controlls and configures all body detection specific options\n * - enabled: true/false\n * - modelPath: paths for both hand detector model and hand skeleton model\n * - maxDetections: maximum number of people detected in the input, should be set to the minimum number for performance\n * - scoreThreshold: threshold for deciding when to remove people based on score in non-maximum suppression\n * - nmsRadius: threshold for deciding whether body parts overlap too much in non-maximum suppression\n */\n body: {\n enabled: boolean,\n modelPath: string,\n maxDetections: number,\n scoreThreshold: number,\n nmsRadius: number,\n },\n /** Controlls and configures all hand detection specific options\n * - enabled: true/false\n * - modelPath: paths for both hand detector model and hand skeleton model\n * - rotation: use best-guess rotated hand image or just box with rotation as-is, false means higher performance, but incorrect finger mapping if hand is inverted\n * - skipFrames: how many frames to go without re-running the hand bounding box detector and just run modified hand skeleton detector, only valid if videoOptimized is set to true\n * - skipInitial: if previous detection resulted in no hands detected, should skipFrames be reset immediately to force new detection cycle\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: threshold for deciding whether boxes overlap too much in non-maximum suppression\n * - scoreThreshold: threshold for deciding when to remove boxes based on score in non-maximum suppression\n * - maxHands: maximum number of hands detected in the input, should be set to the minimum number for performance\n * - landmarks: detect hand landmarks or just hand boundary box\n */\n hand: {\n enabled: boolean,\n rotation: boolean,\n skipFrames: number,\n skipInitial: boolean,\n minConfidence: number,\n iouThreshold: number,\n scoreThreshold: number,\n maxHands: number,\n landmarks: boolean,\n detector: {\n modelPath: string,\n },\n skeleton: {\n modelPath: string,\n },\n },\n /** Controlls and configures all object detection specific options\n * - minConfidence: minimum score that detection must have to return as valid object\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxResults: maximum number of detections to return\n * - skipFrames: run object detection every n input frames, only valid if videoOptimized is set to true\n */\n object: {\n enabled: boolean,\n modelPath: string,\n minConfidence: number,\n iouThreshold: number,\n maxResults: number,\n skipFrames: number,\n },\n}\n\nconst config: Config = {\n backend: 'webgl', // select tfjs backend to use\n // can be 'webgl', 'wasm', 'cpu', or 'humangl' which is a custom version of webgl\n // leave as empty string to continue using default backend\n // when backend is set outside of Human library\n modelBasePath: '../models/', // base path for all models\n wasmPath: '../assets/', // path for wasm binaries\n // only used for backend: wasm\n debug: true, // print additional status messages to console\n async: true, // execute enabled models in parallel\n // this disables per-model performance data but\n // slightly increases performance\n // cannot be used if profiling is enabled\n profile: false, // internal: enable tfjs profiling\n // this has significant performance impact\n // only enable for debugging purposes\n // currently only implemented for age,gender,emotion models\n deallocate: false, // internal: aggresively deallocate gpu memory after each usage\n // only valid for webgl and humangl backend and only during first call\n // cannot be changed unless library is reloaded\n // this has significant performance impact\n // only enable on low-memory devices\n scoped: false, // internal: enable scoped runs\n // some models *may* have memory leaks,\n // this wrapps everything in a local scope at a cost of performance\n // typically not needed\n videoOptimized: true, // perform additional optimizations when input is video,\n // must be disabled for images\n // automatically disabled for Image, ImageData, ImageBitmap and Tensor inputs\n // skips boundary detection for every n frames\n // while maintaining in-box detection since objects cannot move that fast\n warmup: 'face', // what to use for human.warmup(), can be 'none', 'face', 'full'\n // warmup pre-initializes all models for faster inference but can take\n // significant time on startup\n // only used for `webgl` and `humangl` backends\n filter: { // run input through image filters before inference\n // image filters run with near-zero latency as they are executed on the GPU\n enabled: true, // enable image pre-processing filters\n width: 0, // resize input width\n height: 0, // resize input height\n // if both width and height are set to 0, there is no resizing\n // if just one is set, second one is scaled automatically\n // if both are set, values are used as-is\n flip: false, // flip input as mirror image\n return: true, // return processed canvas imagedata in result\n brightness: 0, // range: -1 (darken) to 1 (lighten)\n contrast: 0, // range: -1 (reduce contrast) to 1 (increase contrast)\n sharpness: 0, // range: 0 (no sharpening) to 1 (maximum sharpening)\n blur: 0, // range: 0 (no blur) to N (blur radius in pixels)\n saturation: 0, // range: -1 (reduce saturation) to 1 (increase saturation)\n hue: 0, // range: 0 (no change) to 360 (hue rotation in degrees)\n negative: false, // image negative\n sepia: false, // image sepia colors\n vintage: false, // image vintage colors\n kodachrome: false, // image kodachrome colors\n technicolor: false, // image technicolor colors\n polaroid: false, // image polaroid camera effect\n pixelate: 0, // range: 0 (no pixelate) to N (number of pixels to pixelate)\n },\n\n gesture: {\n enabled: true, // enable simple gesture recognition\n },\n\n face: {\n enabled: true, // controls if specified modul is enabled\n // face.enabled is required for all face models:\n // detector, mesh, iris, age, gender, emotion\n // (note: module is not loaded until it is required)\n detector: {\n modelPath: 'blazeface-back.json', // detector model\n // can be either absolute path or relative to modelBasePath\n rotation: false, // use best-guess rotated face image or just box with rotation as-is\n // false means higher performance, but incorrect mesh mapping if face angle is above 20 degrees\n // this parameter is not valid in nodejs\n maxFaces: 10, // maximum number of faces detected in the input\n // should be set to the minimum number for performance\n skipFrames: 21, // how many frames to go without re-running the face bounding box detector\n // only used for video inputs\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated face analysis as the head probably hasn't moved much\n // in short time (10 * 1/25 = 0.25 sec)\n skipInitial: false, // if previous detection resulted in no faces detected,\n // should skipFrames be reset immediately to force new detection cycle\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.1, // threshold for deciding whether boxes overlap too much in\n // non-maximum suppression (0.1 means drop if overlap 10%)\n scoreThreshold: 0.2, // threshold for deciding when to remove boxes based on score\n // in non-maximum suppression,\n // this is applied on detection objects only and before minConfidence\n return: false, // return extracted face as tensor\n },\n\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json', // facemesh model\n // can be either absolute path or relative to modelBasePath\n },\n\n iris: {\n enabled: true,\n modelPath: 'iris.json', // face iris model\n // can be either absolute path or relative to modelBasePath\n },\n\n description: {\n enabled: true, // to improve accuracy of face description extraction it is\n // recommended to enable detector.rotation and mesh.enabled\n modelPath: 'faceres.json', // face description model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 31, // how many frames to go without re-running the detector\n // only used for video inputs\n minConfidence: 0.1, // threshold for discarding a prediction\n },\n\n emotion: {\n enabled: true,\n minConfidence: 0.1, // threshold for discarding a prediction\n skipFrames: 32, // how many frames to go without re-running the detector\n modelPath: 'emotion.json', // face emotion model\n // can be either absolute path or relative to modelBasePath\n },\n },\n\n body: {\n enabled: true,\n modelPath: 'posenet.json', // body model\n // can be either absolute path or relative to modelBasePath\n // can be 'posenet', 'blazepose' or 'efficientpose'\n // 'blazepose' and 'efficientpose' are experimental\n maxDetections: 1, // maximum number of people detected in the input\n // should be set to the minimum number for performance\n // only valid for posenet as blazepose only detects single pose\n scoreThreshold: 0.2, // threshold for deciding when to remove boxes based on score\n // in non-maximum suppression\n // only valid for posenet as blazepose only detects single pose\n nmsRadius: 20, // radius for deciding points are too close in non-maximum suppression\n // only valid for posenet as blazepose only detects single pose\n },\n\n hand: {\n enabled: true,\n rotation: false, // use best-guess rotated hand image or just box with rotation as-is\n // false means higher performance, but incorrect finger mapping if hand is inverted\n skipFrames: 12, // how many frames to go without re-running the hand bounding box detector\n // only used for video inputs\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated hand skeleton analysis as the hand probably\n // hasn't moved much in short time (10 * 1/25 = 0.25 sec)\n skipInitial: false, // if previous detection resulted in no hands detected,\n // should skipFrames be reset immediately to force new detection cycle\n minConfidence: 0.1, // threshold for discarding a prediction\n iouThreshold: 0.1, // threshold for deciding whether boxes overlap too much\n // in non-maximum suppression\n scoreThreshold: 0.5, // threshold for deciding when to remove boxes based on\n // score in non-maximum suppression\n maxHands: 1, // maximum number of hands detected in the input\n // should be set to the minimum number for performance\n landmarks: true, // detect hand landmarks or just hand boundary box\n detector: {\n modelPath: 'handdetect.json', // hand detector model\n // can be either absolute path or relative to modelBasePath\n },\n skeleton: {\n modelPath: 'handskeleton.json', // hand skeleton model\n // can be either absolute path or relative to modelBasePath\n },\n },\n\n object: {\n enabled: false,\n modelPath: 'nanodet.json', // object detection model\n // can be either absolute path or relative to modelBasePath\n // 'nanodet' is experimental\n minConfidence: 0.20, // threshold for discarding a prediction\n iouThreshold: 0.40, // threshold for deciding whether boxes overlap too much\n // in non-maximum suppression\n maxResults: 10, // maximum number of objects detected in the input\n skipFrames: 41, // how many frames to go without re-running the detector\n },\n};\nexport { config as defaults };\n", "// data:image/jpeg;base64,\nexport const face = `\n/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA\nAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu\nbmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob\nIxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo\nKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E\nAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB\nAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET\nIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla\nY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG\nx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML\nXp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF\nPUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/\nAJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z\n5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9\nzZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO\ntHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6\n8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W\nwA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk\nEtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6\nGhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT\nA7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep\nrBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb\nLCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ\nih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K\nKAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l\npBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x\nUqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4\nHaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr\nxL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS\nNO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD\n1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX\n+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3\nGBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K\nq4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0\nnhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm\nuic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH\nArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV\nwF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8\n87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P\nFQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD\nYNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv\nJmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ\nQmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el\nUJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681\nly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly\nCK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc\nUDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF\n63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x\nXY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2\nZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk\nXb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK\ncBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef\neNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4\n/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5\nrl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru\n/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A\nzviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO\nI4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1\njfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ\nGRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG\ncZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb\nWmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis\nZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH\nckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi\nlbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO\nxuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK\nJtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX\nPaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c\nW0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t\nC6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk\n4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn\nxHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW\nvHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi\nqr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV\nhamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F\nj4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6\nwqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm\noy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ\nk7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg\nnQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP\n1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1\nH1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ\n1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx\nzSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt\nfFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp\nOxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj\nVtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy\nrFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe\n5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D\nd/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69\nMlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ\nFbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ\nMA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP\nByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn\n0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU\nyOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is\npNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz\nTSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu\nuCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem\ngGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk\nHvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy\ns9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu\nm6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb\n0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz\n9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN\nDNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n\nR6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk\nnmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu\n6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd\n9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb\nSms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S\nMSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz\nFEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8\nVSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx\nY0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ\nmupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+\n5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh\n05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd\nua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ\n5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR\nMqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8\n1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4\nB9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag\nBc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA\n3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn\n3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx\n1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU\ntzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6\nf3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA\nbvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ\nzyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup\n6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM\n350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0\n/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a\nYfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ\nagBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO\nmAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl\nmOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR\nnqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo\nEPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt\n4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ\nScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p\niMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj\nPQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l\nc6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1\n8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3\nylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY\neuPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`;\n\n// data:image/jpeg;base64,\nexport const body = `\n/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk\nJyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF\nRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA\nAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA\nAQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA\nAAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA\nAhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj\n+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt\nFh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR\nPLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl\nmZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp\n+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa\nzhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D\nh1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2\nex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67\nd4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y\nRv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP\nLd3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC\nvy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi\neSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/\nMx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+\nr3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO\nO0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s\ntfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN\nTmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc\n0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj\nq83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w\n+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s\nd8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t\ncI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4\nYibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe\nbzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi\nKxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6\nrNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ\n9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf\nJvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V\nbxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q\nVbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM\nlorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/\n/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme\nE4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv\nfauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6\njkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN\n+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk\nRvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK\ncGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop\nyW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn\nE8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX\n12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW\niI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS\nRWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf\n0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx\nDS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL\nG8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK\nxC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ\na9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4\nZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6\ntvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+\nfJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE\nerk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR\nMd5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9\nlcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD\nj8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV\n5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt\nCu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/\n+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c\nvUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p\njrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0\n77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP\nSel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8\n5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe\nY0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R\nHwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV\nrWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU\nz7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8\nto6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X\ny8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt\nstcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/\nw9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT\nDpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l\nXV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t\nydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS\n34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX\ne09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn\n26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf\n3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q\n6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P\nNbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO\nyZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN\n3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8\n2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h\ndqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx\nkr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t\nDHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb\neFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc\n1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka\nc258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE\nxEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu\ns5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK\n0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9\ndM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt\nPXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T\nMd/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T\nadq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b\nSVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt\npdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm\nvfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr\nEejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N\nvwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh\nZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I\ntkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW\nd43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe\nN4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218\n8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG\nPNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY\nV1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw\nw18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT\nEx5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1\naxqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/\ntDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I\nmbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe\nXRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1\nizjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2\ncrFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4\nOadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2\nr8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx\nzc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz\n+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v\nMevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu\nryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095\nYZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE\n9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8\nmNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O\nuSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O\nfft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6\nOlty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT\nuTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3\n6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1\nMb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF\nfeH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq\nxVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v\ned7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ\nmtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz\nmWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP\nB39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0\n5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1\nmkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt\nmxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO\n1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq\nZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q\nky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7\nROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK\nGEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i\ntMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T\n+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+\nO8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO\nesd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es\nvPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz\nXV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1\n+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY\n36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL\nq555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY\n3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz\np7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr\n1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV\nxUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt\npCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS\nfP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH\nmMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z\n1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+\nn3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d\nMRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df\nzXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl\nJ2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs\nzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH\nDpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ\ndHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR\ntER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j\nadmFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC\nb2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X\nqdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh\nydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O\n8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L\nT7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0\nZa1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr\nvNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer\nrWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL\noNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq\nj/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh\nodZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8\n8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1\nlNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+\noza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL\nknU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK\nEtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N\nmtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm\n9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N\nIpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W\nMYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2\n+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql\no+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37\nO99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE\nTE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1\nL7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4\nizsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt\n1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb\nV5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum\nL37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12\nCvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE\nebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo\nGvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu\nL8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh\n5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3\n6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9\nXO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM\nfeKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj\nSZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF\nXaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr\n79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h\nyeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT\nOC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223\n2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt\nadohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y\ncnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX\nDpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p\n7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso\nS24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l\nbPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe\nvVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG\nH6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7\nx3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz\n5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY\nq+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn\nvLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2\nIjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK\nz0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ\nYYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON\nZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW\nekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf\ncjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c\nbiuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO\nCkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw\ny1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi\nQXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E\nbL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r\ntv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t\nLRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP\nRqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm\ns7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el\nXX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1\nvK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq\nqrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v\nVYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0\nZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q\nmT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm\n6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG\nf63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo\ndPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22\ngtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M\nMoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb\nc2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX\n6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn\n1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK\nfOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ\nEqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u\n7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT\nqPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa\nS2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf\nLp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU\nIiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O\n8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c\nvU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx\n5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V\nKTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm\n2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu\nj8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB\nTTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9\nRUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL\nCWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA\nAAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8\ncTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj\nqKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF\n0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK\nZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK\n66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu\nXT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9\nXOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN\nM2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv\nVrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK\n7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI\n3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m\nXY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m\n1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A\nJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC\nEgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9\n8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL\nOrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H\nM+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA\nTsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8\nelpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp\nBjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS\nCRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r\nrcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY\njbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW\nUsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB\nKUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb\nSz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL\n+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v\nT471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM\nsfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj\nFontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl\n5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q\n7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv\n6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa\n0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/\nAOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM\nd8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5\n6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP\nbFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu\nLJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy\nwt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX\n0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK\n3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn\nKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0\nvobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t\nzya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps\nuOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi\nFdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2\nO3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z\naK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz\n0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb\nT/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l\nqMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t\ntrJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn\nmvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa\neq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe\nPwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of\nTdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O\n1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG\nf/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi\n0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY\n5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc\nV2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L\n/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM\nt/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd\nVknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD\nKLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R\nfwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3\nVxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ\nDJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ\n3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv\nx7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD\nweqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI\n6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew\nPnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk\nj3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm\nOqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/\nAKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez\nN9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ\n92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp\n+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue\nV9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv\navHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0\nvQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP\n8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt\nn1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw\nnUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3\n7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P\n0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U\nx8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG\n0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L\nfaQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ\nQKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA\nBAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A\ntLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv\n9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr\njn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm\nb7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB\nACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk\ndEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1\nrMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+\nx+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA\nAAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr\nYvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4\n5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V\nkK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg\nBIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA\nAAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g\nWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx\nOEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2\nH/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF\n+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V\nh6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA\nEgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu\nZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml\nHMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl\nn0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN\n3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi\n/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00\n+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC\nUACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2\nM2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp\n5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn\nN1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS\nOjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL\n/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo\nstLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3\nGyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA\nAAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4\nqmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy\nWEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a\nfJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI\nrTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2\nrz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc\n3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3\nTur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA\nAAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx\nskA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F\no7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx\nNO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h\n2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te\npSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7\ncvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7\nmZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA\nAAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA\nhGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J\nqx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI\nXRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy\nRHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX\nqNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX\nkaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P\nya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC\nExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA\nlAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA\nAAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o\nb9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP\ny6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae\nkzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu\n9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ\nk7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1\n8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp\nDXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh\nnyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ\nAAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA\nAAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO\nyvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5\nPM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii\nIpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r\nO3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE\nyTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX\n6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2\nJgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS\nAAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA\nAAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx\nWa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI\n6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5\nK2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7\nVv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id\nPW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ\n2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4\neF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7\npiVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR\nACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ\nJQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i\nUiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61\nrZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq\nZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2\nf0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO\nIjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts\nbAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA\nAAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA\nBAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2\nSbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T\nlBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/\n2Q==`;\n", "import { log, now, mergeDeep } from './helpers';\nimport * as sysinfo from './sysinfo';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as backend from './tfjs/backend';\nimport * as faceall from './faceall';\nimport * as facemesh from './blazeface/facemesh';\nimport * as faceres from './faceres/faceres';\nimport * as emotion from './emotion/emotion';\nimport * as posenet from './posenet/posenet';\nimport * as handpose from './handpose/handpose';\nimport * as blazepose from './blazepose/blazepose';\nimport * as nanodet from './nanodet/nanodet';\nimport * as gesture from './gesture/gesture';\nimport * as image from './image/image';\nimport * as draw from './draw/draw';\nimport * as profile from './profile';\nimport { Config, defaults } from './config';\nimport { Result } from './result';\nimport * as sample from './sample';\nimport * as app from '../package.json';\n\n/** Generic Tensor object type */\nexport type Tensor = typeof tf.Tensor;\n\nexport type { Config } from './config';\nexport type { Result } from './result';\nexport type { DrawOptions } from './draw/draw';\n\n/** Defines all possible input types for **Human** detection */\nexport type Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\n/** Error message */\nexport type Error = { error: string };\n\n/** Instance of TensorFlow/JS */\nexport type TensorFlow = typeof tf;\n\n/** Generic Model object type, holds instance of individual models */\ntype Model = Object;\n\n/**\n * **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n */\nexport class Human {\n /** Current version of Human library in semver format */\n version: string;\n /** Current configuration\n * - Details: {@link Config}\n */\n config: Config;\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n */\n state: string;\n /** Internal: Instance of current image being processed */\n image: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement | null };\n /** Internal: Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n */\n tf: TensorFlow;\n /** Draw helper classes that can draw detected objects on canvas using specified draw styles\n * - options: global settings for all draw operations, can be overriden for each draw method, for details see {@link DrawOptions}\n * - face: draw detected faces\n * - body: draw detected people and body parts\n * - hand: draw detected hands and hand parts\n * - canvas: draw processed canvas which is a processed copy of the input\n * - all: meta-function that performs: canvas, face, body, hand\n */\n draw: {\n options: draw.DrawOptions,\n gesture: typeof draw.gesture,\n face: typeof draw.face,\n body: typeof draw.body,\n hand: typeof draw.hand,\n canvas: typeof draw.canvas,\n all: typeof draw.all,\n };\n /** Internal: Currently loaded models */\n models: {\n face: facemesh.MediaPipeFaceMesh | Model | null,\n posenet: Model | null,\n blazepose: Model | null,\n efficientpose: Model | null,\n handpose: handpose.HandPose | null,\n iris: Model | null,\n age: Model | null,\n gender: Model | null,\n emotion: Model | null,\n embedding: Model | null,\n nanodet: Model | null,\n faceres: Model | null,\n };\n /** Internal: Currently loaded classes */\n classes: {\n facemesh: typeof facemesh;\n emotion: typeof emotion;\n body: typeof posenet | typeof blazepose;\n hand: typeof handpose;\n nanodet: typeof nanodet;\n faceres: typeof faceres;\n };\n /** Face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: typeof facemesh.triangulation;\n /** UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: typeof facemesh.uvmap;\n /** Platform and agent information detected by Human */\n sysinfo: { platform: string, agent: string };\n /** Performance object that contains values for all recently performed operations */\n perf: any;\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n #firstRun: boolean;\n\n // definition end\n\n /**\n * Creates instance of Human library that is futher used for all operations\n * - @param userConfig: {@link Config}\n */\n constructor(userConfig: Config | Object = {}) {\n this.tf = tf;\n this.draw = draw;\n this.version = app.version;\n this.config = mergeDeep(defaults, userConfig);\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.#firstRun = true;\n this.perf = {};\n // object that contains all initialized models\n this.models = {\n face: null,\n posenet: null,\n blazepose: null,\n efficientpose: null,\n handpose: null,\n iris: null,\n age: null,\n gender: null,\n emotion: null,\n embedding: null,\n nanodet: null,\n faceres: null,\n };\n // export access to image processing\n // @ts-ignore eslint-typescript cannot correctly infer type in anonymous function\n this.image = (input: Input) => image.process(input, this.config);\n // export raw access to underlying models\n this.classes = {\n facemesh,\n emotion,\n faceres,\n body: this.config.body.modelPath.includes('posenet') ? posenet : blazepose,\n hand: handpose,\n nanodet,\n };\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // include platform info\n this.sysinfo = sysinfo.info();\n }\n\n /** Internal: ProfileData method returns last known profiling information\n * - Requires human.config.profile set to true\n */\n profileData(): { newBytes, newTensors, peakBytes, numKernelOps, timeKernelOps, slowestKernelOps, largestKernelOps } | {} {\n if (this.config.profile) return profile.data;\n return {};\n }\n\n // helper function: measure tensor leak\n /** @hidden */\n analyze = (...msg) => {\n if (!this.#analyzeMemoryLeaks) return;\n const current = this.tf.engine().state.numTensors;\n const previous = this.#numTensors;\n this.#numTensors = current;\n const leaked = current - previous;\n if (leaked !== 0) log(...msg, leaked);\n }\n\n // quick sanity check on inputs\n /** @hidden */\n #sanity = (input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.tf.ENV.flags.IS_NODE && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n }\n\n /** Simmilarity method calculates simmilarity between two provided face descriptors (face embeddings)\n * - Calculation is based on normalized Minkowski distance between\n */\n // eslint-disable-next-line class-methods-use-this\n similarity(embedding1: Array, embedding2: Array): number {\n return faceres.similarity(embedding1, embedding2);\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n * @param input Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n // eslint-disable-next-line class-methods-use-this\n enhance(input: Tensor): Tensor | null {\n return faceres.enhance(input);\n }\n\n /**\n * Math method find best match between provided face descriptor and predefined database of known descriptors\n * @param faceEmbedding: face descriptor previsouly calculated on any face\n * @param db: array of mapping of face descriptors to known values\n * @param threshold: minimum score for matching to be considered in the result\n * @returns best match\n */\n // eslint-disable-next-line class-methods-use-this\n match(faceEmbedding: Array, db: Array<{ name: string, source: string, embedding: number[] }>, threshold = 0): { name: string, source: string, similarity: number, embedding: number[] } {\n return faceres.match(faceEmbedding, db, threshold);\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n */\n async load(userConfig: Config | Object = {}) {\n this.state = 'load';\n const timeStamp = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n\n if (this.#firstRun) {\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version_core}`);\n if (this.config.debug) log('platform:', this.sysinfo.platform);\n if (this.config.debug) log('agent:', this.sysinfo.agent);\n\n await this.#checkBackend(true);\n if (this.tf.ENV.flags.IS_BROWSER) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('tf flags:', this.tf.ENV.flags);\n }\n }\n if (this.config.async) {\n [\n this.models.face,\n this.models.emotion,\n this.models.handpose,\n this.models.posenet,\n this.models.blazepose,\n this.models.nanodet,\n this.models.faceres,\n ] = await Promise.all([\n this.models.face || (this.config.face.enabled ? facemesh.load(this.config) : null),\n this.models.emotion || ((this.config.face.enabled && this.config.face.emotion.enabled) ? emotion.load(this.config) : null),\n this.models.handpose || (this.config.hand.enabled ? handpose.load(this.config) : null),\n this.models.posenet || (this.config.body.enabled && this.config.body.modelPath.includes('posenet') ? posenet.load(this.config) : null),\n this.models.blazepose || (this.config.body.enabled && this.config.body.modelPath.includes('blazepose') ? blazepose.load(this.config) : null),\n this.models.nanodet || (this.config.object.enabled ? nanodet.load(this.config) : null),\n this.models.faceres || ((this.config.face.enabled && this.config.face.description.enabled) ? faceres.load(this.config) : null),\n ]);\n } else {\n if (this.config.face.enabled && !this.models.face) this.models.face = await facemesh.load(this.config);\n if (this.config.face.enabled && this.config.face.emotion.enabled && !this.models.emotion) this.models.emotion = await emotion.load(this.config);\n if (this.config.hand.enabled && !this.models.handpose) this.models.handpose = await handpose.load(this.config);\n if (this.config.body.enabled && !this.models.posenet && this.config.body.modelPath.includes('posenet')) this.models.posenet = await posenet.load(this.config);\n if (this.config.body.enabled && !this.models.blazepose && this.config.body.modelPath.includes('blazepose')) this.models.blazepose = await blazepose.load(this.config);\n if (this.config.object.enabled && !this.models.nanodet) this.models.nanodet = await nanodet.load(this.config);\n if (this.config.face.enabled && this.config.face.description.enabled && !this.models.faceres) this.models.faceres = await faceres.load(this.config);\n }\n\n if (this.#firstRun) {\n if (this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors');\n this.#firstRun = false;\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.perf.load || 0)) this.perf.load = current;\n }\n\n // check if backend needs initialization if it changed\n /** @hidden */\n #checkBackend = async (force = false) => {\n if (this.config.backend && (this.config.backend.length > 0) && force || (this.tf.getBackend() !== this.config.backend)) {\n const timeStamp = now();\n this.state = 'backend';\n /* force backend reload\n if (this.config.backend in tf.engine().registry) {\n const backendFactory = tf.findBackendFactory(this.config.backend);\n tf.removeBackend(this.config.backend);\n tf.registerBackend(this.config.backend, backendFactory);\n } else {\n log('Backend not registred:', this.config.backend);\n }\n */\n\n if (this.config.backend && this.config.backend.length > 0) {\n // force browser vs node backend\n if (this.tf.ENV.flags.IS_BROWSER && this.config.backend === 'tensorflow') this.config.backend = 'webgl';\n if (this.tf.ENV.flags.IS_NODE && (this.config.backend === 'webgl' || this.config.backend === 'humangl')) this.config.backend = 'tensorflow';\n\n if (this.config.debug) log('setting backend:', this.config.backend);\n\n if (this.config.backend === 'wasm') {\n if (this.config.debug) log('wasm path:', this.config.wasmPath);\n if (typeof this.tf?.setWasmPaths !== 'undefined') this.tf.setWasmPaths(this.config.wasmPath);\n else throw new Error('Human: WASM backend is not loaded');\n const simd = await this.tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n const mt = await this.tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n if (this.config.debug) log(`wasm execution: ${simd ? 'SIMD' : 'no SIMD'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (this.config.debug && !simd) log('warning: wasm simd support is not enabled');\n }\n\n if (this.config.backend === 'humangl') backend.register();\n try {\n await this.tf.setBackend(this.config.backend);\n } catch (err) {\n log('error: cannot set backend:', this.config.backend, err);\n }\n }\n this.tf.enableProdMode();\n // this.tf.enableDebugMode();\n if (this.tf.getBackend() === 'webgl' || this.tf.getBackend() === 'humangl') {\n this.tf.ENV.set('CHECK_COMPUTATION_FOR_ERRORS', false);\n this.tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', true);\n if (this.config.deallocate) {\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', this.config.deallocate);\n this.tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', this.config.deallocate ? 0 : -1);\n }\n const gl = await this.tf.backend().getGPGPUContext().gl;\n if (this.config.debug) log(`gl version:${gl.getParameter(gl.VERSION)} renderer:${gl.getParameter(gl.RENDERER)}`);\n }\n await this.tf.ready();\n this.perf.backend = Math.trunc(now() - timeStamp);\n }\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n */\n async detect(input: Input, userConfig: Config | Object = {}): Promise {\n // detection happens inside a promise\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig);\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n resolve({ error });\n }\n\n const timeStart = now();\n\n // configure backend\n await this.#checkBackend();\n\n // load models if enabled\n await this.load();\n\n if (this.config.scoped) this.tf.engine().startScope();\n this.analyze('Start Scope:');\n\n // disable video optimization for inputs of type image\n let previousVideoOptimized;\n if (input && this.config.videoOptimized && (\n (typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n || (typeof Image !== 'undefined' && input instanceof Image)\n || (typeof ImageData !== 'undefined' && input instanceof ImageData)\n || (typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap))\n ) {\n log('disabling video optimization');\n previousVideoOptimized = this.config.videoOptimized;\n this.config.videoOptimized = false;\n }\n\n timeStamp = now();\n const process = image.process(input, this.config);\n if (!process || !process.tensor) {\n log('could not convert input to tensor');\n resolve({ error: 'could not convert input to tensor' });\n return;\n }\n this.perf.image = Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n // prepare where to store model results\n let bodyRes;\n let handRes;\n let faceRes;\n let objectRes;\n let current;\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n if (this.config.async) {\n faceRes = this.config.face.enabled ? faceall.detectFace(this, process.tensor) : [];\n if (this.perf.face) delete this.perf.face;\n } else {\n this.state = 'run:face';\n timeStamp = now();\n faceRes = this.config.face.enabled ? await faceall.detectFace(this, process.tensor) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.face = current;\n }\n\n // run body: can be posenet or blazepose\n this.analyze('Start Body:');\n if (this.config.async) {\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(process.tensor, this.config) : [];\n if (this.perf.body) delete this.perf.body;\n } else {\n this.state = 'run:body';\n timeStamp = now();\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.body = current;\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n if (this.config.async) {\n handRes = this.config.hand.enabled ? this.models.handpose?.estimateHands(process.tensor, this.config) : [];\n if (this.perf.hand) delete this.perf.hand;\n } else {\n this.state = 'run:hand';\n timeStamp = now();\n handRes = this.config.hand.enabled ? await this.models.handpose?.estimateHands(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.hand = current;\n }\n this.analyze('End Hand:');\n\n // run nanodet\n this.analyze('Start Object:');\n if (this.config.async) {\n objectRes = this.config.object.enabled ? nanodet.predict(process.tensor, this.config) : [];\n if (this.perf.object) delete this.perf.object;\n } else {\n this.state = 'run:object';\n timeStamp = now();\n objectRes = this.config.object.enabled ? await nanodet.predict(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.object = current;\n }\n this.analyze('End Object:');\n\n // if async wait for results\n if (this.config.async) {\n [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n }\n tf.dispose(process.tensor);\n\n if (this.config.scoped) this.tf.engine().endScope();\n this.analyze('End Scope:');\n\n // run gesture analysis last\n let gestureRes: any[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes), ...gesture.body(bodyRes), ...gesture.hand(handRes), ...gesture.iris(faceRes)];\n if (!this.config.async) this.perf.gesture = Math.trunc(now() - timeStamp);\n else if (this.perf.gesture) delete this.perf.gesture;\n }\n\n // restore video optimizations if previously disabled\n if (previousVideoOptimized) this.config.videoOptimized = previousVideoOptimized;\n\n this.perf.total = Math.trunc(now() - timeStart);\n this.state = 'idle';\n const result = {\n face: faceRes,\n body: bodyRes,\n hand: handRes,\n gesture: gestureRes,\n object: objectRes,\n performance: this.perf,\n canvas: process.canvas,\n };\n // log('Result:', result);\n resolve(result);\n });\n }\n\n /** @hidden */\n #warmupBitmap = async () => {\n const b64toBlob = (base64, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob;\n let res;\n switch (this.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await this.detect(bitmap, this.config);\n bitmap.close();\n }\n return res;\n }\n\n /** @hidden */\n #warmupCanvas = async () => new Promise((resolve) => {\n let src;\n let size = 0;\n switch (this.config.warmup) {\n case 'face':\n size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = null;\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n const img = new Image();\n img.onload = async () => {\n const canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(size, size) : document.createElement('canvas');\n canvas.width = img.naturalWidth;\n canvas.height = img.naturalHeight;\n const ctx = canvas.getContext('2d');\n ctx?.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const res = await this.detect(canvas, this.config);\n resolve(res);\n };\n if (src) img.src = src;\n else resolve(null);\n });\n\n /** @hidden */\n #warmupNode = async () => {\n const atob = (str) => Buffer.from(str, 'base64');\n let img;\n if (this.config.warmup === 'face') img = atob(sample.face);\n if (this.config.warmup === 'body' || this.config.warmup === 'full') img = atob(sample.body);\n if (!img) return null;\n let res;\n if (typeof tf['node'] !== 'undefined') {\n const data = tf['node'].decodeJpeg(img);\n const expanded = data.expandDims(0);\n this.tf.dispose(data);\n // log('Input:', expanded);\n res = await this.detect(expanded, this.config);\n this.tf.dispose(expanded);\n } else {\n if (this.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await this.detect(input, this.config);\n */\n }\n return res;\n }\n\n /** Warmup metho pre-initializes all models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n async warmup(userConfig: Config | Object = {}): Promise {\n const t0 = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n if (!this.config.warmup || this.config.warmup === 'none') return { error: 'null' };\n const save = this.config.videoOptimized;\n this.config.videoOptimized = false;\n let res;\n if (typeof createImageBitmap === 'function') res = await this.#warmupBitmap();\n else if (typeof Image !== 'undefined') res = await this.#warmupCanvas();\n else res = await this.#warmupNode();\n this.config.videoOptimized = save;\n const t1 = now();\n if (this.config.debug) log('Warmup', this.config.warmup, Math.round(t1 - t0), 'ms', res);\n return res;\n }\n}\n\n/**\n * Class Human is also available as default export\n */\nexport { Human as default };\n"], + "mappings": ";;;;;;;ukBACO,WAAc,EAAgB,EAAsB,CACzD,GAAM,GAAY,EAAO,SAAS,KAAO,GAAK,IAExC,EAAO,AADI,EAAK,WAAW,MAAQ,EAAK,WAAW,MAAQ,EAAK,WAAW,UAAY,EAAK,WAAW,WAAa,EAAK,WAAW,SAClH,GAAG,IAAS,GAAG,IAAS,IAAY,IAC5D,GAAI,CAAC,EAAK,oBAAoB,SAAS,SAAU,KAAM,IAAI,OAAM,2BAA2B,yBAC5F,MAAO,GAIF,cAAgB,EAAK,CAC1B,GAAM,GAAK,GAAI,MACT,EAAK,GAAG,EAAG,WAAW,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,kBAAkB,WAAW,SAAS,EAAG,OAErM,AAAI,GAAK,QAAQ,IAAI,EAAI,SAAU,GAAG,GAIjC,GAAM,GAAM,IACb,MAAO,cAAgB,YAAoB,YAAY,MACpD,SAAU,QAAO,QAAQ,OAAO,UAAY,IAAO,KAAM,YAI3D,cAAsB,EAAS,CACpC,GAAM,GAAW,AAAC,GAAQ,GAAO,MAAO,IAAQ,SAChD,MAAO,GAAQ,OAAO,CAAC,EAAM,IAC3B,QAAO,KAAK,GAAO,IAAI,QAAQ,AAAC,GAAQ,CACtC,GAAM,GAAO,EAAK,GACZ,EAAO,EAAI,GACjB,AAAI,MAAM,QAAQ,IAAS,MAAM,QAAQ,GAAO,EAAK,GAAO,EAAK,OAAO,GAAG,GACtE,AAAI,EAAS,IAAS,EAAS,GAAO,EAAK,GAAO,EAAU,EAAM,GAClE,EAAK,GAAO,IAEZ,GACN,ICnCE,aAAqD,CAC1D,GAAI,GACA,EACJ,GAAI,MAAO,YAAc,YAAa,CACpC,GAAM,GAAM,UAAU,UAAU,MAAM,iBACtC,GAAI,GAAO,EAAI,GAAI,CACjB,GAAM,GAAgB,EAAI,GAAG,MAAM,iBACnC,EAAW,EAAgB,EAAc,GAAG,QAAQ,SAAU,IAAM,GACpE,EAAQ,UAAU,UAAU,QAAQ,EAAI,GAAI,IACxC,EAAS,IAAI,GAAQ,EAAM,QAAQ,EAAI,GAAI,KAC/C,EAAQ,EAAM,QAAQ,MAAO,UAE1B,AAAI,OAAO,UAAY,aAC5B,GAAW,GAAG,QAAQ,YAAY,QAAQ,OAC1C,EAAQ,UAAU,QAAQ,WAE5B,MAAO,CAAE,WAAU,oDCMrB,QACA,QACA,QAEA,QACA,QACA,QAjBA,iDACA,sDACA,sDACA,wDACA,2DAEA,0EACA,8EACA,4EAGA,uDACA,yDACA,4DACA,uDACA,8DACA,gEACA,+DAcO,GAAM,IAAU,CACrB,KAAM,KAAA,KAAA,OAAe,aAAW,OAChC,YAAa,KAAA,KAAA,OAAa,aAAW,OACrC,YAAa,KAAA,KAAA,OAAa,aAAW,OACrC,cAAe,KAAA,KAAA,OAAe,aAAW,OACzC,iBAAkB,KAAA,KAAA,OAAkB,aAAW,OAC/C,mBAAoB,IAAe,OACnC,qBAAsB,IAAiB,OACvC,oBAAqB,IAAgB,QC/ChC,GAAM,GAAS,CACpB,KAAM,UACN,SAAU,GACV,OAAoD,KACpD,GAAS,KACT,MAAO,KACP,OAAQ,KACR,UAAW,CACT,MAAO,GACP,UAAW,GACX,mBAAoB,GACpB,sBAAuB,GACvB,MAAO,GACP,QAAS,GACT,6BAA8B,GAC9B,eAAgB,KAIb,aAA0B,CAC/B,GAAI,CAAC,AAAG,cAAY,EAAO,MAAO,CAChC,EAAI,wBAAyB,EAAO,MACpC,GAAI,CACF,EAAO,OAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,MAAO,EAAO,QAAU,SAAS,cAAc,gBAC9H,EAAP,CACA,EAAI,+BAAgC,GACpC,OAEF,GAAI,CACF,EAAO,GAAK,EAAO,OAAO,WAAW,SAAU,EAAO,iBAC/C,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,AAAG,kBAAgB,EAAG,EAAO,UACtB,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,GAAM,GAAM,GAAO,gBAAa,EAAO,IACvC,AAAG,kBAAgB,EAAO,KAAM,IAAM,GAAO,oBAAiB,GAAM,EAAO,gBACpE,EAAP,CACA,EAAI,wCAAyC,GAC7C,OAEF,GAAI,CAEF,AADgB,AAAG,uBAAqB,SAChC,QAAQ,AAAC,GAAiB,CAChC,GAAM,GAAkB,IAAK,EAAc,YAAa,EAAO,MAC/D,AAAG,iBAAe,WAEb,EAAP,CACA,EAAI,mDAAoD,GACxD,OAEF,GAAI,CACF,AAAG,MAAI,IAAI,gBAAiB,SAIrB,EAAP,CACA,EAAI,yCAA0C,GAC9C,OAEF,EAAI,sBAAuB,EAAO,OCrEtC,6CCEO,GAAM,IAAO,GAEb,WAAa,EAAmB,EAAwB,CAC7D,GAAI,CAAC,GAAe,CAAC,EAAY,QAAS,OAC1C,GAAM,GAAa,EACb,EAAO,EAAY,QACtB,OAAO,AAAC,GAAM,EAAE,aAAe,GAC/B,OAAO,CAAC,EAAG,IAAM,GAAK,EAAE,aAAc,GACnC,EAAU,EAAY,QACzB,IAAI,CAAC,EAAG,IAAQ,GAAE,GAAK,EAAU,IACjC,OAAO,AAAC,GAAM,EAAE,aAAe,GAC/B,KAAK,CAAC,EAAG,IAAM,EAAE,aAAe,EAAE,cAC/B,EAAU,EAAY,QACzB,IAAI,CAAC,EAAG,IAAQ,GAAE,GAAK,EAAU,IACjC,OAAO,AAAC,GAAM,EAAE,mBAAqB,GACrC,KAAK,CAAC,EAAG,IAAM,EAAE,mBAAqB,EAAE,oBAC3C,AAAI,EAAQ,OAAS,GAAY,GAAQ,OAAS,GAC9C,EAAQ,OAAS,GAAY,GAAQ,OAAS,GAClD,GAAK,GAAa,CAChB,MAAO,EACP,SAAU,EAAY,SACtB,WAAY,EAAY,WACxB,UAAW,EAAY,UACvB,aAAc,EAAY,QAAQ,OAClC,cAAe,EACf,iBAAkB,EAClB,iBAAkB,GAEpB,EAAI,WAAY,EAAW,GAAK,ID1BlC,GAAM,IAAc,CAAC,QAAS,UAAW,OAAQ,QAAS,MAAO,WAAY,WACzE,EACA,GAAkD,GAClD,GAAU,OAAO,iBAGf,GAAM,CAAC,MAAQ,KAAQ,MAE7B,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,QAAQ,YAC/E,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,QAAQ,WACpE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,QAAQ,YAAe,EAAO,gBAAmB,GAAK,OAAS,EACxF,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAC9F,CAAC,EAAK,EAAO,GAAQ,AAAG,QAAM,EAAQ,EAAG,GAC/C,EAAO,UAEP,GAAM,GAAU,AAAG,MAAI,EAAK,GAAI,IAC1B,EAAY,AAAG,MAAI,EAAO,GAAI,IAC9B,EAAW,AAAG,MAAI,EAAM,GAAI,IAClC,EAAI,UACJ,EAAM,UACN,EAAK,UACL,GAAM,GAAY,AAAG,OAAK,CAAC,EAAS,EAAW,IAC/C,EAAQ,UACR,EAAU,UACV,EAAS,UACT,GAAM,GAAY,AAAG,OAAK,IAAM,EAAU,IAAI,IAAK,IAAI,IACvD,EAAU,UACV,GAAM,GAAiD,GACvD,GAAI,EAAO,KAAK,QAAQ,QAAS,CAC/B,GAAI,GACJ,GAAK,EAAO,QAIL,CACL,GAAM,GAAc,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IACzD,EAAO,EAAY,OAAO,WAC1B,EAAY,OAAO,UACnB,AAAQ,EAAI,UAAW,OARJ,CACnB,GAAM,GAAW,KAAM,GAAM,QAAQ,GACrC,EAAO,EAAS,WAChB,AAAG,UAAQ,GAOb,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,AAAI,EAAK,GAAK,EAAO,KAAK,QAAQ,eAAe,EAAI,KAAK,CAAE,MAAO,KAAK,IAAI,IAAM,KAAK,MAAM,IAAM,EAAK,IAAM,KAAM,QAAS,GAAY,KAE3I,EAAI,KAAK,CAAC,EAAG,IAAM,EAAE,MAAQ,EAAE,OAEjC,EAAU,UACV,GAAO,EACP,EAAQ,MA5CS,KEtBrB,2FAIA,GAAI,GACA,GAAO,CAAE,IAAK,GACd,GAAU,OAAO,iBAKrB,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YAAY,YACnF,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,YAAY,WACxE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGF,YAAoB,EAAY,EAAY,EAAQ,EAAW,CAGpE,GAFI,CAAC,GAAc,CAAC,GAChB,kBAAY,UAAW,GAAK,kBAAY,UAAW,GACnD,kBAAY,UAAW,kBAAY,QAAQ,MAAO,GAEtD,GAAM,GAAW,EAAM,EACpB,IAAI,CAAC,EAAK,IAAO,KAAK,IAAI,EAAW,GAAK,EAAW,KAAO,GAC5D,OAAO,CAAC,EAAK,IAAS,EAAM,EAAM,IAC/B,GAAI,GAEV,MADY,MAAK,IAAI,EAAG,IAAM,GAAY,IAIrC,YAAe,EAA0B,EAAQ,EAAY,EAAG,CACrE,GAAI,GAAO,CAAE,WAAY,EAAG,KAAM,GAAI,OAAQ,GAAI,UAAW,IAC7D,GAAI,CAAC,GAAa,CAAC,GAAM,CAAC,MAAM,QAAQ,IAAc,CAAC,MAAM,QAAQ,GAAK,MAAO,GACjF,OAAW,KAAK,GACd,GAAI,EAAE,WAAa,EAAE,KAAM,CACzB,GAAM,GAAO,GAAW,EAAW,EAAE,WACrC,AAAI,EAAO,GAAa,EAAO,EAAK,YAAY,GAAO,IAAK,EAAG,WAAY,IAG/E,MAAO,GAGF,YAAiB,EAAe,CA4CrC,MA3Cc,AAAG,QAAK,IAAM,CAG1B,GAAM,GAAS,EAAM,OAAS,EAAM,QAAU,EAC9C,GAAI,CAAE,aAAqB,WAAS,MAAO,MAE3C,GAAM,GAAM,CAAC,CAAC,IAAM,IAAM,IAAM,MAmChC,MAFa,AA/BC,GAAO,MAAM,SAAW,EAClC,AAAG,QAAM,cAAc,AAAG,aAAW,EAAQ,GAAI,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAC5G,AAAG,QAAM,cAAc,EAAQ,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,MA6B5E,IAAI,OAO1B,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,YAAY,YAAe,EAAO,gBAAkB,GAAK,KAAQ,GAAK,IAAM,EACrG,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAW,GAAQ,GAErB,EACE,EAAM,CACV,IAAa,EACb,OAAgB,UAChB,iBAA0B,EAC1B,WAAsB,IAExB,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,KAAK,YAAY,SAAS,GAAO,KAAM,GAAM,QAAQ,QAC3D,CACL,GAAM,GAAc,EAAO,KAAK,YAAY,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAa,GACxG,EAAO,EAAY,OACnB,AAAQ,EAAI,UAAW,GAEzB,AAAG,UAAQ,GAEP,GACF,CAAG,OAAK,IAAM,CACZ,GAAM,GAAS,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,GAAG,WAC5C,EAAa,KAAK,MAAM,IAAM,KAAK,IAAK,EAAO,GAAK,KAAS,IACnE,AAAI,EAAa,EAAO,KAAK,YAAY,eACvC,GAAI,OAAS,EAAO,IAAM,GAAM,SAAW,OAC3C,EAAI,iBAAmB,KAAK,IAAI,IAAM,IAExC,GAAM,GAAM,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAK,OAAO,GAAG,WAAW,GAChE,EAAM,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAK,WACjD,EAAI,IAAM,KAAK,MAAM,EAAI,EAAM,GAAK,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,IAAM,GAEpH,GAAM,GAAO,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,MAI7C,EAAI,WAAa,CAAC,GAAG,EAAK,cAE5B,EAAK,QAAQ,AAAC,GAAM,AAAG,UAAQ,KAGjC,GAAO,EACP,EAAQ,MAhDS,KCtFrB,GAAM,IAAqB,CAAC,EAAM,IAA0J,CAE1L,GAAM,GAAU,AAAC,GAAW,EAAQ,IAAO,KAAK,GAE1C,EAAY,AAAC,GAAM,CACvB,GAAM,GAAS,KAAK,KAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,IAC9D,SAAE,IAAM,EACR,EAAE,IAAM,EACR,EAAE,IAAM,EACD,GAEH,EAAa,CAAC,EAAG,IAAM,CAC3B,GAAM,GAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACnB,MAAO,CAAC,EAAG,EAAG,IAEV,EAAe,CAAC,EAAG,IAAM,CAC7B,GAAM,GAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GACjC,MAAO,CAAC,EAAG,EAAG,IAGV,EAA6B,AAAC,GAAM,CAExC,GAAM,CAAC,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,GAAO,EAClD,EAAY,GAAY,EAC5B,MAAI,GAAM,EACR,AAAI,EAAM,GACR,GAAS,KAAK,KAAK,GACnB,GAAS,KAAK,MAAM,CAAC,EAAK,GAC1B,EAAS,KAAK,MAAM,CAAC,EAAK,IAE1B,GAAS,CAAC,KAAK,GAAK,EACpB,GAAS,CAAC,KAAK,MAAM,EAAK,GAC1B,EAAS,GAGX,GAAS,KAAK,GAAK,EACnB,GAAS,KAAK,MAAM,EAAK,GACzB,EAAS,GAEJ,CAAE,MAAO,EAAI,CAAC,EAAQ,IAAK,EAAI,CAAC,GAAQ,KAAM,EAAI,CAAC,IAItD,EAAmB,AAAC,GAAS,CACjC,GAAM,GAAU,CAAC,EAAI,EAAI,EAAI,IAAO,KAAK,MAAM,EAAK,EAAI,EAAK,GAY7D,MAVc,CAIZ,MAAO,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAEjE,IAAK,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAE/D,KAAM,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,MAK9D,EAAO,EAAK,QAClB,GAAI,CAAC,GAAQ,EAAK,OAAS,IAAK,MAAO,CAAE,MAAO,CAAE,MAAO,EAAG,IAAK,EAAG,KAAM,GAAK,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,IAEhH,GAAM,GAAO,KAAK,IAAI,EAAK,OAAO,GAAK,EAAW,GAAI,EAAK,OAAO,GAAK,EAAW,IAAM,IAElF,EAAM,CAAC,EAAK,IAAK,EAAK,KAAM,EAAK,KAAM,EAAK,MAAM,IAAI,AAAC,GAAO,CAElE,EAAG,GAAK,EAAW,GAAK,EACxB,EAAG,GAAK,EAAW,GAAK,EACxB,EAAG,KAGC,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KAC5C,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KACxC,EAAS,EAAU,EAAa,EAAQ,IAE9C,EAAS,EAAa,EAAQ,GAI9B,GAAM,GAAmF,CACvF,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,IAI/B,MAAO,CAAE,MAFK,EAA2B,GAEzB,WAGL,GAAa,MAAO,EAAQ,IAAwB,CApGjE,kBAuGE,GAAI,GACA,EACA,EACA,EACA,EACA,EACE,EAoBC,GACP,EAAO,MAAQ,WACf,EAAY,IACZ,GAAM,GAAQ,KAAM,MAAO,OAAO,OAAd,cAAoB,cAAc,EAAO,EAAO,SAEpE,GADA,EAAO,KAAK,KAAO,KAAK,MAAM,IAAQ,GAClC,CAAC,EAAO,MAAO,GACnB,OAAW,KAAQ,GAAO,CAIxB,GAHA,EAAO,QAAQ,YAGX,CAAC,EAAK,OAAS,EAAK,MAAM,mBAAoB,CAChD,EAAI,2BAA4B,EAAK,OACrC,SAGF,GAAM,GAAW,GAAmB,EAAM,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,KAGvE,EAAO,QAAQ,kBACf,AAAI,EAAO,OAAO,MAChB,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,AAAQ,GAAQ,EAAK,MAAO,EAAO,QAAU,GAE/F,GAAO,MAAQ,cACf,EAAY,IACZ,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,KAAM,AAAQ,IAAQ,EAAK,MAAO,EAAO,QAAU,GACrG,EAAO,KAAK,QAAU,KAAK,MAAM,IAAQ,IAE3C,EAAO,QAAQ,gBAGf,EAAO,QAAQ,sBACf,AAAI,EAAO,OAAO,MAChB,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,AAAQ,GAAQ,EAAM,EAAO,QAAU,GAE1F,GAAO,MAAQ,kBACf,EAAY,IACZ,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,KAAM,AAAQ,IAAQ,EAAK,MAAO,EAAO,QAAU,GACtG,EAAO,KAAK,UAAY,KAAK,MAAM,IAAQ,IAE7C,EAAO,QAAQ,oBAGX,EAAO,OAAO,OAChB,EAAC,EAAQ,EAAW,EAAY,EAAc,GAAW,KAAM,SAAQ,IAAI,CAAC,EAAQ,EAAW,EAAY,EAAc,KAG3H,EAAO,QAAQ,gBAIX,CAAC,EAAO,OAAO,KAAK,KAAK,SAAW,qBAAM,cAAN,cAAmB,cAAe,qBAAM,cAAN,cAAmB,eAC3F,OAAO,GAAK,YAAY,YACxB,MAAO,GAAK,YAAY,cAE1B,GAAM,GAAY,MAAK,cAAL,cAAkB,cAAe,MAAK,cAAL,cAAkB,cAEjE,KAAO,KAAK,IAAI,KAAK,IAAI,EAAK,YAAY,YAAY,GAAG,GAAK,EAAK,YAAY,YAAY,GAAG,IAAK,KAAK,IAAI,EAAK,YAAY,aAAa,GAAG,GAAK,EAAK,YAAY,aAAa,GAAG,KACnL,EAGJ,EAAQ,KAAK,IACR,EACH,IAAK,EAAQ,IACb,OAAQ,EAAQ,OAChB,iBAAkB,EAAQ,iBAC1B,UAAW,EAAQ,WACnB,QAAS,EACT,KAAO,IAAa,EAAK,KAAK,MAAM,GAAY,IAAM,EACtD,WACA,OAAQ,EAAO,OAAO,KAAK,SAAS,OAAS,KAAK,QAAL,cAAY,UAAY,OAGvE,KAAK,QAAL,QAAY,UAEZ,EAAO,QAAQ,YAEjB,SAAO,QAAQ,iBACX,EAAO,OAAO,OACZ,GAAO,KAAK,MAAM,MAAO,GAAO,KAAK,KACrC,EAAO,KAAK,KAAK,MAAO,GAAO,KAAK,IACpC,EAAO,KAAK,QAAQ,MAAO,GAAO,KAAK,OACvC,EAAO,KAAK,SAAS,MAAO,GAAO,KAAK,SAEvC,GCpNT,yFCGA,GAAM,IAAgB,EAEtB,YAAyB,EAAW,CAClC,GAAM,GAAO,CAAE,QAAS,CAAC,EAAY,GAAI,EAAY,GAAI,QAAS,CAAC,EAAG,IAChE,EAAmC,GACzC,OAAS,GAAI,EAAG,EAAI,EAAK,QAAQ,OAAQ,IAAK,CAC5C,GAAM,GAAS,EAAK,QAAQ,GACtB,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAa,EAAK,QAAQ,GAChC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAI,EAAG,EAAI,EAAY,IAC9B,EAAQ,KAAK,CAAC,EAAS,MAK/B,MAAO,GAST,GAAM,IAAY,AAAC,GAAoB,EACrC,iBACA,WAAY,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,IAClD,SAAU,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,MAGlD,YAAsB,EAAY,EAAS,EAAW,CACpD,GAAM,GAAY,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAU,AAAG,MAAI,EAAW,GAC5B,EAAW,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC7C,EAAqB,AAAG,MAAI,EAAU,GACtC,EAAoB,AAAG,MAAI,EAAS,GACpC,EAAc,AAAG,MAAI,EAAoB,GACzC,EAAS,AAAG,MAAI,EAAmB,GACnC,EAAO,AAAG,MAAI,EAAmB,GACjC,EAAkB,AAAG,MAAI,EAAQ,GACjC,EAAgB,AAAG,MAAI,EAAM,GAEnC,MAAO,AAAG,YAAS,CAAC,EAAiB,GADlB,GAId,YAAqB,CAO1B,YAAY,EAAO,EAAQ,CACzB,KAAK,MAAQ,EACb,KAAK,YAAc,GAAgB,EAAM,OAAO,GAAG,MAAM,IACzD,KAAK,QAAU,AAAG,WAAS,KAAK,aAChC,KAAK,UAAY,EAAM,OAAO,GAAG,MAAM,GACvC,KAAK,OAAS,OAGV,kBAAiB,EAAY,CAEjC,GAAK,CAAC,GAAgB,EAAW,oBAAwB,EAAW,MAAM,SAAW,GAAO,EAAW,MAAM,GAAK,GAAO,EAAW,MAAM,GAAK,EAAI,MAAO,MAC1J,GAAM,CAAC,EAAO,EAAO,GAAU,AAAG,OAAK,IAAM,CAG3C,GAAM,GAAkB,AAFH,EAAW,eAAe,CAAC,KAAK,UAAW,KAAK,YAEhC,IAAI,OAAO,IAAI,IAC9C,EAAoB,KAAK,MAAM,QAAQ,GACzC,EAEJ,GAAI,MAAM,QAAQ,GAAoB,CACpC,GAAM,GAAS,EAAkB,KAAK,CAAC,EAAG,IAAM,EAAE,KAAO,EAAE,MACrD,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAC9C,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAEpD,EAAW,AADI,AAAG,SAAO,CAAC,EAAW,GAAY,GAC/B,QAAQ,OAE1B,GAAW,EAAkB,UAE/B,GAAM,GAAW,GAAa,EAAU,KAAK,QAAS,CAAC,KAAK,UAAW,KAAK,YACtE,EAAS,AAAG,QAAM,EAAU,CAAC,EAAG,GAAI,CAAC,GAAI,IACzC,EAAY,AAAG,UAAQ,GAAQ,UACrC,MAAO,CAAC,EAAU,EAAU,KAExB,EAAmB,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,KAAK,OAAO,KAAK,SAAS,SAAU,KAAK,OAAO,KAAK,SAAS,aAAc,KAAK,OAAO,KAAK,SAAS,gBAC9K,EAAa,EAAiB,YACpC,EAAiB,UAEjB,GAAM,GAAgB,AADG,EAAW,IAAI,AAAC,GAAa,AAAG,QAAM,EAAO,CAAC,EAAU,GAAI,CAAC,EAAG,MAClD,IAAI,AAAC,GAAgB,CAC1D,GAAM,GAAO,EAAY,YACzB,SAAY,UACL,IAGH,EAAY,EAAO,WACnB,EAAuF,GAC7F,OAAS,GAAI,EAAG,EAAI,EAAc,OAAQ,IAAK,CAC7C,GAAM,GAAW,EAAW,GACtB,EAAa,EAAU,GAC7B,GAAI,EAAa,KAAK,OAAO,KAAK,SAAS,cAAe,CACxD,GAAM,GAAM,GAAU,EAAc,IAC9B,EAAS,KAAK,YAAY,GAC1B,EAAY,AAAG,OAAK,IAAM,AAAG,QAAM,EAAO,CAAC,EAAU,GAAgB,GAAI,CAAC,EAAG,KAAK,UAAU,QAAQ,CAAC,GAAe,MAC1H,EAAe,KAAK,CAAE,MAAK,YAAW,SAAQ,gBAGlD,SAAM,UACN,EAAM,UACN,EAAO,UACA,CACL,MAAO,EACP,YAAa,CAAC,EAAW,MAAM,GAAK,KAAK,UAAW,EAAW,MAAM,GAAK,KAAK,cAKrF,kBAA2B,EAAQ,CACjC,GAAM,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eACjJ,EAAY,GAAI,IAAe,EAAO,GAC5C,MAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACrE,EAAO,OAAO,EAAI,cAAe,EAAM,UACzC,EC/HF,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IACxE,MAAO,CAAE,aAAY,YAGhB,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WAGzC,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GAClD,EAAW,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GACtD,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WClDzC,GAAM,IAAkB,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAKtD,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAQjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAOnB,YAAgC,EAAG,EAAG,CAC3C,MAAO,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAGhC,WAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,EAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,EAAI,EAAkB,GAAI,GAC3B,CAAC,EAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,EAAI,EAAuB,EAAe,IAC1C,EAAI,EAAuB,EAAe,KClFvC,GAAM,GAAmB,CAC9B,WAAY,CACV,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACvD,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,KAEpD,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,KAC7D,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC3D,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,KAC1C,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,KACpD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACzD,kBAAmB,CAAC,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,KACnD,kBAAmB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,IACzC,aAAc,CAAC,IAAK,IAAK,IAAK,IAAK,KACnC,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,KAC5C,YAAa,CAAC,IAAK,IAAK,IAAK,IAAK,KAClC,kBAAmB,CAAC,KACpB,QAAS,CAAC,GACV,WAAY,CAAC,GACb,gBAAiB,CAAC,IAClB,eAAgB,CAAC,KACjB,WAAY,CAAC,KACb,UAAW,CAAC,MAGD,GAA2B,CACtC,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,GAAI,GAAI,GAAI,GAAI,GAAI,KACrD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,IACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,MAKnD,GAAQ,CACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,iBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,iBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,cAAgB,kBACjB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,mBAGT,GAAS,CACpB,IAAK,GAAI,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,EACtJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GACrJ,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAC7I,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAClJ,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GACrJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GACpJ,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GACjJ,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,EAAG,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,EAAG,IAC/I,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,GAAI,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GACtJ,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAClJ,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACnJ,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,IAClJ,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,EAAG,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GACnJ,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,EAAG,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,EAAG,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAClJ,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAChJ,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IACpJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GACrJ,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GACpJ,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EACpJ,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAC9I,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAC9I,IAAK,GAAI,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAwBvI,GAAM,IAAQ,CACP,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/E,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC1C,IAAK,EAAG,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,IAChC,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAChD,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,KAGhC,GAAQ,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,KAE1J,GAAO,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,KAElC,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAM,GAAK,IAAI,AAAC,GAAM,GAAM,ICjoBzC,GAAM,IAAc,AAAO,EAAiB,cACtC,GAAe,AAAO,EAAiB,eAEvC,GAAe,CACnB,WAAY,CAAC,GAAY,GAAI,GAAY,GAAY,OAAS,IAC9D,YAAa,CAAC,GAAa,GAAI,GAAa,GAAa,OAAS,KAG9D,GAAgB,CACpB,MAAO,IACP,MAAO,GACP,aAAc,CAAC,GAAI,AAAO,EAAiB,kBAAqB,KAG5D,GAAqB,CACzB,QAAS,EACT,SAAU,EACV,KAAM,EACN,MAAO,EACP,QAAS,EACT,SAAU,EACV,aAAc,CAAC,EAAG,IAGd,GAAgB,CACpB,YAAa,EACb,YAAa,EACb,MAAO,GACP,eAAgB,IAKlB,YAA+B,EAAW,EAAW,EAAQ,EAAM,CACjE,OAAS,GAAI,EAAG,EAAI,AAAO,GAAyB,OAAQ,IAAK,CAC/D,GAAM,CAAE,MAAK,WAAY,AAAO,GAAyB,GACnD,EAAkB,AAAO,EAAiB,GAAG,IAAS,KAC5D,GAAI,CAAC,GAAQ,EAAK,SAAS,GACzB,OAAS,GAAI,EAAG,EAAI,EAAQ,OAAQ,IAAK,CACvC,GAAM,GAAQ,EAAQ,GACtB,EAAU,EAAgB,IAAM,CAC9B,EAAU,GAAO,GAAI,EAAU,GAAO,GACrC,GAAU,GAAO,GAAK,EAAU,EAAgB,IAAI,IAAM,KAO9D,YAAe,CAYpB,YAAY,EAAqB,EAAc,EAAW,CAnE5D,QAqEI,KAAK,YAAc,GACnB,KAAK,oBAAsB,EAC3B,KAAK,aAAe,EACpB,KAAK,UAAY,EACjB,KAAK,QAAU,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,KAAM,EACjE,KAAK,SAAW,kBAAc,OAAO,GAAG,MAAM,KAAM,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,IAChG,KAAK,SAAW,kBAAW,OAAO,GAAG,MAAM,KAAM,EACjD,KAAK,YAAc,IACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAGvB,mBAAmB,EAAW,EAAK,EAAO,EAAgB,CACxD,GAAM,GAAU,AAAS,GAAW,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC1E,EAAe,EAAU,IAAI,AAAC,GAAW,CAC7C,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAM,KAEF,EAAwB,IAAU,EAAK,AAAK,GAAoB,EAAO,CAAC,EAAG,IAAW,GACtF,EAAiB,IAAU,EAAK,EAAa,IAAI,AAAC,GAAW,CAAC,GAAG,AAAK,GAAY,EAAO,GAAuB,EAAM,KAAQ,EAC9H,EAAyB,IAAU,EAAK,AAAK,GAAsB,GAAuB,GAC1F,EAAY,CAAC,GAAG,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAAa,GACrG,MAAO,GAAc,IAAI,AAAC,GAAW,CACnC,EAAM,GAAK,AAAK,EAAI,EAAW,EAAsB,IACrD,EAAM,GAAK,AAAK,EAAI,EAAW,EAAsB,IACrD,EAAM,KAIV,iCAAiC,EAAW,CAC1C,GAAM,GAAW,EAAU,GAAa,WAAW,IAAI,GACjD,EAAY,EAAU,GAAa,YAAY,IAAI,GACzD,MAAO,GAAW,EAIpB,UAAU,EAAW,EAAM,EAAqB,EAAqB,EAAO,GAAO,CACjF,GAAM,GAAM,AAAS,GAAY,AAAS,GAAW,KAAK,8BAA8B,CAAC,EAAU,GAAsB,EAAU,KAAwB,KAAK,cAC1J,EAAU,AAAS,GAAW,GAChC,EAAO,AAAG,QAAM,cAAc,EAAM,CAAC,CACvC,EAAI,WAAW,GAAK,KAAK,SACzB,EAAI,WAAW,GAAK,KAAK,SAAU,EAAI,SAAS,GAAK,KAAK,SAC1D,EAAI,SAAS,GAAK,KAAK,WACrB,CAAC,GAAI,CAAC,KAAK,SAAU,KAAK,WAC9B,MAAI,IAAQ,AAAG,MAAI,MAAM,YACvB,GAAO,AAAG,QAAM,cAAc,IAEzB,CAAE,MAAK,UAAS,QAIzB,aAAa,EAAS,EAAQ,EAAY,EAAO,GAAO,CACtD,GAAM,GAA6B,GACnC,OAAS,GAAI,EAAG,EAAI,GAAc,eAAgB,IAAK,CACrD,GAAM,GAAI,EAAQ,EAAI,GAChB,EAAI,EAAQ,EAAI,EAAI,GACpB,EAAI,EAAQ,EAAI,EAAI,GAC1B,EAAa,KAAK,CACf,GAAQ,EAAK,EAAI,KAAK,SAAc,EAAI,KAAK,UAAa,EAAW,GAAK,EAAO,WAAW,GAC5F,EAAI,KAAK,SAAY,EAAW,GAAK,EAAO,WAAW,GAAI,IAGhE,MAAO,CAAE,UAAW,EAAc,KAAM,EAAa,MAAM,GAAc,QAI3E,sBAAsB,EAAW,EAAY,EAAW,CACtD,GAAM,GAAe,EAAU,AAAO,EAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAe,EAAU,AAAO,EAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAY,GAAe,GAAgB,EAEjD,MAAO,GAAW,IAAI,CAAC,EAAO,IAAM,CAClC,GAAI,GAAI,EACR,MAAI,KAAM,EACR,EAAI,EACK,IAAM,GACf,GAAI,GAEC,CAAC,EAAM,GAAI,EAAM,GAAI,UAI1B,SAAQ,EAAO,EAAQ,CAC3B,GAAI,GAAc,GAEd,EAQJ,GAPK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,SAAS,YAAe,CAAC,EAAO,KAAK,KAAK,SAAW,CAAC,EAAO,iBACnH,GAAW,KAAM,MAAK,oBAAoB,iBAAiB,GAC3D,KAAK,QAAU,GAEb,EAAO,gBAAgB,KAAK,UAG5B,CAAC,EAAO,gBAAmB,GAAY,EAAS,OAAU,EAAC,EAAO,KAAK,KAAK,SAAY,EAAS,MAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,SAAS,UAAa,CACrM,KAAK,YAAc,GACnB,KAAK,cAAgB,EACrB,OAAW,KAAY,GAAS,MAC9B,KAAK,YAAY,KAAK,CAAE,WAAY,EAAS,IAAI,WAAW,WAAY,SAAU,EAAS,IAAI,SAAS,WAAY,UAAW,EAAS,UAAW,WAAY,EAAS,aAE1K,AAAI,KAAK,YAAY,OAAS,GAAG,GAAc,IAKjD,GAFI,EAAO,KAAK,SAAS,aAAe,KAAK,gBAAkB,GAAG,MAAK,QAAU,GAE7E,EAAa,CACf,GAAI,CAAC,GAAY,CAAC,EAAS,OAAU,EAAS,MAAM,SAAW,EAC7D,YAAK,YAAc,GACnB,KAAK,cAAgB,EACd,KAET,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAY,AAAS,GAAoB,CAAE,WAAY,KAAK,YAAY,GAAG,WAAY,SAAU,KAAK,YAAY,GAAG,UAAY,EAAS,aAC1I,EAAc,AAAS,GAAW,GAClC,EAAgB,AAAS,GAAY,GACrC,EAAY,KAAK,YAAY,GAAG,UAAU,YAC1C,EAAa,KAAK,YAAY,GAAG,WACvC,KAAK,YAAY,GAAK,IAAK,EAAe,aAAY,cAG1D,AAAI,GAAY,EAAS,OACvB,EAAS,MAAM,QAAQ,AAAC,GAAe,CACrC,EAAW,IAAI,WAAW,UAC1B,EAAW,IAAI,SAAS,UACxB,EAAW,UAAU,YAIzB,GAAI,GAAU,AAAG,OAAK,IAAM,KAAK,YAAY,IAAI,CAAC,EAAK,IAAM,CAC3D,GAAM,GAAgB,EAAI,WAGtB,EACA,EAAQ,EACR,EAEJ,GAAI,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAW,AAAG,MAAI,MAAM,WAAY,CACxF,GAAM,CAAC,EAAc,GAAoB,EAAI,UAAU,QAAU,GAAc,MAAS,GAAc,aAAe,GAAmB,aACxI,EAAQ,AAAK,GAAgB,EAAI,UAAU,GAAe,EAAI,UAAU,IACxE,GAAM,GAAa,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC/E,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAChE,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,AAAI,EAAO,KAAK,KAAK,QAAS,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAC5K,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,QAAS,KAAK,UAAU,IAAI,SACjJ,CACL,EAAsB,GACtB,GAAM,GAAc,EAAM,QAC1B,AAAI,EAAO,KAAK,KAAK,QAAS,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAC3K,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,QAAS,KAAK,UAAU,IAAI,KAIvJ,GAAI,CAAC,EAAO,KAAK,KAAK,QASpB,MARmB,CACjB,OAAQ,KACR,MACA,eAAgB,KAChB,gBACA,WAAY,EAAI,WAChB,MAAO,GAKX,GAAM,CAAC,CAAE,EAAY,GAAiB,KAAK,aAAa,QAAQ,GAC1D,EAAiB,EAAW,WAAW,GAC7C,GAAI,EAAiB,EAAO,KAAK,SAAS,cAAe,MAAO,MAEhE,GAAI,GAAY,AADO,AAAG,UAAQ,EAAe,CAAC,GAAI,IACvB,YAE/B,GAAI,EAAO,KAAK,KAAK,QAAS,CAC5B,GAAM,CAAE,IAAK,EAAY,QAAS,EAAgB,KAAM,GAAgB,KAAK,UAAU,EAAW,EAAM,GAAa,WAAW,GAAI,GAAa,WAAW,GAAI,IAC1J,CAAE,IAAK,EAAa,QAAS,EAAiB,KAAM,GAAiB,KAAK,UAAU,EAAW,EAAM,GAAa,YAAY,GAAI,GAAa,YAAY,IAE3J,EAAqB,AADJ,KAAK,UAAU,QAAQ,AAAG,SAAO,CAAC,EAAa,KAC5B,WACpC,GAAc,EAAmB,MAAM,EAAG,GAAc,eAAiB,GACzE,CAAE,UAAW,GAAkB,KAAM,IAAsB,KAAK,aAAa,GAAa,EAAY,EAAgB,IACtH,GAAe,EAAmB,MAAM,GAAc,eAAiB,GACvE,CAAE,UAAW,GAAmB,KAAM,IAAuB,KAAK,aAAa,GAAc,EAAa,GAC1G,GAAgC,KAAK,iCAAiC,GAC5E,AAAI,KAAK,IAAI,IAAiC,GAC5C,IAAsB,EAAW,GAAkB,OAAQ,MAC3D,GAAsB,EAAW,GAAmB,QAAS,OAGxD,AAAI,GAAgC,EACzC,GAAsB,EAAW,GAAkB,OAAQ,CAAC,YAAa,cAEzE,GAAsB,EAAW,GAAmB,QAAS,CAAC,YAAa,cAE7E,GAAM,IAAyB,KAAK,sBAAsB,EAAW,GAAmB,QAClF,GAA0B,KAAK,sBAAsB,EAAW,GAAoB,SAC1F,EAAY,EAAU,OAAO,IAAwB,OAAO,IAI9D,GAAM,GAAwB,KAAK,mBAAmB,EAAW,EAAK,EAAO,GAC7E,EAAM,AAAS,GAAW,KAAK,8BAA8B,GAAwB,KACrF,GAAM,GAAoB,AAAG,WAAS,GAGtC,GAAI,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAW,EAAO,KAAK,YAAY,SAAW,AAAG,MAAI,MAAM,WAAY,CAC3H,GAAM,CAAC,EAAc,GAAoB,EAAI,UAAU,QAAU,GAAc,MAAS,GAAc,aAAe,GAAmB,aACxI,EAAQ,AAAK,GAAgB,EAAI,UAAU,GAAe,EAAI,UAAU,IACxE,GAAM,GAAa,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC/E,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,AAAG,QAAM,iBAAiB,EAAM,UAAW,EAAO,EAAG,GAC1E,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAGrJ,GAAM,GAAa,CACjB,OAAQ,EACR,MACA,iBACA,gBACA,MAAO,EACP,aAII,EAAyB,AAAS,GAAY,GACpD,YAAK,YAAY,GAAK,IAAK,EAAwB,UAAW,EAAuB,WAAY,EAAI,WAAY,kBAE1G,KAGT,SAAU,EAAQ,OAAO,AAAC,GAAM,IAAM,MAElC,EAAO,KAAK,KAAK,SAAS,MAAK,YAAc,KAAK,YAAY,OAAO,AAAC,GAAM,EAAE,eAAiB,EAAO,KAAK,SAAS,gBACxH,KAAK,cAAgB,EAAQ,OAEtB,EAGT,8BAA8B,EAAW,CACvC,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,WAAU,eLhT5B,YAAwB,CAI7B,YAAY,EAAW,EAAgB,EAAW,EAAQ,CACxD,KAAK,aAAe,GAAiB,IAAS,EAAW,EAAgB,GACzE,KAAK,OAAS,OAGV,eAAc,EAAO,EAAkH,CAC3I,GAAM,GAAc,KAAM,MAAK,aAAa,QAAQ,EAAO,GACrD,EAAgH,GACtH,OAAW,KAAe,IAAe,GAAK,CAC5C,GAAI,EAAW,mBAAoB,SACnC,GAAM,GAAO,EAAW,OAAS,EAAW,OAAO,YAAc,GAC3D,EAAU,EAAK,IAAI,AAAC,GAAO,CAC/B,EAAG,GAAK,EAAM,MAAM,GACpB,EAAG,GAAK,EAAM,MAAM,GACpB,EAAG,GAAK,KAAK,aAAa,WAEtB,EAAc,GACpB,GAAI,GAAQ,EAAK,OAAS,EACxB,OAAW,KAAO,QAAO,KAAY,GAAmB,EAAY,GAAO,AAAO,EAAiB,GAAK,IAAI,AAAC,GAAU,EAAK,IAE9H,GAAM,GAAM,EAAW,IAAM,CAC3B,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,IACtC,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,IACtC,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,IAC7F,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KAC3F,EACE,EAAS,EAAW,IAAM,CAC9B,EAAW,IAAI,WAAW,GAAK,EAAM,MAAM,GAC3C,EAAW,IAAI,WAAW,GAAK,EAAM,MAAM,GAC1C,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAM,EAAM,MAAM,GACzE,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAM,EAAM,MAAM,IACxE,GACJ,EAAQ,KAAK,CACX,WAAY,KAAK,MAAM,IAAM,EAAW,gBAAkB,IAAM,EAAW,eAAiB,GAAK,IACjG,cAAe,KAAK,MAAM,IAAM,EAAW,eAAiB,IAC5D,eAAgB,KAAK,MAAM,IAAM,EAAW,gBAAkB,IAC9D,MACA,SACA,OACA,UACA,cACA,MAAO,EAAW,MAAQ,EAAW,MAAM,QAAU,OAEnD,EAAW,QAAQ,EAAW,OAAO,UACrC,EAAW,OAAO,EAAW,MAAM,UAEzC,MAAO,KAIP,EAA6B,CAAC,KAAM,KAAM,MAC9C,kBAA2B,EAAoC,CAC7D,MAAK,CAAC,EAAW,IAAM,EAAO,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QACjI,GAAa,KAAM,SAAQ,IAAI,CAC5B,CAAC,EAAW,IAAM,EAAO,KAAK,QAAW,AAAU,GAAK,GAAU,KAClE,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAAkB,KAC3L,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAAkB,OAE1L,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAU,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACjF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,WAEtD,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAU,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACjF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,YAEjD,EAAO,OAChB,GAAI,gBAAiB,EAAW,GAAG,MAAM,UACzC,EAAI,gBAAiB,EAAW,GAAG,UACnC,EAAI,gBAAiB,EAAW,GAAG,WAEpB,GAAI,IAAkB,EAAW,GAAI,EAAW,GAAI,EAAW,GAAI,GAI/E,GAAM,IAAuB,GACvB,GAAe,GMtF5B,6CCAO,GAAM,IAAY,CACvB,OAAQ,UAAW,WAAY,UAAW,WAAY,eACtD,gBAAiB,YAAa,aAAc,YAAa,aACzD,UAAW,WAAY,WAAY,YAAa,YAAa,cAGlD,GAAQ,GAAU,OAElB,GAAU,GAAU,OAAO,CAAC,EAAQ,EAAW,IAC1D,GAAO,GAAa,EACb,GACN,IAEG,GAAqB,CACzB,CAAC,UAAW,gBAAiB,CAAC,YAAa,gBAC3C,CAAC,YAAa,aAAc,CAAC,UAAW,YACxC,CAAC,WAAY,aAAc,CAAC,WAAY,iBACxC,CAAC,aAAc,iBAAkB,CAAC,aAAc,cAChD,CAAC,WAAY,aAAc,CAAC,YAAa,cACzC,CAAC,eAAgB,iBAAkB,CAAC,UAAW,aAEpC,GAAuB,GAAmB,IAAI,CAAC,CAAC,EAAY,KAAiB,CAAC,GAAQ,GAAa,GAAQ,KAE3G,GAAY,CACvB,CAAC,OAAQ,WAAY,CAAC,UAAW,WAAY,CAAC,OAAQ,YACtD,CAAC,WAAY,YAAa,CAAC,OAAQ,gBACnC,CAAC,eAAgB,aAAc,CAAC,YAAa,aAC7C,CAAC,eAAgB,WAAY,CAAC,UAAW,YACzC,CAAC,WAAY,aAAc,CAAC,OAAQ,iBACpC,CAAC,gBAAiB,cAAe,CAAC,aAAc,cAChD,CAAC,gBAAiB,YAAa,CAAC,WAAY,aAC5C,CAAC,YAAa,eCfT,YAAwB,EAAW,CACxC,GAAM,GAAQ,EAAU,OAAO,CAAC,CAAE,OAAM,OAAM,OAAM,QAAQ,CAAE,SAAU,CAAE,IAAG,QAAW,EACtF,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,KACnB,CACF,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,oBAEf,MAAO,CAAC,EAAM,KAAM,EAAM,KAAM,EAAM,KAAO,EAAM,KAAM,EAAM,KAAO,EAAM,MAGvE,YAAoB,EAAO,CAAC,EAAQ,GAAQ,CAAC,EAAuB,GAAuB,CAChG,GAAM,GAAY,CAAC,EAAM,EAAQ,IAAY,EAC3C,MAAO,EAAK,MACZ,IAAK,CAAC,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,IACrI,UAAW,EAAK,UAAU,IAAI,CAAC,CAAE,QAAO,OAAM,cAAgB,EAC5D,QACA,OACA,SAAU,CAAE,EAAG,KAAK,MAAM,EAAS,EAAI,GAAS,EAAG,KAAK,MAAM,EAAS,EAAI,SAK/E,MADoB,GAAM,IAAI,AAAC,GAAS,EAAU,EAAM,EAAS,EAAuB,EAAQ,IAK3F,YAAc,CAKnB,YAAY,EAAS,EAAiB,CACpC,KAAK,cAAgB,GAAI,OAAM,GAC/B,KAAK,iBAAmB,GACxB,KAAK,gBAAkB,EAGzB,QAAQ,EAAG,CACT,KAAK,cAAc,EAAE,KAAK,kBAAoB,EAC9C,KAAK,KAAK,KAAK,kBAGjB,SAAU,CACR,GAAM,GAAM,KAAK,cAAc,GAC/B,YAAK,SAAS,EAAG,KAAK,oBACtB,KAAK,KAAK,GACV,KAAK,cAAc,KAAK,iBAAmB,GAAK,KACzC,EAGT,OAAQ,CAAE,MAAO,MAAK,mBAAqB,GAE3C,MAAO,CAAE,MAAO,MAAK,iBAAmB,EAExC,KAAM,CAAE,MAAO,MAAK,cAAc,MAAM,EAAG,KAAK,iBAAmB,GAEnE,KAAM,CAAE,MAAO,MAAK,cAAc,GAElC,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,KAAK,KAAK,MAAM,EAAI,GAAI,IAC3C,KAAK,SAAS,EAAG,KAAK,MAAM,EAAI,IAChC,EAAI,KAAK,MAAM,EAAI,GAIvB,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,kBAAkB,CACrC,GAAI,GAAI,EAAI,EAEZ,GADI,EAAI,KAAK,kBAAoB,KAAK,KAAK,EAAG,EAAI,IAAI,IAClD,CAAC,KAAK,KAAK,EAAG,GAAI,MACtB,KAAK,SAAS,EAAG,GACjB,EAAI,GAIR,WAAW,EAAG,CACZ,MAAO,MAAK,gBAAgB,KAAK,cAAc,IAGjD,KAAK,EAAG,EAAG,CACT,MAAO,MAAK,WAAW,GAAK,KAAK,WAAW,GAG9C,SAAS,EAAG,EAAG,CACb,GAAM,GAAI,KAAK,cAAc,GAC7B,KAAK,cAAc,GAAK,KAAK,cAAc,GAC3C,KAAK,cAAc,GAAK,IAIrB,YAAwB,EAAG,EAAG,EAAU,EAAS,CACtD,MAAO,CACL,EAAG,EAAQ,IAAI,EAAG,EAAG,GACrB,EAAG,EAAQ,IAAI,EAAG,EAAG,EAAe,KAIjC,YAAwB,EAAM,EAAc,EAAS,CAC1D,GAAM,CAAE,WAAU,WAAU,GAAI,GAAa,EACvC,CAAE,IAAG,KAAM,GAAe,EAAU,EAAU,EAAU,GAC9D,MAAO,CACL,EAAG,EAAK,SAAW,EAAe,EAClC,EAAG,EAAK,SAAW,EAAe,GAY/B,YAAe,EAAG,EAAK,EAAK,CACjC,MAAI,GAAI,EAAY,EAChB,EAAI,EAAY,EACb,EAGF,YAAyB,EAAI,EAAI,EAAI,EAAI,CAC9C,GAAM,GAAK,EAAK,EACV,EAAK,EAAK,EAChB,MAAO,GAAK,EAAK,EAAK,EAGjB,YAAoB,EAAG,EAAG,CAC/B,MAAO,CAAE,EAAG,EAAE,EAAI,EAAE,EAAG,EAAG,EAAE,EAAI,EAAE,GCjJpC,GAAM,IAAqB,EACrB,GAAsB,GAE5B,YAAkC,EAAQ,EAAgB,EAAkB,EAAc,EAAS,EAAc,EAAe,EAAmB,EAAG,CACpJ,GAAM,GAAkB,AAAC,GAAW,EAClC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAG,GACvC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAI,EAAc,MAAM,GAAK,EAAK,KAElE,EAA2B,CAAC,EAAO,EAAQ,IAAW,EAC1D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,GAAe,EAAG,EAAS,GAC/D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,GAAe,EAAG,EAAQ,KAG1D,CAAC,EAAQ,GAAS,EAAa,MAE/B,EAAwB,EAAyB,EAAe,SAAU,EAAQ,GAClF,EAAe,EAAgB,GAEjC,EADmB,AAAM,GAAW,EAAe,SAAU,GAEjE,OAAS,GAAI,EAAG,EAAI,EAAkB,IAAK,CACzC,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,GACzE,EAAc,AAAM,GAAe,EAAsB,EAAG,EAAsB,EAAG,EAAkB,GAC7G,EAAiB,AAAM,GAAW,CAChC,EAAG,EAAsB,EAAI,EAC7B,EAAG,EAAsB,EAAI,GAC5B,CAAE,EAAG,EAAY,EAAG,EAAG,EAAY,IAExC,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,GACzE,EAAQ,EAAa,IAAI,EAAsB,EAAG,EAAsB,EAAG,GACjF,MAAO,CAAE,SAAU,EAAgB,KAAM,AAAI,GAAU,GAAmB,SAGrE,YAAoB,EAAM,EAAQ,EAAS,EAAc,EAAkB,EAAkB,CAClG,GAAM,GAAuB,AAAI,GAAU,IAAI,CAAC,CAAC,EAAgB,KAAoB,CAAC,AAAI,GAAQ,GAAiB,AAAI,GAAQ,KACzH,EAAqB,EAAqB,IAAI,CAAC,CAAC,CAAE,KAAkB,GACpE,EAAqB,EAAqB,IAAI,CAAC,CAAC,KAAmB,GACnE,EAAW,EAAO,MAAM,GACxB,EAAW,EAAmB,OAC9B,EAAoB,GAAI,OAAM,GAE9B,CAAE,KAAM,EAAU,MAAO,GAAc,EACvC,EAAY,AAAM,GAAe,EAAU,EAAc,GAC/D,EAAkB,EAAS,IAAM,CAC/B,MAAO,EACP,KAAM,AAAI,GAAU,EAAS,IAC7B,SAAU,GAGZ,OAAS,GAAO,EAAW,EAAG,GAAQ,EAAG,EAAE,EAAM,CAC/C,GAAM,GAAmB,EAAmB,GACtC,EAAmB,EAAmB,GAC5C,AAAI,EAAkB,IAAqB,CAAC,EAAkB,IAC5D,GAAkB,GAAoB,GAAyB,EAAM,EAAkB,GAAmB,EAAkB,EAAQ,EAAS,EAAc,IAI/J,OAAS,GAAO,EAAG,EAAO,EAAU,EAAE,EAAM,CAC1C,GAAM,GAAmB,EAAmB,GACtC,EAAmB,EAAmB,GAC5C,AAAI,EAAkB,IAAqB,CAAC,EAAkB,IAC5D,GAAkB,GAAoB,GAAyB,EAAM,EAAkB,GAAmB,EAAkB,EAAQ,EAAS,EAAc,IAG/J,MAAO,GAGT,YAAqC,EAAY,EAAO,EAAU,EAAU,EAAQ,CAClF,GAAM,CAAC,EAAQ,GAAS,EAAO,MAC3B,EAAe,GACb,EAAS,KAAK,IAAI,EAAW,GAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAAU,CACvD,GAAM,GAAS,KAAK,IAAI,EAAW,GAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAC7C,GAAI,EAAO,IAAI,EAAU,EAAU,GAAc,EAAO,CACtD,EAAe,GACf,MAGJ,GAAI,CAAC,EAAc,MAErB,MAAO,GAGF,YAAiC,EAAgB,EAAQ,CAC9D,GAAM,CAAC,EAAQ,EAAO,GAAgB,EAAO,MACvC,EAAQ,GAAU,IAAQ,EAAS,EAAQ,EAAc,CAAC,CAAE,WAAY,GAC9E,OAAS,GAAW,EAAG,EAAW,EAAQ,EAAE,EAC1C,OAAS,GAAW,EAAG,EAAW,EAAO,EAAE,EACzC,OAAS,GAAa,EAAG,EAAa,EAAc,EAAE,EAAY,CAChE,GAAM,GAAQ,EAAO,IAAI,EAAU,EAAU,GAE7C,AAAI,EAAQ,GAER,GAA4B,EAAY,EAAO,EAAU,EAAU,IAAS,EAAM,QAAQ,CAAE,QAAO,KAAM,CAAE,WAAU,WAAU,GAAI,KAI7I,MAAO,GAGT,YAAsB,EAAO,EAAkB,CAAE,IAAG,KAAK,EAAY,CACnE,MAAO,GAAM,KAAK,CAAC,CAAE,eAAgB,CACnC,GAAM,GAAwB,EAAU,GAAY,SACpD,MAAO,AAAM,IAAgB,EAAG,EAAG,EAAsB,EAAG,EAAsB,IAAM,IAI5F,YAA0B,EAAe,EAAkB,EAAmB,CAK5E,MAAO,AAJ6B,GAAkB,OAAO,CAAC,EAAQ,CAAE,WAAU,SAAS,IACpF,IAAa,EAAe,EAAkB,EAAU,IAAa,IAAU,GAC7E,GACN,GACkC,EAAkB,OAGlD,YAAgB,EAAe,EAAc,EAAwB,EAAwB,EAAW,EAAe,EAAgB,CAC5I,GAAM,GAA4D,GAC5D,EAAQ,GAAwB,EAAgB,GAChD,EAAmB,GAAa,EAEtC,KAAO,EAAM,OAAS,GAAiB,CAAC,EAAM,SAAS,CAErD,GAAM,GAAO,EAAM,UAEb,EAAkB,AAAM,GAAe,EAAK,KAAM,GAAqB,GAC7E,GAAI,GAAa,EAAO,EAAkB,EAAiB,EAAK,KAAK,IAAK,SAG1E,GAAM,GAAY,AADG,GAAW,EAAM,EAAc,EAAe,GAAqB,EAAwB,GACjF,OAAO,AAAC,GAAM,EAAE,MAAQ,GACjD,EAAQ,GAAiB,EAAO,EAAkB,GAClD,EAAM,AAAM,GAAe,GACjC,AAAI,EAAQ,GAAgB,EAAM,KAAK,CAAE,YAAW,MAAK,MAAO,KAAK,MAAM,IAAM,GAAS,MAE5F,MAAO,GHrIT,GAAI,GACE,GAAiB,CAAC,+BAA6C,gCAAoD,yCAA+D,0CAExL,kBAA8B,EAAO,EAAQ,CAC3C,GAAM,GAAM,AAAG,OAAK,IAAM,CAExB,GAAM,GAAa,AADH,EAAM,eAAe,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAC3D,UAAU,IAAI,OAAO,IAAI,GAE9C,EAAY,AADF,EAAM,QAAQ,EAAY,IAChB,IAAI,AAAC,GAAM,EAAE,QAAQ,CAAC,KAChD,SAAU,GAAK,EAAU,GAAG,UACrB,IAGH,EAAU,KAAM,SAAQ,IAAI,EAAI,IAAI,AAAC,GAAW,EAAO,WAC7D,OAAW,KAAK,GAAK,EAAE,UAEvB,GAAM,GAAU,KAAM,AAAM,IAAO,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAO,KAAK,UAAW,EAAO,KAAK,cAAe,EAAO,KAAK,gBAGjJ,MAFe,AAAK,IAAW,EAAS,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAAK,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAK7H,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,WAC5D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EIjCT,8CCEO,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IAClE,EAAgB,EAAI,cAAc,IAAI,AAAC,GACvB,CAAC,EAAM,GAAK,EAAO,GAAI,EAAM,GAAK,EAAO,KAG/D,MAAO,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAI,YAGzD,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eAG7C,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GAClD,EAAW,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GACtD,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eCnD7C,YAAmB,CAQxB,YAAY,EAAO,EAAW,EAAkB,CAC9C,KAAK,MAAQ,EACb,KAAK,QAAU,EAAiB,IAAI,AAAC,GAAW,CAAC,EAAO,SAAU,EAAO,WACzE,KAAK,cAAgB,AAAG,WAAS,KAAK,SACtC,KAAK,UAAY,EACjB,KAAK,gBAAkB,AAAG,WAAS,CAAC,EAAW,IAC/C,KAAK,sBAAwB,AAAG,WAAS,CAAC,EAAY,EAAG,EAAY,IAGvE,eAAe,EAAO,CACpB,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAa,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IAC1C,EAAW,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IACxC,EAAkB,AAAG,MAAI,AAAG,MAAI,EAAY,KAAK,iBAAkB,KAAK,eACxE,EAAe,AAAG,MAAI,EAAU,KAAK,uBACrC,EAAc,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACjE,EAAY,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACrE,MAAO,AAAG,YAAS,CAAC,EAAa,GAAY,KAIjD,mBAAmB,EAAkB,EAAO,CAC1C,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAY,AAAG,MAAI,AAAG,MAAI,EAAiB,QAAQ,CAAC,GAAI,EAAG,IAAK,KAAK,iBAAkB,KAAK,QAAQ,IAC1G,MAAO,AAAG,OAAI,EAAW,KAAK,wBAI5B,UAAS,EAAO,EAAQ,CAC5B,GAAM,GAAU,KAAK,MAAM,QAAQ,GAC7B,EAAc,EAAQ,UAC5B,EAAQ,UACR,GAAM,GAAU,AAAG,OAAK,IAAM,AAAG,UAAQ,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,KAAK,WAC3E,EAAS,EAAQ,WACjB,EAAW,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAQ,KAAK,eAAe,GAClC,EAAS,UACT,GAAM,GAAY,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,EAAO,KAAK,SAAU,EAAO,KAAK,aAAc,EAAO,KAAK,gBAC7H,EAAW,EAAU,YAE3B,EAAQ,UACR,EAAU,UACV,GAAM,GAAqE,GAC3E,OAAW,KAAS,GAClB,GAAI,EAAO,IAAU,EAAO,KAAK,cAAe,CAC9C,GAAM,GAAc,AAAG,QAAM,EAAO,CAAC,EAAO,GAAI,CAAC,EAAG,KAC9C,EAAmB,AAAG,QAAM,EAAa,CAAC,EAAO,GAAI,CAAC,EAAG,KACzD,EAAgB,AAAG,OAAK,IAAM,KAAK,mBAAmB,EAAkB,GAAO,QAAQ,CAAC,GAAI,KAClG,EAAiB,UACjB,EAAM,KAAK,CAAE,IAAK,EAAa,gBAAe,WAAY,EAAO,KAGrE,SAAY,UACZ,EAAM,UACC,OAGH,oBAAmB,EAAO,EAAQ,CACtC,GAAM,GAAc,EAAM,MAAM,GAC1B,EAAa,EAAM,MAAM,GACzB,EAAQ,AAAG,OAAK,IAAM,EAAM,eAAe,CAAC,KAAK,UAAW,KAAK,YAAY,IAAI,OAAO,IAAI,IAC5F,EAAc,KAAM,MAAK,SAAS,EAAO,GAC/C,EAAM,UACN,GAAM,GAAmB,GACzB,GAAI,CAAC,GAAe,EAAY,SAAW,EAAG,MAAO,GACrD,OAAW,KAAc,GAAa,CACpC,GAAM,GAAQ,EAAW,IAAI,WACvB,EAAa,EAAM,MAAM,EAAG,GAC5B,EAAW,EAAM,MAAM,EAAG,GAC1B,EAAgB,EAAW,cAAc,YAC/C,EAAW,IAAI,UACf,EAAW,cAAc,UACzB,EAAM,KAAK,AAAI,GAAoB,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAW,YAAc,CAAC,EAAa,KAAK,UAAW,EAAc,KAAK,aAElK,MAAO,KCrFJ,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAGjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAGnB,GAAM,IAAyB,CAAC,EAAG,IAAM,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAEvE,WAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,EAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,EAAI,EAAkB,GAAI,GAC3B,CAAC,EAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,EAAI,EAAuB,EAAe,IAC1C,EAAI,EAAuB,EAAe,KC7D9C,GAAM,IAA0B,EAE1B,GAA0B,KAC1B,GAAoB,CAAC,EAAG,EAAG,EAAG,GAAI,GAAI,EAAG,GACzC,GAAoC,EACpC,GAA6C,EAE5C,QAAmB,CAQxB,YAAY,EAAc,EAAkB,EAAW,CACrD,KAAK,aAAe,EACpB,KAAK,iBAAmB,EACxB,KAAK,UAAY,EACjB,KAAK,YAAc,GACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAGvB,uBAAuB,EAAe,EAAgB,CACpD,GAAM,GAAuB,EAAc,IAAI,AAAC,GAAU,AAAK,GAAY,CAAC,GAAG,EAAO,GAAI,IACpF,EAAgB,KAAK,8BAA8B,GAEzD,MAAO,AAAI,IAAW,AAAI,GAAY,GAAgB,IAGxD,uBAAuB,EAAW,CAChC,GAAM,GAAc,KAAK,8BAA8B,GAEjD,EAAgB,AAAI,GAAW,AAAI,GAAY,GAAc,IACnE,EAAc,cAAgB,GAC9B,OAAS,GAAI,EAAG,EAAI,GAAkB,OAAQ,IAC5C,EAAc,cAAc,KAAK,EAAU,GAAkB,IAAI,MAAM,EAAG,IAE5E,MAAO,GAGT,mBAAmB,EAAW,EAAM,EAAO,EAAgB,CACzD,GAAM,GAAU,AAAI,GAAW,GACzB,EAAc,CAAC,EAAQ,GAAK,KAAK,UAAW,EAAQ,GAAK,KAAK,UAAY,GAAQ,GAAK,EAAQ,IAAM,KAAK,UAAY,GACtH,EAAe,EAAU,IAAI,AAAC,GAAU,CAC5C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAK,EAAM,KAEnB,EAAuB,AAAK,GAAoB,EAAO,CAAC,EAAG,IAC3D,EAAgB,EAAa,IAAI,AAAC,GAE/B,CAAC,GADQ,AAAK,GAAY,EAAO,GACpB,EAAM,KAEtB,EAAwB,AAAK,GAAsB,GACnD,EAAY,CAAC,GAAG,AAAI,GAAa,GAAO,GACxC,EAAoB,CACxB,AAAK,EAAI,EAAW,EAAsB,IAC1C,AAAK,EAAI,EAAW,EAAsB,KAE5C,MAAO,GAAc,IAAI,AAAC,GAAU,CAClC,EAAM,GAAK,EAAkB,GAC7B,EAAM,GAAK,EAAkB,GAC7B,EAAM,UAIJ,eAAc,EAAO,EAAQ,CACjC,GAAI,GAAc,GAGd,EACJ,AAAK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,YAAe,CAAC,EAAO,KAAK,WAAa,CAAC,EAAO,iBACvG,GAAQ,KAAM,MAAK,aAAa,mBAAmB,EAAO,GAC1D,KAAK,QAAU,GAEb,EAAO,gBAAgB,KAAK,UAG5B,GAAU,EAAM,OAAS,GAAQ,GAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,UAAa,CAAC,EAAO,KAAK,YACzI,MAAK,cAAgB,EACrB,KAAK,YAAc,CAAC,GAAG,GAEnB,KAAK,YAAY,OAAS,GAAG,GAAc,KAEjD,GAAM,GAAmB,GAEzB,AAAI,EAAO,KAAK,aAAe,KAAK,gBAAkB,GAAG,MAAK,QAAU,GAGxE,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAa,KAAK,YAAY,GACpC,GAAI,EAAC,EACL,GAAI,EAAO,KAAK,UAAW,CACzB,GAAM,GAAQ,EAAO,KAAK,SAAW,AAAK,GAAgB,EAAW,cAAc,IAAoC,EAAW,cAAc,KAA+C,EACzL,EAAa,AAAI,GAAa,GAC9B,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,EAAO,KAAK,SAAW,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAAwB,EAAM,QAC/G,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAS,EAAc,KAAK,uBAAuB,EAAW,cAAe,GAAkB,EAC/F,EAAe,AAAI,GAAyB,EAAQ,EAAc,CAAC,KAAK,UAAW,KAAK,YACxF,EAAY,EAAa,IAAI,KACnC,EAAa,UACb,EAAa,UACb,GAAM,CAAC,EAAa,GAAa,KAAM,MAAK,iBAAiB,QAAQ,GACrE,EAAU,UACV,GAAM,GAAa,EAAY,WAAW,GAE1C,GADA,EAAY,UACR,GAAc,EAAO,KAAK,cAAe,CAC3C,GAAM,GAAoB,AAAG,UAAQ,EAAW,CAAC,GAAI,IAC/C,EAAY,EAAkB,YACpC,EAAU,UACV,EAAkB,UAClB,GAAM,GAAS,KAAK,mBAAmB,EAAW,EAAQ,EAAO,GAC3D,EAAkB,KAAK,uBAAuB,GACpD,KAAK,YAAY,GAAK,EACtB,GAAM,GAAS,CACb,UAAW,EACX,aACA,IAAK,CAAE,QAAS,EAAgB,WAAY,YAAa,EAAgB,WAE3E,EAAM,KAAK,OAEX,MAAK,YAAY,GAAK,KAExB,EAAU,cACL,CAEL,GAAM,GAAW,AAAI,GAAW,AAAI,GAAY,GAAa,IACvD,EAAS,CACb,WAAY,EAAW,WACvB,IAAK,CAAE,QAAS,EAAS,WAAY,YAAa,EAAS,WAE7D,EAAM,KAAK,IAGf,YAAK,YAAc,KAAK,YAAY,OAAO,AAAC,GAAM,IAAM,MACxD,KAAK,cAAgB,EAAM,OACpB,EAIT,8BAA8B,EAAW,CACvC,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,cCzJlB,GAAM,IAAU,CACrB,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,QLzviBd,GAAM,IAAmB,CACvB,MAAO,CAAC,EAAG,EAAG,EAAG,GACjB,YAAa,CAAC,EAAG,EAAG,EAAG,GACvB,aAAc,CAAC,EAAG,GAAI,GAAI,IAC1B,WAAY,CAAC,GAAI,GAAI,GAAI,IACzB,MAAO,CAAC,GAAI,GAAI,GAAI,IACpB,SAAU,CAAC,IAGN,QAAe,CAGpB,YAAY,EAAc,CACxB,KAAK,aAAe,QAGf,iBAAiB,CACtB,MAAO,SAGH,eAAc,EAAO,EAAQ,CACjC,GAAM,GAAc,KAAM,MAAK,aAAa,cAAc,EAAO,GACjE,GAAI,CAAC,EAAa,MAAO,GACzB,GAAM,GAAgG,GACtG,OAAW,KAAc,GAAa,CACpC,GAAM,GAAc,GACpB,GAAI,EAAW,UACb,OAAW,KAAO,QAAO,KAAK,IAC5B,EAAY,GAAO,GAAiB,GAAK,IAAI,AAAC,GAAU,EAAW,UAAU,IAGjF,GAAM,GAAM,EAAW,IAAM,CAC3B,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,IACnC,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,IACnC,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,IAC7F,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,KAC3F,GACE,EAAS,CACZ,EAAW,IAAI,QAAQ,GAAM,EAAM,MAAM,GACzC,EAAW,IAAI,QAAQ,GAAM,EAAM,MAAM,GACzC,GAAW,IAAI,YAAY,GAAK,EAAW,IAAI,QAAQ,IAAM,EAAM,MAAM,GACzE,GAAW,IAAI,YAAY,GAAK,EAAW,IAAI,QAAQ,IAAM,EAAM,MAAM,IAE5E,EAAM,KAAK,CAAE,WAAY,KAAK,MAAM,IAAM,EAAW,YAAc,IAAK,MAAK,SAAQ,UAAW,EAAW,UAAW,gBAExH,MAAO,KAIP,EACA,EACJ,kBAA2B,EAA2B,CACpD,AAAI,CAAC,GAAqB,CAAC,EACzB,EAAC,EAAmB,GAAiB,KAAM,SAAQ,IAAI,CACrD,EAAO,KAAK,QAAU,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAAkB,KAC3K,EAAO,KAAK,UAAY,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAAkB,OAE3K,EAAO,KAAK,SACd,CAAI,CAAC,GAAqB,CAAC,EAAkB,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WAC7F,EAAO,OAAO,EAAI,cAAe,EAAkB,UAC5D,AAAI,CAAC,GAAiB,CAAC,EAAc,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACrF,EAAO,OAAO,EAAI,cAAe,EAAc,YAGtD,GAAO,OAAO,EAAI,gBAAiB,EAAkB,UACrD,EAAO,OAAO,EAAI,gBAAiB,EAAc,WAEvD,GAAM,GAAe,GAAiB,IAAa,EAAmB,iBAAmB,OAAO,GAAG,MAAM,GAAY,IAC/G,EAAe,GAAiB,IAAa,EAAc,EAAe,iBAAe,OAAO,GAAG,MAAM,IAE/G,MADiB,IAAI,IAAS,GM3EhC,6CCAO,GAAM,IAAO,CAClB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,YACA,aACA,WACA,YACA,YACA,aACA,YACA,aACA,UACA,WACA,WACA,YACA,YACA,aACA,WACA,YACA,WACA,YACA,SACA,WACA,YACA,WACA,aACA,aAGW,GAAQ,CACnB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,UACA,WACA,UACA,WACA,UACA,WACA,UACA,WACA,YACA,aACA,OACA,WACA,UACA,WACA,UACA,YDpEF,GAAI,GAEJ,kBAA2B,EAAQ,CACjC,MAAK,GAMM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UALlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,EAAM,MAAQ,SAAS,EAAM,UAAU,OAAO,aAAa,YAAY,IAAI,GAAG,MAC9E,EAAM,OAAS,SAAS,EAAM,UAAU,OAAO,aAAa,YAAY,IAAI,GAAG,MAC/E,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,WAC5D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAO,EAAQ,CAE3C,GADI,CAAC,GACD,CAAC,EAAO,KAAK,QAAS,MAAO,MACjC,GAAM,GAAU,CAAE,MAAO,EAAM,MAAM,GAAI,OAAQ,EAAM,MAAM,IACvD,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,MAAO,EAAM,QAAS,IACrE,EAAY,AAAG,MAAI,EAAQ,CAAC,MAClC,EAAO,UACP,GAAI,GACJ,GAAK,EAAO,QAOL,CACL,GAAM,GAAc,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IACzD,EAAS,EAAY,OAAO,KAAK,AAAC,GAAO,EAAE,OAAS,KAAO,EAAE,OAAS,KAAM,WAC5E,EAAY,OAAO,QAAQ,AAAC,GAAM,EAAE,WACpC,AAAQ,EAAI,YAAa,OAXN,CACnB,GAAM,GAAO,KAAM,GAAM,QAAQ,GAIjC,EAAS,EAAK,KAAK,AAAC,GAAO,EAAE,OAAS,KAAO,EAAE,OAAS,KAAM,WAC9D,EAAK,QAAQ,AAAC,GAAM,EAAE,WAOxB,EAAU,UACV,GAAM,GAAyE,GACzE,EAAS,EAAO,SAAW,IAAkB,GAAmB,GAChE,EAAQ,EACd,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAO,IACzC,EAAU,KAAK,CACb,GAAI,EACJ,KAAM,EAAO,GACb,SAAU,CACR,EAAG,KAAK,MAAM,EAAQ,MAAQ,EAAO,EAAQ,EAAI,GAAK,KACtD,EAAG,KAAK,MAAM,EAAQ,OAAS,EAAO,EAAQ,EAAI,GAAK,KACvD,EAAG,KAAK,MAAM,EAAO,EAAQ,EAAI,IAAM,GAEzC,MAAQ,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,IACzE,SAAW,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,MAIhF,MAAO,CAAC,CAAE,MADI,EAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GACvE,cEzDnB,6CCAO,GAAM,IAAS,CACpB,CAAE,MAAO,EAAG,MAAO,UACnB,CAAE,MAAO,EAAG,MAAO,WACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,cACnB,CAAE,MAAO,EAAG,MAAO,YACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,QACnB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,eACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,kBACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,MACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,eD3EtB,GAAI,GACA,GAAkB,GAClB,GAAU,OAAO,iBAEf,GAAW,IAEjB,kBAA2B,EAAQ,CACjC,GAAK,EAOE,AAAI,EAAO,OAAO,EAAI,gBAAiB,EAAM,cAPxC,CACV,EAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,OAAO,YACzE,GAAM,GAAS,OAAO,OAAO,EAAM,eAAe,QAElD,GADA,EAAM,UAAY,MAAM,QAAQ,GAAU,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,MAAQ,KACpF,CAAC,EAAM,UAAW,KAAM,IAAI,OAAM,4CAA4C,EAAO,OAAO,aAChG,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,OAAO,WAC9D,EAAO,OAAO,EAAI,cAAe,EAAM,UAElD,MAAO,GAGT,kBAAuB,EAAK,EAAW,EAAa,EAAQ,CAC1D,GAAI,GAAK,EACL,EAA8J,GAClK,OAAW,KAAc,CAAC,EAAG,EAAG,GAE9B,AAAG,OAAK,IAAM,CA5BlB,QA6BM,GAAM,GAAW,EAAa,GAExB,EAAU,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,KAAO,GAAO,UAAzE,cAAmF,UAC7F,EAAY,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,GAAK,GAAO,UAAvE,cAAiF,UAE7F,EAAS,AADE,EAAU,QAAQ,CAAC,GAAI,EAAG,EAAU,MAAM,GAAK,IACxC,OAAO,GAAG,YAC5B,EAAS,EAAQ,YACvB,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IACpC,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IAAK,CACzC,GAAM,GAAQ,EAAO,GAAG,GACxB,GAAI,EAAQ,EAAO,OAAO,eAAiB,IAAM,GAAI,CACnD,GAAM,GAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAY,EAAO,GAAG,IAAI,AAAC,IAAM,GAAK,GAAW,EAAa,IAC9D,CAAC,EAAG,GAAK,CACb,EAAM,GAAW,EAAa,EAAU,GACxC,EAAM,GAAW,EAAa,EAAU,IAEpC,CAAC,EAAG,IAAK,CACb,EAAM,GAAW,EAAa,EAAU,GAAM,EAC9C,EAAM,GAAW,EAAa,EAAU,GAAM,GAE5C,EAAS,CAAC,EAAG,EAAG,EAAG,IACvB,EAAS,EAAO,IAAI,AAAC,IAAM,KAAK,IAAI,EAAG,KAAK,IAAI,GAAG,KACnD,GAAM,IAAM,CACV,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,IAEpB,GAAS,CACb,GAAI,IACJ,aACA,MAAO,KAAK,MAAM,IAAM,GAAS,IACjC,MAAO,EAAI,EACX,MAAO,GAAO,GAAG,MACjB,OAAQ,CAAC,KAAK,MAAM,EAAY,GAAK,GAAK,KAAK,MAAM,EAAY,GAAK,IACtE,UAAW,CAAC,EAAI,GAChB,IAAK,GAAI,IAAI,AAAC,IAAM,KAAK,MAAM,KAC/B,UAEF,EAAQ,KAAK,QAOvB,EAAI,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAI9B,GAAM,GAAW,EAAQ,IAAI,AAAC,GAAM,EAAE,QAChC,EAAY,EAAQ,IAAI,AAAC,GAAM,EAAE,OACnC,EAAgB,GACpB,GAAI,GAAY,EAAS,OAAS,EAAG,CACnC,GAAM,GAAM,KAAM,AAAG,SAAM,uBAAuB,EAAU,EAAW,EAAO,OAAO,WAAY,EAAO,OAAO,aAAc,EAAO,OAAO,eAC3I,EAAS,EAAI,WACb,AAAG,UAAQ,GAIb,SAAU,EACP,OAAO,CAAC,EAAG,IAAQ,EAAO,SAAS,IACnC,KAAK,CAAC,EAAG,IAAO,EAAE,MAAQ,EAAE,OAExB,EAGT,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GAEA,GAAU,EAAO,OAAO,YAAe,EAAO,gBAAmB,GAAK,OAAS,EAClF,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAa,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAC1C,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,UAAW,EAAM,WAAY,IAC5E,EAAO,EAAO,IAAI,KAClB,EAAY,EAAK,UAAU,CAAC,EAAG,EAAG,EAAG,IAC3C,EAAK,UACL,EAAO,UAEP,GAAI,GACJ,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,OAAO,SAAS,GAAU,KAAM,GAAM,QAAQ,QACpD,CACL,GAAM,GAAgB,EAAO,OAAO,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAc,GACjG,EAAU,EAAc,OACxB,AAAQ,EAAI,SAAU,GAExB,EAAU,UAEV,GAAM,GAAM,KAAM,IAAQ,EAAS,EAAM,UAAW,EAAY,GAChE,GAAO,EACP,EAAQ,MA5BS,KEnGd,GAAM,IAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CAEnC,GAAM,GAAY,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,aACrD,EAAa,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,cACtD,EAAO,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,QACtD,AAAI,GAAQ,GAAa,GAAe,EAAU,SAAS,EAAI,EAAK,SAAS,GAAO,EAAW,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,cAC3J,AAAI,GAAQ,GAAc,EAAU,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACjG,GAAQ,GAAe,EAAW,SAAS,EAAI,EAAK,SAAS,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,qBAG5G,GAAM,GAAe,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,gBACxD,EAAgB,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,iBAC/D,AAAI,GAAgB,GAAe,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,WAAY,EAAa,SAAS,EAAI,EAAc,SAAS,EAAK,OAAS,YAElJ,MAAO,IAGI,GAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,GAAI,EAAI,GAAG,MAAQ,EAAI,GAAG,KAAK,OAAS,EAAG,CACzC,GAAM,GAAY,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,GACxD,AAAI,KAAK,IAAI,GAAa,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC3D,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,UAAU,EAAY,EAAI,OAAS,YAEtE,AADa,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAElD,AADc,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACvD,GAAM,GAAY,KAAK,IAAI,IAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,IAAI,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,KACzI,AAAI,EAAY,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,SAAS,KAAK,MAAM,aAC1E,GAAM,GAAY,EAAI,GAAG,KAAK,KAAK,GACnC,AAAI,KAAK,IAAI,GAAa,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,QAAQ,EAAY,EAAI,KAAO,WAGnG,MAAO,IAGI,GAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAI,CAAC,EAAI,GAAG,aAAe,CAAC,EAAI,GAAG,YAAY,aAAe,CAAC,EAAI,GAAG,YAAY,aAAc,SAChG,GAAM,GAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAW,KAAK,IAAI,EAAY,GAEhC,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAY,KAAK,IAAI,EAAa,GAEpC,EAAS,GAEb,AAAI,AADe,KAAK,IAAI,EAAW,GAAa,KAAK,IAAI,EAAU,GACtD,KACf,GAAS,GACT,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAGpC,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,YAAY,aAAa,GAAG,GAC7H,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,YAAY,YAAY,GAAG,GACjI,AAAI,GAAkB,MAAS,EAAmB,OAAO,GAAS,IAC9D,EAAkB,MAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC3D,EAAmB,MAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBAEhE,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,YAAY,aAAa,GAAG,GAC9H,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,YAAY,YAAY,GAAG,GACjI,AAAI,GAAkB,MAAS,EAAmB,MAAS,EAAkB,KAAS,EAAmB,MAAO,GAAS,IACrH,GAAkB,MAAS,EAAmB,OAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBACvF,GAAkB,KAAS,EAAmB,MAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,eAGvF,GAAQ,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAEhD,MAAO,IAGI,GAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAM,GAAqD,GAC3D,OAAW,CAAC,EAAQ,IAAQ,QAAO,QAAQ,EAAI,GAAG,aAChD,AAAI,IAAW,YAAc,MAAM,QAAQ,IAAM,EAAQ,KAAK,CAAE,KAAM,EAAO,cAAe,SAAU,EAAI,KAE5G,GAAI,GAAW,EAAQ,OAAS,EAAG,CACjC,GAAM,GAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACjF,EAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACvF,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,GAAG,EAAQ,gBAAgB,EAAQ,aAGzE,MAAO,IC7FT,iCCMA,YAAmB,EAAI,EAAc,EAAgB,CACnD,GAAM,GAAW,SAAU,EAAQ,EAAQ,EAAY,CACrD,GAAM,GAAI,GAAI,QAAO,MAAQ,EAAS,eAAgB,MACtD,EAAO,QAAQ,EAAG,CAAC,EAAO,IACxB,GAAW,GAAQ,EACZ,KAIL,EAAW,SAAU,EAAQ,EAAM,CACvC,GAAM,GAAS,EAAG,aAAa,GAG/B,GAFA,EAAG,aAAa,EAAQ,GACxB,EAAG,cAAc,GACb,CAAC,EAAG,mBAAmB,EAAQ,EAAG,gBAAiB,KAAM,IAAI,OAAM,4BAA6B,EAAG,iBAAiB,IACxH,MAAO,IAGT,KAAK,QAAU,GACf,KAAK,UAAY,GACjB,GAAM,GAAO,EAAS,EAAc,EAAG,eACjC,EAAO,EAAS,EAAgB,EAAG,iBAMzC,GALA,KAAK,GAAK,EAAG,gBACb,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,YAAY,KAAK,IAEhB,CAAC,EAAG,oBAAoB,KAAK,GAAI,EAAG,aAAc,KAAM,IAAI,OAAM,yBAA0B,EAAG,kBAAkB,KAAK,KAE1H,EAAG,WAAW,KAAK,IAEnB,EAAS,EAAc,YAAa,KAAK,WACzC,OAAW,KAAK,MAAK,UAAW,KAAK,UAAU,GAAK,EAAG,kBAAkB,KAAK,GAAI,GAElF,EAAS,EAAc,UAAW,KAAK,SACvC,EAAS,EAAgB,UAAW,KAAK,SACzC,OAAW,KAAK,MAAK,QAAS,KAAK,QAAQ,GAAK,EAAG,mBAAmB,KAAK,GAAI,GAI1E,YAAuB,EAAQ,CACpC,AAAK,GAAQ,GAAS,IACtB,GAAI,GAAa,EACb,EAAiB,KACjB,EAAe,GACf,EAA2B,GAC3B,EAAoB,CAAC,KAAM,MAC3B,EAAe,GACf,EAAS,GACT,EAAU,GACV,EAAgB,KAChB,EAAkB,KAChB,EAAU,GACV,EAAU,EAAO,QAAU,SAAS,cAAc,UAElD,EAAsB,GACtB,EAAO,CAAE,aAAc,GACvB,EAAK,EAAQ,WAAW,SAC9B,GAAI,CAAC,EAAI,KAAM,IAAI,OAAM,+BAEzB,KAAK,UAAY,SAAU,EAAM,CAE/B,GAAM,GAAO,MAAM,UAAU,MAAM,KAAK,UAAW,GAC7C,EAAS,EAAQ,GACvB,EAAa,KAAK,CAAE,KAAM,EAAQ,UAGpC,KAAK,MAAQ,UAAY,CACvB,EAAe,IAGjB,GAAM,GAAU,SAAU,EAAO,EAAQ,CAEvC,GAAI,MAAU,GAAU,IAAW,GAMnC,IALA,EAAQ,MAAQ,EAChB,EAAS,EACT,EAAQ,OAAS,EACjB,EAAU,EAEN,CAAC,EAAe,CAElB,GAAM,GAAW,GAAI,cAAa,CAChC,GAAI,GAAI,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,GAAI,EAAG,EAAG,EACrC,GAAI,EAAG,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,EAAG,EAAG,IAGrC,AAAC,EAAgB,EAAG,eAAgB,EAAG,WAAW,EAAG,aAAc,GACnE,EAAG,WAAW,EAAG,aAAc,EAAU,EAAG,aAC5C,EAAG,YAAY,EAAG,+BAAgC,IAEpD,EAAG,SAAS,EAAG,EAAG,EAAQ,GAE1B,EAAoB,CAAC,KAAM,QAGvB,EAA4B,SAAU,EAAO,EAAQ,CACzD,GAAM,GAAM,EAAG,oBACf,EAAG,gBAAgB,EAAG,YAAa,GACnC,GAAM,GAAe,EAAG,qBACxB,EAAG,iBAAiB,EAAG,aAAc,GACrC,GAAM,GAAU,EAAG,gBACnB,SAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAO,EAAQ,EAAG,EAAG,KAAM,EAAG,cAAe,MACtF,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,qBAAqB,EAAG,YAAa,EAAG,kBAAmB,EAAG,WAAY,EAAS,GACtF,EAAG,YAAY,EAAG,WAAY,MAC9B,EAAG,gBAAgB,EAAG,YAAa,MAC5B,CAAE,MAAK,YAGV,EAAsB,SAAU,EAAO,CAC3C,SAAkB,GAAS,EAAkB,IAAU,EAA0B,EAAQ,GAClF,EAAkB,IAGrB,EAAQ,SAAU,EAAQ,KAAM,CA3HxC,QA4HI,GAAI,GAAS,KACT,EAAS,KACT,EAAQ,GAEZ,AAAI,IAAe,EAEjB,EAAS,EAGT,EAAS,KAAoB,KAApB,cAA+C,QAE1D,IAEA,AAAI,GAAgB,CAAE,GAAQ,EAAK,cAGjC,GAAS,KACT,EAAQ,EAAa,GAAM,GAG3B,GAA4B,GAA2B,GAAK,EAC5D,EAAS,KAAoB,KAApB,cAA+C,KAG1D,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,gBAAgB,EAAG,YAAa,GACnC,EAAG,UAAU,EAAgB,QAAQ,MAAQ,EAAQ,GAAK,GAC1D,EAAG,WAAW,EAAG,UAAW,EAAG,IAGjC,KAAK,MAAQ,SAAU,EAAO,CAY5B,GAXA,EAAQ,EAAM,MAAO,EAAM,QAC3B,EAAa,EAER,GAAgB,GAAiB,EAAG,iBACzC,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAG,KAAM,EAAG,cAAe,GAEhE,EAAa,SAAW,EAE1B,WACO,EAET,OAAS,GAAI,EAAG,EAAI,EAAa,OAAQ,IAAK,CAC5C,EAAgB,IAAM,EAAa,OAAS,EAC5C,GAAM,GAAI,EAAa,GACvB,EAAE,KAAK,MAAM,KAAM,EAAE,MAAQ,IAE/B,MAAO,IAGT,GAAM,GAAiB,SAAU,EAAgB,CAC/C,GAAI,EAAoB,GACtB,SAAkB,EAAoB,GACtC,EAAG,WAAW,EAAgB,IACvB,EAGT,GAAM,GAAS,GACf,EAAO,gBAAkB,CACvB,yBACA,sBACA,qBACA,oBACA,uBACA,oBACA,YACA,mDACA,KACA,KAAK;AAAA,GACP,EAAO,kBAAoB,CACzB,yBACA,oBACA,6BACA,oBACA,0CACA,KACA,KAAK;AAAA,GACP,EAAkB,GAAI,IAAU,EAAI,EAAO,gBAAiB,GAC5D,GAAM,GAAY,aAAa,kBACzB,EAAW,EAAI,EACrB,SAAG,wBAAwB,EAAgB,UAAU,KACrD,EAAG,oBAAoB,EAAgB,UAAU,IAAK,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACxF,EAAG,wBAAwB,EAAgB,UAAU,IACrD,EAAG,oBAAoB,EAAgB,UAAU,GAAI,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACvF,EAAoB,GAAkB,EAC/B,GAKT,EAAQ,YAAc,SAAU,EAAQ,CAEtC,GAAM,GAAI,GAAI,cAAa,GAC3B,EAAE,IAAM,IACR,EAAE,IAAM,IACR,EAAE,KAAO,IACT,EAAE,KAAO,IAET,GAAM,GAAU,EAAE,MAAQ,GAAK,EAAE,KAAO,GAAK,EAAE,KAAO,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,EAC7H,EAAQ,YAAY,OAAO,cAC3B,EAAQ,YAAY,OAAO,WACzB,EAAU,EAAe,GAC/B,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,KAEF,EAAQ,YAAY,OAAS,GAC7B,EAAQ,YAAY,OAAO,WAAa,CACtC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,6EACA,6EACA,kFACA,kFACA,KACA,KAAK;AAAA,GACP,EAAQ,YAAY,OAAO,cAAgB,CACzC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,gEACA,gEACA,oEACA,wBACA,KACA,KAAK;AAAA,GAEP,EAAQ,WAAa,SAAU,EAAY,CACzC,GAAM,GAAK,IAAc,GAAK,EAC9B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,SAAU,EAAQ,CACrC,GAAM,GAAK,IAAU,GAAK,EAAI,EAAI,EAC5B,EAAM,GAAI,GAAK,IACrB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,WAAW,KAGrB,EAAQ,SAAW,SAAU,EAAQ,CACnC,GAAM,GAAK,IAAU,GAAK,EACpB,EAAI,KAAQ,GAAI,GAEtB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,SAAS,KAGnB,EAAQ,IAAM,SAAU,EAAU,CAChC,EAAY,IAAY,GAAK,IAAM,KAAK,GACxC,GAAM,GAAM,KAAK,IAAI,GACf,EAAM,KAAK,IAAI,GACf,EAAO,KACP,EAAO,KACP,EAAO,KAEb,EAAQ,YAAY,CAClB,EAAO,EAAO,GAAI,GAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,GAAI,GAAO,EAAG,EAC3H,EAAO,EAAO,CAAC,EAAQ,EAAO,KAAQ,EAAO,EAAO,GAAI,GAAQ,EAAO,IAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,MAAS,EAAG,EACzH,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAE,GAAI,GAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,EAAO,EAAO,EAAO,GAAI,GAAQ,EAAO,EAAO,EAAG,EAC5H,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,oBAAsB,UAAY,CACxC,EAAQ,YAAY,CAClB,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,MAAQ,UAAY,CAC1B,EAAQ,YAAY,CAClB,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,QAAU,UAAY,CAC5B,EAAQ,YAAY,CAClB,kBAAoB,mBAAqB,mBAAqB,EAAG,kBACjE,qBAAuB,kBAAoB,mBAAqB,EAAG,mBACnE,mBAAqB,oBAAsB,mBAAqB,EAAG,mBACnE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,eAAiB,UAAY,CACnC,EAAQ,YAAY,CAClB,kBAAoB,kBAAoB,oBAAsB,EAAG,kBACjE,mBAAqB,kBAAoB,mBAAqB,EAAG,kBACjE,kBAAoB,mBAAqB,kBAAoB,EAAG,kBAChE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,kBAClE,oBAAsB,mBAAoB,oBAAsB,EAAG,mBACnE,oBAAsB,mBAAqB,mBAAoB,EAAG,kBAClE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,mBAClE,mBAAqB,mBAAoB,oBAAsB,EAAG,mBAClE,kBAAoB,mBAAqB,kBAAmB,EAAG,mBAC/D,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,YAAY,CAClB,MAAO,MAAQ,MAAQ,EAAG,EAC1B,MAAQ,MAAO,MAAQ,EAAG,EAC1B,MAAQ,MAAQ,MAAO,EAAG,EAC1B,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAMhB,EAAQ,YAAc,SAAU,EAAQ,CACtC,GAAM,GAAI,GAAI,cAAa,GACrB,EAAa,EAAI,EACjB,EAAa,EAAI,EACjB,EAAU,EAAe,EAAQ,YAAY,QACnD,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAY,GAC7C,KAGF,EAAQ,YAAY,OAAS,CAC3B,yBACA,oBACA,6BACA,mBACA,sBACA,oBACA,2CACA,4DACA,mEACA,6DACA,sCACA,6DACA,oEACA,6DACA,4CACA,kBACA,yCACA,yCACA,wCACA,0BACA,KACA,KAAK;AAAA,GAEP,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,EAAG,EACN,EAAG,GAAI,EACP,EAAG,EAAG,KAIV,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,EAAG,EACP,GAAI,EAAG,EACP,GAAI,EAAG,KAIX,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,GAAI,GACR,EAAG,EAAG,EACN,EAAG,EAAG,KAIV,EAAQ,QAAU,SAAU,EAAQ,CAClC,GAAM,GAAI,GAAU,EACpB,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,GAAK,EAAG,EACX,GAAK,EAAG,EAAI,EAAI,EAAG,GAAK,EACxB,EAAG,GAAK,EAAG,KAIf,EAAQ,OAAS,SAAU,EAAM,CAC/B,GAAM,GAAI,GAAQ,EAClB,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAK,EAAG,GAAK,EAAG,EAChB,GAAK,EAAG,EAAG,EAAI,EACf,EAAG,EAAI,EAAG,EAAI,KAMlB,EAAQ,KAAO,SAAU,EAAM,CAC7B,GAAM,GAAa,EAAO,EAAK,EACzB,EAAa,EAAO,EAAK,EACzB,EAAU,EAAe,EAAQ,KAAK,QAE5C,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAG,GACpC,EAAM,EAAK,cAEX,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAW,GAC5C,KAGF,EAAQ,KAAK,OAAS,CACpB,yBACA,oBACA,6BACA,mBACA,oBACA,4BACA,8FACA,yFACA,wFACA,wFACA,wFACA,uFACA,uFACA,uFACA,uFACA,uFACA,wFACA,wFACA,wFACA,yFACA,8FACA,KACA,KAAK;AAAA,GAIP,EAAQ,SAAW,SAAU,EAAM,CACjC,GAAM,GAAa,EAAQ,EACrB,EAAa,EAAQ,EACrB,EAAU,EAAe,EAAQ,SAAS,QAEhD,EAAG,UAAU,EAAQ,QAAQ,KAAM,EAAW,GAC9C,KAGF,EAAQ,SAAS,OAAS,CACxB,yBACA,oBACA,qBACA,6BACA,yCACA,uCACA,IACA,oBACA,4BACA,oCACA,6CACA,KACA,KAAK;GDjhBT,GAAM,IAAU,KAEZ,EACA,EAEA,EAKG,YAAiB,EAAO,EAA0F,CACvH,GAAI,GACJ,GAAI,CAAC,EAAO,KAAM,IAAI,OAAM,2BAE5B,GACE,CAAE,aAAoB,YACnB,CAAE,OAAO,QAAU,aAAe,YAAiB,SACnD,CAAE,OAAO,YAAc,aAAe,YAAiB,aACvD,CAAE,OAAO,cAAgB,aAAe,YAAiB,eACzD,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,oBAAsB,aAAe,YAAiB,qBAC/D,CAAE,OAAO,kBAAoB,aAAe,YAAiB,kBAEhE,KAAM,IAAI,OAAM,uCAElB,GAAI,YAAoB,UAEtB,GAAI,EAAM,OAAS,EAAM,MAAM,SAAW,GAAK,EAAM,MAAM,KAAO,GAAK,EAAM,MAAM,KAAO,EAAG,EAAS,AAAG,QAAM,OAC1G,MAAM,IAAI,OAAM,2EAA2E,EAAM,aACjG,CAEL,GAAM,GAAgB,EAAM,cAAmB,EAAM,YAAiB,EAAM,OAAa,EAAM,OAAa,EAAM,MAAS,GAAK,EAC1H,EAAiB,EAAM,eAAoB,EAAM,aAAkB,EAAM,QAAc,EAAM,OAAa,EAAM,MAAS,GAAK,EAChI,EAAc,EACd,EAAe,EAenB,GAdI,EAAc,IAChB,GAAc,GACd,EAAe,EAAc,EAAiB,GAE5C,EAAe,IACjB,GAAe,GACf,EAAc,EAAe,EAAgB,GAI/C,AAAI,EAAO,OAAO,MAAQ,EAAG,EAAc,EAAO,OAAO,MAChD,EAAO,OAAO,OAAS,GAAG,GAAc,EAAiB,GAAO,OAAO,OAAS,IACzF,AAAI,EAAO,OAAO,OAAS,EAAG,EAAe,EAAO,OAAO,OAClD,EAAO,OAAO,MAAQ,GAAG,GAAe,EAAkB,GAAO,OAAO,MAAQ,IACrF,CAAC,GAAe,CAAC,EAAc,KAAM,IAAI,OAAM,2CACnD,AAAI,EAAC,GAAa,kBAAU,SAAU,GAAiB,kBAAU,UAAW,IAC1E,GAAY,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UAC1H,kBAAU,SAAU,GAAa,GAAS,MAAQ,GAClD,kBAAU,UAAW,GAAc,GAAS,OAAS,IAI3D,GAAM,GAAM,EAAS,WAAW,MAehC,GAdA,AAAI,YAAiB,WACnB,EAAI,aAAa,EAAO,EAAG,GAE3B,AAAI,EAAO,OAAO,MAAQ,MAAO,GAAI,WAAc,YACjD,GAAI,UAAU,EAAe,GAC7B,EAAI,MAAM,GAAI,GACd,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAC3F,EAAI,aAAa,EAAG,EAAG,EAAG,EAAG,EAAG,IAEhC,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAK3F,EAAO,OAAO,QAAS,CAQzB,GAPI,EAAC,GAAM,CAAC,GAAc,EAAS,QAAU,EAAU,OAAW,kBAAU,UAAW,kBAAW,UAChG,GAAa,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,iBAAU,MAAO,iBAAU,QAAU,SAAS,cAAc,UACnI,kBAAW,SAAU,kBAAU,QAAO,GAAU,MAAQ,iBAAU,OAClE,kBAAW,UAAW,kBAAU,SAAQ,GAAU,OAAS,iBAAU,QAEzE,EAAK,AAAG,MAAI,MAAM,WAAa,GAAY,IAAc,CAAE,OAAQ,IAAe,MAEhF,CAAC,EAAI,MAAO,CAAE,OAAQ,KAAM,OAAQ,GACxC,EAAG,QACH,EAAG,UAAU,aAAc,EAAO,OAAO,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACrE,EAAO,OAAO,YAAc,GAAG,EAAG,UAAU,UAAW,EAAO,OAAO,WACrE,EAAO,OAAO,OAAS,GAAG,EAAG,UAAU,OAAQ,EAAO,OAAO,MAC7D,EAAO,OAAO,aAAe,GAAG,EAAG,UAAU,aAAc,EAAO,OAAO,YACzE,EAAO,OAAO,MAAQ,GAAG,EAAG,UAAU,MAAO,EAAO,OAAO,KAC3D,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,SAAS,EAAG,UAAU,WACpC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,YAAY,EAAG,UAAU,cACvC,EAAO,OAAO,aAAa,EAAG,UAAU,eACxC,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACzE,EAAG,MAAM,OAuBT,GAAY,EACR,GAAI,GAAK,MAIf,GAAI,GACJ,GAAI,EAAU,KAAM,CAClB,GAAM,GAAQ,CAAC,EAAU,OAAQ,EAAU,MAAO,GAClD,EAAS,AAAG,WAAS,EAAU,KAAM,EAAO,iBACnC,YAAqB,WAC9B,EAAS,AAAG,UAAQ,WAAW,WACtB,EAAO,UAAY,SAAW,EAAO,UAAY,UAAW,CAErE,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,EAAS,AAAG,UAAQ,WAAW,OAC1B,CAEL,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,GAAM,GAAO,iBAAS,aAAa,EAAG,EAAG,EAAa,GACtD,EAAS,AAAG,UAAQ,WAAW,GAEjC,GAAM,GAAS,EAAO,UACtB,EAAS,EAAO,WAAW,GAC3B,EAAO,UACP,EAAO,UAET,GAAM,GAAS,EAAO,OAAO,OAAS,EAAY,KAClD,MAAO,CAAE,SAAQ,UE/JnB,2HCuMA,GAAM,GAAiB,CACrB,QAAS,QAIT,cAAe,aACf,SAAU,aAEV,MAAO,GACP,MAAO,GAIP,QAAS,GAIT,WAAY,GAKZ,OAAQ,GAIR,eAAgB,GAKhB,OAAQ,OAIR,OAAQ,CAEN,QAAS,GACT,MAAO,EACP,OAAQ,EAIR,KAAM,GACN,OAAQ,GACR,WAAY,EACZ,SAAU,EACV,UAAW,EACX,KAAM,EACN,WAAY,EACZ,IAAK,EACL,SAAU,GACV,MAAO,GACP,QAAS,GACT,WAAY,GACZ,YAAa,GACb,SAAU,GACV,SAAU,GAGZ,QAAS,CACP,QAAS,IAGX,KAAM,CACJ,QAAS,GAIT,SAAU,CACR,UAAW,sBAEX,SAAU,GAGV,SAAU,GAEV,WAAY,GAKZ,YAAa,GAEb,cAAe,GACf,aAAc,GAEd,eAAgB,GAGhB,OAAQ,IAGV,KAAM,CACJ,QAAS,GACT,UAAW,iBAIb,KAAM,CACJ,QAAS,GACT,UAAW,aAIb,YAAa,CACX,QAAS,GAET,UAAW,eAEX,WAAY,GAEZ,cAAe,IAGjB,QAAS,CACP,QAAS,GACT,cAAe,GACf,WAAY,GACZ,UAAW,iBAKf,KAAM,CACJ,QAAS,GACT,UAAW,eAIX,cAAe,EAGf,eAAgB,GAGhB,UAAW,IAIb,KAAM,CACJ,QAAS,GACT,SAAU,GAEV,WAAY,GAKZ,YAAa,GAEb,cAAe,GACf,aAAc,GAEd,eAAgB,GAEhB,SAAU,EAEV,UAAW,GACX,SAAU,CACR,UAAW,mBAGb,SAAU,CACR,UAAW,sBAKf,OAAQ,CACN,QAAS,GACT,UAAW,eAGX,cAAe,GACf,aAAc,GAEd,WAAY,GACZ,WAAY,KD3UT,GAAM,IAAuB,CAClC,MAAe,2BACf,WAAoB,yBACpB,YAAqB,QACrB,KAAc,6BACd,WAAoB,GACpB,UAAmB,EACnB,UAAmB,EACnB,UAAmB,GACnB,WAAqB,GACrB,WAAqB,GACrB,UAAoB,GACpB,aAAuB,GACvB,aAAuB,GACvB,SAAmB,GACnB,UAAoB,GACpB,eAAyB,GACzB,YAAsB,GACtB,iBAA2B,IAG7B,YAAe,EAAK,EAAG,EAAG,EAAI,EAAG,EAAc,CAC7C,EAAI,UAAY,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACrH,EAAI,YACJ,EAAI,IAAI,EAAG,EAAG,EAAa,UAAW,EAAG,EAAI,KAAK,IAClD,EAAI,OAGN,YAAc,EAAK,EAAG,EAAG,EAAO,EAAQ,EAAc,CAEpD,GADA,EAAI,YACA,EAAa,UAAW,CAC1B,GAAM,GAAM,GAAI,EAAI,GAAS,EACvB,EAAM,GAAI,EAAI,GAAU,EAC9B,EAAI,QAAQ,EAAI,EAAI,EAAQ,EAAG,EAAS,EAAG,EAAG,EAAG,EAAI,KAAK,QAE1D,GAAI,UAAY,EAAa,UAC7B,EAAI,OAAO,EAAI,EAAa,UAAW,GACvC,EAAI,OAAO,EAAI,EAAQ,EAAa,UAAW,GAC/C,EAAI,iBAAiB,EAAI,EAAO,EAAG,EAAI,EAAO,EAAI,EAAa,WAC/D,EAAI,OAAO,EAAI,EAAO,EAAI,EAAS,EAAa,WAChD,EAAI,iBAAiB,EAAI,EAAO,EAAI,EAAQ,EAAI,EAAQ,EAAa,UAAW,EAAI,GACpF,EAAI,OAAO,EAAI,EAAa,UAAW,EAAI,GAC3C,EAAI,iBAAiB,EAAG,EAAI,EAAQ,EAAG,EAAI,EAAS,EAAa,WACjE,EAAI,OAAO,EAAG,EAAI,EAAa,WAC/B,EAAI,iBAAiB,EAAG,EAAG,EAAI,EAAa,UAAW,GACvD,EAAI,YAEN,EAAI,SAGN,YAAe,EAAK,EAAmB,GAAI,EAAc,CACvD,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,GAAI,YACJ,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAW,KAAM,GACf,EAAI,YAAc,EAAa,UAAY,EAAG,GAAK,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACnI,EAAI,UAAY,EAAa,UAAY,EAAG,GAAK,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACjI,EAAI,OAAO,EAAG,GAAI,SAAS,EAAG,KAEhC,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,YAAgB,EAAK,EAAmB,GAAI,EAAc,CACxD,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,IAAI,CAAC,EAAa,WAAa,EAAO,QAAU,EAAG,CACjD,GAAM,EAAK,EAAQ,GACnB,OAEF,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAG,IAAK,CAC1C,GAAM,GAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EACzC,EAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EAC/C,EAAI,iBAAiB,EAAO,GAAG,GAAI,EAAO,GAAG,GAAI,EAAI,GAEvD,EAAI,iBAAiB,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,IACzI,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,kBAA8B,EAA6B,EAAoB,EAA2B,CACxG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,CAAC,EAAK,OACV,EAAI,KAAO,EAAa,KACxB,EAAI,UAAY,EAAa,MAC7B,GAAI,GAAI,EACR,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CACtC,GAAI,GAAc,GACd,EAAa,GAEjB,GADA,CAAC,EAAO,GAAQ,OAAO,QAAQ,EAAO,IACjC,EAAK,OAAS,GAAO,EAAK,GAAG,OAAS,EAAI,CAC7C,GAAM,GAAS,EAAM,GAAK,EAAI,IAAI,EAAM,KAAO,GACzC,EAAQ,GAAG,EAAM,MAAM,MAAW,EAAK,KAC7C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,aAE/C,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,YAC7C,GAAK,IAKX,kBAA2B,EAA6B,EAAoB,EAA2B,CACrG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,OAAW,KAAK,GAAQ,CACtB,EAAI,KAAO,EAAa,KACxB,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MACzB,EAAa,WACf,CAAI,EAAa,YAAa,GAAK,EAAK,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,GAC7J,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,IAGzD,GAAM,GAAkB,GAMxB,GALA,EAAO,KAAK,oBAAoB,KAAK,MAAM,IAAM,EAAE,gBAC/C,EAAE,kBAAkB,EAAO,KAAK,GAAG,EAAE,QAAU,MAAM,KAAK,MAAM,IAAM,EAAE,gCAExE,EAAE,KAAK,EAAO,KAAK,QAAQ,EAAE,KAAO,MACpC,EAAE,MAAM,EAAO,KAAK,kBAAkB,EAAE,QACxC,EAAE,SAAW,EAAE,QAAQ,OAAS,EAAG,CACrC,GAAM,GAAU,EAAE,QAAQ,IAAI,AAAC,GAAM,GAAG,KAAK,MAAM,IAAM,EAAE,WAAW,EAAE,WACxE,EAAO,KAAK,EAAQ,KAAK,MAE3B,AAAI,EAAE,UAAY,EAAE,SAAS,OAAS,EAAE,SAAS,MAAM,MAAM,EAAO,KAAK,SAAS,KAAK,MAAM,IAAM,EAAE,SAAS,MAAM,MAAQ,WAAW,KAAK,MAAM,IAAM,EAAE,SAAS,MAAM,KAAO,aAAa,KAAK,MAAM,IAAM,EAAE,SAAS,MAAM,OAAS,OACpO,EAAO,SAAW,GAAG,EAAO,KAAK,QACrC,EAAI,UAAY,EAAa,MAC7B,OAAS,GAAI,EAAO,OAAS,EAAG,GAAK,EAAG,IAAK,CAC3C,GAAM,GAAI,KAAK,IAAI,EAAE,IAAI,GAAI,GACvB,EAAI,EAAI,EAAa,WAAa,EAAE,IAAI,GAC9C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,KAErC,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,IAGrC,GADA,EAAI,UAAY,EACZ,EAAE,MAAQ,EAAE,KAAK,OAAS,EAAG,CAC/B,GAAI,EAAa,WACf,OAAW,KAAM,GAAE,KAAM,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAAI,GAG3D,GAAI,EAAa,aAAc,CAC7B,EAAI,UAAY,EAChB,OAAS,GAAI,EAAG,EAAI,GAAc,OAAS,EAAG,IAAK,CACjD,GAAM,GAAS,CACb,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,IACtB,IAAI,AAAC,GAAU,EAAE,KAAK,IACxB,GAAM,EAAK,EAAQ,GAGrB,GAAI,EAAE,aAAe,EAAE,YAAY,YAAa,CAC9C,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,YAAY,GAAG,GAAK,EAAE,YAAY,YAAY,GAAG,IAAM,EACtF,EAAQ,KAAK,IAAI,EAAE,YAAY,YAAY,GAAG,GAAK,EAAE,YAAY,YAAY,GAAG,IAAM,EAC5F,EAAI,QAAQ,EAAE,YAAY,YAAY,GAAG,GAAI,EAAE,YAAY,YAAY,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IAC3G,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,QAGR,GAAI,EAAE,aAAe,EAAE,YAAY,aAAc,CAC/C,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,aAAa,GAAG,GAAK,EAAE,YAAY,aAAa,GAAG,IAAM,EACxF,EAAQ,KAAK,IAAI,EAAE,YAAY,aAAa,GAAG,GAAK,EAAE,YAAY,aAAa,GAAG,IAAM,EAC9F,EAAI,QAAQ,EAAE,YAAY,aAAa,GAAG,GAAI,EAAE,YAAY,aAAa,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IAC7G,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,YAQhB,GAAM,GAAsB,GAC5B,kBAA2B,EAA6B,EAAoB,EAA2B,CACrG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CAkBtC,GAhBI,CAAC,EAAc,IAAM,EAAa,gBAAgB,GAAc,GAAK,IAAK,EAAO,KACrF,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,EAAI,UAAY,EAAa,UAC7B,EAAI,KAAO,EAAa,KACpB,EAAa,WACf,IAAK,EAAK,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,GAC9E,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,KAErI,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,MAGnI,EAAa,WACf,OAAS,GAAK,EAAG,EAAK,EAAO,GAAG,UAAU,OAAQ,IAChD,EAAI,UAAY,EAAa,UAAY,EAAO,GAAG,UAAU,GAAI,SAAS,EAAI,QAAQ,MAAS,EAAI,EAAO,GAAG,UAAU,GAAI,SAAS,MAAO,MAAS,EAAI,EAAO,GAAG,UAAU,GAAI,SAAS,eAAkB,EAAa,MACxN,AAAI,EAAa,eACf,GAAc,GAAG,UAAU,GAAI,GAAM,GAAc,GAAG,UAAU,GAAI,GAAK,EAAO,GAAG,UAAU,GAAI,SAAS,GAAK,EAC/G,EAAc,GAAG,UAAU,GAAI,GAAM,GAAc,GAAG,UAAU,GAAI,GAAK,EAAO,GAAG,UAAU,GAAI,SAAS,GAAK,EAC/G,GAAM,EAAK,EAAc,GAAG,UAAU,GAAI,GAAI,EAAc,GAAG,UAAU,GAAI,GAAI,EAAG,IAEpF,GAAM,EAAK,EAAO,GAAG,UAAU,GAAI,SAAS,EAAG,EAAO,GAAG,UAAU,GAAI,SAAS,EAAG,EAAG,GAI5F,GAAI,EAAa,YACf,GAAI,KAAO,EAAa,KACpB,EAAO,GAAG,WACZ,OAAW,KAAM,GAAO,GAAG,UACzB,EAAI,UAAY,EAAa,UAAY,EAAG,SAAS,EAAI,QAAQ,MAAS,EAAI,EAAG,SAAS,MAAO,MAAS,EAAI,EAAG,SAAS,eAAkB,EAAa,MACzJ,EAAI,SAAS,GAAG,EAAG,QAAQ,KAAK,MAAM,IAAM,EAAG,UAAW,EAAG,SAAS,EAAI,EAAG,EAAG,SAAS,EAAI,GAInG,GAAI,EAAa,cAAgB,EAAO,GAAG,UAAW,CACpD,GAAI,GACE,EAAgB,GAEtB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IAC/F,EAAO,SAAW,GAAG,GAAM,EAAK,EAAQ,GAE5C,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,MAM1B,kBAA2B,EAA6B,EAAoB,EAA2B,CACrG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GAAQ,CACtB,GAAI,EAAa,UAAW,CAC1B,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAI,GACJ,GAAI,CAAC,EAAa,iBAChB,EAAM,EAAa,YAAc,EAAE,OAAS,EAAE,YAE9C,EAAM,CAAC,OAAO,iBAAkB,OAAO,iBAAkB,EAAG,GACxD,EAAE,WAAa,EAAE,UAAU,OAAS,EAAG,CACzC,OAAW,KAAM,GAAE,UACjB,AAAI,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAElC,EAAI,IAAM,EAAI,GACd,EAAI,IAAM,EAAI,GAGlB,AAAI,EAAa,YAAa,GAAK,EAAK,EAAS,MAAQ,EAAI,GAAI,EAAS,OAAS,EAAI,GAAI,EAAS,MAAQ,EAAI,GAAI,EAAS,OAAS,EAAI,GAAI,GACzI,GAAK,EAAK,EAAI,GAAI,EAAI,GAAI,EAAI,GAAI,EAAI,GAAI,GAC3C,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,OAAQ,EAAI,GAAK,EAAG,EAAI,EAAI,GAAK,EAAa,WAAY,EAAI,KAE7E,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,OAAQ,EAAI,GAAK,EAAG,EAAI,EAAI,GAAK,EAAa,WAAY,EAAI,KAE7E,EAAI,SAEN,GAAI,EAAa,YACX,EAAE,WAAa,EAAE,UAAU,OAAS,EACtC,OAAW,KAAM,GAAE,UACjB,EAAI,UAAY,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACxH,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAIlC,GAAI,EAAa,aAAc,CAC7B,GAAM,GAAU,AAAC,GAAS,CACxB,GAAI,EAAC,EACL,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,EAAI,UAAY,EAAa,UAC7B,EAAI,YACJ,EAAI,YAAc,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAK,GAAG,OAAQ,MAAS,EAAI,EAAK,GAAG,gBAAmB,EAAa,MACpI,EAAI,OAAO,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,GAAI,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,IAC/D,EAAI,OAAO,EAAK,GAAG,GAAI,EAAK,GAAG,IAC/B,EAAI,UAGR,EAAQ,EAAE,YAAY,aACtB,EAAQ,EAAE,YAAY,cACtB,EAAQ,EAAE,YAAY,YACtB,EAAQ,EAAE,YAAY,OACtB,EAAQ,EAAE,YAAY,UAM5B,kBAA6B,EAA6B,EAAoB,EAA2B,CACvG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GACd,GAAI,EAAa,UAAW,CAK1B,GAJA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,AAAI,EAAa,YAAa,GAAK,EAAK,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,GAC7J,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GACnD,EAAa,WAAY,CAC3B,GAAM,GAAQ,GAAG,KAAK,MAAM,IAAM,EAAE,WAAW,EAAE,QACjD,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAElF,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,IAElF,EAAI,WAKV,kBAA6B,EAA6B,EAA8B,CAEtF,GADI,CAAC,GAAY,CAAC,GACd,CAAE,aAAoB,qBAAsB,CAAE,aAAqB,oBAAoB,OAC3F,GAAM,GAAS,EAAS,WAAW,MACnC,WAAQ,UAAU,EAAU,EAAG,GAGjC,kBAA0B,EAA6B,EAAY,EAA2B,CAC5F,GAAM,GAAe,EAAU,GAAS,GACxC,AAAI,CAAC,GAAU,CAAC,GACV,YAAoB,oBAC1B,IAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAQ,EAAU,EAAO,QAAS,GAClC,GAAO,EAAU,EAAO,OAAQ,IE5d3B,GAAM,IAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kEA0JP,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;qBC3JpB,+BAiDO,QAAY,CA6EjB,YAAY,EAA8B,GAAI,CAX9C,oBACA,oBACA,oBACA,oBA8DA,aAAU,IAAI,IAAQ,CACpB,GAAI,CAAC,OAAK,IAAqB,OAC/B,GAAM,GAAU,KAAK,GAAG,SAAS,MAAM,WACjC,EAAW,OAAK,IACtB,QAAK,GAAc,GACnB,GAAM,GAAS,EAAU,EACzB,AAAI,IAAW,GAAG,EAAI,GAAG,EAAK,IAKhC,YAAU,AAAC,GAAyB,CAClC,GAAI,CAAC,OAAK,IAAc,MAAO,MAC/B,GAAI,CAAC,EAAO,MAAO,uBACnB,GAAI,KAAK,GAAG,IAAI,MAAM,SAAW,CAAE,aAAoB,WAAS,MAAO,yBACvE,GAAI,CACF,KAAK,GAAG,mBACF,EAAN,CACA,MAAO,qBAET,MAAO,QA2FT,YAAgB,MAAO,EAAQ,KAAU,CAnS3C,MAoSI,GAAI,KAAK,OAAO,SAAY,KAAK,OAAO,QAAQ,OAAS,GAAM,GAAU,KAAK,GAAG,eAAiB,KAAK,OAAO,QAAU,CACtH,GAAM,GAAY,IAYlB,GAXA,KAAK,MAAQ,UAWT,KAAK,OAAO,SAAW,KAAK,OAAO,QAAQ,OAAS,EAAG,CAOzD,GALI,KAAK,GAAG,IAAI,MAAM,YAAc,KAAK,OAAO,UAAY,cAAc,MAAK,OAAO,QAAU,SAC5F,KAAK,GAAG,IAAI,MAAM,SAAY,MAAK,OAAO,UAAY,SAAW,KAAK,OAAO,UAAY,YAAY,MAAK,OAAO,QAAU,cAE3H,KAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,OAAO,SAEvD,KAAK,OAAO,UAAY,OAAQ,CAElC,GADI,KAAK,OAAO,OAAO,EAAI,aAAc,KAAK,OAAO,UACjD,MAAO,SAAK,KAAL,cAAS,eAAiB,YAAa,KAAK,GAAG,aAAa,KAAK,OAAO,cAC9E,MAAM,IAAI,OAAM,qCACrB,GAAM,GAAO,KAAM,MAAK,GAAG,MAAM,SAAS,yBACpC,EAAK,KAAM,MAAK,GAAG,MAAM,SAAS,gCACxC,AAAI,KAAK,OAAO,OAAO,EAAI,mBAAmB,EAAO,OAAS,aAAa,EAAK,gBAAkB,oBAC9F,KAAK,OAAO,OAAS,CAAC,GAAM,EAAI,6CAGtC,AAAI,KAAK,OAAO,UAAY,WAAW,AAAQ,KAC/C,GAAI,CACF,KAAM,MAAK,GAAG,WAAW,KAAK,OAAO,eAC9B,EAAP,CACA,EAAI,6BAA8B,KAAK,OAAO,QAAS,IAK3D,GAFA,KAAK,GAAG,iBAEJ,KAAK,GAAG,eAAiB,SAAW,KAAK,GAAG,eAAiB,UAAW,CAC1E,KAAK,GAAG,IAAI,IAAI,+BAAgC,IAChD,KAAK,GAAG,IAAI,IAAI,2BAA4B,IACxC,KAAK,OAAO,YACd,GAAI,kDAAmD,KAAK,OAAO,YACnE,KAAK,GAAG,IAAI,IAAI,iCAAkC,KAAK,OAAO,WAAa,EAAI,KAEjF,GAAM,GAAK,KAAM,MAAK,GAAG,UAAU,kBAAkB,GACrD,AAAI,KAAK,OAAO,OAAO,EAAI,cAAc,EAAG,aAAa,EAAG,qBAAqB,EAAG,aAAa,EAAG,aAEtG,KAAM,MAAK,GAAG,QACd,KAAK,KAAK,QAAU,KAAK,MAAM,IAAQ,MAkK3C,YAAgB,SAAY,CAC1B,GAAM,GAAY,CAAC,EAAQ,EAAO,6BAA+B,MAAM,QAAQ,YAAe,KAAU,KAAK,AAAC,GAAQ,EAAI,QACtH,EACA,EACJ,OAAQ,KAAK,OAAO,YACb,OAAQ,EAAO,KAAM,GAAiB,IAAO,UAC7C,OAAQ,EAAO,KAAM,GAAiB,IAAO,cACzC,EAAO,KAElB,GAAI,EAAM,CACR,GAAM,GAAS,KAAM,mBAAkB,GACvC,EAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QACrC,EAAO,QAET,MAAO,KAIT,YAAgB,SAAY,GAAI,SAAQ,AAAC,GAAY,CACnD,GAAI,GACA,EAAO,EACX,OAAQ,KAAK,OAAO,YACb,OACH,EAAO,IACP,EAAM,0BAAmC,GACzC,UACG,WACA,OACH,EAAO,KACP,EAAM,0BAAmC,GACzC,cAEA,EAAM,KAGV,GAAM,GAAM,GAAI,OAChB,EAAI,OAAS,SAAY,CACvB,GAAM,GAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAM,GAAQ,SAAS,cAAc,UACnH,EAAO,MAAQ,EAAI,aACnB,EAAO,OAAS,EAAI,cACpB,GAAM,GAAM,EAAO,WAAW,MAC9B,WAAK,UAAU,EAAK,EAAG,GAEvB,GAAM,GAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QAC3C,EAAQ,IAEV,AAAI,EAAK,EAAI,IAAM,EACd,EAAQ,SAIf,YAAc,SAAY,CACxB,GAAM,GAAO,AAAC,GAAQ,OAAO,KAAK,EAAK,UACnC,EAGJ,GAFI,KAAK,OAAO,SAAW,QAAQ,GAAM,EAAY,KACjD,MAAK,OAAO,SAAW,QAAU,KAAK,OAAO,SAAW,SAAQ,GAAM,EAAY,KAClF,CAAC,EAAK,MAAO,MACjB,GAAI,GACJ,GAAI,MAAU,SAAY,YAAa,CACrC,GAAM,GAAO,AAAG,OAAQ,WAAW,GAC7B,EAAW,EAAK,WAAW,GACjC,KAAK,GAAG,QAAQ,GAEhB,EAAM,KAAM,MAAK,OAAO,EAAU,KAAK,QACvC,KAAK,GAAG,QAAQ,OAEhB,AAAI,MAAK,OAAO,OAAO,EAAI,+BAS7B,MAAO,KApcP,KAAK,GAAK,EACV,KAAK,KAAO,GACZ,KAAK,QAAc,GACnB,KAAK,OAAS,EAAU,EAAU,GAClC,KAAK,MAAQ,OACb,QAAK,GAAc,GACnB,QAAK,GAAsB,IAC3B,QAAK,GAAe,IACpB,QAAK,GAAY,IACjB,KAAK,KAAO,GAEZ,KAAK,OAAS,CACZ,KAAM,KACN,QAAS,KACT,UAAW,KACX,cAAe,KACf,SAAU,KACV,KAAM,KACN,IAAK,KACL,OAAQ,KACR,QAAS,KACT,UAAW,KACX,QAAS,KACT,QAAS,MAIX,KAAK,MAAQ,AAAC,GAAiB,AAAM,GAAQ,EAAO,KAAK,QAEzD,KAAK,QAAU,CACb,YACA,WACA,WACA,KAAM,KAAK,OAAO,KAAK,UAAU,SAAS,WAAa,GAAU,GACjE,KAAM,GACN,YAEF,KAAK,kBAA6B,GAClC,KAAK,UAAqB,GAE1B,KAAK,QAAU,AAAQ,KAMzB,aAAyH,CACvH,MAAI,MAAK,OAAO,QAAwB,GACjC,GAgCT,WAAW,EAA2B,EAAmC,CACvE,MAAO,AAAQ,IAAW,EAAY,GAQxC,QAAQ,EAA8B,CACpC,MAAO,AAAQ,IAAQ,GAWzB,MAAM,EAA8B,EAAkE,EAAY,EAA8E,CAC9L,MAAO,AAAQ,IAAM,EAAe,EAAI,QAMpC,MAAK,EAA8B,GAAI,CAC3C,KAAK,MAAQ,OACb,GAAM,GAAY,IAClB,AAAI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IAEjD,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,YAAY,KAAK,WACxC,KAAK,OAAO,OAAO,EAAI,iBAAiB,KAAK,GAAG,gBAChD,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,QAAQ,UACjD,KAAK,OAAO,OAAO,EAAI,SAAU,KAAK,QAAQ,OAElD,KAAM,QAAK,IAAL,UAAmB,IACrB,KAAK,GAAG,IAAI,MAAM,YAChB,MAAK,OAAO,OAAO,EAAI,iBAAkB,KAAK,QAC9C,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,GAAG,IAAI,SAGxD,AAAI,KAAK,OAAO,MACd,CACE,KAAK,OAAO,KACZ,KAAK,OAAO,QACZ,KAAK,OAAO,SACZ,KAAK,OAAO,QACZ,KAAK,OAAO,UACZ,KAAK,OAAO,QACZ,KAAK,OAAO,SACV,KAAM,SAAQ,IAAI,CACpB,KAAK,OAAO,MAAS,MAAK,OAAO,KAAK,QAAU,AAAS,GAAK,KAAK,QAAU,MAC7E,KAAK,OAAO,SAAa,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,QAAQ,QAAW,AAAQ,GAAK,KAAK,QAAU,MACrH,KAAK,OAAO,UAAa,MAAK,OAAO,KAAK,QAAU,AAAS,GAAK,KAAK,QAAU,MACjF,KAAK,OAAO,SAAY,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,SAAS,WAAa,AAAQ,GAAK,KAAK,QAAU,MACjI,KAAK,OAAO,WAAc,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,SAAS,aAAe,AAAU,GAAK,KAAK,QAAU,MACvI,KAAK,OAAO,SAAY,MAAK,OAAO,OAAO,QAAU,AAAQ,GAAK,KAAK,QAAU,MACjF,KAAK,OAAO,SAAa,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,YAAY,QAAW,AAAQ,GAAK,KAAK,QAAU,QAGvH,MAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,MAAM,MAAK,OAAO,KAAO,KAAM,AAAS,IAAK,KAAK,SAC3F,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,QAAQ,SAAW,CAAC,KAAK,OAAO,SAAS,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,SACpI,KAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,UAAU,MAAK,OAAO,SAAW,KAAM,AAAS,IAAK,KAAK,SACnG,KAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,SAAW,KAAK,OAAO,KAAK,UAAU,SAAS,YAAY,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,SAClJ,KAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,WAAa,KAAK,OAAO,KAAK,UAAU,SAAS,cAAc,MAAK,OAAO,UAAY,KAAM,AAAU,IAAK,KAAK,SAC1J,KAAK,OAAO,OAAO,SAAW,CAAC,KAAK,OAAO,SAAS,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,SAClG,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,YAAY,SAAW,CAAC,KAAK,OAAO,SAAS,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,UAG1I,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,GAAG,SAAS,MAAM,SAAU,QAAS,KAAK,GAAG,SAAS,MAAM,WAAY,WAC5H,QAAK,GAAY,KAGnB,GAAM,GAAU,KAAK,MAAM,IAAQ,GACnC,AAAI,EAAW,MAAK,KAAK,MAAQ,IAAI,MAAK,KAAK,KAAO,QAkElD,QAAO,EAAc,EAA8B,GAA6B,CAEpF,MAAO,IAAI,SAAQ,KAAO,IAAY,CAlW1C,QAmWM,KAAK,MAAQ,SACb,GAAI,GAGJ,KAAK,OAAS,EAAU,KAAK,OAAQ,GAGrC,KAAK,MAAQ,QACb,GAAM,GAAQ,OAAK,IAAL,UAAa,GAC3B,AAAI,GACF,GAAI,EAAO,GACX,EAAQ,CAAE,WAGZ,GAAM,GAAY,IAGlB,KAAM,QAAK,IAAL,WAGN,KAAM,MAAK,OAEP,KAAK,OAAO,QAAQ,KAAK,GAAG,SAAS,aACzC,KAAK,QAAQ,gBAGb,GAAI,GACJ,AAAI,GAAS,KAAK,OAAO,gBACtB,OAAO,mBAAqB,aAAe,YAAiB,mBACzD,MAAO,QAAU,aAAe,YAAiB,QACjD,MAAO,YAAc,aAAe,YAAiB,YACrD,MAAO,cAAgB,aAAe,aAAiB,eAE3D,GAAI,gCACJ,EAAyB,KAAK,OAAO,eACrC,KAAK,OAAO,eAAiB,IAG/B,EAAY,IACZ,GAAM,GAAU,AAAM,GAAQ,EAAO,KAAK,QAC1C,GAAI,CAAC,GAAW,CAAC,EAAQ,OAAQ,CAC/B,EAAI,qCACJ,EAAQ,CAAE,MAAO,sCACjB,OAEF,KAAK,KAAK,MAAQ,KAAK,MAAM,IAAQ,GACrC,KAAK,QAAQ,cAGb,GAAI,GACA,EACA,EACA,EACA,EAGJ,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAW,KAAM,EAAQ,QAAU,GAC5E,KAAK,KAAK,MAAM,MAAO,MAAK,KAAK,MAErC,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAW,KAAM,EAAQ,QAAU,GACtF,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,KAAO,IAIpC,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,CAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC/H,KAAK,OAAO,KAAK,UAAU,SAAS,cAAc,GAAU,KAAK,OAAO,KAAK,QAAU,AAAU,GAAQ,EAAQ,OAAQ,KAAK,QAAU,IAC7I,KAAK,KAAK,MAAM,MAAO,MAAK,KAAK,MAErC,MAAK,MAAQ,WACb,EAAY,IACZ,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GACrI,KAAK,OAAO,KAAK,UAAU,SAAS,cAAc,GAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAU,IAAQ,EAAQ,OAAQ,KAAK,QAAU,IACvJ,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,KAAO,IAEpC,KAAK,QAAQ,aAGb,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,QAAK,OAAO,WAAZ,cAAsB,cAAc,EAAQ,OAAQ,KAAK,QAAU,GACpG,KAAK,KAAK,MAAM,MAAO,MAAK,KAAK,MAErC,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,SAAK,OAAO,WAAZ,cAAsB,cAAc,EAAQ,OAAQ,KAAK,SAAU,GAC9G,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,KAAO,IAEpC,KAAK,QAAQ,aAGb,KAAK,QAAQ,iBACb,AAAI,KAAK,OAAO,MACd,GAAY,KAAK,OAAO,OAAO,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACpF,KAAK,KAAK,QAAQ,MAAO,MAAK,KAAK,QAEvC,MAAK,MAAQ,aACb,EAAY,IACZ,EAAY,KAAK,OAAO,OAAO,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC9F,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,OAAS,IAEtC,KAAK,QAAQ,eAGT,KAAK,OAAO,OACd,EAAC,EAAS,EAAS,EAAS,GAAa,KAAM,SAAQ,IAAI,CAAC,EAAS,EAAS,EAAS,KAEzF,AAAG,UAAQ,EAAQ,QAEf,KAAK,OAAO,QAAQ,KAAK,GAAG,SAAS,WACzC,KAAK,QAAQ,cAGb,GAAI,GAAoB,GACxB,AAAI,KAAK,OAAO,QAAQ,SACtB,GAAY,IACZ,EAAa,CAAC,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,IAC5G,AAAK,KAAK,OAAO,MACR,KAAK,KAAK,SAAS,MAAO,MAAK,KAAK,QADrB,KAAK,KAAK,QAAU,KAAK,MAAM,IAAQ,IAK7D,GAAwB,MAAK,OAAO,eAAiB,GAEzD,KAAK,KAAK,MAAQ,KAAK,MAAM,IAAQ,GACrC,KAAK,MAAQ,OACb,GAAM,GAAS,CACb,KAAM,EACN,KAAM,EACN,KAAM,EACN,QAAS,EACT,OAAQ,EACR,YAAa,KAAK,KAClB,OAAQ,EAAQ,QAGlB,EAAQ,UAuFN,QAAO,EAA8B,GAAiC,CAC1E,GAAM,GAAK,IAEX,GADI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IACjD,CAAC,KAAK,OAAO,QAAU,KAAK,OAAO,SAAW,OAAQ,MAAO,CAAE,MAAO,QAC1E,GAAM,GAAO,KAAK,OAAO,eACzB,KAAK,OAAO,eAAiB,GAC7B,GAAI,GACJ,AAAI,MAAO,oBAAsB,WAAY,EAAM,KAAM,QAAK,IAAL,WACpD,AAAI,MAAO,QAAU,YAAa,EAAM,KAAM,QAAK,IAAL,WAC9C,EAAM,KAAM,QAAK,IAAL,WACjB,KAAK,OAAO,eAAiB,EAC7B,GAAM,GAAK,IACX,MAAI,MAAK,OAAO,OAAO,EAAI,SAAU,KAAK,OAAO,OAAQ,KAAK,MAAM,EAAK,GAAK,KAAM,GAC7E,IApeT,eACA,eACA,eACA,eAyEA,eAoGA,eAqNA,eAkBA,eAiCA", "names": [] } diff --git a/dist/human.esm.js b/dist/human.esm.js index c3d94b5e..8b980857 100644 --- a/dist/human.esm.js +++ b/dist/human.esm.js @@ -5,35 +5,35 @@ author: ' */ -var t9=Object.defineProperty;var lr=(e,t)=>{for(var n in t)t9(e,n,{get:t[n],enumerable:!0})};var a5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var ur=(e,t,n)=>(a5(e,t,"read from private field"),n?n.call(e):t.get(e)),cs=(e,t,n,r)=>(a5(e,t,"write to private field"),r?r.call(e,n):t.set(e,n),n);function pt(e,t){let n=e.endsWith("/")?"":"/",a=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!a.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${a} Expecting JSON file`);return a}function le(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Ye=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Yn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Yn(s,i):n[a]=i}),n),{})}function s5(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let r=n[0].match(/\(([^()]+)\)/g);e=r?r[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var Au={};lr(Au,{Abs:()=>lo,Acos:()=>uo,Acosh:()=>co,AdadeltaOptimizer:()=>ep,AdagradOptimizer:()=>tp,AdamOptimizer:()=>np,AdamaxOptimizer:()=>rp,Add:()=>Ra,AddN:()=>ps,All:()=>ho,Any:()=>po,ArgMax:()=>fs,ArgMin:()=>wu,Asin:()=>fo,Asinh:()=>mo,Atan:()=>Ao,Atan2:()=>go,Atanh:()=>yo,AvgPool:()=>ms,AvgPool3D:()=>_u,AvgPool3DGrad:()=>Dh,AvgPoolGrad:()=>$h,BackendWasm:()=>Cv,BatchMatMul:()=>As,BatchToSpaceND:()=>vu,Bincount:()=>Oh,BroadcastTo:()=>Yx,Callback:()=>_4,CallbackList:()=>x6,Cast:()=>ys,Ceil:()=>gs,ClipByValue:()=>Ma,Complex:()=>zh,ComplexAbs:()=>ku,Concat:()=>xo,Conv2D:()=>xs,Conv2DBackpropFilter:()=>Ph,Conv2DBackpropInput:()=>bs,Conv3D:()=>Iu,Conv3DBackpropFilterV2:()=>Lh,Conv3DBackpropInputV2:()=>Wh,Cos:()=>ws,Cosh:()=>bo,CropAndResize:()=>wo,Cumsum:()=>_s,CustomCallback:()=>w6,DataStorage:()=>Ch,DenseBincount:()=>Bh,DepthToSpace:()=>_o,DepthwiseConv2dNative:()=>vs,DepthwiseConv2dNativeBackpropFilter:()=>Vh,DepthwiseConv2dNativeBackpropInput:()=>jh,Diag:()=>Uh,Dilation2D:()=>Su,Dilation2DBackpropFilter:()=>Gh,Dilation2DBackpropInput:()=>Hh,ENV:()=>vr,EarlyStopping:()=>k4,Einsum:()=>qh,Elu:()=>vo,EluGrad:()=>Xh,Environment:()=>Kx,Equal:()=>Io,Erf:()=>ko,Exp:()=>Is,ExpandDims:()=>So,Expm1:()=>No,FFT:()=>Kh,Fill:()=>Nu,FlipLeftRight:()=>To,Floor:()=>Ss,FloorDiv:()=>Ns,FromPixels:()=>hd,FusedBatchNorm:()=>Ts,FusedConv2D:()=>li,FusedDepthwiseConv2D:()=>ui,GPGPUContext:()=>bp,GatherNd:()=>Co,GatherV2:()=>Eo,GraphModel:()=>e8,Greater:()=>Ro,GreaterEqual:()=>Es,History:()=>b6,IFFT:()=>Zh,Identity:()=>Cs,Imag:()=>Yh,InputSpec:()=>Ft,IsFinite:()=>Mo,IsInf:()=>Fo,IsNan:()=>$o,KernelBackend:()=>gu,LRN:()=>Cu,LRNGrad:()=>Qh,LayerVariable:()=>f6,LayersModel:()=>xa,LeakyRelu:()=>Rs,Less:()=>Do,LessEqual:()=>Oo,LinSpace:()=>Jh,Log:()=>Ms,Log1p:()=>zo,LogSoftmax:()=>Jx,LogicalAnd:()=>Po,LogicalNot:()=>Tu,LogicalOr:()=>Eu,MathBackendCPU:()=>op,MathBackendWebGL:()=>Bl,Max:()=>Fs,MaxPool:()=>Ds,MaxPool3D:()=>Ru,MaxPool3DGrad:()=>td,MaxPoolGrad:()=>ed,MaxPoolWithArgmax:()=>nd,Maximum:()=>$s,Mean:()=>Os,Min:()=>zs,Minimum:()=>Ps,MirrorPad:()=>Ls,Mod:()=>Lo,MomentumOptimizer:()=>ap,Multinomial:()=>rd,Multiply:()=>Ws,Neg:()=>Wo,NonMaxSuppressionV3:()=>Vo,NonMaxSuppressionV4:()=>jo,NonMaxSuppressionV5:()=>Uo,NotEqual:()=>Bo,OP_SCOPE_SUFFIX:()=>ub,OneHot:()=>Bs,OnesLike:()=>Ho,Optimizer:()=>ma,Pack:()=>Go,PadV2:()=>Vs,Pool:()=>nI,Pow:()=>js,Prelu:()=>Us,Prod:()=>qo,RMSPropOptimizer:()=>sp,RNN:()=>Yr,Range:()=>Mu,Rank:()=>Of,Real:()=>ad,RealDiv:()=>ks,Reciprocal:()=>Xo,Reduction:()=>hn,Relu:()=>Hs,Relu6:()=>qs,Reshape:()=>Ko,ResizeBilinear:()=>Gs,ResizeBilinearGrad:()=>id,ResizeNearestNeighbor:()=>Fu,ResizeNearestNeighborGrad:()=>sd,Reverse:()=>Xs,RotateWithOffset:()=>ll,Round:()=>Ks,Rsqrt:()=>Zs,SGDOptimizer:()=>cc,ScatterNd:()=>Zo,Select:()=>Yo,Selu:()=>Jo,Sequential:()=>Zl,Sigmoid:()=>Js,Sign:()=>tl,Sin:()=>Ys,Sinh:()=>el,Slice:()=>Qo,Softmax:()=>ti,Softplus:()=>nl,SpaceToBatchND:()=>$u,SparseReshape:()=>od,SparseToDense:()=>ld,SplitV:()=>rl,Sqrt:()=>Qs,Square:()=>Du,SquaredDifference:()=>ni,Step:()=>$a,StridedSlice:()=>al,Sub:()=>ri,Sum:()=>ei,SymbolicTensor:()=>Fr,Tan:()=>ai,Tanh:()=>si,Tensor:()=>Pe,TensorBuffer:()=>Ot,Tile:()=>Fa,TopK:()=>sl,Transform:()=>ud,Transpose:()=>ii,Unique:()=>cd,Unpack:()=>il,UnsortedSegmentSum:()=>Ou,Variable:()=>ju,ZerosLike:()=>ol,_FusedMatMul:()=>oi,abs:()=>zt,acos:()=>lm,acosh:()=>um,add:()=>se,addN:()=>La,all:()=>vd,any:()=>Xu,argMax:()=>Ai,argMin:()=>cm,asin:()=>hm,asinh:()=>dm,atan:()=>pm,atan2:()=>fm,atanh:()=>mm,avgPool:()=>Zu,avgPool3d:()=>gm,backend:()=>Ub,backend_util:()=>E,basicLSTMCell:()=>$N,batchNorm:()=>xi,batchNorm2d:()=>Xb,batchNorm3d:()=>Kb,batchNorm4d:()=>Zb,batchToSpaceND:()=>Yu,bincount:()=>Yb,booleanMaskAsync:()=>WC,broadcastTo:()=>xl,browser:()=>fi,buffer:()=>Be,callbacks:()=>zae,cast:()=>ge,ceil:()=>xm,clipByValue:()=>En,clone:()=>Br,complex:()=>Da,concat:()=>ot,concat1d:()=>Jb,concat2d:()=>bl,concat3d:()=>Qb,concat4d:()=>ew,constraints:()=>Bv,conv1d:()=>Id,conv2d:()=>ha,conv2dTranspose:()=>Sd,conv3d:()=>wm,conv3dTranspose:()=>nw,copyRegisteredKernels:()=>sI,cos:()=>Ju,cosh:()=>Nd,cosineWindow:()=>Km,cumsum:()=>Td,customGrad:()=>jr,data:()=>t8,denseBincount:()=>rw,deprecationWarn:()=>im,depthToSpace:()=>_m,depthwiseConv2d:()=>wl,deregisterOp:()=>Lae,device_util:()=>Hu,diag:()=>uT,dilation2d:()=>vm,disableDeprecationWarnings:()=>XS,dispose:()=>we,disposeVariables:()=>KS,div:()=>Ae,divNoNan:()=>km,dot:()=>aw,dropout:()=>Iw,einsum:()=>sw,elu:()=>_l,enableDebugMode:()=>qS,enableProdMode:()=>GS,enclosingPowerOfTwo:()=>Sw,engine:()=>ca,env:()=>J,equal:()=>Ba,erf:()=>Im,exp:()=>Qn,expandDims:()=>Qt,expm1:()=>Sm,eye:()=>Nm,fft:()=>lc,fill:()=>Qu,findBackend:()=>om,findBackendFactory:()=>tN,floor:()=>vl,floorDiv:()=>_d,forceHalfFloat:()=>V3,fused:()=>Ha,gather:()=>bi,gatherND:()=>kw,gather_util:()=>Qf,getBackend:()=>QS,getGradient:()=>Ff,getKernel:()=>dd,getKernelsForBackend:()=>cl,gpgpu_util:()=>d3,grad:()=>LT,grads:()=>WT,greater:()=>pr,greaterEqual:()=>ja,ifft:()=>Nl,imag:()=>Ed,image:()=>Le,inTopKAsync:()=>YC,initializers:()=>Xv,input:()=>o6,io:()=>Nn,irfft:()=>Hd,isFinite:()=>iw,isInf:()=>ow,isNaN:()=>Tm,keep:()=>Ht,kernel_impls:()=>Gr,layers:()=>i6,leakyRelu:()=>ec,less:()=>Cd,lessEqual:()=>wi,linalg:()=>Pw,linspace:()=>lw,loadGraphModel:()=>ct,loadLayersModel:()=>rae,localResponseNormalization:()=>Em,log:()=>zn,log1p:()=>Rd,logSigmoid:()=>cw,logSoftmax:()=>Fd,logSumExp:()=>Mm,logicalAnd:()=>fr,logicalNot:()=>tc,logicalOr:()=>$d,logicalXor:()=>fw,losses:()=>AM,matMul:()=>Ve,math:()=>Ib,max:()=>Rn,maxPool:()=>nc,maxPool3d:()=>Fm,maxPoolWithArgmax:()=>mw,maximum:()=>Ur,mean:()=>It,memory:()=>wd,meshgrid:()=>lE,metrics:()=>x4,min:()=>kl,minimum:()=>Il,mirrorPad:()=>$m,mod:()=>Dm,model:()=>tae,models:()=>b4,moments:()=>Dd,movingAverage:()=>jC,mul:()=>z,multiRNNCell:()=>AE,multinomial:()=>Aw,neg:()=>kt,nextFrame:()=>ip,norm:()=>Kd,notEqual:()=>ki,oneHot:()=>ml,ones:()=>Pn,onesLike:()=>Ln,op:()=>D,outerProduct:()=>wE,pad:()=>da,pad1d:()=>kE,pad2d:()=>SE,pad3d:()=>TE,pad4d:()=>CE,pool:()=>yw,pow:()=>pa,prelu:()=>ac,print:()=>xb,prod:()=>Od,profile:()=>an,rand:()=>LE,randomGamma:()=>jE,randomNormal:()=>gw,randomUniform:()=>Sl,range:()=>zd,ready:()=>JS,real:()=>sc,reciprocal:()=>Pm,registerBackend:()=>yl,registerCallbackConstructor:()=>aae,registerGradient:()=>Qx,registerKernel:()=>ci,registerOp:()=>Pae,regularizers:()=>w4,relu:()=>Hr,relu6:()=>Pd,removeBackend:()=>eN,reshape:()=>H,reverse:()=>Wn,reverse1d:()=>JE,reverse2d:()=>eC,reverse3d:()=>nC,reverse4d:()=>aC,rfft:()=>uc,round:()=>Lm,rsqrt:()=>Ld,scalar:()=>ve,scatterND:()=>vw,scatter_util:()=>em,selu:()=>Wd,separableConv2d:()=>Wm,sequential:()=>nae,serialization:()=>re,setBackend:()=>YS,setPlatform:()=>nN,setWasmPath:()=>YJ,setWasmPaths:()=>JJ,setWebGLContext:()=>Ap,setdiff1dAsync:()=>xw,shared:()=>eA,sigmoid:()=>Tn,sign:()=>Bm,signal:()=>mM,sin:()=>Bd,sinh:()=>Vd,slice:()=>Re,slice1d:()=>jd,slice2d:()=>Vm,slice3d:()=>Ud,slice4d:()=>ic,slice_util:()=>un,softmax:()=>oc,softplus:()=>_i,spaceToBatchND:()=>rc,sparse:()=>Lw,sparseToDense:()=>Xm,spectral:()=>fM,split:()=>Lt,sqrt:()=>en,square:()=>it,squaredDifference:()=>Gd,squeeze:()=>Ua,stack:()=>cn,step:()=>Tl,stridedSlice:()=>jm,sub:()=>ye,sum:()=>Te,sumOutType:()=>Ad,tan:()=>Um,tanh:()=>gi,tensor:()=>Sr,tensor1d:()=>sn,tensor2d:()=>er,tensor3d:()=>xd,tensor4d:()=>CC,tensor5d:()=>RC,tensor6d:()=>MC,tensor_util:()=>kr,test_util:()=>Bb,tidy:()=>P,tile:()=>Va,time:()=>ZS,topk:()=>Hm,train:()=>Si,transpose:()=>Je,truncatedNormal:()=>qd,unique:()=>Xd,unregisterGradient:()=>aI,unregisterKernel:()=>rI,unsortedSegmentSum:()=>Gm,unstack:()=>mr,upcastType:()=>dr,util:()=>_,valueAndGrad:()=>BT,valueAndGrads:()=>VT,variable:()=>bw,variableGrads:()=>uw,version:()=>Iie,version_converter:()=>Lse,version_core:()=>HS,version_cpu:()=>g_,version_layers:()=>xy,version_wasm:()=>Mv,version_webgl:()=>B3,webgl:()=>eB,webgl_util:()=>W_,where:()=>Cn,whereAsync:()=>qm,zeros:()=>Rt,zerosLike:()=>He});var n9=Object.create,Eh=Object.defineProperty,r9=Object.getPrototypeOf,a9=Object.prototype.hasOwnProperty,s9=Object.getOwnPropertyNames,i9=Object.getOwnPropertyDescriptor,o9=e=>Eh(e,"__esModule",{value:!0}),_t=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Me=(e,t)=>{for(var n in t)Eh(e,n,{get:t[n],enumerable:!0})},l9=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of s9(t))!a9.call(e,r)&&r!=="default"&&Eh(e,r,{get:()=>t[r],enumerable:!(n=i9(t,r))||n.enumerable});return e},so=e=>l9(o9(Eh(e!=null?n9(r9(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),u9=_t(()=>{}),c9=_t((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=h.toString();for(var d=0;d>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),h9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),d9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),p9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,m,f;return p=h[d],p^=p>>>7,m=p^p<<24,p=h[d+1&7],m^=p^p>>>10,p=h[d+3&7],m^=p^p>>>3,p=h[d+4&7],m^=p^p<<7,p=h[d+7&7],p=p^p<<13,m^=p^p<<9,h[d]=m,c.i=d+1&7,m};function u(h,d){var p,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),f9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,m,f;return c.w=h=h+1640531527|0,f=d[p+34&127],m=d[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[p]=f^m,c.i=p,f+(h^h>>>16)|0};function u(h,d){var p,m,f,A,y,g=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,A=-32;A>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=m+y,f=p==0?f+1:0);for(f>=128&&(g[(d&&d.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;h.w=y,h.X=g,h.i=f}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),m9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,m=c.d,f=c.a;return d=d<<25^d>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-m|0,c.d=m<<16^p>>>16^f,c.a=f-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),i5=_t(()=>{}),A9=_t((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),h=u*2,d=s-1,p;function m(b,w,k){var N=[];w=w==!0?{entropy:!0}:w||{};var C=g(y(w.entropy?[b,v(n)]:b==null?x():b,3),N),F=new f(N),O=function(){for(var L=F.g(i),V=c,j=0;L=h;)L/=2,V/=2,j>>>=1;return(L+j)/V};return O.int32=function(){return F.g(4)|0},O.quick=function(){return F.g(4)/4294967296},O.double=O,g(v(F.S),n),(w.pass||k||function(L,V,j,U){return U&&(U.S&&A(U,F),L.state=function(){return A(F,{})}),j?(r[l]=L,V):L})(O,C,"global"in w?w.global:this==r,w.state)}r["seed"+l]=m;function f(b){var w,k=b.length,N=this,C=0,F=N.i=N.j=0,O=N.S=[];for(k||(b=[k++]);C{var n=c9(),r=h9(),a=d9(),s=p9(),i=f9(),o=m9(),l=A9();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),yu=_t(()=>{}),y9=_t(()=>{}),g9=_t(()=>{}),x9=_t((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return Q.buffer!=je&&Yt(Q.buffer),_n}function i(){return Q.buffer!=je&&Yt(Q.buffer),wt}function o(){return Q.buffer!=je&&Yt(Q.buffer),vn}function l(){return Q.buffer!=je&&Yt(Q.buffer),Kn}function c(){return Q.buffer!=je&&Yt(Q.buffer),on}var u=typeof a!="undefined"?a:{},h,d;u.ready=new Promise(function(S,T){h=S,d=T});var p={},m;for(m in u)u.hasOwnProperty(m)&&(p[m]=u[m]);var f=[],A="./this.program",y=function(S,T){throw T},g=!1,x=!1,v=!1,b=!1;g=typeof window=="object",x=typeof importScripts=="function",v=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!g&&!v&&!x;var w=u.ENVIRONMENT_IS_PTHREAD||!1;w&&(je=u.buffer);var k="";function N(S){return u.locateFile?u.locateFile(S,k):k+S}var C,F,O,L,V,j;if(v){x?k=yu().dirname(k)+"/":k=__dirname+"/",C=function(S,T){return V||(V=require("fs")),j||(j=yu()),S=j.normalize(S),V.readFileSync(S,T?null:"utf8")},O=function(S){var T=C(S,!0);return T.buffer||(T=new Uint8Array(T)),pe(T.buffer),T},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(S){if(!(S instanceof mu))throw S}),process.on("unhandledRejection",sa),y=function(S){process.exit(S)},u.inspect=function(){return"[Emscripten Module object]"};var U;try{U=y9()}catch(S){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),S}global.Worker=U.Worker}else b?(typeof read!="undefined"&&(C=function(S){return read(S)}),O=function(S){var T;return typeof readbuffer=="function"?new Uint8Array(readbuffer(S)):(T=read(S,"binary"),pe(typeof T=="object"),T)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(S){quit(S)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||x)&&(x?k=self.location.href:typeof document!="undefined"&&document.currentScript&&(k=document.currentScript.src),typeof r!="undefined"&&r&&(k=r),k.indexOf("blob:")!==0?k=k.substr(0,k.lastIndexOf("/")+1):k="",v?(C=function(S,T){return V||(V=require("fs")),j||(j=yu()),S=j.normalize(S),V.readFileSync(S,T?null:"utf8")},O=function(S){var T=C(S,!0);return T.buffer||(T=new Uint8Array(T)),pe(T.buffer),T}):(C=function(S){var T=new XMLHttpRequest;return T.open("GET",S,!1),T.send(null),T.responseText},x&&(O=function(S){var T=new XMLHttpRequest;return T.open("GET",S,!1),T.responseType="arraybuffer",T.send(null),new Uint8Array(T.response)}),F=function(S,T,W){var q=new XMLHttpRequest;q.open("GET",S,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){T(q.response);return}W()},q.onerror=W,q.send(null)}),L=function(S){document.title=S});v&&typeof performance=="undefined"&&(global.performance=g9().performance);var X=u.print||console.log.bind(console),G=u.printErr||console.warn.bind(console);for(m in p)p.hasOwnProperty(m)&&(u[m]=p[m]);p=null,u.arguments&&(f=u.arguments),u.thisProgram&&(A=u.thisProgram),u.quit&&(y=u.quit);var ee=Atomics.load,Y=Atomics.store,ae=Atomics.compareExchange,te;u.wasmBinary&&(te=u.wasmBinary);var ie=u.noExitRuntime||!0;typeof WebAssembly!="object"&&sa("no native wasm support detected");var Q,he,oe=!1,me;function pe(S,T){S||sa("Assertion failed: "+T)}function Ie(S){var T=u["_"+S];return pe(T,"Cannot call unknown function "+S+", make sure it is exported"),T}function Se(S,T,W,q,de){var ue={string:function(Sn){var ao=0;if(Sn!=null&&Sn!==0){var r5=(Sn.length<<2)+1;ao=to(r5),tt(Sn,ao,r5)}return ao},array:function(Sn){var ao=to(Sn.length);return Ke(Sn,ao),ao}};function ce(Sn){return T==="string"?$e(Sn):T==="boolean"?Boolean(Sn):Sn}var be=Ie(S),nt=[],jt=0;if(q)for(var Dt=0;Dt=q);){var ue=S[T++];if(!ue)return de;if(!(ue&128)){de+=String.fromCharCode(ue);continue}var ce=S[T++]&63;if((ue&224)==192){de+=String.fromCharCode((ue&31)<<6|ce);continue}var be=S[T++]&63;if((ue&240)==224?ue=(ue&15)<<12|ce<<6|be:ue=(ue&7)<<18|ce<<12|be<<6|S[T++]&63,ue<65536)de+=String.fromCharCode(ue);else{var nt=ue-65536;de+=String.fromCharCode(55296|nt>>10,56320|nt&1023)}}return de}function $e(S,T){return S?Oe(i(),S,T):""}function et(S,T,W,q){if(!(q>0))return 0;for(var de=W,ue=W+q-1,ce=0;ce=55296&&be<=57343){var nt=S.charCodeAt(++ce);be=65536+((be&1023)<<10)|nt&1023}if(be<=127){if(W>=ue)break;T[W++]=be}else if(be<=2047){if(W+1>=ue)break;T[W++]=192|be>>6,T[W++]=128|be&63}else if(be<=65535){if(W+2>=ue)break;T[W++]=224|be>>12,T[W++]=128|be>>6&63,T[W++]=128|be&63}else{if(W+3>=ue)break;T[W++]=240|be>>18,T[W++]=128|be>>12&63,T[W++]=128|be>>6&63,T[W++]=128|be&63}}return T[W]=0,W-de}function tt(S,T,W){return et(S,i(),T,W)}function st(S){for(var T=0,W=0;W=55296&&q<=57343&&(q=65536+((q&1023)<<10)|S.charCodeAt(++W)&1023),q<=127?++T:q<=2047?T+=2:q<=65535?T+=3:T+=4}return T}function Ke(S,T){s().set(S,T)}function dt(S,T){return S%T>0&&(S+=T-S%T),S}var je,_n,wt,Xn,Zt,vn,Kn,On,on;function Yt(S){je=S,u.HEAP8=_n=new Int8Array(S),u.HEAP16=Xn=new Int16Array(S),u.HEAP32=vn=new Int32Array(S),u.HEAPU8=wt=new Uint8Array(S),u.HEAPU16=Zt=new Uint16Array(S),u.HEAPU32=Kn=new Uint32Array(S),u.HEAPF32=On=new Float32Array(S),u.HEAPF64=on=new Float64Array(S)}var zr=u.INITIAL_MEMORY||16777216;if(w)Q=u.wasmMemory,je=u.buffer;else if(u.wasmMemory)Q=u.wasmMemory;else if(Q=new WebAssembly.Memory({initial:zr/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),v&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(je=Q.buffer),zr=je.byteLength,Yt(je);var ir,or=[],_a=[],ra=[],va=[],Xi=[],Pr=!1,oh=!1;w||_a.push({func:function(){_h()}});function Y0(){if(!w){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)uh(u.preRun.shift());Zi(or)}}function su(){Pr=!0,!w&&Zi(_a)}function J0(){w||Zi(ra)}function lh(){w||(oh=!0)}function kn(){if(!w){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)Q0(u.postRun.shift());Zi(Xi)}}function uh(S){or.unshift(S)}function Q0(S){Xi.unshift(S)}var aa=0,ka=null,os=null;function e1(S){pe(!w,"addRunDependency cannot be used in a pthread worker"),aa++,u.monitorRunDependencies&&u.monitorRunDependencies(aa)}function t1(S){if(aa--,u.monitorRunDependencies&&u.monitorRunDependencies(aa),aa==0&&(ka!==null&&(clearInterval(ka),ka=null),os)){var T=os;os=null,T()}}u.preloadedImages={},u.preloadedAudios={};function sa(S){u.onAbort&&u.onAbort(S),w&&console.error("Pthread aborting at "+new Error().stack),S+="",G(S),oe=!0,me=1,S="abort("+S+"). Build with -s ASSERTIONS=1 for more info.";var T=new WebAssembly.RuntimeError(S);throw d(T),T}function ch(S,T){return String.prototype.startsWith?S.startsWith(T):S.indexOf(T)===0}var Ki="data:application/octet-stream;base64,";function hh(S){return ch(S,Ki)}var n1="file://";function dh(S){return ch(S,n1)}var In="tfjs-backend-wasm-threaded-simd.wasm";hh(In)||(In=N(In));function ph(S){try{if(S==In&&te)return new Uint8Array(te);if(O)return O(S);throw"both async and sync fetching of the wasm failed"}catch(T){sa(T)}}function r1(){if(!te&&(g||x)){if(typeof fetch=="function"&&!dh(In))return fetch(In,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+In+"'";return S.arrayBuffer()}).catch(function(){return ph(In)});if(F)return new Promise(function(S,T){F(In,function(W){S(new Uint8Array(W))},T)})}return Promise.resolve().then(function(){return ph(In)})}function a1(){var S={a:X1};function T(ce,be){var nt=ce.exports;if(u.asm=nt,ir=u.asm.F,he=be,!w){var jt=ke.unusedWorkers.length;ke.unusedWorkers.forEach(function(Dt){ke.loadWasmModuleToWorker(Dt,function(){--jt||t1("wasm-instantiate")})})}}w||e1("wasm-instantiate");function W(ce){T(ce.instance,ce.module)}function q(ce){return r1().then(function(be){return WebAssembly.instantiate(be,S)}).then(ce,function(be){G("failed to asynchronously prepare wasm: "+be),sa(be)})}function de(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!hh(In)&&!dh(In)&&typeof fetch=="function"?fetch(In,{credentials:"same-origin"}).then(function(ce){var be=WebAssembly.instantiateStreaming(ce,S);return be.then(W,function(nt){return G("wasm streaming compile failed: "+nt),G("falling back to ArrayBuffer instantiation"),q(W)})}):q(W)}if(u.instantiateWasm)try{var ue=u.instantiateWasm(S,T);return ue}catch(ce){return G("Module.instantiateWasm callback failed with error: "+ce),!1}return de().catch(d),{}}var s1={9816:function(){throw"Canceled!"},9834:function(S,T){setTimeout(function(){Yg(S,T)},0)}};function fh(){ke.initRuntime()}function Zi(S){for(;S.length>0;){var T=S.shift();if(typeof T=="function"){T(u);continue}var W=T.func;typeof W=="number"?T.arg===void 0?ir.get(W)():ir.get(W)(T.arg):W(T.arg===void 0?null:T.arg)}}function iu(S,T){if(S<=0||S>s().length||S&!0||T<0)return-28;if(T==0)return 0;T>=2147483647&&(T=Infinity);var W=Atomics.load(o(),no>>2),q=0;if(W==S){var de=Atomics.compareExchange(o(),no>>2,W,0);if(de==W&&(--T,q=1,T<=0))return 1}var ue=Atomics.notify(o(),S>>2,T);if(ue>=0)return ue+q;throw"Atomics.notify returned an unexpected value "+ue}u._emscripten_futex_wake=iu;function i1(S){if(w)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in killThread!";o()[S+12>>2]=0;var T=ke.pthreads[S];T.worker.terminate(),ke.freeThreadData(T),ke.runningWorkers.splice(ke.runningWorkers.indexOf(T.worker),1),T.worker.pthread=void 0}function o1(S){if(w)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cancelThread!";var T=ke.pthreads[S];T.worker.postMessage({cmd:"cancel"})}function l1(S){if(w)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cleanupThread!";var T=ke.pthreads[S];if(T){o()[S+12>>2]=0;var W=T.worker;ke.returnWorkerToPool(W)}}var ke={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var S=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),T=0;T>2]=S;var W=S+152;o()[W>>2]=W;for(var q=us(512),T=0;T<128;++T)l()[q/4+T]=0;Atomics.store(l(),S+100>>2,q),Atomics.store(l(),S+40>>2,S),xf(S,!x,1),Zg(S)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;ke.threadExitHandlers.length>0;)ke.threadExitHandlers.pop()();w&&Qi()&&Kg()},runExitHandlersAndDeinitThread:function(S,T){Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),ke.runExitHandlers(),Atomics.store(l(),S+4>>2,T),Atomics.store(l(),S+0>>2,1),iu(S+0,2147483647),xf(0,0,0)},threadExit:function(S){var T=Qi();T&&(ke.runExitHandlersAndDeinitThread(T,S),w&&postMessage({cmd:"exit"}))},threadCancel:function(){ke.runExitHandlersAndDeinitThread(Qi(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var S in ke.pthreads){var T=ke.pthreads[S];T&&T.worker&&ke.returnWorkerToPool(T.worker)}ke.pthreads={};for(var W=0;W>2];o()[S.threadInfoStruct+100>>2]=0,pu(T),pu(S.threadInfoStruct)}S.threadInfoStruct=0,S.allocatedOwnStack&&S.stackBase&&pu(S.stackBase),S.stackBase=0,S.worker&&(S.worker.pthread=null)}},returnWorkerToPool:function(S){ke.runWithoutMainThreadQueuedCalls(function(){delete ke.pthreads[S.pthread.threadInfoStruct],ke.unusedWorkers.push(S),ke.runningWorkers.splice(ke.runningWorkers.indexOf(S),1),ke.freeThreadData(S.pthread),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){o()[n5>>2]=0;try{S()}finally{o()[n5>>2]=1}},receiveObjectTransfer:function(S){},loadWasmModuleToWorker:function(S,T){S.onmessage=function(W){var q=W.data,de=q.cmd;if(S.pthread&&(ke.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Qi()){var ue=ke.pthreads[q.targetThread];ue?ue.worker.postMessage(W.data,q.transferList):console.error('Internal error! Worker sent a message "'+de+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),ke.currentProxiedOperationCallerThread=void 0;return}if(de==="processQueuedMainThreadWork")yf();else if(de==="spawnThread")bh(W.data);else if(de==="cleanupThread")l1(q.thread);else if(de==="killThread")i1(q.thread);else if(de==="cancelThread")o1(q.thread);else if(de==="loaded")S.loaded=!0,T&&T(S),S.runPthread&&(S.runPthread(),delete S.runPthread);else if(de==="print")X("Thread "+q.threadId+": "+q.text);else if(de==="printErr")G("Thread "+q.threadId+": "+q.text);else if(de==="alert")alert("Thread "+q.threadId+": "+q.text);else if(de==="exit"){var ce=S.pthread&&Atomics.load(l(),S.pthread.threadInfoStruct+64>>2);ce&&ke.returnWorkerToPool(S)}else if(de==="exitProcess")try{e9(q.returnCode)}catch(be){if(be instanceof mu)return;throw be}else de==="cancelDone"?ke.returnWorkerToPool(S):de==="objectTransfer"?ke.receiveObjectTransfer(W.data):W.data.target==="setimmediate"?S.postMessage(W.data):G("worker sent an unknown command "+de);ke.currentProxiedOperationCallerThread=void 0},S.onerror=function(W){G("pthread sent an error! "+W.filename+":"+W.lineno+": "+W.message)},v&&(S.on("message",function(W){S.onmessage({data:W})}),S.on("error",function(W){S.onerror(W)}),S.on("exit",function(W){})),S.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||r,wasmMemory:Q,wasmModule:he})},allocateUnusedWorker:function(){var S=N("tfjs-backend-wasm-threaded-simd.worker.js");ke.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return ke.unusedWorkers.length==0&&(ke.allocateUnusedWorker(),ke.loadWasmModuleToWorker(ke.unusedWorkers[0])),ke.unusedWorkers.length>0?ke.unusedWorkers.pop():null},busySpinWait:function(S){for(var T=performance.now()+S;performance.now()>2]=S,S}function m1(S,T){if(w)return Ia(1,1,S,T)}function A1(S,T){if(S==T)postMessage({cmd:"processQueuedMainThreadWork"});else if(w)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var W=ke.pthreads[S],q=W&&W.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function y1(){sa()}function g1(S,T,W){var q=v1(T,W);return s1[S].apply(null,q)}function x1(S,T){}function b1(S,T,W){if(S<=0||S>s().length||S&!0)return-28;if(g){if(Atomics.load(o(),S>>2)!=T)return-6;for(var q=performance.now(),de=q+W,ue=Atomics.exchange(o(),no>>2,S);;){if(q=performance.now(),q>de)return ue=Atomics.exchange(o(),no>>2,0),-73;if(ue=Atomics.exchange(o(),no>>2,0),ue==0)break;if(yf(),Atomics.load(o(),S>>2)!=T)return-6;ue=Atomics.exchange(o(),no>>2,S)}return 0}else{var ce=Atomics.wait(o(),S>>2,T,W);if(ce==="timed-out")return-73;if(ce==="not-equal")return-6;if(ce==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ce}}function w1(S,T,W){i().copyWithin(S,T,T+W)}function _1(){return v?require("os").cpus().length:navigator.hardwareConcurrency}function Ia(S,T){for(var W=arguments.length-2,q=fu(),de=W,ue=to(de*8),ce=ue>>3,be=0;be>=2;W=i()[S++];){var q=W<105;q&&T&1&&T++,lu.push(q?c()[T++>>1]:o()[T]),++T}return lu}function k1(S,T,W){ou.length=T;for(var q=W>>3,de=0;de>>16),Yt(Q.buffer),1}catch(T){}}function N1(S){var T=I1();if(S<=T)return!1;var W=2147483648;if(S>W)return!1;for(var q=1;q<=4;q*=2){var de=T*(1+.2/q);de=Math.min(de,S+100663296);var ue=Math.min(W,dt(Math.max(S,de),65536)),ce=S1(ue);if(ce)return!0}return!1}var We={inEventHandler:0,removeAllEventListeners:function(){for(var S=We.eventHandlers.length-1;S>=0;--S)We._removeHandler(S);We.eventHandlers=[],We.deferredCalls=[]},registerRemoveEventListeners:function(){We.removeEventListenersRegistered||(va.push(We.removeAllEventListeners),We.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,T,W){function q(ce,be){if(ce.length!=be.length)return!1;for(var nt in ce)if(ce[nt]!=be[nt])return!1;return!0}for(var de in We.deferredCalls){var ue=We.deferredCalls[de];if(ue.targetFunction==S&&q(ue.argsList,W))return}We.deferredCalls.push({targetFunction:S,precedence:T,argsList:W}),We.deferredCalls.sort(function(ce,be){return ce.precedence>2]=W,o()[ce+4>>2]=q,o()[ce+8>>2]=de,gf(0,S,637534208,T,q,ce),eo(ue)},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return ke.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function T1(S){var T=st(S)+1,W=us(T);return tt(S,W,T),W}function E1(S,T,W,q){var de=fu(),ue=to(12),ce=0;T&&(ce=T1(T)),o()[ue>>2]=ce,o()[ue+4>>2]=W,o()[ue+8>>2]=q,gf(0,S,657457152,0,ce,ue),eo(de)}function C1(S,T,W,q){T=T?$e(T):"",E1(S,T,W,q)}function R1(S){return S>2?$e(S):S}var M1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function F1(S){S=R1(S);var T=M1[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return T}function uu(S){return F1(S)}function mh(S,T,W){var q=uu(S);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=T,o()[q.canvasSharedPtr+4>>2]=W),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var de=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var ue=q.GLctxObject.GLctx.getParameter(2978);de=ue[0]===0&&ue[1]===0&&ue[2]===q.width&&ue[3]===q.height}q.width=T,q.height=W,de&&q.GLctxObject.GLctx.viewport(0,0,T,W)}else if(q.canvasSharedPtr){var ce=o()[q.canvasSharedPtr+8>>2];return C1(ce,S,T,W),1}else return-4;return 0}function Ah(S,T,W){return w?Ia(2,1,S,T,W):mh(S,T,W)}function $1(S,T,W){var q=uu(S);return q?mh(S,T,W):Ah(S,T,W)}function D1(S){}function O1(S,T){}function z1(S){var T=S.getExtension("ANGLE_instanced_arrays");if(T)return S.vertexAttribDivisor=function(W,q){T.vertexAttribDivisorANGLE(W,q)},S.drawArraysInstanced=function(W,q,de,ue){T.drawArraysInstancedANGLE(W,q,de,ue)},S.drawElementsInstanced=function(W,q,de,ue,ce){T.drawElementsInstancedANGLE(W,q,de,ue,ce)},1}function P1(S){var T=S.getExtension("OES_vertex_array_object");if(T)return S.createVertexArray=function(){return T.createVertexArrayOES()},S.deleteVertexArray=function(W){T.deleteVertexArrayOES(W)},S.bindVertexArray=function(W){T.bindVertexArrayOES(W)},S.isVertexArray=function(W){return T.isVertexArrayOES(W)},1}function L1(S){var T=S.getExtension("WEBGL_draw_buffers");if(T)return S.drawBuffers=function(W,q){T.drawBuffersWEBGL(W,q)},1}function W1(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var Qe={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(S){Qe.lastError||(Qe.lastError=S)},getNewId:function(S){for(var T=Qe.counter++,W=S.length;W>2]:-1;de+=$e(o()[W+ue*4>>2],ce<0?void 0:ce)}return de},createContext:function(S,T){var W=S.getContext("webgl",T);if(!W)return 0;var q=Qe.registerContext(W,T);return q},registerContext:function(S,T){var W=us(8);o()[W+4>>2]=Qi();var q={handle:W,attributes:T,version:T.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=q),Qe.contexts[W]=q,(typeof T.enableExtensionsByDefault=="undefined"||T.enableExtensionsByDefault)&&Qe.initExtensions(q),W},makeContextCurrent:function(S){return Qe.currentContext=Qe.contexts[S],u.ctx=Sa=Qe.currentContext&&Qe.currentContext.GLctx,!(S&&!Sa)},getContext:function(S){return Qe.contexts[S]},deleteContext:function(S){Qe.currentContext===Qe.contexts[S]&&(Qe.currentContext=null),typeof We=="object"&&We.removeAllHandlersOnTarget(Qe.contexts[S].GLctx.canvas),Qe.contexts[S]&&Qe.contexts[S].GLctx.canvas&&(Qe.contexts[S].GLctx.canvas.GLctxObject=void 0),pu(Qe.contexts[S].handle),Qe.contexts[S]=null},initExtensions:function(S){if(S||(S=Qe.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var T=S.GLctx;z1(T),P1(T),L1(T),T.disjointTimerQueryExt=T.getExtension("EXT_disjoint_timer_query"),W1(T);var W=T.getSupportedExtensions()||[];W.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&T.getExtension(q)})}},populateUniformTable:function(S){for(var T=Qe.programs[S],W=Qe.programInfos[S]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=W.uniforms,de=Sa.getProgramParameter(T,35718),ue=0;ue>2,q=o()[W+(24>>2)],de={alpha:!!o()[W+(0>>2)],depth:!!o()[W+(4>>2)],stencil:!!o()[W+(8>>2)],antialias:!!o()[W+(12>>2)],premultipliedAlpha:!!o()[W+(16>>2)],preserveDrawingBuffer:!!o()[W+(20>>2)],powerPreference:B1[q],failIfMajorPerformanceCaveat:!!o()[W+(28>>2)],majorVersion:o()[W+(32>>2)],minorVersion:o()[W+(36>>2)],enableExtensionsByDefault:o()[W+(40>>2)],explicitSwapControl:o()[W+(44>>2)],proxyContextToMainThread:o()[W+(48>>2)],renderViaOffscreenBackBuffer:o()[W+(52>>2)]},ue=uu(S);if(!ue||de.explicitSwapControl)return 0;var ce=Qe.createContext(ue,de);return ce}function j1(S,T){return V1(S,T)}var Yi={mappings:{},buffers:[null,[],[]],printChar:function(S,T){var W=Yi.buffers[S];T===0||T===10?((S===1?X:G)(Oe(W,0)),W.length=0):W.push(T)},varargs:void 0,get:function(){Yi.varargs+=4;var S=o()[Yi.varargs-4>>2];return S},getStr:function(S){var T=$e(S);return T},get64:function(S,T){return S}};function yh(S){return w?Ia(3,1,S):0}function gh(S,T,W,q,de){if(w)return Ia(4,1,S,T,W,q,de)}function xh(S,T,W,q){if(w)return Ia(5,1,S,T,W,q);for(var de=0,ue=0;ue>2],be=o()[T+(ue*8+4)>>2],nt=0;nt>2]=de,0}function U1(S){var T=ke.threadExitHandlers.pop();S&&T()}function H1(S,T){ke.threadExitHandlers.push(function(){ir.get(S)(T)})}function bh(S){if(w)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var T=ke.getNewWorker();if(T.pthread!==void 0)throw"Internal error!";if(!S.pthread_ptr)throw"Internal error, no pthread ptr!";ke.runningWorkers.push(T);for(var W=us(128*4),q=0;q<128;++q)o()[W+q*4>>2]=0;var de=S.stackBase+S.stackSize,ue=ke.pthreads[S.pthread_ptr]={worker:T,stackBase:S.stackBase,stackSize:S.stackSize,allocatedOwnStack:S.allocatedOwnStack,threadInfoStruct:S.pthread_ptr},ce=ue.threadInfoStruct>>2;Atomics.store(l(),ce+(64>>2),S.detached),Atomics.store(l(),ce+(100>>2),W),Atomics.store(l(),ce+(40>>2),ue.threadInfoStruct),Atomics.store(l(),ce+(80>>2),S.stackSize),Atomics.store(l(),ce+(76>>2),de),Atomics.store(l(),ce+(104>>2),S.stackSize),Atomics.store(l(),ce+(104+8>>2),de),Atomics.store(l(),ce+(104+12>>2),S.detached);var be=Xg(),nt=be+40;Atomics.store(l(),ce+(172>>2),nt),T.pthread=ue;var jt={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr,stackBase:S.stackBase,stackSize:S.stackSize};T.runPthread=function(){jt.time=performance.now(),T.postMessage(jt,S.transferList)},T.loaded&&(T.runPthread(),delete T.runPthread)}function G1(S,T,W,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!S)return G("pthread_create called with a null thread pointer!"),28;var de=[],ue=0;if(w&&(de.length===0||ue))return Jg(687865856,S,T,W,q);if(ue)return ue;var ce=0,be=0,nt=0;T&&T!=-1?(ce=o()[T>>2],ce+=81920,be=o()[T+8>>2],nt=o()[T+12>>2]!==0):ce=2097152;var jt=be==0;jt?be=t5(16,ce):(be-=ce,pe(be>0));for(var Dt=us(228),Ta=0;Ta<228>>2;++Ta)l()[(Dt>>2)+Ta]=0;o()[S>>2]=Dt,o()[Dt+12>>2]=Dt;var ro=Dt+152;o()[ro>>2]=ro;var Sn={stackBase:be,stackSize:ce,allocatedOwnStack:jt,detached:nt,startRoutine:W,pthread_ptr:Dt,arg:q,transferList:de};return w?(Sn.cmd="spawnThread",postMessage(Sn,de)):bh(Sn),0}function wh(S){if(w)return Ia(6,1,S);switch(S){case 30:return 16384;case 85:var T=2147483648;return T/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return f1(28),-1}w||ke.initMainThreadBlock();var Sa,q1=[null,m1,Ah,yh,gh,xh,wh],X1={e:d1,r:p1,x:A1,b:y1,y:g1,j:x1,c:b1,d:iu,f:ls,p:w1,z:_1,u:k1,q:N1,v:$1,i:D1,t:O1,w:j1,m:yh,n:gh,g:xh,o:fh,a:Q||u.wasmMemory,k:U1,l:H1,h:G1,s:wh},Gg=a1(),_h=u.___wasm_call_ctors=function(){return(_h=u.___wasm_call_ctors=u.asm.A).apply(null,arguments)},K1=u._init=function(){return(K1=u._init=u.asm.B).apply(null,arguments)},Z1=u._register_tensor=function(){return(Z1=u._register_tensor=u.asm.C).apply(null,arguments)},Y1=u._dispose_data=function(){return(Y1=u._dispose_data=u.asm.D).apply(null,arguments)},J1=u._dispose=function(){return(J1=u._dispose=u.asm.E).apply(null,arguments)},Q1=u._Abs=function(){return(Q1=u._Abs=u.asm.G).apply(null,arguments)},ef=u._Add=function(){return(ef=u._Add=u.asm.H).apply(null,arguments)},tf=u._AddN=function(){return(tf=u._AddN=u.asm.I).apply(null,arguments)},nf=u._All=function(){return(nf=u._All=u.asm.J).apply(null,arguments)},rf=u._Any=function(){return(rf=u._Any=u.asm.K).apply(null,arguments)},af=u._ArgMax=function(){return(af=u._ArgMax=u.asm.L).apply(null,arguments)},sf=u._AvgPool=function(){return(sf=u._AvgPool=u.asm.M).apply(null,arguments)},of=u._BatchMatMul=function(){return(of=u._BatchMatMul=u.asm.N).apply(null,arguments)},lf=u._Ceil=function(){return(lf=u._Ceil=u.asm.O).apply(null,arguments)},uf=u._ClipByValue=function(){return(uf=u._ClipByValue=u.asm.P).apply(null,arguments)},cf=u._Conv2D=function(){return(cf=u._Conv2D=u.asm.Q).apply(null,arguments)},hf=u._Conv2DBackpropInput=function(){return(hf=u._Conv2DBackpropInput=u.asm.R).apply(null,arguments)},df=u._Cos=function(){return(df=u._Cos=u.asm.S).apply(null,arguments)},pf=u._CropAndResize=function(){return(pf=u._CropAndResize=u.asm.T).apply(null,arguments)},ff=u._Cumsum=function(){return(ff=u._Cumsum=u.asm.U).apply(null,arguments)},mf=u._DepthToSpace=function(){return(mf=u._DepthToSpace=u.asm.V).apply(null,arguments)},vh=u._DepthwiseConv2dNative=function(){return(vh=u._DepthwiseConv2dNative=u.asm.W).apply(null,arguments)},kh=u._Equal=function(){return(kh=u._Equal=u.asm.X).apply(null,arguments)},Ih=u._Exp=function(){return(Ih=u._Exp=u.asm.Y).apply(null,arguments)},cu=u._FlipLeftRight=function(){return(cu=u._FlipLeftRight=u.asm.Z).apply(null,arguments)},Ji=u._Floor=function(){return(Ji=u._Floor=u.asm._).apply(null,arguments)},Af=u._FloorDiv=function(){return(Af=u._FloorDiv=u.asm.$).apply(null,arguments)},hu=u._FusedBatchNorm=function(){return(hu=u._FusedBatchNorm=u.asm.aa).apply(null,arguments)},K=u._FusedConv2D=function(){return(K=u._FusedConv2D=u.asm.ba).apply(null,arguments)},ne=u._FusedDepthwiseConv2D=function(){return(ne=u._FusedDepthwiseConv2D=u.asm.ca).apply(null,arguments)},Ne=u._Gather=function(){return(Ne=u._Gather=u.asm.da).apply(null,arguments)},Ze=u._GatherNd=function(){return(Ze=u._GatherNd=u.asm.ea).apply(null,arguments)},Nt=u._Greater=function(){return(Nt=u._Greater=u.asm.fa).apply(null,arguments)},yt=u._GreaterEqual=function(){return(yt=u._GreaterEqual=u.asm.ga).apply(null,arguments)},Ue=u._LeakyRelu=function(){return(Ue=u._LeakyRelu=u.asm.ha).apply(null,arguments)},Ge=u._Less=function(){return(Ge=u._Less=u.asm.ia).apply(null,arguments)},Jt=u._LessEqual=function(){return(Jt=u._LessEqual=u.asm.ja).apply(null,arguments)},ia=u._Log=function(){return(ia=u._Log=u.asm.ka).apply(null,arguments)},oa=u._LogicalAnd=function(){return(oa=u._LogicalAnd=u.asm.la).apply(null,arguments)},Sh=u._Max=function(){return(Sh=u._Max=u.asm.ma).apply(null,arguments)},du=u._MaxPool=function(){return(du=u._MaxPool=u.asm.na).apply(null,arguments)},Zn=u._Maximum=function(){return(Zn=u._Maximum=u.asm.oa).apply(null,arguments)},Na=u._Mean=function(){return(Na=u._Mean=u.asm.pa).apply(null,arguments)},Nh=u._Min=function(){return(Nh=u._Min=u.asm.qa).apply(null,arguments)},pk=u._Minimum=function(){return(pk=u._Minimum=u.asm.ra).apply(null,arguments)},fk=u._MirrorPad=function(){return(fk=u._MirrorPad=u.asm.sa).apply(null,arguments)},mk=u._Multiply=function(){return(mk=u._Multiply=u.asm.ta).apply(null,arguments)},Ak=u._Neg=function(){return(Ak=u._Neg=u.asm.ua).apply(null,arguments)},yk=u._NonMaxSuppressionV3=function(){return(yk=u._NonMaxSuppressionV3=u.asm.va).apply(null,arguments)},gk=u._NonMaxSuppressionV4=function(){return(gk=u._NonMaxSuppressionV4=u.asm.wa).apply(null,arguments)},xk=u._NonMaxSuppressionV5=function(){return(xk=u._NonMaxSuppressionV5=u.asm.xa).apply(null,arguments)},bk=u._NotEqual=function(){return(bk=u._NotEqual=u.asm.ya).apply(null,arguments)},wk=u._OneHot=function(){return(wk=u._OneHot=u.asm.za).apply(null,arguments)},_k=u._PadV2=function(){return(_k=u._PadV2=u.asm.Aa).apply(null,arguments)},vk=u._Pow=function(){return(vk=u._Pow=u.asm.Ba).apply(null,arguments)},kk=u._Prelu=function(){return(kk=u._Prelu=u.asm.Ca).apply(null,arguments)},Ik=u._Prod=function(){return(Ik=u._Prod=u.asm.Da).apply(null,arguments)},Sk=u._RealDiv=function(){return(Sk=u._RealDiv=u.asm.Ea).apply(null,arguments)},Nk=u._Relu=function(){return(Nk=u._Relu=u.asm.Fa).apply(null,arguments)},Tk=u._Relu6=function(){return(Tk=u._Relu6=u.asm.Ga).apply(null,arguments)},Ek=u._ResizeBilinear=function(){return(Ek=u._ResizeBilinear=u.asm.Ha).apply(null,arguments)},Ck=u._Reverse=function(){return(Ck=u._Reverse=u.asm.Ia).apply(null,arguments)},Rk=u._RotateWithOffset=function(){return(Rk=u._RotateWithOffset=u.asm.Ja).apply(null,arguments)},Mk=u._Round=function(){return(Mk=u._Round=u.asm.Ka).apply(null,arguments)},Fk=u._Rsqrt=function(){return(Fk=u._Rsqrt=u.asm.La).apply(null,arguments)},$k=u._ScatterNd=function(){return($k=u._ScatterNd=u.asm.Ma).apply(null,arguments)},Dk=u._SelectV2=function(){return(Dk=u._SelectV2=u.asm.Na).apply(null,arguments)},Ok=u._Sigmoid=function(){return(Ok=u._Sigmoid=u.asm.Oa).apply(null,arguments)},zk=u._Sin=function(){return(zk=u._Sin=u.asm.Pa).apply(null,arguments)},Pk=u._Softmax=function(){return(Pk=u._Softmax=u.asm.Qa).apply(null,arguments)},Lk=u._Sqrt=function(){return(Lk=u._Sqrt=u.asm.Ra).apply(null,arguments)},Wk=u._Square=function(){return(Wk=u._Square=u.asm.Sa).apply(null,arguments)},Bk=u._SquaredDifference=function(){return(Bk=u._SquaredDifference=u.asm.Ta).apply(null,arguments)},Vk=u._Step=function(){return(Vk=u._Step=u.asm.Ua).apply(null,arguments)},jk=u._StridedSlice=function(){return(jk=u._StridedSlice=u.asm.Va).apply(null,arguments)},Uk=u._Sub=function(){return(Uk=u._Sub=u.asm.Wa).apply(null,arguments)},Hk=u._Sum=function(){return(Hk=u._Sum=u.asm.Xa).apply(null,arguments)},Gk=u._Tan=function(){return(Gk=u._Tan=u.asm.Ya).apply(null,arguments)},qk=u._Tanh=function(){return(qk=u._Tanh=u.asm.Za).apply(null,arguments)},Xk=u._Tile=function(){return(Xk=u._Tile=u.asm._a).apply(null,arguments)},Kk=u._TopK=function(){return(Kk=u._TopK=u.asm.$a).apply(null,arguments)},Zk=u._Transpose=function(){return(Zk=u._Transpose=u.asm.ab).apply(null,arguments)},Yk=u.__FusedMatMul=function(){return(Yk=u.__FusedMatMul=u.asm.bb).apply(null,arguments)},us=u._malloc=function(){return(us=u._malloc=u.asm.cb).apply(null,arguments)},pu=u._free=function(){return(pu=u._free=u.asm.db).apply(null,arguments)},qg=u.___errno_location=function(){return(qg=u.___errno_location=u.asm.eb).apply(null,arguments)},Xg=u._emscripten_get_global_libc=function(){return(Xg=u._emscripten_get_global_libc=u.asm.fb).apply(null,arguments)},Qi=u._pthread_self=function(){return(Qi=u._pthread_self=u.asm.gb).apply(null,arguments)},Kg=u.___pthread_tsd_run_dtors=function(){return(Kg=u.___pthread_tsd_run_dtors=u.asm.hb).apply(null,arguments)},yf=u._emscripten_main_thread_process_queued_calls=function(){return(yf=u._emscripten_main_thread_process_queued_calls=u.asm.ib).apply(null,arguments)},Jk=u._emscripten_current_thread_process_queued_calls=function(){return(Jk=u._emscripten_current_thread_process_queued_calls=u.asm.jb).apply(null,arguments)},Zg=u._emscripten_register_main_browser_thread_id=function(){return(Zg=u._emscripten_register_main_browser_thread_id=u.asm.kb).apply(null,arguments)},Yg=u.__emscripten_do_dispatch_to_thread=function(){return(Yg=u.__emscripten_do_dispatch_to_thread=u.asm.lb).apply(null,arguments)},Jg=u._emscripten_sync_run_in_main_thread_4=function(){return(Jg=u._emscripten_sync_run_in_main_thread_4=u.asm.mb).apply(null,arguments)},Qg=u._emscripten_run_in_main_runtime_thread_js=function(){return(Qg=u._emscripten_run_in_main_runtime_thread_js=u.asm.nb).apply(null,arguments)},gf=u.__emscripten_call_on_thread=function(){return(gf=u.__emscripten_call_on_thread=u.asm.ob).apply(null,arguments)},Qk=u._emscripten_tls_init=function(){return(Qk=u._emscripten_tls_init=u.asm.pb).apply(null,arguments)},xf=u.__emscripten_thread_init=function(){return(xf=u.__emscripten_thread_init=u.asm.qb).apply(null,arguments)},fu=u.stackSave=function(){return(fu=u.stackSave=u.asm.rb).apply(null,arguments)},eo=u.stackRestore=function(){return(eo=u.stackRestore=u.asm.sb).apply(null,arguments)},to=u.stackAlloc=function(){return(to=u.stackAlloc=u.asm.tb).apply(null,arguments)},e5=u._emscripten_stack_set_limits=function(){return(e5=u._emscripten_stack_set_limits=u.asm.ub).apply(null,arguments)},t5=u._memalign=function(){return(t5=u._memalign=u.asm.vb).apply(null,arguments)},n5=u.__emscripten_allow_main_runtime_queued_calls=9808,no=u.__emscripten_main_thread_futex=11432;u.cwrap=Fe,u.PThread=ke,u.PThread=ke,u.wasmMemory=Q,u.ExitStatus=mu;var Th;function mu(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}os=function S(){Th||bf(),Th||(os=S)};function bf(S){if(S=S||f,aa>0)return;if(w){h(u),su(),postMessage({cmd:"loaded"});return}if(Y0(),aa>0)return;function T(){Th||(Th=!0,u.calledRun=!0,!oe&&(su(),J0(),h(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),kn()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),T()},1)):T()}u.run=bf;function e9(S,T){if(!(T&&ie&&S===0)){if(!T&&w)throw postMessage({cmd:"exitProcess",returnCode:S}),new mu(S);ie||(ke.terminateAllThreads(),me=S,lh(),u.onExit&&u.onExit(S),oe=!0),y(S,new mu(S))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return w&&(ie=!1,ke.initWorker()),bf(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),b9=_t((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(K,ne){i=K,o=ne});var l={},c;for(c in s)s.hasOwnProperty(c)&&(l[c]=s[c]);var u=[],h="./this.program",d=function(K,ne){throw ne},p=!1,m=!1,f=!1,A=!1;p=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!p&&!f&&!m;var y="";function g(K){return s.locateFile?s.locateFile(K,y):y+K}var x,v,b,w,k,N;f?(m?y=yu().dirname(y)+"/":y=__dirname+"/",x=function(K,ne){return k||(k=require("fs")),N||(N=yu()),K=N.normalize(K),k.readFileSync(K,ne?null:"utf8")},b=function(K){var ne=x(K,!0);return ne.buffer||(ne=new Uint8Array(ne)),X(ne.buffer),ne},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof Af))throw K}),process.on("unhandledRejection",Pr),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(x=function(K){return read(K)}),b=function(K){var ne;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(ne=read(K,"binary"),X(typeof ne=="object"),ne)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),r&&(y=r),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.send(null),ne.responseText},m&&(b=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),v=function(K,ne,Ne){var Ze=new XMLHttpRequest;Ze.open("GET",K,!0),Ze.responseType="arraybuffer",Ze.onload=function(){if(Ze.status==200||Ze.status==0&&Ze.response){ne(Ze.response);return}Ne()},Ze.onerror=Ne,Ze.send(null)},w=function(K){document.title=K});var C=s.print||console.log.bind(console),F=s.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(s[c]=l[c]);l=null,s.arguments&&(u=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(d=s.quit);var O;s.wasmBinary&&(O=s.wasmBinary);var L=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Pr("no native wasm support detected");var V,j=!1,U;function X(K,ne){K||Pr("Assertion failed: "+ne)}function G(K){var ne=s["_"+K];return X(ne,"Cannot call unknown function "+K+", make sure it is exported"),ne}function ee(K,ne,Ne,Ze,Nt){var yt={string:function(Zn){var Na=0;if(Zn!=null&&Zn!==0){var Nh=(Zn.length<<2)+1;Na=cu(Nh),he(Zn,Na,Nh)}return Na},array:function(Zn){var Na=cu(Zn.length);return oe(Zn,Na),Na}};function Ue(Zn){return ne==="string"?ie(Zn):ne==="boolean"?Boolean(Zn):Zn}var Ge=G(K),Jt=[],ia=0;if(Ze)for(var oa=0;oa=Ze);)++Nt;if(Nt-ne>16&&K.subarray&&ae)return ae.decode(K.subarray(ne,Nt));for(var yt="";ne>10,56320|ia&1023)}}return yt}function ie(K,ne){return K?te(Se,K,ne):""}function Q(K,ne,Ne,Ze){if(!(Ze>0))return 0;for(var Nt=Ne,yt=Ne+Ze-1,Ue=0;Ue=55296&&Ge<=57343){var Jt=K.charCodeAt(++Ue);Ge=65536+((Ge&1023)<<10)|Jt&1023}if(Ge<=127){if(Ne>=yt)break;ne[Ne++]=Ge}else if(Ge<=2047){if(Ne+1>=yt)break;ne[Ne++]=192|Ge>>6,ne[Ne++]=128|Ge&63}else if(Ge<=65535){if(Ne+2>=yt)break;ne[Ne++]=224|Ge>>12,ne[Ne++]=128|Ge>>6&63,ne[Ne++]=128|Ge&63}else{if(Ne+3>=yt)break;ne[Ne++]=240|Ge>>18,ne[Ne++]=128|Ge>>12&63,ne[Ne++]=128|Ge>>6&63,ne[Ne++]=128|Ge&63}}return ne[Ne]=0,Ne-Nt}function he(K,ne,Ne){return Q(K,Se,ne,Ne)}function oe(K,ne){Ie.set(K,ne)}function me(K,ne){return K%ne>0&&(K+=ne-K%ne),K}var pe,Ie,Se,Fe,Oe,$e,et,tt,st;function Ke(K){pe=K,s.HEAP8=Ie=new Int8Array(K),s.HEAP16=Fe=new Int16Array(K),s.HEAP32=$e=new Int32Array(K),s.HEAPU8=Se=new Uint8Array(K),s.HEAPU16=Oe=new Uint16Array(K),s.HEAPU32=et=new Uint32Array(K),s.HEAPF32=tt=new Float32Array(K),s.HEAPF64=st=new Float64Array(K)}var dt=s.INITIAL_MEMORY||16777216,je,_n=[],wt=[],Xn=[],Zt=[],vn=!1;wt.push({func:function(){fh()}});function Kn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)zr(s.preRun.shift());ka(_n)}function On(){vn=!0,ka(wt)}function on(){ka(Xn)}function Yt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)ir(s.postRun.shift());ka(Zt)}function zr(K){_n.unshift(K)}function ir(K){Zt.unshift(K)}var or=0,_a=null,ra=null;function va(K){or++,s.monitorRunDependencies&&s.monitorRunDependencies(or)}function Xi(K){if(or--,s.monitorRunDependencies&&s.monitorRunDependencies(or),or==0&&(_a!==null&&(clearInterval(_a),_a=null),ra)){var ne=ra;ra=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function Pr(K){s.onAbort&&s.onAbort(K),K+="",F(K),j=!0,U=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(K);throw o(ne),ne}function oh(K,ne){return String.prototype.startsWith?K.startsWith(ne):K.indexOf(ne)===0}var Y0="data:application/octet-stream;base64,";function su(K){return oh(K,Y0)}var J0="file://";function lh(K){return oh(K,J0)}var kn="tfjs-backend-wasm.wasm";su(kn)||(kn=g(kn));function uh(K){try{if(K==kn&&O)return new Uint8Array(O);if(b)return b(K);throw"both async and sync fetching of the wasm failed"}catch(ne){Pr(ne)}}function Q0(){if(!O&&(p||m)){if(typeof fetch=="function"&&!lh(kn))return fetch(kn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+kn+"'";return K.arrayBuffer()}).catch(function(){return uh(kn)});if(v)return new Promise(function(K,ne){v(kn,function(Ne){K(new Uint8Array(Ne))},ne)})}return Promise.resolve().then(function(){return uh(kn)})}function aa(){var K={a:a1};function ne(Ue,Ge){var Jt=Ue.exports;s.asm=Jt,V=s.asm.i,Ke(V.buffer),je=s.asm.o,Xi("wasm-instantiate")}va("wasm-instantiate");function Ne(Ue){ne(Ue.instance)}function Ze(Ue){return Q0().then(function(Ge){return WebAssembly.instantiate(Ge,K)}).then(Ue,function(Ge){F("failed to asynchronously prepare wasm: "+Ge),Pr(Ge)})}function Nt(){return!O&&typeof WebAssembly.instantiateStreaming=="function"&&!su(kn)&&!lh(kn)&&typeof fetch=="function"?fetch(kn,{credentials:"same-origin"}).then(function(Ue){var Ge=WebAssembly.instantiateStreaming(Ue,K);return Ge.then(Ne,function(Jt){return F("wasm streaming compile failed: "+Jt),F("falling back to ArrayBuffer instantiation"),Ze(Ne)})}):Ze(Ne)}if(s.instantiateWasm)try{var yt=s.instantiateWasm(K,ne);return yt}catch(Ue){return F("Module.instantiateWasm callback failed with error: "+Ue),!1}return Nt().catch(o),{}}function ka(K){for(;K.length>0;){var ne=K.shift();if(typeof ne=="function"){ne(s);continue}var Ne=ne.func;typeof Ne=="number"?ne.arg===void 0?je.get(Ne)():je.get(Ne)(ne.arg):Ne(ne.arg===void 0?null:ne.arg)}}function os(){Pr()}function e1(K,ne,Ne){Se.copyWithin(K,ne,ne+Ne)}function t1(){return Se.length}function sa(K){try{return V.grow(K-pe.byteLength+65535>>>16),Ke(V.buffer),1}catch(ne){}}function ch(K){var ne=t1(),Ne=2147483648;if(K>Ne)return!1;for(var Ze=1;Ze<=4;Ze*=2){var Nt=ne*(1+.2/Ze);Nt=Math.min(Nt,K+100663296);var yt=Math.min(Ne,me(Math.max(K,Nt),65536)),Ue=sa(yt);if(Ue)return!0}return!1}var Ki={mappings:{},buffers:[null,[],[]],printChar:function(K,ne){var Ne=Ki.buffers[K];ne===0||ne===10?((K===1?C:F)(te(Ne,0)),Ne.length=0):Ne.push(ne)},varargs:void 0,get:function(){Ki.varargs+=4;var K=$e[Ki.varargs-4>>2];return K},getStr:function(K){var ne=ie(K);return ne},get64:function(K,ne){return K}};function hh(K){return 0}function n1(K,ne,Ne,Ze,Nt){}function dh(K,ne,Ne,Ze){for(var Nt=0,yt=0;yt>2],Ge=$e[ne+(yt*8+4)>>2],Jt=0;Jt>2]=Nt,0}function In(){return 6}function ph(K){return $e[vh()>>2]=K,K}function r1(K){switch(K){case 30:return 16384;case 85:var ne=2147483648;return ne/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return ph(28),-1}var a1={a:os,d:e1,e:ch,f:hh,c:n1,b:dh,g:In,h:r1},s1=aa(),fh=s.___wasm_call_ctors=function(){return(fh=s.___wasm_call_ctors=s.asm.j).apply(null,arguments)},Zi=s._init=function(){return(Zi=s._init=s.asm.k).apply(null,arguments)},iu=s._register_tensor=function(){return(iu=s._register_tensor=s.asm.l).apply(null,arguments)},i1=s._dispose_data=function(){return(i1=s._dispose_data=s.asm.m).apply(null,arguments)},o1=s._dispose=function(){return(o1=s._dispose=s.asm.n).apply(null,arguments)},l1=s._Abs=function(){return(l1=s._Abs=s.asm.p).apply(null,arguments)},ke=s._Add=function(){return(ke=s._Add=s.asm.q).apply(null,arguments)},u1=s._AddN=function(){return(u1=s._AddN=s.asm.r).apply(null,arguments)},c1=s._All=function(){return(c1=s._All=s.asm.s).apply(null,arguments)},h1=s._Any=function(){return(h1=s._Any=s.asm.t).apply(null,arguments)},d1=s._ArgMax=function(){return(d1=s._ArgMax=s.asm.u).apply(null,arguments)},p1=s._AvgPool=function(){return(p1=s._AvgPool=s.asm.v).apply(null,arguments)},ls=s._BatchMatMul=function(){return(ls=s._BatchMatMul=s.asm.w).apply(null,arguments)},f1=s._Ceil=function(){return(f1=s._Ceil=s.asm.x).apply(null,arguments)},m1=s._ClipByValue=function(){return(m1=s._ClipByValue=s.asm.y).apply(null,arguments)},A1=s._Conv2D=function(){return(A1=s._Conv2D=s.asm.z).apply(null,arguments)},y1=s._Conv2DBackpropInput=function(){return(y1=s._Conv2DBackpropInput=s.asm.A).apply(null,arguments)},g1=s._Cos=function(){return(g1=s._Cos=s.asm.B).apply(null,arguments)},x1=s._CropAndResize=function(){return(x1=s._CropAndResize=s.asm.C).apply(null,arguments)},b1=s._Cumsum=function(){return(b1=s._Cumsum=s.asm.D).apply(null,arguments)},w1=s._DepthToSpace=function(){return(w1=s._DepthToSpace=s.asm.E).apply(null,arguments)},_1=s._DepthwiseConv2dNative=function(){return(_1=s._DepthwiseConv2dNative=s.asm.F).apply(null,arguments)},Ia=s._Equal=function(){return(Ia=s._Equal=s.asm.G).apply(null,arguments)},ou=s._Exp=function(){return(ou=s._Exp=s.asm.H).apply(null,arguments)},lu=s._FlipLeftRight=function(){return(lu=s._FlipLeftRight=s.asm.I).apply(null,arguments)},v1=s._Floor=function(){return(v1=s._Floor=s.asm.J).apply(null,arguments)},k1=s._FloorDiv=function(){return(k1=s._FloorDiv=s.asm.K).apply(null,arguments)},I1=s._FusedBatchNorm=function(){return(I1=s._FusedBatchNorm=s.asm.L).apply(null,arguments)},S1=s._FusedConv2D=function(){return(S1=s._FusedConv2D=s.asm.M).apply(null,arguments)},N1=s._FusedDepthwiseConv2D=function(){return(N1=s._FusedDepthwiseConv2D=s.asm.N).apply(null,arguments)},We=s._Gather=function(){return(We=s._Gather=s.asm.O).apply(null,arguments)},T1=s._GatherNd=function(){return(T1=s._GatherNd=s.asm.P).apply(null,arguments)},E1=s._Greater=function(){return(E1=s._Greater=s.asm.Q).apply(null,arguments)},C1=s._GreaterEqual=function(){return(C1=s._GreaterEqual=s.asm.R).apply(null,arguments)},R1=s._LeakyRelu=function(){return(R1=s._LeakyRelu=s.asm.S).apply(null,arguments)},M1=s._Less=function(){return(M1=s._Less=s.asm.T).apply(null,arguments)},F1=s._LessEqual=function(){return(F1=s._LessEqual=s.asm.U).apply(null,arguments)},uu=s._Log=function(){return(uu=s._Log=s.asm.V).apply(null,arguments)},mh=s._LogicalAnd=function(){return(mh=s._LogicalAnd=s.asm.W).apply(null,arguments)},Ah=s._Max=function(){return(Ah=s._Max=s.asm.X).apply(null,arguments)},$1=s._MaxPool=function(){return($1=s._MaxPool=s.asm.Y).apply(null,arguments)},D1=s._Maximum=function(){return(D1=s._Maximum=s.asm.Z).apply(null,arguments)},O1=s._Mean=function(){return(O1=s._Mean=s.asm._).apply(null,arguments)},z1=s._Min=function(){return(z1=s._Min=s.asm.$).apply(null,arguments)},P1=s._Minimum=function(){return(P1=s._Minimum=s.asm.aa).apply(null,arguments)},L1=s._MirrorPad=function(){return(L1=s._MirrorPad=s.asm.ba).apply(null,arguments)},W1=s._Multiply=function(){return(W1=s._Multiply=s.asm.ca).apply(null,arguments)},Qe=s._Neg=function(){return(Qe=s._Neg=s.asm.da).apply(null,arguments)},B1=s._NonMaxSuppressionV3=function(){return(B1=s._NonMaxSuppressionV3=s.asm.ea).apply(null,arguments)},V1=s._NonMaxSuppressionV4=function(){return(V1=s._NonMaxSuppressionV4=s.asm.fa).apply(null,arguments)},j1=s._NonMaxSuppressionV5=function(){return(j1=s._NonMaxSuppressionV5=s.asm.ga).apply(null,arguments)},Yi=s._NotEqual=function(){return(Yi=s._NotEqual=s.asm.ha).apply(null,arguments)},yh=s._OneHot=function(){return(yh=s._OneHot=s.asm.ia).apply(null,arguments)},gh=s._PadV2=function(){return(gh=s._PadV2=s.asm.ja).apply(null,arguments)},xh=s._Pow=function(){return(xh=s._Pow=s.asm.ka).apply(null,arguments)},U1=s._Prelu=function(){return(U1=s._Prelu=s.asm.la).apply(null,arguments)},H1=s._Prod=function(){return(H1=s._Prod=s.asm.ma).apply(null,arguments)},bh=s._RealDiv=function(){return(bh=s._RealDiv=s.asm.na).apply(null,arguments)},G1=s._Relu=function(){return(G1=s._Relu=s.asm.oa).apply(null,arguments)},wh=s._Relu6=function(){return(wh=s._Relu6=s.asm.pa).apply(null,arguments)},Sa=s._ResizeBilinear=function(){return(Sa=s._ResizeBilinear=s.asm.qa).apply(null,arguments)},q1=s._Reverse=function(){return(q1=s._Reverse=s.asm.ra).apply(null,arguments)},X1=s._RotateWithOffset=function(){return(X1=s._RotateWithOffset=s.asm.sa).apply(null,arguments)},Gg=s._Round=function(){return(Gg=s._Round=s.asm.ta).apply(null,arguments)},_h=s._Rsqrt=function(){return(_h=s._Rsqrt=s.asm.ua).apply(null,arguments)},K1=s._ScatterNd=function(){return(K1=s._ScatterNd=s.asm.va).apply(null,arguments)},Z1=s._SelectV2=function(){return(Z1=s._SelectV2=s.asm.wa).apply(null,arguments)},Y1=s._Sigmoid=function(){return(Y1=s._Sigmoid=s.asm.xa).apply(null,arguments)},J1=s._Sin=function(){return(J1=s._Sin=s.asm.ya).apply(null,arguments)},Q1=s._Softmax=function(){return(Q1=s._Softmax=s.asm.za).apply(null,arguments)},ef=s._Sqrt=function(){return(ef=s._Sqrt=s.asm.Aa).apply(null,arguments)},tf=s._Square=function(){return(tf=s._Square=s.asm.Ba).apply(null,arguments)},nf=s._SquaredDifference=function(){return(nf=s._SquaredDifference=s.asm.Ca).apply(null,arguments)},rf=s._Step=function(){return(rf=s._Step=s.asm.Da).apply(null,arguments)},af=s._StridedSlice=function(){return(af=s._StridedSlice=s.asm.Ea).apply(null,arguments)},sf=s._Sub=function(){return(sf=s._Sub=s.asm.Fa).apply(null,arguments)},of=s._Sum=function(){return(of=s._Sum=s.asm.Ga).apply(null,arguments)},lf=s._Tan=function(){return(lf=s._Tan=s.asm.Ha).apply(null,arguments)},uf=s._Tanh=function(){return(uf=s._Tanh=s.asm.Ia).apply(null,arguments)},cf=s._Tile=function(){return(cf=s._Tile=s.asm.Ja).apply(null,arguments)},hf=s._TopK=function(){return(hf=s._TopK=s.asm.Ka).apply(null,arguments)},df=s._Transpose=function(){return(df=s._Transpose=s.asm.La).apply(null,arguments)},pf=s.__FusedMatMul=function(){return(pf=s.__FusedMatMul=s.asm.Ma).apply(null,arguments)},ff=s._malloc=function(){return(ff=s._malloc=s.asm.Na).apply(null,arguments)},mf=s._free=function(){return(mf=s._free=s.asm.Oa).apply(null,arguments)},vh=s.___errno_location=function(){return(vh=s.___errno_location=s.asm.Pa).apply(null,arguments)},kh=s.stackSave=function(){return(kh=s.stackSave=s.asm.Qa).apply(null,arguments)},Ih=s.stackRestore=function(){return(Ih=s.stackRestore=s.asm.Ra).apply(null,arguments)},cu=s.stackAlloc=function(){return(cu=s.stackAlloc=s.asm.Sa).apply(null,arguments)};s.cwrap=Y;var Ji;function Af(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}ra=function K(){Ji||hu(),Ji||(ra=K)};function hu(K){if(K=K||u,or>0||(Kn(),or>0))return;function ne(){Ji||(Ji=!0,s.calledRun=!0,!j&&(On(),on(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Yt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}if(s.run=hu,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return hu(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),w9=_t((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=String(h);for(var d=0;d>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),_9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),v9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),k9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,m,f;return p=h[d],p^=p>>>7,m=p^p<<24,p=h[d+1&7],m^=p^p>>>10,p=h[d+3&7],m^=p^p>>>3,p=h[d+4&7],m^=p^p<<7,p=h[d+7&7],p=p^p<<13,m^=p^p<<9,h[d]=m,c.i=d+1&7,m};function u(h,d){var p,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),I9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,m,f;return c.w=h=h+1640531527|0,f=d[p+34&127],m=d[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[p]=f^m,c.i=p,f+(h^h>>>16)|0};function u(h,d){var p,m,f,A,y,g=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,A=-32;A>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=m+y,f=p==0?f+1:0);for(f>=128&&(g[(d&&d.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;h.w=y,h.X=g,h.i=f}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),S9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,m=c.d,f=c.a;return d=d<<25^d>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-m|0,c.d=m<<16^p>>>16^f,c.a=f-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),N9=_t((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),h=u*2,d=s-1,p;function m(b,w,k){var N=[];w=w==!0?{entropy:!0}:w||{};var C=g(y(w.entropy?[b,v(r)]:b==null?x():b,3),N),F=new f(N),O=function(){for(var L=F.g(i),V=c,j=0;L=h;)L/=2,V/=2,j>>>=1;return(L+j)/V};return O.int32=function(){return F.g(4)|0},O.quick=function(){return F.g(4)/4294967296},O.double=O,g(v(F.S),r),(w.pass||k||function(L,V,j,U){return U&&(U.S&&A(U,F),L.state=function(){return A(F,{})}),j?(a[l]=L,V):L})(O,C,"global"in w?w.global:this==a,w.state)}function f(b){var w,k=b.length,N=this,C=0,F=N.i=N.j=0,O=N.S=[];for(k||(b=[k++]);C{var n=w9(),r=_9(),a=v9(),s=k9(),i=I9(),o=S9(),l=N9();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),T9=_t(()=>{}),wf={};Me(wf,{bin:()=>x5,browser:()=>I5,default:()=>E9,dependencies:()=>k5,description:()=>h5,devDependencies:()=>_5,jsdelivr:()=>m5,license:()=>w5,main:()=>p5,miniprogram:()=>g5,module:()=>f5,name:()=>u5,private:()=>d5,repository:()=>b5,scripts:()=>v5,types:()=>y5,unpkg:()=>A5,version:()=>c5});var u5="@tensorflow/tfjs",c5="3.5.0",h5="An open-source machine learning framework.",d5=!1,p5="dist/tf.node.js",f5="dist/index.js",m5="dist/tf.min.js",A5="dist/tf.min.js",y5="dist/index.d.ts",g5="dist/miniprogram",x5={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},b5={type:"git",url:"https://github.com/tensorflow/tfjs.git"},w5="Apache-2.0",_5={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~4.2.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"1.0.0-pre.50"},v5={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},k5={"@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-backend-webgl":"3.5.0","@tensorflow/tfjs-converter":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@tensorflow/tfjs-data":"3.5.0","@tensorflow/tfjs-layers":"3.5.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},I5={"node-fetch":!1,util:!1,crypto:!1},E9={name:u5,version:c5,description:h5,private:d5,main:p5,module:f5,jsdelivr:m5,unpkg:A5,types:y5,miniprogram:g5,bin:x5,repository:b5,license:w5,devDependencies:_5,scripts:v5,dependencies:k5,browser:I5},_f={};Me(_f,{browser:()=>j5,default:()=>C9,dependencies:()=>V5,description:()=>T5,devDependencies:()=>W5,engines:()=>z5,jsdelivr:()=>R5,"jsnext:main":()=>$5,license:()=>L5,main:()=>C5,miniprogram:()=>O5,module:()=>D5,name:()=>S5,private:()=>E5,repository:()=>P5,scripts:()=>B5,sideEffects:()=>U5,types:()=>F5,unpkg:()=>M5,version:()=>N5});var S5="@tensorflow/tfjs-core",N5="3.5.0",T5="Hardware-accelerated JavaScript library for machine intelligence",E5=!1,C5="dist/tf-core.node.js",R5="dist/tf-core.min.js",M5="dist/tf-core.min.js",F5="dist/index.d.ts",$5="dist/index.js",D5="dist/index.js",O5="dist/miniprogram",z5={yarn:">= 1.3.2"},P5={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},L5="Apache-2.0",W5={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-jasmine":"~1.1.0","karma-typescript":"~4.1.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},B5={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},V5={"@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30","node-fetch":"~2.6.1",seedrandom:"2.4.3"},j5={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},U5=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],C9={name:S5,version:N5,description:T5,private:E5,main:C5,jsdelivr:R5,unpkg:M5,types:F5,"jsnext:main":$5,module:D5,miniprogram:O5,engines:z5,repository:P5,license:L5,devDependencies:W5,scripts:B5,dependencies:V5,browser:j5,sideEffects:U5},vf={};Me(vf,{browser:()=>ox,default:()=>R9,dependencies:()=>ix,description:()=>q5,devDependencies:()=>rx,jsdelivr:()=>Z5,"jsnext:main":()=>Q5,license:()=>nx,main:()=>K5,miniprogram:()=>tx,module:()=>ex,name:()=>H5,peerDependencies:()=>sx,private:()=>X5,scripts:()=>ax,types:()=>J5,unpkg:()=>Y5,version:()=>G5});var H5="@tensorflow/tfjs-data",G5="3.5.0",q5="TensorFlow Data API in JavaScript",X5=!1,K5="dist/tf-data.node.js",Z5="dist/tf-data.min.js",Y5="dist/tf-data.min.js",J5="dist/index.d.ts",Q5="dist/index.js",ex="dist/index.js",tx="dist/miniprogram",nx="Apache-2.0",rx={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@tensorflow/tfjs-layers":"3.5.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.50"},ax={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose"},sx={"@tensorflow/tfjs-core":"3.5.0",seedrandom:"~2.4.3"},ix={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},ox={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},R9={name:H5,version:G5,description:q5,private:X5,main:K5,jsdelivr:Z5,unpkg:Y5,types:J5,"jsnext:main":Q5,module:ex,miniprogram:tx,license:nx,devDependencies:rx,scripts:ax,peerDependencies:sx,dependencies:ix,browser:ox},kf={};Me(kf,{default:()=>M9,description:()=>cx,devDependencies:()=>bx,jsdelivr:()=>yx,"jsnext:main":()=>mx,license:()=>hx,main:()=>px,miniprogram:()=>xx,module:()=>Ax,name:()=>lx,peerDependencies:()=>_x,private:()=>dx,scripts:()=>wx,types:()=>fx,unpkg:()=>gx,version:()=>ux});var lx="@tensorflow/tfjs-layers",ux="3.5.0",cx="TensorFlow layers API in JavaScript",hx="Apache-2.0 AND MIT",dx=!1,px="dist/tf-layers.node.js",fx="dist/index.d.ts",mx="dist/index.js",Ax="dist/index.js",yx="dist/tf-layers.min.js",gx="dist/tf-layers.min.js",xx="dist/miniprogram",bx={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-backend-webgl":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},wx={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},_x={"@tensorflow/tfjs-core":"3.5.0"},M9={name:lx,version:ux,description:cx,license:hx,private:dx,main:px,types:fx,"jsnext:main":mx,module:Ax,jsdelivr:yx,unpkg:gx,miniprogram:xx,devDependencies:bx,scripts:wx,peerDependencies:_x},If={};Me(If,{default:()=>F9,description:()=>Ix,devDependencies:()=>Ox,jsdelivr:()=>Rx,"jsnext:main":()=>Nx,license:()=>$x,main:()=>Sx,miniprogram:()=>Mx,module:()=>Tx,name:()=>vx,peerDependencies:()=>Dx,repository:()=>Fx,scripts:()=>zx,types:()=>Ex,unpkg:()=>Cx,version:()=>kx});var vx="@tensorflow/tfjs-converter",kx="3.5.0",Ix="Tensorflow model converter for javascript",Sx="dist/tf-converter.node.js",Nx="dist/index.js",Tx="dist/index.js",Ex="dist/index.d.ts",Cx="dist/tf-converter.min.js",Rx="dist/tf-converter.min.js",Mx="dist/miniprogram",Fx={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},$x="Apache-2.0",Dx={"@tensorflow/tfjs-core":"3.5.0"},Ox={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"~0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},zx={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},F9={name:vx,version:kx,description:Ix,main:Sx,"jsnext:main":Nx,module:Tx,types:Ex,unpkg:Cx,jsdelivr:Rx,miniprogram:Mx,repository:Fx,license:$x,peerDependencies:Dx,devDependencies:Ox,scripts:zx},$9=1e-7,D9=1e-4,Ch=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},gu=class{refCount(e){return cr("refCount")}incRef(e){return cr("incRef")}timerAvailable(){return!0}time(e){return cr("time")}read(e){return cr("read")}readSync(e){return cr("readSync")}numDataIds(){return cr("numDataIds")}disposeData(e,t){return cr("disposeData")}write(e,t,n){return cr("write")}move(e,t,n,r,a){return cr("move")}memory(){return cr("memory")}floatPrecision(){return cr("floatPrecision")}epsilon(){return this.floatPrecision()===32?$9:D9}dispose(){return cr("dispose")}};function cr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function Px(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function O9(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function xu(e,t,n){return Math.max(e,Math.min(t,n))}function z9(e){return e%2==0?e:e+1}function P9(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function hs(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ds(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||rn(e)&&!n)for(let r=0;r0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function G9(e,t){let n=1,r=-1;for(let s=0;s=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function hr(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),M(e.every(r=>r>=-n&&r`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(r=>Ut(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function Lx(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:hr(t,e).sort(),i=0;for(let o=0;oo)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function Wx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Bx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Vx(e,t){for(let n=0;nt+=n.length),t}function Ea(e){return typeof e=="string"||e instanceof String}function Hx(e){return typeof e=="boolean"}function Gx(e){return typeof e=="number"}function Rh(e){return Array.isArray(e)?Rh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":Gx(e)?"float32":Ea(e)?"string":Hx(e)?"bool":"float32"}function Ca(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Mh(e,t){for(let n=t;n=0;--r)n[r]=n[r+1]*e[r+1];return n}function qx(e,t,n,r=!1){let a=new Array;if(t.length===1){let s=t[0]*(r?2:1);for(let i=0;il*c)*(r?2:1);for(let l=0;la*s)*(n?2:1);if(r===0)return[];if(r!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return qx(0,e,t,n)}function Nf(e,t){let n=Fh(e,t);for(let r=0;rr*a,1);if(t==null||t==="float32")return oo(e,new Float32Array(n));if(t==="int32")return oo(e,new Int32Array(n));if(t==="bool")return oo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Tf(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function K9(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a{let[n,r]=t.split(":");this.urlFlags[n]=J9(n,r)})}};function Y9(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(Q9(t,r[0],r[1]),r.join("="))),t}function Q9(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function J9(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return vr}var vr=null;function eI(e){vr=e}var Cf;function Zx(){if(Cf==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Cf=e}return Cf}function tI(){let e=Zx();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Rf(e,t){let n=tI();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var lo="Abs",uo="Acos",co="Acosh",Ra="Add",ps="AddN",ho="All",po="Any",fs="ArgMax",wu="ArgMin",fo="Asin",mo="Asinh",Ao="Atan",yo="Atanh",go="Atan2",ms="AvgPool",$h="AvgPoolGrad",_u="AvgPool3D",Dh="AvgPool3DGrad",As="BatchMatMul",vu="BatchToSpaceND",Oh="Bincount",Yx="BroadcastTo",ys="Cast",gs="Ceil",Ma="ClipByValue",zh="Complex",ku="ComplexAbs",xo="Concat",xs="Conv2D",Ph="Conv2DBackpropFilter",bs="Conv2DBackpropInput",Iu="Conv3D",Lh="Conv3DBackpropFilterV2",Wh="Conv3DBackpropInputV2",ws="Cos",bo="Cosh",_s="Cumsum",wo="CropAndResize",Bh="DenseBincount",_o="DepthToSpace",vs="DepthwiseConv2dNative",Vh="DepthwiseConv2dNativeBackpropFilter",jh="DepthwiseConv2dNativeBackpropInput",Uh="Diag",Su="Dilation2D",Hh="Dilation2DBackpropInput",Gh="Dilation2DBackpropFilter",ks="RealDiv",qh="Einsum",vo="Elu",Xh="EluGrad",ko="Erf",Io="Equal",Is="Exp",So="ExpandDims",No="Expm1",Kh="FFT",Nu="Fill",To="FlipLeftRight",Ss="Floor",Ns="FloorDiv",Ts="FusedBatchNorm",Eo="GatherV2",Co="GatherNd",Ro="Greater",Es="GreaterEqual",Cs="Identity",Zh="IFFT",Yh="Imag",Mo="IsFinite",Fo="IsInf",$o="IsNan",Rs="LeakyRelu",Do="Less",Oo="LessEqual",Jh="LinSpace",Ms="Log",zo="Log1p",Po="LogicalAnd",Tu="LogicalNot",Eu="LogicalOr",Jx="LogSoftmax",Cu="LRN",Qh="LRNGrad",Fs="Max",$s="Maximum",Ds="MaxPool",ed="MaxPoolGrad",Ru="MaxPool3D",td="MaxPool3DGrad",nd="MaxPoolWithArgmax",Os="Mean",zs="Min",Ps="Minimum",Ls="MirrorPad",Lo="Mod",rd="Multinomial",Ws="Multiply",Wo="Neg",Bo="NotEqual",Vo="NonMaxSuppressionV3",jo="NonMaxSuppressionV4",Uo="NonMaxSuppressionV5",Ho="OnesLike",Bs="OneHot",Go="Pack",Vs="PadV2",nI="Pool",js="Pow",Us="Prelu",qo="Prod",Mu="Range",ad="Real",Xo="Reciprocal",Hs="Relu",Ko="Reshape",Fu="ResizeNearestNeighbor",sd="ResizeNearestNeighborGrad",Gs="ResizeBilinear",id="ResizeBilinearGrad",qs="Relu6",Xs="Reverse",Ks="Round",Zs="Rsqrt",Zo="ScatterNd",Yo="Select",Jo="Selu",Qo="Slice",Ys="Sin",el="Sinh",tl="Sign",Js="Sigmoid",nl="Softplus",Qs="Sqrt",ei="Sum",$u="SpaceToBatchND",rl="SplitV",ti="Softmax",od="SparseReshape",ld="SparseToDense",ni="SquaredDifference",Du="Square",al="StridedSlice",ri="Sub",ai="Tan",si="Tanh",Fa="Tile",sl="TopK",ud="Transform",ii="Transpose",cd="Unique",il="Unpack",Ou="UnsortedSegmentSum",ol="ZerosLike",$a="Step",hd="FromPixels",ll="RotateWithOffset",oi="_FusedMatMul",li="FusedConv2D",ui="FusedDepthwiseConv2D",ul=Rf("kernelRegistry",()=>new Map),zu=Rf("gradRegistry",()=>new Map);function dd(e,t){let n=Mf(e,t);return ul.get(n)}function Ff(e){return zu.get(e)}function cl(e){let t=ul.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function ci(e){let{kernelName:t,backendName:n}=e,r=Mf(t,n);ul.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),ul.set(r,e)}function Qx(e){let{kernelName:t}=e;zu.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),zu.set(t,e)}function rI(e,t){let n=Mf(e,t);if(!ul.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);ul.delete(n)}function aI(e){if(!zu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);zu.delete(e)}function sI(e,t){cl(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});ci(r)})}function Mf(e,t){return`${t}_${e}`}var _={};Me(_,{arraysEqual:()=>la,assert:()=>M,assertNonNegativeIntegerDimensions:()=>Tf,assertNonNull:()=>hs,assertShapesMatch:()=>ln,bytesFromStringArray:()=>Ux,bytesPerElement:()=>Sf,checkConversionForErrors:()=>Vx,clamp:()=>xu,computeStrides:()=>io,createScalarValue:()=>iI,createShuffledIndices:()=>U9,decodeString:()=>fd,distSquared:()=>W9,encodeString:()=>Lu,fetch:()=>oI,flatten:()=>ds,getArrayFromDType:()=>Bx,getTypedArrayFromDType:()=>Wx,hasEncodingLoss:()=>q9,indexToLoc:()=>Z9,inferDtype:()=>Rh,inferFromImplicitShape:()=>G9,isBoolean:()=>Hx,isFunction:()=>Ca,isInt:()=>Ut,isNumber:()=>Gx,isPromise:()=>Ef,isScalarShape:()=>B9,isString:()=>Ea,isTypedArray:()=>rn,isValidDtype:()=>jx,locToIndex:()=>K9,makeOnesTypedArray:()=>Nf,makeZerosNestedTypedArray:()=>X9,makeZerosTypedArray:()=>Fh,nearestDivisor:()=>Mh,nearestLargerEven:()=>z9,now:()=>Pu,parseAxisParam:()=>hr,randUniform:()=>L9,repeatedTry:()=>H9,rightPad:()=>bu,shuffle:()=>Px,shuffleCombo:()=>O9,sizeFromShape:()=>Et,sizeToSquarishShape:()=>j9,squeezeShape:()=>Lx,sum:()=>P9,tanh:()=>V9,toNestedArray:()=>oo,toTypedArray:()=>pd});function iI(e,t){return t==="string"?Lu(e):pd([e],t)}function lI(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function pd(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ds(e)),J().getBool("DEBUG")&&Vx(e,t),lI(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r{r=n()},s,i=Pu();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of r)o.dataSync();s=Promise.resolve({kernelMs:Pu()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o{uI(c,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function uI(e,t,n){if(t!=="float32")return!1;for(let r=0;r0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function dI(e,t,n){let r={},a={};for(let l=0;lr[f.id]=!0),p=!0,a[c.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let h=0;h=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!la(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let h=e[u.id];e[u.id]=r(h,c),h.dispose()}}}}var eb=20,Wu=3,$f=7;function mI(e,t,n,r){let a=io(t),s=fI(e,t,n,a),i=t.length,o=md(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(` +var Mk=Object.defineProperty;var Mr=(e,t)=>{for(var n in t)Mk(e,n,{get:t[n],enumerable:!0})};var Og=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var rr=(e,t,n)=>(Og(e,t,"read from private field"),n?n.call(e):t.get(e)),ss=(e,t,n,r)=>(Og(e,t,"write to private field"),r?r.call(e,n):t.set(e,n),n);function Yt(e,t){let n=e.endsWith("/")?"":"/",a=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!a.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${a} Expecting JSON file`);return a}function pe(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var it=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Gn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Gn(s,i):n[a]=i}),n),{})}function zg(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let r=n[0].match(/\(([^()]+)\)/g);e=r?r[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var cu={};Mr(cu,{Abs:()=>no,Acos:()=>ro,Acosh:()=>ao,AdadeltaOptimizer:()=>Kd,AdagradOptimizer:()=>Zd,AdamOptimizer:()=>Yd,AdamaxOptimizer:()=>Jd,Add:()=>Sa,AddN:()=>ls,All:()=>so,Any:()=>io,ArgMax:()=>us,ArgMin:()=>mu,Asin:()=>oo,Asinh:()=>lo,Atan:()=>uo,Atan2:()=>ho,Atanh:()=>co,AvgPool:()=>cs,AvgPool3D:()=>Au,AvgPool3DGrad:()=>Eh,AvgPoolGrad:()=>Th,BackendWasm:()=>lv,BatchMatMul:()=>hs,BatchToSpaceND:()=>yu,Bincount:()=>Ch,BroadcastTo:()=>Ex,Callback:()=>e4,CallbackList:()=>Yv,Cast:()=>ds,Ceil:()=>ps,ClipByValue:()=>Na,Complex:()=>Rh,ComplexAbs:()=>gu,Concat:()=>po,Conv2D:()=>fs,Conv2DBackpropFilter:()=>Mh,Conv2DBackpropInput:()=>ms,Conv3D:()=>xu,Conv3DBackpropFilterV2:()=>Fh,Conv3DBackpropInputV2:()=>$h,Cos:()=>As,Cosh:()=>fo,CropAndResize:()=>mo,Cumsum:()=>ys,CustomCallback:()=>Qv,DataStorage:()=>kh,DenseBincount:()=>Dh,DepthToSpace:()=>Ao,DepthwiseConv2dNative:()=>gs,DepthwiseConv2dNativeBackpropFilter:()=>Oh,DepthwiseConv2dNativeBackpropInput:()=>zh,Diag:()=>Ph,Dilation2D:()=>wu,Dilation2DBackpropFilter:()=>Wh,Dilation2DBackpropInput:()=>Lh,ENV:()=>Ar,EarlyStopping:()=>n4,Einsum:()=>Bh,Elu:()=>yo,EluGrad:()=>Vh,Environment:()=>Nx,Equal:()=>xo,Erf:()=>go,Exp:()=>ws,ExpandDims:()=>wo,Expm1:()=>bo,FFT:()=>jh,Fill:()=>bu,FlipLeftRight:()=>_o,Floor:()=>bs,FloorDiv:()=>_s,FromPixels:()=>sd,FusedBatchNorm:()=>vs,FusedConv2D:()=>ri,FusedDepthwiseConv2D:()=>ai,GPGPUContext:()=>mp,GatherNd:()=>ko,GatherV2:()=>vo,GraphModel:()=>M4,Greater:()=>Io,GreaterEqual:()=>ks,History:()=>Jv,IFFT:()=>Uh,Identity:()=>Is,Imag:()=>Hh,InputSpec:()=>Rt,IsFinite:()=>So,IsInf:()=>No,IsNan:()=>To,KernelBackend:()=>du,LRN:()=>ku,LRNGrad:()=>qh,LayerVariable:()=>Gv,LayersModel:()=>fa,LeakyRelu:()=>Ss,Less:()=>Eo,LessEqual:()=>Co,LinSpace:()=>Gh,Log:()=>Ns,Log1p:()=>Ro,LogSoftmax:()=>Cx,LogicalAnd:()=>Mo,LogicalNot:()=>_u,LogicalOr:()=>vu,MathBackendCPU:()=>np,MathBackendWebGL:()=>Dl,Max:()=>Ts,MaxPool:()=>Cs,MaxPool3D:()=>Iu,MaxPool3DGrad:()=>Kh,MaxPoolGrad:()=>Xh,MaxPoolWithArgmax:()=>Zh,Maximum:()=>Es,Mean:()=>Rs,Min:()=>Ms,Minimum:()=>Fs,MirrorPad:()=>$s,Mod:()=>Fo,MomentumOptimizer:()=>Qd,Multinomial:()=>Yh,Multiply:()=>Ds,Neg:()=>$o,NonMaxSuppressionV3:()=>Oo,NonMaxSuppressionV4:()=>zo,NonMaxSuppressionV5:()=>Po,NotEqual:()=>Do,OP_SCOPE_SUFFIX:()=>Bx,OneHot:()=>Os,OnesLike:()=>Lo,Optimizer:()=>ca,Pack:()=>Wo,PadV2:()=>zs,Pool:()=>F9,Pow:()=>Ps,Prelu:()=>Ls,Prod:()=>Bo,RMSPropOptimizer:()=>ep,RNN:()=>Hr,Range:()=>Su,Rank:()=>If,Real:()=>Jh,RealDiv:()=>xs,Reciprocal:()=>Vo,Reduction:()=>un,Relu:()=>Ws,Relu6:()=>Vs,Reshape:()=>jo,ResizeBilinear:()=>Bs,ResizeBilinearGrad:()=>ed,ResizeNearestNeighbor:()=>Nu,ResizeNearestNeighborGrad:()=>Qh,Reverse:()=>js,RotateWithOffset:()=>nl,Round:()=>Us,Rsqrt:()=>Hs,SGDOptimizer:()=>sc,ScatterNd:()=>Uo,Select:()=>Ho,Selu:()=>Go,Sequential:()=>Ul,Sigmoid:()=>qs,Sign:()=>Ko,Sin:()=>Gs,Sinh:()=>Xo,Slice:()=>qo,Softmax:()=>Zs,Softplus:()=>Zo,SpaceToBatchND:()=>Tu,SparseReshape:()=>td,SparseToDense:()=>nd,SplitV:()=>Yo,Sqrt:()=>Xs,Square:()=>Eu,SquaredDifference:()=>Ys,Step:()=>Ea,StridedSlice:()=>Jo,Sub:()=>Js,Sum:()=>Ks,SymbolicTensor:()=>Sr,Tan:()=>Qs,Tanh:()=>ei,Tensor:()=>Le,TensorBuffer:()=>$t,Tile:()=>Ta,TopK:()=>Qo,Transform:()=>rd,Transpose:()=>ti,Unique:()=>ad,Unpack:()=>el,UnsortedSegmentSum:()=>Cu,Variable:()=>zu,ZerosLike:()=>tl,_FusedMatMul:()=>ni,abs:()=>Dt,acos:()=>Yf,acosh:()=>Jf,add:()=>se,addN:()=>yd,all:()=>gd,any:()=>Vu,argMax:()=>ju,argMin:()=>Qf,asin:()=>em,asinh:()=>tm,atan:()=>nm,atan2:()=>rm,atanh:()=>am,avgPool:()=>Hu,avgPool3d:()=>om,backend:()=>_w,backend_util:()=>E,basicLSTMCell:()=>hN,batchNorm:()=>pi,batchNorm2d:()=>Sw,batchNorm3d:()=>Nw,batchNorm4d:()=>Tw,batchToSpaceND:()=>Gu,bincount:()=>Ew,booleanMaskAsync:()=>yC,broadcastTo:()=>pl,browser:()=>ui,buffer:()=>We,callbacks:()=>fae,cast:()=>Ae,ceil:()=>lm,clipByValue:()=>In,clone:()=>Dr,complex:()=>Ca,concat:()=>ot,concat1d:()=>Cw,concat2d:()=>fl,concat3d:()=>Rw,concat4d:()=>Mw,constraints:()=>xv,conv1d:()=>wd,conv2d:()=>ia,conv2dTranspose:()=>bd,conv3d:()=>cm,conv3dTranspose:()=>$w,copyRegisteredKernels:()=>O9,cos:()=>qu,cosh:()=>_d,cosineWindow:()=>Pm,cumsum:()=>vd,customGrad:()=>zr,data:()=>F4,denseBincount:()=>Dw,deprecationWarn:()=>Kf,depthToSpace:()=>hm,depthwiseConv2d:()=>ml,deregisterOp:()=>Aae,device_util:()=>Lu,diag:()=>WN,dilation2d:()=>dm,disableDeprecationWarnings:()=>IS,dispose:()=>Te,disposeVariables:()=>SS,div:()=>ge,divNoNan:()=>pm,dot:()=>Ow,dropout:()=>rb,einsum:()=>zw,elu:()=>Al,enableDebugMode:()=>kS,enableProdMode:()=>vS,enclosingPowerOfTwo:()=>ab,engine:()=>aa,env:()=>J,equal:()=>Da,erf:()=>fm,exp:()=>Xn,expandDims:()=>on,expm1:()=>mm,eye:()=>Am,fft:()=>rc,fill:()=>Xu,findBackend:()=>Zf,findBackendFactory:()=>MS,floor:()=>yl,floorDiv:()=>Ad,forceHalfFloat:()=>w3,fused:()=>La,gather:()=>fi,gatherND:()=>nb,gather_util:()=>Vf,getBackend:()=>CS,getGradient:()=>_f,getKernel:()=>id,getKernelsForBackend:()=>al,gpgpu_util:()=>U_,grad:()=>AT,grads:()=>yT,greater:()=>or,greaterEqual:()=>za,ifft:()=>bl,imag:()=>kd,image:()=>Ye,inTopKAsync:()=>TC,initializers:()=>Sv,input:()=>Lv,io:()=>vn,irfft:()=>Wd,isFinite:()=>Pw,isInf:()=>Lw,isNaN:()=>ym,keep:()=>Vt,kernel_impls:()=>Wr,layers:()=>Pv,leakyRelu:()=>Ku,less:()=>Id,lessEqual:()=>mi,linalg:()=>Ab,linspace:()=>Ww,loadGraphModel:()=>Ht,loadLayersModel:()=>$re,localResponseNormalization:()=>gm,log:()=>Mn,log1p:()=>Sd,logSigmoid:()=>Vw,logSoftmax:()=>Td,logSumExp:()=>bm,logicalAnd:()=>lr,logicalNot:()=>Zu,logicalOr:()=>Ed,logicalXor:()=>Gw,losses:()=>qR,matMul:()=>Be,math:()=>rw,max:()=>Kn,maxPool:()=>Yu,maxPool3d:()=>_m,maxPoolWithArgmax:()=>qw,maximum:()=>Pr,mean:()=>vt,memory:()=>md,meshgrid:()=>LT,metrics:()=>Y6,min:()=>gl,minimum:()=>xl,mirrorPad:()=>vm,mod:()=>km,model:()=>Mre,models:()=>J6,moments:()=>Cd,movingAverage:()=>wC,mul:()=>B,multiRNNCell:()=>qT,multinomial:()=>Xw,neg:()=>_t,nextFrame:()=>tp,norm:()=>Ud,notEqual:()=>gi,oneHot:()=>ul,ones:()=>Fn,onesLike:()=>$n,op:()=>D,outerProduct:()=>JT,pad:()=>oa,pad1d:()=>tE,pad2d:()=>rE,pad3d:()=>sE,pad4d:()=>oE,pool:()=>Kw,pow:()=>la,prelu:()=>Qu,print:()=>Yx,prod:()=>Rd,profile:()=>sa,rand:()=>AE,randomGamma:()=>wE,randomNormal:()=>Zw,randomUniform:()=>wl,range:()=>Md,ready:()=>ES,real:()=>ec,reciprocal:()=>Nm,registerBackend:()=>hl,registerCallbackConstructor:()=>Dre,registerGradient:()=>Rx,registerKernel:()=>si,registerOp:()=>mae,regularizers:()=>Q6,relu:()=>Lr,relu6:()=>Fd,removeBackend:()=>RS,reshape:()=>H,reverse:()=>Dn,reverse1d:()=>EE,reverse2d:()=>RE,reverse3d:()=>FE,reverse4d:()=>DE,rfft:()=>ac,round:()=>Tm,rsqrt:()=>$d,scalar:()=>ke,scatterND:()=>tb,scatter_util:()=>jf,selu:()=>Dd,separableConv2d:()=>Em,sequential:()=>Fre,serialization:()=>re,setBackend:()=>TS,setPlatform:()=>FS,setWasmPath:()=>TJ,setWasmPaths:()=>EJ,setWebGLContext:()=>hp,setdiff1dAsync:()=>Yw,shared:()=>jm,sigmoid:()=>kn,sign:()=>Cm,signal:()=>GR,sin:()=>Od,sinh:()=>zd,slice:()=>Re,slice1d:()=>Pd,slice2d:()=>Rm,slice3d:()=>Ld,slice4d:()=>tc,slice_util:()=>sn,softmax:()=>nc,softplus:()=>Ai,spaceToBatchND:()=>Ju,sparse:()=>yb,sparseToDense:()=>zm,spectral:()=>HR,split:()=>ln,sqrt:()=>Jt,square:()=>st,squaredDifference:()=>Bd,squeeze:()=>Pa,stack:()=>On,step:()=>_l,stridedSlice:()=>Mm,sub:()=>ye,sum:()=>Ne,sumOutType:()=>cd,tan:()=>Fm,tanh:()=>di,tensor:()=>xr,tensor1d:()=>nn,tensor2d:()=>Zn,tensor3d:()=>pd,tensor4d:()=>oC,tensor5d:()=>lC,tensor6d:()=>uC,tensor_util:()=>yr,test_util:()=>xw,tidy:()=>L,tile:()=>Oa,time:()=>NS,topk:()=>$m,train:()=>wi,transpose:()=>Ze,truncatedNormal:()=>Vd,unique:()=>jd,unregisterGradient:()=>D9,unregisterKernel:()=>$9,unsortedSegmentSum:()=>Dm,unstack:()=>ur,upcastType:()=>ir,util:()=>_,valueAndGrad:()=>gT,valueAndGrads:()=>xT,variable:()=>Jw,variableGrads:()=>Bw,version:()=>nie,version_converter:()=>Ase,version_core:()=>_S,version_cpu:()=>Zb,version_layers:()=>ly,version_wasm:()=>cv,version_webgl:()=>x3,webgl:()=>RW,webgl_util:()=>g_,where:()=>Sn,whereAsync:()=>Om,zeros:()=>Et,zerosLike:()=>Ue});var Fk=Object.create,vh=Object.defineProperty,$k=Object.getPrototypeOf,Dk=Object.prototype.hasOwnProperty,Ok=Object.getOwnPropertyNames,zk=Object.getOwnPropertyDescriptor,Pk=e=>vh(e,"__esModule",{value:!0}),wt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Me=(e,t)=>{for(var n in t)vh(e,n,{get:t[n],enumerable:!0})},Lk=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of Ok(t))!Dk.call(e,r)&&r!=="default"&&vh(e,r,{get:()=>t[r],enumerable:!(n=zk(t,r))||n.enumerable});return e},Qi=e=>Lk(Pk(vh(e!=null?Fk($k(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),Wk=wt(()=>{}),Bk=wt((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=h.toString();for(var d=0;d>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Vk=wt((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),jk=wt((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Uk=wt((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,m,f;return p=h[d],p^=p>>>7,m=p^p<<24,p=h[d+1&7],m^=p^p>>>10,p=h[d+3&7],m^=p^p>>>3,p=h[d+4&7],m^=p^p<<7,p=h[d+7&7],p=p^p<<13,m^=p^p<<9,h[d]=m,c.i=d+1&7,m};function u(h,d){var p,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Hk=wt((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,m,f;return c.w=h=h+1640531527|0,f=d[p+34&127],m=d[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[p]=f^m,c.i=p,f+(h^h>>>16)|0};function u(h,d){var p,m,f,A,y,g=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,A=-32;A>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=m+y,f=p==0?f+1:0);for(f>=128&&(g[(d&&d.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;h.w=y,h.X=g,h.i=f}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Gk=wt((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,m=c.d,f=c.a;return d=d<<25^d>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-m|0,c.d=m<<16^p>>>16^f,c.a=f-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Pg=wt(()=>{}),qk=wt((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),h=u*2,d=s-1,p;function m(w,b,k){var N=[];b=b==!0?{entropy:!0}:b||{};var C=g(y(b.entropy?[w,v(n)]:w==null?x():w,3),N),F=new f(N),O=function(){for(var z=F.g(i),V=c,j=0;z=h;)z/=2,V/=2,j>>>=1;return(z+j)/V};return O.int32=function(){return F.g(4)|0},O.quick=function(){return F.g(4)/4294967296},O.double=O,g(v(F.S),n),(b.pass||k||function(z,V,j,U){return U&&(U.S&&A(U,F),z.state=function(){return A(F,{})}),j?(r[l]=z,V):z})(O,C,"global"in b?b.global:this==r,b.state)}r["seed"+l]=m;function f(w){var b,k=w.length,N=this,C=0,F=N.i=N.j=0,O=N.S=[];for(k||(w=[k++]);C{var n=Bk(),r=Vk(),a=jk(),s=Uk(),i=Hk(),o=Gk(),l=qk();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),hu=wt(()=>{}),Xk=wt(()=>{}),Kk=wt(()=>{}),Zk=wt((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return Q.buffer!=Ve&&Kt(Q.buffer),gn}function i(){return Q.buffer!=Ve&&Kt(Q.buffer),xt}function o(){return Q.buffer!=Ve&&Kt(Q.buffer),xn}function l(){return Q.buffer!=Ve&&Kt(Q.buffer),Un}function c(){return Q.buffer!=Ve&&Kt(Q.buffer),rn}var u=typeof a!="undefined"?a:{},h,d;u.ready=new Promise(function(S,T){h=S,d=T});var p={},m;for(m in u)u.hasOwnProperty(m)&&(p[m]=u[m]);var f=[],A="./this.program",y=function(S,T){throw T},g=!1,x=!1,v=!1,w=!1;g=typeof window=="object",x=typeof importScripts=="function",v=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!g&&!v&&!x;var b=u.ENVIRONMENT_IS_PTHREAD||!1;b&&(Ve=u.buffer);var k="";function N(S){return u.locateFile?u.locateFile(S,k):k+S}var C,F,O,z,V,j;if(v){x?k=hu().dirname(k)+"/":k=__dirname+"/",C=function(S,T){return V||(V=require("fs")),j||(j=hu()),S=j.normalize(S),V.readFileSync(S,T?null:"utf8")},O=function(S){var T=C(S,!0);return T.buffer||(T=new Uint8Array(T)),de(T.buffer),T},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(S){if(!(S instanceof uu))throw S}),process.on("unhandledRejection",Qr),y=function(S){process.exit(S)},u.inspect=function(){return"[Emscripten Module object]"};var U;try{U=Xk()}catch(S){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),S}global.Worker=U.Worker}else w?(typeof read!="undefined"&&(C=function(S){return read(S)}),O=function(S){var T;return typeof readbuffer=="function"?new Uint8Array(readbuffer(S)):(T=read(S,"binary"),de(typeof T=="object"),T)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(S){quit(S)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||x)&&(x?k=self.location.href:typeof document!="undefined"&&document.currentScript&&(k=document.currentScript.src),typeof r!="undefined"&&r&&(k=r),k.indexOf("blob:")!==0?k=k.substr(0,k.lastIndexOf("/")+1):k="",v?(C=function(S,T){return V||(V=require("fs")),j||(j=hu()),S=j.normalize(S),V.readFileSync(S,T?null:"utf8")},O=function(S){var T=C(S,!0);return T.buffer||(T=new Uint8Array(T)),de(T.buffer),T}):(C=function(S){var T=new XMLHttpRequest;return T.open("GET",S,!1),T.send(null),T.responseText},x&&(O=function(S){var T=new XMLHttpRequest;return T.open("GET",S,!1),T.responseType="arraybuffer",T.send(null),new Uint8Array(T.response)}),F=function(S,T,P){var q=new XMLHttpRequest;q.open("GET",S,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){T(q.response);return}P()},q.onerror=P,q.send(null)}),z=function(S){document.title=S});v&&typeof performance=="undefined"&&(global.performance=Kk().performance);var X=u.print||console.log.bind(console),G=u.printErr||console.warn.bind(console);for(m in p)p.hasOwnProperty(m)&&(u[m]=p[m]);p=null,u.arguments&&(f=u.arguments),u.thisProgram&&(A=u.thisProgram),u.quit&&(y=u.quit);var ee=Atomics.load,Y=Atomics.store,ae=Atomics.compareExchange,te;u.wasmBinary&&(te=u.wasmBinary);var ie=u.noExitRuntime||!0;typeof WebAssembly!="object"&&Qr("no native wasm support detected");var Q,ce,oe=!1,me;function de(S,T){S||Qr("Assertion failed: "+T)}function ve(S){var T=u["_"+S];return de(T,"Cannot call unknown function "+S+", make sure it is exported"),T}function Ie(S,T,P,q,he){var le={string:function(_n){var Ji=0;if(_n!=null&&_n!==0){var Dg=(_n.length<<2)+1;Ji=Ki(Dg),et(_n,Ji,Dg)}return Ji},array:function(_n){var Ji=Ki(_n.length);return Xe(_n,Ji),Ji}};function ue(_n){return T==="string"?$e(_n):T==="boolean"?Boolean(_n):_n}var we=ve(S),tt=[],Wt=0;if(q)for(var Ft=0;Ft=q);){var le=S[T++];if(!le)return he;if(!(le&128)){he+=String.fromCharCode(le);continue}var ue=S[T++]&63;if((le&224)==192){he+=String.fromCharCode((le&31)<<6|ue);continue}var we=S[T++]&63;if((le&240)==224?le=(le&15)<<12|ue<<6|we:le=(le&7)<<18|ue<<12|we<<6|S[T++]&63,le<65536)he+=String.fromCharCode(le);else{var tt=le-65536;he+=String.fromCharCode(55296|tt>>10,56320|tt&1023)}}return he}function $e(S,T){return S?Oe(i(),S,T):""}function Qe(S,T,P,q){if(!(q>0))return 0;for(var he=P,le=P+q-1,ue=0;ue=55296&&we<=57343){var tt=S.charCodeAt(++ue);we=65536+((we&1023)<<10)|tt&1023}if(we<=127){if(P>=le)break;T[P++]=we}else if(we<=2047){if(P+1>=le)break;T[P++]=192|we>>6,T[P++]=128|we&63}else if(we<=65535){if(P+2>=le)break;T[P++]=224|we>>12,T[P++]=128|we>>6&63,T[P++]=128|we&63}else{if(P+3>=le)break;T[P++]=240|we>>18,T[P++]=128|we>>12&63,T[P++]=128|we>>6&63,T[P++]=128|we&63}}return T[P]=0,P-he}function et(S,T,P){return Qe(S,i(),T,P)}function at(S){for(var T=0,P=0;P=55296&&q<=57343&&(q=65536+((q&1023)<<10)|S.charCodeAt(++P)&1023),q<=127?++T:q<=2047?T+=2:q<=65535?T+=3:T+=4}return T}function Xe(S,T){s().set(S,T)}function ht(S,T){return S%T>0&&(S+=T-S%T),S}var Ve,gn,xt,jn,Xt,xn,Un,Rn,rn;function Kt(S){Ve=S,u.HEAP8=gn=new Int8Array(S),u.HEAP16=jn=new Int16Array(S),u.HEAP32=xn=new Int32Array(S),u.HEAPU8=xt=new Uint8Array(S),u.HEAPU16=Xt=new Uint16Array(S),u.HEAPU32=Un=new Uint32Array(S),u.HEAPF32=Rn=new Float32Array(S),u.HEAPF64=rn=new Float64Array(S)}var Cr=u.INITIAL_MEMORY||16777216;if(b)Q=u.wasmMemory,Ve=u.buffer;else if(u.wasmMemory)Q=u.wasmMemory;else if(Q=new WebAssembly.Memory({initial:Cr/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),v&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(Ve=Q.buffer),Cr=Ve.byteLength,Kt(Ve);var tr,nr=[],ya=[],Yr=[],ga=[],Vi=[],Rr=!1,th=!1;b||ya.push({func:function(){Ah()}});function W0(){if(!b){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)rh(u.preRun.shift());Ui(nr)}}function Ql(){Rr=!0,!b&&Ui(ya)}function B0(){b||Ui(Yr)}function nh(){b||(th=!0)}function wn(){if(!b){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)V0(u.postRun.shift());Ui(Vi)}}function rh(S){nr.unshift(S)}function V0(S){Vi.unshift(S)}var Jr=0,xa=null,ns=null;function j0(S){de(!b,"addRunDependency cannot be used in a pthread worker"),Jr++,u.monitorRunDependencies&&u.monitorRunDependencies(Jr)}function U0(S){if(Jr--,u.monitorRunDependencies&&u.monitorRunDependencies(Jr),Jr==0&&(xa!==null&&(clearInterval(xa),xa=null),ns)){var T=ns;ns=null,T()}}u.preloadedImages={},u.preloadedAudios={};function Qr(S){u.onAbort&&u.onAbort(S),b&&console.error("Pthread aborting at "+new Error().stack),S+="",G(S),oe=!0,me=1,S="abort("+S+"). Build with -s ASSERTIONS=1 for more info.";var T=new WebAssembly.RuntimeError(S);throw d(T),T}function ah(S,T){return String.prototype.startsWith?S.startsWith(T):S.indexOf(T)===0}var ji="data:application/octet-stream;base64,";function sh(S){return ah(S,ji)}var H0="file://";function ih(S){return ah(S,H0)}var bn="tfjs-backend-wasm-threaded-simd.wasm";sh(bn)||(bn=N(bn));function oh(S){try{if(S==bn&&te)return new Uint8Array(te);if(O)return O(S);throw"both async and sync fetching of the wasm failed"}catch(T){Qr(T)}}function G0(){if(!te&&(g||x)){if(typeof fetch=="function"&&!ih(bn))return fetch(bn,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+bn+"'";return S.arrayBuffer()}).catch(function(){return oh(bn)});if(F)return new Promise(function(S,T){F(bn,function(P){S(new Uint8Array(P))},T)})}return Promise.resolve().then(function(){return oh(bn)})}function q0(){var S={a:z1};function T(ue,we){var tt=ue.exports;if(u.asm=tt,tr=u.asm.F,ce=we,!b){var Wt=_e.unusedWorkers.length;_e.unusedWorkers.forEach(function(Ft){_e.loadWasmModuleToWorker(Ft,function(){--Wt||U0("wasm-instantiate")})})}}b||j0("wasm-instantiate");function P(ue){T(ue.instance,ue.module)}function q(ue){return G0().then(function(we){return WebAssembly.instantiate(we,S)}).then(ue,function(we){G("failed to asynchronously prepare wasm: "+we),Qr(we)})}function he(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!sh(bn)&&!ih(bn)&&typeof fetch=="function"?fetch(bn,{credentials:"same-origin"}).then(function(ue){var we=WebAssembly.instantiateStreaming(ue,S);return we.then(P,function(tt){return G("wasm streaming compile failed: "+tt),G("falling back to ArrayBuffer instantiation"),q(P)})}):q(P)}if(u.instantiateWasm)try{var le=u.instantiateWasm(S,T);return le}catch(ue){return G("Module.instantiateWasm callback failed with error: "+ue),!1}return he().catch(d),{}}var X0={9816:function(){throw"Canceled!"},9834:function(S,T){setTimeout(function(){Eg(S,T)},0)}};function lh(){_e.initRuntime()}function Ui(S){for(;S.length>0;){var T=S.shift();if(typeof T=="function"){T(u);continue}var P=T.func;typeof P=="number"?T.arg===void 0?tr.get(P)():tr.get(P)(T.arg):P(T.arg===void 0?null:T.arg)}}function eu(S,T){if(S<=0||S>s().length||S&!0||T<0)return-28;if(T==0)return 0;T>=2147483647&&(T=Infinity);var P=Atomics.load(o(),Zi>>2),q=0;if(P==S){var he=Atomics.compareExchange(o(),Zi>>2,P,0);if(he==P&&(--T,q=1,T<=0))return 1}var le=Atomics.notify(o(),S>>2,T);if(le>=0)return le+q;throw"Atomics.notify returned an unexpected value "+le}u._emscripten_futex_wake=eu;function K0(S){if(b)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in killThread!";o()[S+12>>2]=0;var T=_e.pthreads[S];T.worker.terminate(),_e.freeThreadData(T),_e.runningWorkers.splice(_e.runningWorkers.indexOf(T.worker),1),T.worker.pthread=void 0}function Z0(S){if(b)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cancelThread!";var T=_e.pthreads[S];T.worker.postMessage({cmd:"cancel"})}function Y0(S){if(b)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cleanupThread!";var T=_e.pthreads[S];if(T){o()[S+12>>2]=0;var P=T.worker;_e.returnWorkerToPool(P)}}var _e={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var S=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),T=0;T>2]=S;var P=S+152;o()[P>>2]=P;for(var q=as(512),T=0;T<128;++T)l()[q/4+T]=0;Atomics.store(l(),S+100>>2,q),Atomics.store(l(),S+40>>2,S),lf(S,!x,1),Tg(S)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;_e.threadExitHandlers.length>0;)_e.threadExitHandlers.pop()();b&&qi()&&Ng()},runExitHandlersAndDeinitThread:function(S,T){Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),_e.runExitHandlers(),Atomics.store(l(),S+4>>2,T),Atomics.store(l(),S+0>>2,1),eu(S+0,2147483647),lf(0,0,0)},threadExit:function(S){var T=qi();T&&(_e.runExitHandlersAndDeinitThread(T,S),b&&postMessage({cmd:"exit"}))},threadCancel:function(){_e.runExitHandlersAndDeinitThread(qi(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var S in _e.pthreads){var T=_e.pthreads[S];T&&T.worker&&_e.returnWorkerToPool(T.worker)}_e.pthreads={};for(var P=0;P<_e.unusedWorkers.length;++P){var q=_e.unusedWorkers[P];q.terminate()}_e.unusedWorkers=[];for(var P=0;P<_e.runningWorkers.length;++P){var q=_e.runningWorkers[P],T=q.pthread;_e.freeThreadData(T),q.terminate()}_e.runningWorkers=[]},freeThreadData:function(S){if(S){if(S.threadInfoStruct){var T=o()[S.threadInfoStruct+100>>2];o()[S.threadInfoStruct+100>>2]=0,ou(T),ou(S.threadInfoStruct)}S.threadInfoStruct=0,S.allocatedOwnStack&&S.stackBase&&ou(S.stackBase),S.stackBase=0,S.worker&&(S.worker.pthread=null)}},returnWorkerToPool:function(S){_e.runWithoutMainThreadQueuedCalls(function(){delete _e.pthreads[S.pthread.threadInfoStruct],_e.unusedWorkers.push(S),_e.runningWorkers.splice(_e.runningWorkers.indexOf(S),1),_e.freeThreadData(S.pthread),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){o()[$g>>2]=0;try{S()}finally{o()[$g>>2]=1}},receiveObjectTransfer:function(S){},loadWasmModuleToWorker:function(S,T){S.onmessage=function(P){var q=P.data,he=q.cmd;if(S.pthread&&(_e.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=qi()){var le=_e.pthreads[q.targetThread];le?le.worker.postMessage(P.data,q.transferList):console.error('Internal error! Worker sent a message "'+he+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),_e.currentProxiedOperationCallerThread=void 0;return}if(he==="processQueuedMainThreadWork")sf();else if(he==="spawnThread")fh(P.data);else if(he==="cleanupThread")Y0(q.thread);else if(he==="killThread")K0(q.thread);else if(he==="cancelThread")Z0(q.thread);else if(he==="loaded")S.loaded=!0,T&&T(S),S.runPthread&&(S.runPthread(),delete S.runPthread);else if(he==="print")X("Thread "+q.threadId+": "+q.text);else if(he==="printErr")G("Thread "+q.threadId+": "+q.text);else if(he==="alert")alert("Thread "+q.threadId+": "+q.text);else if(he==="exit"){var ue=S.pthread&&Atomics.load(l(),S.pthread.threadInfoStruct+64>>2);ue&&_e.returnWorkerToPool(S)}else if(he==="exitProcess")try{Rk(q.returnCode)}catch(we){if(we instanceof uu)return;throw we}else he==="cancelDone"?_e.returnWorkerToPool(S):he==="objectTransfer"?_e.receiveObjectTransfer(P.data):P.data.target==="setimmediate"?S.postMessage(P.data):G("worker sent an unknown command "+he);_e.currentProxiedOperationCallerThread=void 0},S.onerror=function(P){G("pthread sent an error! "+P.filename+":"+P.lineno+": "+P.message)},v&&(S.on("message",function(P){S.onmessage({data:P})}),S.on("error",function(P){S.onerror(P)}),S.on("exit",function(P){})),S.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||r,wasmMemory:Q,wasmModule:ce})},allocateUnusedWorker:function(){var S=N("tfjs-backend-wasm-threaded-simd.worker.js");_e.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return _e.unusedWorkers.length==0&&(_e.allocateUnusedWorker(),_e.loadWasmModuleToWorker(_e.unusedWorkers[0])),_e.unusedWorkers.length>0?_e.unusedWorkers.pop():null},busySpinWait:function(S){for(var T=performance.now()+S;performance.now()>2]=S,S}function a1(S,T){if(b)return wa(1,1,S,T)}function s1(S,T){if(S==T)postMessage({cmd:"processQueuedMainThreadWork"});else if(b)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var P=_e.pthreads[S],q=P&&P.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function i1(){Qr()}function o1(S,T,P){var q=d1(T,P);return X0[S].apply(null,q)}function l1(S,T){}function u1(S,T,P){if(S<=0||S>s().length||S&!0)return-28;if(g){if(Atomics.load(o(),S>>2)!=T)return-6;for(var q=performance.now(),he=q+P,le=Atomics.exchange(o(),Zi>>2,S);;){if(q=performance.now(),q>he)return le=Atomics.exchange(o(),Zi>>2,0),-73;if(le=Atomics.exchange(o(),Zi>>2,0),le==0)break;if(sf(),Atomics.load(o(),S>>2)!=T)return-6;le=Atomics.exchange(o(),Zi>>2,S)}return 0}else{var ue=Atomics.wait(o(),S>>2,T,P);if(ue==="timed-out")return-73;if(ue==="not-equal")return-6;if(ue==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ue}}function c1(S,T,P){i().copyWithin(S,T,T+P)}function h1(){return v?require("os").cpus().length:navigator.hardwareConcurrency}function wa(S,T){for(var P=arguments.length-2,q=lu(),he=P,le=Ki(he*8),ue=le>>3,we=0;we>=2;P=i()[S++];){var q=P<105;q&&T&1&&T++,nu.push(q?c()[T++>>1]:o()[T]),++T}return nu}function p1(S,T,P){tu.length=T;for(var q=P>>3,he=0;he>>16),Kt(Q.buffer),1}catch(T){}}function A1(S){var T=f1();if(S<=T)return!1;var P=2147483648;if(S>P)return!1;for(var q=1;q<=4;q*=2){var he=T*(1+.2/q);he=Math.min(he,S+100663296);var le=Math.min(P,ht(Math.max(S,he),65536)),ue=m1(le);if(ue)return!0}return!1}var Pe={inEventHandler:0,removeAllEventListeners:function(){for(var S=Pe.eventHandlers.length-1;S>=0;--S)Pe._removeHandler(S);Pe.eventHandlers=[],Pe.deferredCalls=[]},registerRemoveEventListeners:function(){Pe.removeEventListenersRegistered||(ga.push(Pe.removeAllEventListeners),Pe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,T,P){function q(ue,we){if(ue.length!=we.length)return!1;for(var tt in ue)if(ue[tt]!=we[tt])return!1;return!0}for(var he in Pe.deferredCalls){var le=Pe.deferredCalls[he];if(le.targetFunction==S&&q(le.argsList,P))return}Pe.deferredCalls.push({targetFunction:S,precedence:T,argsList:P}),Pe.deferredCalls.sort(function(ue,we){return ue.precedence>2]=P,o()[ue+4>>2]=q,o()[ue+8>>2]=he,of(0,S,637534208,T,q,ue),Xi(le)},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return _e.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function y1(S){var T=at(S)+1,P=as(T);return et(S,P,T),P}function g1(S,T,P,q){var he=lu(),le=Ki(12),ue=0;T&&(ue=y1(T)),o()[le>>2]=ue,o()[le+4>>2]=P,o()[le+8>>2]=q,of(0,S,657457152,0,ue,le),Xi(he)}function x1(S,T,P,q){T=T?$e(T):"",g1(S,T,P,q)}function w1(S){return S>2?$e(S):S}var b1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function _1(S){S=w1(S);var T=b1[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return T}function ru(S){return _1(S)}function uh(S,T,P){var q=ru(S);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=T,o()[q.canvasSharedPtr+4>>2]=P),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var he=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var le=q.GLctxObject.GLctx.getParameter(2978);he=le[0]===0&&le[1]===0&&le[2]===q.width&&le[3]===q.height}q.width=T,q.height=P,he&&q.GLctxObject.GLctx.viewport(0,0,T,P)}else if(q.canvasSharedPtr){var ue=o()[q.canvasSharedPtr+8>>2];return x1(ue,S,T,P),1}else return-4;return 0}function ch(S,T,P){return b?wa(2,1,S,T,P):uh(S,T,P)}function v1(S,T,P){var q=ru(S);return q?uh(S,T,P):ch(S,T,P)}function k1(S){}function I1(S,T){}function S1(S){var T=S.getExtension("ANGLE_instanced_arrays");if(T)return S.vertexAttribDivisor=function(P,q){T.vertexAttribDivisorANGLE(P,q)},S.drawArraysInstanced=function(P,q,he,le){T.drawArraysInstancedANGLE(P,q,he,le)},S.drawElementsInstanced=function(P,q,he,le,ue){T.drawElementsInstancedANGLE(P,q,he,le,ue)},1}function N1(S){var T=S.getExtension("OES_vertex_array_object");if(T)return S.createVertexArray=function(){return T.createVertexArrayOES()},S.deleteVertexArray=function(P){T.deleteVertexArrayOES(P)},S.bindVertexArray=function(P){T.bindVertexArrayOES(P)},S.isVertexArray=function(P){return T.isVertexArrayOES(P)},1}function T1(S){var T=S.getExtension("WEBGL_draw_buffers");if(T)return S.drawBuffers=function(P,q){T.drawBuffersWEBGL(P,q)},1}function E1(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var Je={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(S){Je.lastError||(Je.lastError=S)},getNewId:function(S){for(var T=Je.counter++,P=S.length;P>2]:-1;he+=$e(o()[P+le*4>>2],ue<0?void 0:ue)}return he},createContext:function(S,T){var P=S.getContext("webgl",T);if(!P)return 0;var q=Je.registerContext(P,T);return q},registerContext:function(S,T){var P=as(8);o()[P+4>>2]=qi();var q={handle:P,attributes:T,version:T.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=q),Je.contexts[P]=q,(typeof T.enableExtensionsByDefault=="undefined"||T.enableExtensionsByDefault)&&Je.initExtensions(q),P},makeContextCurrent:function(S){return Je.currentContext=Je.contexts[S],u.ctx=ba=Je.currentContext&&Je.currentContext.GLctx,!(S&&!ba)},getContext:function(S){return Je.contexts[S]},deleteContext:function(S){Je.currentContext===Je.contexts[S]&&(Je.currentContext=null),typeof Pe=="object"&&Pe.removeAllHandlersOnTarget(Je.contexts[S].GLctx.canvas),Je.contexts[S]&&Je.contexts[S].GLctx.canvas&&(Je.contexts[S].GLctx.canvas.GLctxObject=void 0),ou(Je.contexts[S].handle),Je.contexts[S]=null},initExtensions:function(S){if(S||(S=Je.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var T=S.GLctx;S1(T),N1(T),T1(T),T.disjointTimerQueryExt=T.getExtension("EXT_disjoint_timer_query"),E1(T);var P=T.getSupportedExtensions()||[];P.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&T.getExtension(q)})}},populateUniformTable:function(S){for(var T=Je.programs[S],P=Je.programInfos[S]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=P.uniforms,he=ba.getProgramParameter(T,35718),le=0;le>2,q=o()[P+(24>>2)],he={alpha:!!o()[P+(0>>2)],depth:!!o()[P+(4>>2)],stencil:!!o()[P+(8>>2)],antialias:!!o()[P+(12>>2)],premultipliedAlpha:!!o()[P+(16>>2)],preserveDrawingBuffer:!!o()[P+(20>>2)],powerPreference:C1[q],failIfMajorPerformanceCaveat:!!o()[P+(28>>2)],majorVersion:o()[P+(32>>2)],minorVersion:o()[P+(36>>2)],enableExtensionsByDefault:o()[P+(40>>2)],explicitSwapControl:o()[P+(44>>2)],proxyContextToMainThread:o()[P+(48>>2)],renderViaOffscreenBackBuffer:o()[P+(52>>2)]},le=ru(S);if(!le||he.explicitSwapControl)return 0;var ue=Je.createContext(le,he);return ue}function M1(S,T){return R1(S,T)}var Hi={mappings:{},buffers:[null,[],[]],printChar:function(S,T){var P=Hi.buffers[S];T===0||T===10?((S===1?X:G)(Oe(P,0)),P.length=0):P.push(T)},varargs:void 0,get:function(){Hi.varargs+=4;var S=o()[Hi.varargs-4>>2];return S},getStr:function(S){var T=$e(S);return T},get64:function(S,T){return S}};function hh(S){return b?wa(3,1,S):0}function dh(S,T,P,q,he){if(b)return wa(4,1,S,T,P,q,he)}function ph(S,T,P,q){if(b)return wa(5,1,S,T,P,q);for(var he=0,le=0;le>2],we=o()[T+(le*8+4)>>2],tt=0;tt>2]=he,0}function F1(S){var T=_e.threadExitHandlers.pop();S&&T()}function $1(S,T){_e.threadExitHandlers.push(function(){tr.get(S)(T)})}function fh(S){if(b)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var T=_e.getNewWorker();if(T.pthread!==void 0)throw"Internal error!";if(!S.pthread_ptr)throw"Internal error, no pthread ptr!";_e.runningWorkers.push(T);for(var P=as(128*4),q=0;q<128;++q)o()[P+q*4>>2]=0;var he=S.stackBase+S.stackSize,le=_e.pthreads[S.pthread_ptr]={worker:T,stackBase:S.stackBase,stackSize:S.stackSize,allocatedOwnStack:S.allocatedOwnStack,threadInfoStruct:S.pthread_ptr},ue=le.threadInfoStruct>>2;Atomics.store(l(),ue+(64>>2),S.detached),Atomics.store(l(),ue+(100>>2),P),Atomics.store(l(),ue+(40>>2),le.threadInfoStruct),Atomics.store(l(),ue+(80>>2),S.stackSize),Atomics.store(l(),ue+(76>>2),he),Atomics.store(l(),ue+(104>>2),S.stackSize),Atomics.store(l(),ue+(104+8>>2),he),Atomics.store(l(),ue+(104+12>>2),S.detached);var we=Sg(),tt=we+40;Atomics.store(l(),ue+(172>>2),tt),T.pthread=le;var Wt={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr,stackBase:S.stackBase,stackSize:S.stackSize};T.runPthread=function(){Wt.time=performance.now(),T.postMessage(Wt,S.transferList)},T.loaded&&(T.runPthread(),delete T.runPthread)}function D1(S,T,P,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!S)return G("pthread_create called with a null thread pointer!"),28;var he=[],le=0;if(b&&(he.length===0||le))return Cg(687865856,S,T,P,q);if(le)return le;var ue=0,we=0,tt=0;T&&T!=-1?(ue=o()[T>>2],ue+=81920,we=o()[T+8>>2],tt=o()[T+12>>2]!==0):ue=2097152;var Wt=we==0;Wt?we=Fg(16,ue):(we-=ue,de(we>0));for(var Ft=as(228),va=0;va<228>>2;++va)l()[(Ft>>2)+va]=0;o()[S>>2]=Ft,o()[Ft+12>>2]=Ft;var Yi=Ft+152;o()[Yi>>2]=Yi;var _n={stackBase:we,stackSize:ue,allocatedOwnStack:Wt,detached:tt,startRoutine:P,pthread_ptr:Ft,arg:q,transferList:he};return b?(_n.cmd="spawnThread",postMessage(_n,he)):fh(_n),0}function mh(S){if(b)return wa(6,1,S);switch(S){case 30:return 16384;case 85:var T=2147483648;return T/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return r1(28),-1}b||_e.initMainThreadBlock();var ba,O1=[null,a1,ch,hh,dh,ph,mh],z1={e:t1,r:n1,x:s1,b:i1,y:o1,j:l1,c:u1,d:eu,f:rs,p:c1,z:h1,u:p1,q:A1,v:v1,i:k1,t:I1,w:M1,m:hh,n:dh,g:ph,o:lh,a:Q||u.wasmMemory,k:F1,l:$1,h:D1,s:mh},kg=q0(),Ah=u.___wasm_call_ctors=function(){return(Ah=u.___wasm_call_ctors=u.asm.A).apply(null,arguments)},P1=u._init=function(){return(P1=u._init=u.asm.B).apply(null,arguments)},L1=u._register_tensor=function(){return(L1=u._register_tensor=u.asm.C).apply(null,arguments)},W1=u._dispose_data=function(){return(W1=u._dispose_data=u.asm.D).apply(null,arguments)},B1=u._dispose=function(){return(B1=u._dispose=u.asm.E).apply(null,arguments)},V1=u._Abs=function(){return(V1=u._Abs=u.asm.G).apply(null,arguments)},j1=u._Add=function(){return(j1=u._Add=u.asm.H).apply(null,arguments)},U1=u._AddN=function(){return(U1=u._AddN=u.asm.I).apply(null,arguments)},H1=u._All=function(){return(H1=u._All=u.asm.J).apply(null,arguments)},G1=u._Any=function(){return(G1=u._Any=u.asm.K).apply(null,arguments)},q1=u._ArgMax=function(){return(q1=u._ArgMax=u.asm.L).apply(null,arguments)},X1=u._AvgPool=function(){return(X1=u._AvgPool=u.asm.M).apply(null,arguments)},K1=u._BatchMatMul=function(){return(K1=u._BatchMatMul=u.asm.N).apply(null,arguments)},Z1=u._Ceil=function(){return(Z1=u._Ceil=u.asm.O).apply(null,arguments)},Y1=u._ClipByValue=function(){return(Y1=u._ClipByValue=u.asm.P).apply(null,arguments)},J1=u._Conv2D=function(){return(J1=u._Conv2D=u.asm.Q).apply(null,arguments)},Q1=u._Conv2DBackpropInput=function(){return(Q1=u._Conv2DBackpropInput=u.asm.R).apply(null,arguments)},ef=u._Cos=function(){return(ef=u._Cos=u.asm.S).apply(null,arguments)},tf=u._CropAndResize=function(){return(tf=u._CropAndResize=u.asm.T).apply(null,arguments)},nf=u._Cumsum=function(){return(nf=u._Cumsum=u.asm.U).apply(null,arguments)},rf=u._DepthToSpace=function(){return(rf=u._DepthToSpace=u.asm.V).apply(null,arguments)},yh=u._DepthwiseConv2dNative=function(){return(yh=u._DepthwiseConv2dNative=u.asm.W).apply(null,arguments)},gh=u._Equal=function(){return(gh=u._Equal=u.asm.X).apply(null,arguments)},xh=u._Exp=function(){return(xh=u._Exp=u.asm.Y).apply(null,arguments)},au=u._FlipLeftRight=function(){return(au=u._FlipLeftRight=u.asm.Z).apply(null,arguments)},Gi=u._Floor=function(){return(Gi=u._Floor=u.asm._).apply(null,arguments)},af=u._FloorDiv=function(){return(af=u._FloorDiv=u.asm.$).apply(null,arguments)},su=u._FusedBatchNorm=function(){return(su=u._FusedBatchNorm=u.asm.aa).apply(null,arguments)},K=u._FusedConv2D=function(){return(K=u._FusedConv2D=u.asm.ba).apply(null,arguments)},ne=u._FusedDepthwiseConv2D=function(){return(ne=u._FusedDepthwiseConv2D=u.asm.ca).apply(null,arguments)},Se=u._Gather=function(){return(Se=u._Gather=u.asm.da).apply(null,arguments)},Ke=u._GatherNd=function(){return(Ke=u._GatherNd=u.asm.ea).apply(null,arguments)},It=u._Greater=function(){return(It=u._Greater=u.asm.fa).apply(null,arguments)},mt=u._GreaterEqual=function(){return(mt=u._GreaterEqual=u.asm.ga).apply(null,arguments)},je=u._LeakyRelu=function(){return(je=u._LeakyRelu=u.asm.ha).apply(null,arguments)},He=u._Less=function(){return(He=u._Less=u.asm.ia).apply(null,arguments)},Zt=u._LessEqual=function(){return(Zt=u._LessEqual=u.asm.ja).apply(null,arguments)},ea=u._Log=function(){return(ea=u._Log=u.asm.ka).apply(null,arguments)},ta=u._LogicalAnd=function(){return(ta=u._LogicalAnd=u.asm.la).apply(null,arguments)},wh=u._Max=function(){return(wh=u._Max=u.asm.ma).apply(null,arguments)},iu=u._MaxPool=function(){return(iu=u._MaxPool=u.asm.na).apply(null,arguments)},Hn=u._Maximum=function(){return(Hn=u._Maximum=u.asm.oa).apply(null,arguments)},_a=u._Mean=function(){return(_a=u._Mean=u.asm.pa).apply(null,arguments)},bh=u._Min=function(){return(bh=u._Min=u.asm.qa).apply(null,arguments)},U8=u._Minimum=function(){return(U8=u._Minimum=u.asm.ra).apply(null,arguments)},H8=u._MirrorPad=function(){return(H8=u._MirrorPad=u.asm.sa).apply(null,arguments)},G8=u._Multiply=function(){return(G8=u._Multiply=u.asm.ta).apply(null,arguments)},q8=u._Neg=function(){return(q8=u._Neg=u.asm.ua).apply(null,arguments)},X8=u._NonMaxSuppressionV3=function(){return(X8=u._NonMaxSuppressionV3=u.asm.va).apply(null,arguments)},K8=u._NonMaxSuppressionV4=function(){return(K8=u._NonMaxSuppressionV4=u.asm.wa).apply(null,arguments)},Z8=u._NonMaxSuppressionV5=function(){return(Z8=u._NonMaxSuppressionV5=u.asm.xa).apply(null,arguments)},Y8=u._NotEqual=function(){return(Y8=u._NotEqual=u.asm.ya).apply(null,arguments)},J8=u._OneHot=function(){return(J8=u._OneHot=u.asm.za).apply(null,arguments)},Q8=u._PadV2=function(){return(Q8=u._PadV2=u.asm.Aa).apply(null,arguments)},ek=u._Pow=function(){return(ek=u._Pow=u.asm.Ba).apply(null,arguments)},tk=u._Prelu=function(){return(tk=u._Prelu=u.asm.Ca).apply(null,arguments)},nk=u._Prod=function(){return(nk=u._Prod=u.asm.Da).apply(null,arguments)},rk=u._RealDiv=function(){return(rk=u._RealDiv=u.asm.Ea).apply(null,arguments)},ak=u._Relu=function(){return(ak=u._Relu=u.asm.Fa).apply(null,arguments)},sk=u._Relu6=function(){return(sk=u._Relu6=u.asm.Ga).apply(null,arguments)},ik=u._ResizeBilinear=function(){return(ik=u._ResizeBilinear=u.asm.Ha).apply(null,arguments)},ok=u._Reverse=function(){return(ok=u._Reverse=u.asm.Ia).apply(null,arguments)},lk=u._RotateWithOffset=function(){return(lk=u._RotateWithOffset=u.asm.Ja).apply(null,arguments)},uk=u._Round=function(){return(uk=u._Round=u.asm.Ka).apply(null,arguments)},ck=u._Rsqrt=function(){return(ck=u._Rsqrt=u.asm.La).apply(null,arguments)},hk=u._ScatterNd=function(){return(hk=u._ScatterNd=u.asm.Ma).apply(null,arguments)},dk=u._SelectV2=function(){return(dk=u._SelectV2=u.asm.Na).apply(null,arguments)},pk=u._Sigmoid=function(){return(pk=u._Sigmoid=u.asm.Oa).apply(null,arguments)},fk=u._Sin=function(){return(fk=u._Sin=u.asm.Pa).apply(null,arguments)},mk=u._Softmax=function(){return(mk=u._Softmax=u.asm.Qa).apply(null,arguments)},Ak=u._Sqrt=function(){return(Ak=u._Sqrt=u.asm.Ra).apply(null,arguments)},yk=u._Square=function(){return(yk=u._Square=u.asm.Sa).apply(null,arguments)},gk=u._SquaredDifference=function(){return(gk=u._SquaredDifference=u.asm.Ta).apply(null,arguments)},xk=u._Step=function(){return(xk=u._Step=u.asm.Ua).apply(null,arguments)},wk=u._StridedSlice=function(){return(wk=u._StridedSlice=u.asm.Va).apply(null,arguments)},bk=u._Sub=function(){return(bk=u._Sub=u.asm.Wa).apply(null,arguments)},_k=u._Sum=function(){return(_k=u._Sum=u.asm.Xa).apply(null,arguments)},vk=u._Tan=function(){return(vk=u._Tan=u.asm.Ya).apply(null,arguments)},kk=u._Tanh=function(){return(kk=u._Tanh=u.asm.Za).apply(null,arguments)},Ik=u._Tile=function(){return(Ik=u._Tile=u.asm._a).apply(null,arguments)},Sk=u._TopK=function(){return(Sk=u._TopK=u.asm.$a).apply(null,arguments)},Nk=u._Transpose=function(){return(Nk=u._Transpose=u.asm.ab).apply(null,arguments)},Tk=u.__FusedMatMul=function(){return(Tk=u.__FusedMatMul=u.asm.bb).apply(null,arguments)},as=u._malloc=function(){return(as=u._malloc=u.asm.cb).apply(null,arguments)},ou=u._free=function(){return(ou=u._free=u.asm.db).apply(null,arguments)},Ig=u.___errno_location=function(){return(Ig=u.___errno_location=u.asm.eb).apply(null,arguments)},Sg=u._emscripten_get_global_libc=function(){return(Sg=u._emscripten_get_global_libc=u.asm.fb).apply(null,arguments)},qi=u._pthread_self=function(){return(qi=u._pthread_self=u.asm.gb).apply(null,arguments)},Ng=u.___pthread_tsd_run_dtors=function(){return(Ng=u.___pthread_tsd_run_dtors=u.asm.hb).apply(null,arguments)},sf=u._emscripten_main_thread_process_queued_calls=function(){return(sf=u._emscripten_main_thread_process_queued_calls=u.asm.ib).apply(null,arguments)},Ek=u._emscripten_current_thread_process_queued_calls=function(){return(Ek=u._emscripten_current_thread_process_queued_calls=u.asm.jb).apply(null,arguments)},Tg=u._emscripten_register_main_browser_thread_id=function(){return(Tg=u._emscripten_register_main_browser_thread_id=u.asm.kb).apply(null,arguments)},Eg=u.__emscripten_do_dispatch_to_thread=function(){return(Eg=u.__emscripten_do_dispatch_to_thread=u.asm.lb).apply(null,arguments)},Cg=u._emscripten_sync_run_in_main_thread_4=function(){return(Cg=u._emscripten_sync_run_in_main_thread_4=u.asm.mb).apply(null,arguments)},Rg=u._emscripten_run_in_main_runtime_thread_js=function(){return(Rg=u._emscripten_run_in_main_runtime_thread_js=u.asm.nb).apply(null,arguments)},of=u.__emscripten_call_on_thread=function(){return(of=u.__emscripten_call_on_thread=u.asm.ob).apply(null,arguments)},Ck=u._emscripten_tls_init=function(){return(Ck=u._emscripten_tls_init=u.asm.pb).apply(null,arguments)},lf=u.__emscripten_thread_init=function(){return(lf=u.__emscripten_thread_init=u.asm.qb).apply(null,arguments)},lu=u.stackSave=function(){return(lu=u.stackSave=u.asm.rb).apply(null,arguments)},Xi=u.stackRestore=function(){return(Xi=u.stackRestore=u.asm.sb).apply(null,arguments)},Ki=u.stackAlloc=function(){return(Ki=u.stackAlloc=u.asm.tb).apply(null,arguments)},Mg=u._emscripten_stack_set_limits=function(){return(Mg=u._emscripten_stack_set_limits=u.asm.ub).apply(null,arguments)},Fg=u._memalign=function(){return(Fg=u._memalign=u.asm.vb).apply(null,arguments)},$g=u.__emscripten_allow_main_runtime_queued_calls=9808,Zi=u.__emscripten_main_thread_futex=11432;u.cwrap=Fe,u.PThread=_e,u.PThread=_e,u.wasmMemory=Q,u.ExitStatus=uu;var _h;function uu(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}ns=function S(){_h||uf(),_h||(ns=S)};function uf(S){if(S=S||f,Jr>0)return;if(b){h(u),Ql(),postMessage({cmd:"loaded"});return}if(W0(),Jr>0)return;function T(){_h||(_h=!0,u.calledRun=!0,!oe&&(Ql(),B0(),h(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),wn()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),T()},1)):T()}u.run=uf;function Rk(S,T){if(!(T&&ie&&S===0)){if(!T&&b)throw postMessage({cmd:"exitProcess",returnCode:S}),new uu(S);ie||(_e.terminateAllThreads(),me=S,nh(),u.onExit&&u.onExit(S),oe=!0),y(S,new uu(S))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return b&&(ie=!1,_e.initWorker()),uf(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),Yk=wt((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(K,ne){i=K,o=ne});var l={},c;for(c in s)s.hasOwnProperty(c)&&(l[c]=s[c]);var u=[],h="./this.program",d=function(K,ne){throw ne},p=!1,m=!1,f=!1,A=!1;p=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!p&&!f&&!m;var y="";function g(K){return s.locateFile?s.locateFile(K,y):y+K}var x,v,w,b,k,N;f?(m?y=hu().dirname(y)+"/":y=__dirname+"/",x=function(K,ne){return k||(k=require("fs")),N||(N=hu()),K=N.normalize(K),k.readFileSync(K,ne?null:"utf8")},w=function(K){var ne=x(K,!0);return ne.buffer||(ne=new Uint8Array(ne)),X(ne.buffer),ne},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof af))throw K}),process.on("unhandledRejection",Rr),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(x=function(K){return read(K)}),w=function(K){var ne;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(ne=read(K,"binary"),X(typeof ne=="object"),ne)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),r&&(y=r),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.send(null),ne.responseText},m&&(w=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),v=function(K,ne,Se){var Ke=new XMLHttpRequest;Ke.open("GET",K,!0),Ke.responseType="arraybuffer",Ke.onload=function(){if(Ke.status==200||Ke.status==0&&Ke.response){ne(Ke.response);return}Se()},Ke.onerror=Se,Ke.send(null)},b=function(K){document.title=K});var C=s.print||console.log.bind(console),F=s.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(s[c]=l[c]);l=null,s.arguments&&(u=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(d=s.quit);var O;s.wasmBinary&&(O=s.wasmBinary);var z=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Rr("no native wasm support detected");var V,j=!1,U;function X(K,ne){K||Rr("Assertion failed: "+ne)}function G(K){var ne=s["_"+K];return X(ne,"Cannot call unknown function "+K+", make sure it is exported"),ne}function ee(K,ne,Se,Ke,It){var mt={string:function(Hn){var _a=0;if(Hn!=null&&Hn!==0){var bh=(Hn.length<<2)+1;_a=au(bh),ce(Hn,_a,bh)}return _a},array:function(Hn){var _a=au(Hn.length);return oe(Hn,_a),_a}};function je(Hn){return ne==="string"?ie(Hn):ne==="boolean"?Boolean(Hn):Hn}var He=G(K),Zt=[],ea=0;if(Ke)for(var ta=0;ta=Ke);)++It;if(It-ne>16&&K.subarray&&ae)return ae.decode(K.subarray(ne,It));for(var mt="";ne>10,56320|ea&1023)}}return mt}function ie(K,ne){return K?te(Ie,K,ne):""}function Q(K,ne,Se,Ke){if(!(Ke>0))return 0;for(var It=Se,mt=Se+Ke-1,je=0;je=55296&&He<=57343){var Zt=K.charCodeAt(++je);He=65536+((He&1023)<<10)|Zt&1023}if(He<=127){if(Se>=mt)break;ne[Se++]=He}else if(He<=2047){if(Se+1>=mt)break;ne[Se++]=192|He>>6,ne[Se++]=128|He&63}else if(He<=65535){if(Se+2>=mt)break;ne[Se++]=224|He>>12,ne[Se++]=128|He>>6&63,ne[Se++]=128|He&63}else{if(Se+3>=mt)break;ne[Se++]=240|He>>18,ne[Se++]=128|He>>12&63,ne[Se++]=128|He>>6&63,ne[Se++]=128|He&63}}return ne[Se]=0,Se-It}function ce(K,ne,Se){return Q(K,Ie,ne,Se)}function oe(K,ne){ve.set(K,ne)}function me(K,ne){return K%ne>0&&(K+=ne-K%ne),K}var de,ve,Ie,Fe,Oe,$e,Qe,et,at;function Xe(K){de=K,s.HEAP8=ve=new Int8Array(K),s.HEAP16=Fe=new Int16Array(K),s.HEAP32=$e=new Int32Array(K),s.HEAPU8=Ie=new Uint8Array(K),s.HEAPU16=Oe=new Uint16Array(K),s.HEAPU32=Qe=new Uint32Array(K),s.HEAPF32=et=new Float32Array(K),s.HEAPF64=at=new Float64Array(K)}var ht=s.INITIAL_MEMORY||16777216,Ve,gn=[],xt=[],jn=[],Xt=[],xn=!1;xt.push({func:function(){lh()}});function Un(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Cr(s.preRun.shift());xa(gn)}function Rn(){xn=!0,xa(xt)}function rn(){xa(jn)}function Kt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)tr(s.postRun.shift());xa(Xt)}function Cr(K){gn.unshift(K)}function tr(K){Xt.unshift(K)}var nr=0,ya=null,Yr=null;function ga(K){nr++,s.monitorRunDependencies&&s.monitorRunDependencies(nr)}function Vi(K){if(nr--,s.monitorRunDependencies&&s.monitorRunDependencies(nr),nr==0&&(ya!==null&&(clearInterval(ya),ya=null),Yr)){var ne=Yr;Yr=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function Rr(K){s.onAbort&&s.onAbort(K),K+="",F(K),j=!0,U=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(K);throw o(ne),ne}function th(K,ne){return String.prototype.startsWith?K.startsWith(ne):K.indexOf(ne)===0}var W0="data:application/octet-stream;base64,";function Ql(K){return th(K,W0)}var B0="file://";function nh(K){return th(K,B0)}var wn="tfjs-backend-wasm.wasm";Ql(wn)||(wn=g(wn));function rh(K){try{if(K==wn&&O)return new Uint8Array(O);if(w)return w(K);throw"both async and sync fetching of the wasm failed"}catch(ne){Rr(ne)}}function V0(){if(!O&&(p||m)){if(typeof fetch=="function"&&!nh(wn))return fetch(wn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+wn+"'";return K.arrayBuffer()}).catch(function(){return rh(wn)});if(v)return new Promise(function(K,ne){v(wn,function(Se){K(new Uint8Array(Se))},ne)})}return Promise.resolve().then(function(){return rh(wn)})}function Jr(){var K={a:q0};function ne(je,He){var Zt=je.exports;s.asm=Zt,V=s.asm.i,Xe(V.buffer),Ve=s.asm.o,Vi("wasm-instantiate")}ga("wasm-instantiate");function Se(je){ne(je.instance)}function Ke(je){return V0().then(function(He){return WebAssembly.instantiate(He,K)}).then(je,function(He){F("failed to asynchronously prepare wasm: "+He),Rr(He)})}function It(){return!O&&typeof WebAssembly.instantiateStreaming=="function"&&!Ql(wn)&&!nh(wn)&&typeof fetch=="function"?fetch(wn,{credentials:"same-origin"}).then(function(je){var He=WebAssembly.instantiateStreaming(je,K);return He.then(Se,function(Zt){return F("wasm streaming compile failed: "+Zt),F("falling back to ArrayBuffer instantiation"),Ke(Se)})}):Ke(Se)}if(s.instantiateWasm)try{var mt=s.instantiateWasm(K,ne);return mt}catch(je){return F("Module.instantiateWasm callback failed with error: "+je),!1}return It().catch(o),{}}function xa(K){for(;K.length>0;){var ne=K.shift();if(typeof ne=="function"){ne(s);continue}var Se=ne.func;typeof Se=="number"?ne.arg===void 0?Ve.get(Se)():Ve.get(Se)(ne.arg):Se(ne.arg===void 0?null:ne.arg)}}function ns(){Rr()}function j0(K,ne,Se){Ie.copyWithin(K,ne,ne+Se)}function U0(){return Ie.length}function Qr(K){try{return V.grow(K-de.byteLength+65535>>>16),Xe(V.buffer),1}catch(ne){}}function ah(K){var ne=U0(),Se=2147483648;if(K>Se)return!1;for(var Ke=1;Ke<=4;Ke*=2){var It=ne*(1+.2/Ke);It=Math.min(It,K+100663296);var mt=Math.min(Se,me(Math.max(K,It),65536)),je=Qr(mt);if(je)return!0}return!1}var ji={mappings:{},buffers:[null,[],[]],printChar:function(K,ne){var Se=ji.buffers[K];ne===0||ne===10?((K===1?C:F)(te(Se,0)),Se.length=0):Se.push(ne)},varargs:void 0,get:function(){ji.varargs+=4;var K=$e[ji.varargs-4>>2];return K},getStr:function(K){var ne=ie(K);return ne},get64:function(K,ne){return K}};function sh(K){return 0}function H0(K,ne,Se,Ke,It){}function ih(K,ne,Se,Ke){for(var It=0,mt=0;mt>2],He=$e[ne+(mt*8+4)>>2],Zt=0;Zt>2]=It,0}function bn(){return 6}function oh(K){return $e[yh()>>2]=K,K}function G0(K){switch(K){case 30:return 16384;case 85:var ne=2147483648;return ne/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return oh(28),-1}var q0={a:ns,d:j0,e:ah,f:sh,c:H0,b:ih,g:bn,h:G0},X0=Jr(),lh=s.___wasm_call_ctors=function(){return(lh=s.___wasm_call_ctors=s.asm.j).apply(null,arguments)},Ui=s._init=function(){return(Ui=s._init=s.asm.k).apply(null,arguments)},eu=s._register_tensor=function(){return(eu=s._register_tensor=s.asm.l).apply(null,arguments)},K0=s._dispose_data=function(){return(K0=s._dispose_data=s.asm.m).apply(null,arguments)},Z0=s._dispose=function(){return(Z0=s._dispose=s.asm.n).apply(null,arguments)},Y0=s._Abs=function(){return(Y0=s._Abs=s.asm.p).apply(null,arguments)},_e=s._Add=function(){return(_e=s._Add=s.asm.q).apply(null,arguments)},J0=s._AddN=function(){return(J0=s._AddN=s.asm.r).apply(null,arguments)},Q0=s._All=function(){return(Q0=s._All=s.asm.s).apply(null,arguments)},e1=s._Any=function(){return(e1=s._Any=s.asm.t).apply(null,arguments)},t1=s._ArgMax=function(){return(t1=s._ArgMax=s.asm.u).apply(null,arguments)},n1=s._AvgPool=function(){return(n1=s._AvgPool=s.asm.v).apply(null,arguments)},rs=s._BatchMatMul=function(){return(rs=s._BatchMatMul=s.asm.w).apply(null,arguments)},r1=s._Ceil=function(){return(r1=s._Ceil=s.asm.x).apply(null,arguments)},a1=s._ClipByValue=function(){return(a1=s._ClipByValue=s.asm.y).apply(null,arguments)},s1=s._Conv2D=function(){return(s1=s._Conv2D=s.asm.z).apply(null,arguments)},i1=s._Conv2DBackpropInput=function(){return(i1=s._Conv2DBackpropInput=s.asm.A).apply(null,arguments)},o1=s._Cos=function(){return(o1=s._Cos=s.asm.B).apply(null,arguments)},l1=s._CropAndResize=function(){return(l1=s._CropAndResize=s.asm.C).apply(null,arguments)},u1=s._Cumsum=function(){return(u1=s._Cumsum=s.asm.D).apply(null,arguments)},c1=s._DepthToSpace=function(){return(c1=s._DepthToSpace=s.asm.E).apply(null,arguments)},h1=s._DepthwiseConv2dNative=function(){return(h1=s._DepthwiseConv2dNative=s.asm.F).apply(null,arguments)},wa=s._Equal=function(){return(wa=s._Equal=s.asm.G).apply(null,arguments)},tu=s._Exp=function(){return(tu=s._Exp=s.asm.H).apply(null,arguments)},nu=s._FlipLeftRight=function(){return(nu=s._FlipLeftRight=s.asm.I).apply(null,arguments)},d1=s._Floor=function(){return(d1=s._Floor=s.asm.J).apply(null,arguments)},p1=s._FloorDiv=function(){return(p1=s._FloorDiv=s.asm.K).apply(null,arguments)},f1=s._FusedBatchNorm=function(){return(f1=s._FusedBatchNorm=s.asm.L).apply(null,arguments)},m1=s._FusedConv2D=function(){return(m1=s._FusedConv2D=s.asm.M).apply(null,arguments)},A1=s._FusedDepthwiseConv2D=function(){return(A1=s._FusedDepthwiseConv2D=s.asm.N).apply(null,arguments)},Pe=s._Gather=function(){return(Pe=s._Gather=s.asm.O).apply(null,arguments)},y1=s._GatherNd=function(){return(y1=s._GatherNd=s.asm.P).apply(null,arguments)},g1=s._Greater=function(){return(g1=s._Greater=s.asm.Q).apply(null,arguments)},x1=s._GreaterEqual=function(){return(x1=s._GreaterEqual=s.asm.R).apply(null,arguments)},w1=s._LeakyRelu=function(){return(w1=s._LeakyRelu=s.asm.S).apply(null,arguments)},b1=s._Less=function(){return(b1=s._Less=s.asm.T).apply(null,arguments)},_1=s._LessEqual=function(){return(_1=s._LessEqual=s.asm.U).apply(null,arguments)},ru=s._Log=function(){return(ru=s._Log=s.asm.V).apply(null,arguments)},uh=s._LogicalAnd=function(){return(uh=s._LogicalAnd=s.asm.W).apply(null,arguments)},ch=s._Max=function(){return(ch=s._Max=s.asm.X).apply(null,arguments)},v1=s._MaxPool=function(){return(v1=s._MaxPool=s.asm.Y).apply(null,arguments)},k1=s._Maximum=function(){return(k1=s._Maximum=s.asm.Z).apply(null,arguments)},I1=s._Mean=function(){return(I1=s._Mean=s.asm._).apply(null,arguments)},S1=s._Min=function(){return(S1=s._Min=s.asm.$).apply(null,arguments)},N1=s._Minimum=function(){return(N1=s._Minimum=s.asm.aa).apply(null,arguments)},T1=s._MirrorPad=function(){return(T1=s._MirrorPad=s.asm.ba).apply(null,arguments)},E1=s._Multiply=function(){return(E1=s._Multiply=s.asm.ca).apply(null,arguments)},Je=s._Neg=function(){return(Je=s._Neg=s.asm.da).apply(null,arguments)},C1=s._NonMaxSuppressionV3=function(){return(C1=s._NonMaxSuppressionV3=s.asm.ea).apply(null,arguments)},R1=s._NonMaxSuppressionV4=function(){return(R1=s._NonMaxSuppressionV4=s.asm.fa).apply(null,arguments)},M1=s._NonMaxSuppressionV5=function(){return(M1=s._NonMaxSuppressionV5=s.asm.ga).apply(null,arguments)},Hi=s._NotEqual=function(){return(Hi=s._NotEqual=s.asm.ha).apply(null,arguments)},hh=s._OneHot=function(){return(hh=s._OneHot=s.asm.ia).apply(null,arguments)},dh=s._PadV2=function(){return(dh=s._PadV2=s.asm.ja).apply(null,arguments)},ph=s._Pow=function(){return(ph=s._Pow=s.asm.ka).apply(null,arguments)},F1=s._Prelu=function(){return(F1=s._Prelu=s.asm.la).apply(null,arguments)},$1=s._Prod=function(){return($1=s._Prod=s.asm.ma).apply(null,arguments)},fh=s._RealDiv=function(){return(fh=s._RealDiv=s.asm.na).apply(null,arguments)},D1=s._Relu=function(){return(D1=s._Relu=s.asm.oa).apply(null,arguments)},mh=s._Relu6=function(){return(mh=s._Relu6=s.asm.pa).apply(null,arguments)},ba=s._ResizeBilinear=function(){return(ba=s._ResizeBilinear=s.asm.qa).apply(null,arguments)},O1=s._Reverse=function(){return(O1=s._Reverse=s.asm.ra).apply(null,arguments)},z1=s._RotateWithOffset=function(){return(z1=s._RotateWithOffset=s.asm.sa).apply(null,arguments)},kg=s._Round=function(){return(kg=s._Round=s.asm.ta).apply(null,arguments)},Ah=s._Rsqrt=function(){return(Ah=s._Rsqrt=s.asm.ua).apply(null,arguments)},P1=s._ScatterNd=function(){return(P1=s._ScatterNd=s.asm.va).apply(null,arguments)},L1=s._SelectV2=function(){return(L1=s._SelectV2=s.asm.wa).apply(null,arguments)},W1=s._Sigmoid=function(){return(W1=s._Sigmoid=s.asm.xa).apply(null,arguments)},B1=s._Sin=function(){return(B1=s._Sin=s.asm.ya).apply(null,arguments)},V1=s._Softmax=function(){return(V1=s._Softmax=s.asm.za).apply(null,arguments)},j1=s._Sqrt=function(){return(j1=s._Sqrt=s.asm.Aa).apply(null,arguments)},U1=s._Square=function(){return(U1=s._Square=s.asm.Ba).apply(null,arguments)},H1=s._SquaredDifference=function(){return(H1=s._SquaredDifference=s.asm.Ca).apply(null,arguments)},G1=s._Step=function(){return(G1=s._Step=s.asm.Da).apply(null,arguments)},q1=s._StridedSlice=function(){return(q1=s._StridedSlice=s.asm.Ea).apply(null,arguments)},X1=s._Sub=function(){return(X1=s._Sub=s.asm.Fa).apply(null,arguments)},K1=s._Sum=function(){return(K1=s._Sum=s.asm.Ga).apply(null,arguments)},Z1=s._Tan=function(){return(Z1=s._Tan=s.asm.Ha).apply(null,arguments)},Y1=s._Tanh=function(){return(Y1=s._Tanh=s.asm.Ia).apply(null,arguments)},J1=s._Tile=function(){return(J1=s._Tile=s.asm.Ja).apply(null,arguments)},Q1=s._TopK=function(){return(Q1=s._TopK=s.asm.Ka).apply(null,arguments)},ef=s._Transpose=function(){return(ef=s._Transpose=s.asm.La).apply(null,arguments)},tf=s.__FusedMatMul=function(){return(tf=s.__FusedMatMul=s.asm.Ma).apply(null,arguments)},nf=s._malloc=function(){return(nf=s._malloc=s.asm.Na).apply(null,arguments)},rf=s._free=function(){return(rf=s._free=s.asm.Oa).apply(null,arguments)},yh=s.___errno_location=function(){return(yh=s.___errno_location=s.asm.Pa).apply(null,arguments)},gh=s.stackSave=function(){return(gh=s.stackSave=s.asm.Qa).apply(null,arguments)},xh=s.stackRestore=function(){return(xh=s.stackRestore=s.asm.Ra).apply(null,arguments)},au=s.stackAlloc=function(){return(au=s.stackAlloc=s.asm.Sa).apply(null,arguments)};s.cwrap=Y;var Gi;function af(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}Yr=function K(){Gi||su(),Gi||(Yr=K)};function su(K){if(K=K||u,nr>0||(Un(),nr>0))return;function ne(){Gi||(Gi=!0,s.calledRun=!0,!j&&(Rn(),rn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Kt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}if(s.run=su,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return su(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),Jk=wt((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=String(h);for(var d=0;d>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Qk=wt((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),e9=wt((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),t9=wt((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,m,f;return p=h[d],p^=p>>>7,m=p^p<<24,p=h[d+1&7],m^=p^p>>>10,p=h[d+3&7],m^=p^p>>>3,p=h[d+4&7],m^=p^p<<7,p=h[d+7&7],p=p^p<<13,m^=p^p<<9,h[d]=m,c.i=d+1&7,m};function u(h,d){var p,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),n9=wt((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,m,f;return c.w=h=h+1640531527|0,f=d[p+34&127],m=d[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[p]=f^m,c.i=p,f+(h^h>>>16)|0};function u(h,d){var p,m,f,A,y,g=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,A=-32;A>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=m+y,f=p==0?f+1:0);for(f>=128&&(g[(d&&d.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;h.w=y,h.X=g,h.i=f}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),r9=wt((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,m=c.d,f=c.a;return d=d<<25^d>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-m|0,c.d=m<<16^p>>>16^f,c.a=f-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),a9=wt((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),h=u*2,d=s-1,p;function m(w,b,k){var N=[];b=b==!0?{entropy:!0}:b||{};var C=g(y(b.entropy?[w,v(r)]:w==null?x():w,3),N),F=new f(N),O=function(){for(var z=F.g(i),V=c,j=0;z=h;)z/=2,V/=2,j>>>=1;return(z+j)/V};return O.int32=function(){return F.g(4)|0},O.quick=function(){return F.g(4)/4294967296},O.double=O,g(v(F.S),r),(b.pass||k||function(z,V,j,U){return U&&(U.S&&A(U,F),z.state=function(){return A(F,{})}),j?(a[l]=z,V):z})(O,C,"global"in b?b.global:this==a,b.state)}function f(w){var b,k=w.length,N=this,C=0,F=N.i=N.j=0,O=N.S=[];for(k||(w=[k++]);C{var n=Jk(),r=Qk(),a=e9(),s=t9(),i=n9(),o=r9(),l=a9();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),s9=wt(()=>{}),cf={};Me(cf,{bin:()=>Yg,browser:()=>r5,default:()=>i9,dependencies:()=>n5,description:()=>jg,devDependencies:()=>e5,jsdelivr:()=>qg,license:()=>Qg,main:()=>Hg,miniprogram:()=>Zg,module:()=>Gg,name:()=>Bg,private:()=>Ug,repository:()=>Jg,scripts:()=>t5,types:()=>Kg,unpkg:()=>Xg,version:()=>Vg});var Bg="@tensorflow/tfjs",Vg="3.5.0",jg="An open-source machine learning framework.",Ug=!1,Hg="dist/tf.node.js",Gg="dist/index.js",qg="dist/tf.min.js",Xg="dist/tf.min.js",Kg="dist/index.d.ts",Zg="dist/miniprogram",Yg={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},Jg={type:"git",url:"https://github.com/tensorflow/tfjs.git"},Qg="Apache-2.0",e5={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~4.2.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"1.0.0-pre.50"},t5={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},n5={"@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-backend-webgl":"3.5.0","@tensorflow/tfjs-converter":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@tensorflow/tfjs-data":"3.5.0","@tensorflow/tfjs-layers":"3.5.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},r5={"node-fetch":!1,util:!1,crypto:!1},i9={name:Bg,version:Vg,description:jg,private:Ug,main:Hg,module:Gg,jsdelivr:qg,unpkg:Xg,types:Kg,miniprogram:Zg,bin:Yg,repository:Jg,license:Qg,devDependencies:e5,scripts:t5,dependencies:n5,browser:r5},hf={};Me(hf,{browser:()=>b5,default:()=>o9,dependencies:()=>w5,description:()=>i5,devDependencies:()=>g5,engines:()=>m5,jsdelivr:()=>u5,"jsnext:main":()=>d5,license:()=>y5,main:()=>l5,miniprogram:()=>f5,module:()=>p5,name:()=>a5,private:()=>o5,repository:()=>A5,scripts:()=>x5,sideEffects:()=>_5,types:()=>h5,unpkg:()=>c5,version:()=>s5});var a5="@tensorflow/tfjs-core",s5="3.5.0",i5="Hardware-accelerated JavaScript library for machine intelligence",o5=!1,l5="dist/tf-core.node.js",u5="dist/tf-core.min.js",c5="dist/tf-core.min.js",h5="dist/index.d.ts",d5="dist/index.js",p5="dist/index.js",f5="dist/miniprogram",m5={yarn:">= 1.3.2"},A5={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},y5="Apache-2.0",g5={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-jasmine":"~1.1.0","karma-typescript":"~4.1.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},x5={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},w5={"@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30","node-fetch":"~2.6.1",seedrandom:"2.4.3"},b5={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},_5=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],o9={name:a5,version:s5,description:i5,private:o5,main:l5,jsdelivr:u5,unpkg:c5,types:h5,"jsnext:main":d5,module:p5,miniprogram:f5,engines:m5,repository:A5,license:y5,devDependencies:g5,scripts:x5,dependencies:w5,browser:b5,sideEffects:_5},df={};Me(df,{browser:()=>L5,default:()=>l9,dependencies:()=>P5,description:()=>I5,devDependencies:()=>D5,jsdelivr:()=>T5,"jsnext:main":()=>R5,license:()=>$5,main:()=>N5,miniprogram:()=>F5,module:()=>M5,name:()=>v5,peerDependencies:()=>z5,private:()=>S5,scripts:()=>O5,types:()=>C5,unpkg:()=>E5,version:()=>k5});var v5="@tensorflow/tfjs-data",k5="3.5.0",I5="TensorFlow Data API in JavaScript",S5=!1,N5="dist/tf-data.node.js",T5="dist/tf-data.min.js",E5="dist/tf-data.min.js",C5="dist/index.d.ts",R5="dist/index.js",M5="dist/index.js",F5="dist/miniprogram",$5="Apache-2.0",D5={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@tensorflow/tfjs-layers":"3.5.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.50"},O5={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose"},z5={"@tensorflow/tfjs-core":"3.5.0",seedrandom:"~2.4.3"},P5={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},L5={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},l9={name:v5,version:k5,description:I5,private:S5,main:N5,jsdelivr:T5,unpkg:E5,types:C5,"jsnext:main":R5,module:M5,miniprogram:F5,license:$5,devDependencies:D5,scripts:O5,peerDependencies:z5,dependencies:P5,browser:L5},pf={};Me(pf,{default:()=>u9,description:()=>V5,devDependencies:()=>J5,jsdelivr:()=>K5,"jsnext:main":()=>q5,license:()=>j5,main:()=>H5,miniprogram:()=>Y5,module:()=>X5,name:()=>W5,peerDependencies:()=>ex,private:()=>U5,scripts:()=>Q5,types:()=>G5,unpkg:()=>Z5,version:()=>B5});var W5="@tensorflow/tfjs-layers",B5="3.5.0",V5="TensorFlow layers API in JavaScript",j5="Apache-2.0 AND MIT",U5=!1,H5="dist/tf-layers.node.js",G5="dist/index.d.ts",q5="dist/index.js",X5="dist/index.js",K5="dist/tf-layers.min.js",Z5="dist/tf-layers.min.js",Y5="dist/miniprogram",J5={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-backend-webgl":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},Q5={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},ex={"@tensorflow/tfjs-core":"3.5.0"},u9={name:W5,version:B5,description:V5,license:j5,private:U5,main:H5,types:G5,"jsnext:main":q5,module:X5,jsdelivr:K5,unpkg:Z5,miniprogram:Y5,devDependencies:J5,scripts:Q5,peerDependencies:ex},ff={};Me(ff,{default:()=>c9,description:()=>rx,devDependencies:()=>fx,jsdelivr:()=>ux,"jsnext:main":()=>sx,license:()=>dx,main:()=>ax,miniprogram:()=>cx,module:()=>ix,name:()=>tx,peerDependencies:()=>px,repository:()=>hx,scripts:()=>mx,types:()=>ox,unpkg:()=>lx,version:()=>nx});var tx="@tensorflow/tfjs-converter",nx="3.5.0",rx="Tensorflow model converter for javascript",ax="dist/tf-converter.node.js",sx="dist/index.js",ix="dist/index.js",ox="dist/index.d.ts",lx="dist/tf-converter.min.js",ux="dist/tf-converter.min.js",cx="dist/miniprogram",hx={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},dx="Apache-2.0",px={"@tensorflow/tfjs-core":"3.5.0"},fx={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"~0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},mx={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},c9={name:tx,version:nx,description:rx,main:ax,"jsnext:main":sx,module:ix,types:ox,unpkg:lx,jsdelivr:ux,miniprogram:cx,repository:hx,license:dx,peerDependencies:px,devDependencies:fx,scripts:mx},h9=1e-7,d9=1e-4,kh=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},du=class{refCount(e){return ar("refCount")}incRef(e){return ar("incRef")}timerAvailable(){return!0}time(e){return ar("time")}read(e){return ar("read")}readSync(e){return ar("readSync")}numDataIds(){return ar("numDataIds")}disposeData(e,t){return ar("disposeData")}write(e,t,n){return ar("write")}move(e,t,n,r,a){return ar("move")}memory(){return ar("memory")}floatPrecision(){return ar("floatPrecision")}epsilon(){return this.floatPrecision()===32?h9:d9}dispose(){return ar("dispose")}};function ar(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function Ax(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function p9(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function pu(e,t,n){return Math.max(e,Math.min(t,n))}function f9(e){return e%2==0?e:e+1}function m9(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function is(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function os(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||tn(e)&&!n)for(let r=0;r0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function v9(e,t){let n=1,r=-1;for(let s=0;s=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function sr(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),M(e.every(r=>r>=-n&&r`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(r=>Bt(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function yx(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:sr(t,e).sort(),i=0;for(let o=0;oo)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function gx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function xx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function wx(e,t){for(let n=0;nt+=n.length),t}function ka(e){return typeof e=="string"||e instanceof String}function vx(e){return typeof e=="boolean"}function kx(e){return typeof e=="number"}function Ih(e){return Array.isArray(e)?Ih(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":kx(e)?"float32":ka(e)?"string":vx(e)?"bool":"float32"}function Ia(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Sh(e,t){for(let n=t;n=0;--r)n[r]=n[r+1]*e[r+1];return n}function Ix(e,t,n,r=!1){let a=new Array;if(t.length===1){let s=t[0]*(r?2:1);for(let i=0;il*c)*(r?2:1);for(let l=0;la*s)*(n?2:1);if(r===0)return[];if(r!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return Ix(0,e,t,n)}function Af(e,t){let n=Nh(e,t);for(let r=0;rr*a,1);if(t==null||t==="float32")return to(e,new Float32Array(n));if(t==="int32")return to(e,new Int32Array(n));if(t==="bool")return to(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function yf(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function S9(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a{let[n,r]=t.split(":");this.urlFlags[n]=E9(n,r)})}};function T9(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(C9(t,r[0],r[1]),r.join("="))),t}function C9(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function E9(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return Ar}var Ar=null;function R9(e){Ar=e}var xf;function Tx(){if(xf==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");xf=e}return xf}function M9(){let e=Tx();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function wf(e,t){let n=M9();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var no="Abs",ro="Acos",ao="Acosh",Sa="Add",ls="AddN",so="All",io="Any",us="ArgMax",mu="ArgMin",oo="Asin",lo="Asinh",uo="Atan",co="Atanh",ho="Atan2",cs="AvgPool",Th="AvgPoolGrad",Au="AvgPool3D",Eh="AvgPool3DGrad",hs="BatchMatMul",yu="BatchToSpaceND",Ch="Bincount",Ex="BroadcastTo",ds="Cast",ps="Ceil",Na="ClipByValue",Rh="Complex",gu="ComplexAbs",po="Concat",fs="Conv2D",Mh="Conv2DBackpropFilter",ms="Conv2DBackpropInput",xu="Conv3D",Fh="Conv3DBackpropFilterV2",$h="Conv3DBackpropInputV2",As="Cos",fo="Cosh",ys="Cumsum",mo="CropAndResize",Dh="DenseBincount",Ao="DepthToSpace",gs="DepthwiseConv2dNative",Oh="DepthwiseConv2dNativeBackpropFilter",zh="DepthwiseConv2dNativeBackpropInput",Ph="Diag",wu="Dilation2D",Lh="Dilation2DBackpropInput",Wh="Dilation2DBackpropFilter",xs="RealDiv",Bh="Einsum",yo="Elu",Vh="EluGrad",go="Erf",xo="Equal",ws="Exp",wo="ExpandDims",bo="Expm1",jh="FFT",bu="Fill",_o="FlipLeftRight",bs="Floor",_s="FloorDiv",vs="FusedBatchNorm",vo="GatherV2",ko="GatherNd",Io="Greater",ks="GreaterEqual",Is="Identity",Uh="IFFT",Hh="Imag",So="IsFinite",No="IsInf",To="IsNan",Ss="LeakyRelu",Eo="Less",Co="LessEqual",Gh="LinSpace",Ns="Log",Ro="Log1p",Mo="LogicalAnd",_u="LogicalNot",vu="LogicalOr",Cx="LogSoftmax",ku="LRN",qh="LRNGrad",Ts="Max",Es="Maximum",Cs="MaxPool",Xh="MaxPoolGrad",Iu="MaxPool3D",Kh="MaxPool3DGrad",Zh="MaxPoolWithArgmax",Rs="Mean",Ms="Min",Fs="Minimum",$s="MirrorPad",Fo="Mod",Yh="Multinomial",Ds="Multiply",$o="Neg",Do="NotEqual",Oo="NonMaxSuppressionV3",zo="NonMaxSuppressionV4",Po="NonMaxSuppressionV5",Lo="OnesLike",Os="OneHot",Wo="Pack",zs="PadV2",F9="Pool",Ps="Pow",Ls="Prelu",Bo="Prod",Su="Range",Jh="Real",Vo="Reciprocal",Ws="Relu",jo="Reshape",Nu="ResizeNearestNeighbor",Qh="ResizeNearestNeighborGrad",Bs="ResizeBilinear",ed="ResizeBilinearGrad",Vs="Relu6",js="Reverse",Us="Round",Hs="Rsqrt",Uo="ScatterNd",Ho="Select",Go="Selu",qo="Slice",Gs="Sin",Xo="Sinh",Ko="Sign",qs="Sigmoid",Zo="Softplus",Xs="Sqrt",Ks="Sum",Tu="SpaceToBatchND",Yo="SplitV",Zs="Softmax",td="SparseReshape",nd="SparseToDense",Ys="SquaredDifference",Eu="Square",Jo="StridedSlice",Js="Sub",Qs="Tan",ei="Tanh",Ta="Tile",Qo="TopK",rd="Transform",ti="Transpose",ad="Unique",el="Unpack",Cu="UnsortedSegmentSum",tl="ZerosLike",Ea="Step",sd="FromPixels",nl="RotateWithOffset",ni="_FusedMatMul",ri="FusedConv2D",ai="FusedDepthwiseConv2D",rl=wf("kernelRegistry",()=>new Map),Ru=wf("gradRegistry",()=>new Map);function id(e,t){let n=bf(e,t);return rl.get(n)}function _f(e){return Ru.get(e)}function al(e){let t=rl.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function si(e){let{kernelName:t,backendName:n}=e,r=bf(t,n);rl.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),rl.set(r,e)}function Rx(e){let{kernelName:t}=e;Ru.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Ru.set(t,e)}function $9(e,t){let n=bf(e,t);if(!rl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);rl.delete(n)}function D9(e){if(!Ru.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Ru.delete(e)}function O9(e,t){al(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});si(r)})}function bf(e,t){return`${t}_${e}`}var _={};Me(_,{arraysEqual:()=>na,assert:()=>M,assertNonNegativeIntegerDimensions:()=>yf,assertNonNull:()=>is,assertShapesMatch:()=>an,bytesFromStringArray:()=>_x,bytesPerElement:()=>mf,checkConversionForErrors:()=>wx,clamp:()=>pu,computeStrides:()=>eo,createScalarValue:()=>z9,createShuffledIndices:()=>b9,decodeString:()=>ld,distSquared:()=>y9,encodeString:()=>Fu,fetch:()=>P9,flatten:()=>os,getArrayFromDType:()=>xx,getTypedArrayFromDType:()=>gx,hasEncodingLoss:()=>k9,indexToLoc:()=>N9,inferDtype:()=>Ih,inferFromImplicitShape:()=>v9,isBoolean:()=>vx,isFunction:()=>Ia,isInt:()=>Bt,isNumber:()=>kx,isPromise:()=>gf,isScalarShape:()=>g9,isString:()=>ka,isTypedArray:()=>tn,isValidDtype:()=>bx,locToIndex:()=>S9,makeOnesTypedArray:()=>Af,makeZerosNestedTypedArray:()=>I9,makeZerosTypedArray:()=>Nh,nearestDivisor:()=>Sh,nearestLargerEven:()=>f9,now:()=>Mu,parseAxisParam:()=>sr,randUniform:()=>A9,repeatedTry:()=>_9,rightPad:()=>fu,shuffle:()=>Ax,shuffleCombo:()=>p9,sizeFromShape:()=>Nt,sizeToSquarishShape:()=>w9,squeezeShape:()=>yx,sum:()=>m9,tanh:()=>x9,toNestedArray:()=>to,toTypedArray:()=>od});function z9(e,t){return t==="string"?Fu(e):od([e],t)}function L9(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function od(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=os(e)),J().getBool("DEBUG")&&wx(e,t),L9(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r{r=n()},s,i=Mu();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of r)o.dataSync();s=Promise.resolve({kernelMs:Mu()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o{W9(c,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function W9(e,t,n){if(t!=="float32")return!1;for(let r=0;r0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function j9(e,t,n){let r={},a={};for(let l=0;lr[f.id]=!0),p=!0,a[c.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let h=0;h=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!na(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let h=e[u.id];e[u.id]=r(h,c),h.dispose()}}}}var Mx=20,$u=3,vf=7;function G9(e,t,n,r){let a=eo(t),s=H9(e,t,n,a),i=t.length,o=ud(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(` `)),l.join(` -`)}function fI(e,t,n,r){let a=Et(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Vu(e):e;if(o>1)for(let c=0;ceb){let A=Wu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Wu)*i,o*i));return n==="complex64"&&(y=Vu(y),g=Vu(g)),["["+y.map((x,v)=>Bu(x,a[v],n)).join(", ")+", ..., "+g.map((x,v)=>Bu(x,a[o-Wu+v],n)).join(", ")+"]"]}let f=n==="complex64"?Vu(e):Array.from(e);return["["+f.map((A,y)=>Bu(A,a[y],n)).join(", ")+"]"]}let c=t.slice(1),u=r.slice(1),h=r[0]*i,d=[];if(o>eb){for(let f=0;f1)for(let c=0;cMx){let A=$u*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-$u)*i,o*i));return n==="complex64"&&(y=Ou(y),g=Ou(g)),["["+y.map((x,v)=>Du(x,a[v],n)).join(", ")+", ..., "+g.map((x,v)=>Du(x,a[o-$u+v],n)).join(", ")+"]"]}let f=n==="complex64"?Ou(e):Array.from(e);return["["+f.map((A,y)=>Du(A,a[y],n)).join(", ")+"]"]}let c=t.slice(1),u=r.slice(1),h=r[0]*i,d=[];if(o>Mx){for(let f=0;f<$u;f++){let A=f*h,y=A+h;d.push(...ud(e.slice(A,y),c,n,u,a,!1))}d.push("...");for(let f=o-$u;f`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Bx(t,this.size),this.strides=io(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;rfd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Lr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>fd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Lr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Lr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return hl.print(this,e)}clone(){return this.throwIfDisposed(),hl.clone(this)}toString(e=!1){let t=this.dataSync();return mI(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),hl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Lr().makeVariable(this,e,t,n)}};Object.defineProperty(Pe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return Rf("Tensor",()=>Pe)}Z();var ju=class extends Pe{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!la(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Lr().disposeTensor(this),this.dataId=e.dataId,Lr().incRef(this,null)}dispose(){Lr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ju,Symbol.hasInstance,{value:e=>e instanceof Pe&&e.assign!=null&&e.assign instanceof Function});var kr={};Me(kr,{assertTypesMatch:()=>nb,getTensorsInContainer:()=>Df,isTensorInList:()=>bI,makeTypesMatch:()=>vt});var Of;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Of||(Of={}));var zf;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(zf||(zf={}));var Pf;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Pf||(Pf={}));var Lf;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Lf||(Lf={}));var Wf;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Wf||(Wf={}));var wI={float32:Lf,int32:zf,bool:Pf,complex64:Wf};function dr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return wI[e][t]}function Ad(e){return dr(e,"int32")}function vt(e,t){if(e.dtype===t.dtype)return[e,t];let n=dr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function nb(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function bI(e,t){return t.some(n=>n.id===e.id)}function Df(e){let t=[],n=new Set;return rb(e,t,n),t}function rb(e,t,n){if(e==null)return;if(e instanceof Pe){t.push(e);return}if(!_I(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),rb(s,t,n))}}function _I(e){return Array.isArray(e)||typeof e=="object"}function Bf(e){return e.kernelName!=null}var ab=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Uu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new ab}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){cl(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof gu)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Uu.nextTensorId++}nextVariableId(){return Uu.nextVariableId++}clone(e){let t=$.runKernel(Cs,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(ys,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(dd(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Bf(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Bf(e)){let{kernelName:p,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=dd(p,this.backendName);M(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let x=g.map(v=>{if(v.rank!=null)return v;let{dataId:b,shape:w,dtype:k}=v;return this.makeTensorFromDataId(b,w,k)});if(r){let v=this.getTensorsForGradient(p,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:p}=e,m=f=>{!r||(n=f.map(A=>this.keep(this.clone(A))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,m));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:c,attrs:u}=e,h=Bf(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,c,t,h,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(p=>c[p]!=null?c[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=Ff(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&Ea(e[0])&&(a=e.map(o=>Lu(o)));let s=r.write(a,t,n),i=new Pe(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=Ux(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Pe(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new ju(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Sf(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof ju||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Sf(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=Ff(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let h=n[u],d=Fh(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return c}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Df(e),n=new Set(t.map(a=>a.id));for(let a=0;a{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(a instanceof Pe,()=>"The result y returned by f() must be a tensor.");let s=dI(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?vI(a.shape):n,pI(i,s,l=>this.tidy(l),kI);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return M(Ca(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(i=>i instanceof Pe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),M(n.value instanceof Pe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Ca(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];M(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(c.every(h=>h instanceof Pe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((h,d)=>{u[d]=()=>h}),u};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Pu(),n=await this.backend.time(e);return n.wallMs=Pu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new ab;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Uu.nextTensorId=0;Uu.nextVariableId=0;function vI(e){let t=Nf(Et(e),"float32");return $.makeTensor(t,e,"float32")}function sb(){let e=Zx();if(e._tfengine==null){let t=new Kx(e);e._tfengine=new Uu(t)}return eI(e._tfengine.ENV),yI(()=>e._tfengine),e._tfengine}var $=sb();function kI(e,t){let n={a:e,b:t};return $.runKernel(Ra,n)}var Hu={};Me(Hu,{isBrowser:()=>ib,isMobile:()=>II});function SI(){return typeof navigator!="undefined"&&navigator!=null}function II(e){if(e||SI()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function ib(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ir=J();Ir.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ir.registerFlag("IS_BROWSER",()=>ib());Ir.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ir.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ir.registerFlag("PROD",()=>!1);Ir.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ir.getBool("DEBUG"));Ir.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ir.registerFlag("IS_TEST",()=>!1);Ir.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ir.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Wr(e,t){let n=e;if(rn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||rn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&ob(e,r,[]),r}function ob(e,t,n){if(n=n||[],!Array.isArray(e)&&!rn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a=0&&(a=r),lb(r,a,t,n),e==null||!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Wr(e,a);!rn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?pd(e,a):ds(e,[],!0);return $.makeTensor(i,s,a)}function Gu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var ub="__op";function D(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+ub;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return Ef(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function NI(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");ln(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(zh,a)}var Da=D({complex_:NI});function Oa(e,t,n,r){if(r==null&&(r=Rh(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Tf(t);let a=Et(t),s=Et(n);M(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!rn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?pd(e,r):ds(e,[],!0),$.makeTensor(e,t,r)}function Sr(e,t,n){let r=Wr(e,n);return Oa(e,t,r,n)}var Vf={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},yd=4;async function EI(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+yd*d.length,m=new Uint8Array(p),f=0;for(let A=0;A{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var jf=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function hb(e){return jf?Buffer.byteLength(e):new Blob([e]).size}function RI(e){if(jf)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function db(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function qu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:hb(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:hb(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function FI(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function $I(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function DI(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function CI(){let e=FI(),t=$I(),n=DI();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Tt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Tt.instance==null&&(Tt.instance=new Tt),Tt.instance}static registerSaveRouter(e){Tt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Tt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Tt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Tt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Tt.getInstance().loadRouters:Tt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},OI=e=>Tt.registerSaveRouter(e),zI=e=>Tt.registerLoadRouter(e),PI=e=>Tt.getSaveHandlers(e),LI=(e,t)=>Tt.getLoadHandlers(e,t),Hf="tensorflowjs",Gf=1,hi="models_store",za="model_info_store";function pb(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function qf(e){let t=e.result;t.createObjectStore(hi,{keyPath:"modelPath"}),t.createObjectStore(za,{keyPath:"modelPath"})}var di=class{constructor(e){if(this.indexedDB=pb(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(Hf,Gf);a.onupgradeneeded=()=>qf(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(hi,"readonly"),o=i.objectStore(hi).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=qu(t),o=s.transaction(za,"readwrite"),l=o.objectStore(za),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(hi,"readwrite");let h=u.objectStore(hi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(za);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=m=>(s.close(),r(h.error))}},c.onerror=h=>(s.close(),r(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};di.URL_SCHEME="indexeddb://";var fb=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(di.URL_SCHEME)?WI(e.slice(di.URL_SCHEME.length)):null;Tt.registerSaveRouter(fb);Tt.registerLoadRouter(fb);function WI(e){return new di(e)}function BI(e){return e.startsWith(di.URL_SCHEME)?e.slice(di.URL_SCHEME.length):e}var VI=class{constructor(){this.indexedDB=pb()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Hf,Gf);n.onupgradeneeded=()=>qf(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(za,"readonly"),s=a.objectStore(za).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=BI(e),new Promise((t,n)=>{let r=this.indexedDB.open(Hf,Gf);r.onupgradeneeded=()=>qf(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(za,"readwrite"),i=s.objectStore(za),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=a.transaction(hi,"readwrite");let h=l.objectStore(hi).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=h=>(u(),a.close(),n(o.error))}},o.onerror=c=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},ua="/",dl="tensorflowjs_models",mb="info",jI="model_topology",UI="weight_specs",HI="weight_data",GI="model_metadata";function Ab(e){return{info:[dl,e,mb].join(ua),topology:[dl,e,jI].join(ua),weightSpecs:[dl,e,UI].join(ua),weightData:[dl,e,HI].join(ua),modelMetadata:[dl,e,GI].join(ua)}}function qI(e){let t=e.split(ua);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ua)}function XI(e){return e.startsWith(pi.URL_SCHEME)?e.slice(pi.URL_SCHEME.length):e}var pi=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Ab(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=qu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,RI(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=MI(s),t}};pi.URL_SCHEME="localstorage://";var yb=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(pi.URL_SCHEME)?KI(e.slice(pi.URL_SCHEME.length)):null;Tt.registerSaveRouter(yb);Tt.registerLoadRouter(yb);function KI(e){return new pi(e)}var ZI=class{constructor(){M(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=dl+ua,n=ua+mb;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(pl)&&(e=e.slice(0,e.indexOf(pl))),M(e.length>0,()=>"scheme must not be an empty string.");let n=Jn.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function gd(e){if(e.indexOf(pl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Jn.getSchemes().join(",")}`);return{scheme:e.split(pl)[0],path:e.split(pl)[1]}}async function gb(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Tt.getLoadHandlers(e);M(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=Tt.getSaveHandlers(t);M(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=gd(e).scheme,l=gd(e).path,c=o===gd(e).scheme,u=await a.load();n&&c&&await Jn.getManager(o).removeModel(l);let h=await i.save(u);return n&&!c&&await Jn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function YI(){let e=Jn.getSchemes(),t={};for(let n of e){let r=await Jn.getManager(n).listModels();for(let a in r){let s=n+pl+a;t[s]=r[a]}}return t}async function JI(e){let t=gd(e);return Jn.getManager(t.scheme).removeModel(t.path)}async function QI(e,t){return gb(e,t,!1)}async function eS(e,t){return gb(e,t,!0)}var tS=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new tS);try{Jn.registerManager(pi.URL_SCHEME,new ZI)}catch(e){}try{Jn.registerManager(di.URL_SCHEME,new VI)}catch(e){}}var nS={importFetch:()=>u9()},Xf,rS=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Xf==null&&(Xf=nS.importFetch()),Xf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new rS);function Be(e,t="float32",n){return t=t||"float32",Tf(e),new Ot(e,t,n)}function aS(e,t){let n=R(e,"x","cast");if(!jx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(ys,r,a)}var ge=D({cast_:aS});function sS(e){let t={x:R(e,"x","clone","string_or_numeric")};return $.runKernel(Cs,t)}var Br=D({clone_:sS});function xb(e,t=!1){console.log(e.toString(t))}sb();var iS={buffer:Be,cast:ge,clone:Br,print:xb};gI(iS);var Nn={};Me(Nn,{browserFiles:()=>oS,browserHTTPRequest:()=>uS,concatenateArrayBuffers:()=>Uf,copyModel:()=>QI,decodeWeights:()=>cb,encodeWeights:()=>EI,fromMemory:()=>cS,getLoadHandlers:()=>LI,getModelArtifactsInfoForJSON:()=>qu,getSaveHandlers:()=>PI,http:()=>Zf,isHTTPScheme:()=>Kf,listModels:()=>YI,loadWeights:()=>lS,moveModel:()=>eS,registerLoadRouter:()=>zI,registerSaveRouter:()=>OI,removeModel:()=>JI,weightsLoaderFactory:()=>bb,withSaveHandler:()=>hS});var dS="model",pS=".json",fS=".weights.bin";function wb(e){return new Promise(t=>setTimeout(t)).then(e)}var fl=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(fl.URL_SCHEME)&&(e=e.slice(fl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=dS),this.modelTopologyFileName=e+pS,this.weightDataFileName=e+fS}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await wb(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await wb(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:qu(e)}}}};fl.URL_SCHEME="downloads://";var mS=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let u=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(m=>{h.push(m),d.push(null)}),u.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(m=>{let f=new FileReader;f.onload=A=>{let y=A.target.result,g=h.indexOf(m);if(d[g]=y,d.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:u,weightData:Uf(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=A=>r(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(c[m])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>db(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=db(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},yS=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(fl.URL_SCHEME)?AS(e.slice(fl.URL_SCHEME.length)):null;Tt.registerSaveRouter(yS);function AS(e="model"){return new fl(e)}function oS(e){return new mS(e)}function _b(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(c=>{let u=n+ ++a/e.length*(r-n);return t(u),c}),l);function i(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),M(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function vb(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(c=>n(c,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await _b(r,t.onProgress,a,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await _b(i,t.onProgress,o,l)}async function lS(e,t="",n,r){return bb(a=>vb(a,{requestInit:r}))(e,t,n)}function bb(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,m)=>{let f=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=Vf[y]*Et(A.shape),x=()=>{a[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:A,groupOffset:f,sizeBytes:g})};r!=null?r.forEach((v,b)=>{v===A.name&&(x(),i[b]=!0)}):x(),o.push(A.name),f+=g})}),!i.every(p=>p)){let p=r.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. -Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,m,f)=>(m&&p.push(f),p),[]),c=[];l.forEach(p=>{t[p].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;c.push(f)})});let u=await e(c),h={},d=0;return l.forEach(p=>{let m=t[p].paths.length,f=0;for(let x=0;x{let v=A.slice(x.groupOffset,x.groupOffset+x.sizeBytes),b=cb(v,[x.manifestEntry]);for(let w in b)h[w]=b[w]}),d+=m}),h}}var gS="application/octet-stream",xS="application/json",Yf=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:xS}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:gS}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:qu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;r!=null&&([c,u]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=bS(t),a=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(a+u+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await vb(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Uf(l)]}};Yf.URL_SCHEME_REGEX=/^https?:\/\//;function bS(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Kf(e){return e.match(Yf.URL_SCHEME_REGEX)!=null}var kb=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Kf(r)):n=Kf(e),n)return Zf(e,t)}return null};Tt.registerSaveRouter(kb);Tt.registerLoadRouter(kb);function Zf(e,t){return new Yf(e,t)}function uS(e,t){return Zf(e,t)}var Jf=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},wS=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function cS(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Jf(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jf({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jf({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function hS(e){return new wS(e)}var Ib={};Me(Ib,{confusionMatrix:()=>_S});function vS(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=vt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(As,i,o)}var Ve=D({matMul_:vS});function kS(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(Bs,a,s)}var ml=D({oneHot_:kS});function IS(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{M(s>=0&&s`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(ii,r,a)}var Je=D({transpose_:IS});function SS(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),M(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),M(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=ml(ge(r,"int32"),n),i=ml(ge(a,"int32"),n),o=Je(s),l=Ve(o,i);return ge(l,"int32")}var _S=D({confusionMatrix_:SS}),fi={};Me(fi,{fromPixels:()=>ES,fromPixelsAsync:()=>NS,toPixels:()=>TS});function xd(e,t,n){if(hs(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Wr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Oa(e,t,r,n)}var Al;function Sb(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState element.")}if(dd(hd,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(hd,d,p)}let[l,c]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:r||n?u=e.data:(s||a||o)&&(Al==null&&(Al=document.createElement("canvas").getContext("2d")),Al.canvas.width=l,Al.canvas.height=c,Al.drawImage(e,0,0,l,c),u=Al.getImageData(0,0,l,c).data);let h;if(t===4)h=new Int32Array(u);else{let d=l*c;h=new Int32Array(d*t);for(let p=0;p4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let c=0;c1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(u[0]=p*o,u[1]=p*o,u[2]=p*o):u[d]=p*o}let h=c*4;l[h+0]=Math.round(u[0]),l[h+1]=Math.round(u[1]),l[h+2]=Math.round(u[2]),l[h+3]=Math.round(u[3])}if(t!=null){t.width=a,t.height=r;let c=t.getContext("2d"),u=new ImageData(l,a,r);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var ES=D({fromPixels_:Sb}),Qf={};Me(Qf,{prepareAndValidate:()=>Nb});function Nb(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Et(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;hh/c),1].slice(0,s);return[l,i,c,u]}var em={};Me(em,{calculateShapes:()=>Tb,validateInput:()=>nm,validateUpdateShape:()=>tm});function tm(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;h$S,computeFlatOffset:()=>OS,computeOutShape:()=>Eb,getNormalizedAxes:()=>Rb,isSliceContinous:()=>DS,maskToAxes:()=>bd,parseSliceParams:()=>zb,sliceInfo:()=>zS,startForAxis:()=>Db,startIndicesWithElidedDims:()=>Mb,stopForAxis:()=>Ob,stopIndicesWithElidedDims:()=>Fb,stridesForAxis:()=>$b,stridesWithElidedDims:()=>Cb});function $S(e,t,n){let r=e.shape.length;M(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),M(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function bd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Eb(e,t,n){let r=[];for(let a=0;a0){let p=t[0],m=n+1;u=Mb(i,p,m,r,e),h=Fb(o,p,m,a,e),d=Cb(s,p,m,e)}else for(let p=0;p-1)s[o]=0;else{let l=Pb(t,n,o),c=r[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=Pb(t,n,o),c=r[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=xu(0,i,l-1),i}function Ob(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=xu(0,i,l):i=xu(-1,i,l-1),i}function DS(e,t,n){let r=n.length;for(let a=0;a1){r=a;break}for(let a=r+1;a0||n[a]!==e[a])return!1;return!0}function OS(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{M(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.lengthi>=0?i:(M(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function zS(e,t,n,r,a,s,i,o,l){let c=t.slice(),u=n.slice(),h=r;r==null&&(h=new Array(c.length));let d=bd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-c.length,m=bd(o),f=e.slice();m.forEach(w=>{c[w]=0,u[w]=1,f.splice(w,0,1)});let{begin:A,end:y,strides:g}=Rb(f,d,p,c,u,h,a,s,i);c=A,u=y,h=g;let x=bd(l);x.forEach(w=>{u[w]=c[w]+1,h[w]=1});let v=Eb(c,u,h),b=v.filter((w,k)=>x.indexOf(k)===-1);return{nonStrided:h.every(w=>w===1),$begin:c,$end:u,$strides:h,size:v,newShape:f,outShape:b}}var re={};Me(re,{Serializable:()=>Wb,SerializationMap:()=>mi,registerClass:()=>Pa});var Wb=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},mi=class{constructor(){this.classNameMap={}}static getMap(){return mi.instance==null&&(mi.instance=new mi),mi.instance}static register(e){mi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Pa(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),mi.register(e)}var Bb={};Me(Bb,{TEST_EPSILON_FLOAT16:()=>Vb,encodeStrings:()=>jb,expectArrayBuffersEqual:()=>jS,expectArraysClose:()=>PS,expectArraysEqual:()=>WS,expectNumbersClose:()=>BS,expectPromiseToFail:()=>LS,expectValuesInRange:()=>VS,testEpsilon:()=>rm});var US=.001,Vb=.1;function PS(e,t,n){return n==null&&(n=rm()),am(e,t,(r,a)=>sm(r,a,n))}function rm(){return $.backend.floatPrecision()===32?US:Vb}function am(e,t,n){let r=!0;if((rn(e)||rn(t))&&(r=!1),rn(e)&&rn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Wr(e),o=Wr(t);if(!la(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=rn(e)?e:ds(e),s=rn(t)?t:ds(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}. +`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":m),d}function Ou(e){let t=[];for(let n=0;n`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||xx(t,this.size),this.strides=eo(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;rld(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Fr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>ld(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Fr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Fr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return sl.print(this,e)}clone(){return this.throwIfDisposed(),sl.clone(this)}toString(e=!1){let t=this.dataSync();return G9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),sl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Fr().makeVariable(this,e,t,n)}};Object.defineProperty(Le,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return wf("Tensor",()=>Le)}Z();var zu=class extends Le{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!na(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Fr().disposeTensor(this),this.dataId=e.dataId,Fr().incRef(this,null)}dispose(){Fr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(zu,Symbol.hasInstance,{value:e=>e instanceof Le&&e.assign!=null&&e.assign instanceof Function});var yr={};Me(yr,{assertTypesMatch:()=>$x,getTensorsInContainer:()=>kf,isTensorInList:()=>Y9,makeTypesMatch:()=>bt});var If;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(If||(If={}));var Sf;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Sf||(Sf={}));var Nf;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Nf||(Nf={}));var Tf;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Tf||(Tf={}));var Ef;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Ef||(Ef={}));var J9={float32:Tf,int32:Sf,bool:Nf,complex64:Ef};function ir(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return J9[e][t]}function cd(e){return ir(e,"int32")}function bt(e,t){if(e.dtype===t.dtype)return[e,t];let n=ir(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function $x(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function Y9(e,t){return t.some(n=>n.id===e.id)}function kf(e){let t=[],n=new Set;return Dx(e,t,n),t}function Dx(e,t,n){if(e==null)return;if(e instanceof Le){t.push(e);return}if(!Q9(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),Dx(s,t,n))}}function Q9(e){return Array.isArray(e)||typeof e=="object"}function Cf(e){return e.kernelName!=null}var Ox=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Pu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Ox}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){al(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof du)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Pu.nextTensorId++}nextVariableId(){return Pu.nextVariableId++}clone(e){let t=$.runKernel(Is,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(ds,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(id(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Cf(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Cf(e)){let{kernelName:p,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=id(p,this.backendName);M(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let x=g.map(v=>{if(v.rank!=null)return v;let{dataId:w,shape:b,dtype:k}=v;return this.makeTensorFromDataId(w,b,k)});if(r){let v=this.getTensorsForGradient(p,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:p}=e,m=f=>{!r||(n=f.map(A=>this.keep(this.clone(A))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,m));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:c,attrs:u}=e,h=Cf(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,c,t,h,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(p=>c[p]!=null?c[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=_f(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&ka(e[0])&&(a=e.map(o=>Fu(o)));let s=r.write(a,t,n),i=new Le(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=_x(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Le(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new zu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*mf(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof zu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*mf(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=_f(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let h=n[u],d=Nh(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return c}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=kf(e),n=new Set(t.map(a=>a.id));for(let a=0;a{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(a instanceof Le,()=>"The result y returned by f() must be a tensor.");let s=j9(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?eI(a.shape):n,U9(i,s,l=>this.tidy(l),tI);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return M(Ia(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(i=>i instanceof Le),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),M(n.value instanceof Le,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Ia(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];M(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(c.every(h=>h instanceof Le),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((h,d)=>{u[d]=()=>h}),u};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Mu(),n=await this.backend.time(e);return n.wallMs=Mu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Ox;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Pu.nextTensorId=0;Pu.nextVariableId=0;function eI(e){let t=Af(Nt(e),"float32");return $.makeTensor(t,e,"float32")}function zx(){let e=Tx();if(e._tfengine==null){let t=new Nx(e);e._tfengine=new Pu(t)}return R9(e._tfengine.ENV),X9(()=>e._tfengine),e._tfengine}var $=zx();function tI(e,t){let n={a:e,b:t};return $.runKernel(Sa,n)}var Lu={};Me(Lu,{isBrowser:()=>Px,isMobile:()=>nI});function rI(){return typeof navigator!="undefined"&&navigator!=null}function nI(e){if(e||rI()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Px(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var gr=J();gr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});gr.registerFlag("IS_BROWSER",()=>Px());gr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");gr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));gr.registerFlag("PROD",()=>!1);gr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>gr.getBool("DEBUG"));gr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);gr.registerFlag("IS_TEST",()=>!1);gr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);gr.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function $r(e,t){let n=e;if(tn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||tn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Lx(e,r,[]),r}function Lx(e,t,n){if(n=n||[],!Array.isArray(e)&&!tn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a=0&&(a=r),Wx(r,a,t,n),e==null||!tn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=$r(e,a);!tn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?od(e,a):os(e,[],!0);return $.makeTensor(i,s,a)}function Wu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var Bx="__op";function D(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Bx;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return gf(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function aI(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");an(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(Rh,a)}var Ca=D({complex_:aI});function Ra(e,t,n,r){if(r==null&&(r=Ih(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!tn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){yf(t);let a=Nt(t),s=Nt(n);M(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!tn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?od(e,r):os(e,[],!0),$.makeTensor(e,t,r)}function xr(e,t,n){let r=$r(e,n);return Ra(e,t,r,n)}var Rf={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},hd=4;async function iI(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+hd*d.length,m=new Uint8Array(p),f=0;for(let A=0;A{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var Mf=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function jx(e){return Mf?Buffer.byteLength(e):new Blob([e]).size}function lI(e){if(Mf)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function Ux(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Bu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:jx(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:jx(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function cI(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function hI(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function dI(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function oI(){let e=cI(),t=hI(),n=dI();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var St=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return St.instance==null&&(St.instance=new St),St.instance}static registerSaveRouter(e){St.getInstance().saveRouters.push(e)}static registerLoadRouter(e){St.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return St.getHandlers(e,"save")}static getLoadHandlers(e,t){return St.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?St.getInstance().loadRouters:St.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},pI=e=>St.registerSaveRouter(e),fI=e=>St.registerLoadRouter(e),mI=e=>St.getSaveHandlers(e),AI=(e,t)=>St.getLoadHandlers(e,t),$f="tensorflowjs",Df=1,ii="models_store",Ma="model_info_store";function Hx(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Of(e){let t=e.result;t.createObjectStore(ii,{keyPath:"modelPath"}),t.createObjectStore(Ma,{keyPath:"modelPath"})}var oi=class{constructor(e){if(this.indexedDB=Hx(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open($f,Df);a.onupgradeneeded=()=>Of(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(ii,"readonly"),o=i.objectStore(ii).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=Bu(t),o=s.transaction(Ma,"readwrite"),l=o.objectStore(Ma),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(ii,"readwrite");let h=u.objectStore(ii).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(Ma);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=m=>(s.close(),r(h.error))}},c.onerror=h=>(s.close(),r(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};oi.URL_SCHEME="indexeddb://";var Gx=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(oi.URL_SCHEME)?yI(e.slice(oi.URL_SCHEME.length)):null;St.registerSaveRouter(Gx);St.registerLoadRouter(Gx);function yI(e){return new oi(e)}function gI(e){return e.startsWith(oi.URL_SCHEME)?e.slice(oi.URL_SCHEME.length):e}var xI=class{constructor(){this.indexedDB=Hx()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open($f,Df);n.onupgradeneeded=()=>Of(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(Ma,"readonly"),s=a.objectStore(Ma).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=gI(e),new Promise((t,n)=>{let r=this.indexedDB.open($f,Df);r.onupgradeneeded=()=>Of(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(Ma,"readwrite"),i=s.objectStore(Ma),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=a.transaction(ii,"readwrite");let h=l.objectStore(ii).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=h=>(u(),a.close(),n(o.error))}},o.onerror=c=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},ra="/",il="tensorflowjs_models",qx="info",wI="model_topology",bI="weight_specs",_I="weight_data",vI="model_metadata";function Xx(e){return{info:[il,e,qx].join(ra),topology:[il,e,wI].join(ra),weightSpecs:[il,e,bI].join(ra),weightData:[il,e,_I].join(ra),modelMetadata:[il,e,vI].join(ra)}}function kI(e){let t=e.split(ra);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ra)}function II(e){return e.startsWith(li.URL_SCHEME)?e.slice(li.URL_SCHEME.length):e}var li=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Xx(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Bu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,lI(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=uI(s),t}};li.URL_SCHEME="localstorage://";var Kx=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(li.URL_SCHEME)?SI(e.slice(li.URL_SCHEME.length)):null;St.registerSaveRouter(Kx);St.registerLoadRouter(Kx);function SI(e){return new li(e)}var NI=class{constructor(){M(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=il+ra,n=ra+qx;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(ol)&&(e=e.slice(0,e.indexOf(ol))),M(e.length>0,()=>"scheme must not be an empty string.");let n=qn.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function dd(e){if(e.indexOf(ol)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${qn.getSchemes().join(",")}`);return{scheme:e.split(ol)[0],path:e.split(ol)[1]}}async function Zx(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=St.getLoadHandlers(e);M(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=St.getSaveHandlers(t);M(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=dd(e).scheme,l=dd(e).path,c=o===dd(e).scheme,u=await a.load();n&&c&&await qn.getManager(o).removeModel(l);let h=await i.save(u);return n&&!c&&await qn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function TI(){let e=qn.getSchemes(),t={};for(let n of e){let r=await qn.getManager(n).listModels();for(let a in r){let s=n+ol+a;t[s]=r[a]}}return t}async function EI(e){let t=dd(e);return qn.getManager(t.scheme).removeModel(t.path)}async function CI(e,t){return Zx(e,t,!1)}async function RI(e,t){return Zx(e,t,!0)}var MI=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new MI);try{qn.registerManager(li.URL_SCHEME,new NI)}catch(e){}try{qn.registerManager(oi.URL_SCHEME,new xI)}catch(e){}}var FI={importFetch:()=>Wk()},zf,$I=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(zf==null&&(zf=FI.importFetch()),zf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new $I);function We(e,t="float32",n){return t=t||"float32",yf(e),new $t(e,t,n)}function DI(e,t){let n=R(e,"x","cast");if(!bx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(ds,r,a)}var Ae=D({cast_:DI});function OI(e){let t={x:R(e,"x","clone","string_or_numeric")};return $.runKernel(Is,t)}var Dr=D({clone_:OI});function Yx(e,t=!1){console.log(e.toString(t))}zx();var zI={buffer:We,cast:Ae,clone:Dr,print:Yx};K9(zI);var vn={};Me(vn,{browserFiles:()=>PI,browserHTTPRequest:()=>WI,concatenateArrayBuffers:()=>Ff,copyModel:()=>CI,decodeWeights:()=>Vx,encodeWeights:()=>iI,fromMemory:()=>BI,getLoadHandlers:()=>AI,getModelArtifactsInfoForJSON:()=>Bu,getSaveHandlers:()=>mI,http:()=>Lf,isHTTPScheme:()=>Pf,listModels:()=>TI,loadWeights:()=>LI,moveModel:()=>RI,registerLoadRouter:()=>fI,registerSaveRouter:()=>pI,removeModel:()=>EI,weightsLoaderFactory:()=>Jx,withSaveHandler:()=>VI});var jI="model",UI=".json",HI=".weights.bin";function Qx(e){return new Promise(t=>setTimeout(t)).then(e)}var ll=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(ll.URL_SCHEME)&&(e=e.slice(ll.URL_SCHEME.length)),(e==null||e.length===0)&&(e=jI),this.modelTopologyFileName=e+UI,this.weightDataFileName=e+HI}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await Qx(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Qx(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Bu(e)}}}};ll.URL_SCHEME="downloads://";var GI=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let u=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(m=>{h.push(m),d.push(null)}),u.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(m=>{let f=new FileReader;f.onload=A=>{let y=A.target.result,g=h.indexOf(m);if(d[g]=y,d.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:u,weightData:Ff(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=A=>r(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(c[m])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>Ux(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=Ux(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},XI=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ll.URL_SCHEME)?qI(e.slice(ll.URL_SCHEME.length)):null;St.registerSaveRouter(XI);function qI(e="model"){return new ll(e)}function PI(e){return new GI(e)}function ew(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(c=>{let u=n+ ++a/e.length*(r-n);return t(u),c}),l);function i(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),M(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function tw(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(c=>n(c,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await ew(r,t.onProgress,a,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await ew(i,t.onProgress,o,l)}async function LI(e,t="",n,r){return Jx(a=>tw(a,{requestInit:r}))(e,t,n)}function Jx(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,m)=>{let f=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=Rf[y]*Nt(A.shape),x=()=>{a[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:A,groupOffset:f,sizeBytes:g})};r!=null?r.forEach((v,w)=>{v===A.name&&(x(),i[w]=!0)}):x(),o.push(A.name),f+=g})}),!i.every(p=>p)){let p=r.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. +Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,m,f)=>(m&&p.push(f),p),[]),c=[];l.forEach(p=>{t[p].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;c.push(f)})});let u=await e(c),h={},d=0;return l.forEach(p=>{let m=t[p].paths.length,f=0;for(let x=0;x{let v=A.slice(x.groupOffset,x.groupOffset+x.sizeBytes),w=Vx(v,[x.manifestEntry]);for(let b in w)h[b]=w[b]}),d+=m}),h}}var KI="application/octet-stream",ZI="application/json",Wf=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:ZI}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:KI}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:Bu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;r!=null&&([c,u]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=YI(t),a=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(a+u+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await tw(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Ff(l)]}};Wf.URL_SCHEME_REGEX=/^https?:\/\//;function YI(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Pf(e){return e.match(Wf.URL_SCHEME_REGEX)!=null}var nw=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Pf(r)):n=Pf(e),n)return Lf(e,t)}return null};St.registerSaveRouter(nw);St.registerLoadRouter(nw);function Lf(e,t){return new Wf(e,t)}function WI(e,t){return Lf(e,t)}var Bf=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},JI=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function BI(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Bf(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Bf({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Bf({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function VI(e){return new JI(e)}var rw={};Me(rw,{confusionMatrix:()=>QI});function eS(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=bt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(hs,i,o)}var Be=D({matMul_:eS});function tS(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(Os,a,s)}var ul=D({oneHot_:tS});function nS(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{M(s>=0&&s`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(ti,r,a)}var Ze=D({transpose_:nS});function rS(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),M(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),M(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=ul(Ae(r,"int32"),n),i=ul(Ae(a,"int32"),n),o=Ze(s),l=Be(o,i);return Ae(l,"int32")}var QI=D({confusionMatrix_:rS}),ui={};Me(ui,{fromPixels:()=>iS,fromPixelsAsync:()=>aS,toPixels:()=>sS});function pd(e,t,n){if(is(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=$r(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Ra(e,t,r,n)}var cl;function aw(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState element.")}if(id(sd,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(sd,d,p)}let[l,c]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:r||n?u=e.data:(s||a||o)&&(cl==null&&(cl=document.createElement("canvas").getContext("2d")),cl.canvas.width=l,cl.canvas.height=c,cl.drawImage(e,0,0,l,c),u=cl.getImageData(0,0,l,c).data);let h;if(t===4)h=new Int32Array(u);else{let d=l*c;h=new Int32Array(d*t);for(let p=0;p4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let c=0;c1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(u[0]=p*o,u[1]=p*o,u[2]=p*o):u[d]=p*o}let h=c*4;l[h+0]=Math.round(u[0]),l[h+1]=Math.round(u[1]),l[h+2]=Math.round(u[2]),l[h+3]=Math.round(u[3])}if(t!=null){t.width=a,t.height=r;let c=t.getContext("2d"),u=new ImageData(l,a,r);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var iS=D({fromPixels_:aw}),Vf={};Me(Vf,{prepareAndValidate:()=>sw});function sw(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Nt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;hh/c),1].slice(0,s);return[l,i,c,u]}var jf={};Me(jf,{calculateShapes:()=>iw,validateInput:()=>Hf,validateUpdateShape:()=>Uf});function Uf(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;hhS,computeFlatOffset:()=>pS,computeOutShape:()=>ow,getNormalizedAxes:()=>uw,isSliceContinous:()=>dS,maskToAxes:()=>fd,parseSliceParams:()=>mw,sliceInfo:()=>fS,startForAxis:()=>pw,startIndicesWithElidedDims:()=>cw,stopForAxis:()=>fw,stopIndicesWithElidedDims:()=>hw,stridesForAxis:()=>dw,stridesWithElidedDims:()=>lw});function hS(e,t,n){let r=e.shape.length;M(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),M(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function fd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function ow(e,t,n){let r=[];for(let a=0;a0){let p=t[0],m=n+1;u=cw(i,p,m,r,e),h=hw(o,p,m,a,e),d=lw(s,p,m,e)}else for(let p=0;p-1)s[o]=0;else{let l=Aw(t,n,o),c=r[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=Aw(t,n,o),c=r[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=pu(0,i,l-1),i}function fw(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=pu(0,i,l):i=pu(-1,i,l-1),i}function dS(e,t,n){let r=n.length;for(let a=0;a1){r=a;break}for(let a=r+1;a0||n[a]!==e[a])return!1;return!0}function pS(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{M(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.lengthi>=0?i:(M(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function fS(e,t,n,r,a,s,i,o,l){let c=t.slice(),u=n.slice(),h=r;r==null&&(h=new Array(c.length));let d=fd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-c.length,m=fd(o),f=e.slice();m.forEach(b=>{c[b]=0,u[b]=1,f.splice(b,0,1)});let{begin:A,end:y,strides:g}=uw(f,d,p,c,u,h,a,s,i);c=A,u=y,h=g;let x=fd(l);x.forEach(b=>{u[b]=c[b]+1,h[b]=1});let v=ow(c,u,h),w=v.filter((b,k)=>x.indexOf(k)===-1);return{nonStrided:h.every(b=>b===1),$begin:c,$end:u,$strides:h,size:v,newShape:f,outShape:w}}var re={};Me(re,{Serializable:()=>gw,SerializationMap:()=>ci,registerClass:()=>Fa});var gw=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ci=class{constructor(){this.classNameMap={}}static getMap(){return ci.instance==null&&(ci.instance=new ci),ci.instance}static register(e){ci.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Fa(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ci.register(e)}var xw={};Me(xw,{TEST_EPSILON_FLOAT16:()=>ww,encodeStrings:()=>bw,expectArrayBuffersEqual:()=>wS,expectArraysClose:()=>mS,expectArraysEqual:()=>yS,expectNumbersClose:()=>gS,expectPromiseToFail:()=>AS,expectValuesInRange:()=>xS,testEpsilon:()=>Gf});var bS=.001,ww=.1;function mS(e,t,n){return n==null&&(n=Gf()),qf(e,t,(r,a)=>Xf(r,a,n))}function Gf(){return $.backend.floatPrecision()===32?bS:ww}function qf(e,t,n){let r=!0;if((tn(e)||tn(t))&&(r=!1),tn(e)&&tn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=$r(e),o=$r(t);if(!na(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=tn(e)?e:os(e),s=tn(t)?t:os(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}. Actual: ${a}. Expected: ${s}.`);for(let i=0;it.fail(),()=>t())}function WS(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ea(e)||Ea(e[0])||Ea(t)||Ea(t[0])?am(e,n,(r,a)=>r==a):am(e,t,(r,a)=>sm(r,a,0))}function BS(e,t,n){if(n==null&&(n=rm()),!sm(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function sm(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function VS(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function jS(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function jb(e){for(let t=0;tt.dispose())}function Ht(e){return $.keep(e)}function ZS(e){return $.time(e)}function YS(e){return $.setBackend(e)}function JS(){return $.ready()}function QS(){return $.backendName}function eN(e){$.removeBackend(e)}function om(e){return $.findBackend(e)}function tN(e){return $.findBackendFactory(e)}function yl(e,t,n=1){return $.registerBackend(e,t,n)}function Ub(){return $.backend}function nN(e,t){J().setPlatform(e,t)}function rN(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ra,a)}var se=D({add_:rN});function aN(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ns,a)}var _d=D({floorDiv_:aN});function sN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=vt(n,r),n.dtype==="int32"&&r.dtype==="int32")return _d(n,r);let a={a:n,b:r},s={};return $.runKernel(ks,a,s)}var Ae=D({div_:sN});function iN(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ws,a)}var z=D({mul_:iN});function oN(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(ku,n)}else{let n={x:t};return $.runKernel(lo,n)}}var zt=D({abs_:oN});function lN(e){let t={x:R(e,"x","acos")};return $.runKernel(uo,t)}var lm=D({acos_:lN});function uN(e){let t={x:R(e,"x","acosh")};return $.runKernel(co,t)}var um=D({acosh_:uN});function cN(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!la(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(ps,r)}var La=D({addN_:cN});function hN(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(ho,r,a)}var vd=D({all_:hN});function dN(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(po,r,a)}var Xu=D({any_:dN});function pN(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return $.runKernel(fs,n,r)}var Ai=D({argMax_:pN});function fN(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return $.runKernel(wu,n,r)}var cm=D({argMin_:fN});function mN(e){let t={x:R(e,"x","asin")};return $.runKernel(fo,t)}var hm=D({asin_:mN});function AN(e){let t={x:R(e,"x","asinh")};return $.runKernel(mo,t)}var dm=D({asinh_:AN});function yN(e){let t={x:R(e,"x","atan")};return $.runKernel(Ao,t)}var pm=D({atan_:yN});function gN(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(go,a)}var fm=D({atan2_:gN});function xN(e){let t={x:R(e,"x","atanh")};return $.runKernel(yo,t)}var mm=D({atanh_:xN});function bN(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=Hb(a);return Ku(e,o,n,s,r,null,null,l)}function Gb(e,t,n,r,a,s,i="channelsLast"){let[o,l]=kd(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Ku(e,c,n,r,a,s,!1,i)}function wN(e,t,n,r,a,s,i="NDHWC"){let[o,l,c]=Am(t),u,h;if(i==="NDHWC")h="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return qb(e,u,n,r,a,!1,h,s)}function Ku(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,c,u,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,h]=e;else if(o==="channelsFirst")[l,h,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,m]=t,[f,A]=kd(n),[y,g]=kd(r),x=gl(d,y),v=gl(p,g),{padInfo:b,outHeight:w,outWidth:k}=_N(a,c,u,f,A,x,v,s,o),N=i?m*h:m,C;return o==="channelsFirst"?C=[l,N,w,k]:o==="channelsLast"&&(C=[l,w,k,N]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:h,outHeight:w,outWidth:k,outChannels:N,padInfo:b,strideHeight:f,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:g,inShape:e,outShape:C,filterShape:t}}function qb(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,c,u,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,h,d]=e;else if(i==="channelsFirst")[l,d,c,u,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,m,f,,A]=t,[y,g,x]=Am(n),[v,b,w]=Am(r),k=gl(p,v),N=gl(m,b),C=gl(f,w),{padInfo:F,outDepth:O,outHeight:L,outWidth:V}=vN(a,c,u,h,y,g,x,k,N,C,o),j=s?A*d:A,U;return i==="channelsFirst"?U=[l,j,O,L,V]:i==="channelsLast"&&(U=[l,O,L,V,j]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:h,inChannels:d,outDepth:O,outHeight:L,outWidth:V,outChannels:j,padInfo:F,strideDepth:y,strideHeight:g,strideWidth:x,filterDepth:p,filterHeight:m,filterWidth:f,effectiveFilterDepth:k,effectiveFilterHeight:N,effectiveFilterWidth:C,dilationDepth:v,dilationHeight:b,dilationWidth:w,inShape:e,outShape:U,filterShape:t}}function kN(e,t,n,r,a){r==null&&(r=ym(e,t,n));let s=e[0],i=e[1],o=yi((s-t+2*r)/n+1,a),l=yi((i-t+2*r)/n+1,a);return[o,l]}function IN(e,t,n,r,a,s){a==null&&(a=ym(e,t,r));let i=e[0],o=e[1],l=e[2],c=yi((i-t+2*a)/r+1,s),u=yi((o-t+2*a)/r+1,s),h=yi((l-t+2*a)/r+1,s);return[c,u,h,n]}function ym(e,t,n,r=1){let a=gl(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function kd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Am(e){return typeof e=="number"?[e,e,e]:e}function gl(e,t){return t<=1?e:e+(e-1)*(t-1)}function _N(e,t,n,r,a,s,i,o,l){let c,u,h;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=kN([t,n],s,r,e,o);u=d[0],h=d[1]}else if(e==="same"){u=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(u-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),m=Math.floor(d/2),f=d-m,A=Math.floor(p/2),y=p-A;c={top:m,bottom:f,left:A,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:p,left:m,right:f,type:d===0&&p===0&&m===0&&f===0?"VALID":"EXPLICIT"},u=yi((t-s+d+p)/r+1,o),h=yi((n-i+m+f)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:h}}function vN(e,t,n,r,a,s,i,o,l,c,u){let h,d,p,m;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=IN([t,n,r,1],o,1,a,e,u);d=f[0],p=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),m=Math.ceil(r/i);let f=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(m-1)*i+c-r,g=Math.floor(f/2),x=f-g,v=Math.floor(A/2),b=A-v,w=Math.floor(y/2),k=y-w;h={top:v,bottom:b,left:w,right:k,front:g,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),m=Math.ceil((r-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:m}}function yi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Wa(e){let[t,n,r]=kd(e);return t===1&&n===1&&r===1}function Vr(e,t){return Wa(e)||Wa(t)}function Hb(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function SN(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(Ko,n,r)}var H=D({reshape_:SN});function NN(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;M(Vr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&M(Ut(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(ms,c,u);return h=ge(h,s.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Zu=D({avgPool_:NN});function TN(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ut(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(_u,c,u);return h=ge(h,o.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var gm=D({avgPool3d_:TN});function EN(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Gu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor - with dtype ${s.dtype}. `)}),n.length===1)return Br(n[0]);let r=n,a={axis:t};return $.runKernel(xo,r,a)}var ot=D({concat_:EN});function CN(e){let t={x:R(e,"x","sigmoid")};return $.runKernel(Js,t)}var Tn=D({sigmoid_:CN});function RN(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Qo,a,s)}var Re=D({slice_:RN});function MN(e){let t={x:R(e,"x","tanh")};return $.runKernel(si,t)}var gi=D({tanh_:MN});function FN(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),c=R(r,"data","basicLSTMCell"),u=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=ot([c,h],1),p=Ve(d,o),m=se(p,l),f=m.shape[0],A=m.shape[1]/4,y=[f,A],g=Re(m,[0,0],y),x=Re(m,[0,A],y),v=Re(m,[0,A*2],y),b=Re(m,[0,A*3],y),w=se(z(Tn(g),gi(x)),z(u,Tn(se(i,v)))),k=z(gi(w),Tn(b));return[w,k]}var $N=D({basicLSTMCell_:FN});function DN(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);M(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(vu,s,i)}var Yu=D({batchToSpaceND_:DN});function ON(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function zN(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;r!=null&&(u=R(r,"offset","batchNorm")),M(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:ON(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(Ts,h,d);return H(p,i.shape)}var xi=D({batchNorm_:zN});function PN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),M(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),xi(i,o,l,u,c,s)}var Xb=D({batchNorm2d_:PN});function LN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),M(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),xi(i,o,l,u,c,s)}var Kb=D({batchNorm3d_:LN});function WN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),M(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),xi(i,o,l,u,c,s)}var Zb=D({batchNorm4d_:WN});function BN(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");M(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(Oh,s,i)}var Yb=D({bincount_:BN});function VN(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Br(n);let i={x:n},o={reps:s};return $.runKernel(Fa,i,o)}var xl=D({broadcastTo_:VN});function jN(e){let t={x:R(e,"x","ceil")};return $.runKernel(gs,t)}var xm=D({ceil_:jN});function UN(e,t,n){let r=R(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(Ma,a,s)}var En=D({clipByValue_:UN});function HN(e){return ot(e,0)}var Jb=D({concat1d_:HN});function GN(e,t){return ot(e,t)}var bl=D({concat2d_:GN});function qN(e,t){return ot(e,t)}var Qb=D({concat3d_:qN});function XN(e,t){return ot(e,t)}var ew=D({concat4d_:XN});function KN(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&M(Ut(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?c.shape[3]:c.shape[1];M(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),M(Vr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},m=$.runKernel(xs,d,p);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var ha=D({conv2d_:KN});function ZN(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1]])),M(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&M(Ut(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Vr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),M(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(c,[c.shape[0],1,c.shape[1],c.shape[2]]),p=ha(d,h,[1,n],r,"NHWC",[1,s],i);return u?H(p,[p.shape[2],p.shape[3]]):H(p,[p.shape[0],p.shape[2],p.shape[3]])}var Id=D({conv1d_:ZN});function YN(e,t,n,r,a,s="NHWC",i){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),M(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];M(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),M(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&M(Ut(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},m=$.runKernel(bs,d,p);return c?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var bm=D({conv2DBackpropInput_:YN});function JN(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return bm(n,i,o,r,a,"NHWC",s)}var Sd=D({conv2dTranspose_:JN});function QN(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),M(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),M(Vr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let u={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(Iu,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var wm=D({conv3d_:QN});function eT(e,t,n,r,a){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];M(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),M(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(Wh,u,h);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var tw=D({conv3DBackpropInput_:eT});function tT(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return tw(n,s,i,r,a)}var nw=D({conv3dTranspose_:tT});function nT(e){let t={x:R(e,"x","cos")};return $.runKernel(ws,t)}var Ju=D({cos_:nT});function rT(e){let t={x:R(e,"x","cosh")};return $.runKernel(bo,t)}var Nd=D({cosh_:rT});function aT(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(_s,a,s)}var Td=D({cumsum_:aT});function sT(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");M(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),M(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(Bh,i,o)}var rw=D({denseBincount_:sT});function iT(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying +Expected: ${s}.`)}}function AS(e,t){e().then(()=>t.fail(),()=>t())}function yS(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ka(e)||ka(e[0])||ka(t)||ka(t[0])?qf(e,n,(r,a)=>r==a):qf(e,t,(r,a)=>Xf(r,a,0))}function gS(e,t,n){if(n==null&&(n=Gf()),!Xf(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Xf(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function xS(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function wS(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function bw(e){for(let t=0;tt.dispose())}function Vt(e){return $.keep(e)}function NS(e){return $.time(e)}function TS(e){return $.setBackend(e)}function ES(){return $.ready()}function CS(){return $.backendName}function RS(e){$.removeBackend(e)}function Zf(e){return $.findBackend(e)}function MS(e){return $.findBackendFactory(e)}function hl(e,t,n=1){return $.registerBackend(e,t,n)}function _w(){return $.backend}function FS(e,t){J().setPlatform(e,t)}function $S(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=bt(n,r);let a={a:n,b:r};return $.runKernel(Sa,a)}var se=D({add_:$S});function DS(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=bt(n,r);let a={a:n,b:r};return $.runKernel(_s,a)}var Ad=D({floorDiv_:DS});function OS(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=bt(n,r),n.dtype==="int32"&&r.dtype==="int32")return Ad(n,r);let a={a:n,b:r},s={};return $.runKernel(xs,a,s)}var ge=D({div_:OS});function zS(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=bt(n,r);let a={a:n,b:r};return $.runKernel(Ds,a)}var B=D({mul_:zS});function PS(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(gu,n)}else{let n={x:t};return $.runKernel(no,n)}}var Dt=D({abs_:PS});function LS(e){let t={x:R(e,"x","acos")};return $.runKernel(ro,t)}var Yf=D({acos_:LS});function WS(e){let t={x:R(e,"x","acosh")};return $.runKernel(ao,t)}var Jf=D({acosh_:WS});function BS(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!na(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(ls,r)}var yd=D({addN_:BS});function VS(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(so,r,a)}var gd=D({all_:VS});function jS(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(io,r,a)}var Vu=D({any_:jS});function US(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return $.runKernel(us,n,r)}var ju=D({argMax_:US});function HS(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return $.runKernel(mu,n,r)}var Qf=D({argMin_:HS});function GS(e){let t={x:R(e,"x","asin")};return $.runKernel(oo,t)}var em=D({asin_:GS});function qS(e){let t={x:R(e,"x","asinh")};return $.runKernel(lo,t)}var tm=D({asinh_:qS});function XS(e){let t={x:R(e,"x","atan")};return $.runKernel(uo,t)}var nm=D({atan_:XS});function KS(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=bt(n,r);let a={a:n,b:r};return $.runKernel(ho,a)}var rm=D({atan2_:KS});function ZS(e){let t={x:R(e,"x","atanh")};return $.runKernel(co,t)}var am=D({atanh_:ZS});function YS(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=vw(a);return Uu(e,o,n,s,r,null,null,l)}function kw(e,t,n,r,a,s,i="channelsLast"){let[o,l]=xd(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Uu(e,c,n,r,a,s,!1,i)}function JS(e,t,n,r,a,s,i="NDHWC"){let[o,l,c]=sm(t),u,h;if(i==="NDHWC")h="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Iw(e,u,n,r,a,!1,h,s)}function Uu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,c,u,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,h]=e;else if(o==="channelsFirst")[l,h,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,m]=t,[f,A]=xd(n),[y,g]=xd(r),x=dl(d,y),v=dl(p,g),{padInfo:w,outHeight:b,outWidth:k}=QS(a,c,u,f,A,x,v,s,o),N=i?m*h:m,C;return o==="channelsFirst"?C=[l,N,b,k]:o==="channelsLast"&&(C=[l,b,k,N]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:h,outHeight:b,outWidth:k,outChannels:N,padInfo:w,strideHeight:f,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:g,inShape:e,outShape:C,filterShape:t}}function Iw(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,c,u,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,h,d]=e;else if(i==="channelsFirst")[l,d,c,u,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,m,f,,A]=t,[y,g,x]=sm(n),[v,w,b]=sm(r),k=dl(p,v),N=dl(m,w),C=dl(f,b),{padInfo:F,outDepth:O,outHeight:z,outWidth:V}=eN(a,c,u,h,y,g,x,k,N,C,o),j=s?A*d:A,U;return i==="channelsFirst"?U=[l,j,O,z,V]:i==="channelsLast"&&(U=[l,O,z,V,j]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:h,inChannels:d,outDepth:O,outHeight:z,outWidth:V,outChannels:j,padInfo:F,strideDepth:y,strideHeight:g,strideWidth:x,filterDepth:p,filterHeight:m,filterWidth:f,effectiveFilterDepth:k,effectiveFilterHeight:N,effectiveFilterWidth:C,dilationDepth:v,dilationHeight:w,dilationWidth:b,inShape:e,outShape:U,filterShape:t}}function tN(e,t,n,r,a){r==null&&(r=im(e,t,n));let s=e[0],i=e[1],o=hi((s-t+2*r)/n+1,a),l=hi((i-t+2*r)/n+1,a);return[o,l]}function nN(e,t,n,r,a,s){a==null&&(a=im(e,t,r));let i=e[0],o=e[1],l=e[2],c=hi((i-t+2*a)/r+1,s),u=hi((o-t+2*a)/r+1,s),h=hi((l-t+2*a)/r+1,s);return[c,u,h,n]}function im(e,t,n,r=1){let a=dl(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function xd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function sm(e){return typeof e=="number"?[e,e,e]:e}function dl(e,t){return t<=1?e:e+(e-1)*(t-1)}function QS(e,t,n,r,a,s,i,o,l){let c,u,h;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=tN([t,n],s,r,e,o);u=d[0],h=d[1]}else if(e==="same"){u=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(u-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),m=Math.floor(d/2),f=d-m,A=Math.floor(p/2),y=p-A;c={top:m,bottom:f,left:A,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:p,left:m,right:f,type:d===0&&p===0&&m===0&&f===0?"VALID":"EXPLICIT"},u=hi((t-s+d+p)/r+1,o),h=hi((n-i+m+f)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:h}}function eN(e,t,n,r,a,s,i,o,l,c,u){let h,d,p,m;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=nN([t,n,r,1],o,1,a,e,u);d=f[0],p=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),m=Math.ceil(r/i);let f=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(m-1)*i+c-r,g=Math.floor(f/2),x=f-g,v=Math.floor(A/2),w=A-v,b=Math.floor(y/2),k=y-b;h={top:v,bottom:w,left:b,right:k,front:g,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),m=Math.ceil((r-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:m}}function hi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function $a(e){let[t,n,r]=xd(e);return t===1&&n===1&&r===1}function Or(e,t){return $a(e)||$a(t)}function vw(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function rN(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(jo,n,r)}var H=D({reshape_:rN});function aN(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;M(Or(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&M(Bt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(cs,c,u);return h=Ae(h,s.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Hu=D({avgPool_:aN});function sN(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Bt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Au,c,u);return h=Ae(h,o.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var om=D({avgPool3d_:sN});function iN(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Wu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor + with dtype ${s.dtype}. `)}),n.length===1)return Dr(n[0]);let r=n,a={axis:t};return $.runKernel(po,r,a)}var ot=D({concat_:iN});function oN(e){let t={x:R(e,"x","sigmoid")};return $.runKernel(qs,t)}var kn=D({sigmoid_:oN});function lN(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(qo,a,s)}var Re=D({slice_:lN});function uN(e){let t={x:R(e,"x","tanh")};return $.runKernel(ei,t)}var di=D({tanh_:uN});function cN(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),c=R(r,"data","basicLSTMCell"),u=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=ot([c,h],1),p=Be(d,o),m=se(p,l),f=m.shape[0],A=m.shape[1]/4,y=[f,A],g=Re(m,[0,0],y),x=Re(m,[0,A],y),v=Re(m,[0,A*2],y),w=Re(m,[0,A*3],y),b=se(B(kn(g),di(x)),B(u,kn(se(i,v)))),k=B(di(b),kn(w));return[b,k]}var hN=D({basicLSTMCell_:cN});function dN(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);M(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(yu,s,i)}var Gu=D({batchToSpaceND_:dN});function pN(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function fN(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;r!=null&&(u=R(r,"offset","batchNorm")),M(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:pN(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(vs,h,d);return H(p,i.shape)}var pi=D({batchNorm_:fN});function mN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),M(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),pi(i,o,l,u,c,s)}var Sw=D({batchNorm2d_:mN});function AN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),M(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),pi(i,o,l,u,c,s)}var Nw=D({batchNorm3d_:AN});function yN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),M(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),pi(i,o,l,u,c,s)}var Tw=D({batchNorm4d_:yN});function gN(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");M(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(Ch,s,i)}var Ew=D({bincount_:gN});function xN(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Dr(n);let i={x:n},o={reps:s};return $.runKernel(Ta,i,o)}var pl=D({broadcastTo_:xN});function wN(e){let t={x:R(e,"x","ceil")};return $.runKernel(ps,t)}var lm=D({ceil_:wN});function bN(e,t,n){let r=R(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(Na,a,s)}var In=D({clipByValue_:bN});function _N(e){return ot(e,0)}var Cw=D({concat1d_:_N});function vN(e,t){return ot(e,t)}var fl=D({concat2d_:vN});function kN(e,t){return ot(e,t)}var Rw=D({concat3d_:kN});function IN(e,t){return ot(e,t)}var Mw=D({concat4d_:IN});function SN(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&M(Bt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?c.shape[3]:c.shape[1];M(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),M(Or(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},m=$.runKernel(fs,d,p);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var ia=D({conv2d_:SN});function NN(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1]])),M(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&M(Bt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Or(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),M(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(c,[c.shape[0],1,c.shape[1],c.shape[2]]),p=ia(d,h,[1,n],r,"NHWC",[1,s],i);return u?H(p,[p.shape[2],p.shape[3]]):H(p,[p.shape[0],p.shape[2],p.shape[3]])}var wd=D({conv1d_:NN});function TN(e,t,n,r,a,s="NHWC",i){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),M(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];M(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),M(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&M(Bt(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},m=$.runKernel(ms,d,p);return c?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var um=D({conv2DBackpropInput_:TN});function EN(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return um(n,i,o,r,a,"NHWC",s)}var bd=D({conv2dTranspose_:EN});function CN(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),M(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),M(Or(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let u={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(xu,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var cm=D({conv3d_:CN});function RN(e,t,n,r,a){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];M(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),M(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel($h,u,h);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Fw=D({conv3DBackpropInput_:RN});function MN(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return Fw(n,s,i,r,a)}var $w=D({conv3dTranspose_:MN});function FN(e){let t={x:R(e,"x","cos")};return $.runKernel(As,t)}var qu=D({cos_:FN});function $N(e){let t={x:R(e,"x","cosh")};return $.runKernel(fo,t)}var _d=D({cosh_:$N});function DN(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(ys,a,s)}var vd=D({cumsum_:DN});function ON(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");M(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),M(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(Dh,i,o)}var Dw=D({denseBincount_:ON});function zN(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${a} and ${t} for depthToSpace with input shape ${r.shape}`),M(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${s} and ${t} for depthToSpace with input shape - ${r.shape}`),M(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(_o,o,l)}var _m=D({depthToSpace_:iT});function oT(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&M(Ut(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:c,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(vs,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var wl=D({depthwiseConv2d_:oT});function lT(e){let t={x:R(e,"x","diag")};return $.runKernel(Uh,t)}var uT=D({diag_:lT});function cT(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");M(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),M(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),M(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(Su,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var vm=D({dilation2d_:cT});function hT(e,t){let n=e.length,r=[];for(let a=0;a1&&i===1&&r.unshift(s)}return r}function Pt(e,t){let n=[];for(let r=0;r1)&&n.unshift(s)}return n}function ft(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(M(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=H(n,[1,-1]),o=H(r,[-1,1]),l=Ve(i,o);return H(l,[])}else if(n.rank===1&&r.rank===2){let i=H(n,[1,-1]),o=H(r,[r.shape[0],r.shape[1]]),l=Ve(i,o);return H(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=H(r,[-1,1]),o=Ve(n,i);return H(o,[o.size])}else{let i=H(r,[r.shape[0],r.shape[1]]);return Ve(n,i)}}var aw=D({dot_:AT});function yT(e,...t){let n=t.map((a,s)=>R(a,`tensors${s}`,"einsum")),r={equation:e};return $.runKernel(qh,n,r)}var sw=D({einsum_:yT});function gT(e){let t={x:R(e,"x","elu")};return $.runKernel(vo,t)}var _l=D({elu_:gT});function xT(e){let t=R(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ge(t,"float32"));let n={x:t};return $.runKernel(ko,n)}var Im=D({erf_:xT});function bT(e){let t={x:R(e,"x","exp")};return $.runKernel(Is,t)}var Qn=D({exp_:bT});function wT(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(So,r,a)}var Qt=D({expandDims_:wT});function _T(e){let t={x:R(e,"x","expm1")};return $.runKernel(No,t)}var Sm=D({expm1_:_T});function vT(e,t){let n=R(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(Fa,r,a)}var Va=D({tile_:vT});function kT(e,t,n,r="float32"){t==null&&(t=e);let a=Be([e,t],r),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got - rank ${s.rank}.`),M(Ut(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:r,beta:a},u=$.runKernel(Cu,l,c);return o?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Em=D({localResponseNormalization_:OT});function zT(e){let t={x:R(e,"x","log")};return $.runKernel(Ms,t)}var zn=D({log_:zT});function PT(e){let t={x:R(e,"x","log1p")};return $.runKernel(zo,t)}var Rd=D({log1p_:PT});function LT(e){return M(Ca(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&ln(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Md(i),i[0]})}}function WT(e){return M(Ca(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Gu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&ln(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Md(i),i})}}function BT(e){return M(Ca(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Pe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Pe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return Md(r),{grad:r[0],value:a}}}function VT(e){return M(Ca(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(a=>a instanceof Pe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Pe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&ln(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Md(r.grads),r}}function uw(e,t){M(Ca(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(c=>c instanceof ju),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in $.registeredVariables)t.push($.registeredVariables[c])}let r=n?t.filter(c=>!c.trainable):null,a=t.length;t=t.filter(c=>c.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);M(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),r!=null&&r.forEach(c=>l[c.name]=null),{value:i,grads:l}}function jr(e){return $.customGrad(e)}function Md(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that - the f you passed encloses all operations that lead from x to y.`)}function jT(e){let t={x:R(e,"x","neg")};return $.runKernel(Wo,t)}var kt=D({neg_:jT});function UT(e){let t={x:R(e,"x","softplus")};return $.runKernel(nl,t)}var _i=D({softplus_:UT});function HT(e){let t=R(e,"x","logSigmoid");return jr(n=>({value:kt(_i(kt(n))),gradFunc:r=>z(r,Tn(kt(n)))}))(t)}var cw=D({logSigmoid_:HT});function GT(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(Fs,r,a)}var Rn=D({max_:GT});function qT(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(ri,a)}var ye=D({sub_:qT});function XT(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=ge(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(ei,a,s)}var Te=D({sum_:XT});function KT(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return jr((r,a)=>{let s=!0,i=Rn(r,t,!0),o=ye(r,i),l=ye(ge(o,"float32"),zn(Te(Qn(o),t,s)));return a([l]),{value:l,gradFunc:(c,u)=>{let[h]=u,d=!0,p=Qn(h);return ye(c,z(Te(c,t,d),p))}}})(n)}var Fd=D({logSoftmax_:KT});function Cm(e,t){for(let n=0;ne[s]);return[n,a]}function vi(e,t){let n=t.map(r=>1);return hw(e,n,t)}function ZT(e,t,n){M(Cm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function pw(e,t){if(Cm(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function Rm(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function YT(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),M(Vr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&M(Ut(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(Ds,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var nc=D({maxPool_:rE});function aE(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ut(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Ru,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Fm=D({maxPool3d_:aE});function sE(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(nd,s,i);return{result:o[0],indexes:o[1]}}var mw=D({maxPoolWithArgmax_:sE});function iE(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ge(n,"int32"),r=ge(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel($s,a)}var Ur=D({maximum_:iE});function oE(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(Os,r,a)}var It=D({mean_:oE});function Rt(e,t="float32"){if(t==="complex64"){let r=Rt(e,"float32"),a=Rt(e,"float32");return Da(r,a)}let n=Fh(Et(e),t);return $.makeTensor(n,e,t)}function Pn(e,t="float32"){if(t==="complex64"){let r=Pn(e,"float32"),a=Rt(e,"float32");return Da(r,a)}let n=Nf(Et(e),t);return $.makeTensor(n,e,t)}function lE(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let r=R(e,"x","meshgrid",e instanceof Pe?e.dtype:"float32");if(t===void 0)return[r];let a=R(t,"y","meshgrid",t instanceof Pe?t.dtype:"float32"),s=Et(r.shape),i=Et(a.shape);return n==="xy"?(r=H(r,[1,-1]),a=H(a,[-1,1]),[Ve(Pn([i,1],r.dtype),r),Ve(a,Pn([1,s],a.dtype))]):(r=H(r,[-1,1]),a=H(a,[1,-1]),[Ve(r,Pn([1,i],r.dtype)),Ve(Pn([s,1],a.dtype),a)])}function uE(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(zs,r,a)}var kl=D({min_:uE});function cE(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ge(n,"int32"),r=ge(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Ps,a)}var Il=D({minimum_:cE});function hE(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),M(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(Ls,i,s)}var $m=D({mirrorPad_:hE});function dE(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Lo,a)}var Dm=D({mod_:dE});function pE(e){let t=R(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var it=D({square_:pE});function fE(e,t=null,n=!1){e=R(e,"x","moments");let r=hr(t,e.shape),a=It(e,r,n),s=a.shape;n||(s=vi(a.shape,r));let i=it(ye(ge(e,"float32"),H(a,s))),o=It(i,r,n);return{mean:a,variance:o}}var Dd=D({moments_:fE});function mE(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=Gu(n,"c","multiRNNCell"),i=Gu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},c=$.runKernel(rd,o,l);return i===1?H(c,[c.size]):c}var Aw=D({multinomial_:yE});function gE(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Bo,a)}var ki=D({notEqual_:gE});function xE(e){let t={x:R(e,"x","onesLike")};return $.runKernel(Ho,t)}var Ln=D({onesLike_:xE});function bE(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");M(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=H(n,[-1,1]),s=H(r,[1,-1]);return Ve(a,s)}var wE=D({outerProduct_:bE});function _E(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(Vs,s,a)}var da=D({pad_:_E});function vE(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),da(e,[t],n)}var kE=D({pad1d_:vE});function IE(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),da(e,t,n)}var SE=D({pad2d_:IE});function NE(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),da(e,t,n)}var TE=D({pad3d_:NE});function EE(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),da(e,t,n)}var CE=D({pad4d_:EE});function RE(e,t,n){let r=R(e,"x","spaceToBatchND");M(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel($u,a,s)}var rc=D({spaceToBatchND_:RE});function $E(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(Vr(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let c=Gb(o.shape,t,s,a,r),u=[c.dilationHeight,c.dilationWidth],h;r==="same"?h=FE([c.filterHeight,c.filterWidth],u):h=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[p,m]=ME([c.inHeight,c.inWidth],u,h),f=d?r:"valid",A=d?o:rc(o,u,p),y=(n==="avg"?()=>Zu(A,t,s,f):()=>nc(A,t,s,f))(),g=d?y:Yu(y,u,m);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function ME(e,t,n){let r=n.map(u=>u[0]),a=n.map(u=>u[1]),s=e.concat(r,a),i=t.map((u,h)=>(u-s[h]%u)%u),o=a.map((u,h)=>u+i[h]),l=t.map((u,h)=>[r[h],o[h]]),c=t.map((u,h)=>[0,i[h]]);return[l,c]}function FE(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var yw=D({pool_:$E});function DE(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(js,a)}var pa=D({pow_:DE});function OE(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(Us,a)}var ac=D({prelu_:OE});function zE(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=ge(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(qo,a,s)}var Od=D({prod_:zE});function PE(e,t,n){let r=Et(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},WE=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Om.alea(a.toString()),this.randn=new zm(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),athis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Om.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function VE(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new WE(t,n,r,a),i=Be(e,r);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Wn(t,0)}var JE=D({reverse1d_:YE});function QE(e,t){let n=R(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Wn(n,t)}var eC=D({reverse2d_:QE});function tC(e,t){let n=R(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Wn(n,t)}var nC=D({reverse3d_:tC});function rC(e,t){let n=R(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Wn(n,t)}var aC=D({reverse4d_:rC});function sC(e){let t={x:R(e,"x","round")};return $.runKernel(Ks,t)}var Lm=D({round_:sC});function iC(e){let t={x:R(e,"x","rsqrt")};return $.runKernel(Zs,t)}var Ld=D({rsqrt_:iC});function ve(e,t){if((rn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&rn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Oa(e,[],[],t)}function oC(e){let t={x:R(e,"x","selu")};return $.runKernel(Jo,t)}var Wd=D({selu_:oC});function lC(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),c=R(n,"pointwiseFilter","separableConv2d"),u=o,h=!1;if(o.rank===3&&(h=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),M(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],p=l.shape[3];M(c.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${c.shape[2]}.`);let m=wl(u,l,r,a,i,s),f=ha(m,c,1,"valid",i);return h?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Wm=D({separableConv2d_:lC});async function uC(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");M(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let u=0;u`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Re(r,[t],[n])}var jd=D({slice1d_:pC});function fC(e,t,n){let r=R(e,"x","slice2d");return M(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Vm=D({slice2d_:fC});function mC(e,t,n){let r=R(e,"x","slice3d");return M(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Ud=D({slice3d_:mC});function AC(e,t,n){let r=R(e,"x","slice4d");return M(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var ic=D({slice4d_:AC});function yC(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(ti,r,a)}var oc=D({softmax_:yC});function gC(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Kh,t)}var lc=D({fft_:gC});function xC(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Zh,t)}var Nl=D({ifft_:xC});function bC(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=H(e,[n,t]);r=Nl(a)}else{let a=[n,2*(t-1)],s=H(sc(e),[n,t]),i=H(Ed(e),[n,t]),o=Wn(Re(s,[0,1],[n,t-2]),1),l=z(Wn(Re(i,[0,1],[n,t-2]),1),ve(-1)),c=ot([s,o],1),u=ot([i,l],1),h=H(Da(c,u),[a[0],a[1]]);r=Nl(h)}if(r=sc(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=H(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var Hd=D({irfft_:bC});function wC(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(rl,r,a)}var Lt=D({split_:wC});function _C(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,a=Re(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,a=ot([e,Rt(m)],e.shape.length-1),n=t}else a=e;let s=He(a),i=H(Da(a,s),[r,n]),o=lc(i),l=Math.floor(n/2)+1,c=sc(o),u=Ed(o),h=Lt(c,[l,n-l],c.shape.length-1),d=Lt(u,[l,n-l],u.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,H(Da(h[0],d[0]),p)}var uc=D({rfft_:_C});function vC(e){let t={x:R(e,"x","sqrt")};return $.runKernel(Qs,t)}var en=D({sqrt_:vC});function kC(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(ni,a,s)}var Gd=D({squaredDifference_:kC});function IC(e,t){let n=R(e,"x","squeeze");return H(n,Lx(n.shape,t).newShape)}var Ua=D({squeeze_:IC});function SC(e,t=0){let n=Gu(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(Go,r,a)}var cn=D({stack_:SC});function NC(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return $.runKernel($a,n,r)}var Tl=D({step_:NC});function TC(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let c={x:R(e,"x","stridedSlice")},u={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(al,c,u)}var jm=D({stridedSlice_:TC});function EC(e){let t={x:R(e,"x","tan")};return $.runKernel(ai,t)}var Um=D({tan_:EC});function sn(e,t){hs(e);let n=Wr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Oa(e,null,n,t)}function er(e,t,n){if(hs(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Wr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Oa(e,t,r,n)}function CC(e,t,n){if(hs(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Wr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Oa(e,t,r,n)}function RC(e,t,n){if(hs(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Wr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Oa(e,t,r,n)}function MC(e,t,n){if(hs(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Wr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Oa(e,t,r,n)}function FC(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(sl,s,i);return{values:o,indices:l}}var Hm=D({topk_:FC});function $C(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new zm(t,n,r,!0,a),i=Be(e,r);for(let o=0;o0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(cd,r,a);return{values:s,indices:i}}var Xd=D({unique_:DC});function OC(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");M(Ut(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(Ou,s,i)}var Gm=D({unsortedSegmentSum_:OC});function zC(e,t=0){let n=R(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(il,r,a)}var mr=D({unstack_:zC});function bw(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function ww(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),ln(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f"Shape mismatch in v and x");let l=ve(1),c=ye(l,o),u=z(ye(i,s),c);if(a){M(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");u=Ae(u,ye(l,pa(o,h)))}return se(s,u)}var jC=D({movingAverage_:VC});function UC(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");nm(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(Zo,s,i)}var vw=D({scatterND_:UC});function HC(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function GC(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);HC(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(ld,o,l)}var Xm=D({sparseToDense_:GC});function qC(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return $.runKernel(Co,r)}var kw=D({gatherND_:qC});function XC(e,t){if(t==null)return e.shape.slice();if(la(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Pe?a.clone():a;let s=XC(a,n),i=1-t,o=Ae(vl(se(Sl(s,0,1,"float32",r),i)),i);return z(a,o)}var Iw=D({dropout_:KC});function Sw(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Km(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),M(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),ln(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];M(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,c]=[i.length/s,s],u=Wx("bool",l);for(let h=0;hA.value-f.value),u[h]=0;for(let f=0;fJC,depthwiseConv2d:()=>QC,matMul:()=>eR});function tR(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];M(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),M(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&M(Ut(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(Ph,h,d)}var Zm=D({conv2DBackpropFilter_:tR});function Zd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,Tl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Yd(e,t){let n=t,r=Pt(e.shape,t.shape);return r.length>0&&(n=Te(n,r)),H(n,e.shape)}function Jd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Hr(e);if(t==="elu")return _l(e);if(t==="relu6")return Pd(e);if(t==="prelu")return ac(e,n);if(t==="leakyrelu")return ec(e,r);if(t==="sigmoid")return Tn(e);throw new Error(`Unknown fused activation ${t}.`)}var Qd=(e,t)=>!(e>0)||t==="linear";function nR({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Qd($.state.gradientDepth,l)===!1){let b=ha(e,t,n,r,a,s,i);return o!=null&&(b=se(b,o)),Jd(b,l,c,u)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&M(Ut(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),M(Vr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let f=Ku(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),ft(f.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused conv2d"));let g=(b,w)=>{let[k,N,C,F]=w,O=Zd(b,C,l);M(Wa(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=bm(N.shape,O,k,n,r),V=Zm(N,O,k.shape,n,r),j=[L,V];if(F!=null){let U=Yd(F,O);j.push(U)}return j},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?jr((b,w,k)=>{let N=$.runKernel(li,x,v);return k([w,b,N]),m&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):jr((b,w,k,N)=>{let C=$.runKernel(li,x,v);return N([w,b,C,k]),m&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var JC=D({fusedConv2d_:nR});function rR(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(Vh,c,u)}var Nw=D({depthwiseConv2dNativeBackpropFilter_:rR});function aR(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(jh,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Tw=D({depthwiseConv2dNativeBackpropInput_:aR});function sR({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Qd($.state.gradientDepth,l)===!1){let b=wl(e,t,n,r,a,s,i);return o!=null&&(b=se(b,o)),Jd(b,l,c,u)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),M(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),M(Vr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&M(Ut(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let f=Ku(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),ft(f.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused depthwiseConv2d"));let g=(b,w)=>{M(Wa(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[k,N,C,F]=w,O=Zd(b,C,l),L=Tw(N.shape,O,k,n,r,s,i),V=Nw(N,O,k.shape,n,r,s,i);if(F!=null){let j=Yd(A,O);return[L,V,j]}return[L,V]},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?jr((b,w,k)=>{let N=$.runKernel(ui,x,v);return k([w,b,N]),m&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):jr((b,w,k,N)=>{let C=$.runKernel(ui,x,v);return N([w,b,C,k]),m&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var QC=D({fusedDepthwiseConv2d_:sR});function iR({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Qd($.state.gradientDepth,s)===!1){let F=Ve(e,t,n,r);return a!=null&&(F=se(F,a)),Jd(F,s,i,o)}let l=R(e,"a","fused matMul"),c=R(t,"b","fused matMul");[l,c]=vt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?c.shape[c.rank-2]:c.shape[c.rank-1],m=l.shape.slice(0,-2),f=c.shape.slice(0,-2),A=Et(m),y=Et(f);M(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),M(la(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),M(u===h,()=>`Error in fused matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),x=n?H(l,[A,u,d]):H(l,[A,d,u]),v=r?H(c,[y,p,h]):H(c,[y,h,p]),b;a!=null&&(b=R(a,"bias","fused matMul"),[b]=vt(b,l),ft(g,b.shape));let w;i!=null&&(w=R(i,"prelu weights","fused matMul"));let k=(F,O)=>{let[L,V,j,U]=O,X=Zd(H(F,j.shape),j,s),G,ee;if(!n&&!r?(G=Ve(X,V,!1,!0),ee=Ve(L,X,!0,!1)):!n&&r?(G=Ve(X,V,!1,!1),ee=Ve(X,L,!0,!1)):n&&!r?(G=Ve(V,X,!1,!0),ee=Ve(L,X,!1,!1)):(G=Ve(V,X,!0,!0),ee=Ve(X,L,!0,!0)),a!=null){let Y=Yd(U,X);return[G,ee,Y]}else return[G,ee]},N={a:x,b:v,bias:b,preluActivationWeights:w},C={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?jr((F,O,L)=>{let V=$.runKernel(oi,N,C);return L([F,O,V]),{value:H(V,g),gradFunc:k}})(x,v):jr((F,O,L,V)=>{let j=$.runKernel(oi,N,C);return V([F,O,j,L]),{value:H(j,g),gradFunc:k}})(x,v,b)}var eR=D({fusedMatMul_:iR});function oR(e){return Km(e,.54,.46)}var lR=D({hammingWindow_:oR});function uR(e){return Km(e,.5,.5)}var Ew=D({hannWindow_:uR});function cR(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(r)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),M(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),M(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),M(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),M(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let u={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(wo,u,h)}var fR=D({cropAndResize_:pR});function mR(e){let t=R(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(To,n,{})}var AR=D({flipLeftRight_:mR});function yR(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");M(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(ll,s,i)}var gR=D({rotateWithOffset_:yR});function El(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),M(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),M(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function xR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=El(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(Vo,{boxes:s,scores:i},l)}var bR=D({nonMaxSuppression_:xR});function _R(e,t,n){let r=wR(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function wR(e,t,n){return kR(e,t,n||vR)}function vR(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function Rw(e,t,n,r,a){return Ym(e,t,n,r,a,0)}function Mw(e,t,n,r,a,s){return Ym(e,t,n,r,a,0,!1,s,!0)}function Fw(e,t,n,r,a,s){return Ym(e,t,n,r,a,s,!0)}function Ym(e,t,n,r,a,s,i=!1,o=!1,l=!1){let c=[];for(let A=0;Aa&&c.push({score:t[A],boxIndex:A,suppressBeginIndex:0});c.sort($w);let u=s>0?-.5/s:0,h=[],d=[];for(;h.length0;){let A=c.pop(),{score:y,boxIndex:g,suppressBeginIndex:x}=A;if(y=x;--b){let w=IR(e,g,h[b]);if(w>=r){v=!0;break}if(A.score=A.score*SR(r,u,w),A.score<=a)break}A.suppressBeginIndex=h.length,v||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&_R(c,A,$w))}let p=h.length,m=n-p;o&&m>0&&(h.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:h};return i&&(f.selectedScores=d),l&&(f.validOutputs=p),f}function IR(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),c=Math.min(a[0],a[2]),u=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),m=(h-c)*(d-u);if(p<=0||m<=0)return 0;let f=Math.max(s,c),A=Math.max(i,u),y=Math.min(o,h),g=Math.min(l,d),x=Math.max(y-f,0)*Math.max(g-A,0);return x/(p+m-x)}function SR(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function $w(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function NR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=El(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:h}=Rw(c,u,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),sn(h,"int32")}var TR=NR;function ER(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=El(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(Uo,c,u);return{selectedIndices:h[0],selectedScores:h[1]}}var CR=D({nonMaxSuppressionWithScore_:ER});async function RR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=El(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],h=c[1],{selectedIndices:d,selectedScores:p}=Fw(u,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:sn(d,"int32"),selectedScores:sn(p)}}var MR=RR;function FR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=El(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:c,iouThreshold:u,scoreThreshold:h,padToMaxOutputSize:s},m=$.runKernel(jo,d,p);return{selectedIndices:m[0],validOutputs:m[1]}}var $R=D({nonMaxSuppressionPadded_:FR});async function DR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=El(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=Mw(d,p,c,u,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:sn(m,"int32"),validOutputs:ve(f,"int32")}}var OR=DR;function zR(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");M(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Gs,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Dw=D({resizeBilinear_:zR});function PR(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");M(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Fu,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Ow=D({resizeNearestNeighbor_:PR});function LR(e,t,n="nearest",r="constant",a=0,s){let i=R(e,"image","transform","float32"),o=R(t,"transforms","transform","float32");M(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},c={interpolation:n,fillMode:r,fillValue:a,outputShape:s};return $.runKernel(ud,l,c)}var WR=D({transform_:LR});function BR(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");M(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(zd(0,s,1,"int32"),[-1,1]),l=zd(0,i,1,"int32"),c=ye(o,l),u=fr(wi(c,ve(+t,"int32")),ja(c,ve(-n,"int32"))),h=Rt([s,i],r.dtype);return H(cn(mr(H(r,[-1,s,i])).map(d=>Cn(u,d,h))),a)}var VR=D({bandPart_:BR});function jR(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Lt(e,e.shape[0],0).map(a=>Ua(a,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a{let s=r[a];if(a>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return zw(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),r=mr(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[c,u]=zw(l,t);a.push(c),s.push(u)});let i=H(cn(a,0),e.shape),o=H(cn(s,0),e.shape);return[i,o]}}function zw(e,t=!1){return $.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Nm(n),s=Br(e),i=er([[1]],[1,1]),o=Br(i),l=n>=r?r:n;for(let c=0;c{let p=Re(s,[c,c],[n-c,1]),m=Kd(p),f=Re(s,[c,c],[1,1]),A=Cn(pr(f,0),er([[-1]]),er([[1]])),y=ye(f,z(A,m)),g=Ae(p,y);g.shape[0]===1?o=Br(i):o=ot([i,Re(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let x=kt(Ae(Ve(A,y),m)),v=Re(s,[c,0],[n-c,r]),b=z(x,o),w=Je(o);if(c===0)s=ye(v,Ve(b,Ve(w,v)));else{let C=ye(v,Ve(b,Ve(w,v)));s=ot([Re(s,[0,0],[c,r]),C],0)}let k=Je(b),N=Re(a,[0,c],[n,a.shape[1]-c]);if(c===0)a=ye(N,Ve(Ve(N,o),k));else{let C=ye(N,Ve(Ve(N,o),k));a=ot([Re(a,[0,0],[n,c]),C],1)}return[o,s,a]}),we([u,h,d])}return!t&&n>r&&(a=Re(a,[0,0],[n,r]),s=Re(s,[0,0],[r,r])),[a,s]})}var GR=D({qr_:HR}),hn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(hn||(hn={}));function qR(e,t,n=hn.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:z(r,a);if(n===hn.NONE)return s;if(n===hn.SUM)return Te(s);if(n===hn.MEAN){if(a==null)return It(s);{let i=r.size/a.size,o=Ae(Te(s),Te(a));return i>1?Ae(o,ve(i)):o}}if(n===hn.SUM_BY_NONZERO_WEIGHTS){if(a==null)return Ae(Te(s),ve(r.size));{let i=z(a,Pn(r.shape)),o=ge(Te(ki(i,ve(0))),"float32");return Ae(Te(s),o)}}throw Error(`Unknown reduction: ${n}`)}var fa=D({computeWeightedLoss_:qR});function XR(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),ln(a.shape,s.shape,"Error in absoluteDifference: ");let o=zt(ye(a,s));return fa(o,i,r)}var KR=D({absoluteDifference_:XR});function ZR(e,t,n,r,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),ln(s.shape,i.shape,"Error in cosineDistance: ");let l=ve(1),c=ye(l,Te(z(s,i),n,!0));return fa(c,o,a)}var YR=D({cosineDistance_:ZR});function JR(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),ln(a.shape,s.shape,"Error in hingeLoss: ");let o=ve(1);a=ye(z(ve(2),a),o);let l=Hr(ye(o,z(a,s)));return fa(l,i,r)}var QR=D({hingeLoss_:JR});function eM(e,t,n,r=1,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),ln(s.shape,i.shape,"Error in huberLoss: ");let l=ve(r),c=zt(ye(i,s)),u=Il(c,l),h=ye(c,u),d=se(z(ve(.5),it(u)),z(l,h));return fa(d,o,a)}var tM=D({huberLoss_:eM});function nM(e,t,n,r=1e-7,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),ln(s.shape,i.shape,"Error in logLoss: ");let l=ve(1),c=ve(r),u=kt(z(s,zn(se(i,c)))),h=z(ye(l,s),zn(se(ye(l,i),c))),d=ye(u,h);return fa(d,o,a)}var rM=D({logLoss_:nM});function aM(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),ln(a.shape,s.shape,"Error in meanSquaredError: ");let o=Gd(a,s);return fa(o,i,r)}var sM=D({meanSquaredError_:aM});function iM(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");ln(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Hr(r),s=z(r,n),i=Rd(Qn(kt(zt(r))));return se(ye(a,s),i)}function oM(e,t,n,r=0,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),ln(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let c=ve(r),u=ve(1),h=ve(.5);s=se(z(s,ye(u,c)),z(h,c))}let l=iM(s,i);return fa(l,o,a)}var lM=D({sigmoidCrossEntropy_:oM});function uM(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return jr((r,a,s)=>{let i=Mm(a,[n],!0),o=ye(ge(a,"float32"),i);s([r,o]);let l=kt(z(o,r));return{value:Te(l,[n]),gradFunc:(c,u)=>{let[h,d]=u,p=vi(c.shape,[n]);return[z(H(c,p),ye(ge(h,"float32"),Qn(d))),z(H(c,p),ye(Qn(d),ge(h,"float32")))]}}})(e,t)}function cM(e,t,n,r=0,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),ln(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let c=ve(r),u=ve(1),h=ve(s.shape[1]);s=se(z(s,ye(u,c)),Ae(c,h))}let l=uM(s,i);return fa(l,o,a)}var hM=D({softmaxCrossEntropy_:cM});function dM(e,t,n){let r=R(e,"inputIndices","sparseReshape"),a=R(t,"inputShape","sparseReshape"),s=R(n,"newShape","sparseReshape");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape - ${r.shape}`);if(a.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${a.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:r,inputShape:a,newShape:s},o=$.runKernel(od,i);return{outputIndices:o[0],outputShape:o[1]}}var pM=D({sparseReshape_:dM}),fM={fft:lc,ifft:Nl,rfft:uc,irfft:Hd},mM={hammingWindow:lR,hannWindow:Ew,frame:Cw,stft:dR},Le={flipLeftRight:AR,resizeNearestNeighbor:Ow,resizeBilinear:Dw,rotateWithOffset:gR,cropAndResize:fR,nonMaxSuppression:bR,nonMaxSuppressionAsync:TR,nonMaxSuppressionWithScore:CR,nonMaxSuppressionWithScoreAsync:MR,nonMaxSuppressionPadded:$R,nonMaxSuppressionPaddedAsync:OR,transform:WR},Pw={bandPart:VR,gramSchmidt:UR,qr:GR},AM={absoluteDifference:KR,computeWeightedLoss:fa,cosineDistance:YR,hingeLoss:QR,huberLoss:tM,logLoss:rM,meanSquaredError:sM,sigmoidCrossEntropy:lM,softmaxCrossEntropy:hM},Lw={sparseReshape:pM},ma=class extends Wb{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return we(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return uw(e,t)}dispose(){this.iterations_!=null&&we(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ve(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ma,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var ep=class extends ma{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:P(()=>He(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:P(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;P(()=>{let l=se(z(i,this.rho),z(it(s),1-this.rho)),c=z(Ae(en(se(o,this.epsilon)),en(se(i,this.epsilon))),s),u=se(z(o,this.rho),z(it(c),1-this.rho));i.assign(l),o.assign(u);let h=se(z(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(we(this.accumulatedGrads.map(e=>e.variable)),we(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};ep.className="Adadelta";Pa(ep);var tp=class extends ma{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:P(()=>Qu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;P(()=>{let i=se(s,it(a));s.assign(i);let o=se(z(Ae(a,en(se(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&we(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};tp.className="Adagrad";Pa(tp);var np=class extends ma{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],P(()=>{this.accBeta1=ve(t).variable(),this.accBeta2=ve(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=ye(1,this.accBeta1),r=ye(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:P(()=>He(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:P(()=>He(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,h=se(z(c,this.beta1),z(l,1-this.beta1)),d=se(z(u,this.beta2),z(it(l),1-this.beta2)),p=Ae(h,n),m=Ae(d,r);c.assign(h),u.assign(d);let f=se(z(Ae(p,se(en(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&we(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&we(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),P(()=>{this.accBeta1.assign(pa(this.beta1,this.iterations_+1)),this.accBeta2.assign(pa(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};np.className="Adam";Pa(np);var rp=class extends ma{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],P(()=>{this.iteration=ve(0).variable(),this.accBeta1=ve(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=ye(1,this.accBeta1),r=Ae(-this.learningRate,se(z(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:He(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:He(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,h=se(z(c,this.beta1),z(l,1-this.beta1)),d=z(u,this.beta2),p=zt(l),m=Ur(d,p);c.assign(h),u.assign(m);let f=se(z(Ae(r,n),Ae(h,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&we(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&we(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};rp.className="Adamax";Pa(rp);var cc=class extends ma{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];P(()=>{let s=se(z(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ht(ve(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};cc.className="SGD";Pa(cc);var ap=class extends cc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ve(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:P(()=>He(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&P(()=>{let i,o=se(z(this.m,a),s);this.useNesterov?i=se(z(this.c,se(s,z(o,this.m))),r):i=se(z(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&we(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};ap.className="Momentum";Pa(ap);var sp=class extends ma{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:P(()=>He(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:P(()=>He(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:P(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;P(()=>{let l=se(z(i,this.decay),z(it(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=se(z(c,this.decay),z(s,1-this.decay)),h=Ae(z(s,this.learningRate),en(ye(l,se(it(u),this.epsilon)))),d=se(z(o,this.momentum),h);i.assign(l),c.assign(u),o.assign(d);let p=ye(r,d);r.assign(p)}else{let c=se(z(i,this.decay),z(it(s),1-this.decay)),u=se(z(o,this.momentum),Ae(z(s,this.learningRate),en(se(c,this.epsilon))));i.assign(c),o.assign(u);let h=ye(r,u);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&we(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&we(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&we(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};sp.className="RMSProp";Pa(sp);var Ii=class{static sgd(e){return new cc(e)}static momentum(e,t,n=!1){return new ap(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new sp(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new np(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new ep(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new rp(e,t,n,r,a)}static adagrad(e,t=.1){return new tp(e,t)}},Si={sgd:Ii.sgd,momentum:Ii.momentum,adadelta:Ii.adadelta,adagrad:Ii.adagrad,rmsprop:Ii.rmsprop,adamax:Ii.adamax,adam:Ii.adam},yM=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function ip(){return new Promise(e=>yM(()=>e()))}var E={};Me(E,{ERF_A1:()=>TM,ERF_A2:()=>EM,ERF_A3:()=>CM,ERF_A4:()=>RM,ERF_A5:()=>MM,ERF_P:()=>NM,PARALLELIZE_THRESHOLD:()=>Jm,SELU_SCALE:()=>Bw,SELU_SCALEALPHA:()=>Ww,applyActivation:()=>Jd,assertAndGetBroadcastShape:()=>ft,assertAxesAreInnerMostDims:()=>ZT,assertParamsConsistent:()=>gM,assignToTypedArray:()=>WM,axesAreInnerMostDims:()=>Cm,calculateShapes:()=>Tb,checkEinsumDimSizes:()=>HM,combineLocations:()=>hw,complexWithEvenIndex:()=>zM,complexWithOddIndex:()=>PM,computeConv2DInfo:()=>Ku,computeConv3DInfo:()=>qb,computeDefaultPad:()=>ym,computeDilation2DInfo:()=>bN,computeOptimalWindowSize:()=>bM,computeOutAndReduceShapes:()=>dw,computeOutShape:()=>xM,computePool2DInfo:()=>Gb,computePool3DInfo:()=>wN,convertConv2DDataFormat:()=>Hb,decodeEinsumEquation:()=>jM,eitherStridesOrDilationsAreOne:()=>Vr,expandShapeToKeepDim:()=>vi,exponent:()=>VM,exponents:()=>BM,fromStringArrayToUint8:()=>ZM,fromUint8ToStringArray:()=>KM,getAxesPermutation:()=>pw,getBroadcastDims:()=>hT,getComplexWithIndex:()=>LM,getEinsumComputePath:()=>GM,getEinsumPermutation:()=>UM,getFusedBiasGradient:()=>Yd,getFusedDyActivation:()=>Zd,getImageCenter:()=>wM,getInnerMostAxes:()=>YT,getPermuted:()=>vM,getReductionAxes:()=>Pt,getReshaped:()=>_M,getReshapedPermuted:()=>kM,getSliceBeginCoords:()=>IM,getSliceSize:()=>SM,getUndoAxesPermutation:()=>Rm,isIdentityPermutation:()=>qM,log:()=>$M,mergeRealAndImagArrays:()=>DM,prepareAndValidate:()=>Nb,prepareSplitSize:()=>XM,segment_util:()=>Vw,shouldFuse:()=>Qd,slice_util:()=>un,splitRealAndImagArrays:()=>OM,tupleValuesAreOne:()=>Wa,upcastType:()=>dr,validateInput:()=>nm,validateUpdateShape:()=>tm,warn:()=>FM});function gM(e,t){let n=e[0].length;e.forEach((a,s)=>{M(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function xM(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function kM(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s/g,jw=",",Uw="...";function jM(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(YM,"").length)/Qm.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${Qm}").`);let[r,a]=e.split(Qm);M(r.indexOf(Uw)===-1,()=>`The ellipsis notation ("${Uw}") is not supported yet.`);let s=r.split(jw),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let d=0;dm.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);o.indexOf(p)===-1&&o.push(p)}for(let d=0;da!==-1),{permutationIndices:n,expandDims:r}}function HM(e,t,n){let r=new Array(e);for(let a=0;a`Expected dimension ${r[t[a][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function GM(e,t){let n=e,r=[],a=0;e.length===0&&n.push(-1),a=e.length+1;for(let i=0;it===n)}function JM(e,t){let n=[];for(let r=0;r"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);M(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}M(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var Vw={};Me(Vw,{collectGatherOpShapeInfo:()=>tF,computeOutShape:()=>eF,segOpComputeOptimalWindowSize:()=>QM});function QM(e,t){let n=!1,r;for(e<=Jm?(r=e,n=!0):r=Mh(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Mh(e,r+1);return r}function eF(e,t,n){let r=[],a=e.length;for(let s=0;sa))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) ( - ${s}).`);if(nfd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function ZM(e){return e.map(t=>Lu(t))}var Gr={};Me(Gr,{nonMaxSuppressionV3Impl:()=>Rw,nonMaxSuppressionV4Impl:()=>Mw,nonMaxSuppressionV5Impl:()=>Fw,whereImpl:()=>ww});function _e(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var nF=Gr.whereImpl,op=class extends gu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Ch(this,ca())}nextDataId(){return op.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&E.warn(` + ${r.shape}`),M(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(Ao,o,l)}var hm=D({depthToSpace_:zN});function PN(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&M(Bt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:c,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(gs,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ml=D({depthwiseConv2d_:PN});function LN(e){let t={x:R(e,"x","diag")};return $.runKernel(Ph,t)}var WN=D({diag_:LN});function BN(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");M(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),M(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),M(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(wu,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var dm=D({dilation2d_:BN});function VN(e,t){let n=e.length,r=[];for(let a=0;a1&&i===1&&r.unshift(s)}return r}function Ot(e,t){let n=[];for(let r=0;r1)&&n.unshift(s)}return n}function dt(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(M(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=H(n,[1,-1]),o=H(r,[-1,1]),l=Be(i,o);return H(l,[])}else if(n.rank===1&&r.rank===2){let i=H(n,[1,-1]),o=H(r,[r.shape[0],r.shape[1]]),l=Be(i,o);return H(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=H(r,[-1,1]),o=Be(n,i);return H(o,[o.size])}else{let i=H(r,[r.shape[0],r.shape[1]]);return Be(n,i)}}var Ow=D({dot_:qN});function XN(e,...t){let n=t.map((a,s)=>R(a,`tensors${s}`,"einsum")),r={equation:e};return $.runKernel(Bh,n,r)}var zw=D({einsum_:XN});function KN(e){let t={x:R(e,"x","elu")};return $.runKernel(yo,t)}var Al=D({elu_:KN});function ZN(e){let t=R(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=Ae(t,"float32"));let n={x:t};return $.runKernel(go,n)}var fm=D({erf_:ZN});function YN(e){let t={x:R(e,"x","exp")};return $.runKernel(ws,t)}var Xn=D({exp_:YN});function JN(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(wo,r,a)}var on=D({expandDims_:JN});function QN(e){let t={x:R(e,"x","expm1")};return $.runKernel(bo,t)}var mm=D({expm1_:QN});function eT(e,t){let n=R(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(Ta,r,a)}var Oa=D({tile_:eT});function tT(e,t,n,r="float32"){t==null&&(t=e);let a=We([e,t],r),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got + rank ${s.rank}.`),M(Bt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:r,beta:a},u=$.runKernel(ku,l,c);return o?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var gm=D({localResponseNormalization_:pT});function fT(e){let t={x:R(e,"x","log")};return $.runKernel(Ns,t)}var Mn=D({log_:fT});function mT(e){let t={x:R(e,"x","log1p")};return $.runKernel(Ro,t)}var Sd=D({log1p_:mT});function AT(e){return M(Ia(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&an(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Nd(i),i[0]})}}function yT(e){return M(Ia(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Wu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&an(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Nd(i),i})}}function gT(e){return M(Ia(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Le,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Le,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return Nd(r),{grad:r[0],value:a}}}function xT(e){return M(Ia(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(a=>a instanceof Le),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Le,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&an(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Nd(r.grads),r}}function Bw(e,t){M(Ia(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(c=>c instanceof zu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in $.registeredVariables)t.push($.registeredVariables[c])}let r=n?t.filter(c=>!c.trainable):null,a=t.length;t=t.filter(c=>c.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);M(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),r!=null&&r.forEach(c=>l[c.name]=null),{value:i,grads:l}}function zr(e){return $.customGrad(e)}function Nd(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that + the f you passed encloses all operations that lead from x to y.`)}function wT(e){let t={x:R(e,"x","neg")};return $.runKernel($o,t)}var _t=D({neg_:wT});function bT(e){let t={x:R(e,"x","softplus")};return $.runKernel(Zo,t)}var Ai=D({softplus_:bT});function _T(e){let t=R(e,"x","logSigmoid");return zr(n=>({value:_t(Ai(_t(n))),gradFunc:r=>B(r,kn(_t(n)))}))(t)}var Vw=D({logSigmoid_:_T});function vT(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(Ts,r,a)}var Kn=D({max_:vT});function kT(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=bt(n,r);let a={a:n,b:r};return $.runKernel(Js,a)}var ye=D({sub_:kT});function IT(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=Ae(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(Ks,a,s)}var Ne=D({sum_:IT});function ST(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return zr((r,a)=>{let s=!0,i=Kn(r,t,!0),o=ye(r,i),l=ye(Ae(o,"float32"),Mn(Ne(Xn(o),t,s)));return a([l]),{value:l,gradFunc:(c,u)=>{let[h]=u,d=!0,p=Xn(h);return ye(c,B(Ne(c,t,d),p))}}})(n)}var Td=D({logSoftmax_:ST});function xm(e,t){for(let n=0;ne[s]);return[n,a]}function yi(e,t){let n=t.map(r=>1);return jw(e,n,t)}function NT(e,t,n){M(xm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Hw(e,t){if(xm(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function wm(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function TT(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),M(Or(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&M(Bt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(Cs,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Yu=D({maxPool_:$T});function DT(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Bt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Iu,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var _m=D({maxPool3d_:DT});function OT(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(Zh,s,i);return{result:o[0],indexes:o[1]}}var qw=D({maxPoolWithArgmax_:OT});function zT(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=bt(n,r),n.dtype==="bool"&&(n=Ae(n,"int32"),r=Ae(r,"int32")),dt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Es,a)}var Pr=D({maximum_:zT});function PT(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(Rs,r,a)}var vt=D({mean_:PT});function Et(e,t="float32"){if(t==="complex64"){let r=Et(e,"float32"),a=Et(e,"float32");return Ca(r,a)}let n=Nh(Nt(e),t);return $.makeTensor(n,e,t)}function Fn(e,t="float32"){if(t==="complex64"){let r=Fn(e,"float32"),a=Et(e,"float32");return Ca(r,a)}let n=Af(Nt(e),t);return $.makeTensor(n,e,t)}function LT(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let r=R(e,"x","meshgrid",e instanceof Le?e.dtype:"float32");if(t===void 0)return[r];let a=R(t,"y","meshgrid",t instanceof Le?t.dtype:"float32"),s=Nt(r.shape),i=Nt(a.shape);return n==="xy"?(r=H(r,[1,-1]),a=H(a,[-1,1]),[Be(Fn([i,1],r.dtype),r),Be(a,Fn([1,s],a.dtype))]):(r=H(r,[-1,1]),a=H(a,[1,-1]),[Be(r,Fn([1,i],r.dtype)),Be(Fn([s,1],a.dtype),a)])}function WT(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(Ms,r,a)}var gl=D({min_:WT});function BT(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=bt(n,r),n.dtype==="bool"&&(n=Ae(n,"int32"),r=Ae(r,"int32")),dt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Fs,a)}var xl=D({minimum_:BT});function VT(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),M(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel($s,i,s)}var vm=D({mirrorPad_:VT});function jT(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=bt(n,r);let a={a:n,b:r};return $.runKernel(Fo,a)}var km=D({mod_:jT});function UT(e){let t=R(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var st=D({square_:UT});function HT(e,t=null,n=!1){e=R(e,"x","moments");let r=sr(t,e.shape),a=vt(e,r,n),s=a.shape;n||(s=yi(a.shape,r));let i=st(ye(Ae(e,"float32"),H(a,s))),o=vt(i,r,n);return{mean:a,variance:o}}var Cd=D({moments_:HT});function GT(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=Wu(n,"c","multiRNNCell"),i=Wu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},c=$.runKernel(Yh,o,l);return i===1?H(c,[c.size]):c}var Xw=D({multinomial_:XT});function KT(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=bt(n,r),dt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Do,a)}var gi=D({notEqual_:KT});function ZT(e){let t={x:R(e,"x","onesLike")};return $.runKernel(Lo,t)}var $n=D({onesLike_:ZT});function YT(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");M(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=H(n,[-1,1]),s=H(r,[1,-1]);return Be(a,s)}var JT=D({outerProduct_:YT});function QT(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(zs,s,a)}var oa=D({pad_:QT});function eE(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),oa(e,[t],n)}var tE=D({pad1d_:eE});function nE(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),oa(e,t,n)}var rE=D({pad2d_:nE});function aE(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),oa(e,t,n)}var sE=D({pad3d_:aE});function iE(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),oa(e,t,n)}var oE=D({pad4d_:iE});function lE(e,t,n){let r=R(e,"x","spaceToBatchND");M(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel(Tu,a,s)}var Ju=D({spaceToBatchND_:lE});function hE(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(Or(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let c=kw(o.shape,t,s,a,r),u=[c.dilationHeight,c.dilationWidth],h;r==="same"?h=cE([c.filterHeight,c.filterWidth],u):h=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[p,m]=uE([c.inHeight,c.inWidth],u,h),f=d?r:"valid",A=d?o:Ju(o,u,p),y=(n==="avg"?()=>Hu(A,t,s,f):()=>Yu(A,t,s,f))(),g=d?y:Gu(y,u,m);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function uE(e,t,n){let r=n.map(u=>u[0]),a=n.map(u=>u[1]),s=e.concat(r,a),i=t.map((u,h)=>(u-s[h]%u)%u),o=a.map((u,h)=>u+i[h]),l=t.map((u,h)=>[r[h],o[h]]),c=t.map((u,h)=>[0,i[h]]);return[l,c]}function cE(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var Kw=D({pool_:hE});function dE(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=bt(n,r);let a={a:n,b:r};return $.runKernel(Ps,a)}var la=D({pow_:dE});function pE(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(Ls,a)}var Qu=D({prelu_:pE});function fE(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=Ae(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(Bo,a,s)}var Rd=D({prod_:fE});function mE(e,t,n){let r=Nt(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},yE=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Im.alea(a.toString()),this.randn=new Sm(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),athis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Im.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function xE(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new yE(t,n,r,a),i=We(e,r);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Dn(t,0)}var EE=D({reverse1d_:TE});function CE(e,t){let n=R(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Dn(n,t)}var RE=D({reverse2d_:CE});function ME(e,t){let n=R(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Dn(n,t)}var FE=D({reverse3d_:ME});function $E(e,t){let n=R(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Dn(n,t)}var DE=D({reverse4d_:$E});function OE(e){let t={x:R(e,"x","round")};return $.runKernel(Us,t)}var Tm=D({round_:OE});function zE(e){let t={x:R(e,"x","rsqrt")};return $.runKernel(Hs,t)}var $d=D({rsqrt_:zE});function ke(e,t){if((tn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&tn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Ra(e,[],[],t)}function PE(e){let t={x:R(e,"x","selu")};return $.runKernel(Go,t)}var Dd=D({selu_:PE});function LE(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),c=R(n,"pointwiseFilter","separableConv2d"),u=o,h=!1;if(o.rank===3&&(h=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),M(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],p=l.shape[3];M(c.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${c.shape[2]}.`);let m=ml(u,l,r,a,i,s),f=ia(m,c,1,"valid",i);return h?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Em=D({separableConv2d_:LE});async function WE(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");M(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let u=0;u`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Re(r,[t],[n])}var Pd=D({slice1d_:UE});function HE(e,t,n){let r=R(e,"x","slice2d");return M(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Rm=D({slice2d_:HE});function GE(e,t,n){let r=R(e,"x","slice3d");return M(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Ld=D({slice3d_:GE});function qE(e,t,n){let r=R(e,"x","slice4d");return M(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var tc=D({slice4d_:qE});function XE(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(Zs,r,a)}var nc=D({softmax_:XE});function KE(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(jh,t)}var rc=D({fft_:KE});function ZE(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Uh,t)}var bl=D({ifft_:ZE});function YE(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=H(e,[n,t]);r=bl(a)}else{let a=[n,2*(t-1)],s=H(ec(e),[n,t]),i=H(kd(e),[n,t]),o=Dn(Re(s,[0,1],[n,t-2]),1),l=B(Dn(Re(i,[0,1],[n,t-2]),1),ke(-1)),c=ot([s,o],1),u=ot([i,l],1),h=H(Ca(c,u),[a[0],a[1]]);r=bl(h)}if(r=ec(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=H(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var Wd=D({irfft_:YE});function JE(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(Yo,r,a)}var ln=D({split_:JE});function QE(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,a=Re(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,a=ot([e,Et(m)],e.shape.length-1),n=t}else a=e;let s=Ue(a),i=H(Ca(a,s),[r,n]),o=rc(i),l=Math.floor(n/2)+1,c=ec(o),u=kd(o),h=ln(c,[l,n-l],c.shape.length-1),d=ln(u,[l,n-l],u.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,H(Ca(h[0],d[0]),p)}var ac=D({rfft_:QE});function eC(e){let t={x:R(e,"x","sqrt")};return $.runKernel(Xs,t)}var Jt=D({sqrt_:eC});function tC(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=bt(n,r),dt(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(Ys,a,s)}var Bd=D({squaredDifference_:tC});function nC(e,t){let n=R(e,"x","squeeze");return H(n,yx(n.shape,t).newShape)}var Pa=D({squeeze_:nC});function rC(e,t=0){let n=Wu(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(Wo,r,a)}var On=D({stack_:rC});function aC(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return $.runKernel(Ea,n,r)}var _l=D({step_:aC});function sC(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let c={x:R(e,"x","stridedSlice")},u={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(Jo,c,u)}var Mm=D({stridedSlice_:sC});function iC(e){let t={x:R(e,"x","tan")};return $.runKernel(Qs,t)}var Fm=D({tan_:iC});function nn(e,t){is(e);let n=$r(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Ra(e,null,n,t)}function Zn(e,t,n){if(is(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=$r(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Ra(e,t,r,n)}function oC(e,t,n){if(is(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=$r(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Ra(e,t,r,n)}function lC(e,t,n){if(is(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=$r(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Ra(e,t,r,n)}function uC(e,t,n){if(is(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=$r(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Ra(e,t,r,n)}function cC(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(Qo,s,i);return{values:o,indices:l}}var $m=D({topk_:cC});function hC(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Sm(t,n,r,!0,a),i=We(e,r);for(let o=0;o0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(ad,r,a);return{values:s,indices:i}}var jd=D({unique_:dC});function pC(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");M(Bt(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(Cu,s,i)}var Dm=D({unsortedSegmentSum_:pC});function fC(e,t=0){let n=R(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(el,r,a)}var ur=D({unstack_:fC});function Jw(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function Qw(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),an(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f"Shape mismatch in v and x");let l=ke(1),c=ye(l,o),u=B(ye(i,s),c);if(a){M(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");u=ge(u,ye(l,la(o,h)))}return se(s,u)}var wC=D({movingAverage_:xC});function bC(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");Hf(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(Uo,s,i)}var tb=D({scatterND_:bC});function _C(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function vC(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);_C(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(nd,o,l)}var zm=D({sparseToDense_:vC});function kC(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return $.runKernel(ko,r)}var nb=D({gatherND_:kC});function IC(e,t){if(t==null)return e.shape.slice();if(na(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Le?a.clone():a;let s=IC(a,n),i=1-t,o=ge(yl(se(wl(s,0,1,"float32",r),i)),i);return B(a,o)}var rb=D({dropout_:SC});function ab(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Pm(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),M(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),an(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];M(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,c]=[i.length/s,s],u=gx("bool",l);for(let h=0;hA.value-f.value),u[h]=0;for(let f=0;fEC,depthwiseConv2d:()=>CC,matMul:()=>RC});function MC(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];M(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),M(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&M(Bt(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(Mh,h,d)}var Lm=D({conv2DBackpropFilter_:MC});function Hd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,_l(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Gd(e,t){let n=t,r=Ot(e.shape,t.shape);return r.length>0&&(n=Ne(n,r)),H(n,e.shape)}function qd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Lr(e);if(t==="elu")return Al(e);if(t==="relu6")return Fd(e);if(t==="prelu")return Qu(e,n);if(t==="leakyrelu")return Ku(e,r);if(t==="sigmoid")return kn(e);throw new Error(`Unknown fused activation ${t}.`)}var Xd=(e,t)=>!(e>0)||t==="linear";function FC({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Xd($.state.gradientDepth,l)===!1){let w=ia(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),qd(w,l,c,u)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&M(Bt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),M(Or(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let f=Uu(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=bt(A,h),dt(f.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused conv2d"));let g=(w,b)=>{let[k,N,C,F]=b,O=Hd(w,C,l);M($a(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let z=um(N.shape,O,k,n,r),V=Lm(N,O,k.shape,n,r),j=[z,V];if(F!=null){let U=Gd(F,O);j.push(U)}return j},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?zr((w,b,k)=>{let N=$.runKernel(ri,x,v);return k([b,w,N]),m&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):zr((w,b,k,N)=>{let C=$.runKernel(ri,x,v);return N([b,w,C,k]),m&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var EC=D({fusedConv2d_:FC});function $C(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(Oh,c,u)}var sb=D({depthwiseConv2dNativeBackpropFilter_:$C});function DC(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(zh,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var ib=D({depthwiseConv2dNativeBackpropInput_:DC});function OC({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Xd($.state.gradientDepth,l)===!1){let w=ml(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),qd(w,l,c,u)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),M(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),M(Or(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&M(Bt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let f=Uu(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=bt(A,h),dt(f.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused depthwiseConv2d"));let g=(w,b)=>{M($a(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[k,N,C,F]=b,O=Hd(w,C,l),z=ib(N.shape,O,k,n,r,s,i),V=sb(N,O,k.shape,n,r,s,i);if(F!=null){let j=Gd(A,O);return[z,V,j]}return[z,V]},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?zr((w,b,k)=>{let N=$.runKernel(ai,x,v);return k([b,w,N]),m&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):zr((w,b,k,N)=>{let C=$.runKernel(ai,x,v);return N([b,w,C,k]),m&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var CC=D({fusedDepthwiseConv2d_:OC});function zC({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Xd($.state.gradientDepth,s)===!1){let F=Be(e,t,n,r);return a!=null&&(F=se(F,a)),qd(F,s,i,o)}let l=R(e,"a","fused matMul"),c=R(t,"b","fused matMul");[l,c]=bt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?c.shape[c.rank-2]:c.shape[c.rank-1],m=l.shape.slice(0,-2),f=c.shape.slice(0,-2),A=Nt(m),y=Nt(f);M(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),M(na(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),M(u===h,()=>`Error in fused matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),x=n?H(l,[A,u,d]):H(l,[A,d,u]),v=r?H(c,[y,p,h]):H(c,[y,h,p]),w;a!=null&&(w=R(a,"bias","fused matMul"),[w]=bt(w,l),dt(g,w.shape));let b;i!=null&&(b=R(i,"prelu weights","fused matMul"));let k=(F,O)=>{let[z,V,j,U]=O,X=Hd(H(F,j.shape),j,s),G,ee;if(!n&&!r?(G=Be(X,V,!1,!0),ee=Be(z,X,!0,!1)):!n&&r?(G=Be(X,V,!1,!1),ee=Be(X,z,!0,!1)):n&&!r?(G=Be(V,X,!1,!0),ee=Be(z,X,!1,!1)):(G=Be(V,X,!0,!0),ee=Be(X,z,!0,!0)),a!=null){let Y=Gd(U,X);return[G,ee,Y]}else return[G,ee]},N={a:x,b:v,bias:w,preluActivationWeights:b},C={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?zr((F,O,z)=>{let V=$.runKernel(ni,N,C);return z([F,O,V]),{value:H(V,g),gradFunc:k}})(x,v):zr((F,O,z,V)=>{let j=$.runKernel(ni,N,C);return V([F,O,j,z]),{value:H(j,g),gradFunc:k}})(x,v,w)}var RC=D({fusedMatMul_:zC});function PC(e){return Pm(e,.54,.46)}var LC=D({hammingWindow_:PC});function WC(e){return Pm(e,.5,.5)}var ob=D({hannWindow_:WC});function BC(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(r)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),M(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),M(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),M(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),M(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let u={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(mo,u,h)}var HC=D({cropAndResize_:UC});function GC(e){let t=R(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(_o,n,{})}var qC=D({flipLeftRight_:GC});function XC(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");M(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(nl,s,i)}var KC=D({rotateWithOffset_:XC});function vl(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),M(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),M(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function ZC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=vl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(Oo,{boxes:s,scores:i},l)}var YC=D({nonMaxSuppression_:ZC});function QC(e,t,n){let r=JC(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function JC(e,t,n){return tR(e,t,n||eR)}function eR(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function ub(e,t,n,r,a){return Wm(e,t,n,r,a,0)}function cb(e,t,n,r,a,s){return Wm(e,t,n,r,a,0,!1,s,!0)}function hb(e,t,n,r,a,s){return Wm(e,t,n,r,a,s,!0)}function Wm(e,t,n,r,a,s,i=!1,o=!1,l=!1){let c=[];for(let A=0;Aa&&c.push({score:t[A],boxIndex:A,suppressBeginIndex:0});c.sort(db);let u=s>0?-.5/s:0,h=[],d=[];for(;h.length0;){let A=c.pop(),{score:y,boxIndex:g,suppressBeginIndex:x}=A;if(y=x;--w){let b=nR(e,g,h[w]);if(b>=r){v=!0;break}if(A.score=A.score*rR(r,u,b),A.score<=a)break}A.suppressBeginIndex=h.length,v||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&QC(c,A,db))}let p=h.length,m=n-p;o&&m>0&&(h.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:h};return i&&(f.selectedScores=d),l&&(f.validOutputs=p),f}function nR(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),c=Math.min(a[0],a[2]),u=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),m=(h-c)*(d-u);if(p<=0||m<=0)return 0;let f=Math.max(s,c),A=Math.max(i,u),y=Math.min(o,h),g=Math.min(l,d),x=Math.max(y-f,0)*Math.max(g-A,0);return x/(p+m-x)}function rR(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function db(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function aR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=vl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:h}=ub(c,u,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),nn(h,"int32")}var sR=aR;function iR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=vl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(Po,c,u);return{selectedIndices:h[0],selectedScores:h[1]}}var oR=D({nonMaxSuppressionWithScore_:iR});async function lR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=vl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],h=c[1],{selectedIndices:d,selectedScores:p}=hb(u,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:nn(d,"int32"),selectedScores:nn(p)}}var uR=lR;function cR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=vl(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:c,iouThreshold:u,scoreThreshold:h,padToMaxOutputSize:s},m=$.runKernel(zo,d,p);return{selectedIndices:m[0],validOutputs:m[1]}}var hR=D({nonMaxSuppressionPadded_:cR});async function dR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=vl(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=cb(d,p,c,u,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:nn(m,"int32"),validOutputs:ke(f,"int32")}}var pR=dR;function fR(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");M(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Bs,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var pb=D({resizeBilinear_:fR});function mR(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");M(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Nu,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var fb=D({resizeNearestNeighbor_:mR});function AR(e,t,n="nearest",r="constant",a=0,s){let i=R(e,"image","transform","float32"),o=R(t,"transforms","transform","float32");M(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},c={interpolation:n,fillMode:r,fillValue:a,outputShape:s};return $.runKernel(rd,l,c)}var yR=D({transform_:AR});function gR(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");M(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(Md(0,s,1,"int32"),[-1,1]),l=Md(0,i,1,"int32"),c=ye(o,l),u=lr(mi(c,ke(+t,"int32")),za(c,ke(-n,"int32"))),h=Et([s,i],r.dtype);return H(On(ur(H(r,[-1,s,i])).map(d=>Sn(u,d,h))),a)}var xR=D({bandPart_:gR});function wR(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=ln(e,e.shape[0],0).map(a=>Pa(a,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a{let s=r[a];if(a>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return mb(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),r=ur(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[c,u]=mb(l,t);a.push(c),s.push(u)});let i=H(On(a,0),e.shape),o=H(On(s,0),e.shape);return[i,o]}}function mb(e,t=!1){return $.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Am(n),s=Dr(e),i=Zn([[1]],[1,1]),o=Dr(i),l=n>=r?r:n;for(let c=0;c{let p=Re(s,[c,c],[n-c,1]),m=Ud(p),f=Re(s,[c,c],[1,1]),A=Sn(or(f,0),Zn([[-1]]),Zn([[1]])),y=ye(f,B(A,m)),g=ge(p,y);g.shape[0]===1?o=Dr(i):o=ot([i,Re(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let x=_t(ge(Be(A,y),m)),v=Re(s,[c,0],[n-c,r]),w=B(x,o),b=Ze(o);if(c===0)s=ye(v,Be(w,Be(b,v)));else{let C=ye(v,Be(w,Be(b,v)));s=ot([Re(s,[0,0],[c,r]),C],0)}let k=Ze(w),N=Re(a,[0,c],[n,a.shape[1]-c]);if(c===0)a=ye(N,Be(Be(N,o),k));else{let C=ye(N,Be(Be(N,o),k));a=ot([Re(a,[0,0],[n,c]),C],1)}return[o,s,a]}),Te([u,h,d])}return!t&&n>r&&(a=Re(a,[0,0],[n,r]),s=Re(s,[0,0],[r,r])),[a,s]})}var vR=D({qr_:_R}),un;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(un||(un={}));function kR(e,t,n=un.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:B(r,a);if(n===un.NONE)return s;if(n===un.SUM)return Ne(s);if(n===un.MEAN){if(a==null)return vt(s);{let i=r.size/a.size,o=ge(Ne(s),Ne(a));return i>1?ge(o,ke(i)):o}}if(n===un.SUM_BY_NONZERO_WEIGHTS){if(a==null)return ge(Ne(s),ke(r.size));{let i=B(a,Fn(r.shape)),o=Ae(Ne(gi(i,ke(0))),"float32");return ge(Ne(s),o)}}throw Error(`Unknown reduction: ${n}`)}var ua=D({computeWeightedLoss_:kR});function IR(e,t,n,r=un.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),an(a.shape,s.shape,"Error in absoluteDifference: ");let o=Dt(ye(a,s));return ua(o,i,r)}var SR=D({absoluteDifference_:IR});function NR(e,t,n,r,a=un.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),an(s.shape,i.shape,"Error in cosineDistance: ");let l=ke(1),c=ye(l,Ne(B(s,i),n,!0));return ua(c,o,a)}var TR=D({cosineDistance_:NR});function ER(e,t,n,r=un.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),an(a.shape,s.shape,"Error in hingeLoss: ");let o=ke(1);a=ye(B(ke(2),a),o);let l=Lr(ye(o,B(a,s)));return ua(l,i,r)}var CR=D({hingeLoss_:ER});function RR(e,t,n,r=1,a=un.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),an(s.shape,i.shape,"Error in huberLoss: ");let l=ke(r),c=Dt(ye(i,s)),u=xl(c,l),h=ye(c,u),d=se(B(ke(.5),st(u)),B(l,h));return ua(d,o,a)}var MR=D({huberLoss_:RR});function FR(e,t,n,r=1e-7,a=un.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),an(s.shape,i.shape,"Error in logLoss: ");let l=ke(1),c=ke(r),u=_t(B(s,Mn(se(i,c)))),h=B(ye(l,s),Mn(se(ye(l,i),c))),d=ye(u,h);return ua(d,o,a)}var $R=D({logLoss_:FR});function DR(e,t,n,r=un.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),an(a.shape,s.shape,"Error in meanSquaredError: ");let o=Bd(a,s);return ua(o,i,r)}var OR=D({meanSquaredError_:DR});function zR(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");an(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Lr(r),s=B(r,n),i=Sd(Xn(_t(Dt(r))));return se(ye(a,s),i)}function PR(e,t,n,r=0,a=un.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),an(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let c=ke(r),u=ke(1),h=ke(.5);s=se(B(s,ye(u,c)),B(h,c))}let l=zR(s,i);return ua(l,o,a)}var LR=D({sigmoidCrossEntropy_:PR});function WR(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return zr((r,a,s)=>{let i=bm(a,[n],!0),o=ye(Ae(a,"float32"),i);s([r,o]);let l=_t(B(o,r));return{value:Ne(l,[n]),gradFunc:(c,u)=>{let[h,d]=u,p=yi(c.shape,[n]);return[B(H(c,p),ye(Ae(h,"float32"),Xn(d))),B(H(c,p),ye(Xn(d),Ae(h,"float32")))]}}})(e,t)}function BR(e,t,n,r=0,a=un.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),an(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let c=ke(r),u=ke(1),h=ke(s.shape[1]);s=se(B(s,ye(u,c)),ge(c,h))}let l=WR(s,i);return ua(l,o,a)}var VR=D({softmaxCrossEntropy_:BR});function jR(e,t,n){let r=R(e,"inputIndices","sparseReshape"),a=R(t,"inputShape","sparseReshape"),s=R(n,"newShape","sparseReshape");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape + ${r.shape}`);if(a.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${a.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:r,inputShape:a,newShape:s},o=$.runKernel(td,i);return{outputIndices:o[0],outputShape:o[1]}}var UR=D({sparseReshape_:jR}),HR={fft:rc,ifft:bl,rfft:ac,irfft:Wd},GR={hammingWindow:LC,hannWindow:ob,frame:lb,stft:jC},Ye={flipLeftRight:qC,resizeNearestNeighbor:fb,resizeBilinear:pb,rotateWithOffset:KC,cropAndResize:HC,nonMaxSuppression:YC,nonMaxSuppressionAsync:sR,nonMaxSuppressionWithScore:oR,nonMaxSuppressionWithScoreAsync:uR,nonMaxSuppressionPadded:hR,nonMaxSuppressionPaddedAsync:pR,transform:yR},Ab={bandPart:xR,gramSchmidt:bR,qr:vR},qR={absoluteDifference:SR,computeWeightedLoss:ua,cosineDistance:TR,hingeLoss:CR,huberLoss:MR,logLoss:$R,meanSquaredError:OR,sigmoidCrossEntropy:LR,softmaxCrossEntropy:VR},yb={sparseReshape:UR},ca=class extends gw{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Te(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Bw(e,t)}dispose(){this.iterations_!=null&&Te(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ke(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ca,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Kd=class extends ca{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:L(()=>Ue(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:L(()=>Ue(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;L(()=>{let l=se(B(i,this.rho),B(st(s),1-this.rho)),c=B(ge(Jt(se(o,this.epsilon)),Jt(se(i,this.epsilon))),s),u=se(B(o,this.rho),B(st(c),1-this.rho));i.assign(l),o.assign(u);let h=se(B(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Te(this.accumulatedGrads.map(e=>e.variable)),Te(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Kd.className="Adadelta";Fa(Kd);var Zd=class extends ca{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:L(()=>Xu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;L(()=>{let i=se(s,st(a));s.assign(i);let o=se(B(ge(a,Jt(se(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Te(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Zd.className="Adagrad";Fa(Zd);var Yd=class extends ca{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],L(()=>{this.accBeta1=ke(t).variable(),this.accBeta2=ke(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);L(()=>{let n=ye(1,this.accBeta1),r=ye(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:L(()=>Ue(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:L(()=>Ue(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,h=se(B(c,this.beta1),B(l,1-this.beta1)),d=se(B(u,this.beta2),B(st(l),1-this.beta2)),p=ge(h,n),m=ge(d,r);c.assign(h),u.assign(d);let f=se(B(ge(p,se(Jt(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Te(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),L(()=>{this.accBeta1.assign(la(this.beta1,this.iterations_+1)),this.accBeta2.assign(la(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Yd.className="Adam";Fa(Yd);var Jd=class extends ca{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],L(()=>{this.iteration=ke(0).variable(),this.accBeta1=ke(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);L(()=>{let n=ye(1,this.accBeta1),r=ge(-this.learningRate,se(B(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:Ue(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:Ue(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,h=se(B(c,this.beta1),B(l,1-this.beta1)),d=B(u,this.beta2),p=Dt(l),m=Pr(d,p);c.assign(h),u.assign(m);let f=se(B(ge(r,n),ge(h,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Te(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Jd.className="Adamax";Fa(Jd);var sc=class extends ca{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];L(()=>{let s=se(B(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Vt(ke(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};sc.className="SGD";Fa(sc);var Qd=class extends sc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ke(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:L(()=>Ue(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&L(()=>{let i,o=se(B(this.m,a),s);this.useNesterov?i=se(B(this.c,se(s,B(o,this.m))),r):i=se(B(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Te(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Qd.className="Momentum";Fa(Qd);var ep=class extends ca{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:L(()=>Ue(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:L(()=>Ue(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:L(()=>Ue(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;L(()=>{let l=se(B(i,this.decay),B(st(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=se(B(c,this.decay),B(s,1-this.decay)),h=ge(B(s,this.learningRate),Jt(ye(l,se(st(u),this.epsilon)))),d=se(B(o,this.momentum),h);i.assign(l),c.assign(u),o.assign(d);let p=ye(r,d);r.assign(p)}else{let c=se(B(i,this.decay),B(st(s),1-this.decay)),u=se(B(o,this.momentum),ge(B(s,this.learningRate),Jt(se(c,this.epsilon))));i.assign(c),o.assign(u);let h=ye(r,u);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Te(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Te(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Te(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};ep.className="RMSProp";Fa(ep);var xi=class{static sgd(e){return new sc(e)}static momentum(e,t,n=!1){return new Qd(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new ep(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new Yd(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new Kd(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new Jd(e,t,n,r,a)}static adagrad(e,t=.1){return new Zd(e,t)}},wi={sgd:xi.sgd,momentum:xi.momentum,adadelta:xi.adadelta,adagrad:xi.adagrad,rmsprop:xi.rmsprop,adamax:xi.adamax,adam:xi.adam},XR=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function tp(){return new Promise(e=>XR(()=>e()))}var E={};Me(E,{ERF_A1:()=>sM,ERF_A2:()=>iM,ERF_A3:()=>oM,ERF_A4:()=>lM,ERF_A5:()=>uM,ERF_P:()=>aM,PARALLELIZE_THRESHOLD:()=>Bm,SELU_SCALE:()=>xb,SELU_SCALEALPHA:()=>gb,applyActivation:()=>qd,assertAndGetBroadcastShape:()=>dt,assertAxesAreInnerMostDims:()=>NT,assertParamsConsistent:()=>KR,assignToTypedArray:()=>yM,axesAreInnerMostDims:()=>xm,calculateShapes:()=>iw,checkEinsumDimSizes:()=>_M,combineLocations:()=>jw,complexWithEvenIndex:()=>fM,complexWithOddIndex:()=>mM,computeConv2DInfo:()=>Uu,computeConv3DInfo:()=>Iw,computeDefaultPad:()=>im,computeDilation2DInfo:()=>YS,computeOptimalWindowSize:()=>YR,computeOutAndReduceShapes:()=>Uw,computeOutShape:()=>ZR,computePool2DInfo:()=>kw,computePool3DInfo:()=>JS,convertConv2DDataFormat:()=>vw,decodeEinsumEquation:()=>wM,eitherStridesOrDilationsAreOne:()=>Or,expandShapeToKeepDim:()=>yi,exponent:()=>xM,exponents:()=>gM,fromStringArrayToUint8:()=>NM,fromUint8ToStringArray:()=>SM,getAxesPermutation:()=>Hw,getBroadcastDims:()=>VN,getComplexWithIndex:()=>AM,getEinsumComputePath:()=>vM,getEinsumPermutation:()=>bM,getFusedBiasGradient:()=>Gd,getFusedDyActivation:()=>Hd,getImageCenter:()=>JR,getInnerMostAxes:()=>TT,getPermuted:()=>eM,getReductionAxes:()=>Ot,getReshaped:()=>QR,getReshapedPermuted:()=>tM,getSliceBeginCoords:()=>nM,getSliceSize:()=>rM,getUndoAxesPermutation:()=>wm,isIdentityPermutation:()=>kM,log:()=>hM,mergeRealAndImagArrays:()=>dM,prepareAndValidate:()=>sw,prepareSplitSize:()=>IM,segment_util:()=>wb,shouldFuse:()=>Xd,slice_util:()=>sn,splitRealAndImagArrays:()=>pM,tupleValuesAreOne:()=>$a,upcastType:()=>ir,validateInput:()=>Hf,validateUpdateShape:()=>Uf,warn:()=>cM});function KR(e,t){let n=e[0].length;e.forEach((a,s)=>{M(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function ZR(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function tM(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s/g,bb=",",_b="...";function wM(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(TM,"").length)/Vm.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${Vm}").`);let[r,a]=e.split(Vm);M(r.indexOf(_b)===-1,()=>`The ellipsis notation ("${_b}") is not supported yet.`);let s=r.split(bb),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let d=0;dm.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);o.indexOf(p)===-1&&o.push(p)}for(let d=0;da!==-1),{permutationIndices:n,expandDims:r}}function _M(e,t,n){let r=new Array(e);for(let a=0;a`Expected dimension ${r[t[a][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function vM(e,t){let n=e,r=[],a=0;e.length===0&&n.push(-1),a=e.length+1;for(let i=0;it===n)}function EM(e,t){let n=[];for(let r=0;r"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);M(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}M(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var wb={};Me(wb,{collectGatherOpShapeInfo:()=>MM,computeOutShape:()=>RM,segOpComputeOptimalWindowSize:()=>CM});function CM(e,t){let n=!1,r;for(e<=Bm?(r=e,n=!0):r=Sh(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Sh(e,r+1);return r}function RM(e,t,n){let r=[],a=e.length;for(let s=0;sa))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) ( + ${s}).`);if(nld(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function NM(e){return e.map(t=>Fu(t))}var Wr={};Me(Wr,{nonMaxSuppressionV3Impl:()=>ub,nonMaxSuppressionV4Impl:()=>cb,nonMaxSuppressionV5Impl:()=>hb,whereImpl:()=>Qw});function be(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var FM=Wr.whereImpl,np=class extends du{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new kh(this,aa())}nextDataId(){return np.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&E.warn(` ============================ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. -============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return ca().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){_e([e],"where");let t=this.readSync(e.dataId);return nF(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};op.nextDataId=0;var eA={};Me(eA,{addImpl:()=>Gw,bincountImpl:()=>tA,bincountReduceImpl:()=>qw,ceilImpl:()=>Xw,concatImpl:()=>nA,expImpl:()=>Kw,expm1Impl:()=>Zw,floorImpl:()=>Yw,gatherV2Impl:()=>Jw,greaterImpl:()=>Qw,lessImpl:()=>e_,linSpaceImpl:()=>t_,logImpl:()=>n_,maxImpl:()=>r_,maximumImpl:()=>a_,minimumImpl:()=>s_,multiplyImpl:()=>rA,negImpl:()=>i_,notEqualImpl:()=>o_,prodImpl:()=>l_,rangeImpl:()=>sA,rsqrtImpl:()=>u_,simpleAbsImpl:()=>Hw,sliceImpl:()=>lp,sparseReshapeImpl:()=>c_,squaredDifferenceImpl:()=>h_,stridedSliceImpl:()=>d_,subImpl:()=>p_,tileImpl:()=>f_,topKImpl:()=>m_,transposeImpl:()=>aA,uniqueImpl:()=>A_});function Hw(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;_e(t,"abs");let r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=Hw(a),n.makeOutput(r,t.shape,"float32")},aF={kernelName:lo,backendName:"cpu",kernelFunc:rF};function Mt(e){return(t,n,r,a,s)=>{let i=E.assertAndGetBroadcastShape(t,n),o=i.length,l=_.computeStrides(i),c=_.sizeFromShape(i),u=_.getTypedArrayFromDType(s,c),h=t.length,d=n.length,p=_.computeStrides(t),m=_.computeStrides(n),f=E.getBroadcastDims(t,i),A=E.getBroadcastDims(n,i);if(f.length+A.length===0)for(let y=0;yx[k]=0);let v=_.locToIndex(x,h,p),b=g.slice(-d);A.forEach(k=>b[k]=0);let w=_.locToIndex(b,d,m);u[y]=e(r[v],a[w])}return[u,i]}}function Bn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var sF={kernelName:zh,backendName:"cpu",kernelFunc:Bn};function up(e,t,n="float32"){if(n==="complex64"){let a=up(e,t,"float32"),s=up(e,t,"float32");return Bn({inputs:{real:a,imag:s},backend:e})}let r=_.makeZerosTypedArray(_.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function qr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var iF={kernelName:Cs,backendName:"cpu",kernelFunc:qr};function Ni(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var oF={kernelName:ad,backendName:"cpu",kernelFunc:Ni};function Ga(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return qr({inputs:{x:a},backend:n});let i=up(n,a.shape,a.dtype),o=Ga({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Bn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Ni({inputs:{input:a},backend:n}),o=Ga({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=qr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=_.toTypedArray([0],a.dtype),[l,c]=Mt((u,h)=>u!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var lF={kernelName:ys,backendName:"cpu",kernelFunc:Ga};function Gt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;_e([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=Ga({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),h=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,p=l.data.get(h.dataId).values,m=l.data.get(d.dataId).values,f=Ga({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(g.dataId).values,[b,w,k]=n(i.shape,o.shape,p,m,x,v),N=l.makeTensorInfo(k,"float32",b),C=l.makeTensorInfo(k,"float32",w),F=Bn({inputs:{real:N,imag:C},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo(C),F}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}}}function iA(e){return(t,n,r,a,s,i)=>{let o=E.assertAndGetBroadcastShape(t,n),l=_.sizeFromShape(o),c=o.length,u=_.computeStrides(o),h=_.getTypedArrayFromDType("float32",l),d=_.getTypedArrayFromDType("float32",l),p=E.getBroadcastDims(t,o),m=E.getBroadcastDims(n,o),f=E.mergeRealAndImagArrays(r,a),A=E.mergeRealAndImagArrays(s,i),y=t.length,g=_.computeStrides(t),x=n.length,v=_.computeStrides(n);if(p.length+m.length===0)for(let b=0;bk[L]=0);let N=_.locToIndex(k,y,g),C=w.slice(-x);m.forEach(L=>C[L]=0);let F=_.locToIndex(C,x,v),O=e(f[N*2],f[N*2+1],A[F*2],A[F*2+1]);h[b]=O.real,d[b]=O.imag}return[h,d,o]}}var Gw=Mt((e,t)=>e+t),uF=iA((e,t,n,r)=>({real:e+n,imag:t+r})),hc=Gt(Ra,Gw,uF),cF={kernelName:Ra,backendName:"cpu",kernelFunc:hc};function tA(e,t,n,r,a){let s=_.sizeFromShape(r),i=_.makeZerosTypedArray(a,n);for(let o=0;o=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function qw(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Be([a,n],t.dtype);for(let o=0;o=n||(r?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function Cl(e){return(t,n,r)=>{let a=_.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=r;if(_e(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=_.sizeFromShape(i.shape),u=n||i.dtype,h=_.getArrayFromDType(u,c);for(let d=0;d{let{x:i}=r;if(_e(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,a);return o.makeTensorInfo(i.shape,c,u)}}var Xw=Cl(e=>Math.ceil(e)),hF=Rl(gs,Xw),dF={kernelName:gs,backendName:"cpu",kernelFunc:hF};function nA(e,t,n,r){let a=_.getArrayFromDType(n,_.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=_.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?E.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;cMath.exp(e)),y_=Rl(Is,Kw),pF={kernelName:Is,backendName:"cpu",kernelFunc:y_},Zw=Cl(e=>Math.expm1(e)),fF=Rl(No,Zw),mF={kernelName:No,backendName:"cpu",kernelFunc:fF},Yw=Cl(e=>Math.floor(e)),AF=Rl(Ss,Yw),yF={kernelName:Ss,backendName:"cpu",kernelFunc:AF};function Jw(e,t,n){let r=Be(n,e.dtype);for(let a=0;ae>t?1:0),gF=Gt(Ro,Qw,null,"bool"),xF={kernelName:Ro,backendName:"cpu",kernelFunc:gF},e_=Mt((e,t)=>eMath.log(e)),_F=Rl(Ms,n_),vF={kernelName:Ms,backendName:"cpu",kernelFunc:_F};function r_(e,t,n,r){let a=_.getTypedArrayFromDType(r,_.sizeFromShape(n));for(let s=0;so&&(o=c)}a[s]=o}return a}var a_=Mt((e,t)=>Math.max(e,t)),kF=Gt($s,a_),IF={kernelName:$s,backendName:"cpu",kernelFunc:kF},s_=Mt((e,t)=>Math.min(e,t)),SF=Gt(Ps,s_),NF={kernelName:Ps,backendName:"cpu",kernelFunc:SF},rA=Mt((e,t)=>e*t),TF=iA((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),cp=Gt(Ws,rA,TF),EF={kernelName:Ws,backendName:"cpu",kernelFunc:cp};function i_(e,t,n){let r=_.createScalarValue(-1,n);return rA([],t,r,e,n)}function CF(e){let{inputs:t,backend:n}=e,{x:r}=t;_e(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=i_(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var RF={kernelName:Wo,backendName:"cpu",kernelFunc:CF},o_=Mt((e,t)=>e!==t?1:0),MF=Gt(Bo,o_,null,"bool"),FF={kernelName:Bo,backendName:"cpu",kernelFunc:MF};function aA(e,t,n,r,a){let s=t.length,i=_.sizeFromShape(t),o=_.computeStrides(t),l=_.computeStrides(a),c=_.getTypedArrayFromDType(n,_.sizeFromShape(a));for(let u=0;un.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,m)}var OF={kernelName:qo,backendName:"cpu",kernelFunc:DF};function sA(e,t,n,r){let a=e===t,s=e1;if(a||s||i)return _.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=_.makeZerosTypedArray(o,r);t1/Math.sqrt(e)),zF=Rl(Zs,u_),PF={kernelName:Zs,backendName:"cpu",kernelFunc:zF};function lp(e,t,n,r,a){let s=un.isSliceContinous(r,t,n),i=_.sizeFromShape(n),o=_.computeStrides(r);if(s){let h=un.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?E.fromUint8ToStringArray(e):e,c=Be(r,a,l),u=Be(n,a);for(let h=0;hm+t[f]);u.set(c.get(...p),...d)}return a==="string"?E.fromStringArrayToUint8(u.values):u.values}function Ti(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;_e(a,"slice");let[o,l]=un.parseSliceParams(a,s,i);un.assertParamsValid(a,o,l);let c=n.data.get(a.dataId).values,u=lp(c,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,u)}var LF={kernelName:Qo,backendName:"cpu",kernelFunc:Ti};function c_(e,t,n,r,a){let s=_.sizeFromShape(r),i=t[0],o=a.length,l=[],c=1,u=-1;for(let A=0;A0){p[d-1]=1;for(let A=d-2;A>=0;--A)p[A]=p[A+1]*r[A+1]}let m=[];if(o>0){m[o-1]=1;for(let A=o-2;A>=0;--A)m[A]=m[A+1]*l[A+1]}let f=_.getArrayFromDType(n,i*o);for(let A=0;A{let n=e-t;return n*n}),WF=Gt(ni,h_),BF={kernelName:ni,backendName:"cpu",kernelFunc:WF};function d_(e,t,n,r){let a=Be(e,t.dtype);for(let s=0;se-t),VF=iA((e,t,n,r)=>({real:e-n,imag:t-r})),oA=Gt(ri,p_,VF),jF={kernelName:ri,backendName:"cpu",kernelFunc:oA};function f_(e,t){let n=new Array(e.rank);for(let a=0;ax.value-g.value);let f=h*r,A=l.subarray(f,f+r),y=c.subarray(f,f+r);for(let g=0;g{for(let A=0;Anew op,1);var x_=rt(vo,e=>e>=0?e:Math.exp(e)-1),UF={kernelName:vo,backendName:"cpu",kernelFunc:x_};function b_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;_e([a],"leakyRelu");let i=_.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=_.getTypedArrayFromDType("float32",i);for(let c=0;ce<0?t*e:e);function w_(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;_e([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=GF(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var qF={kernelName:Us,backendName:"cpu",kernelFunc:w_},__=rt(Hs,e=>Math.max(0,e)),XF={kernelName:Hs,backendName:"cpu",kernelFunc:__},v_=rt(qs,e=>Math.min(Math.max(0,e),6)),KF={kernelName:qs,backendName:"cpu",kernelFunc:v_},k_=rt(Js,e=>1/(1+Math.exp(-e))),ZF={kernelName:Js,backendName:"cpu",kernelFunc:k_};function lA(e,t,n,r,a){if(n==="linear")return qr({inputs:{x:t},backend:e});if(n==="relu")return __({inputs:{x:t},backend:e});if(n==="elu")return x_({inputs:{x:t},backend:e});if(n==="relu6")return v_({inputs:{x:t},backend:e});if(n==="prelu")return w_({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return b_({inputs:{x:t},backend:e,attrs:{alpha:a}});if(n==="sigmoid")return k_({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function mt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=_.sizeFromShape(a.shape),o=_.inferFromImplicitShape(s,i),l=_.sizeFromShape(o);_.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let c=n.data.get(a.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,h=c.complexTensorInfos.imag;u.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var YF={kernelName:Ko,backendName:"cpu",kernelFunc:mt};function I_(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;_e([a,s],"matMul");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=_.sizeFromShape(m),y=_.sizeFromShape(f),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],b=o?[y,p,h]:[y,h,p],w=mt({inputs:{x:a},backend:n,attrs:{shape:v}}),k=mt({inputs:{x:s},backend:n,attrs:{shape:b}}),N=i?w.shape[1]:w.shape[2],C=i?w.shape[2]:w.shape[1],F=o?k.shape[1]:k.shape[2],O=Math.max(A,y),L=n.data.get(w.dataId).values,V=n.data.get(k.dataId).values,j=_.computeStrides(w.shape),U=_.computeStrides(k.shape),[X,G,ee]=i?[j[0],1,j[1]]:[j[0],j[1],1],[Y,ae,te]=o?[1,U[1],U[0]]:[U[1],1,U[0]],ie=C*F,Q=Be([O,C,F],w.dtype),he=Q.values,oe=n.blockSize;for(let me=0;meMath.acos(e)),n$={kernelName:uo,backendName:"cpu",kernelFunc:t$},r$=rt(co,e=>Math.acosh(e)),a$={kernelName:co,backendName:"cpu",kernelFunc:r$};function s$(e){let{inputs:t,backend:n}=e,r=t;_e(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Be(r[0].shape,r[0].dtype),i=s.values;for(let o=0;og&&(g=b,x=v)}p[A]=x}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var d$={kernelName:fs,backendName:"cpu",kernelFunc:h$};function p$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;_e(a,"argMin");let i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=tr({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],E.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,h]=E.computeOutAndReduceShapes(l.shape,i),d=_.sizeFromShape(u),p=_.makeZerosTypedArray(d,"int32"),m=_.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let A=0;An.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var f$={kernelName:wu,backendName:"cpu",kernelFunc:p$},m$=rt(fo,e=>Math.asin(e)),A$={kernelName:fo,backendName:"cpu",kernelFunc:m$},y$=rt(mo,e=>Math.asinh(e)),g$={kernelName:mo,backendName:"cpu",kernelFunc:y$},x$=rt(Ao,e=>Math.atan(e)),b$={kernelName:Ao,backendName:"cpu",kernelFunc:x$},w$=Mt((e,t)=>Math.atan2(e,t)),_$=Gt(go,w$),v$={kernelName:go,backendName:"cpu",kernelFunc:_$},k$=rt(yo,e=>Math.atanh(e)),I$={kernelName:yo,backendName:"cpu",kernelFunc:k$};function uA(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,c=a.dilationWidth,u=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Be(a.outShape,n),A=f.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],x=a.outShape[3];for(let v=0;vG?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let ae=L+V*x+k;A[ae]=s==="avg"?ee/Y:G}}}return f}function S_(e,t,n,r,a=!1,s=!1){let i=Be(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,c=r.dilationHeight,u=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,m=r.padInfo.left,f=Be(t,n,e);for(let A=0;AF&&(F=X,a?O=s?((A*r.inHeight+L)*r.inWidth+j)*r.inChannels+y:(L*r.inWidth+j)*r.inChannels+y:O=V*d+U)}}i.set(O,A,g,w,y)}}return i}function N_(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,c=a.dilationDepth,u=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,m=a.effectiveFilterWidth,f=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Be(a.outShape,n),v=x.values,b=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],w=a.outShape[2]*a.outShape[3]*a.outShape[4],k=a.outShape[3]*a.outShape[4],N=a.outShape[4];for(let C=0;CIe?Ie=je:s==="avg"&&(Se+=je,Fe++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let Oe=pe+L;v[Oe]=s==="avg"?Se/Fe:Ie}}}}return x}function S$(e,t){let n=Be(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,m=t.padInfo.left;for(let f=0;f=V&&(V=te,j=X*u*h+ee*u+ae)}}}n.set(j,f,y,b,C,A)}}}return n}function N$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;_e(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=qr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),m=uA(d,a.shape,a.dtype,p,u,"avg");h=n.makeTensorInfo(u.outShape,a.dtype,m.values)}return h}var T$={kernelName:ms,backendName:"cpu",kernelFunc:N$};function E$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;_e(a,"avgPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=N_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var C$={kernelName:_u,backendName:"cpu",kernelFunc:E$};function R$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;_e([a,s],"avgPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=u.strideDepth,d=u.strideHeight,p=u.strideWidth,m=u.filterDepth,f=u.filterHeight,A=u.filterWidth,y=u.dilationDepth,g=u.dilationHeight,x=u.dilationWidth,v=u.effectiveFilterDepth,b=u.effectiveFilterHeight,w=u.effectiveFilterWidth,k=v-1-u.padInfo.front,N=w-1-u.padInfo.left,C=b-1-u.padInfo.top,F=Be(s.shape,"float32"),O=1/(m*f*A),L=n.bufferSync(a);for(let V=0;V=u.outDepth||Math.floor(Q)!==Q))for(let he=0;he=u.outHeight||Math.floor(oe)!==oe))for(let me=0;me=u.outWidth||Math.floor(pe)!==pe||(te+=L.get(V,Q,oe,pe,j))}}}F.set(te*O,V,U,X,G,j)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var M$={kernelName:Dh,backendName:"cpu",kernelFunc:R$};function F$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;_e([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=u.strideHeight,d=u.strideWidth,p=u.filterHeight,m=u.filterWidth,f=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,x=g-1-u.padInfo.left,v=y-1-u.padInfo.top,b=Be(i.shape,"float32"),w=1/(p*m),k=n.data.get(a.dataId).values,N=Be(a.shape,"float32",k);for(let C=0;C=u.outHeight||Math.floor(G)!==G))for(let ee=0;ee=u.outWidth||Math.floor(Y)!==Y||(U+=N.get(C,G,Y,F))}}b.set(U*w,C,O,L,F)}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var $$={kernelName:$h,backendName:"cpu",kernelFunc:F$};function D$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;_.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),_e([a,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=r;c==null&&(c=.001);let u=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(u.length),A=m.length,y=p.length,g=d.length,x=h.length,v=0,b=0,w=0,k=0;for(let N=0;N=A&&(v=0),b>=x&&(b=0),w>=y&&(w=0),k>=g&&(k=0);return n.makeTensorInfo(a.shape,a.dtype,f)}var O$={kernelName:Ts,backendName:"cpu",kernelFunc:D$};function z$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_e([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=mt({inputs:{x:a},backend:n,attrs:{shape:l}}),m=tr({inputs:{x:p},backend:n,attrs:{perm:c}}),f=mt({inputs:{x:m},backend:n,attrs:{shape:u}}),A=Ti({inputs:{x:f},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var P$={kernelName:vu,backendName:"cpu",kernelFunc:z$};function L$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,c=tA(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var W$={kernelName:Oh,backendName:"cpu",kernelFunc:L$},B$=rt(Ma,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;cf.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>_.sizeFromShape(f.shape)>0);if(o.length===1)return qr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(E.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>Ni({inputs:{input:v},backend:n})),A=o.map(v=>Ml({inputs:{input:v},backend:n})),y=Fl({inputs:f,backend:n,attrs:{axis:s}}),g=Fl({inputs:A,backend:n,attrs:{axis:s}}),x=Bn({inputs:{real:y,imag:g},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),A.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),x}let c=o.map(f=>{let A=_.sizeFromShape(f.shape.slice(s));return mt({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),u=c.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=E.computeOutShape(c.map(f=>f.shape),1);let h=c[0].shape[0]===1,d=nA(u,i,t[0].dtype,h),p=E.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(p,t[0].dtype,d);return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var G$={kernelName:xo,backendName:"cpu",kernelFunc:Fl};function T_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r;_e([a,s],"conv2d");let h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,x=d.dataFormat==="channelsLast",v=new Ot(d.outShape,a.dtype),b=_.computeStrides(a.shape),w=_.computeStrides(s.shape),k=b[0],N=x?b[1]:b[2],C=x?b[2]:1,F=x?1:b[1],O=v.strides[0],L=x?v.strides[1]:v.strides[2],V=x?v.strides[2]:1,j=x?1:v.strides[1],U=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=v.values;for(let ee=0;ee=d.inHeight)continue;let me=he*w[0],pe=Y+oe*N;for(let Ie=0;Ie=d.inWidth)continue;let et=me+Oe*w[1],tt=pe+$e*C,st=et;for(let Ke=0;Ke=c.inDepth)continue;let ee=X*C[0],Y=O+G*N[1];for(let ae=0;ae=c.inHeight)continue;let oe=ee+Q*C[1],me=Y+he*N[2];for(let pe=0;pe=c.inWidth)continue;let $e=oe+Fe*C[2],et=me+Oe*c.inChannels,tt=$e;for(let st=0;stMath.cos(e)),sD={kernelName:ws,backendName:"cpu",kernelFunc:aD},iD=rt(bo,e=>Math.cosh(e)),oD={kernelName:bo,backendName:"cpu",kernelFunc:iD};function lD(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,[u,h,d,p]=a.shape,m=s.shape[0],[f,A]=o,y=Be([m,f,A,p],"float32"),g=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(a.dataId).values,b=_.computeStrides(a.shape),w=_.computeStrides(y.shape);for(let k=0;k=u)continue;let j=f>1?(O-C)*(h-1)/(f-1):0,U=A>1?(L-F)*(d-1)/(A-1):0;for(let X=0;X1?C*(h-1)+X*j:.5*(C+O)*(h-1);if(G<0||G>h-1){for(let ee=0;ee1?F*(d-1)+te*U:.5*(F+L)*(d-1);if(ie<0||ie>d-1){for(let me=0;me1?F*(d-1)+ee*U:.5*(F+L)*(d-1);if(Y<0||Y>d-1){for(let ie=0;iey+m-g-1:(y,g)=>y+g;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],c=a.shape[2],u=a.shape[3],h=l*s,d=c*s,p=u/(s*s),m=n.data.get(a.dataId).values,f=new Float32Array(o*h*d*p),A=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=E.computeConv2DInfo(a.shape,s.shape,i,d,o,c,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:y,padInfo:g}=p,x=g.left,v=g.top,b=p.outChannels/p.inChannels,w=new Ot(p.outShape,a.dtype),k=n.data.get(a.dataId).values,N=n.data.get(s.dataId).values,C=w.values;for(let F=0;F=p.inHeight)continue;let ee=X*h[0],Y=O+G*u[1];for(let ae=0;ae=p.inWidth)continue;let oe=ee+Q*h[1],me=Y+he*p.inChannels,pe=te,Ie=oe;for(let Se=0;Se{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(r.dataId).values,u=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:m,inWidth:f,inChannels:A,outHeight:y,outWidth:g,padInfo:x,strideHeight:v,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:N,dilationWidth:C,outShape:F}=E.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),O=_.sizeFromShape(F),L=F.length,V=_.getArrayFromDType(r.dtype,O);for(let j=0;j=0&&Q=0&&oeae&&(ae=Ie)}}}let te=_.locToIndex([j,U,G,Y],L,_.computeStrides(F));V[te]=ae}}}return{dataId:l.write(_.toTypedArray(V,r.dtype),F,r.dtype),shape:F,dtype:r.dtype}}},kD={kernelName:Gh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:b,filterWidth:w,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${Gh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(a.shape,a.dtype);for(let L=0;L=0&&ie=0&&heee&&(ee=oe,Y=te,ae=Q)}}}O[Y][ae][G]+=F[L][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},ID={kernelName:Hh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:b,filterWidth:w,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${Hh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(r.shape,r.dtype);for(let L=0;L=0&&ie=0&&heee&&(ee=oe,Y=ie,ae=he)}}}O[L][Y][ae][G]+=F[L][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function dc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"sum");let o;a.dtype==="bool"?o=Ga({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=qr({inputs:{x:a},backend:n});let l=o.shape.length,c=_.parseAxisParam(s,o.shape),u=E.getAxesPermutation(c,l),h=c,d=o;u!=null&&(d=tr({inputs:{x:o},backend:n,attrs:{perm:u}}),h=E.getInnerMostAxes(h.length,l)),E.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,m]=E.computeOutAndReduceShapes(d.shape,h),f=E.upcastType(d.dtype,"int32"),A=up(n,p,f),y=_.sizeFromShape(m),g=n.data.get(A.dataId).values,x=n.data.get(d.dataId).values;for(let v=0;v=0&&(d=dc({inputs:{x:d},backend:n,attrs:{axis:c[f]-(i.length-p),keepDims:!1}}),m.push(d)),p--)}for(let f of m)f!==d&&n.disposeIntermediateTensorInfo(f);return d}var TD={kernelName:qh,backendName:"cpu",kernelFunc:ND};function ED(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;_e([r,a],"eluGrad");let s=new Float32Array(_.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(a.shape,"float32",s)}var CD={kernelName:Xh,backendName:"cpu",kernelFunc:ED},RD=Mt((e,t)=>e===t?1:0),C_=Gt(Io,RD,null,"bool"),MD={kernelName:Io,backendName:"cpu",kernelFunc:C_},FD=E.ERF_P,$D=E.ERF_A1,DD=E.ERF_A2,OD=E.ERF_A3,zD=E.ERF_A4,PD=E.ERF_A5,LD=rt(ko,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+FD*n);return t*(1-((((PD*r+zD)*r+OD)*r+DD)*r+$D)*r*Math.exp(-n*n))}),WD={kernelName:ko,backendName:"cpu",kernelFunc:LD};function hp(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),mt({inputs:{x:a},backend:n,attrs:{shape:o}})}var BD={kernelName:So,backendName:"cpu",kernelFunc:hp},VD=Mt((e,t)=>e/t),cA=Gt(ks,VD),hA={kernelName:ks,backendName:"cpu",kernelFunc:cA};function R_(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[a,s],u=_.sizeFromShape(c),h=_.getTypedArrayFromDType("float32",u),d=_.getTypedArrayFromDType("float32",u);for(let A=0;A{let{image:r}=e,a=n,s=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[i,o,l,c]=r.shape,u=a.data.get(r.dataId).values;for(let h=0;h=0&&xMath.floor(e/t)),JD=Gt(Ns,YD,null,"int32"),QD={kernelName:Ns,backendName:"cpu",kernelFunc:JD};function eO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=T_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=hc({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=lA(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var tO={kernelName:li,backendName:"cpu",kernelFunc:eO};function nO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=E_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=hc({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=lA(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var rO={kernelName:ui,backendName:"cpu",kernelFunc:nO};function aO(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=_.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,c,u,h]=E.prepareAndValidate(r,a);if(c===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Be([c,u],r.dtype),p=n.data.get(a.dataId).values,m=n.data.get(r.dataId).values;for(let f=0;f=s/u)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;ge>=t?1:0),uO=Gt(Es,lO,null,"bool"),cO={kernelName:Es,backendName:"cpu",kernelFunc:uO};function hO(e){let{inputs:t,backend:n}=e,{input:r}=t,a=_.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=mt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=R_(o,!0,n),c=mt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var dO={kernelName:Zh,backendName:"cpu",kernelFunc:hO},pO=rt(Mo,e=>Number.isFinite(e)?1:0,"bool"),fO={kernelName:Mo,backendName:"cpu",kernelFunc:pO},mO=rt(Fo,e=>Math.abs(e)===Infinity?1:0,"bool"),AO={kernelName:Fo,backendName:"cpu",kernelFunc:mO},yO=rt($o,e=>Number.isNaN(e)?1:0,"bool"),gO={kernelName:$o,backendName:"cpu",kernelFunc:yO},xO=Mt((e,t)=>e<=t?1:0),bO=Gt(Oo,xO,null,"bool"),wO={kernelName:Oo,backendName:"cpu",kernelFunc:bO};function _O(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=t_(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var vO={kernelName:Jh,backendName:"cpu",kernelFunc:_O},kO=rt(zo,e=>Math.log1p(e)),IO={kernelName:zo,backendName:"cpu",kernelFunc:kO},SO=Mt((e,t)=>e&&t),NO=Gt(Po,SO,null,"bool"),TO={kernelName:Po,backendName:"cpu",kernelFunc:NO},EO=rt(Tu,e=>e?0:1,"bool"),CO={kernelName:Tu,backendName:"cpu",kernelFunc:EO},RO=Mt((e,t)=>e||t),MO=Gt(Eu,RO,null,"bool"),FO={kernelName:Eu,backendName:"cpu",kernelFunc:MO};function $O(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;_e(a,"LRN");let c=a.shape[3],u=c-1,h=n.data.get(a.dataId).values,d=_.sizeFromShape(a.shape),p=new Float32Array(d);function m(f){let A=f%c,y=f-A+Math.max(0,A-s),g=f-A+Math.min(A+s,u),x=0;for(;y<=g;y++){let v=h[y];x+=v*v}return x}for(let f=0;f`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=qr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),m=uA(d,a.shape,a.dtype,p,u,"max");h=n.makeTensorInfo(u.outShape,a.dtype,m.values)}return h}var WO={kernelName:Ds,backendName:"cpu",kernelFunc:LO};function BO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;_e(a,"maxPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=N_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var VO={kernelName:Ru,backendName:"cpu",kernelFunc:BO};function jO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;_e([a,s],"maxPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=n.bufferSync(s),d=S$(h,u),p=u.strideDepth,m=u.strideHeight,f=u.strideWidth,A=u.dilationDepth,y=u.dilationHeight,g=u.dilationWidth,x=u.effectiveFilterDepth,v=u.effectiveFilterHeight,b=u.effectiveFilterWidth,w=x-1-u.padInfo.front,k=b-1-u.padInfo.left,N=v-1-u.padInfo.top,C=Be(s.shape,"float32"),F=n.bufferSync(a);for(let O=0;O=u.outDepth||Math.floor(te)!==te))for(let ie=0;ie=u.outHeight||Math.floor(Q)!==Q))for(let he=0;he=u.outWidth||Math.floor(oe)!==oe)continue;let me=x*v*b-1-d.get(O,te,Q,oe,L),pe=ae*v*b+ie*b+he,Ie=me===pe?1:0;Ie!==0&&(Y+=F.get(O,te,Q,oe,L)*Ie)}}}C.set(Y,O,V,j,U,L)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var UO={kernelName:td,backendName:"cpu",kernelFunc:jO};function HO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;_e([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=E.computePool2DInfo(o.shape,l,c,1,u,h),p=n.data.get(o.dataId).values,m=Be(d.outShape,o.dtype,S_(p,o.shape,o.dtype,d).values),f=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,x=d.effectiveFilterHeight,v=d.effectiveFilterWidth,b=v-1-d.padInfo.left,w=x-1-d.padInfo.top,k=Be(o.shape,"float32"),N=n.data.get(a.dataId).values,C=Be(a.shape,"float32",N);for(let F=0;F=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y=d.outWidth||Math.floor(ae)!==ae)continue;let te=x*v-1-m.get(F,ee,ae,O),ie=G*v+Y,Q=te===ie?1:0;Q!==0&&(X+=C.get(F,ee,ae,O)*Q)}}k.set(X,F,L,V,O)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var GO={kernelName:ed,backendName:"cpu",kernelFunc:HO};function qO(e,t,n,r,a){let s=_.computeStrides(t),i=uA(e,t,n,s,a,"max"),o=S_(e,t,n,a,!0,r);return[i.values,o.values]}var XO={kernelName:nd,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_e(r,"MaxPoolWithArgmax");let c=l.data.get(r.dataId).values,u=E.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=qO(c,r.shape,r.dtype,o,u),p=l.write(h,u.outShape,r.dtype),m=l.write(d,u.outShape,r.dtype);return[{dataId:p,shape:u.outShape,dtype:r.dtype},{dataId:m,shape:u.outShape,dtype:"int32"}]}};function KO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=_.parseAxisParam(s,a.shape),l=E.computeOutAndReduceShapes(a.shape,o)[1],c=_.sizeFromShape(l),u=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(h);let d=Ga({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});u.push(d);let p=cA({inputs:{a:d,b:h},backend:n});u.push(p);let m=dc({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var ZO={kernelName:Os,backendName:"cpu",kernelFunc:KO};function YO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"min");let o=_.parseAxisParam(s,a.shape),l=o,c=E.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=tr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,a.shape.length)),E.assertAxesAreInnerMostDims("min",l,u.shape.length);let[h,d]=E.computeOutAndReduceShapes(u.shape,l),p=_.sizeFromShape(d),m=_.makeZerosTypedArray(_.sizeFromShape(h),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;yg[0]+a.shape[x]+g[1]),l=s.map(g=>g[0]),c=s.map((g,x)=>g[0]+a.shape[x]),u=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=_.computeStrides(a.shape),m=_.sizeFromShape(o),f=o.length,A=_.computeStrides(o),y=_.getTypedArrayFromDType(a.dtype,m);for(let g=0;g=c[b]&&(x[b]=(c[b]-1)*2-x[b]+u);x=x.map((b,w)=>b-l[w]);let v=_.locToIndex(x,d,p);y[g]=h[v]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var ez={kernelName:Ls,backendName:"cpu",kernelFunc:QO},tz=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),nz=Gt(Lo,tz),rz={kernelName:Lo,backendName:"cpu",kernelFunc:nz},az=so(o5());function F_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=_.parseAxisParam([o],a.shape),c=M_({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=E.expandShapeToKeepDim(c.shape,l),h=mt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=oA({inputs:{a,b:h},backend:n}),p=y_({inputs:{x:d},backend:n}),m=dc({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),f=mt({inputs:{x:m},backend:n,attrs:{shape:u}}),A=cA({inputs:{a:p,b:f},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var sz={kernelName:ti,backendName:"cpu",kernelFunc:F_};function iz(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;_e(a,"multinomial");let l=o?a:F_({inputs:{logits:a},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],h=n.data.get(l.dataId).values,d=[c,s],p=_.makeZerosTypedArray(_.sizeFromShape(d),"int32");for(let m=0;m=0&&u[h]{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=hp({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=Fl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var wz={kernelName:Go,backendName:"cpu",kernelFunc:D_};function _z(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;_e(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),c=n.data.get(a.dataId).values,u=_.sizeFromShape(a.shape),h=a.shape.length,d=_.computeStrides(a.shape),p=_.sizeFromShape(o),m=o.length,f=_.computeStrides(o),A=_.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;yv+l[b]),x=_.locToIndex(g,m,f);A[x]=c[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var O_={kernelName:Vs,backendName:"cpu",kernelFunc:_z},vz=Mt((e,t)=>Math.pow(e,t)),kz=Gt(js,vz),Iz={kernelName:js,backendName:"cpu",kernelFunc:kz};function Sz(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=sA(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var Nz={kernelName:Mu,backendName:"cpu",kernelFunc:Sz},Tz=rt(Xo,e=>1/e),Ez={kernelName:Xo,backendName:"cpu",kernelFunc:Tz};function Cz(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;_e(a,"resizeBilinear");let l=_.computeStrides(a.shape),[c,u]=o,[h,d,p,m]=a.shape,f=n.data.get(a.dataId).values,A=new Float32Array(_.sizeFromShape([h,c,u,m])),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=0,v=y[0]/g[0],b=y[1]/g[1];for(let w=0;w1?c-1:c,i&&p>1?u-1:u],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=f[0]/A[0],g=f[1]/A[1],x=n.data.get(s.dataId).values,v=0;for(let b=0;b1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=y[0]/g[0],v=y[1]/g[1],b=0;for(let w=0;w1?u-1:u,i&&m>1?h-1:h],g=[i&&p>1?p-1:p,i&&m>1?m-1:m],x=y[0]/g[0],v=y[1]/g[1],b=1/x,w=1/v,k=Math.ceil(b)*2+2,N=Math.ceil(w)*2+2;for(let C=0;C=p)continue;let Q=F+ie*l[1],he=ie*x,oe=Math.min(u-1,i?Math.round(he):Math.floor(he));if(O===oe)for(let me=0;me=m)continue;let Ie=Q+pe*l[2],Se=pe*v,Fe=Math.min(h-1,i?Math.round(Se):Math.floor(Se));U===Fe&&(ae+=A[Ie+Y])}}f[X+Y]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,f)}var zz={kernelName:sd,backendName:"cpu",kernelFunc:Oz};function Pz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;_e(a,"reverse");let i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return qr({inputs:{x:a},backend:n});let l=new Ot(a.shape,a.dtype),c=n.bufferSync(a);for(let u=0;ud[p]=a.shape[p]-1-d[p]),l.set(c.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var Lz={kernelName:Xs,backendName:"cpu",kernelFunc:Pz},Wz={kernelName:ll,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[c,u,h,d]=r.shape,[p,m]=E.getImageCenter(i,u,h),f=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let x=0;x=0&&V=0&&j{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),Vz={kernelName:Ks,backendName:"cpu",kernelFunc:Bz};function z_(e,t,n,r,a,s,i,o,l,c){let u=[r/a,a],h=e.values,d=t.values;if(r===0)return Be(n,t.dtype);let p=Be(u,t.dtype);p.values.fill(l);for(let m=0;m=r/a)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y1||a.shape.length===1?1:_.sizeFromShape(a.shape.slice(1));for(let m=0;me>=0?Xz*e:qz*(Math.exp(e)-1)),Zz={kernelName:Jo,backendName:"cpu",kernelFunc:Kz},Yz=rt(tl,e=>e<0?-1:e>0?1:0),Jz={kernelName:tl,backendName:"cpu",kernelFunc:Yz},Qz=rt(Ys,e=>Math.sin(e)),eP={kernelName:Ys,backendName:"cpu",kernelFunc:Qz},tP=rt(el,e=>Math.sinh(e)),nP={kernelName:el,backendName:"cpu",kernelFunc:tP},rP=11920928955078125e-23,P_=Math.log(rP)+2,aP=rt(nl,e=>{let t=e>-P_,n=e0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return aa().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){be([e],"where");let t=this.readSync(e.dataId);return FM(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};np.nextDataId=0;var jm={};Me(jm,{addImpl:()=>kb,bincountImpl:()=>Um,bincountReduceImpl:()=>Ib,ceilImpl:()=>Sb,concatImpl:()=>Hm,expImpl:()=>Nb,expm1Impl:()=>Tb,floorImpl:()=>Eb,gatherV2Impl:()=>Cb,greaterImpl:()=>Rb,lessImpl:()=>Mb,linSpaceImpl:()=>Fb,logImpl:()=>$b,maxImpl:()=>Db,maximumImpl:()=>Ob,minimumImpl:()=>zb,multiplyImpl:()=>Gm,negImpl:()=>Pb,notEqualImpl:()=>Lb,prodImpl:()=>Wb,rangeImpl:()=>Xm,rsqrtImpl:()=>Bb,simpleAbsImpl:()=>vb,sliceImpl:()=>rp,sparseReshapeImpl:()=>Vb,squaredDifferenceImpl:()=>jb,stridedSliceImpl:()=>Ub,subImpl:()=>Hb,tileImpl:()=>Gb,topKImpl:()=>qb,transposeImpl:()=>qm,uniqueImpl:()=>Xb});function vb(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;be(t,"abs");let r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=vb(a),n.makeOutput(r,t.shape,"float32")},DM={kernelName:no,backendName:"cpu",kernelFunc:$M};function Ct(e){return(t,n,r,a,s)=>{let i=E.assertAndGetBroadcastShape(t,n),o=i.length,l=_.computeStrides(i),c=_.sizeFromShape(i),u=_.getTypedArrayFromDType(s,c),h=t.length,d=n.length,p=_.computeStrides(t),m=_.computeStrides(n),f=E.getBroadcastDims(t,i),A=E.getBroadcastDims(n,i);if(f.length+A.length===0)for(let y=0;yx[k]=0);let v=_.locToIndex(x,h,p),w=g.slice(-d);A.forEach(k=>w[k]=0);let b=_.locToIndex(w,d,m);u[y]=e(r[v],a[b])}return[u,i]}}function zn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var OM={kernelName:Rh,backendName:"cpu",kernelFunc:zn};function ap(e,t,n="float32"){if(n==="complex64"){let a=ap(e,t,"float32"),s=ap(e,t,"float32");return zn({inputs:{real:a,imag:s},backend:e})}let r=_.makeZerosTypedArray(_.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Br(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var zM={kernelName:Is,backendName:"cpu",kernelFunc:Br};function bi(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var PM={kernelName:Jh,backendName:"cpu",kernelFunc:bi};function Wa(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Br({inputs:{x:a},backend:n});let i=ap(n,a.shape,a.dtype),o=Wa({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=zn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=bi({inputs:{input:a},backend:n}),o=Wa({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=Br({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=_.toTypedArray([0],a.dtype),[l,c]=Ct((u,h)=>u!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var LM={kernelName:ds,backendName:"cpu",kernelFunc:Wa};function jt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;be([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=Wa({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),h=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,p=l.data.get(h.dataId).values,m=l.data.get(d.dataId).values,f=Wa({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(g.dataId).values,[w,b,k]=n(i.shape,o.shape,p,m,x,v),N=l.makeTensorInfo(k,"float32",w),C=l.makeTensorInfo(k,"float32",b),F=zn({inputs:{real:N,imag:C},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo(C),F}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}}}function Km(e){return(t,n,r,a,s,i)=>{let o=E.assertAndGetBroadcastShape(t,n),l=_.sizeFromShape(o),c=o.length,u=_.computeStrides(o),h=_.getTypedArrayFromDType("float32",l),d=_.getTypedArrayFromDType("float32",l),p=E.getBroadcastDims(t,o),m=E.getBroadcastDims(n,o),f=E.mergeRealAndImagArrays(r,a),A=E.mergeRealAndImagArrays(s,i),y=t.length,g=_.computeStrides(t),x=n.length,v=_.computeStrides(n);if(p.length+m.length===0)for(let w=0;wk[z]=0);let N=_.locToIndex(k,y,g),C=b.slice(-x);m.forEach(z=>C[z]=0);let F=_.locToIndex(C,x,v),O=e(f[N*2],f[N*2+1],A[F*2],A[F*2+1]);h[w]=O.real,d[w]=O.imag}return[h,d,o]}}var kb=Ct((e,t)=>e+t),WM=Km((e,t,n,r)=>({real:e+n,imag:t+r})),ic=jt(Sa,kb,WM),BM={kernelName:Sa,backendName:"cpu",kernelFunc:ic};function Um(e,t,n,r,a){let s=_.sizeFromShape(r),i=_.makeZerosTypedArray(a,n);for(let o=0;o=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function Ib(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=We([a,n],t.dtype);for(let o=0;o=n||(r?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function kl(e){return(t,n,r)=>{let a=_.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=r;if(be(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=_.sizeFromShape(i.shape),u=n||i.dtype,h=_.getArrayFromDType(u,c);for(let d=0;d{let{x:i}=r;if(be(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,a);return o.makeTensorInfo(i.shape,c,u)}}var Sb=kl(e=>Math.ceil(e)),VM=Il(ps,Sb),jM={kernelName:ps,backendName:"cpu",kernelFunc:VM};function Hm(e,t,n,r){let a=_.getArrayFromDType(n,_.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=_.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?E.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;cMath.exp(e)),Kb=Il(ws,Nb),UM={kernelName:ws,backendName:"cpu",kernelFunc:Kb},Tb=kl(e=>Math.expm1(e)),HM=Il(bo,Tb),GM={kernelName:bo,backendName:"cpu",kernelFunc:HM},Eb=kl(e=>Math.floor(e)),qM=Il(bs,Eb),XM={kernelName:bs,backendName:"cpu",kernelFunc:qM};function Cb(e,t,n){let r=We(n,e.dtype);for(let a=0;ae>t?1:0),KM=jt(Io,Rb,null,"bool"),ZM={kernelName:Io,backendName:"cpu",kernelFunc:KM},Mb=Ct((e,t)=>eMath.log(e)),QM=Il(Ns,$b),eF={kernelName:Ns,backendName:"cpu",kernelFunc:QM};function Db(e,t,n,r){let a=_.getTypedArrayFromDType(r,_.sizeFromShape(n));for(let s=0;so&&(o=c)}a[s]=o}return a}var Ob=Ct((e,t)=>Math.max(e,t)),tF=jt(Es,Ob),nF={kernelName:Es,backendName:"cpu",kernelFunc:tF},zb=Ct((e,t)=>Math.min(e,t)),rF=jt(Fs,zb),aF={kernelName:Fs,backendName:"cpu",kernelFunc:rF},Gm=Ct((e,t)=>e*t),sF=Km((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),sp=jt(Ds,Gm,sF),iF={kernelName:Ds,backendName:"cpu",kernelFunc:sp};function Pb(e,t,n){let r=_.createScalarValue(-1,n);return Gm([],t,r,e,n)}function oF(e){let{inputs:t,backend:n}=e,{x:r}=t;be(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=Pb(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var lF={kernelName:$o,backendName:"cpu",kernelFunc:oF},Lb=Ct((e,t)=>e!==t?1:0),uF=jt(Do,Lb,null,"bool"),cF={kernelName:Do,backendName:"cpu",kernelFunc:uF};function qm(e,t,n,r,a){let s=t.length,i=_.sizeFromShape(t),o=_.computeStrides(t),l=_.computeStrides(a),c=_.getTypedArrayFromDType(n,_.sizeFromShape(a));for(let u=0;un.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,m)}var pF={kernelName:Bo,backendName:"cpu",kernelFunc:dF};function Xm(e,t,n,r){let a=e===t,s=e1;if(a||s||i)return _.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=_.makeZerosTypedArray(o,r);t1/Math.sqrt(e)),fF=Il(Hs,Bb),mF={kernelName:Hs,backendName:"cpu",kernelFunc:fF};function rp(e,t,n,r,a){let s=sn.isSliceContinous(r,t,n),i=_.sizeFromShape(n),o=_.computeStrides(r);if(s){let h=sn.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?E.fromUint8ToStringArray(e):e,c=We(r,a,l),u=We(n,a);for(let h=0;hm+t[f]);u.set(c.get(...p),...d)}return a==="string"?E.fromStringArrayToUint8(u.values):u.values}function _i(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;be(a,"slice");let[o,l]=sn.parseSliceParams(a,s,i);sn.assertParamsValid(a,o,l);let c=n.data.get(a.dataId).values,u=rp(c,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,u)}var AF={kernelName:qo,backendName:"cpu",kernelFunc:_i};function Vb(e,t,n,r,a){let s=_.sizeFromShape(r),i=t[0],o=a.length,l=[],c=1,u=-1;for(let A=0;A0){p[d-1]=1;for(let A=d-2;A>=0;--A)p[A]=p[A+1]*r[A+1]}let m=[];if(o>0){m[o-1]=1;for(let A=o-2;A>=0;--A)m[A]=m[A+1]*l[A+1]}let f=_.getArrayFromDType(n,i*o);for(let A=0;A{let n=e-t;return n*n}),yF=jt(Ys,jb),gF={kernelName:Ys,backendName:"cpu",kernelFunc:yF};function Ub(e,t,n,r){let a=We(e,t.dtype);for(let s=0;se-t),xF=Km((e,t,n,r)=>({real:e-n,imag:t-r})),Zm=jt(Js,Hb,xF),wF={kernelName:Js,backendName:"cpu",kernelFunc:Zm};function Gb(e,t){let n=new Array(e.rank);for(let a=0;ax.value-g.value);let f=h*r,A=l.subarray(f,f+r),y=c.subarray(f,f+r);for(let g=0;g{for(let A=0;Anew np,1);var Yb=nt(yo,e=>e>=0?e:Math.exp(e)-1),bF={kernelName:yo,backendName:"cpu",kernelFunc:Yb};function Jb(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;be([a],"leakyRelu");let i=_.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=_.getTypedArrayFromDType("float32",i);for(let c=0;ce<0?t*e:e);function Qb(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;be([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=vF(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var kF={kernelName:Ls,backendName:"cpu",kernelFunc:Qb},e_=nt(Ws,e=>Math.max(0,e)),IF={kernelName:Ws,backendName:"cpu",kernelFunc:e_},t_=nt(Vs,e=>Math.min(Math.max(0,e),6)),SF={kernelName:Vs,backendName:"cpu",kernelFunc:t_},n_=nt(qs,e=>1/(1+Math.exp(-e))),NF={kernelName:qs,backendName:"cpu",kernelFunc:n_};function Ym(e,t,n,r,a){if(n==="linear")return Br({inputs:{x:t},backend:e});if(n==="relu")return e_({inputs:{x:t},backend:e});if(n==="elu")return Yb({inputs:{x:t},backend:e});if(n==="relu6")return t_({inputs:{x:t},backend:e});if(n==="prelu")return Qb({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return Jb({inputs:{x:t},backend:e,attrs:{alpha:a}});if(n==="sigmoid")return n_({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function pt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=_.sizeFromShape(a.shape),o=_.inferFromImplicitShape(s,i),l=_.sizeFromShape(o);_.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let c=n.data.get(a.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,h=c.complexTensorInfos.imag;u.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var TF={kernelName:jo,backendName:"cpu",kernelFunc:pt};function r_(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;be([a,s],"matMul");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=_.sizeFromShape(m),y=_.sizeFromShape(f),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],w=o?[y,p,h]:[y,h,p],b=pt({inputs:{x:a},backend:n,attrs:{shape:v}}),k=pt({inputs:{x:s},backend:n,attrs:{shape:w}}),N=i?b.shape[1]:b.shape[2],C=i?b.shape[2]:b.shape[1],F=o?k.shape[1]:k.shape[2],O=Math.max(A,y),z=n.data.get(b.dataId).values,V=n.data.get(k.dataId).values,j=_.computeStrides(b.shape),U=_.computeStrides(k.shape),[X,G,ee]=i?[j[0],1,j[1]]:[j[0],j[1],1],[Y,ae,te]=o?[1,U[1],U[0]]:[U[1],1,U[0]],ie=C*F,Q=We([O,C,F],b.dtype),ce=Q.values,oe=n.blockSize;for(let me=0;meMath.acos(e)),FF={kernelName:ro,backendName:"cpu",kernelFunc:MF},$F=nt(ao,e=>Math.acosh(e)),DF={kernelName:ao,backendName:"cpu",kernelFunc:$F};function OF(e){let{inputs:t,backend:n}=e,r=t;be(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=We(r[0].shape,r[0].dtype),i=s.values;for(let o=0;og&&(g=w,x=v)}p[A]=x}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var jF={kernelName:us,backendName:"cpu",kernelFunc:VF};function UF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;be(a,"argMin");let i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=Yn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],E.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,h]=E.computeOutAndReduceShapes(l.shape,i),d=_.sizeFromShape(u),p=_.makeZerosTypedArray(d,"int32"),m=_.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let A=0;An.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var HF={kernelName:mu,backendName:"cpu",kernelFunc:UF},GF=nt(oo,e=>Math.asin(e)),qF={kernelName:oo,backendName:"cpu",kernelFunc:GF},XF=nt(lo,e=>Math.asinh(e)),KF={kernelName:lo,backendName:"cpu",kernelFunc:XF},ZF=nt(uo,e=>Math.atan(e)),YF={kernelName:uo,backendName:"cpu",kernelFunc:ZF},JF=Ct((e,t)=>Math.atan2(e,t)),QF=jt(ho,JF),e$={kernelName:ho,backendName:"cpu",kernelFunc:QF},t$=nt(co,e=>Math.atanh(e)),n$={kernelName:co,backendName:"cpu",kernelFunc:t$};function Jm(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,c=a.dilationWidth,u=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=We(a.outShape,n),A=f.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],x=a.outShape[3];for(let v=0;vG?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let ae=z+V*x+k;A[ae]=s==="avg"?ee/Y:G}}}return f}function a_(e,t,n,r,a=!1,s=!1){let i=We(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,c=r.dilationHeight,u=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,m=r.padInfo.left,f=We(t,n,e);for(let A=0;AF&&(F=X,a?O=s?((A*r.inHeight+z)*r.inWidth+j)*r.inChannels+y:(z*r.inWidth+j)*r.inChannels+y:O=V*d+U)}}i.set(O,A,g,b,y)}}return i}function s_(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,c=a.dilationDepth,u=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,m=a.effectiveFilterWidth,f=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=We(a.outShape,n),v=x.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],b=a.outShape[2]*a.outShape[3]*a.outShape[4],k=a.outShape[3]*a.outShape[4],N=a.outShape[4];for(let C=0;Cve?ve=Ve:s==="avg"&&(Ie+=Ve,Fe++),isNaN(ve))break}if(isNaN(ve))break}if(isNaN(ve))break}let Oe=de+z;v[Oe]=s==="avg"?Ie/Fe:ve}}}}return x}function r$(e,t){let n=We(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,m=t.padInfo.left;for(let f=0;f=V&&(V=te,j=X*u*h+ee*u+ae)}}}n.set(j,f,y,w,C,A)}}}return n}function a$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;be(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=Br({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),m=Jm(d,a.shape,a.dtype,p,u,"avg");h=n.makeTensorInfo(u.outShape,a.dtype,m.values)}return h}var s$={kernelName:cs,backendName:"cpu",kernelFunc:a$};function i$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;be(a,"avgPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=s_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var o$={kernelName:Au,backendName:"cpu",kernelFunc:i$};function l$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;be([a,s],"avgPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=u.strideDepth,d=u.strideHeight,p=u.strideWidth,m=u.filterDepth,f=u.filterHeight,A=u.filterWidth,y=u.dilationDepth,g=u.dilationHeight,x=u.dilationWidth,v=u.effectiveFilterDepth,w=u.effectiveFilterHeight,b=u.effectiveFilterWidth,k=v-1-u.padInfo.front,N=b-1-u.padInfo.left,C=w-1-u.padInfo.top,F=We(s.shape,"float32"),O=1/(m*f*A),z=n.bufferSync(a);for(let V=0;V=u.outDepth||Math.floor(Q)!==Q))for(let ce=0;ce=u.outHeight||Math.floor(oe)!==oe))for(let me=0;me=u.outWidth||Math.floor(de)!==de||(te+=z.get(V,Q,oe,de,j))}}}F.set(te*O,V,U,X,G,j)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var u$={kernelName:Eh,backendName:"cpu",kernelFunc:l$};function c$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;be([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=u.strideHeight,d=u.strideWidth,p=u.filterHeight,m=u.filterWidth,f=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,x=g-1-u.padInfo.left,v=y-1-u.padInfo.top,w=We(i.shape,"float32"),b=1/(p*m),k=n.data.get(a.dataId).values,N=We(a.shape,"float32",k);for(let C=0;C=u.outHeight||Math.floor(G)!==G))for(let ee=0;ee=u.outWidth||Math.floor(Y)!==Y||(U+=N.get(C,G,Y,F))}}w.set(U*b,C,O,z,F)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var h$={kernelName:Th,backendName:"cpu",kernelFunc:c$};function d$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;_.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),be([a,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=r;c==null&&(c=.001);let u=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(u.length),A=m.length,y=p.length,g=d.length,x=h.length,v=0,w=0,b=0,k=0;for(let N=0;N=A&&(v=0),w>=x&&(w=0),b>=y&&(b=0),k>=g&&(k=0);return n.makeTensorInfo(a.shape,a.dtype,f)}var p$={kernelName:vs,backendName:"cpu",kernelFunc:d$};function f$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;be([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=pt({inputs:{x:a},backend:n,attrs:{shape:l}}),m=Yn({inputs:{x:p},backend:n,attrs:{perm:c}}),f=pt({inputs:{x:m},backend:n,attrs:{shape:u}}),A=_i({inputs:{x:f},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var m$={kernelName:yu,backendName:"cpu",kernelFunc:f$};function A$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,c=Um(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var y$={kernelName:Ch,backendName:"cpu",kernelFunc:A$},g$=nt(Na,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;cf.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>_.sizeFromShape(f.shape)>0);if(o.length===1)return Br({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(E.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>bi({inputs:{input:v},backend:n})),A=o.map(v=>Sl({inputs:{input:v},backend:n})),y=Nl({inputs:f,backend:n,attrs:{axis:s}}),g=Nl({inputs:A,backend:n,attrs:{axis:s}}),x=zn({inputs:{real:y,imag:g},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),A.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),x}let c=o.map(f=>{let A=_.sizeFromShape(f.shape.slice(s));return pt({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),u=c.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=E.computeOutShape(c.map(f=>f.shape),1);let h=c[0].shape[0]===1,d=Hm(u,i,t[0].dtype,h),p=E.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(p,t[0].dtype,d);return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var v$={kernelName:po,backendName:"cpu",kernelFunc:Nl};function i_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r;be([a,s],"conv2d");let h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,x=d.dataFormat==="channelsLast",v=new $t(d.outShape,a.dtype),w=_.computeStrides(a.shape),b=_.computeStrides(s.shape),k=w[0],N=x?w[1]:w[2],C=x?w[2]:1,F=x?1:w[1],O=v.strides[0],z=x?v.strides[1]:v.strides[2],V=x?v.strides[2]:1,j=x?1:v.strides[1],U=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=v.values;for(let ee=0;ee=d.inHeight)continue;let me=ce*b[0],de=Y+oe*N;for(let ve=0;ve=d.inWidth)continue;let Qe=me+Oe*b[1],et=de+$e*C,at=Qe;for(let Xe=0;Xe=c.inDepth)continue;let ee=X*C[0],Y=O+G*N[1];for(let ae=0;ae=c.inHeight)continue;let oe=ee+Q*C[1],me=Y+ce*N[2];for(let de=0;de=c.inWidth)continue;let $e=oe+Fe*C[2],Qe=me+Oe*c.inChannels,et=$e;for(let at=0;atMath.cos(e)),O$={kernelName:As,backendName:"cpu",kernelFunc:D$},z$=nt(fo,e=>Math.cosh(e)),P$={kernelName:fo,backendName:"cpu",kernelFunc:z$};function L$(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,[u,h,d,p]=a.shape,m=s.shape[0],[f,A]=o,y=We([m,f,A,p],"float32"),g=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(a.dataId).values,w=_.computeStrides(a.shape),b=_.computeStrides(y.shape);for(let k=0;k=u)continue;let j=f>1?(O-C)*(h-1)/(f-1):0,U=A>1?(z-F)*(d-1)/(A-1):0;for(let X=0;X1?C*(h-1)+X*j:.5*(C+O)*(h-1);if(G<0||G>h-1){for(let ee=0;ee1?F*(d-1)+te*U:.5*(F+z)*(d-1);if(ie<0||ie>d-1){for(let me=0;me1?F*(d-1)+ee*U:.5*(F+z)*(d-1);if(Y<0||Y>d-1){for(let ie=0;iey+m-g-1:(y,g)=>y+g;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],c=a.shape[2],u=a.shape[3],h=l*s,d=c*s,p=u/(s*s),m=n.data.get(a.dataId).values,f=new Float32Array(o*h*d*p),A=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=E.computeConv2DInfo(a.shape,s.shape,i,d,o,c,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:y,padInfo:g}=p,x=g.left,v=g.top,w=p.outChannels/p.inChannels,b=new $t(p.outShape,a.dtype),k=n.data.get(a.dataId).values,N=n.data.get(s.dataId).values,C=b.values;for(let F=0;F=p.inHeight)continue;let ee=X*h[0],Y=O+G*u[1];for(let ae=0;ae=p.inWidth)continue;let oe=ee+Q*h[1],me=Y+ce*p.inChannels,de=te,ve=oe;for(let Ie=0;Ie{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(r.dataId).values,u=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:m,inWidth:f,inChannels:A,outHeight:y,outWidth:g,padInfo:x,strideHeight:v,strideWidth:w,filterHeight:b,filterWidth:k,dilationHeight:N,dilationWidth:C,outShape:F}=E.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),O=_.sizeFromShape(F),z=F.length,V=_.getArrayFromDType(r.dtype,O);for(let j=0;j=0&&Q=0&&oeae&&(ae=ve)}}}let te=_.locToIndex([j,U,G,Y],z,_.computeStrides(F));V[te]=ae}}}return{dataId:l.write(_.toTypedArray(V,r.dtype),F,r.dtype),shape:F,dtype:r.dtype}}},tD={kernelName:Wh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:w,filterWidth:b,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${Wh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(a.shape,a.dtype);for(let z=0;z=0&&ie=0&&ceee&&(ee=oe,Y=te,ae=Q)}}}O[Y][ae][G]+=F[z][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},nD={kernelName:Lh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:w,filterWidth:b,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${Lh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(r.shape,r.dtype);for(let z=0;z=0&&ie=0&&ceee&&(ee=oe,Y=ie,ae=ce)}}}O[z][Y][ae][G]+=F[z][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function oc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;be(a,"sum");let o;a.dtype==="bool"?o=Wa({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Br({inputs:{x:a},backend:n});let l=o.shape.length,c=_.parseAxisParam(s,o.shape),u=E.getAxesPermutation(c,l),h=c,d=o;u!=null&&(d=Yn({inputs:{x:o},backend:n,attrs:{perm:u}}),h=E.getInnerMostAxes(h.length,l)),E.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,m]=E.computeOutAndReduceShapes(d.shape,h),f=E.upcastType(d.dtype,"int32"),A=ap(n,p,f),y=_.sizeFromShape(m),g=n.data.get(A.dataId).values,x=n.data.get(d.dataId).values;for(let v=0;v=0&&(d=oc({inputs:{x:d},backend:n,attrs:{axis:c[f]-(i.length-p),keepDims:!1}}),m.push(d)),p--)}for(let f of m)f!==d&&n.disposeIntermediateTensorInfo(f);return d}var sD={kernelName:Bh,backendName:"cpu",kernelFunc:aD};function iD(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;be([r,a],"eluGrad");let s=new Float32Array(_.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(a.shape,"float32",s)}var oD={kernelName:Vh,backendName:"cpu",kernelFunc:iD},lD=Ct((e,t)=>e===t?1:0),l_=jt(xo,lD,null,"bool"),uD={kernelName:xo,backendName:"cpu",kernelFunc:l_},cD=E.ERF_P,hD=E.ERF_A1,dD=E.ERF_A2,pD=E.ERF_A3,fD=E.ERF_A4,mD=E.ERF_A5,AD=nt(go,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+cD*n);return t*(1-((((mD*r+fD)*r+pD)*r+dD)*r+hD)*r*Math.exp(-n*n))}),yD={kernelName:go,backendName:"cpu",kernelFunc:AD};function ip(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),pt({inputs:{x:a},backend:n,attrs:{shape:o}})}var gD={kernelName:wo,backendName:"cpu",kernelFunc:ip},xD=Ct((e,t)=>e/t),Qm=jt(xs,xD),eA={kernelName:xs,backendName:"cpu",kernelFunc:Qm};function u_(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[a,s],u=_.sizeFromShape(c),h=_.getTypedArrayFromDType("float32",u),d=_.getTypedArrayFromDType("float32",u);for(let A=0;A{let{image:r}=e,a=n,s=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[i,o,l,c]=r.shape,u=a.data.get(r.dataId).values;for(let h=0;h=0&&xMath.floor(e/t)),ED=jt(_s,TD,null,"int32"),CD={kernelName:_s,backendName:"cpu",kernelFunc:ED};function RD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=i_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=ic({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=Ym(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var MD={kernelName:ri,backendName:"cpu",kernelFunc:RD};function FD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=o_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=ic({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=Ym(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var $D={kernelName:ai,backendName:"cpu",kernelFunc:FD};function DD(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=_.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,c,u,h]=E.prepareAndValidate(r,a);if(c===0)return n.makeTensorInfo(l,r.dtype,[]);let d=We([c,u],r.dtype),p=n.data.get(a.dataId).values,m=n.data.get(r.dataId).values;for(let f=0;f=s/u)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;ge>=t?1:0),WD=jt(ks,LD,null,"bool"),BD={kernelName:ks,backendName:"cpu",kernelFunc:WD};function VD(e){let{inputs:t,backend:n}=e,{input:r}=t,a=_.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=pt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=u_(o,!0,n),c=pt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var jD={kernelName:Uh,backendName:"cpu",kernelFunc:VD},UD=nt(So,e=>Number.isFinite(e)?1:0,"bool"),HD={kernelName:So,backendName:"cpu",kernelFunc:UD},GD=nt(No,e=>Math.abs(e)===Infinity?1:0,"bool"),qD={kernelName:No,backendName:"cpu",kernelFunc:GD},XD=nt(To,e=>Number.isNaN(e)?1:0,"bool"),KD={kernelName:To,backendName:"cpu",kernelFunc:XD},ZD=Ct((e,t)=>e<=t?1:0),YD=jt(Co,ZD,null,"bool"),JD={kernelName:Co,backendName:"cpu",kernelFunc:YD};function QD(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=Fb(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var eO={kernelName:Gh,backendName:"cpu",kernelFunc:QD},tO=nt(Ro,e=>Math.log1p(e)),nO={kernelName:Ro,backendName:"cpu",kernelFunc:tO},rO=Ct((e,t)=>e&&t),aO=jt(Mo,rO,null,"bool"),sO={kernelName:Mo,backendName:"cpu",kernelFunc:aO},iO=nt(_u,e=>e?0:1,"bool"),oO={kernelName:_u,backendName:"cpu",kernelFunc:iO},lO=Ct((e,t)=>e||t),uO=jt(vu,lO,null,"bool"),cO={kernelName:vu,backendName:"cpu",kernelFunc:uO};function hO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;be(a,"LRN");let c=a.shape[3],u=c-1,h=n.data.get(a.dataId).values,d=_.sizeFromShape(a.shape),p=new Float32Array(d);function m(f){let A=f%c,y=f-A+Math.max(0,A-s),g=f-A+Math.min(A+s,u),x=0;for(;y<=g;y++){let v=h[y];x+=v*v}return x}for(let f=0;f`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=Br({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),m=Jm(d,a.shape,a.dtype,p,u,"max");h=n.makeTensorInfo(u.outShape,a.dtype,m.values)}return h}var yO={kernelName:Cs,backendName:"cpu",kernelFunc:AO};function gO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;be(a,"maxPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=s_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var xO={kernelName:Iu,backendName:"cpu",kernelFunc:gO};function wO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;be([a,s],"maxPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=n.bufferSync(s),d=r$(h,u),p=u.strideDepth,m=u.strideHeight,f=u.strideWidth,A=u.dilationDepth,y=u.dilationHeight,g=u.dilationWidth,x=u.effectiveFilterDepth,v=u.effectiveFilterHeight,w=u.effectiveFilterWidth,b=x-1-u.padInfo.front,k=w-1-u.padInfo.left,N=v-1-u.padInfo.top,C=We(s.shape,"float32"),F=n.bufferSync(a);for(let O=0;O=u.outDepth||Math.floor(te)!==te))for(let ie=0;ie=u.outHeight||Math.floor(Q)!==Q))for(let ce=0;ce=u.outWidth||Math.floor(oe)!==oe)continue;let me=x*v*w-1-d.get(O,te,Q,oe,z),de=ae*v*w+ie*w+ce,ve=me===de?1:0;ve!==0&&(Y+=F.get(O,te,Q,oe,z)*ve)}}}C.set(Y,O,V,j,U,z)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var bO={kernelName:Kh,backendName:"cpu",kernelFunc:wO};function _O(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;be([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=E.computePool2DInfo(o.shape,l,c,1,u,h),p=n.data.get(o.dataId).values,m=We(d.outShape,o.dtype,a_(p,o.shape,o.dtype,d).values),f=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,x=d.effectiveFilterHeight,v=d.effectiveFilterWidth,w=v-1-d.padInfo.left,b=x-1-d.padInfo.top,k=We(o.shape,"float32"),N=n.data.get(a.dataId).values,C=We(a.shape,"float32",N);for(let F=0;F=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y=d.outWidth||Math.floor(ae)!==ae)continue;let te=x*v-1-m.get(F,ee,ae,O),ie=G*v+Y,Q=te===ie?1:0;Q!==0&&(X+=C.get(F,ee,ae,O)*Q)}}k.set(X,F,z,V,O)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var vO={kernelName:Xh,backendName:"cpu",kernelFunc:_O};function kO(e,t,n,r,a){let s=_.computeStrides(t),i=Jm(e,t,n,s,a,"max"),o=a_(e,t,n,a,!0,r);return[i.values,o.values]}var IO={kernelName:Zh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;be(r,"MaxPoolWithArgmax");let c=l.data.get(r.dataId).values,u=E.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=kO(c,r.shape,r.dtype,o,u),p=l.write(h,u.outShape,r.dtype),m=l.write(d,u.outShape,r.dtype);return[{dataId:p,shape:u.outShape,dtype:r.dtype},{dataId:m,shape:u.outShape,dtype:"int32"}]}};function SO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=_.parseAxisParam(s,a.shape),l=E.computeOutAndReduceShapes(a.shape,o)[1],c=_.sizeFromShape(l),u=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(h);let d=Wa({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});u.push(d);let p=Qm({inputs:{a:d,b:h},backend:n});u.push(p);let m=oc({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var NO={kernelName:Rs,backendName:"cpu",kernelFunc:SO};function TO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;be(a,"min");let o=_.parseAxisParam(s,a.shape),l=o,c=E.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=Yn({inputs:{x:a},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,a.shape.length)),E.assertAxesAreInnerMostDims("min",l,u.shape.length);let[h,d]=E.computeOutAndReduceShapes(u.shape,l),p=_.sizeFromShape(d),m=_.makeZerosTypedArray(_.sizeFromShape(h),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;yg[0]+a.shape[x]+g[1]),l=s.map(g=>g[0]),c=s.map((g,x)=>g[0]+a.shape[x]),u=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=_.computeStrides(a.shape),m=_.sizeFromShape(o),f=o.length,A=_.computeStrides(o),y=_.getTypedArrayFromDType(a.dtype,m);for(let g=0;g=c[w]&&(x[w]=(c[w]-1)*2-x[w]+u);x=x.map((w,b)=>w-l[b]);let v=_.locToIndex(x,d,p);y[g]=h[v]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var RO={kernelName:$s,backendName:"cpu",kernelFunc:CO},MO=Ct((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),FO=jt(Fo,MO),$O={kernelName:Fo,backendName:"cpu",kernelFunc:FO},DO=Qi(Lg());function h_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=_.parseAxisParam([o],a.shape),c=c_({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=E.expandShapeToKeepDim(c.shape,l),h=pt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=Zm({inputs:{a,b:h},backend:n}),p=Kb({inputs:{x:d},backend:n}),m=oc({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),f=pt({inputs:{x:m},backend:n,attrs:{shape:u}}),A=Qm({inputs:{a:p,b:f},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var OO={kernelName:Zs,backendName:"cpu",kernelFunc:h_};function zO(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;be(a,"multinomial");let l=o?a:h_({inputs:{logits:a},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],h=n.data.get(l.dataId).values,d=[c,s],p=_.makeZerosTypedArray(_.sizeFromShape(d),"int32");for(let m=0;m=0&&u[h]{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=ip({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=Nl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var JO={kernelName:Wo,backendName:"cpu",kernelFunc:p_};function QO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;be(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),c=n.data.get(a.dataId).values,u=_.sizeFromShape(a.shape),h=a.shape.length,d=_.computeStrides(a.shape),p=_.sizeFromShape(o),m=o.length,f=_.computeStrides(o),A=_.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;yv+l[w]),x=_.locToIndex(g,m,f);A[x]=c[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var f_={kernelName:zs,backendName:"cpu",kernelFunc:QO},ez=Ct((e,t)=>Math.pow(e,t)),tz=jt(Ps,ez),nz={kernelName:Ps,backendName:"cpu",kernelFunc:tz};function rz(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=Xm(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var az={kernelName:Su,backendName:"cpu",kernelFunc:rz},sz=nt(Vo,e=>1/e),iz={kernelName:Vo,backendName:"cpu",kernelFunc:sz};function oz(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;be(a,"resizeBilinear");let l=_.computeStrides(a.shape),[c,u]=o,[h,d,p,m]=a.shape,f=n.data.get(a.dataId).values,A=new Float32Array(_.sizeFromShape([h,c,u,m])),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=0,v=y[0]/g[0],w=y[1]/g[1];for(let b=0;b1?c-1:c,i&&p>1?u-1:u],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=f[0]/A[0],g=f[1]/A[1],x=n.data.get(s.dataId).values,v=0;for(let w=0;w1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=y[0]/g[0],v=y[1]/g[1],w=0;for(let b=0;b1?u-1:u,i&&m>1?h-1:h],g=[i&&p>1?p-1:p,i&&m>1?m-1:m],x=y[0]/g[0],v=y[1]/g[1],w=1/x,b=1/v,k=Math.ceil(w)*2+2,N=Math.ceil(b)*2+2;for(let C=0;C=p)continue;let Q=F+ie*l[1],ce=ie*x,oe=Math.min(u-1,i?Math.round(ce):Math.floor(ce));if(O===oe)for(let me=0;me=m)continue;let ve=Q+de*l[2],Ie=de*v,Fe=Math.min(h-1,i?Math.round(Ie):Math.floor(Ie));U===Fe&&(ae+=A[ve+Y])}}f[X+Y]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,f)}var fz={kernelName:Qh,backendName:"cpu",kernelFunc:pz};function mz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;be(a,"reverse");let i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return Br({inputs:{x:a},backend:n});let l=new $t(a.shape,a.dtype),c=n.bufferSync(a);for(let u=0;ud[p]=a.shape[p]-1-d[p]),l.set(c.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var Az={kernelName:js,backendName:"cpu",kernelFunc:mz},yz={kernelName:nl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[c,u,h,d]=r.shape,[p,m]=E.getImageCenter(i,u,h),f=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let x=0;x=0&&V=0&&j{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),xz={kernelName:Us,backendName:"cpu",kernelFunc:gz};function m_(e,t,n,r,a,s,i,o,l,c){let u=[r/a,a],h=e.values,d=t.values;if(r===0)return We(n,t.dtype);let p=We(u,t.dtype);p.values.fill(l);for(let m=0;m=r/a)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y1||a.shape.length===1?1:_.sizeFromShape(a.shape.slice(1));for(let m=0;me>=0?Iz*e:kz*(Math.exp(e)-1)),Nz={kernelName:Go,backendName:"cpu",kernelFunc:Sz},Tz=nt(Ko,e=>e<0?-1:e>0?1:0),Ez={kernelName:Ko,backendName:"cpu",kernelFunc:Tz},Cz=nt(Gs,e=>Math.sin(e)),Rz={kernelName:Gs,backendName:"cpu",kernelFunc:Cz},Mz=nt(Xo,e=>Math.sinh(e)),Fz={kernelName:Xo,backendName:"cpu",kernelFunc:Mz},$z=11920928955078125e-23,A_=Math.log($z)+2,Dz=nt(Zo,e=>{let t=e>-A_,n=e{let d=[...u];d[o]=h;let p=Ti({inputs:{x:a},backend:n,attrs:{begin:c,size:d}});return c[o]+=h,p})}var pP={kernelName:rl,backendName:"cpu",kernelFunc:dP},fP=rt(Qs,e=>Math.sqrt(e)),mP={kernelName:Qs,backendName:"cpu",kernelFunc:fP},AP={kernelName:Du,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;_e(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),gP={kernelName:$a,backendName:"cpu",kernelFunc:yP};function xP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r;_e(a,"stridedSlice");let{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=un.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=mt({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let w=Ti({inputs:{x},backend:n,attrs:{begin:m,size:A}});v=mt({inputs:{x:w},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(w)}else if(g.some(w=>w===0))v=n.makeTensorInfo(g,a.dtype,[]);else{let w=n.bufferSync(x),k=d_(g,w,f,m);v=n.makeTensorInfo(k.shape,k.dtype,k.values)}let b=mt({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),b}var bP={kernelName:al,backendName:"cpu",kernelFunc:xP},wP=rt(ai,e=>Math.tan(e)),_P={kernelName:ai,backendName:"cpu",kernelFunc:wP},vP=rt(si,e=>Math.tanh(e)),kP={kernelName:si,backendName:"cpu",kernelFunc:vP};function IP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;_e(a,"tile");let i=f_(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var SP={kernelName:Fa,backendName:"cpu",kernelFunc:IP};function NP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;_e(a,"topk");let o=n.data.get(a.dataId).values,[l,c]=m_(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var TP={kernelName:sl,backendName:"cpu",kernelFunc:NP};function RP(e){let{inputs:t,attrs:n,backend:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=n,[u,h,d,p]=a.shape,[m,f]=c!=null?c:[h,d],A=[u,m,f,p],y=_.computeStrides(a.shape),g=y[0],x=y[1],v=y[2],b=_.getTypedArrayFromDType(a.dtype,_.sizeFromShape(A));b.fill(l);let w=r.data.get(a.dataId).values,k=r.data.get(s.dataId).values;for(let N=0;Nt-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return _.clamp(0,n,t-1)}function $P(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return _.clamp(0,n,t-1)}function DP(e,t){return e}function OP(e,t){return _.clamp(0,e,t-1)}function pc(e,t,n,r,a,s,i,o,l,c,u){let h=i*r+o*a+l*s+c;return 0<=o&&on.disposeIntermediateTensorInfo(m)),p}var VP={kernelName:Ou,backendName:"cpu",kernelFunc:BP},jP=[e$,aF,n$,a$,cF,i$,l$,c$,d$,f$,A$,g$,b$,v$,I$,T$,C$,M$,$$,JF,O$,P$,W$,lF,dF,V$,sF,U$,G$,K$,Y$,q$,tD,rD,Q$,sD,oD,uD,hD,pD,mD,AD,gD,bD,_D,vD,ID,kD,hA,TD,UF,CD,MD,WD,pF,BD,mF,qD,KD,ZD,yF,QD,tO,rO,sO,oO,xF,cO,iF,dO,H$,fO,AO,gO,HF,wF,wO,vO,vF,IO,TO,CO,FO,DO,zO,IF,WO,VO,UO,GO,XO,PO,ZO,JO,NF,ez,rz,oz,EF,RF,cz,pz,Az,FF,gz,bz,wz,O_,Iz,qF,OF,Nz,oF,Ez,XF,KF,YF,Rz,Fz,Dz,zz,Lz,Wz,Vz,PF,Uz,Gz,Zz,ZF,Jz,eP,nP,LF,sz,sP,oP,uP,hP,pP,mP,AP,BF,gP,bP,jF,SD,_P,kP,SP,TP,$F,MP,PP,WP,VP,xz];for(let e of jP)ci(e);var W_={};Me(W_,{assertNotComplex:()=>$l,bindCanvasToFramebuffer:()=>GP,bindColorTextureToFramebuffer:()=>fp,bindTextureToProgramUniformSampler:()=>t3,bindTextureUnit:()=>J_,bindVertexBufferToProgramAttribute:()=>fA,callAndCheck:()=>xe,canBeRepresented:()=>B_,createFragmentShader:()=>U_,createFramebuffer:()=>Y_,createProgram:()=>H_,createStaticIndexBuffer:()=>X_,createStaticVertexBuffer:()=>q_,createTexture:()=>K_,createVertexShader:()=>j_,getBatchDim:()=>Ei,getExtensionOrThrow:()=>fc,getFramebufferErrorMessage:()=>n3,getMaxTexturesInShader:()=>s3,getNumChannels:()=>UP,getProgramUniformLocation:()=>e3,getProgramUniformLocationOrThrow:()=>Q_,getRowsCols:()=>Ci,getShapeAs3D:()=>mp,getTextureShapeFromLogicalShape:()=>r3,getWebGLDisjointQueryTimerVersion:()=>i3,getWebGLErrorMessage:()=>V_,getWebGLMaxTextureSize:()=>a3,hasExtension:()=>nr,isCapableOfRenderingToFloatTexture:()=>o3,isDownloadFloatTextureEnabled:()=>l3,isReshapeFree:()=>Ac,isWebGLFenceEnabled:()=>u3,isWebGLVersionEnabled:()=>AA,linkProgram:()=>G_,resetMaxTextureSize:()=>qP,resetMaxTexturesInShader:()=>XP,unbindColorTextureFromFramebuffer:()=>mA,unbindTextureUnit:()=>HP,validateFramebuffer:()=>mc,validateProgram:()=>pp,validateTextureSize:()=>Z_});var Ri={},yA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Ap(e,t){Ri[e]=t}function Xr(e){if(!(e in Ri)){let n=KP(e);if(n!==null)Ri[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ri[e];return t.isContextLost()?(delete Ri[e],Xr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ri[e])}function ZP(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function KP(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=ZP(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ri[e]},!1),e===1?t.getContext("webgl",yA)||t.getContext("experimental-webgl",yA):t.getContext("webgl2",yA)}var yc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(yc||(yc={}));var rr;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(rr||(rr={}));var tn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(tn||(tn={}));function gc(e,t){return[t,e]}function YP(e,t){return e*t}function xc(e){let t=_.sizeFromShape(e),n=Math.ceil(t/4);return _.sizeToSquarishShape(n)}function Dl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function JP(e,t){let[n,r]=Dl(e,t);return n*r*4}function gA(e,t){let n=e,r,a,s,i,o,l,c,u,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:h,textureTypeFloat:d}}function xe(e,t){let n=t();return J().getBool("DEBUG")&&QP(e),n}function QP(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+V_(e,t))}var eL=596e-10,tL=65504;function B_(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||eLe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function j_(e,t){let n=Aa(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function U_(e,t){let n=Aa(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw nL(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var rL=/ERROR: [0-9]+:([0-9]+):/g;function nL(e,t){let n=rL.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(` + ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(a.dataId).values),o=n.data.get(r.dataId).values,l=Array.from(n.data.get(s.dataId).values),[c,u,h]=Vb(o,r.shape,r.dtype,i,l);return[n.makeTensorInfo(u,r.dtype,c),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var Wz={kernelName:td,backendName:"cpu",kernelFunc:Lz};function Bz(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=E.calculateShapes(s,a,o),p=!1,m=n.bufferSync(a),f=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=m_(m,f,o,d,u,c,l,h,A,p);return n.makeTensorInfo(o,y.dtype,y.values)}var Vz={kernelName:nd,backendName:"cpu",kernelFunc:Bz};function jz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=_.parseAxisParam(i,a.shape)[0],l=E.prepareSplitSize(a,s,o),c=new Array(a.shape.length).fill(0),u=a.shape.slice();return l.map(h=>{let d=[...u];d[o]=h;let p=_i({inputs:{x:a},backend:n,attrs:{begin:c,size:d}});return c[o]+=h,p})}var Uz={kernelName:Yo,backendName:"cpu",kernelFunc:jz},Hz=nt(Xs,e=>Math.sqrt(e)),Gz={kernelName:Xs,backendName:"cpu",kernelFunc:Hz},qz={kernelName:Eu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;be(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),Kz={kernelName:Ea,backendName:"cpu",kernelFunc:Xz};function Zz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r;be(a,"stridedSlice");let{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=sn.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=pt({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let b=_i({inputs:{x},backend:n,attrs:{begin:m,size:A}});v=pt({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))v=n.makeTensorInfo(g,a.dtype,[]);else{let b=n.bufferSync(x),k=Ub(g,b,f,m);v=n.makeTensorInfo(k.shape,k.dtype,k.values)}let w=pt({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),w}var Yz={kernelName:Jo,backendName:"cpu",kernelFunc:Zz},Jz=nt(Qs,e=>Math.tan(e)),Qz={kernelName:Qs,backendName:"cpu",kernelFunc:Jz},eP=nt(ei,e=>Math.tanh(e)),tP={kernelName:ei,backendName:"cpu",kernelFunc:eP};function nP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;be(a,"tile");let i=Gb(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var rP={kernelName:Ta,backendName:"cpu",kernelFunc:nP};function aP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;be(a,"topk");let o=n.data.get(a.dataId).values,[l,c]=qb(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var sP={kernelName:Qo,backendName:"cpu",kernelFunc:aP};function lP(e){let{inputs:t,attrs:n,backend:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=n,[u,h,d,p]=a.shape,[m,f]=c!=null?c:[h,d],A=[u,m,f,p],y=_.computeStrides(a.shape),g=y[0],x=y[1],v=y[2],w=_.getTypedArrayFromDType(a.dtype,_.sizeFromShape(A));w.fill(l);let b=r.data.get(a.dataId).values,k=r.data.get(s.dataId).values;for(let N=0;Nt-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return _.clamp(0,n,t-1)}function hP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return _.clamp(0,n,t-1)}function dP(e,t){return e}function pP(e,t){return _.clamp(0,e,t-1)}function lc(e,t,n,r,a,s,i,o,l,c,u){let h=i*r+o*a+l*s+c;return 0<=o&&on.disposeIntermediateTensorInfo(m)),p}var xP={kernelName:Cu,backendName:"cpu",kernelFunc:gP},wP=[RF,DM,FF,DF,BM,zF,LF,BF,jF,HF,qF,KF,YF,e$,n$,s$,o$,u$,h$,EF,p$,m$,y$,LM,jM,x$,OM,b$,v$,S$,T$,k$,M$,$$,C$,O$,P$,W$,V$,U$,G$,q$,K$,Y$,Q$,eD,nD,tD,eA,sD,bF,oD,uD,yD,UM,gD,GM,kD,SD,ND,XM,CD,MD,$D,OD,PD,ZM,BD,zM,jD,_$,HD,qD,KD,_F,JM,JD,eO,eF,nO,sO,oO,cO,dO,fO,nF,yO,xO,bO,vO,IO,mO,NO,EO,aF,RO,$O,PO,iF,lF,BO,UO,qO,cF,KO,YO,JO,f_,nz,kF,pF,az,PM,iz,IF,SF,TF,lz,cz,dz,fz,Az,yz,xz,mF,bz,vz,Nz,NF,Ez,Rz,Fz,AF,OO,Oz,Pz,Wz,Vz,Uz,Gz,qz,gF,Kz,Yz,wF,rD,Qz,tP,rP,sP,hF,uP,mP,yP,xP,ZO];for(let e of wP)si(e);var g_={};Me(g_,{assertNotComplex:()=>Tl,bindCanvasToFramebuffer:()=>vP,bindColorTextureToFramebuffer:()=>up,bindTextureToProgramUniformSampler:()=>F_,bindTextureUnit:()=>C_,bindVertexBufferToProgramAttribute:()=>rA,callAndCheck:()=>xe,canBeRepresented:()=>x_,createFragmentShader:()=>__,createFramebuffer:()=>E_,createProgram:()=>v_,createStaticIndexBuffer:()=>S_,createStaticVertexBuffer:()=>I_,createTexture:()=>N_,createVertexShader:()=>b_,getBatchDim:()=>vi,getExtensionOrThrow:()=>uc,getFramebufferErrorMessage:()=>$_,getMaxTexturesInShader:()=>z_,getNumChannels:()=>bP,getProgramUniformLocation:()=>M_,getProgramUniformLocationOrThrow:()=>R_,getRowsCols:()=>ki,getShapeAs3D:()=>cp,getTextureShapeFromLogicalShape:()=>D_,getWebGLDisjointQueryTimerVersion:()=>P_,getWebGLErrorMessage:()=>w_,getWebGLMaxTextureSize:()=>O_,hasExtension:()=>Jn,isCapableOfRenderingToFloatTexture:()=>L_,isDownloadFloatTextureEnabled:()=>W_,isReshapeFree:()=>hc,isWebGLFenceEnabled:()=>B_,isWebGLVersionEnabled:()=>sA,linkProgram:()=>k_,resetMaxTextureSize:()=>kP,resetMaxTexturesInShader:()=>IP,unbindColorTextureFromFramebuffer:()=>aA,unbindTextureUnit:()=>_P,validateFramebuffer:()=>cc,validateProgram:()=>lp,validateTextureSize:()=>T_});var Ii={},iA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function hp(e,t){Ii[e]=t}function Vr(e){if(!(e in Ii)){let n=SP(e);if(n!==null)Ii[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ii[e];return t.isContextLost()?(delete Ii[e],Vr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ii[e])}function NP(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function SP(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=NP(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ii[e]},!1),e===1?t.getContext("webgl",iA)||t.getContext("experimental-webgl",iA):t.getContext("webgl2",iA)}var dc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(dc||(dc={}));var Qn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Qn||(Qn={}));var Qt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Qt||(Qt={}));function pc(e,t){return[t,e]}function TP(e,t){return e*t}function fc(e){let t=_.sizeFromShape(e),n=Math.ceil(t/4);return _.sizeToSquarishShape(n)}function El(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function EP(e,t){let[n,r]=El(e,t);return n*r*4}function oA(e,t){let n=e,r,a,s,i,o,l,c,u,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:h,textureTypeFloat:d}}function xe(e,t){let n=t();return J().getBool("DEBUG")&&CP(e),n}function CP(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+w_(e,t))}var RP=596e-10,MP=65504;function x_(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||RPe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function b_(e,t){let n=ha(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function __(e,t){let n=ha(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw FP(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var $P=/ERROR: [0-9]+:([0-9]+):/g;function FP(e,t){let n=$P.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(` `),s=a.length.toString().length+2,i=a.map((h,d)=>_.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;he.createProgram(),"Unable to create WebGLProgram.")}function G_(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function pp(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function q_(e,t){let n=Aa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function X_(e,t){let n=Aa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function UP(){return J().getNumber("WEBGL_VERSION")===2?1:4}function K_(e){return Aa(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function Z_(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function Y_(e){return Aa(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function fA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),xe(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function J_(e,t,n){c3(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function HP(e,t){c3(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Q_(e,t,n){return Aa(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function e3(e,t,n){return e.getUniformLocation(t,n)}function t3(e,t,n,r){xe(e,()=>J_(e,t,r)),xe(e,()=>e.uniform1i(n,r))}function GP(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function fp(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function mA(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function mc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+n3(e,t))}function n3(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Aa(e,t,n){let r=xe(e,()=>t());if(r==null)throw new Error(n);return r}function c3(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function Ei(e,t=2){return _.sizeFromShape(e.slice(0,e.length-t))}function Ci(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function mp(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Ei(e),...Ci(e)]),t}function r3(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?_.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=_.squeezeShape(e).newShape);let r=_.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=Ei(e),s=2,i=2;return e.length&&([s,i]=Ci(e)),r=a*(s/2)*(i/2),_.sizeToSquarishShape(r).map(o=>o*2)}return _.sizeToSquarishShape(r)}function yp(e){return e%2==0}function Ac(e,t){if(e=e.slice(-2),t=t.slice(-2),_.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||yp(n)&&yp(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&yp(e[0])&&yp(t[0])}var gp,xp;function a3(e){if(gp==null){let t=Xr(e);gp=t.getParameter(t.MAX_TEXTURE_SIZE)}return gp}function qP(){gp=null}function XP(){xp=null}function s3(e){if(xp==null){let t=Xr(e);xp=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,xp)}function i3(e){if(e===0)return 0;let t,n=Xr(e);return nr(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:nr(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function nr(e,t){return e.getExtension(t)!=null}function AA(e){try{if(Xr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function o3(e){if(e===0)return!1;let t=Xr(e);if(e===1){if(!nr(t,"OES_texture_float"))return!1}else if(!nr(t,"EXT_color_buffer_float"))return!1;return xA(t)}function l3(e){if(e===0)return!1;let t=Xr(e);if(e===1){if(!nr(t,"OES_texture_float")||!nr(t,"WEBGL_color_buffer_float"))return!1}else{if(nr(t,"EXT_color_buffer_float"))return xA(t);let n="EXT_color_buffer_half_float";if(nr(t,n)){let r=t.getExtension(n);return aL(t,r)}return!1}return xA(t)}function xA(e){let t=gA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function aL(e,t){let n=gA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function u3(e){return e!==2?!1:Xr(e).fenceSync!=null}function $l(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=J();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>AA(2)?2:AA(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>a3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>s3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:i3(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Hu.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>o3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>l3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>u3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Hu.isMobile()&&Ce.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function dn(){let e,t,n,r,a,s,i,o,l,c;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=` +`))}function v_(e){return ha(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function k_(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function lp(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function I_(e,t){let n=ha(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function S_(e,t){let n=ha(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function bP(){return J().getNumber("WEBGL_VERSION")===2?1:4}function N_(e){return ha(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function T_(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function E_(e){return ha(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function rA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),xe(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function C_(e,t,n){V_(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function _P(e,t){V_(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function R_(e,t,n){return ha(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function M_(e,t,n){return e.getUniformLocation(t,n)}function F_(e,t,n,r){xe(e,()=>C_(e,t,r)),xe(e,()=>e.uniform1i(n,r))}function vP(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function up(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function aA(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function cc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+$_(e,t))}function $_(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ha(e,t,n){let r=xe(e,()=>t());if(r==null)throw new Error(n);return r}function V_(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function vi(e,t=2){return _.sizeFromShape(e.slice(0,e.length-t))}function ki(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function cp(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[vi(e),...ki(e)]),t}function D_(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?_.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=_.squeezeShape(e).newShape);let r=_.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=vi(e),s=2,i=2;return e.length&&([s,i]=ki(e)),r=a*(s/2)*(i/2),_.sizeToSquarishShape(r).map(o=>o*2)}return _.sizeToSquarishShape(r)}function dp(e){return e%2==0}function hc(e,t){if(e=e.slice(-2),t=t.slice(-2),_.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||dp(n)&&dp(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&dp(e[0])&&dp(t[0])}var pp,fp;function O_(e){if(pp==null){let t=Vr(e);pp=t.getParameter(t.MAX_TEXTURE_SIZE)}return pp}function kP(){pp=null}function IP(){fp=null}function z_(e){if(fp==null){let t=Vr(e);fp=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,fp)}function P_(e){if(e===0)return 0;let t,n=Vr(e);return Jn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Jn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Jn(e,t){return e.getExtension(t)!=null}function sA(e){try{if(Vr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function L_(e){if(e===0)return!1;let t=Vr(e);if(e===1){if(!Jn(t,"OES_texture_float"))return!1}else if(!Jn(t,"EXT_color_buffer_float"))return!1;return lA(t)}function W_(e){if(e===0)return!1;let t=Vr(e);if(e===1){if(!Jn(t,"OES_texture_float")||!Jn(t,"WEBGL_color_buffer_float"))return!1}else{if(Jn(t,"EXT_color_buffer_float"))return lA(t);let n="EXT_color_buffer_half_float";if(Jn(t,n)){let r=t.getExtension(n);return DP(t,r)}return!1}return lA(t)}function lA(e){let t=oA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function DP(e,t){let n=oA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function B_(e){return e!==2?!1:Vr(e).fenceSync!=null}function Tl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=J();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>sA(2)?2:sA(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>O_(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>z_(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:P_(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Lu.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>L_(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>W_(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>B_(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Lu.isMobile()&&Ce.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function cn(){let e,t,n,r,a,s,i,o,l,c;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=` bool isnan_custom(float val) { return (val > 0.0 || val < 0.0) ? false : val != 0.0; } @@ -78,11 +78,11 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } - `),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function Mi(e,t,n="index"){let r=_.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function bA(e){let t=_.computeStrides(e).map(n=>n.toString());return` + `),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function Si(e,t,n="index"){let r=_.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function uA(e){let t=_.computeStrides(e).map(n=>n.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z; } -`}var h3=` +`}var j_=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; @@ -121,9 +121,9 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee return c / 255.0; } -`,sL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=yc.DENSE;let t=xc(e),n=dn();this.outputShape=e,this.userCode=` +`,OP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=dc.DENSE;let t=fc(e),n=cn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { - ${Mi(["r","c","d"],e)} + ${Si(["r","c","d"],e)} return ivec3(r, c, d); } @@ -142,9 +142,9 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${n.output} = result; } - `}},iL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=yc.DENSE;let t=xc(e),n=dn();this.outputShape=e,this.userCode=` + `}},zP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=dc.DENSE;let t=fc(e),n=cn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { - ${Mi(["r","c","d"],e)} + ${Si(["r","c","d"],e)} return ivec3(r, c, d); } @@ -163,23 +163,23 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${n.output} = result; } - `}},oL=class{constructor(e){this.variableNames=["A"],this.outTexUsage=rr.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=` - ${h3} + `}},PP=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Qn.DOWNLOAD;let t=cn();this.outputShape=e,this.userCode=` + ${j_} void main() { float x = getAAtOutCoords(); ${t.output} = encode_float(x); } - `}},lL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=rr.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=` - ${h3} + `}},LP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Qn.DOWNLOAD;let t=cn();this.outputShape=e,this.userCode=` + ${j_} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${t.output} = encode_float(x); } - `}},uL=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=dn(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=` - ${bA(e)} + `}},WP=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=cn(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=` + ${uA(e)} void main() { ivec3 coords = getOutputCoords(); @@ -208,7 +208,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${r.output} = vec4(${i}, 0., 0., 0.); } - `}},cL=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=dn(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=` + `}},BP=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=cn(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=` localCoords = coords; if(localCoords[2] + ${c} < ${e[2]}) { localCoords[2] += ${c}; @@ -237,7 +237,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee } } `}this.userCode=` - ${bA(e)} + ${uA(e)} void main() { ivec3 coords = getOutputCoords(); @@ -252,7 +252,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${r.output} = ${o}; } - `}},d3={};Me(d3,{bindVertexProgramAttributeStreams:()=>w3,createBufferFromOutputTexture:()=>k3,createFloat16MatrixTexture:()=>y3,createFloat16PackedMatrixTexture:()=>b3,createFloat32MatrixTexture:()=>A3,createIndexBuffer:()=>m3,createPackedMatrixTexture:()=>x3,createUnsignedBytesMatrixTexture:()=>g3,createVertexBuffer:()=>f3,createVertexShader:()=>p3,downloadByteEncodedFloatMatrixFromOutputTexture:()=>S3,downloadFloat32MatrixFromBuffer:()=>I3,downloadMatrixFromPackedOutputTexture:()=>T3,downloadPackedMatrixFromBuffer:()=>N3,getInternalFormatForFloat16MatrixTexture:()=>_A,getInternalFormatForFloat16PackedMatrixTexture:()=>IA,getInternalFormatForFloat32MatrixTexture:()=>wA,getInternalFormatForPackedMatrixTexture:()=>kA,getInternalFormatForUnsignedBytesMatrixTexture:()=>vA,uploadDenseMatrixToTexture:()=>_3,uploadPixelDataToTexture:()=>v3});function p3(e){let t=dn(),n=`${t.version} + `}},U_={};Me(U_,{bindVertexProgramAttributeStreams:()=>Q_,createBufferFromOutputTexture:()=>n3,createFloat16MatrixTexture:()=>K_,createFloat16PackedMatrixTexture:()=>J_,createFloat32MatrixTexture:()=>X_,createIndexBuffer:()=>q_,createPackedMatrixTexture:()=>Y_,createUnsignedBytesMatrixTexture:()=>Z_,createVertexBuffer:()=>G_,createVertexShader:()=>H_,downloadByteEncodedFloatMatrixFromOutputTexture:()=>a3,downloadFloat32MatrixFromBuffer:()=>r3,downloadMatrixFromPackedOutputTexture:()=>i3,downloadPackedMatrixFromBuffer:()=>s3,getInternalFormatForFloat16MatrixTexture:()=>hA,getInternalFormatForFloat16PackedMatrixTexture:()=>fA,getInternalFormatForFloat32MatrixTexture:()=>cA,getInternalFormatForPackedMatrixTexture:()=>pA,getInternalFormatForUnsignedBytesMatrixTexture:()=>dA,uploadDenseMatrixToTexture:()=>e3,uploadPixelDataToTexture:()=>t3});function H_(e){let t=cn(),n=`${t.version} precision highp float; ${t.attribute} vec3 clipSpacePos; ${t.attribute} vec2 uv; @@ -261,22 +261,22 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; - }`;return j_(e,n)}function f3(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return q_(e,t)}function m3(e){let t=new Uint16Array([0,1,2,2,1,3]);return X_(e,t)}function bc(e,t,n,r,a,s){Z_(t,n);let i=K_(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function wA(e){return e.internalFormatFloat}function A3(e,t,n,r){let[a,s]=gc(t,n);return bc(e,a,s,wA(r),r.textureFormatFloat,e.FLOAT)}function _A(e){return e.internalFormatHalfFloat}function y3(e,t,n,r){let[a,s]=gc(t,n);return bc(e,a,s,_A(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function vA(e){return e.downloadTextureFormat}function g3(e,t,n,r){let[a,s]=gc(t,n);return bc(e,a,s,vA(r),e.RGBA,e.UNSIGNED_BYTE)}function kA(e){return e.internalFormatPackedFloat}function x3(e,t,n,r){let[a,s]=Dl(t,n);return bc(e,a,s,kA(r),e.RGBA,e.FLOAT)}function IA(e){return e.internalFormatPackedHalfFloat}function b3(e,t,n,r){let[a,s]=Dl(t,n);return bc(e,a,s,IA(r),e.RGBA,r.textureTypeHalfFloat)}function w3(e,t,n){let r=0,a=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),fA(e,t,"clipSpacePos",n,3,s,r)&&fA(e,t,"uv",n,2,s,a)}function _3(e,t,n,r,a,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function v3(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function k3(e,t,n,r){let a=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function I3(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function S3(e,t,n,r){let[a,s]=gc(t,n),i=4,o=new Uint8Array(YP(t*n,i));return xe(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function N3(e,t,n,r,a,s,i,o){let l=e,c=new Float32Array(JP(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function T3(e,t,n){let r=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var bp=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Ap(t,e)):this.gl=Xr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=fc(this.gl,a),nr(this.gl,s))this.textureHalfFloatExtension=fc(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),nr(this.gl,r))this.colorBufferHalfFloatExtension=fc(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",nr(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(nr(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=f3(this.gl),this.indexBuffer=m3(this.gl),this.framebuffer=Y_(this.gl),this.textureConfig=gA(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),A3(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),y3(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),g3(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),v3(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),_3(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),b3(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),x3(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(mA(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>S3(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return N3(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return I3(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=k3(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>T3(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=U_(t,e),r=p3(t),a=H_(t);return xe(t,()=>t.attachShader(a,r)),xe(t,()=>t.attachShader(a,n)),G_(t,a),this.debug&&pp(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=w3(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&pp(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?Q_(this.gl,e,t):e3(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),t3(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=Dl(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&pp(this.gl,this.program),mc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=fc(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await _.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=hL(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&_.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),fp(this.gl,e,this.framebuffer),this.debug&&mc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(fp(this.gl,this.outputTexture,this.framebuffer),this.debug&&mc(this.gl)):mA(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;fp(r,e,this.framebuffer),this.debug&&mc(r),this.outputTexture=e,xe(r,()=>r.viewport(0,0,t,n)),xe(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function hL(e){let t=0;for(;t{let m=_.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${m>1?`[${m}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(` -`),i=e.map(p=>dL(p,t,r)).join(` -`),o=t.texShape,l=dn(),c=mL(l),u,h,d=gL(l);return t.isPacked?(u=pL(t.logicalShape,o),h=yL(l)):(u=fL(t.logicalShape,o),h=AL(l)),r&&(d+=xL),[d,c,h,s,u,i,n].join(` -`)}function Ol(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return wL(e);case 1:return _L(e);case 2:return vL(e);case 3:return kL(e);case 4:return IL(e);case 5:return SL(e);case 6:return NL(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function C3(e){switch(e.shapeInfo.logicalShape.length){case 0:return TL(e);case 1:return EL(e);case 2:return CL(e);case 3:return RL(e);default:return ML(e)}}function dL(e,t,n=!1){let r="";n?r+=C3(e):r+=Ol(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=FL(e,t):r+=$L(e,t)),r}function pL(e,t){switch(e.length){case 0:return R3();case 1:return DL(e,t);case 2:return PL(e,t);case 3:return OL(e,t);default:return zL(e,t)}}function fL(e,t){switch(e.length){case 0:return R3();case 1:return LL(e,t);case 2:return UL(e,t);case 3:return WL(e,t);case 4:return BL(e,t);case 5:return VL(e,t);case 6:return jL(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function mL(e){return` + }`;return b_(e,n)}function G_(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return I_(e,t)}function q_(e){let t=new Uint16Array([0,1,2,2,1,3]);return S_(e,t)}function mc(e,t,n,r,a,s){T_(t,n);let i=N_(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function cA(e){return e.internalFormatFloat}function X_(e,t,n,r){let[a,s]=pc(t,n);return mc(e,a,s,cA(r),r.textureFormatFloat,e.FLOAT)}function hA(e){return e.internalFormatHalfFloat}function K_(e,t,n,r){let[a,s]=pc(t,n);return mc(e,a,s,hA(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function dA(e){return e.downloadTextureFormat}function Z_(e,t,n,r){let[a,s]=pc(t,n);return mc(e,a,s,dA(r),e.RGBA,e.UNSIGNED_BYTE)}function pA(e){return e.internalFormatPackedFloat}function Y_(e,t,n,r){let[a,s]=El(t,n);return mc(e,a,s,pA(r),e.RGBA,e.FLOAT)}function fA(e){return e.internalFormatPackedHalfFloat}function J_(e,t,n,r){let[a,s]=El(t,n);return mc(e,a,s,fA(r),e.RGBA,r.textureTypeHalfFloat)}function Q_(e,t,n){let r=0,a=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),rA(e,t,"clipSpacePos",n,3,s,r)&&rA(e,t,"uv",n,2,s,a)}function e3(e,t,n,r,a,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function t3(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function n3(e,t,n,r){let a=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function r3(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function a3(e,t,n,r){let[a,s]=pc(t,n),i=4,o=new Uint8Array(TP(t*n,i));return xe(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function s3(e,t,n,r,a,s,i,o){let l=e,c=new Float32Array(EP(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function i3(e,t,n){let r=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var mp=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,hp(t,e)):this.gl=Vr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=uc(this.gl,a),Jn(this.gl,s))this.textureHalfFloatExtension=uc(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Jn(this.gl,r))this.colorBufferHalfFloatExtension=uc(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Jn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Jn(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=G_(this.gl),this.indexBuffer=q_(this.gl),this.framebuffer=E_(this.gl),this.textureConfig=oA(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),X_(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),K_(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),Z_(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),t3(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),e3(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),J_(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Y_(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(aA(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>a3(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return s3(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return r3(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=n3(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>i3(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=__(t,e),r=H_(t),a=v_(t);return xe(t,()=>t.attachShader(a,r)),xe(t,()=>t.attachShader(a,n)),k_(t,a),this.debug&&lp(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=Q_(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&lp(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?R_(this.gl,e,t):M_(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),F_(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=El(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&lp(this.gl,this.program),cc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=uc(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await _.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=VP(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&_.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),up(this.gl,e,this.framebuffer),this.debug&&cc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(up(this.gl,this.outputTexture,this.framebuffer),this.debug&&cc(this.gl)):aA(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;up(r,e,this.framebuffer),this.debug&&cc(r),this.outputTexture=e,xe(r,()=>r.viewport(0,0,t,n)),xe(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function VP(e){let t=0;for(;t{let m=_.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${m>1?`[${m}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(` +`),i=e.map(p=>jP(p,t,r)).join(` +`),o=t.texShape,l=cn(),c=GP(l),u,h,d=KP(l);return t.isPacked?(u=UP(t.logicalShape,o),h=XP(l)):(u=HP(t.logicalShape,o),h=qP(l)),r&&(d+=ZP),[d,c,h,s,u,i,n].join(` +`)}function Cl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return JP(e);case 1:return QP(e);case 2:return eL(e);case 3:return tL(e);case 4:return nL(e);case 5:return rL(e);case 6:return aL(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function l3(e){switch(e.shapeInfo.logicalShape.length){case 0:return sL(e);case 1:return iL(e);case 2:return oL(e);case 3:return lL(e);default:return uL(e)}}function jP(e,t,n=!1){let r="";n?r+=l3(e):r+=Cl(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=cL(e,t):r+=hL(e,t)),r}function UP(e,t){switch(e.length){case 0:return u3();case 1:return dL(e,t);case 2:return mL(e,t);case 3:return pL(e,t);default:return fL(e,t)}}function HP(e,t){switch(e.length){case 0:return u3();case 1:return AL(e,t);case 2:return bL(e,t);case 3:return yL(e,t);case 4:return gL(e,t);case 5:return xL(e,t);case 6:return wL(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function GP(e){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${e.texture2D}(textureSampler, uv).r; } - `}function AL(e){return` + `}function qP(e){return` void setOutput(float val) { ${e.output} = vec4(val, 0, 0, 0); } - `}function yL(e){return` + `}function XP(e){return` void setOutput(vec4 val) { ${e.output} = val; } - `}function gL(e){return`${e.version} + `}function KP(e){return`${e.version} precision highp float; precision highp int; precision highp sampler2D; @@ -331,10 +331,10 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee return fract((p3.x + p3.y) * p3.z); } - ${HL} - ${GL} - ${qL} - `}var HL=` + ${_L} + ${vL} + ${kL} + `}var _L=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; @@ -346,7 +346,7 @@ vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,GL=` +`,vL=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); @@ -354,7 +354,7 @@ vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,qL=` +`,kL=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { @@ -363,7 +363,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,xL=` +`,ZP=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? @@ -374,11 +374,11 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } -`;function R3(){return` +`;function u3(){return` int getOutputCoords() { return 0; } - `}function DL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?` + `}function dL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?` int getOutputCoords() { return 2 * int(resultUV.x * ${n[1]}.0); } @@ -392,7 +392,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2(${n[0]}, ${n[1]})); return 2 * (resTexRC.x * ${n[1]} + resTexRC.y); } - `}function LL(e,t){return t[0]===1?` + `}function AL(e,t){return t[0]===1?` int getOutputCoords() { return int(resultUV.x * ${t[1]}.0); } @@ -406,7 +406,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2(${t[0]}, ${t[1]})); return resTexRC.x * ${t[1]} + resTexRC.y; } - `}function OL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return` + `}function pL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]})); @@ -420,7 +420,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, return ivec3(b, r, c); } - `}function WL(e,t){let n=Mi(["r","c","d"],e);return` + `}function yL(e,t){let n=Si(["r","c","d"],e);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); @@ -428,7 +428,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ${n} return ivec3(r, c, d); } - `}function zL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l=1?u="coords = 0;":u=o.map(A=>`coords.${h[A+c]} = 0;`).join(` + `}function cL(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=o3(e.shapeInfo.logicalShape,t.logicalShape),l=lt(i),c=i-s,u,h=["x","y","z","w","u","v"];s===0?u="":i<2&&o.length>=1?u="coords = 0;":u=o.map(A=>`coords.${h[A+c]} = 0;`).join(` `);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+c]}`).join(", ");let p="return outputValue;",m=_.sizeFromShape(e.shapeInfo.logicalShape)===1,f=_.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)p=` return vec4(outputValue.xy, outputValue.xy); `;else if(m&&!f)i===1?p=` @@ -808,22 +808,22 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec4 outputValue = get${r}(${d}); ${p} } - `}function $L(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&_.arraysEqual(i,s))return` + `}function hL(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&_.arraysEqual(i,s))return` float ${a}() { return sampleTexture(${n}, resultUV); } - `;let c=lt(l),u=E3(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(f=>`coords.${p[f+h]} = 0;`).join(` + `;let c=lt(l),u=o3(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(f=>`coords.${p[f+h]} = 0;`).join(` `);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,A)=>`coords.${p[A+h]}`).join(", "),` float ${a}() { ${c} coords = getOutputCoords(); ${d} return get${r}(${m}); } - `}function lt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Pl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Ll(e,t){return t.map(n=>e[n]).join(", ")}function XL(e,t,n,r){let a=t.userCode,s=n.map((p,m)=>{let f={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(f.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=bL(s,o,a,t.packedInputs),c=e.createProgram(l),u=null,h=e.getUniformLocation(c,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let p=0;p{let a=n.logicalShape,s=t[r],i=s.shape;if(!_.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!_.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function KL(e,t,n,r,a){M3(t.inShapeInfos,n),M3([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(_.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function ZL(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:YL,bincountImpl:F3,bincountReduceImpl:JL,ceilImpl:QL,concatImpl:eW,expImpl:tW,expm1Impl:nW,floorImpl:rW,gatherV2Impl:aW,greaterImpl:sW,lessImpl:iW,linSpaceImpl:oW,logImpl:lW,maxImpl:uW,maximumImpl:cW,minimumImpl:hW,multiplyImpl:dW,negImpl:pW,prodImpl:fW,rangeImpl:mW,rsqrtImpl:AW,simpleAbsImpl:$3,sliceImpl:yW,sparseReshapeImpl:gW,stridedSliceImpl:xW,subImpl:bW,tileImpl:wW,topKImpl:_W,transposeImpl:SA,uniqueImpl:vW}=eA;function D3(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function pn(e,t){return t===1?[e]:D3(e,t)}function kW(e,t){if(e===1)return"rc";let n="";for(let r=0;re[n]).join(", ")}function IL(e,t,n,r){let a=t.userCode,s=n.map((p,m)=>{let f={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(f.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=YP(s,o,a,t.packedInputs),c=e.createProgram(l),u=null,h=e.getUniformLocation(c,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let p=0;p{let a=n.logicalShape,s=t[r],i=s.shape;if(!_.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!_.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function SL(e,t,n,r,a){c3(t.inShapeInfos,n),c3([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(_.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function NL(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:TL,bincountImpl:h3,bincountReduceImpl:EL,ceilImpl:CL,concatImpl:RL,expImpl:ML,expm1Impl:FL,floorImpl:$L,gatherV2Impl:DL,greaterImpl:OL,lessImpl:zL,linSpaceImpl:PL,logImpl:LL,maxImpl:WL,maximumImpl:BL,minimumImpl:VL,multiplyImpl:jL,negImpl:UL,prodImpl:HL,rangeImpl:GL,rsqrtImpl:qL,simpleAbsImpl:d3,sliceImpl:XL,sparseReshapeImpl:KL,stridedSliceImpl:ZL,subImpl:YL,tileImpl:JL,topKImpl:QL,transposeImpl:mA,uniqueImpl:eW}=jm;function p3(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function hn(e,t){return t===1?[e]:p3(e,t)}function tW(e,t){if(e===1)return"rc";let n="";for(let r=0;r ${t[0]}`;let r="";for(let a=e-2;a= ${t[a]}`,a ${t[0]}`;let r="";for(let a=e-2;a= ${t[a]}`,a= ${t}; bool rEdge = rp1 >= ${n}; - `}function NW(e,t){let n=e.length,r=EW(n,t);return n===1?`getA(rc), + `}function aW(e,t){let n=e.length,r=iW(n,t);return n===1?`getA(rc), rc + 1 >= ${e[0]} ? 0. : getA(rc + 1), 0, 0`:`getA(${r[0]}), cEdge ? 0. : getA(${r[1]}), rEdge ? 0. : getA(${r[2]}), - rEdge || cEdge ? 0. : getA(${r[3]})`}var O3=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=` + rEdge || cEdge ? 0. : getA(${r[3]})`}var f3=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=` ${a} ${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); @@ -860,8 +860,8 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${r>0?"}":""} `}this.userCode=` - ${CW(t)} - ${bA(e)} + ${oW(t)} + ${uA(e)} void main() { ivec3 rc = getOutputCoords(); @@ -876,12 +876,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}};function CW(e){return` + `}};function oW(e){return` ivec3 inputCoordsFromReshapedOutCoords(int index) { - ${Mi(["r","c","d"],e)} + ${Si(["r","c","d"],e)} return ivec3(r, c, d); } - `}var RW=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=P3(t,n),a=L3(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=z3(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===tn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===tn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===tn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===tn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===tn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=P3(n,r),s=L3(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=z3(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function MW(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function z3(e,t,n,r,a){let s=FW(t,r),i;if(a){let[l,c]=Dl(e[0],e[1]);i=l*c}else{let[l,c]=gc(e[0],e[1]);i=l*c}let o=MW(n,s);return i*o}function FW(e,t){switch(e){case tn.PACKED_2X2_FLOAT32:return kA(t);case tn.PACKED_2X2_FLOAT16:return IA(t);case tn.UNPACKED_FLOAT32:return wA(t);case tn.UNPACKED_FLOAT16:return _A(t);case tn.PACKED_4X1_UNSIGNED_BYTE:return vA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function $W(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?tn.PACKED_2X2_FLOAT32:tn.UNPACKED_FLOAT32:e?tn.PACKED_2X2_FLOAT16:tn.UNPACKED_FLOAT16}function P3(e,t){if(e===rr.UPLOAD)return tn.PACKED_2X2_FLOAT32;if(e===rr.RENDER||e==null)return $W(t);if(e===rr.DOWNLOAD||e===rr.PIXELS)return tn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function L3(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var qa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=` + `}var lW=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=A3(t,n),a=y3(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=m3(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===Qt.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===Qt.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===Qt.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===Qt.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===Qt.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=A3(n,r),s=y3(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=m3(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function uW(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function m3(e,t,n,r,a){let s=cW(t,r),i;if(a){let[l,c]=El(e[0],e[1]);i=l*c}else{let[l,c]=pc(e[0],e[1]);i=l*c}let o=uW(n,s);return i*o}function cW(e,t){switch(e){case Qt.PACKED_2X2_FLOAT32:return pA(t);case Qt.PACKED_2X2_FLOAT16:return fA(t);case Qt.UNPACKED_FLOAT32:return cA(t);case Qt.UNPACKED_FLOAT16:return hA(t);case Qt.PACKED_4X1_UNSIGNED_BYTE:return dA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function hW(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Qt.PACKED_2X2_FLOAT32:Qt.UNPACKED_FLOAT32:e?Qt.PACKED_2X2_FLOAT16:Qt.UNPACKED_FLOAT16}function A3(e,t){if(e===Qn.UPLOAD)return Qt.PACKED_2X2_FLOAT32;if(e===Qn.RENDER||e==null)return hW(t);if(e===Qn.DOWNLOAD||e===Qn.PIXELS)return Qt.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function y3(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Ba=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=` float unaryOperation(float x) { ${t} } @@ -892,11 +892,11 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(y); } - `}},Nr="if (isnan(x)) return x;",DW="return x;",W3="return abs(x);",OW="return (x >= 0.0) ? x : (exp(x) - 1.0);",zW=Nr+` + `}},wr="if (isnan(x)) return x;",dW="return x;",g3="return abs(x);",pW="return (x >= 0.0) ? x : (exp(x) - 1.0);",fW=wr+` return (x < 0.0) ? 0.0 : x; -`,PW=Nr+` +`,mW=wr+` return (x < 0.0) ? 0.0 : min(6.0, x); -`,wp="return x;",LW="return 1.0 / (1.0 + exp(-1.0 * x));",WW="return x;",BW=` +`,Ap="return x;",AW="return 1.0 / (1.0 + exp(-1.0 * x));",yW="return x;",gW=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); @@ -905,7 +905,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; -`,VW=` +`,xW=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -915,7 +915,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = isNaN.a ? x.a : result.a; return result; -`,jW=` +`,wW=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -925,7 +925,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = isNaN.a ? x.a : result.a; return result; -`,UW="return 1.0 / (1.0 + exp(-1.0 * x));",Wl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` +`,bW="return 1.0 / (1.0 + exp(-1.0 * x));",$l=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` vec4 unaryOperation(vec4 x) { ${t} } @@ -936,17 +936,17 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(y); } - `}},HW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=pn("rc",t),r=lt(t),a=kW(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=` + `}},_W=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=hn("rc",t),r=lt(t),a=tW(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=` void main() { ${r} rc = getOutputCoords(); vec4 packedInput = getA(${a}); setOutput(getChannel(packedInput, ${i})); } - `}},GW=Gr.whereImpl,qW=1e-7,XW=1e-4,NA={};function KW(e){return e in NA||(NA[e]={}),NA[e]}var ZW=128,YW=600;function JW(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*YW/1024/1024}var Bl=class extends gu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Xr(J().getNumber("WEBGL_VERSION"));this.binaryCache=KW(J().getNumber("WEBGL_VERSION")),this.gpgpu=new bp(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new RW(this.gpgpu),this.numMBBeforeWarning=JW(),this.texData=new Ch(this,ca())}nextDataId(){return Bl.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:rr.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:rr.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new Wl(i,wp):h=new qa(i,wp);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,c;l&&(c=_.now());let u;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);u=E.mergeRealAndImagArrays(h,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=_.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(m=>p.push(m))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new Wl(r,wp):p=new qa(r,wp);let m=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let p=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...xc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=p[0],f=p[1];u=E.mergeRealAndImagArrays(m,f)}else if(l==null)u=this.getValuesFromTexture(e);else{let p=_.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}c!=null&&this.disposeIntermediateTensorInfo(c);let h=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ca().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=_.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=_.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=_.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:_.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=_.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=ZW){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&_.sizeFromShape(n.shape)0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return ca().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new HW(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new TW(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Ei(e.shape),...Ci(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[Ei(t),...Ci(t)],s=new O3(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=mp(r),i;n?i=new iL(s):i=new sL(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===yc.DENSE){let f=xc(e.outputShape);i.texShape=f.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),_.sizeFromShape(s.shape)===0)return i.values=_.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(f.dataId);if(A.texture==null){if(!e.packedInputs&&_.sizeFromShape(f.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=f.shape)}else if(!!A.isPacked!=!!e.packedInputs)f=A.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),A=this.texData.get(f.dataId);else if(A.isPacked&&!Ac(A.shape,f.shape)){let y=f,g=f.shape;f.shape=A.shape,f=this.packedReshape(f,g),o.push(f),A=this.texData.get(f.dataId),y.shape=g}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=ZL(e,l,c),h=this.getAndSaveBinary(u,()=>XL(this.gpgpu,e,l,c)),d=this.activeTimers!=null,p;d&&(p=this.startTimer()),KL(this.gpgpu,h,l,c,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=_.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=P(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(ve(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?qW:XW}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=_.now());let u=t.texShape;if(u==null&&(u=r3(n,o),t.texShape=u),a!=null){let h=mp(n),d,p=u[1],m=u[0],f=a instanceof Uint8Array;o?([p,m]=Dl(u[0],u[1]),d=new cL(h,[m,p],f)):d=new uL(h,[m,p],f);let A=this.makeTensorInfo([m,p],r);f?this.texData.get(A.dataId).usage=rr.PIXELS:this.texData.get(A.dataId).usage=rr.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,m,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),x=this.texData.get(g.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=_.now()-c)}else{let h=this.acquireTexture(u,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=QW(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*_.bytesPerElement(t)}};Bl.nextDataId=0;function QW(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;rnew Bl,2);var eB={forceHalfFloat:V3},j3=` + `}},vW=Wr.whereImpl,kW=1e-7,IW=1e-4,AA={};function SW(e){return e in AA||(AA[e]={}),AA[e]}var NW=128,TW=600;function EW(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*TW/1024/1024}var Dl=class extends du{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Vr(J().getNumber("WEBGL_VERSION"));this.binaryCache=SW(J().getNumber("WEBGL_VERSION")),this.gpgpu=new mp(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new lW(this.gpgpu),this.numMBBeforeWarning=EW(),this.texData=new kh(this,aa())}nextDataId(){return Dl.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:Qn.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:Qn.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new $l(i,Ap):h=new Ba(i,Ap);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,c;l&&(c=_.now());let u;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);u=E.mergeRealAndImagArrays(h,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=_.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(m=>p.push(m))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new $l(r,Ap):p=new Ba(r,Ap);let m=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let p=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...fc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=p[0],f=p[1];u=E.mergeRealAndImagArrays(m,f)}else if(l==null)u=this.getValuesFromTexture(e);else{let p=_.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}c!=null&&this.disposeIntermediateTensorInfo(c);let h=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&aa().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=_.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=_.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=_.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:_.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=_.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=NW){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&_.sizeFromShape(n.shape)0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return aa().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new _W(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new sW(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[vi(e.shape),...ki(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[vi(t),...ki(t)],s=new f3(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=cp(r),i;n?i=new zP(s):i=new OP(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===dc.DENSE){let f=fc(e.outputShape);i.texShape=f.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),_.sizeFromShape(s.shape)===0)return i.values=_.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(f.dataId);if(A.texture==null){if(!e.packedInputs&&_.sizeFromShape(f.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=f.shape)}else if(!!A.isPacked!=!!e.packedInputs)f=A.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),A=this.texData.get(f.dataId);else if(A.isPacked&&!hc(A.shape,f.shape)){let y=f,g=f.shape;f.shape=A.shape,f=this.packedReshape(f,g),o.push(f),A=this.texData.get(f.dataId),y.shape=g}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=NL(e,l,c),h=this.getAndSaveBinary(u,()=>IL(this.gpgpu,e,l,c)),d=this.activeTimers!=null,p;d&&(p=this.startTimer()),SL(this.gpgpu,h,l,c,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=_.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=L(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(ke(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?kW:IW}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=_.now());let u=t.texShape;if(u==null&&(u=D_(n,o),t.texShape=u),a!=null){let h=cp(n),d,p=u[1],m=u[0],f=a instanceof Uint8Array;o?([p,m]=El(u[0],u[1]),d=new BP(h,[m,p],f)):d=new WP(h,[m,p],f);let A=this.makeTensorInfo([m,p],r);f?this.texData.get(A.dataId).usage=Qn.PIXELS:this.texData.get(A.dataId).usage=Qn.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,m,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),x=this.texData.get(g.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=_.now()-c)}else{let h=this.acquireTexture(u,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=CW(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*_.bytesPerElement(t)}};Dl.nextDataId=0;function CW(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;rnew Dl,2);var RW={forceHalfFloat:w3},b3=` if (isnan(a)) return a; if (isnan(b)) return b; -`,Vl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=` +`,Ol=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=` float binaryOperation(float a, float b) { ${e} } @@ -956,12 +956,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } - `}},_p=` + `}},yp=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; -`,wc=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||_.sizeFromShape(this.outputShape)===1)s=` +`,Ac=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||_.sizeFromShape(this.outputShape)===1)s=` result.y = 0.; result.z = 0.; result.w = 0.; @@ -971,7 +971,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y; result.z = 0.; result.w = 0.; - `;else{let i=pn("coords",a);s+=` + `;else{let i=hn("coords",a);s+=` bool nextRowOutOfBounds = (${i[a-2]} + 1) >= ${this.outputShape[a-2]}; bool nextColOutOfBounds = @@ -993,21 +993,21 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}};function Vn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var tB={kernelName:Cs,backendName:"webgl",kernelFunc:Vn};function Xa(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Vn({inputs:{x:r},backend:n}),l=Vn({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var nB={kernelName:zh,backendName:"webgl",kernelFunc:Xa},U3="return (a < 0.) ? b * a : a;",H3=` + `}};function Pn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var MW={kernelName:Is,backendName:"webgl",kernelFunc:Pn};function Va(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Pn({inputs:{x:r},backend:n}),l=Pn({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var FW={kernelName:Rh,backendName:"webgl",kernelFunc:Va},_3="return (a < 0.) ? b * a : a;",v3=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); -`;function rB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",_.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(H3,a.shape,i.shape):new Vl(U3,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var aB={kernelName:Rs,backendName:"webgl",kernelFunc:rB},G3="return (a < 0.) ? b * a : a;",q3=` +`;function $W(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",_.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ac(v3,a.shape,i.shape):new Ol(_3,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var DW={kernelName:Ss,backendName:"webgl",kernelFunc:$W},k3="return (a < 0.) ? b * a : a;",I3=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); -`;function sB(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(q3,r.shape,a.shape):new Vl(G3,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var iB={kernelName:Us,backendName:"webgl",kernelFunc:sB},X3="if (isnan(x)) return x;",oB=` +`;function OW(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ac(I3,r.shape,a.shape):new Ol(k3,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var zW={kernelName:Ls,backendName:"webgl",kernelFunc:OW},S3="if (isnan(x)) return x;",PW=` if (isnan(a)) return a; if (isnan(b)) return b; -`,lB=` +`,LW=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; -`;function Xe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new Wl(i.shape,t):u=new qa(i.shape,e),o.runWebGLProgram(u,[i],l)}}function nn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(r&&l.dtype==="complex64"){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[A,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,b]=x,w={dataId:v.dataId,dtype:v.dtype,shape:l.shape},k={dataId:b.dataId,dtype:b.dtype,shape:c.shape},N=new Vl(e,l.shape,c.shape);return u.runWebGLProgram(N,[w,k],dr(v.dtype,b.dtype))}),g=Xa({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let h=s||dr(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&a!=null){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[A,y]=a(l.shape,c.shape,m.values,f.values,h),g=u.makeTensorInfo(y,h),x=u.texData.get(g.dataId);return x.values=A,g}let d=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new wc(t,l.shape,c.shape,n):p=new Vl(e,l.shape,c.shape),u.runWebGLProgram(p,[l,c],h)}}function vp(e,t=!1){if(e==="linear")return t?WW:DW;if(e==="relu")return t?VW:zW;if(e==="elu")return t?BW:OW;if(e==="relu6")return t?jW:PW;if(e==="prelu")return t?q3:G3;if(e==="leakyrelu")return t?H3:U3;if(e==="sigmoid")return t?UW:LW;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var K3=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=r?e[1]:e[2],u=Math.ceil(c/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",A="";i&&(o?f=`vec4 activation(vec4 a) { +`;function qe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new $l(i.shape,t):u=new Ba(i.shape,e),o.runWebGLProgram(u,[i],l)}}function en({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(r&&l.dtype==="complex64"){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[A,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,w]=x,b={dataId:v.dataId,dtype:v.dtype,shape:l.shape},k={dataId:w.dataId,dtype:w.dtype,shape:c.shape},N=new Ol(e,l.shape,c.shape);return u.runWebGLProgram(N,[b,k],ir(v.dtype,w.dtype))}),g=Va({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let h=s||ir(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&a!=null){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[A,y]=a(l.shape,c.shape,m.values,f.values,h),g=u.makeTensorInfo(y,h),x=u.texData.get(g.dataId);return x.values=A,g}let d=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new Ac(t,l.shape,c.shape,n):p=new Ol(e,l.shape,c.shape),u.runWebGLProgram(p,[l,c],h)}}function gp(e,t=!1){if(e==="linear")return t?yW:dW;if(e==="relu")return t?xW:fW;if(e==="elu")return t?gW:pW;if(e==="relu6")return t?wW:mW;if(e==="prelu")return t?I3:k3;if(e==="leakyrelu")return t?v3:_3;if(e==="sigmoid")return t?bW:AW;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var N3=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=r?e[1]:e[2],u=Math.ceil(c/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",A="";i&&(o?f=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${i} }`:l?f=`vec4 activation(vec4 a) { @@ -1046,7 +1046,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}},Z3={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Y3=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=` + `}},T3={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},E3=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=` float binaryOpComplex( float areal, float aimag, float breal, float bimag) { ${e} @@ -1059,7 +1059,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float bimag = getBImagAtOutCoords(); setOutput(binaryOpComplex(areal, aimag, breal, bimag)); } - `}},J3="return a * b;";function TA(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=E.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),c=new Y3(Z3.REAL,r.shape,a.shape),u=new Y3(Z3.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),m=Xa({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[c,u]=dW(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(u,s),d=n.texData.get(h.dataId);return d.values=c,h}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new wc(J3,r.shape,a.shape):i=new Vl(J3,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var uB={kernelName:Ws,backendName:"webgl",kernelFunc:TA};function cB(e,t,n){let r=[Ei(e.shape),...Ci(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[Ei(t),...Ci(t)],i=new O3(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function fe(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=_.sizeFromShape(a.shape),l=_.inferFromImplicitShape(s,o),c=_.sizeFromShape(l);_.assert(o===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(a.dataId);return u.isPacked&&!Ac(a.shape,l)&&!(u.texture!==null&&Ac(u.shape,l))?cB(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var hB={kernelName:Ko,backendName:"webgl",kernelFunc:fe},Q3=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${_.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";a%n>0&&(c=` + `}},C3="return a * b;";function yA(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=E.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),c=new E3(T3.REAL,r.shape,a.shape),u=new E3(T3.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),m=Va({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[c,u]=jL(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(u,s),d=n.texData.get(h.dataId);return d.values=c,h}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Ac(C3,r.shape,a.shape):i=new Ol(C3,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var WW={kernelName:Ds,backendName:"webgl",kernelFunc:yA};function BW(e,t,n){let r=[vi(e.shape),...ki(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[vi(t),...ki(t)],i=new f3(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function fe(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=_.sizeFromShape(a.shape),l=_.inferFromImplicitShape(s,o),c=_.sizeFromShape(l);_.assert(o===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(a.dataId);return u.isPacked&&!hc(a.shape,l)&&!(u.texture!==null&&hc(u.shape,l))?BW(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var VW={kernelName:jo,backendName:"webgl",kernelFunc:fe},R3=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${_.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";a%n>0&&(c=` if (inIdx < 0 || inIdx >= ${a}) { return 0.0; } @@ -1112,7 +1112,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, } setOutput(sumValue); } - `}},dB=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,h=` + `}},jW=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,h=` if (${t==="sum"}) { sumValue += dot(values, ones); } else if (${t==="prod"}) { @@ -1197,12 +1197,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, } setOutput(${l}); } - `}};function pB(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=E.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function $i(e,t,n,r){let a=pB(e.shape),s=e;for(let i=0;i6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=lt(this.rank),a=D3("rc",this.rank),s=new Array(this.rank);for(let c=0;c6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=lt(this.rank),a=p3("rc",this.rank),s=new Array(this.rank);for(let c=0;c=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${A}).`);let v=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,m]);_.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let b=n?[y,h,p]:[y,p,h],w=r?[g,m,d]:[g,d,m],k=fe({inputs:{x:e},backend:a,attrs:{shape:b}}),N=fe({inputs:{x:t},backend:a,attrs:{shape:w}}),C=[k,N],F=Math.max(y,g),O=n?k.shape[1]:k.shape[2],L=s!=null,V=i!=null,j=l==="leakyrelu",U=l!=null?vp(l,!0):null,X=L||V||j||U!=null,G;if((p===1||m===1)&&O>e7&&X===!1){let Y=k,ae=N;n&&(Y=fn({inputs:{x:k},backend:a,attrs:{perm:[0,2,1]}}),C.push(Y)),r&&(ae=fn({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),C.push(ae));let te=m!==1,ie=m===1,Q=Y;te&&(Q=fe({inputs:{x:Y},backend:a,attrs:{shape:[F,O,1]}}),C.push(Q));let he=m===1?2:1,oe=ae;ie&&(oe=fe({inputs:{x:ae},backend:a,attrs:{shape:[F,1,O]}}),C.push(oe));let me=TA({inputs:{a:Q,b:oe},backend:a});G=Ip({inputs:{x:me},backend:a,attrs:{axis:he,keepDims:!0}}),C.push(me)}else{let Y=dr(e.dtype,t.dtype),ae=new K3(b,w,[F,p,m],n,r,L,U,V,j),te=[k,N];if(s!=null&&te.push(s),V&&te.push(i),j){let ie=a.makeTensorInfo([],"float32",_.createScalarValue(o,"float32"));te.push(ie),C.push(ie)}G=a.runWebGLProgram(ae,te,Y)}let ee=fe({inputs:{x:G},backend:a,attrs:{shape:v}});C.push(G);for(let Y of C)a.disposeIntermediateTensorInfo(Y);return ee}function bB(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r;return Sp({a,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:u})}var wB={kernelName:oi,backendName:"webgl",kernelFunc:bB},t7="return abs(x);";function _B(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=$3(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Wl(r.shape,t7):a=new qa(r.shape,t7),n.runWebGLProgram(a,[r],r.dtype)}var vB={kernelName:lo,backendName:"webgl",kernelFunc:_B},kB=Nr+` + `}};function xp(e,t,n){let r=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new qW(e.shape,t):new GW(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function XW(e,t,n,r){let a=t,s=e.shape.length,i=_.parseAxisParam(a,e.shape),o=i,l=E.getAxesPermutation(o,s),c=l!=null,u=e;c&&(u=xp(e,l,r),o=E.getInnerMostAxes(o.length,s)),E.assertAxesAreInnerMostDims("sum",o,s);let[h,d]=E.computeOutAndReduceShapes(u.shape,o),p=h;n&&(p=E.expandShapeToKeepDim(h,i));let m=_.sizeFromShape(d),f=_.sizeFromShape(e.shape)/m,A=fe({inputs:{x:u},attrs:{shape:[f,m]},backend:r}),y=cd(e.dtype),g=Ti(A,y,"sum",r),x=fe({inputs:{x:g},attrs:{shape:p},backend:r});return r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(g),c&&r.disposeIntermediateTensorInfo(u),x}function wp(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;return XW(a,s,i,n)}var KW={kernelName:Ks,backendName:"webgl",kernelFunc:wp};function dn(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{perm:s}=r,i=n,o=a.shape.length,l=new Array(o);for(let u=0;u=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${A}).`);let v=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,m]);_.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let w=n?[y,h,p]:[y,p,h],b=r?[g,m,d]:[g,d,m],k=fe({inputs:{x:e},backend:a,attrs:{shape:w}}),N=fe({inputs:{x:t},backend:a,attrs:{shape:b}}),C=[k,N],F=Math.max(y,g),O=n?k.shape[1]:k.shape[2],z=s!=null,V=i!=null,j=l==="leakyrelu",U=l!=null?gp(l,!0):null,X=z||V||j||U!=null,G;if((p===1||m===1)&&O>M3&&X===!1){let Y=k,ae=N;n&&(Y=dn({inputs:{x:k},backend:a,attrs:{perm:[0,2,1]}}),C.push(Y)),r&&(ae=dn({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),C.push(ae));let te=m!==1,ie=m===1,Q=Y;te&&(Q=fe({inputs:{x:Y},backend:a,attrs:{shape:[F,O,1]}}),C.push(Q));let ce=m===1?2:1,oe=ae;ie&&(oe=fe({inputs:{x:ae},backend:a,attrs:{shape:[F,1,O]}}),C.push(oe));let me=yA({inputs:{a:Q,b:oe},backend:a});G=wp({inputs:{x:me},backend:a,attrs:{axis:ce,keepDims:!0}}),C.push(me)}else{let Y=ir(e.dtype,t.dtype),ae=new N3(w,b,[F,p,m],n,r,z,U,V,j),te=[k,N];if(s!=null&&te.push(s),V&&te.push(i),j){let ie=a.makeTensorInfo([],"float32",_.createScalarValue(o,"float32"));te.push(ie),C.push(ie)}G=a.runWebGLProgram(ae,te,Y)}let ee=fe({inputs:{x:G},backend:a,attrs:{shape:v}});C.push(G);for(let Y of C)a.disposeIntermediateTensorInfo(Y);return ee}function YW(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r;return bp({a,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:u})}var JW={kernelName:ni,backendName:"webgl",kernelFunc:YW},F3="return abs(x);";function QW(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=d3(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new $l(r.shape,F3):a=new Ba(r.shape,F3),n.runWebGLProgram(a,[r],r.dtype)}var eB={kernelName:no,backendName:"webgl",kernelFunc:QW},tB=wr+` if (abs(x) > 1.) { return NAN; } return acos(x); -`,IB=Xe({opSnippet:kB}),SB={kernelName:uo,backendName:"webgl",kernelFunc:IB},NB=Nr+` +`,nB=qe({opSnippet:tB}),rB={kernelName:ro,backendName:"webgl",kernelFunc:nB},aB=wr+` if (x < 1.0) return NAN; -return log(x + sqrt(x * x - 1.0));`,TB=Xe({opSnippet:NB}),EB={kernelName:co,backendName:"webgl",kernelFunc:TB},n7="return a + b;",CB=nn({opSnippet:n7,packedOpSnippet:n7,supportsComplex:!0,cpuKernelImpl:YL}),RB={kernelName:Ra,backendName:"webgl",kernelFunc:CB},MB=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` +return log(x + sqrt(x * x - 1.0));`,sB=qe({opSnippet:aB}),iB={kernelName:ao,backendName:"webgl",kernelFunc:sB},$3="return a + b;",oB=en({opSnippet:$3,packedOpSnippet:$3,supportsComplex:!0,cpuKernelImpl:TL}),lB={kernelName:Sa,backendName:"webgl",kernelFunc:oB},uB=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} @@ -1234,7 +1234,7 @@ return log(x + sqrt(x * x - 1.0));`,TB=Xe({opSnippet:NB}),EB={kernelName:co,back float result = ${r}; setOutput(result); } - `}},FB=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` + `}},cB=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} @@ -1242,7 +1242,7 @@ return log(x + sqrt(x * x - 1.0));`,TB=Xe({opSnippet:NB}),EB={kernelName:co,back vec4 result = ${r}; setOutput(result); } - `}};function Np(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Vn({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=Np({inputs:r.slice(0,o),backend:n}),c=Np({inputs:r.slice(o),backend:n});return Np({inputs:[l,c],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>dr(o,l)),s=r.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new FB(r[0].shape,s):new MB(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var $B={kernelName:ps,backendName:"webgl",kernelFunc:Np};function DB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("all",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),m=_.sizeFromShape(p),f=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=$i(f,f.dtype,"all",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var OB={kernelName:ho,backendName:"webgl",kernelFunc:DB};function zB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("any",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),m=_.sizeFromShape(p),f=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=$i(f,f.dtype,"any",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var PB={kernelName:po,backendName:"webgl",kernelFunc:zB},LB=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` + `}};function _p(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Pn({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=_p({inputs:r.slice(0,o),backend:n}),c=_p({inputs:r.slice(o),backend:n});return _p({inputs:[l,c],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>ir(o,l)),s=r.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new cB(r[0].shape,s):new uB(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var hB={kernelName:ls,backendName:"webgl",kernelFunc:_p};function dB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=dn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("all",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),m=_.sizeFromShape(p),f=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=Ti(f,f.dtype,"all",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var pB={kernelName:so,backendName:"webgl",kernelFunc:dB};function fB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=dn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("any",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),m=_.sizeFromShape(p),f=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=Ti(f,f.dtype,"any",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var mB={kernelName:io,backendName:"webgl",kernelFunc:fB},AB=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; @@ -1262,7 +1262,7 @@ return log(x + sqrt(x * x - 1.0));`,TB=Xe({opSnippet:NB}),EB={kernelName:co,back } setOutput(float(bestIndex)); } - `}},WB=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,_.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=lt(o),c=pn("coords",o),u,h;if(s===1){h=o+1;let k=lt(h);u=` + `}},yB=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,_.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=lt(o),c=hn("coords",o),u,h;if(s===1){h=o+1;let k=lt(h);u=` ${k} sourceLocR = ${k}(${c.join()}, 0); ++${c[o-1]}; ${k} sourceLocG = ${k}(${c.join()}, 0); @@ -1278,15 +1278,15 @@ return log(x + sqrt(x * x - 1.0));`,TB=Xe({opSnippet:NB}),EB={kernelName:co,back ${l} sourceLocA = coords; --${c[o-1]}; ${l} sourceLocB = coords; - --${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],m=d.map(k=>"int "+k),f=pn("sourceLocR",h-1).concat("inIdx.r"),A=pn("sourceLocG",h-1).concat("inIdx.g"),y=pn("sourceLocB",h-1).concat("inIdx.b"),g=pn("sourceLocA",h-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=r?"":` + --${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],m=d.map(k=>"int "+k),f=hn("sourceLocR",h-1).concat("inIdx.r"),A=hn("sourceLocG",h-1).concat("inIdx.g"),y=hn("sourceLocB",h-1).concat("inIdx.b"),g=hn("sourceLocA",h-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=r?"":` inIdx = round(vec4(getBestIndicesAChannel(${f.join()}), getBestIndicesAChannel(${A.join()}), getBestIndicesAChannel(${y.join()}), - getBestIndicesAChannel(${g.join()})));`,b=`vec4( + getBestIndicesAChannel(${g.join()})));`,w=`vec4( getAChannel(${f.join()}), hasNextCol ? getAChannel(${A.join()}) : 0., hasNextRow ? getAChannel(${y.join()}) : 0., - hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,w=r?"":` + hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,b=r?"":` float getBestIndicesAChannel(${m.join()}) { return getChannel(getBestIndicesA(${d.join()}), vec2(${d.slice(-2).join()})); @@ -1295,7 +1295,7 @@ return log(x + sqrt(x * x - 1.0));`,TB=Xe({opSnippet:NB}),EB={kernelName:co,back return getChannel(getA(${d.join()}), vec2(${d.slice(-2).join()})); } - ${w} + ${b} void main() { ${l} coords = getOutputCoords(); bool hasNextCol = ${c[o-1]} < ${i[o-1]-1}; @@ -1305,12 +1305,12 @@ return log(x + sqrt(x * x - 1.0));`,TB=Xe({opSnippet:NB}),EB={kernelName:co,back sourceLocB${p}, sourceLocA${p}) * ${t}; ivec4 inIdx = srcIdx; vec4 bestIndex = vec4(inIdx); - vec4 bestValue = ${b}; + vec4 bestValue = ${w}; for (int i = 0; i < ${t}; i++) { inIdx = srcIdx; ${v} - vec4 candidate = ${b}; + vec4 candidate = ${w}; bvec4 nan = isnan(candidate); bvec4 replace = bvec4( vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan))); @@ -1324,23 +1324,23 @@ return log(x + sqrt(x * x - 1.0));`,TB=Xe({opSnippet:NB}),EB={kernelName:co,back } setOutput(bestIndex); } - `}};function r7(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=E.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new LB(o,n,r==null),c=[t];r!=null&&c.push(r);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let h=r7(e,t,n,u);return e.disposeIntermediateTensorInfo(u),h}function a7(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=E.computeOptimalWindowSize(s),o=new WB(a,i,n,r==null),l=r==null?[t]:[t,r],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=a7(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function s7(e,t,n,r){let a=[n];if(E.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=E.computeOutAndReduceShapes(t.shape,a),l=_.sizeFromShape(o),c=fe({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=r7(e,c,r);s.push(u);let h=fe({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return a7(e,t,r)}function BB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=s7(n,l,i[0],"max");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var VB={kernelName:fs,backendName:"webgl",kernelFunc:BB};function jB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=s7(n,l,i[0],"min");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var UB={kernelName:wu,backendName:"webgl",kernelFunc:jB},HB=Nr+` + `}};function D3(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=E.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new AB(o,n,r==null),c=[t];r!=null&&c.push(r);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let h=D3(e,t,n,u);return e.disposeIntermediateTensorInfo(u),h}function O3(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=E.computeOptimalWindowSize(s),o=new yB(a,i,n,r==null),l=r==null?[t]:[t,r],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=O3(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function z3(e,t,n,r){let a=[n];if(E.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=E.computeOutAndReduceShapes(t.shape,a),l=_.sizeFromShape(o),c=fe({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=D3(e,c,r);s.push(u);let h=fe({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return O3(e,t,r)}function gB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=dn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=z3(n,l,i[0],"max");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var xB={kernelName:us,backendName:"webgl",kernelFunc:gB};function wB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=dn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=z3(n,l,i[0],"min");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var bB={kernelName:mu,backendName:"webgl",kernelFunc:wB},_B=wr+` if (abs(x) > 1.) { return NAN; } return asin(x); -`,GB=Xe({opSnippet:HB}),qB={kernelName:fo,backendName:"webgl",kernelFunc:GB},XB=Nr+"return log(x + sqrt(x * x + 1.0));",KB=Xe({opSnippet:XB}),ZB={kernelName:mo,backendName:"webgl",kernelFunc:KB},YB=Nr+` +`,vB=qe({opSnippet:_B}),kB={kernelName:oo,backendName:"webgl",kernelFunc:vB},IB=wr+"return log(x + sqrt(x * x + 1.0));",SB=qe({opSnippet:IB}),NB={kernelName:lo,backendName:"webgl",kernelFunc:SB},TB=wr+` return atan(x); -`,JB=Xe({opSnippet:YB}),QB={kernelName:Ao,backendName:"webgl",kernelFunc:JB},eV=oB+` +`,EB=qe({opSnippet:TB}),CB={kernelName:uo,backendName:"webgl",kernelFunc:EB},RB=PW+` return atan(a, b); -`,tV=` +`,MB=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); - `+lB+` + `+LW+` return result; -`,nV=nn({opSnippet:eV,packedOpSnippet:tV}),rV={kernelName:go,backendName:"webgl",kernelFunc:nV},aV=Nr+` +`,FB=en({opSnippet:RB,packedOpSnippet:MB}),$B={kernelName:ho,backendName:"webgl",kernelFunc:FB},DB=wr+` if ((x < -1.0) || (x > 1.0)) return NAN; -return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelName:yo,backendName:"webgl",kernelFunc:sV},_c=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let k=">=";this.userCode=` +return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,OB=qe({opSnippet:DB}),zB={kernelName:co,backendName:"webgl",kernelFunc:OB},yc=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let k=">=";this.userCode=` const ivec2 strides = ivec2(${i}, ${o}); const ivec2 pads = ivec2(${d}, ${p}); @@ -1391,7 +1391,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(float(minMaxPosition)); } - `;return}let g="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,b=s%4,w=` + `;return}let g="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,w=s%4,b=` if (${m}) { avgValue += dot(values, ones); } else { @@ -1446,11 +1446,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam getValue(batch, xR, xC + 3 * ${c}, d) ); - ${w} + ${b} } int xC = xCCorner + ${v}; - if (${b===1}) { + if (${w===1}) { vec4 values = vec4( getValue(batch, xR, xC, d), initializationValue, @@ -1458,8 +1458,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam initializationValue ); - ${w} - } else if (${b===2}) { + ${b} + } else if (${w===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), @@ -1467,8 +1467,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam initializationValue ); - ${w} - } else if (${b===3}) { + ${b} + } else if (${w===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), @@ -1476,12 +1476,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam initializationValue ); - ${w} + ${b} } } setOutput(${x}); } - `}},EA=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",x="0.0";if(g||(x="-1.0 / 1e-20"),n){let C=">=";this.userCode=` + `}},gA=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",x="0.0";if(g||(x="-1.0 / 1e-20"),n){let C=">=";this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); const ivec3 pads = ivec3(${f}, ${A}, ${y}); @@ -1543,7 +1543,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(float(minMaxPosition)); } - `;return}let v="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let w=Math.floor(s/4)*4,k=s%4,N=` + `;return}let v="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let b=Math.floor(s/4)*4,k=s%4,N=` if (${g}) { avgValue += dot(values, ones); } else { @@ -1598,7 +1598,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam continue; } - for (int wC = 0; wC < ${w}; wC += 4) { + for (int wC = 0; wC < ${b}; wC += 4) { int xC = xCCorner + wC * ${h}; vec4 values = vec4( @@ -1611,7 +1611,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam ${N} } - int xC = xCCorner + ${w}; + int xC = xCCorner + ${b}; if (${k===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), @@ -1641,10 +1641,10 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam ${N} } } - setOutput(${b}); + setOutput(${w}); } } - `}};function oV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;$l(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Vn({inputs:{x:a},backend:n});let h=new _c(u,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var lV={kernelName:ms,backendName:"webgl",kernelFunc:oV};function uV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,l,c),d=new EA(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var cV={kernelName:_u,backendName:"webgl",kernelFunc:uV},hV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,h=1/(t*n);this.userCode=` + `}};function PB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Tl(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Pn({inputs:{x:a},backend:n});let h=new yc(u,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var LB={kernelName:cs,backendName:"webgl",kernelFunc:PB};function WB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,l,c),d=new gA(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var BB={kernelName:Au,backendName:"webgl",kernelFunc:WB},VB=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,h=1/(t*n);this.userCode=` const ivec2 pads = ivec2(${c}, ${u}); const float avgMultiplier = float(${h}); @@ -1686,7 +1686,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(dotProd); } - `}},dV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=u-1-e.padInfo.front,m=h-1-e.padInfo.top,f=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=` + `}},jB=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=u-1-e.padInfo.front,m=h-1-e.padInfo.top,f=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=` const ivec3 pads = ivec3(${p}, ${m}, ${f}); const float avgMultiplier = float(${A}); @@ -1742,7 +1742,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(dotProd); } - `}};function pV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,h,c,u),p=new dV(d);return n.runWebGLProgram(p,[a],i.dtype)}var fV={kernelName:Dh,backendName:"webgl",kernelFunc:pV};function mV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;$l([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=new hV(u);return n.runWebGLProgram(h,[a],i.dtype)}var AV={kernelName:$h,backendName:"webgl",kernelFunc:mV};function yV(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return Sp({a,b:s,transposeA:i,transposeB:o,backend:n})}var gV={kernelName:As,backendName:"webgl",kernelFunc:yV},xV=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` + `}};function UB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,h,c,u),p=new jB(d);return n.runWebGLProgram(p,[a],i.dtype)}var HB={kernelName:Eh,backendName:"webgl",kernelFunc:UB};function GB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;Tl([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=new VB(u);return n.runWebGLProgram(h,[a],i.dtype)}var qB={kernelName:Th,backendName:"webgl",kernelFunc:GB};function XB(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return bp({a,b:s,transposeA:i,transposeB:o,backend:n})}var KB={kernelName:hs,backendName:"webgl",kernelFunc:XB},ZB=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); @@ -1752,7 +1752,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam float inv = scale * inversesqrt(variance + float(${s})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } - `}},bV=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` + `}},YB=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { vec4 offset = ${i}; vec4 scale = ${o}; @@ -1765,7 +1765,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam setOutput((x - mean) * inv + offset); } - `}},wV=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;_.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[r,a,s],u=null;i!=null&&(u=i.shape,c.push(i));let h=null;o!=null&&(h=o.shape,c.push(o));let d=J().getBool("WEBGL_PACK_NORMALIZATION")?new bV(r.shape,a.shape,s.shape,u,h,l):new xV(r.shape,a.shape,s.shape,u,h,l);return t.runWebGLProgram(d,c,c[0].dtype)},_V={kernelName:Ts,backendName:"webgl",kernelFunc:wV},kV=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=`uniform int start[${this.rank}];`,r=vV(this.rank),a,s=e.map((i,o)=>`sourceLoc.${CA[o]} = start[${o}] + coords.${CA[o]};`);a=` + `}},JB=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;_.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[r,a,s],u=null;i!=null&&(u=i.shape,c.push(i));let h=null;o!=null&&(h=o.shape,c.push(o));let d=J().getBool("WEBGL_PACK_NORMALIZATION")?new YB(r.shape,a.shape,s.shape,u,h,l):new ZB(r.shape,a.shape,s.shape,u,h,l);return t.runWebGLProgram(d,c,c[0].dtype)},QB={kernelName:vs,backendName:"webgl",kernelFunc:JB},tV=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=`uniform int start[${this.rank}];`,r=eV(this.rank),a,s=e.map((i,o)=>`sourceLoc.${xA[o]} = start[${o}] + coords.${xA[o]};`);a=` ${t} sourceLoc; ${t} coords = getOutputCoords(); ${s.join(` @@ -1776,7 +1776,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam ${a} setOutput(getSource(${r})); } - `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},CA=["x","y","z","w","u","v"];function vV(e){if(e===1)return"sourceLoc";if(e<=6)return CA.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var IV=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=pn("coords",this.rank),r=pn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=` + `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},xA=["x","y","z","w","u","v"];function eV(e){if(e===1)return"sourceLoc";if(e<=6)return xA.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var nV=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=hn("coords",this.rank),r=hn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=` result.x = ${s}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${r[this.rank-1]}; @@ -1806,7 +1806,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam ${o} setOutput(result); } - `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function SV(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=un.computeFlatOffset(t,_.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function vc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=un.parseSliceParams(a,s,i);if(un.assertParamsValid(a,o,l),_.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=yW(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:c}=n.texData.get(a.dataId),u=un.isSliceContinous(a.shape,o,l);if(c||!u){let h=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new IV(l):new kV(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),SV(a,o,l,n)}var NV={kernelName:Qo,backendName:"webgl",kernelFunc:vc},TV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,x)=>g*x),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=[],m=fe({inputs:{x:a},backend:n,attrs:{shape:l}}),f=fn({inputs:{x:m},backend:n,attrs:{perm:c}}),A=fe({inputs:{x:f},backend:n,attrs:{shape:u}}),y=vc({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(m),p.push(f),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},EV={kernelName:vu,backendName:"webgl",kernelFunc:TV};function CV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),c=F3(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var RV={kernelName:Oh,backendName:"webgl",kernelFunc:CV},MV="return float(a != b);",i7=nn({opSnippet:MV,dtype:"bool"}),FV={kernelName:Bo,backendName:"webgl",kernelFunc:i7};function kc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Vn({inputs:{x:a.complexTensorInfos.real},backend:n})}var $V={kernelName:ad,backendName:"webgl",kernelFunc:kc},DV="return float(int(x));";function OV(e,t){let n=new qa(e.shape,DV),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function RA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Vn({inputs:{x:a},backend:n});let i=Rt(a.shape),o=RA({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Xa({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=kc({inputs:{input:a},backend:n}),o=RA({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=Vn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return OV(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",_.getTypedArrayFromDType("bool",1)),o=i7({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var zV={kernelName:ys,backendName:"webgl",kernelFunc:RA},o7="return ceil(x);",PV=Xe({opSnippet:o7,packedOpSnippet:o7,cpuKernelImpl:QL}),LV={kernelName:gs,backendName:"webgl",kernelFunc:PV},WV=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function rV(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=sn.computeFlatOffset(t,_.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function gc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=sn.parseSliceParams(a,s,i);if(sn.assertParamsValid(a,o,l),_.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=XL(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:c}=n.texData.get(a.dataId),u=sn.isSliceContinous(a.shape,o,l);if(c||!u){let h=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new nV(l):new tV(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),rV(a,o,l,n)}var aV={kernelName:qo,backendName:"webgl",kernelFunc:gc},sV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,x)=>g*x),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=[],m=fe({inputs:{x:a},backend:n,attrs:{shape:l}}),f=dn({inputs:{x:m},backend:n,attrs:{perm:c}}),A=fe({inputs:{x:f},backend:n,attrs:{shape:u}}),y=gc({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(m),p.push(f),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},iV={kernelName:yu,backendName:"webgl",kernelFunc:sV};function oV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),c=h3(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var lV={kernelName:Ch,backendName:"webgl",kernelFunc:oV},uV="return float(a != b);",P3=en({opSnippet:uV,dtype:"bool"}),cV={kernelName:Do,backendName:"webgl",kernelFunc:P3};function xc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Pn({inputs:{x:a.complexTensorInfos.real},backend:n})}var hV={kernelName:Jh,backendName:"webgl",kernelFunc:xc},dV="return float(int(x));";function pV(e,t){let n=new Ba(e.shape,dV),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function wA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Pn({inputs:{x:a},backend:n});let i=Et(a.shape),o=wA({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Va({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=xc({inputs:{input:a},backend:n}),o=wA({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=Pn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return pV(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",_.getTypedArrayFromDType("bool",1)),o=P3({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var fV={kernelName:ds,backendName:"webgl",kernelFunc:wA},L3="return ceil(x);",mV=qe({opSnippet:L3,packedOpSnippet:L3,cpuKernelImpl:CL}),AV={kernelName:ps,backendName:"webgl",kernelFunc:mV},yV=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; @@ -1819,7 +1819,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam setOutput(clamp(value, minVal, maxVal)); } - `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},BV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},gV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; @@ -1833,7 +1833,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } - `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function VV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;J().getBool("WEBGL_PACK_CLIP")?o=new BV(a.shape):o=new WV(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var jV={kernelName:Ma,backendName:"webgl",kernelFunc:VV},UV=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function xV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;J().getBool("WEBGL_PACK_CLIP")?o=new gV(a.shape):o=new yV(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var wV={kernelName:Na,backendName:"webgl",kernelFunc:xV},bV=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); @@ -1846,7 +1846,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } - `}};function l7(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function HV(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new UV(r.shape),i=[l7(r,a.complexTensorInfos.real),l7(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var GV={kernelName:ku,backendName:"webgl",kernelFunc:HV},qV=class{constructor(e){this.outputShape=[],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m= ${o[m-1]}) { return getChannel( - getT${m}(${Tp(i,l,f)}), - vec2(${Tp(c,l,f)})); + getT${m}(${vp(i,l,f)}), + vec2(${vp(c,l,f)})); }`}let d=o.length,p=o[o.length-1];h+=` return getChannel( - getT${d}(${Tp(i,l,p)}), - vec2(${Tp(c,l,p)}));`,this.userCode=` + getT${d}(${vp(i,l,p)}), + vec2(${vp(c,l,p)}));`,this.userCode=` float getValue(${i.map(m=>"int "+m)}) { ${h} } @@ -1892,7 +1892,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(result); } - `}};function Tp(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function Ep(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Vn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var KV={kernelName:Yh,backendName:"webgl",kernelFunc:Ep};function jl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(f=>kc({inputs:{input:f},backend:n})),h=e.map(f=>Ep({inputs:{input:f},backend:n})),d=jl(u,t,n),p=jl(h,t,n),m=Xa({inputs:{real:d,imag:p},backend:n});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}let a=n.shouldExecuteOnCPU(e);if(r==="string"&&(a=!0),a){let u=e.map(y=>{let g=_.sizeFromShape(y.shape.slice(t));return fe({inputs:{x:y},backend:n,attrs:{shape:[-1,g]}})}),h=u.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),d=E.computeOutShape(u.map(y=>y.shape),1),p=u[0].shape[0]===1,m=eW(h,d,r,p),f=E.computeOutShape(e.map(y=>y.shape),t),A=n.makeTensorInfo(f,r,m);return u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),h=jl(e.slice(0,u),t,n),d=jl(e.slice(u),t,n),p=jl([h,d],t,n);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new XV(e.map(h=>h.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:s,outShape:i}=ZV(e,t,n),o=new qV(s.map(u=>u.shape)),l=n.runWebGLProgram(o,s,r);s.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=fe({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),c}function ZV(e,t,n){let r=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>fe({inputs:{x:a},attrs:{shape:[-1,_.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function u7(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=_.parseAxisParam(a,t[0].shape)[0],i=E.computeOutShape(t.map(c=>c.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>_.sizeFromShape(c.shape)>0);if(o.length===1)return Vn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return E.assertParamsConsistent(l,s),jl(o,s,n)}var YV={kernelName:xo,backendName:"webgl",kernelFunc:u7},c7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",A=f?1:2,y=f?2:3,g=f?3:1,x="",v="";n&&(r?x=`float activation(float a) { + `}};function vp(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function kp(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Pn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var SV={kernelName:Hh,backendName:"webgl",kernelFunc:kp};function zl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(f=>xc({inputs:{input:f},backend:n})),h=e.map(f=>kp({inputs:{input:f},backend:n})),d=zl(u,t,n),p=zl(h,t,n),m=Va({inputs:{real:d,imag:p},backend:n});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}let a=n.shouldExecuteOnCPU(e);if(r==="string"&&(a=!0),a){let u=e.map(y=>{let g=_.sizeFromShape(y.shape.slice(t));return fe({inputs:{x:y},backend:n,attrs:{shape:[-1,g]}})}),h=u.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),d=E.computeOutShape(u.map(y=>y.shape),1),p=u[0].shape[0]===1,m=RL(h,d,r,p),f=E.computeOutShape(e.map(y=>y.shape),t),A=n.makeTensorInfo(f,r,m);return u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),h=zl(e.slice(0,u),t,n),d=zl(e.slice(u),t,n),p=zl([h,d],t,n);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new IV(e.map(h=>h.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:s,outShape:i}=NV(e,t,n),o=new kV(s.map(u=>u.shape)),l=n.runWebGLProgram(o,s,r);s.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=fe({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),c}function NV(e,t,n){let r=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>fe({inputs:{x:a},attrs:{shape:[-1,_.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function B3(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=_.parseAxisParam(a,t[0].shape)[0],i=E.computeOutShape(t.map(c=>c.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>_.sizeFromShape(c.shape)>0);if(o.length===1)return Pn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return E.assertParamsConsistent(l,s),zl(o,s,n)}var TV={kernelName:po,backendName:"webgl",kernelFunc:B3},V3=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",A=f?1:2,y=f?2:3,g=f?3:1,x="",v="";n&&(r?x=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:a?x=`float activation(float a) { @@ -1902,7 +1902,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam float activation(float x) { ${n} } - `,v="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=` + `,v="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${x} const ivec2 strides = ivec2(${o}, ${l}); @@ -2022,11 +2022,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } float result = dotProd; - ${b} + ${w} ${v} setOutput(result); } - `}},JV=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=` + `}},EV=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${a}, ${s}, ${i}); const ivec3 pads = ivec3(${t}, ${n}, ${r}); @@ -2114,8 +2114,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(dotProd); } - `}},QV=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:h}=n,{left:d,top:p}=o,m=a*r,f=dn(),A=h==="channelsLast",y=A?0:1,g=A?1:2,x="";for(let v=0;v<=1;v++)for(let b=0;b<=1;b++)x+=` - blockIndex = rc.y + ${b}; + `}},CV=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:h}=n,{left:d,top:p}=o,m=a*r,f=cn(),A=h==="channelsLast",y=A?0:1,g=A?1:2,x="";for(let v=0;v<=1;v++)for(let w=0;w<=1;w++)x+=` + blockIndex = rc.y + ${w}; pos = rc.x + ${v}; if(blockIndex < ${e[1]} && pos < ${e[0]}) { @@ -2133,12 +2133,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam if (${A}) { innerDims = vec2(d1, ch); - result[${v*2+b}] = getChannel( + result[${v*2+w}] = getChannel( getA(d0, int(innerDims.x), int(innerDims.y)), innerDims); } else { innerDims = vec2(d0, d1); - result[${v*2+b}] = getChannel( + result[${v*2+w}] = getChannel( getA(ch, int(innerDims.x), int(innerDims.y)), innerDims); } @@ -2158,7 +2158,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam ${f.output} = result; } - `}};function h7({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=r.texData.get(e.dataId),u=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",m=!1,f=!1,A,y=[],g=(h===1||d===1)&&u>e7,x=l[2]%2!=0&&!!c.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],b=fe({inputs:{x:e},backend:r,attrs:{shape:[1,v,n.inChannels]}}),w=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),k=Sp({a:b,b:w,transposeA:m,transposeB:f,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=fe({inputs:{x:k},backend:r,attrs:{shape:n.outShape}}),y.push(b),y.push(w),y.push(k)}else{let v=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),b={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},w=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,_.assert(Ac(c.shape,b.shape),()=>`packed reshape ${c.shape} to ${b.shape} isn't free`);let k=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(k);let N=Sp({a:b,b:k,backend:r,transposeA:m,transposeB:f,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=r.texData.get(N.dataId);_.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=w,C.shape=n.outShape,A=Vn({inputs:{x:N},backend:r}),A.shape=n.outShape,y.push(N)}for(let v of y)r.disposeIntermediateTensorInfo(v);return A}function d7({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:h,outHeight:d,dataFormat:p}=n,m=p==="channelsLast",f=l*c*u,A=d*h,y=[f,A],g=!0,x=!1,v=[],b=fe({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),w=fe({inputs:{x:t},backend:r,attrs:{shape:[1,f,_.sizeFromShape(t.shape)/f]}});v.push(b),v.push(w);let k=new QV(y,b.shape,n),N=r.runWebGLProgram(k,[b],"float32"),C=fe({inputs:{x:N},backend:r,attrs:{shape:[1,y[0],y[1]]}});v.push(N),v.push(C);let F=a!=null,O=s!=null,L=o==="leakyrelu",V=o?vp(o,!0):null,j=new K3(C.shape,w.shape,[1,A,n.outChannels],g,x,F,V,O,L),U=[C,w];if(a&&U.push(a),O&&U.push(s),L){let Y=r.makeTensorInfo([],"float32",_.createScalarValue(i,"float32"));U.push(Y),v.push(Y)}let X=r.runWebGLProgram(j,U,"float32"),G=m?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=fe({inputs:{x:X},backend:r,attrs:{shape:G}});v.push(X);for(let Y of v)r.disposeIntermediateTensorInfo(Y);return ee}function ej(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=h7({x:a,filter:s,convInfo:d,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=d7({x:a,filter:s,convInfo:d,backend:n});else{let f=new c7(d);p=n.runWebGLProgram(f,[a,s],"float32")}let m=fe({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),m}var tj={kernelName:xs,backendName:"webgl",kernelFunc:ej},nj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=` + `}};function j3({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=r.texData.get(e.dataId),u=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",m=!1,f=!1,A,y=[],g=(h===1||d===1)&&u>M3,x=l[2]%2!=0&&!!c.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=fe({inputs:{x:e},backend:r,attrs:{shape:[1,v,n.inChannels]}}),b=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),k=bp({a:w,b,transposeA:m,transposeB:f,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=fe({inputs:{x:k},backend:r,attrs:{shape:n.outShape}}),y.push(w),y.push(b),y.push(k)}else{let v=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),w={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},b=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,_.assert(hc(c.shape,w.shape),()=>`packed reshape ${c.shape} to ${w.shape} isn't free`);let k=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(k);let N=bp({a:w,b:k,backend:r,transposeA:m,transposeB:f,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=r.texData.get(N.dataId);_.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=b,C.shape=n.outShape,A=Pn({inputs:{x:N},backend:r}),A.shape=n.outShape,y.push(N)}for(let v of y)r.disposeIntermediateTensorInfo(v);return A}function U3({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:h,outHeight:d,dataFormat:p}=n,m=p==="channelsLast",f=l*c*u,A=d*h,y=[f,A],g=!0,x=!1,v=[],w=fe({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),b=fe({inputs:{x:t},backend:r,attrs:{shape:[1,f,_.sizeFromShape(t.shape)/f]}});v.push(w),v.push(b);let k=new CV(y,w.shape,n),N=r.runWebGLProgram(k,[w],"float32"),C=fe({inputs:{x:N},backend:r,attrs:{shape:[1,y[0],y[1]]}});v.push(N),v.push(C);let F=a!=null,O=s!=null,z=o==="leakyrelu",V=o?gp(o,!0):null,j=new N3(C.shape,b.shape,[1,A,n.outChannels],g,x,F,V,O,z),U=[C,b];if(a&&U.push(a),O&&U.push(s),z){let Y=r.makeTensorInfo([],"float32",_.createScalarValue(i,"float32"));U.push(Y),v.push(Y)}let X=r.runWebGLProgram(j,U,"float32"),G=m?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=fe({inputs:{x:X},backend:r,attrs:{shape:G}});v.push(X);for(let Y of v)r.disposeIntermediateTensorInfo(Y);return ee}function RV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=j3({x:a,filter:s,convInfo:d,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=U3({x:a,filter:s,convInfo:d,backend:n});else{let f=new V3(d);p=n.runWebGLProgram(f,[a,s],"float32")}let m=fe({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),m}var MV={kernelName:fs,backendName:"webgl",kernelFunc:RV},FV=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; @@ -2200,7 +2200,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(dotProd); } - `}},rj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=` + `}},$V=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { @@ -2253,7 +2253,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(dotProd); } - `}},aj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=` + `}},DV=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; @@ -2295,7 +2295,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(dotProd); } - `}},sj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=r-1-e.padInfo.left;this.userCode=` + `}},OV=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=r-1-e.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${o}, ${l}, ${c}); void main() { @@ -2352,12 +2352,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(dotProd); } - `}};function ij(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),p=new nj(d);return n.runWebGLProgram(p,[a,s],"float32")}var oj={kernelName:Ph,backendName:"webgl",kernelFunc:ij};function lj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(c),d=E.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),p=new rj(d);return n.runWebGLProgram(p,[a,s],"float32")}var uj={kernelName:bs,backendName:"webgl",kernelFunc:lj};function cj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeConv3DInfo(a.shape,s.shape,i,l,o),u=new JV(c);return n.runWebGLProgram(u,[a,s],"float32")}var hj={kernelName:Iu,backendName:"webgl",kernelFunc:cj};function dj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,c=E.computeConv3DInfo(a.shape,l,i,1,o),u=new aj(c);return n.runWebGLProgram(u,[a,s],"float32")}var pj={kernelName:Lh,backendName:"webgl",kernelFunc:dj};function fj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,c=E.computeConv3DInfo(l,s.shape,o,1,i),u=new sj(c);return n.runWebGLProgram(u,[a,s],"float32")}var mj={kernelName:Wh,backendName:"webgl",kernelFunc:fj},Aj=X3+` + `}};function zV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),p=new FV(d);return n.runWebGLProgram(p,[a,s],"float32")}var PV={kernelName:Mh,backendName:"webgl",kernelFunc:zV};function LV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(c),d=E.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),p=new $V(d);return n.runWebGLProgram(p,[a,s],"float32")}var WV={kernelName:ms,backendName:"webgl",kernelFunc:LV};function BV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeConv3DInfo(a.shape,s.shape,i,l,o),u=new EV(c);return n.runWebGLProgram(u,[a,s],"float32")}var VV={kernelName:xu,backendName:"webgl",kernelFunc:BV};function jV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,c=E.computeConv3DInfo(a.shape,l,i,1,o),u=new DV(c);return n.runWebGLProgram(u,[a,s],"float32")}var UV={kernelName:Fh,backendName:"webgl",kernelFunc:jV};function HV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,c=E.computeConv3DInfo(l,s.shape,o,1,i),u=new OV(c);return n.runWebGLProgram(u,[a,s],"float32")}var GV={kernelName:$h,backendName:"webgl",kernelFunc:HV},qV=S3+` return cos(x); -`,yj=Xe({opSnippet:Aj}),gj={kernelName:ws,backendName:"webgl",kernelFunc:yj},xj=` +`,XV=qe({opSnippet:qV}),KV={kernelName:As,backendName:"webgl",kernelFunc:XV},ZV=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; -`,bj=Xe({opSnippet:xj}),wj={kernelName:bo,backendName:"webgl",kernelFunc:bj},_j=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,h]=n;this.outputShape=[c,u,h,l];let d=r==="bilinear"?1:0,[p,m]=[`${i-1}.0`,`${o-1}.0`],[f,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,x,v]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=` +`,YV=qe({opSnippet:ZV}),JV={kernelName:fo,backendName:"webgl",kernelFunc:YV},QV=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,h]=n;this.outputShape=[c,u,h,l];let d=r==="bilinear"?1:0,[p,m]=[`${i-1}.0`,`${o-1}.0`],[f,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,x,v]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=` const float height_ratio = float(${f}); const float width_ratio = float(${g}); void main() { @@ -2418,21 +2418,21 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam setOutput(newValue); } } - `}},vj=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,u=new _j(a.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[a,s,i],"float32")},kj={kernelName:wo,backendName:"webgl",kernelFunc:vj},m7=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${p7(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=` + `}},ej=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,u=new QV(a.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[a,s,i],"float32")},tj={kernelName:mo,backendName:"webgl",kernelFunc:ej},q3=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${H3(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=` uniform float index; void main() { ${lt(r)} coords = getOutputCoords(); - int end = ${f7(r,"coords")}; + int end = ${G3(r,"coords")}; float val = ${a}; int pow2 = int(pow(2.0, index)); if (${i}) { int idx = ${o}; - ${f7(r,"coords")} = idx; - val += getX(${p7(r,"coords")}); + ${G3(r,"coords")} = idx; + val += getX(${H3(r,"coords")}); } setOutput(val); } - `}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function p7(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function f7(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Ij(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,c=E.getAxesPermutation([s],l),u=a;c!=null&&(u=fn({inputs:{x:a},backend:n,attrs:{perm:c}}));let h=E.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=u.shape[h],p=Vn({inputs:{x:u},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new m7(u.shape,!1,o),A=f.getCustomSetupFunc(m),y=p;p=n.runWebGLProgram(f,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let m=new m7(u.shape,i,o),f=p;p=n.runWebGLProgram(m,[p],p.dtype),n.disposeIntermediateTensorInfo(f)}if(c!=null){let m=E.getUndoAxesPermutation(c),f=fn({inputs:{x:p},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(u),f}return p}var Sj={kernelName:_s,backendName:"webgl",kernelFunc:Ij};function Nj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),c=n.readSync(s.dataId),u=F3(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=JL(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var Tj={kernelName:Bh,backendName:"webgl",kernelFunc:Nj},Ej=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` + `}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function H3(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function G3(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function nj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,c=E.getAxesPermutation([s],l),u=a;c!=null&&(u=dn({inputs:{x:a},backend:n,attrs:{perm:c}}));let h=E.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=u.shape[h],p=Pn({inputs:{x:u},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new q3(u.shape,!1,o),A=f.getCustomSetupFunc(m),y=p;p=n.runWebGLProgram(f,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let m=new q3(u.shape,i,o),f=p;p=n.runWebGLProgram(m,[p],p.dtype),n.disposeIntermediateTensorInfo(f)}if(c!=null){let m=E.getUndoAxesPermutation(c),f=dn({inputs:{x:p},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(u),f}return p}var rj={kernelName:ys,backendName:"webgl",kernelFunc:nj};function aj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),c=n.readSync(s.dataId),u=h3(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=EL(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var sj={kernelName:Dh,backendName:"webgl",kernelFunc:aj},ij=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -2451,7 +2451,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam float result = ${this.getInputSamplingString()}; setOutput(result); } - `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Cj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=new Ej(m,s,i);return n.runWebGLProgram(f,[a],a.dtype)}var Rj={kernelName:_o,backendName:"webgl",kernelFunc:Cj},A7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) { + `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function oj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=new ij(m,s,i);return n.runWebGLProgram(f,[a],a.dtype)}var lj={kernelName:Ao,backendName:"webgl",kernelFunc:oj},X3=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:a?A=`float activation(float a) { @@ -2507,16 +2507,16 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam ${y} setOutput(result); } - `}},y7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,c=e.padInfo.left,u=e.strideHeight,h=e.strideWidth,d=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,A=f,y=` + `}},K3=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,c=e.padInfo.left,u=e.strideHeight,h=e.strideWidth,d=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,A=f,y=` int xR; int xC; int xCOffset; - vec4 wTexel; vec4 previous; vec4 final;`;for(let b=0;b=0 && xR < ${i}) { - `;for(let w=0;w`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let h=E.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!0),d;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new y7(h):d=new A7(h),n.runWebGLProgram(d,[a,s],"float32")}var Fj={kernelName:vs,backendName:"webgl",kernelFunc:Mj},$j=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=` + `}};function uj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=r,u=l;u==null&&(u=[1,1]),_.assert(E.eitherStridesOrDilationsAreOne(i,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let h=E.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!0),d;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new K3(h):d=new X3(h),n.runWebGLProgram(d,[a,s],"float32")}var cj={kernelName:gs,backendName:"webgl",kernelFunc:uj},hj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; @@ -2714,7 +2714,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(dotProd); } - `}},Dj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=` + `}},dj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=` const ivec2 pads = ivec2(${s}, ${i}); void main() { @@ -2759,13 +2759,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(dotProd); } - `}};function Oj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r,h=E.computeConv2DInfo(a.shape,u,i,o,l,c,!0),d=new $j(h);return n.runWebGLProgram(d,[a,s],"float32")}var zj={kernelName:Vh,backendName:"webgl",kernelFunc:Oj};function Pj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r,h=E.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new Dj(h);return n.runWebGLProgram(d,[a,s],"float32")}var Lj={kernelName:jh,backendName:"webgl",kernelFunc:Pj},Wj=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` + `}};function pj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r,h=E.computeConv2DInfo(a.shape,u,i,o,l,c,!0),d=new hj(h);return n.runWebGLProgram(d,[a,s],"float32")}var fj={kernelName:Oh,backendName:"webgl",kernelFunc:pj};function mj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r,h=E.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new dj(h);return n.runWebGLProgram(d,[a,s],"float32")}var Aj={kernelName:zh,backendName:"webgl",kernelFunc:mj},yj=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } - `}};function Bj(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=_.sizeFromShape(r.shape),i=fe({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new Wj(s),l=n.runWebGLProgram(o,[i],i.dtype),c=fe({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var Vj={kernelName:Uh,backendName:"webgl",kernelFunc:Bj},jj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:h}=r;this.userCode=` + `}};function gj(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=_.sizeFromShape(r.shape),i=fe({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new yj(s),l=n.runWebGLProgram(o,[i],i.dtype),c=fe({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var xj={kernelName:Ph,backendName:"webgl",kernelFunc:gj},wj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:h}=r;this.userCode=` const ivec2 strides = ivec2(${a}, ${s}); const ivec2 pads = ivec2(${u}, ${h}); const float neg_infinity = -3.4e38; @@ -2803,7 +2803,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam float result = curVal; setOutput(result); } - `}};function Uj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),u,h=new jj(c);u=n.runWebGLProgram(h,[a,s],"float32");let d=fe({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var Hj={kernelName:Su,backendName:"webgl",kernelFunc:Uj};function Gj(e){let{inputs:t,backend:n,attrs:r}=e,{equation:a}=r,s=t,{allDims:i,summedDims:o,idDims:l}=E.decodeEinsumEquation(a,s.length);E.checkEinsumDimSizes(i.length,l,s);let{path:c,steps:u}=E.getEinsumComputePath(o,l),h=u.length,d=null,p=i.length,m=[];for(let f=0;f=0&&(d=Ip({inputs:{x:d},backend:n,attrs:{axis:c[f]-(i.length-p),keepDims:!1}}),m.push(d)),p--)}for(let f of m)f!==d&&n.disposeIntermediateTensorInfo(f);return d}var qj={kernelName:qh,backendName:"webgl",kernelFunc:Gj},Xj="return (x >= 0.0) ? x : (exp(x) - 1.0);",Kj=` + `}};function bj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),u,h=new wj(c);u=n.runWebGLProgram(h,[a,s],"float32");let d=fe({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var _j={kernelName:wu,backendName:"webgl",kernelFunc:bj};function vj(e){let{inputs:t,backend:n,attrs:r}=e,{equation:a}=r,s=t,{allDims:i,summedDims:o,idDims:l}=E.decodeEinsumEquation(a,s.length);E.checkEinsumDimSizes(i.length,l,s);let{path:c,steps:u}=E.getEinsumComputePath(o,l),h=u.length,d=null,p=i.length,m=[];for(let f=0;f=0&&(d=wp({inputs:{x:d},backend:n,attrs:{axis:c[f]-(i.length-p),keepDims:!1}}),m.push(d)),p--)}for(let f of m)f!==d&&n.disposeIntermediateTensorInfo(f);return d}var kj={kernelName:Bh,backendName:"webgl",kernelFunc:vj},Ij="return (x >= 0.0) ? x : (exp(x) - 1.0);",Sj=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); @@ -2812,12 +2812,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; -`,Zj=Xe({opSnippet:Xj,packedOpSnippet:Kj}),Yj={kernelName:vo,backendName:"webgl",kernelFunc:Zj},Jj="return (b >= 1.0) ? a : a * (b + 1.0);",Qj=` +`,Nj=qe({opSnippet:Ij,packedOpSnippet:Sj}),Tj={kernelName:yo,backendName:"webgl",kernelFunc:Nj},Ej="return (b >= 1.0) ? a : a * (b + 1.0);",Cj=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); -`,eU=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(Qj,r.shape,a.shape):new Vl(Jj,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},tU={kernelName:Xh,backendName:"webgl",kernelFunc:eU},nU=` +`,Rj=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ac(Cj,r.shape,a.shape):new Ol(Ej,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},Mj={kernelName:Vh,backendName:"webgl",kernelFunc:Rj},Fj=` return vec4(equal(a, b)); -`,rU="return float(a == b);",aU=nn({opSnippet:rU,packedOpSnippet:nU,dtype:"bool"}),sU={kernelName:Io,backendName:"webgl",kernelFunc:aU},iU=` +`,$j="return float(a == b);",Dj=en({opSnippet:$j,packedOpSnippet:Fj,dtype:"bool"}),Oj={kernelName:xo,backendName:"webgl",kernelFunc:Dj},zj=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. @@ -2832,7 +2832,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); -`,oU=Xe({opSnippet:iU}),lU={kernelName:ko,backendName:"webgl",kernelFunc:oU},g7="return exp(x);",x7=Xe({opSnippet:g7,packedOpSnippet:g7,cpuKernelImpl:tW}),uU={kernelName:Is,backendName:"webgl",kernelFunc:x7};function MA(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(_.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),fe({inputs:{x:s},backend:r,attrs:{shape:o}})}var cU={kernelName:So,backendName:"webgl",kernelFunc:MA},b7="return exp(x) - 1.0;",hU=Xe({opSnippet:b7,packedOpSnippet:b7,cpuKernelImpl:nW}),dU={kernelName:No,backendName:"webgl",kernelFunc:hU},w7=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` +`,Pj=qe({opSnippet:zj}),Lj={kernelName:go,backendName:"webgl",kernelFunc:Pj},Z3="return exp(x);",Y3=qe({opSnippet:Z3,packedOpSnippet:Z3,cpuKernelImpl:ML}),Wj={kernelName:ws,backendName:"webgl",kernelFunc:Y3};function bA(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(_.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),fe({inputs:{x:s},backend:r,attrs:{shape:o}})}var Bj={kernelName:wo,backendName:"webgl",kernelFunc:bA},J3="return exp(x) - 1.0;",Vj=qe({opSnippet:J3,packedOpSnippet:J3,cpuKernelImpl:FL}),jj={kernelName:bo,backendName:"webgl",kernelFunc:Vj},Q3=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` const float exponentMultiplier = ${a}; float unaryOpComplex(float real, float expR, float imag, float expI) { @@ -2865,13 +2865,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } - `}};function _7(e,t,n){let r=n.texData.get(e.dataId),a=_.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=fe({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new w7("real",l,t),u=new w7("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),m=Xa({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let f=fe({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function pU(e){let{inputs:t,backend:n}=e,{input:r}=t;return _7(r,!1,n)}var fU={kernelName:Kh,backendName:"webgl",kernelFunc:pU},mU=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=` + `}};function e7(e,t,n){let r=n.texData.get(e.dataId),a=_.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=fe({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new Q3("real",l,t),u=new Q3("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),m=Va({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let f=fe({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function Uj(e){let{inputs:t,backend:n}=e,{input:r}=t;return e7(r,!1,n)}var Hj={kernelName:jh,backendName:"webgl",kernelFunc:Uj},Gj=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=` uniform float value; void main() { // Input can be obtained from uniform value. setOutput(value); } - `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function FA(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||_.inferDtype(a),s==="string"){let i=_.getArrayFromDType(s,_.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new mU(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var AU={kernelName:Nu,backendName:"webgl",kernelFunc:FA},yU=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function _A(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||_.inferDtype(a),s==="string"){let i=_.getArrayFromDType(s,_.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new Gj(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var qj={kernelName:bu,backendName:"webgl",kernelFunc:_A},Xj=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; @@ -2885,7 +2885,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(outputValue); } - `}},gU={kernelName:To,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new yU(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},v7="return floor(x);",xU=Xe({opSnippet:v7,packedOpSnippet:v7,cpuKernelImpl:rW}),bU={kernelName:Ss,backendName:"webgl",kernelFunc:xU},wU=` + `}},Kj={kernelName:_o,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new Xj(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},t7="return floor(x);",Zj=qe({opSnippet:t7,packedOpSnippet:t7,cpuKernelImpl:$L}),Yj={kernelName:bs,backendName:"webgl",kernelFunc:Zj},Jj=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); @@ -2895,7 +2895,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } else { return NAN; } -`,_U=` +`,Qj=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); @@ -2916,7 +2916,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); -`,vU=nn({opSnippet:wU,packedOpSnippet:_U,dtype:"int32"}),kU={kernelName:Ns,backendName:"webgl",kernelFunc:vU},IU=class{constructor(e){this.variableNames=["A"];let t=dn(),[n,r]=e;this.outputShape=e,this.userCode=` +`,eU=en({opSnippet:Jj,packedOpSnippet:Qj,dtype:"int32"}),tU={kernelName:_s,backendName:"webgl",kernelFunc:eU},nU=class{constructor(e){this.variableNames=["A"];let t=cn(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; @@ -2938,7 +2938,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam setOutput(floor(value * 255.0 + 0.5)); } - `}},SU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=dn(),[n,r]=e;this.outputShape=e,this.userCode=` + `}},rU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=cn(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; @@ -2972,7 +2972,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam ${t.output} = result; } - `}},TU={kernelName:hd,backendName:"webgl",kernelFunc:NU},Ul;function NU(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,c]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],u=[c,l],h=[c,l,s];(o||i)&&(Ul==null&&(Ul=document.createElement("canvas").getContext("2d")),Ul.canvas.width=l,Ul.canvas.height=c,Ul.drawImage(a,0,0,l,c),a=Ul.canvas);let d=n.makeTensorInfo(u,"int32");n.texData.get(d.dataId).usage=rr.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),a);let p=J().getBool("WEBGL_PACK")?new SU(h):new IU(h),m=n.runWebGLProgram(p,[d],"int32");return n.disposeData(d.dataId),m}function EU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=E.convertConv2DDataFormat(u),A=E.computeConv2DInfo(a.shape,s.shape,l,h,c,d,!1,f),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=h7({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=d7({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,b=o!=null,w=p==="leakyrelu",k=p?vp(p,!1):null,N=new c7(A,v,k,b,w),C=[a,s];if(i&&C.push(i),o&&C.push(o),w){let F=n.makeTensorInfo([],"float32",_.createScalarValue(m,"float32"));C.push(F),g.push(F)}y=n.runWebGLProgram(N,C,"float32")}let x=fe({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var CU={kernelName:li,backendName:"webgl",kernelFunc:EU};function RU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,m=[],f=u;f==null&&(f=[1,1]),_.assert(E.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let A=E.computeConv2DInfo(a.shape,s.shape,l,f,c,h,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?vp(d,y):null,x=[a,s],v=i!=null,b=o!=null,w=d==="leakyrelu";if(v&&x.push(i),b&&x.push(o),w){let C=n.makeTensorInfo([],"float32",_.createScalarValue(p,"float32"));x.push(C),m.push(C)}let k;y?k=new y7(A,v,g,b,w):k=new A7(A,v,g,b,w);let N=n.runWebGLProgram(k,x,"float32");return m.forEach(C=>n.disposeIntermediateTensorInfo(C)),N}var MU={kernelName:ui,backendName:"webgl",kernelFunc:RU},FU=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=lt(t.length),a=lt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=` + `}},sU={kernelName:sd,backendName:"webgl",kernelFunc:aU},Pl;function aU(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,c]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],u=[c,l],h=[c,l,s];(o||i)&&(Pl==null&&(Pl=document.createElement("canvas").getContext("2d")),Pl.canvas.width=l,Pl.canvas.height=c,Pl.drawImage(a,0,0,l,c),a=Pl.canvas);let d=n.makeTensorInfo(u,"int32");n.texData.get(d.dataId).usage=Qn.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),a);let p=J().getBool("WEBGL_PACK")?new rU(h):new nU(h),m=n.runWebGLProgram(p,[d],"int32");return n.disposeData(d.dataId),m}function iU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=E.convertConv2DDataFormat(u),A=E.computeConv2DInfo(a.shape,s.shape,l,h,c,d,!1,f),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=j3({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=U3({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,w=o!=null,b=p==="leakyrelu",k=p?gp(p,!1):null,N=new V3(A,v,k,w,b),C=[a,s];if(i&&C.push(i),o&&C.push(o),b){let F=n.makeTensorInfo([],"float32",_.createScalarValue(m,"float32"));C.push(F),g.push(F)}y=n.runWebGLProgram(N,C,"float32")}let x=fe({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var oU={kernelName:ri,backendName:"webgl",kernelFunc:iU};function lU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,m=[],f=u;f==null&&(f=[1,1]),_.assert(E.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let A=E.computeConv2DInfo(a.shape,s.shape,l,f,c,h,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?gp(d,y):null,x=[a,s],v=i!=null,w=o!=null,b=d==="leakyrelu";if(v&&x.push(i),w&&x.push(o),b){let C=n.makeTensorInfo([],"float32",_.createScalarValue(p,"float32"));x.push(C),m.push(C)}let k;y?k=new K3(A,v,g,w,b):k=new X3(A,v,g,w,b);let N=n.runWebGLProgram(k,x,"float32");return m.forEach(C=>n.disposeIntermediateTensorInfo(C)),N}var uU={kernelName:ai,backendName:"webgl",kernelFunc:lU},cU=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=lt(t.length),a=lt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=` ${r} strides = ${r}(${this.strides}); void main() { ${a} coords = getOutputCoords(); @@ -2983,21 +2983,21 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(getX(flattenIndex, coords[1])); } - `}};function $U(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,c,u]=E.prepareAndValidate(r,a),h=fe({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=fe({inputs:{x:r},backend:n,attrs:{shape:[_.sizeFromShape(r.shape)/c,c]}}),p=new FU(i,u,[l,c]),m=n.runWebGLProgram(p,[d,h],d.dtype),f=fe({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var DU={kernelName:Co,backendName:"webgl",kernelFunc:$U},zU=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=lt(this.rank),r=OU(e,2);this.userCode=` + `}};function hU(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,c,u]=E.prepareAndValidate(r,a),h=fe({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=fe({inputs:{x:r},backend:n,attrs:{shape:[_.sizeFromShape(r.shape)/c,c]}}),p=new cU(i,u,[l,c]),m=n.runWebGLProgram(p,[d,h],d.dtype),f=fe({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var dU={kernelName:ko,backendName:"webgl",kernelFunc:hU},fU=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=lt(this.rank),r=pU(e,2);this.userCode=` void main() { ${n} resRC = getOutputCoords(); setOutput(getA(${r})); } - `}};function OU(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;an.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(c.outputShape,v.dtype,v.values)}let f=new zU(d.shape,m),A=n.runWebGLProgram(f,[d,p],d.dtype);h.push(A);let y=fe({inputs:{x:A},backend:n,attrs:{shape:c.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var LU={kernelName:Eo,backendName:"webgl",kernelFunc:PU},WU="return float(a > b);",BU=` + `}};function pU(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;an.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(c.outputShape,v.dtype,v.values)}let f=new fU(d.shape,m),A=n.runWebGLProgram(f,[d,p],d.dtype);h.push(A);let y=fe({inputs:{x:A},backend:n,attrs:{shape:c.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var AU={kernelName:vo,backendName:"webgl",kernelFunc:mU},yU="return float(a > b);",gU=` return vec4(greaterThan(a, b)); -`,VU=nn({opSnippet:WU,packedOpSnippet:BU,cpuKernelImpl:sW,dtype:"bool"}),jU={kernelName:Ro,backendName:"webgl",kernelFunc:VU},UU="return float(a >= b);",HU=` +`,xU=en({opSnippet:yU,packedOpSnippet:gU,cpuKernelImpl:OL,dtype:"bool"}),wU={kernelName:Io,backendName:"webgl",kernelFunc:xU},bU="return float(a >= b);",_U=` return vec4(greaterThanEqual(a, b)); -`,GU=nn({opSnippet:UU,packedOpSnippet:HU,dtype:"bool"}),qU={kernelName:Es,backendName:"webgl",kernelFunc:GU};function XU(e){let{inputs:t,backend:n}=e,{input:r}=t;return _7(r,!0,n)}var KU={kernelName:Zh,backendName:"webgl",kernelFunc:XU},ZU="return float(!isnan(x) && !isinf(x));",YU=Xe({opSnippet:ZU,dtype:"bool"}),JU={kernelName:Mo,backendName:"webgl",kernelFunc:YU},QU="return float(isinf(x));",eH=Xe({opSnippet:QU,dtype:"bool"}),tH={kernelName:Fo,backendName:"webgl",kernelFunc:eH},nH="return float(isnan(x));",rH=Xe({opSnippet:nH,dtype:"bool"}),aH={kernelName:$o,backendName:"webgl",kernelFunc:rH},sH="return float(a < b);",iH=` +`,vU=en({opSnippet:bU,packedOpSnippet:_U,dtype:"bool"}),kU={kernelName:ks,backendName:"webgl",kernelFunc:vU};function IU(e){let{inputs:t,backend:n}=e,{input:r}=t;return e7(r,!0,n)}var SU={kernelName:Uh,backendName:"webgl",kernelFunc:IU},NU="return float(!isnan(x) && !isinf(x));",TU=qe({opSnippet:NU,dtype:"bool"}),EU={kernelName:So,backendName:"webgl",kernelFunc:TU},CU="return float(isinf(x));",RU=qe({opSnippet:CU,dtype:"bool"}),MU={kernelName:No,backendName:"webgl",kernelFunc:RU},FU="return float(isnan(x));",$U=qe({opSnippet:FU,dtype:"bool"}),DU={kernelName:To,backendName:"webgl",kernelFunc:$U},OU="return float(a < b);",zU=` return vec4(lessThan(a, b)); -`,oH=nn({opSnippet:sH,packedOpSnippet:iH,cpuKernelImpl:iW,dtype:"bool"}),lH={kernelName:Do,backendName:"webgl",kernelFunc:oH},uH="return float(a <= b);",cH=` +`,PU=en({opSnippet:OU,packedOpSnippet:zU,cpuKernelImpl:zL,dtype:"bool"}),LU={kernelName:Eo,backendName:"webgl",kernelFunc:PU},WU="return float(a <= b);",BU=` return vec4(lessThanEqual(a, b)); -`,hH=nn({opSnippet:uH,packedOpSnippet:cH,dtype:"bool"}),dH={kernelName:Oo,backendName:"webgl",kernelFunc:hH};function pH(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=oW(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var fH={kernelName:Jh,backendName:"webgl",kernelFunc:pH},mH=`if (x < 0.0) return NAN; - return log(x);`,AH=` +`,VU=en({opSnippet:WU,packedOpSnippet:BU,dtype:"bool"}),jU={kernelName:Co,backendName:"webgl",kernelFunc:VU};function UU(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=PL(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var HU={kernelName:Gh,backendName:"webgl",kernelFunc:UU},GU=`if (x < 0.0) return NAN; + return log(x);`,qU=` vec4 result = log(x); vec4 isNaN = vec4(lessThan(x, vec4(0.0))); result.r = isNaN.r == 1.0 ? NAN : result.r; @@ -3006,16 +3006,16 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam result.a = isNaN.a == 1.0 ? NAN : result.a; return result; -`,yH=Xe({opSnippet:mH,packedOpSnippet:AH,cpuKernelImpl:lW}),gH={kernelName:Ms,backendName:"webgl",kernelFunc:yH},xH="return log(1.0 + x);",bH=Xe({opSnippet:xH}),wH={kernelName:zo,backendName:"webgl",kernelFunc:bH},_H="return float(a >= 1.0 && b >= 1.0);",vH=` +`,XU=qe({opSnippet:GU,packedOpSnippet:qU,cpuKernelImpl:LL}),KU={kernelName:Ns,backendName:"webgl",kernelFunc:XU},ZU="return log(1.0 + x);",YU=qe({opSnippet:ZU}),JU={kernelName:Ro,backendName:"webgl",kernelFunc:YU},QU="return float(a >= 1.0 && b >= 1.0);",eH=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); -`,kH=nn({opSnippet:_H,packedOpSnippet:vH,dtype:"bool"}),IH={kernelName:Po,backendName:"webgl",kernelFunc:kH},SH="return float(!(x >= 1.0));",NH=Xe({opSnippet:SH}),TH={kernelName:Tu,backendName:"webgl",kernelFunc:NH},EH="return float(a >= 1.0 || b >= 1.0);",CH=` +`,tH=en({opSnippet:QU,packedOpSnippet:eH,dtype:"bool"}),nH={kernelName:Mo,backendName:"webgl",kernelFunc:tH},rH="return float(!(x >= 1.0));",aH=qe({opSnippet:rH}),sH={kernelName:_u,backendName:"webgl",kernelFunc:aH},iH="return float(a >= 1.0 || b >= 1.0);",oH=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); -`,RH=nn({opSnippet:EH,packedOpSnippet:CH,dtype:"bool"}),MH={kernelName:Eu,backendName:"webgl",kernelFunc:RH},FH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` +`,lH=en({opSnippet:iH,packedOpSnippet:oH,dtype:"bool"}),uH={kernelName:vu,backendName:"webgl",kernelFunc:lH},cH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3034,7 +3034,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam float val = x * ${o}; setOutput(val); } - `}},$H=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` + `}},hH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; @@ -3096,7 +3096,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam vec4 result = xAtOutputCoords * ${o}; setOutput(result); } - `}},DH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,c=J().getBool("WEBGL_PACK_NORMALIZATION")?new $H(a.shape,s,i,o,l):new FH(a.shape,s,i,o,l);return n.runWebGLProgram(c,[a],a.dtype)},OH={kernelName:Cu,backendName:"webgl",kernelFunc:DH},zH=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=` + `}},dH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,c=J().getBool("WEBGL_PACK_NORMALIZATION")?new hH(a.shape,s,i,o,l):new cH(a.shape,s,i,o,l);return n.runWebGLProgram(c,[a],a.dtype)},pH={kernelName:ku,backendName:"webgl",kernelFunc:dH},fH=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3151,14 +3151,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(result); } - `}},PH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r,h=new zH(a.shape,o,l,c,u);return n.runWebGLProgram(h,[a,s,i],a.dtype)},LH={kernelName:Qh,backendName:"webgl",kernelFunc:PH};function WH(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=$i(i,e.dtype,"max",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function k7(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,x=new Array(o);for(let w=0;w{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r,h=new fH(a.shape,o,l,c,u);return n.runWebGLProgram(h,[a,s,i],a.dtype)},AH={kernelName:qh,backendName:"webgl",kernelFunc:mH};function yH(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=Ti(i,e.dtype,"max",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function n7(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,x=new Array(o);for(let b=0;b`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Vn({inputs:{x:a},backend:n});let h=new _c(u,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var qH={kernelName:Ds,backendName:"webgl",kernelFunc:GH};function XH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,c,l),d=new EA(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var KH={kernelName:Ru,backendName:"webgl",kernelFunc:XH},ZH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=` +`,bH=en({opSnippet:xH,packedOpSnippet:wH,cpuKernelImpl:BL}),_H={kernelName:Es,backendName:"webgl",kernelFunc:bH};function vH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Tl(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Pn({inputs:{x:a},backend:n});let h=new yc(u,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var kH={kernelName:Cs,backendName:"webgl",kernelFunc:vH};function IH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,c,l),d=new gA(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var SH={kernelName:Iu,backendName:"webgl",kernelFunc:IH},NH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { @@ -3204,7 +3204,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(dotProd); } - `}},YH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=c-1-e.padInfo.left,p=o*l*c-1;this.userCode=` + `}},TH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=c-1-e.padInfo.left,p=o*l*c-1;this.userCode=` const ivec3 pads = ivec3(${u}, ${h}, ${d}); void main() { @@ -3268,14 +3268,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam } setOutput(dotProd); } - `}};function JH(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,h,c,u),p=new EA(d,"max",!0),m=n.runWebGLProgram(p,[i],i.dtype),f=new YH(d),A=n.runWebGLProgram(f,[a,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var QH={kernelName:td,backendName:"webgl",kernelFunc:JH};function eG(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;$l([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=E.computePool2DInfo(o.shape,l,c,1,u,h),p=!0,m=new _c(d,"max",p),f=n.runWebGLProgram(m,[o],o.dtype),A=new ZH(d),y=n.runWebGLProgram(A,[a,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var tG={kernelName:ed,backendName:"webgl",kernelFunc:eG};function nG(e,t,n,r){let a=new _c(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new _c(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var rG={kernelName:nd,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let c=[1,1];_.assert(E.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,s,c,i),[h,d]=nG(r,o,u,l);return[h,d]}};function aG(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=$i(i,"float32","mean",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var sG={kernelName:Os,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=_.parseAxisParam(s,r.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=i.shouldExecuteOnCPU([r]),p=[],m=r;if(h){if(d){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let k=0;k{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let c=[1,1];_.assert(E.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,s,c,i),[h,d]=FH(r,o,u,l);return[h,d]}};function DH(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=Ti(i,"float32","mean",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var OH={kernelName:Rs,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=_.parseAxisParam(s,r.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=i.shouldExecuteOnCPU([r]),p=[],m=r;if(h){if(d){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let k=0;kc[0]+e[u]+c[1]);let r=e.length,a=lt(r),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=` +`,BH=en({opSnippet:LH,packedOpSnippet:WH,cpuKernelImpl:VL}),VH={kernelName:Fs,backendName:"webgl",kernelFunc:BH},jH=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let r=e.length,a=lt(r),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=` int start = ${s}; int end = ${i}; @@ -3304,7 +3304,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam ${a} coords = outC - start; setOutput(getX(${o})); } - `}},pG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,m)=>p[0]+e[m]+p[1]);let r=e.length,a=lt(r),s=t.map(p=>p[0]).join(","),i=t.map((p,m)=>p[0]+e[m]).join(","),o=pn("rc",r),l=pn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=` + `}},UH=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,m)=>p[0]+e[m]+p[1]);let r=e.length,a=lt(r),s=t.map(p=>p[0]).join(","),i=t.map((p,m)=>p[0]+e[m]).join(","),o=hn("rc",r),l=hn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=` ${a} source = rc; if (source < start) { source = start * 2 - source - ${h}; @@ -3360,13 +3360,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam ${d} setOutput(result); } - `}},fG=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new pG(r.shape,a,s):new dG(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},mG={kernelName:Ls,backendName:"webgl",kernelFunc:fG},AG=`if (b == 0.0) return NAN; - return mod(a, b);`,yG=` + `}},HH=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new UH(r.shape,a,s):new jH(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},GH={kernelName:$s,backendName:"webgl",kernelFunc:HH},qH=`if (b == 0.0) return NAN; + return mod(a, b);`,XH=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); - `+_p+` + `+yp+` return result; -`,gG=nn({opSnippet:AG,packedOpSnippet:yG}),xG={kernelName:Lo,backendName:"webgl",kernelFunc:gG},bG=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=` +`,KH=en({opSnippet:qH,packedOpSnippet:XH}),ZH={kernelName:Fo,backendName:"webgl",kernelFunc:KH},YH=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=` uniform float seed; void main() { @@ -3388,11 +3388,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelNam // If no other event happened, last event happened. setOutput(float(${t-1})); } - `}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},wG=` + `}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},JH=` if (a == b) { return 1.0; }; -return a / b;`,_G=` +return a / b;`,QH=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; @@ -3410,14 +3410,14 @@ return a / b;`,_G=` } return result; -`,I7=nn({opSnippet:wG,packedOpSnippet:_G,checkOutOfBounds:!0}),vG={kernelName:ks,backendName:"webgl",kernelFunc:I7},S7="return a - b;",N7=nn({opSnippet:S7,packedOpSnippet:S7,supportsComplex:!0,cpuKernelImpl:bW}),kG={kernelName:ri,backendName:"webgl",kernelFunc:N7};function T7(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=_.parseAxisParam([s],a.shape),o=k7({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=E.expandShapeToKeepDim(o.shape,i),c=fe({inputs:{x:o},backend:n,attrs:{shape:l}}),u=N7({inputs:{a,b:c},backend:n}),h=x7({inputs:{x:u},backend:n}),d=Ip({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=fe({inputs:{x:d},backend:n,attrs:{shape:l}}),m=I7({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}var IG={kernelName:ti,backendName:"webgl",kernelFunc:T7};function SG(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:T7({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),c=l.shape[0],u=l.shape[1],h=new bG(c,u,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var NG={kernelName:rd,backendName:"webgl",kernelFunc:SG},E7="return -x;";function TG(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=pW(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Wl(r.shape,E7):a=new qa(r.shape,E7),n.runWebGLProgram(a,[r],r.dtype)}var EG={kernelName:Wo,backendName:"webgl",kernelFunc:TG},CG=Gr.nonMaxSuppressionV3Impl;function RG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,c=n.readSync(a.dataId),u=n.readSync(s.dataId),{selectedIndices:h}=CG(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var MG={kernelName:Vo,backendName:"webgl",kernelFunc:RG},FG=Gr.nonMaxSuppressionV4Impl;function $G(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=FG(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var DG={kernelName:jo,backendName:"webgl",kernelFunc:$G},OG=Gr.nonMaxSuppressionV5Impl;function zG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,m=l,f=c,{selectedIndices:A,selectedScores:y}=OG(u,h,d,p,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var PG={kernelName:Uo,backendName:"webgl",kernelFunc:zG},LG=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` +`,r7=en({opSnippet:JH,packedOpSnippet:QH,checkOutOfBounds:!0}),eG={kernelName:xs,backendName:"webgl",kernelFunc:r7},a7="return a - b;",s7=en({opSnippet:a7,packedOpSnippet:a7,supportsComplex:!0,cpuKernelImpl:YL}),tG={kernelName:Js,backendName:"webgl",kernelFunc:s7};function i7(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=_.parseAxisParam([s],a.shape),o=n7({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=E.expandShapeToKeepDim(o.shape,i),c=fe({inputs:{x:o},backend:n,attrs:{shape:l}}),u=s7({inputs:{a,b:c},backend:n}),h=Y3({inputs:{x:u},backend:n}),d=wp({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=fe({inputs:{x:d},backend:n,attrs:{shape:l}}),m=r7({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}var nG={kernelName:Zs,backendName:"webgl",kernelFunc:i7};function rG(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:i7({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),c=l.shape[0],u=l.shape[1],h=new YH(c,u,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var aG={kernelName:Yh,backendName:"webgl",kernelFunc:rG},o7="return -x;";function sG(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=UL(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new $l(r.shape,o7):a=new Ba(r.shape,o7),n.runWebGLProgram(a,[r],r.dtype)}var iG={kernelName:$o,backendName:"webgl",kernelFunc:sG},oG=Wr.nonMaxSuppressionV3Impl;function lG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,c=n.readSync(a.dataId),u=n.readSync(s.dataId),{selectedIndices:h}=oG(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var uG={kernelName:Oo,backendName:"webgl",kernelFunc:lG},cG=Wr.nonMaxSuppressionV4Impl;function hG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=cG(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var dG={kernelName:zo,backendName:"webgl",kernelFunc:hG},pG=Wr.nonMaxSuppressionV5Impl;function fG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,m=l,f=c,{selectedIndices:A,selectedScores:y}=pG(u,h,d,p,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var mG={kernelName:Po,backendName:"webgl",kernelFunc:fG},AG=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${r}), float(${n}), float(index == coords.y))); } - `}},WG=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=_.sizeFromShape(a.shape),c=new LG(l,s,i,o),u=fe({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(c,[u],a.dtype);n.disposeIntermediateTensorInfo(u);let d=[...a.shape,s],p=fe({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},BG={kernelName:Bs,backendName:"webgl",kernelFunc:WG};function Cp(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=kc({inputs:{input:r},backend:n}),s=Cp({inputs:{x:a},backend:n}),i=Ep({inputs:{input:r},backend:n}),o=Cp({inputs:{x:i},backend:n}),l=Xa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return FA({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var VG={kernelName:ol,backendName:"webgl",kernelFunc:Cp};function C7(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=kc({inputs:{input:r},backend:n}),s=C7({inputs:{x:a},backend:n}),i=Ep({inputs:{input:r},backend:n}),o=Cp({inputs:{x:i},backend:n}),l=Xa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return FA({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var jG={kernelName:Ho,backendName:"webgl",kernelFunc:C7};function UG(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return MA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=MA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=u7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var HG={kernelName:Go,backendName:"webgl",kernelFunc:UG},GG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let r=e.length,a=lt(r),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=` + `}},yG=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=_.sizeFromShape(a.shape),c=new AG(l,s,i,o),u=fe({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(c,[u],a.dtype);n.disposeIntermediateTensorInfo(u);let d=[...a.shape,s],p=fe({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},gG={kernelName:Os,backendName:"webgl",kernelFunc:yG};function Ip(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=xc({inputs:{input:r},backend:n}),s=Ip({inputs:{x:a},backend:n}),i=kp({inputs:{input:r},backend:n}),o=Ip({inputs:{x:i},backend:n}),l=Va({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return _A({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var xG={kernelName:tl,backendName:"webgl",kernelFunc:Ip};function l7(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=xc({inputs:{input:r},backend:n}),s=l7({inputs:{x:a},backend:n}),i=kp({inputs:{input:r},backend:n}),o=Ip({inputs:{x:i},backend:n}),l=Va({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return _A({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var wG={kernelName:Lo,backendName:"webgl",kernelFunc:l7};function bG(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return bA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=bA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=B3({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var _G={kernelName:Wo,backendName:"webgl",kernelFunc:bG},vG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let r=e.length,a=lt(r),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=` int start = ${s}; int end = ${i}; uniform float value; @@ -3444,7 +3444,7 @@ return a / b;`,_G=` setOutput(getX(${o})); } } - `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},qG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let r=e.length,a=lt(r),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=pn("rc",r),l=pn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1; + `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},kG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let r=e.length,a=lt(r),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=hn("rc",r),l=hn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1; if(${c}) { `,r===1?"":`} rc = outputLoc; @@ -3469,7 +3469,7 @@ return a / b;`,_G=` ${p} setOutput(result); } - `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},R7=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new qG(a.shape,s,i):new GG(a.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[a],a.dtype,l)},XG={kernelName:Vs,backendName:"webgl",kernelFunc:R7},KG=` + `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},u7=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new kG(a.shape,s,i):new vG(a.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[a],a.dtype,l)},IG={kernelName:zs,backendName:"webgl",kernelFunc:u7},SG=` if(a < 0.0 && floor(b) < b){ return NAN; } @@ -3478,7 +3478,7 @@ return a / b;`,_G=` } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); -`,ZG=` +`,NG=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); @@ -3492,11 +3492,11 @@ return a / b;`,_G=` result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); - `+_p+` + `+yp+` return result; -`,YG=nn({opSnippet:KG,packedOpSnippet:ZG}),JG={kernelName:js,backendName:"webgl",kernelFunc:YG};function QG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],c=_.parseAxisParam(s,a.shape),u=c,h=E.getAxesPermutation(u,o),d=a;h!=null&&(d=fn({inputs:{x:a},backend:n,attrs:{perm:h}}),u=E.getInnerMostAxes(u.length,o),l.push(d)),E.assertAxesAreInnerMostDims("prod",u,o);let p;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:A,outDtype:y}=fW(d.shape,d.dtype,m,u);p=n.makeTensorInfo(A,y,f)}else{let[m,f]=E.computeOutAndReduceShapes(d.shape,u),A=_.sizeFromShape(f),y=fe({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=Ad(a.dtype),x=$i(y,g,"prod",n);p=fe({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(p);let m=E.expandShapeToKeepDim(p.shape,c);p=fe({inputs:{x:p},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),p}var eq={kernelName:qo,backendName:"webgl",kernelFunc:QG},M7=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=mW(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},tq={kernelName:Mu,backendName:"webgl",kernelFunc:M7},nq="return 1.0 / x;",rq=Xe({opSnippet:nq}),aq={kernelName:Xo,backendName:"webgl",kernelFunc:rq},sq=Nr+` +`,TG=en({opSnippet:SG,packedOpSnippet:NG}),EG={kernelName:Ps,backendName:"webgl",kernelFunc:TG};function CG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],c=_.parseAxisParam(s,a.shape),u=c,h=E.getAxesPermutation(u,o),d=a;h!=null&&(d=dn({inputs:{x:a},backend:n,attrs:{perm:h}}),u=E.getInnerMostAxes(u.length,o),l.push(d)),E.assertAxesAreInnerMostDims("prod",u,o);let p;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:A,outDtype:y}=HL(d.shape,d.dtype,m,u);p=n.makeTensorInfo(A,y,f)}else{let[m,f]=E.computeOutAndReduceShapes(d.shape,u),A=_.sizeFromShape(f),y=fe({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=cd(a.dtype),x=Ti(y,g,"prod",n);p=fe({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(p);let m=E.expandShapeToKeepDim(p.shape,c);p=fe({inputs:{x:p},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),p}var RG={kernelName:Bo,backendName:"webgl",kernelFunc:CG},c7=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=GL(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},MG={kernelName:Su,backendName:"webgl",kernelFunc:c7},FG="return 1.0 / x;",$G=qe({opSnippet:FG}),DG={kernelName:Vo,backendName:"webgl",kernelFunc:$G},OG=wr+` return (x < 0.0) ? 0.0 : x; -`,iq=` +`,zG=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -3506,9 +3506,9 @@ return a / b;`,_G=` result.a = isNaN.a ? x.a : result.a; return result; -`,oq=Xe({opSnippet:sq,packedOpSnippet:iq}),lq={kernelName:Hs,backendName:"webgl",kernelFunc:oq},uq=Nr+` +`,PG=qe({opSnippet:OG,packedOpSnippet:zG}),LG={kernelName:Ws,backendName:"webgl",kernelFunc:PG},WG=wr+` return (x < 0.0) ? 0.0 : min(6.0, x); -`,cq=` +`,BG=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -3518,7 +3518,7 @@ return a / b;`,_G=` result.a = isNaN.a ? x.a : result.a; return result; -`,hq=Xe({opSnippet:uq,packedOpSnippet:cq}),dq={kernelName:qs,backendName:"webgl",kernelFunc:hq},pq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` +`,VG=qe({opSnippet:WG,packedOpSnippet:BG}),jG={kernelName:Vs,backendName:"webgl",kernelFunc:VG},UG=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); @@ -3551,7 +3551,7 @@ return a / b;`,_G=` setOutput(newValue); } - `}},fq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}},HG=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${c[0]/u[0]}, ${c[1]/u[1]}, @@ -3628,7 +3628,7 @@ return a / b;`,_G=` setOutput(newValue); } - `}};function mq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new fq(a.shape,l,c,s,i):new pq(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],"float32")}var Aq={kernelName:Gs,backendName:"webgl",kernelFunc:mq},yq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=` + `}};function GG(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new HG(a.shape,l,c,s,i):new UG(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],"float32")}var qG={kernelName:Bs,backendName:"webgl",kernelFunc:GG},XG=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3709,7 +3709,7 @@ return a / b;`,_G=` setOutput(accumulator); } - `}};function gq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new yq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var xq={kernelName:id,backendName:"webgl",kernelFunc:gq},bq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}};function KG(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new XG(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var ZG={kernelName:ed,backendName:"webgl",kernelFunc:KG},YG=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); @@ -3731,7 +3731,7 @@ return a / b;`,_G=` setOutput(newValue); } - `}};function wq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=new bq(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],a.dtype)}var _q={kernelName:Fu,backendName:"webgl",kernelFunc:wq},vq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=` + `}};function JG(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=new YG(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],a.dtype)}var QG={kernelName:Nu,backendName:"webgl",kernelFunc:JG},eq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3801,7 +3801,7 @@ return a / b;`,_G=` setOutput(accumulator); } - `}};function kq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new vq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Iq={kernelName:sd,backendName:"webgl",kernelFunc:kq},Sq=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` + `}};function tq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new eq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var nq={kernelName:Qh,backendName:"webgl",kernelFunc:tq},rq=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${e[0]} - coord - 1)); @@ -3811,7 +3811,7 @@ return a / b;`,_G=` ${s} coords = getOutputCoords(); setOutput(getX(${a})); } - `}},Nq=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=pn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=lt(n);n===1?this.userCode=` + `}},aq=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=hn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=lt(n);n===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); @@ -3839,7 +3839,7 @@ return a / b;`,_G=` } setOutput(result); } - `;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function c(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function u(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let m=e.map((y,g)=>d(g,p)),f=m.join(","),A=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${A}))`}function d(p,m){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${m[p]} - 1`:`${m[p]}`}}};function Tq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return Vn({inputs:{x:a},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Nq(a.shape,o):new Sq(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var Eq={kernelName:Xs,backendName:"webgl",kernelFunc:Tq},Cq=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],r=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=` + `;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function c(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function u(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let m=e.map((y,g)=>d(g,p)),f=m.join(","),A=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${A}))`}function d(p,m){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${m[p]} - 1`:`${m[p]}`}}};function sq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return Pn({inputs:{x:a},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new aq(a.shape,o):new rq(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var iq={kernelName:js,backendName:"webgl",kernelFunc:sq},oq=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],r=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=` vec3 fill = vec3(${t.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` uniform vec4 params; @@ -3859,7 +3859,7 @@ return a / b;`,_G=` } setOutput(outputValue); } - `}getCustomSetupFunc(e,t,n,r){return(a,s)=>{this.paramsLoc==null&&(this.paramsLoc=a.getUniformLocationNoThrow(s,"params")),a.gl.uniform4f(this.paramsLoc,e,t,n,r)}}},Rq={kernelName:ll,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new Cq(r.shape,s),[c,u]=E.getImageCenter(i,r.shape[1],r.shape[2]),h=l.getCustomSetupFunc(c,u,Math.sin(a),Math.cos(a));return o.runWebGLProgram(l,[r],r.dtype,h)}},Mq=` + `}getCustomSetupFunc(e,t,n,r){return(a,s)=>{this.paramsLoc==null&&(this.paramsLoc=a.getUniformLocationNoThrow(s,"params")),a.gl.uniform4f(this.paramsLoc,e,t,n,r)}}},lq={kernelName:nl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new oq(r.shape,s),[c,u]=E.getImageCenter(i,r.shape[1],r.shape[2]),h=l.getCustomSetupFunc(c,u,Math.sin(a),Math.cos(a));return o.runWebGLProgram(l,[r],r.dtype,h)}},uq=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); @@ -3874,7 +3874,7 @@ return a / b;`,_G=` return base + 1.0; } } -`,Fq=Xe({opSnippet:Mq}),$q={kernelName:Ks,backendName:"webgl",kernelFunc:Fq},Dq="return inversesqrt(x);",Oq=Xe({opSnippet:Dq,cpuKernelImpl:AW}),zq={kernelName:Zs,backendName:"webgl",kernelFunc:Oq},F7=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=lt(a.length),l=lt(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=` +`,cq=qe({opSnippet:uq}),hq={kernelName:Us,backendName:"webgl",kernelFunc:cq},dq="return inversesqrt(x);",pq=qe({opSnippet:dq,cpuKernelImpl:qL}),fq={kernelName:Hs,backendName:"webgl",kernelFunc:pq},h7=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=lt(a.length),l=lt(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=` ${o} strides = ${o}(${a}); void main() { @@ -3894,7 +3894,7 @@ return a / b;`,_G=` } setOutput(mix(getDefaultValue(), sum, float(found))); } - `}};function Pq(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:h}=E.calculateShapes(s,a,i),d=[h/c,c];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=fe({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),m=fe({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new F7(l,o,p.shape.length,m.shape.length,u,d),y=n.runWebGLProgram(A,[m,p,f],m.dtype),g=fe({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),g}var Lq={kernelName:Zo,backendName:"webgl",kernelFunc:Pq},Wq=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); -`,Uq=Xe({opSnippet:jq}),Hq={kernelName:Jo,backendName:"webgl",kernelFunc:Uq},Gq="return 1.0 / (1.0 + exp(-1.0 * x));",qq=Xe({opSnippet:Gq}),Xq={kernelName:Js,backendName:"webgl",kernelFunc:qq},Kq=` +`,bq=qe({opSnippet:wq}),_q={kernelName:Go,backendName:"webgl",kernelFunc:bq},vq="return 1.0 / (1.0 + exp(-1.0 * x));",kq=qe({opSnippet:vq}),Iq={kernelName:qs,backendName:"webgl",kernelFunc:kq},Sq=` if (isnan(x)) { return 0.0; } return sign(x); -`,Zq=Xe({opSnippet:Kq}),Yq={kernelName:tl,backendName:"webgl",kernelFunc:Zq},Jq=X3+` +`,Nq=qe({opSnippet:Sq}),Tq={kernelName:Ko,backendName:"webgl",kernelFunc:Nq},Eq=S3+` return sin(x); -`,Qq=Xe({opSnippet:Jq}),eX={kernelName:Ys,backendName:"webgl",kernelFunc:Qq},tX=` +`,Cq=qe({opSnippet:Eq}),Rq={kernelName:Gs,backendName:"webgl",kernelFunc:Cq},Mq=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; -`,nX=Xe({opSnippet:tX}),rX={kernelName:el,backendName:"webgl",kernelFunc:nX},aX=` +`,Fq=qe({opSnippet:Mq}),$q={kernelName:Xo,backendName:"webgl",kernelFunc:Fq},Dq=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; @@ -3938,9 +3938,9 @@ return a / b;`,_G=` result = log(exp_x + 1.0); } return result; -`,sX=Xe({opSnippet:aX}),iX={kernelName:nl,backendName:"webgl",kernelFunc:sX},oX=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;_.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;yn.disposeIntermediateTensorInfo(y)),A},lX={kernelName:$u,backendName:"webgl",kernelFunc:oX};function uX(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:a,newShape:s}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(a.dataId)),o=n.readSync(r.dataId),l=Array.from(n.readSync(s.dataId)),[c,u,h]=gW(o,r.shape,r.dtype,i,l);return[n.makeTensorInfo(u,r.dtype,c),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var cX={kernelName:od,backendName:"webgl",kernelFunc:uX};function hX(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,strides:u,outputSize:h}=E.calculateShapes(s,a,o),d=!1,p=new F7(c,l,a.shape.length,s.shape.length,u,[h,1],d),m=n.runWebGLProgram(p,[s,a,i],s.dtype),f=fe({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var dX={kernelName:ld,backendName:"webgl",kernelFunc:hX};function pX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=_.parseAxisParam(i,a.shape)[0],l=E.prepareSplitSize(a,s,o),c=a.shape.length,u=new Array(c).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let m=vc({inputs:{x:a},backend:n,attrs:{begin:u,size:p}});return u[o]+=d,m})}var fX={kernelName:rl,backendName:"webgl",kernelFunc:pX},mX="return sqrt(x);",AX=Xe({opSnippet:mX}),yX={kernelName:Qs,backendName:"webgl",kernelFunc:AX},gX="return x * x;",xX=Xe({opSnippet:gX}),bX={kernelName:Du,backendName:"webgl",kernelFunc:xX},$7="return (a - b) * (a - b);",wX=nn({opSnippet:$7,packedOpSnippet:$7}),_X={kernelName:ni,backendName:"webgl",kernelFunc:wX};function vX({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=Nr+` +`,Oq=qe({opSnippet:Dq}),zq={kernelName:Zo,backendName:"webgl",kernelFunc:Oq},Pq=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;_.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;yn.disposeIntermediateTensorInfo(y)),A},Lq={kernelName:Tu,backendName:"webgl",kernelFunc:Pq};function Wq(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:a,newShape:s}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(a.dataId)),o=n.readSync(r.dataId),l=Array.from(n.readSync(s.dataId)),[c,u,h]=KL(o,r.shape,r.dtype,i,l);return[n.makeTensorInfo(u,r.dtype,c),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var Bq={kernelName:td,backendName:"webgl",kernelFunc:Wq};function Vq(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,strides:u,outputSize:h}=E.calculateShapes(s,a,o),d=!1,p=new h7(c,l,a.shape.length,s.shape.length,u,[h,1],d),m=n.runWebGLProgram(p,[s,a,i],s.dtype),f=fe({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var jq={kernelName:nd,backendName:"webgl",kernelFunc:Vq};function Uq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=_.parseAxisParam(i,a.shape)[0],l=E.prepareSplitSize(a,s,o),c=a.shape.length,u=new Array(c).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let m=gc({inputs:{x:a},backend:n,attrs:{begin:u,size:p}});return u[o]+=d,m})}var Hq={kernelName:Yo,backendName:"webgl",kernelFunc:Uq},Gq="return sqrt(x);",qq=qe({opSnippet:Gq}),Xq={kernelName:Xs,backendName:"webgl",kernelFunc:qq},Kq="return x * x;",Zq=qe({opSnippet:Kq}),Yq={kernelName:Eu,backendName:"webgl",kernelFunc:Zq},d7="return (a - b) * (a - b);",Jq=en({opSnippet:d7,packedOpSnippet:d7}),Qq={kernelName:Ys,backendName:"webgl",kernelFunc:Jq};function eX({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=wr+` return x > 0.0 ? 1.0 : float(${t.alpha}); - `,s=new qa(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var kX={kernelName:$a,backendName:"webgl",kernelFunc:vX},IX=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=lt(n.length),s=lt(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=` + `,s=new Ba(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var tX={kernelName:Ea,backendName:"webgl",kernelFunc:eX},nX=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=lt(n.length),s=lt(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=` ${a} begin = ${a}(${e}); ${a} strides = ${a}(${t}); @@ -3948,15 +3948,15 @@ return a / b;`,_G=` ${s} coords = getOutputCoords(); setOutput(getX(${i})); } - `}};function SX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=un.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=fe({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let w=vc({inputs:{x},backend:n,attrs:{begin:m,size:A}});v=fe({inputs:{x:w},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(w)}else if(g.some(w=>w===0))v=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let w=n.texData.get(x.dataId).values,k=Be(x.shape,x.dtype,w),N=xW(g,k,f,m);v=n.makeTensorInfo(g,x.dtype,N.values)}else{let w=new IX(m,f,g);v=n.runWebGLProgram(w,[x],x.dtype)}let b=fe({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),b}var NX={kernelName:al,backendName:"webgl",kernelFunc:SX},TX="return tan(x);",EX=Xe({opSnippet:TX}),CX={kernelName:ai,backendName:"webgl",kernelFunc:EX},RX=` + `}};function rX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=sn.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=fe({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let b=gc({inputs:{x},backend:n,attrs:{begin:m,size:A}});v=fe({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))v=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let b=n.texData.get(x.dataId).values,k=We(x.shape,x.dtype,b),N=ZL(g,k,f,m);v=n.makeTensorInfo(g,x.dtype,N.values)}else{let b=new nX(m,f,g);v=n.runWebGLProgram(b,[x],x.dtype)}let w=fe({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),w}var aX={kernelName:Jo,backendName:"webgl",kernelFunc:rX},sX="return tan(x);",iX=qe({opSnippet:sX}),oX={kernelName:Qs,backendName:"webgl",kernelFunc:iX},lX=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); -`,MX=Xe({opSnippet:RX}),FX={kernelName:si,backendName:"webgl",kernelFunc:MX},DX=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a5){let o=n.readSync(a.dataId).map(u=>_.decodeString(u)),l=Be(a.shape,a.dtype,o),c=wW(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new DX(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var OX={kernelName:Fa,backendName:"webgl",kernelFunc:D7};function zX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,c]=_W(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var PX={kernelName:sl,backendName:"webgl",kernelFunc:zX},LX=class{constructor(e,t,n,r,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(r){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=` + `}};function hX(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a5){let o=n.readSync(a.dataId).map(u=>_.decodeString(u)),l=We(a.shape,a.dtype,o),c=JL(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new dX(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var pX={kernelName:Ta,backendName:"webgl",kernelFunc:p7};function fX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,c]=QL(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var mX={kernelName:Qo,backendName:"webgl",kernelFunc:fX},AX=class{constructor(e,t,n,r,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(r){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=` float mapCoord(float outCoord, float len) { float inCoord = outCoord; if(${o} == 2) { @@ -4068,7 +4068,7 @@ return a / b;`,_G=` } setOutput(outputValue); } - `}};function WX(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=r,[u,h,d,p]=a.shape,[m,f]=c!=null?c:[h,d],A=[u,m,f,p],y=new LX(h,d,i,o,l,A);return n.runWebGLProgram(y,[a,s],"float32")}var BX={kernelName:ud,backendName:"webgl",kernelFunc:WX};function VX(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;$l(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=vW(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var jX={kernelName:cd,backendName:"webgl",kernelFunc:VX};function UX(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],c=new Array(o-1),u=0;for(let f=0;fn.disposeIntermediateTensorInfo(f)),m}var HX={kernelName:il,backendName:"webgl",kernelFunc:UX},GX=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,h=` + `}};function yX(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=r,[u,h,d,p]=a.shape,[m,f]=c!=null?c:[h,d],A=[u,m,f,p],y=new AX(h,d,i,o,l,A);return n.runWebGLProgram(y,[a,s],"float32")}var gX={kernelName:rd,backendName:"webgl",kernelFunc:yX};function xX(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;Tl(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=eW(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var wX={kernelName:ad,backendName:"webgl",kernelFunc:xX};function bX(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],c=new Array(o-1),u=0;for(let f=0;fn.disposeIntermediateTensorInfo(f)),m}var _X={kernelName:el,backendName:"webgl",kernelFunc:bX},vX=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,h=` sumValue += dot(values, segFilter); `,d="";a%n>0&&(d=` if (inIdx < 0 || inIdx >= ${a}) { @@ -4174,26 +4174,26 @@ return a / b;`,_G=` } setOutput(${l}); } - `}};function qX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],c=0,u=E.getAxesPermutation([c],o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),l.push(h),c=E.getInnerMostAxes(1,o)[0]);let d=E.segment_util.computeOutShape(h.shape,c,i),p=_.sizeFromShape([h.shape[c]]),m=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(m);let f=Ad(a.dtype),A=(v,b,w,k,N)=>{let C=v.shape[0],F=v.shape[1],O=E.segment_util.segOpComputeOptimalWindowSize(F,N),L={windowSize:O,inSize:F,batchSize:C,numSegments:N},V=new GX(L,b),j=n.compileAndRun(V,[v,w],k);if(l.push(j),j.shape[1]===N)return j;let U=M7({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),X=D7({inputs:{x:U},backend:n,attrs:{reps:[F/O]}});return l.push(U),l.push(X),A(j,b,X,k,N)},y=A(m,"unsortedSegmentSum",s,f,i),g=fe({inputs:{x:y},backend:n,attrs:{shape:d}}),x=g;if(u!=null){l.push(g);let v=E.getUndoAxesPermutation(u);x=fn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var XX={kernelName:Ou,backendName:"webgl",kernelFunc:qX},KX=[OH,LH,wB,vB,SB,EB,RB,$B,OB,PB,VB,UB,qB,ZB,rV,QB,iV,cV,lV,fV,AV,gV,_V,EV,RV,zV,LV,jV,GV,nB,YV,oj,uj,tj,pj,mj,hj,gj,wj,kj,Sj,Tj,Rj,zj,Lj,Fj,Vj,Hj,qj,Yj,tU,sU,lU,uU,cU,dU,fU,AU,gU,bU,kU,TU,CU,MU,DU,LU,jU,qU,tB,KU,KV,JU,tH,aH,aB,lH,dH,fH,wH,gH,IH,TH,MH,BH,KH,qH,QH,tG,rG,HH,sG,oG,hG,mG,xG,NG,uB,EG,MG,DG,PG,FV,BG,jG,HG,XG,JG,iB,eq,tq,$V,vG,aq,dq,lq,hB,Aq,xq,_q,Iq,Eq,Rq,$q,zq,Lq,Vq,Hq,Xq,Yq,eX,rX,NV,IG,iX,lX,cX,dX,fX,yX,bX,_X,kX,NX,kG,gB,CX,FX,OX,PX,BX,xB,jX,HX,XX,VG];for(let e of KX)ci(e);var Mn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Mn||(Mn={}));var Ic;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(Ic||(Ic={}));var O7;function ZX(e){O7=e.wasm.cwrap(oi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function YX(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let N=n.dataIdMap.get(i.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);m=N.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,A=Ic[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=c?s.shape[1]:s.shape[2],x=a.shape[0],v=n.makeOutput([x,y,g],a.dtype),b=n.dataIdMap.get(v.dataId).id,w=new Uint8Array(new Int32Array(a.shape).buffer),k=new Uint8Array(new Int32Array(s.shape).buffer);return O7(d,w,a.shape.length,p,k,s.shape.length,l,c,A,m,f,h||0,b),v}var JX={kernelName:oi,backendName:"wasm",setupFunc:ZX,kernelFunc:YX};function mn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return _.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var QX=mn(lo);function An(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,h=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,p=n!=null?n:c.dtype,m=E.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,p);if(_.sizeFromShape(m)===0)return f;let A=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(f.dataId).id,x=()=>r(h,A,c.shape.length,d,y,u.shape.length,Mn[c.dtype],g);if(t&&c.dtype==="float32")return x(),f;let v=E.getBroadcastDims(c.shape,m),b=E.getBroadcastDims(u.shape,m),w=v.every((N,C)=>N===C),k=b.every((N,C)=>N===C);if(w&&k)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var eK=!0,tK=An(Ra,eK),z7;function nK(e){z7=e.wasm.cwrap(ps,null,["array","number","number","number"])}function rK(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(_.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return z7(s,a.length,Mn[r.dtype],i),r}var aK={kernelName:ps,backendName:"wasm",setupFunc:nK,kernelFunc:rK};function Rp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var sK={kernelName:Cs,backendName:"wasm",kernelFunc:Rp},P7;function iK(e){P7=e.wasm.cwrap(ii,null,["number","array","number","number","number","array","number"])}function Mp(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=lK(t.x.shape,r.perm),i=!0;for(let m=0;m=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var uK={kernelName:ii,backendName:"wasm",kernelFunc:Mp,setupFunc:iK};function Ka(e,t,n){let r=e.shape,a=e.shape.length,s=_.parseAxisParam(t,r),i=s,o=E.getAxesPermutation(i,a),l=null,c=!1;if(o!=null){let u=new Array(a);for(let d=0;d`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var _K={kernelName:Ko,backendName:"wasm",kernelFunc:Tr},j7;function vK(e){j7=e.wasm.cwrap(As,null,["number","array","number","number","array","number","number","number","number"])}function kK(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=_.sizeFromShape(m),y=_.sizeFromShape(f),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],b=o?[y,p,h]:[y,h,p],w=Tr({inputs:{x:a},backend:n,attrs:{shape:v}}),k=Tr({inputs:{x:s},backend:n,attrs:{shape:b}}),N=n.dataIdMap.get(w.dataId).id,C=n.dataIdMap.get(k.dataId).id,F=i?w.shape[2]:w.shape[1],O=o?k.shape[1]:k.shape[2],L=Math.max(A,y),V=n.makeOutput([L,F,O],w.dtype),j=n.dataIdMap.get(V.dataId).id,U=new Uint8Array(new Int32Array(w.shape).buffer),X=new Uint8Array(new Int32Array(k.shape).buffer);return j7(N,U,w.shape.length,C,X,k.shape.length,i,o,j),n.disposeData(w.dataId),n.disposeData(k.dataId),V.shape=x,V}var IK={kernelName:As,backendName:"wasm",setupFunc:vK,kernelFunc:kK};function Fp(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var SK={kernelName:ys,backendName:"wasm",kernelFunc:Fp},NK=mn(gs),U7;function TK(e){U7=e.wasm.cwrap(Ma,null,["number","number","number","number"])}function EK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(l.dataId).id;return U7(o,s,i,c),l}var CK={kernelName:Ma,backendName:"wasm",setupFunc:TK,kernelFunc:EK};function H7(e){let{inputs:t,backend:n}=e,r=_.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=E.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>_.sizeFromShape(p.shape)>0);if(s.length===1)return Rp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(_.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(E.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(x=>{let v=_.sizeFromShape(x.shape.slice(r));return Tr({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));a=E.computeOutShape(p.map(x=>x.shape),1);let f=p[0].shape[0]===1,A=nA(m,a,t[0].dtype,f),y=E.computeOutShape(s.map(x=>x.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=E.fromStringArrayToUint8(A),p.forEach(x=>n.disposeData(x.dataId)),i}let l=_.sizeFromShape(s[0].shape.slice(0,r)),c=0,u=s.map(p=>{let m=_.sizeFromShape(p.shape.slice(r));return c+=m,m}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p`cumsum does not support ${a.dtype} tensors in the WASM backend`);let c=E.getAxesPermutation([s],l),u=a;c!==null&&(u=Mp({inputs:{x:a},attrs:{perm:c},backend:n}));let h=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(u.shape,u.dtype),p=u.shape[h],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;K7(m,i?1:0,o?1:0,p,f,Mn[a.dtype]);let A=d;if(c!==null){let y=E.getUndoAxesPermutation(c);A=Mp({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return A}var UK={kernelName:_s,backendName:"wasm",setupFunc:VK,kernelFunc:jK},Z7;function HK(e){Z7=e.wasm.cwrap(_o,null,["number","number","number","array","number","array","array","number","number"])}function GK(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=t.makeOutput(m,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(_.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(_.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return Z7(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,x,m.length,v),f}var qK={kernelName:_o,backendName:"wasm",setupFunc:HK,kernelFunc:GK},Y7;function XK(e){Y7=e.wasm.cwrap(vs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function KK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h}=n,d=c==null?[1,1]:c,p=E.computeConv2DInfo(a.shape,s.shape,l,d,u,h,!0),m=p.filterHeight,f=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,x=p.padInfo.left,v=p.dilationHeight,b=p.dilationWidth,w=p.strideHeight,k=p.strideWidth,N=p.inChannels,C=p.outChannels,F=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let O=r.makeOutput(p.outShape,"float32"),L=r.dataIdMap.get(O.dataId).id;return Y7(i,a.shape[0],a.shape[1],a.shape[2],o,m,f,A,y,g,x,F,v,b,w,k,N,C,L),O}var ZK={kernelName:vs,backendName:"wasm",setupFunc:XK,kernelFunc:KK},YK=!1,JK=An(Io,YK,"bool"),QK=mn(Is);function DA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Tr({inputs:{x:a},backend:r,attrs:{shape:o}})}var eZ={kernelName:So,backendName:"wasm",kernelFunc:DA};function tZ(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var nZ={kernelName:Nu,backendName:"wasm",kernelFunc:tZ},J7;function rZ(e){J7=e.wasm.cwrap(To,null,["number","number","number","number","number","number"])}function aZ(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,c,u]=r.shape;return J7(s,o,l,c,u,i),a}var sZ={kernelName:To,backendName:"wasm",kernelFunc:aZ,setupFunc:rZ},iZ=mn(Ss),oZ=!1,lZ=An(Ns,oZ),Q7;function uZ(e){Q7=e.wasm.cwrap(Ts,null,["number","number","number","number","number","number","number"])}function cZ(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(_.sizeFromShape(s.shape)===0)return f;let A=t.dataIdMap.get(f.dataId).id;return Q7(u,h,d,p,m,a,A),f}var hZ={kernelName:Ts,backendName:"wasm",setupFunc:uZ,kernelFunc:cZ},ev;function dZ(e){ev=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function pZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d),A=Ic[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let b=f.filterHeight,w=f.filterWidth,k=f.padInfo.top,N=f.padInfo.right,C=f.padInfo.bottom,F=f.padInfo.left,O=f.dilationHeight,L=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return ev(y,G,ee,Y,g,b,w,v,k,N,C,F,X,O,L,V,j,U,x,A,ie,m||0,te),ae}var fZ={kernelName:li,backendName:"wasm",setupFunc:dZ,kernelFunc:pZ},tv;function mZ(e){tv=e.wasm.cwrap(ui,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function AZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d,!0),A=Ic[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let b=f.filterHeight,w=f.filterWidth,k=f.padInfo.top,N=f.padInfo.right,C=f.padInfo.bottom,F=f.padInfo.left,O=f.dilationHeight,L=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return tv(y,G,ee,Y,g,b,w,v,k,N,C,F,X,O,L,V,j,U,x,A,ie,m||0,te),ae}var yZ={kernelName:ui,backendName:"wasm",setupFunc:mZ,kernelFunc:AZ},nv;function gZ(e){nv=e.wasm.cwrap(Co,null,["number","number","number","number","number","number","array","number"])}function xZ(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=Qf.prepareAndValidate(r,a),c=t.makeOutput(s,r.dtype);if(i===0)return c;let u=a.shape,h=u[u.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return nv(d,Mn[r.dtype],p,i,h,o,m,f),c}var bZ={kernelName:Co,backendName:"wasm",setupFunc:gZ,kernelFunc:xZ},rv;function wZ(e){rv=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function _Z(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=_.parseAxisParam(i,a.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=Tr({inputs:{x:a},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=_.sizeFromShape(s.shape),d=Tr({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),p=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],m=t.makeOutput(p,a.dtype);if(_.sizeFromShape(a.shape)===0)return m;let f=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(_.computeStrides(u.shape)).buffer),v=new Uint8Array(new Int32Array(_.computeStrides(p)).buffer);return rv(A,Mn[a.dtype],x,f,y,c.batchSize,v,g),t.disposeData(u.dataId),t.disposeData(d.dataId),m.shape=c.outputShape,m}var vZ={kernelName:Eo,backendName:"wasm",setupFunc:wZ,kernelFunc:_Z},kZ=!1,IZ=An(Ro,kZ,"bool"),SZ=!1,NZ=An(Es,SZ,"bool"),av;function TZ(e){av=e.wasm.cwrap(Rs,null,["number","number","number"])}function EZ(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(_.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;av(a,n,i)}return s}var CZ={kernelName:Rs,backendName:"wasm",setupFunc:TZ,kernelFunc:EZ},RZ=!1,MZ=An(Do,RZ,"bool"),FZ=!1,$Z=An(Oo,FZ,"bool"),DZ=mn(Ms),OZ=!1,zZ=An(Po,OZ,"bool"),sv;function PZ(e){sv=e.wasm.cwrap(Fs,null,["number, number, number"])}function LZ(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:d}=Ka(i,a,t);if(d){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let p=l.shape.length;E.assertAxesAreInnerMostDims("max",u,p);let[m,f]=E.computeOutAndReduceShapes(l.shape,u),A=_.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(_.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;sv(o,A,g)}if(d&&t.disposeData(c.dataId),s){let g=E.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var WZ={kernelName:Fs,backendName:"wasm",setupFunc:PZ,kernelFunc:LZ},BZ=!1,VZ=An($s,BZ),iv;function jZ(e){iv=e.wasm.cwrap(Ds,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function UZ(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,x=u.strideHeight,v=u.strideWidth,b=u.inChannels,w=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let k=r.makeOutput(u.outShape,"float32"),N=r.dataIdMap.get(k.dataId).id;return iv(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,m,f,A,y,g,x,v,b,w,N),k}var HZ={kernelName:Ds,backendName:"wasm",setupFunc:jZ,kernelFunc:UZ},ov;function GZ(e){ov=e.wasm.cwrap(Os,null,["number, number, number"])}function qZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t),m=h;if(p){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=c;c.dtype!=="float32"&&(g=Fp({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let x=t.makeOutput(f,"float32");if(_.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;ov(l,y,v)}if(p&&t.disposeData(u.dataId),s){let v=E.expandShapeToKeepDim(x.shape,d);x.shape=v}return c.dtype!=="float32"&&t.disposeData(g.dataId),x}var XZ={kernelName:Os,backendName:"wasm",setupFunc:GZ,kernelFunc:qZ},lv;function KZ(e){lv=e.wasm.cwrap(zs,null,["number, number, number"])}function ZZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t);if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x)}let m=c.shape.length;E.assertAxesAreInnerMostDims("min",h,m);let[f,A]=E.computeOutAndReduceShapes(c.shape,h),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;lv(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var YZ={kernelName:zs,backendName:"wasm",setupFunc:KZ,kernelFunc:ZZ},JZ=!1,QZ=An(Ps,JZ),OA;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(OA||(OA={}));var uv;function eY(e){uv=e.wasm.cwrap(Ls,null,["number","array","number","number","array","array","number","number"])}function tY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,mode:a}}=e,s=r.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(m=>m[0]),h=r.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return uv(i,c,t.shape.length,Mn[t.dtype],d,p,OA[a],l),o}var nY={kernelName:Ls,backendName:"wasm",kernelFunc:tY,setupFunc:eY},rY=!0,aY=An(Ws,rY),sY=mn(Wo);function zA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var cv;function iY(e){cv=e.wasm.cwrap(Vo,"number",["number","number","number","number","number"])}function oY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,h=cv(c,u,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:m,pValidOutputs:f}=zA(t,h);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([p],"int32",d)}var lY={kernelName:Vo,backendName:"wasm",setupFunc:iY,kernelFunc:oY},hv;function uY(e){hv=e.wasm.cwrap(jo,"number",["number","number","number","number","number","bool"])}function cY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=hv(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=zA(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var hY={kernelName:jo,backendName:"wasm",setupFunc:uY,kernelFunc:cY},dv;function dY(e){dv=e.wasm.cwrap(Uo,"number",["number","number","number","number","number","number"])}function pY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=dv(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=zA(t,d);t.wasm._free(A);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([m],"float32",f);return[y,g]}var fY={kernelName:Uo,backendName:"wasm",setupFunc:dY,kernelFunc:pY},mY=!1,AY=An(Bo,mY,"bool"),pv;function yY(e){pv=e.wasm.cwrap(Bs,null,["number","number","number","number","number"])}function gY(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(a.dataId).id;return pv(u,s,i,o,c),l}var xY={kernelName:Bs,backendName:"wasm",setupFunc:yY,kernelFunc:gY};function bY(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var wY={kernelName:Ho,backendName:"wasm",kernelFunc:bY};function _Y(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return DA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=DA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=H7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeData(u.dataId)),c}var vY={kernelName:Go,backendName:"wasm",kernelFunc:_Y},fv;function kY(e){fv=e.wasm.cwrap(Vs,null,["number","array","number","number","array","array","number","number"])}function IY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(m=>m[0]),h=r.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return fv(i,c,t.shape.length,Mn[t.dtype],d,p,a,l),o}var SY={kernelName:Vs,backendName:"wasm",kernelFunc:IY,setupFunc:kY},NY=!1,TY=An(js,NY),mv;function EY(e){mv=e.wasm.cwrap(Us,null,["number","number","number"])}function CY(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return mv(s,i,l),o}var RY={kernelName:Us,backendName:"wasm",setupFunc:EY,kernelFunc:CY},Av;function MY(e){Av=e.wasm.cwrap(qo,null,["number","number","number","number"])}function FY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t),m=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;Av(l,y,Mn[g.dtype],x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var $Y={kernelName:qo,backendName:"wasm",setupFunc:MY,kernelFunc:FY},DY=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=sA(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},OY={kernelName:Mu,backendName:"wasm",kernelFunc:DY},zY=!0,PY=An(ks,zY),LY=mn(Hs),WY=mn(qs),yv;function BY(e){yv=e.wasm.cwrap(Gs,null,["number","number","number","number","number","number","number","number","number","number"])}function VY(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,[u,h,d,p]=a.shape,m=[u,l,c,p],f=t.dataIdMap.get(a.dataId),A;f.dtype!=="float32"&&(A=Fp({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(A.dataId));let y=f.id,g=t.makeOutput(m,"float32");if(_.sizeFromShape(a.shape)===0)return g;let x=t.dataIdMap.get(g.dataId).id;return yv(y,u,h,d,p,l,c,s?1:0,i?1:0,x),A!=null&&t.disposeData(A.dataId),g}var jY={kernelName:Gs,backendName:"wasm",setupFunc:BY,kernelFunc:VY},gv;function UY(e){gv=e.wasm.cwrap(Xs,null,["number","array","number","array","number","number"])}function HY(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=_.parseAxisParam(s,a.shape);if(a.shape.length===0)return Rp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);gv(l,u,i.length,h,a.shape.length,c);let d=Tr({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var GY={kernelName:Xs,backendName:"wasm",kernelFunc:HY,setupFunc:UY},xv;function qY(e){xv=e.wasm.cwrap(ll,null,["number","number","number","number","number","number","number","number","array","number","number"])}function XY(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(l.dataId).id,[h,d,p,m]=a.shape,[f,A]=E.getImageCenter(o,d,p),y=i===0,g=255,x=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],v=new Uint8Array(new Int32Array(x).buffer);return xv(c,h,d,p,m,s,f,A,v,x.length,u),l}var KY={kernelName:ll,backendName:"wasm",kernelFunc:XY,setupFunc:qY},ZY=mn(Ks),YY=mn(Zs),bv;function JY(e){bv=e.wasm.cwrap(Zo,null,["number","number","number","number","number","number","array","number","number"])}function QY(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(_.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=em.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return bv(p,m,Mn[s.dtype],l,c,u,f,d,A),o}var eJ={kernelName:Zo,backendName:"wasm",setupFunc:JY,kernelFunc:QY},wv;function tJ(e){wv=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function nJ(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(c.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:_.sizeFromShape(a.shape.slice(1));return wv(i,o,l,p,u),c}var rJ={kernelName:Yo,backendName:"wasm",kernelFunc:nJ,setupFunc:tJ},_v;function aJ(e){_v=e.wasm.cwrap(Js,null,["number","number"])}function sJ(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return _.sizeFromShape(a.shape)===0||_v(r,s),a}var iJ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:aJ,kernelFunc:sJ},oJ=mn(Ys);function $p(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=un.parseSliceParams(t,n,r),o=un.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),c=a.makeOutput(i,t.dtype),u=_.computeStrides(t.shape),h=a.dataIdMap.get(c.dataId);if(o){let m=un.computeFlatOffset(s,u);return t.dtype==="string"?h.stringBytes=l.slice(m,m+_.sizeFromShape(i)):a.typedArrayFromHeap(c).set(l.subarray(m,m+_.sizeFromShape(i))),c}if(t.dtype==="string"){let m=lp(l,s,i,t.shape,t.dtype);return h.stringBytes=m,c}let d=a.typedArrayFromHeap(c),p=t.shape.length;if(p===2)lJ(l,u[0],d,s,i);else if(p===3)uJ(l,u[0],u[1],d,s,i);else if(p===4)cJ(l,u[0],u[1],u[2],d,s,i);else{let m=lp(l,s,i,t.shape,t.dtype);d.set(m)}return c}function lJ(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let c=i;c{let d=[...u];d[o]=h;let p=$p({inputs:{x:a},attrs:{begin:c,size:d},backend:r});return c[o]+=h,p})}var AJ={kernelName:rl,backendName:"wasm",kernelFunc:mJ},yJ=mn(Qs),gJ=mn(Du),xJ=!0,bJ=An(ni,xJ),kv;function wJ(e){kv=e.wasm.cwrap($a,null,["number","number","number"])}function _J(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return kv(i,a,l),o}var vJ={kernelName:$a,backendName:"wasm",setupFunc:wJ,kernelFunc:_J},Iv;function kJ(e){Iv=e.wasm.cwrap(al,null,["number","array","number","array","array","array","array","array","number","number"])}function IJ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,p=E.slice_util.maskToAxes(u);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=a.shape.length-s.length,f=E.slice_util.maskToAxes(h),A=a.shape.slice();f.forEach(F=>{s[F]=0,i[F]=1,A.splice(F,0,1)});let y=Tr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:x,strides:v}=E.slice_util.getNormalizedAxes(y.shape,p,m,s,i,o,l,c,u);s=g,i=x,o=v;let b=E.slice_util.maskToAxes(d);b.forEach(F=>{i[F]=s[F]+1,o[F]=1});let w=E.slice_util.computeOutShape(s,i,o),k=w.filter((F,O)=>b.indexOf(O)===-1);if(o.every(F=>F===1)){let F=$p({inputs:{x:y},attrs:{begin:s,size:w},backend:t});t.disposeData(y.dataId);let O=Tr({inputs:{x:F},attrs:{shape:k},backend:t});return t.disposeData(F.dataId),O}let N=t.makeOutput(k,"float32");if(!k.some(F=>F===0)){let F=t.dataIdMap.get(y.dataId).id,O=new Uint8Array(new Int32Array(_.computeStrides(y.shape)).buffer),L=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(k).buffer),X=new Uint8Array(new Int32Array(_.computeStrides(k)).buffer),G=t.dataIdMap.get(N.dataId).id;Iv(F,O,y.shape.length,L,V,j,U,X,k.length,G)}t.disposeData(y.dataId);let C=Tr({inputs:{x:N},attrs:{shape:k},backend:t});return t.disposeData(N.dataId),C}var SJ={kernelName:al,backendName:"wasm",setupFunc:kJ,kernelFunc:IJ},NJ=!0,TJ=An(ri,NJ),Sv;function EJ(e){Sv=e.wasm.cwrap(ei,null,["number, number, number"])}function CJ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t),m=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;Sv(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var RJ={kernelName:ei,backendName:"wasm",setupFunc:EJ,kernelFunc:CJ},MJ=mn(ai),FJ=mn(si),Nv;function $J(e){Nv=e.wasm.cwrap(Fa,null,["number","array","number","array","number","number"])}function DJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let c=t.makeOutput(l,r.dtype),u=t.dataIdMap.get(c.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return Tv(i,o,r.shape.length,Mn[r.dtype],a,s,u,d),[c,h]},LJ={kernelName:sl,backendName:"wasm",setupFunc:zJ,kernelFunc:PJ};function WJ(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),c=0;for(let p=0;p({dataId:p,dtype:m,shape:l}))}var BJ={kernelName:il,backendName:"wasm",kernelFunc:WJ};function VJ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var jJ={kernelName:ol,backendName:"wasm",kernelFunc:VJ},UJ=[QX,tK,aK,dK,mK,gK,wK,IK,SK,NK,CK,RK,$K,zK,PK,BK,UK,qK,ZK,JK,QK,eZ,nZ,sZ,iZ,lZ,JX,hZ,fZ,yZ,bZ,vZ,IZ,NZ,sK,CZ,MZ,$Z,DZ,zZ,WZ,VZ,HZ,XZ,YZ,QZ,nY,aY,sY,lY,hY,fY,AY,xY,wY,vY,SY,TY,RY,$Y,OY,PY,LY,WY,_K,jY,GY,KY,YY,ZY,eJ,rJ,iJ,oJ,hJ,fJ,AJ,yJ,gJ,bJ,vJ,SJ,TJ,RJ,MJ,FJ,OJ,LJ,uK,BJ,jJ];for(let e of UJ)ci(e);var PA=J();PA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));PA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(PA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Ev=so(x9()),HJ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',GJ=so(b9()),Cv=class extends gu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Ch(this,ca())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let c=t;this.dataIdMap.set(e,{id:s,stringBytes:c,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=_.sizeFromShape(n),o=i*_.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+_.sizeFromShape(r)*_.bytesPerElement(n));return qJ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=_.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=_.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function XJ(e){return(t,n)=>(_.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance,s.module)})})}),{})}function Rv(e,t,n){if(Dp!=null)return Dp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),Sc!=null&&Sc[r]!=null?Sc[r]:n+r}async function KJ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let c=HJ,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return o.endsWith(".wasm")?Rv(e,t,Nc!=null?Nc:l):l+o},LA&&(a.instantiateWasm=XJ(Rv(e,t,Nc!=null?Nc:"")));let s=!1;a.onAbort=()=>{s||Tc||(Tc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Dp==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Ev.default.toString()],{type:"text/javascript"}),i=(0,Ev.default)(a)):i=(0,GJ.default)(a),i.then(o=>{s=!0,Tc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function qJ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var ZJ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Dp=null,Nc=null,Sc={},Tc=!1,LA=!1;function YJ(e,t=!1){if(im("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Tc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Dp=e,LA=t}function JJ(e,t=!1){if(Tc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Nc=e;else{Sc=e;let n=ZJ.filter(r=>Sc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}LA=t}var Mv="3.5.0",QJ=2;yl("wasm",async()=>{let{wasm:e}=await KJ();return new Cv(e)},QJ);Z().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),lm(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),um(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),vd(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Xu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),Ai(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),cm(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),H(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),H(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),hm(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),dm(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),pm(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),fm(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),mm(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Zu(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Yu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),xi(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),xl(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),xm(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),En(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Pe&&(e=[e]),ot([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Id(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),Sd(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ha(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),Ju(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),Nd(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Td(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),_m(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),wl(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),vm(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),km(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),Ae(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),aw(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),_l(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Ba(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),Im(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),Qn(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),Qt(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),Sm(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),lc(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),vl(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),_d(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),bi(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ja(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),pr(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),Nl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),Hd(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),iw(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),ow(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),Tm(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),ec(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),wi(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Cd(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Em(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),cw(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Fd(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Mm(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),zn(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),Rd(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),fr(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),tc(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),$d(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),fw(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ve(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),nc(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Rn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Ur(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),It(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),kl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),Il(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),$m(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),Dm(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),kt(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Kd(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),ki(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),ml(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Ln(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),da(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),yw(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),pa(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),ac(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),Od(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),Pm(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),Hr(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),Pd(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Dw(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Ow(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Wn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),uc(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Lm(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),Ld(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Wd(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Wm(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),Tn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),Bm(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Bd(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),Vd(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Re(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),oc(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),_i(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),rc(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),Lt(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),en(this)};Z().prototype.square=function(){return this.throwIfDisposed(),it(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Gd(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),Ua(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Pe?[this,e]:[this,...e];return cn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Tl(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),jm(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Te(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),Um(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),gi(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Va(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),ge(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),ge(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),ge(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),Hm(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),Je(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),Xd(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Gm(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),mr(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),Cn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),He(this)};var Fv={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Tl(ge(n,"float32"),-1))}}},eQ={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=it(ge(n,"float32")),a=en(ye(ve(1),r));return kt(Ae(e,a))}}}},tQ={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=en(ye(it(ge(n,"float32")),1));return Ae(e,r)}}}},nQ={kernelName:Ra,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Te(s,i)),H(s,r.shape)}}}},rQ={kernelName:ps,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},aQ={kernelName:fs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},sQ={kernelName:wu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},iQ={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,en(ye(ve(1),it(ge(n,"float32")))))}}},oQ={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=en(se(ve(1),it(ge(n,"float32"))));return Ae(e,r)}}}},lQ={kernelName:go,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=se(it(n),it(r)),i=z(e,Ae(r,s)),o=Pt(n.shape,a);return o.length>0&&(i=Te(i,o)),H(i,n.shape)},b:()=>{let s=se(it(n),it(r)),i=kt(z(e,Ae(n,s))),o=Pt(r.shape,a);return o.length>0&&(i=Te(i,o)),H(i,r.shape)}}}},uQ={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,se(it(ge(n,"float32")),1))}}},cQ={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ye(ve(1),it(ge(n,"float32"))))}}};function hQ(e,t,n,r,a,s){let i=R(e,"dy","avgPool3dGrad"),o=R(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&M(Ut(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:c},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=$.runKernel(Dh,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var dQ=D({avgPool3dGrad_:hQ}),pQ={kernelName:_u,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>dQ(e,r,a,s,i,o)}}};function fQ(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");M(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel($h,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var mQ=D({avgPoolGrad_:fQ}),AQ={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>mQ(e,r,a,s,i)}}},yQ={kernelName:As,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ve(e,a,!1,!0),b:()=>Ve(r,e,!0,!1)}:!s&&i?{a:()=>Ve(e,a,!1,!1),b:()=>Ve(e,r,!0,!1)}:s&&!i?{a:()=>Ve(a,e,!1,!0),b:()=>Ve(r,e,!1,!1)}:{a:()=>Ve(a,e,!0,!0),b:()=>Ve(e,r,!0,!0)}}},gQ={kernelName:vu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>rc(e,r,a)}}},xQ={kernelName:Yx,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l1&&o.push(l);return{x:()=>Te(e,o,!0)}}},bQ={kernelName:ys,gradFunc:e=>({x:()=>e.clone()})},wQ={kernelName:gs,gradFunc:e=>({x:()=>He(e)})},_Q={kernelName:Ma,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>Cn(fr(ja(r,a),wi(r,s)),e,He(e))}}},vQ={kernelName:ku,inputsToSave:["x"],gradFunc:Fv.gradFunc},kQ={kernelName:xo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=hr(a,t[0].shape)[0],i=r.map(o=>o[s]);return Lt(e,i,s).map(o=>()=>o)}},IQ={kernelName:xs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return M(Wa(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>bm(r.shape,e,a,i,o,l),filter:()=>Zm(r,e,a.shape,i,o,l)}}},SQ={kernelName:bs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>ha(e,a,s,i,o,1,l),filter:()=>Zm(e,r,a.shape,s,i,o,l)}}};function NQ(e,t,n,r,a){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),M(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),M(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(Lh,o,l)}var TQ=D({conv3DBackpropFilter_:NQ}),EQ={kernelName:Iu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;M(Wa(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>tw(i.shape,e,o,a,s),filter:()=>TQ(i,e,o.shape,a,s)}}},CQ={kernelName:ws,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(kt(Bd(ge(n,"float32"))),e)}}},RQ={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Vd(ge(n,"float32")),e)}}},MQ={kernelName:_s,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=pw([a],r.rank),l=Td(e,a,s,!i);return o!=null&&(l=Je(l,o)),l}}}},FQ={kernelName:vs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;M(Wa(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),M(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),M(Vr(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&M(Ut(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Tw(l.shape,e,c,a,s,r,i),filter:()=>Nw(l,e,c.shape,a,s,r,i)}}},$Q={kernelName:Su,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(Hh,s,n),filter:()=>$.runKernel(Gh,i,n)}}},DQ={kernelName:vo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(Xh,r)}}},OQ={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=z(Qn(kt(it(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,r)}}},zQ={kernelName:Is,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},PQ={kernelName:So,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},LQ={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Qn(n))}}},WQ={kernelName:Ss,gradFunc:e=>({x:()=>He(e)})},BQ={kernelName:Ns,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Ae(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=z(e,ge(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=H(Te(s,i),r.shape));let o=it(r);return kt(Ae(s,ge(o,"float32")))}}}},VQ={kernelName:Ts,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?ve(1):o,c=Pt(s.shape,a.shape),u=[];if(s.rank===1){for(let f=0;fs.rank===1?H(z(z(e,Va(H(p,[1,1,1,s.shape[0]]),u)),l),a.shape):H(z(z(e,p),l),a.shape),mean:()=>{let f=z(z(p,ve(-1)),d);return s.rank===1&&(f=Te(f,c)),H(f,s.shape)},variance:()=>{let f=z(z(m,h),d);return s.rank===1&&(f=Te(f,c)),H(f,s.shape)},scale:()=>{let f=z(h,p),A=z(e,f);return s.rank===1&&(A=Te(A,c)),H(A,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Te(f,c)),H(f,s.shape)}}}},jQ={kernelName:Eo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=hr(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,c=o.slice(0,i),u=c.length,h=o.slice(s,o.length).slice(1),d=h.length,p=$v(0,u),m=$v(u+1,u+1+d),f=Dv([c,[l],h]),A=H(e,f),y=H(a,[l]),g=Dv([[u],p,m]),x=Je(A,g),v=Gm(x,y,r.shape[i]),b=Rm(g);return v=Je(v,b),v},indices:()=>a}}};function $v(e,t){let n=[];for(let r=e;r{let[n,r]=t;return{a:()=>He(n),b:()=>He(r)}}},HQ={kernelName:Cs,gradFunc:e=>({x:()=>ge(e,"float32")})},GQ={kernelName:Mo,gradFunc:e=>({x:()=>He(e)})},qQ={kernelName:Fo,gradFunc:e=>({x:()=>He(e)})},XQ={kernelName:$o,gradFunc:e=>({x:()=>He(e)})},KQ={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=pr(r,0);return{x:()=>Cn(s,e,z(e,a))}}},ZQ={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,se(n,1))}}},YQ={kernelName:Ms,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ge(n,"float32"))}}},JQ={kernelName:Jx,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=Qn(r);return ye(e,z(Te(e,a,s),i))}}}};function QQ(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(Qh,o,l)}var eee=D({localResponseNormalizationBackprop_:QQ}),tee={kernelName:Cu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>eee(r,a,e,s,i,o,l)}}};function Ov(e,t,n,r){return t.rankz(e,ge(Ba(n,t),e.dtype))}}var zv={kernelName:Fs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=hr(a,s.shape),l=Ov(e,i,s,o);return{x:()=>l.x()}}},nee={kernelName:$s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>z(e,ge(ja(n,r),"float32")),b:()=>z(e,ge(Cd(n,r),"float32"))}}};function ree(e,t,n,r,a,s,i){let o=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),c=R(n,"output","maxPool3dGrad"),u=o,h=l,d=c,p=!1;l.rank===4&&(p=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=H(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),M(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),M(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&M(Ut(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:u,input:h,output:d},f={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=$.runKernel(td,m,f);return p?H(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var aee=D({maxPool3dGrad_:ree}),see={kernelName:Ru,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>aee(e,r,a,s,i,o,l)}}};function iee(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),c=R(n,"output","maxPoolGrad");M(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),M(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&M(Ut(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(ed,u,h)}var oee=D({maxPoolGrad_:iee}),lee={kernelName:Ds,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>oee(e,r,a,s,i,o)}}},uee={kernelName:Os,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=hr(a,r.shape),i=dw(r.shape,s)[1],o=Et(i);return{x:()=>{let l=r.shape.slice();s.forEach(u=>{l[u]=1});let c=H(e,l);return Ae(z(c,Pn(r.shape,"float32")),o)}}}},cee={kernelName:zs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=hr(a,s.shape),l=Ov(e,i,s,o);return{x:()=>l.x()}}},hee={kernelName:Ps,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>z(e,ge(wi(n,r),"float32")),b:()=>z(e,ge(pr(n,r),"float32"))}}},dee={kernelName:Ls,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},pee={kernelName:Lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Pt(n.shape,a);return s.length>0?H(Te(e,s),n.shape):e},b:()=>{let s=z(e,kt(vl(Ae(n,r)))),i=Pt(r.shape,a);return i.length>0?H(Te(s,i),r.shape):s}}}},fee={kernelName:Ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=z(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=z(e,ge(n,"float32")),i=Pt(r.shape,a);return i.length>0?H(Te(s,i),r.shape):s}}}},mee={kernelName:Wo,gradFunc:e=>({x:()=>kt(e)})},Aee={kernelName:Bs,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Rt(n.shape,"float32")}}},yee={kernelName:Ho,gradFunc:e=>({x:()=>He(e)})},gee={kernelName:Go,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return mr(e,r).map(a=>()=>a)}},Pv={kernelName:Vs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},xee={kernelName:js,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=ft(s.shape,i.shape);return{a:()=>{let l=ge(i,"float32"),c=z(e,z(l,pa(s,ye(l,ve(1))))),u=Pt(s.shape,o);return u.length>0&&(c=Te(c,u)),H(c,s.shape)},b:()=>{let l=pr(s,0),c=Cn(l,zn(s),He(s)),u=z(e,z(a,c)),h=Pt(i.shape,o);return h.length>0&&(u=Te(u,h)),H(u,i.shape)}}}},bee={kernelName:Us,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=pr(n,0);return{x:()=>Cn(a,e,z(e,r)),alpha:()=>{let s=Cn(a,He(e),z(e,n)),i=Pt(r.shape,e.shape);return i.length>0&&(s=Te(s,i)),H(s,r.shape)}}}},wee={kernelName:ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Ae(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=z(e,ge(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=H(Te(s,i),r.shape));let o=it(r);return kt(Ae(s,ge(o,"float32")))}}}},_ee={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,kt(it(n)))}}},vee={kernelName:qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=z(wi(n,6),Tl(n));return{x:()=>z(e,ge(r,"float32"))}}},kee={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ge(Tl(n),"float32"))}}},Iee={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},See={kernelName:Gs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(id,a,n)}}},Nee={kernelName:Fu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(sd,a,n)}}},Tee={kernelName:Xs,gradFunc:(e,t,n)=>{let{dims:r}=n,a=hr(r,e.shape);return{x:()=>Wn(e,a)}}},Eee={kernelName:Ks,gradFunc:e=>({x:()=>He(e)})},Cee={kernelName:Zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>kt(Ae(e,z(pa(n,1.5),2)))}}},Ree={kernelName:Yo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ge(He(n),"float32"),t:()=>z(e,ge(n,e.dtype)),e:()=>z(e,ge(tc(n),e.dtype))}}},Mee={kernelName:Jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=pr(n,ve(0)),a=ve(Ww),s=ve(Bw),i=z(e,s),o=z(z(e,a),Qn(ge(n,"float32")));return Cn(r,i,o)}}}},Fee={kernelName:Js,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,ye(ve(1),n)))}}},$ee={kernelName:tl,gradFunc:e=>({x:()=>He(e)})},Dee={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Ju(ge(n,"float32")),e)}}},Oee={kernelName:el,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Nd(ge(n,"float32")),e)}}},zee={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=zb(r,a,s),c=[];for(let u=0;uda(e,c)}}},Pee={kernelName:ti,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=z(e,r);return{logits:()=>ye(i,z(Te(i,[a],s),r))}}},Lee={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Tn(n))}}},Lv={kernelName:$u,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Yu(e,r,a)}}},Wv={kernelName:rl,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>ot(e,r)}}},Wee={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,z(en(ge(n,"float32")),2))}}},Bee={kernelName:Du,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ge(n,"float32"),2))}}},Vee={kernelName:ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ve(2);return{a:()=>z(e,z(a,ye(n,r))),b:()=>z(e,z(a,ye(r,n)))}}},jee={kernelName:$a,gradFunc:e=>({x:()=>He(e)})},Uee={kernelName:ri,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Te(s,i)),H(kt(s),r.shape)}}}},Hee={kernelName:ei,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;hr(s,r.shape).forEach(l=>{a[l]=1});let i=H(e,a),o=z(i,Pn(r.shape,"float32"));return{x:()=>o}}},Gee={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,it(Ju(n)))}}},qee={kernelName:si,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(ye(ve(1),it(n)),e)}}},Xee={kernelName:Fa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=He(r);if(r.rank===1)for(let i=0;i{let r=n,{perm:a}=r,s=Rm(a);return{x:()=>Je(e,s)}}},Zee={kernelName:il,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>cn(e,a)}}},Jee={kernelName:Ou,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Yee(e,n)}}};function Yee(e,t){let n=Ur(t,He(t)),r=bi(e,n),a=ja(t,ve(0,"int32")),s=r.rank-a.rank;for(let o=0;o({x:()=>He(e)})},ete=[Fv,eQ,tQ,nQ,rQ,aQ,sQ,iQ,oQ,lQ,uQ,cQ,pQ,AQ,yQ,gQ,xQ,bQ,wQ,_Q,vQ,kQ,SQ,IQ,EQ,CQ,RQ,MQ,FQ,$Q,wee,DQ,OQ,zQ,PQ,LQ,BQ,WQ,VQ,jQ,UQ,HQ,GQ,qQ,XQ,KQ,ZQ,YQ,JQ,tee,zv,zv,nee,see,lee,uee,cee,hee,dee,pee,fee,mee,Aee,yee,gee,Pv,Pv,xee,bee,_ee,vee,kee,Iee,See,Nee,Tee,Eee,Cee,Ree,Mee,Fee,$ee,Dee,Oee,zee,Pee,Lee,Lv,Lv,Wv,Wv,Wee,Vee,Bee,jee,Uee,Hee,Gee,qee,Xee,Kee,Zee,Jee,Qee];for(let e of ete)Qx(e);var Bv={};Me(Bv,{maxNorm:()=>tte,minMaxNorm:()=>ate,nonNeg:()=>rte,unitNorm:()=>nte});var WA;function Wt(){return WA==null&&(WA=Ub().epsilon()),WA}function Er(){return"channelsLast"}var ya=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ya.prototype)}},Cr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Cr.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},De=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,De.prototype)}},Vv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Vv.prototype)}};function Di(e,t){if(Array.isArray(e)){let n=[];for(let r=0;rn.toUpperCase())}var Ar={};function BA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function VA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>VA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:VA(r))}}}function Ec(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in Ar)i=Ar[s];else if(i=t[s],i==null)throw new B(`Unknown ${r}: ${e}. This may be due to one of the following reasons: + `}};function kX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],c=0,u=E.getAxesPermutation([c],o),h=a;u!=null&&(h=dn({inputs:{x:a},backend:n,attrs:{perm:u}}),l.push(h),c=E.getInnerMostAxes(1,o)[0]);let d=E.segment_util.computeOutShape(h.shape,c,i),p=_.sizeFromShape([h.shape[c]]),m=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(m);let f=cd(a.dtype),A=(v,w,b,k,N)=>{let C=v.shape[0],F=v.shape[1],O=E.segment_util.segOpComputeOptimalWindowSize(F,N),z={windowSize:O,inSize:F,batchSize:C,numSegments:N},V=new vX(z,w),j=n.compileAndRun(V,[v,b],k);if(l.push(j),j.shape[1]===N)return j;let U=c7({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),X=p7({inputs:{x:U},backend:n,attrs:{reps:[F/O]}});return l.push(U),l.push(X),A(j,w,X,k,N)},y=A(m,"unsortedSegmentSum",s,f,i),g=fe({inputs:{x:y},backend:n,attrs:{shape:d}}),x=g;if(u!=null){l.push(g);let v=E.getUndoAxesPermutation(u);x=dn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var IX={kernelName:Cu,backendName:"webgl",kernelFunc:kX},SX=[pH,AH,JW,eB,rB,iB,lB,hB,pB,mB,xB,bB,kB,NB,$B,CB,zB,BB,LB,HB,qB,KB,QB,iV,lV,fV,AV,wV,vV,FW,TV,PV,WV,MV,UV,GV,VV,KV,JV,tj,rj,sj,lj,fj,Aj,cj,xj,_j,kj,Tj,Mj,Oj,Lj,Wj,Bj,jj,Hj,qj,Kj,Yj,tU,sU,oU,uU,dU,AU,wU,kU,MW,SU,SV,EU,MU,DU,DW,LU,jU,HU,JU,KU,nH,sH,uH,gH,SH,kH,CH,MH,$H,_H,OH,PH,VH,GH,ZH,aG,WW,iG,uG,dG,mG,cV,gG,wG,_G,IG,EG,zW,RG,MG,hV,eG,DG,jG,LG,VW,qG,ZG,QG,nq,iq,lq,hq,fq,Aq,xq,_q,Iq,Tq,Rq,$q,aV,nG,zq,Lq,Bq,jq,Hq,Xq,Yq,Qq,tX,aX,tG,KW,oX,cX,pX,mX,gX,ZW,wX,_X,IX,xG];for(let e of SX)si(e);var Nn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Nn||(Nn={}));var wc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(wc||(wc={}));var f7;function NX(e){f7=e.wasm.cwrap(ni,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function TX(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let N=n.dataIdMap.get(i.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);m=N.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,A=wc[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=c?s.shape[1]:s.shape[2],x=a.shape[0],v=n.makeOutput([x,y,g],a.dtype),w=n.dataIdMap.get(v.dataId).id,b=new Uint8Array(new Int32Array(a.shape).buffer),k=new Uint8Array(new Int32Array(s.shape).buffer);return f7(d,b,a.shape.length,p,k,s.shape.length,l,c,A,m,f,h||0,w),v}var EX={kernelName:ni,backendName:"wasm",setupFunc:NX,kernelFunc:TX};function pn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return _.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var CX=pn(no);function fn(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,h=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,p=n!=null?n:c.dtype,m=E.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,p);if(_.sizeFromShape(m)===0)return f;let A=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(f.dataId).id,x=()=>r(h,A,c.shape.length,d,y,u.shape.length,Nn[c.dtype],g);if(t&&c.dtype==="float32")return x(),f;let v=E.getBroadcastDims(c.shape,m),w=E.getBroadcastDims(u.shape,m),b=v.every((N,C)=>N===C),k=w.every((N,C)=>N===C);if(b&&k)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var RX=!0,MX=fn(Sa,RX),m7;function FX(e){m7=e.wasm.cwrap(ls,null,["array","number","number","number"])}function $X(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(_.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return m7(s,a.length,Nn[r.dtype],i),r}var DX={kernelName:ls,backendName:"wasm",setupFunc:FX,kernelFunc:$X};function Sp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var OX={kernelName:Is,backendName:"wasm",kernelFunc:Sp},A7;function zX(e){A7=e.wasm.cwrap(ti,null,["number","array","number","number","number","array","number"])}function Np(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=LX(t.x.shape,r.perm),i=!0;for(let m=0;m=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var WX={kernelName:ti,backendName:"wasm",kernelFunc:Np,setupFunc:zX};function ja(e,t,n){let r=e.shape,a=e.shape.length,s=_.parseAxisParam(t,r),i=s,o=E.getAxesPermutation(i,a),l=null,c=!1;if(o!=null){let u=new Array(a);for(let d=0;d`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var QX={kernelName:jo,backendName:"wasm",kernelFunc:br},b7;function eK(e){b7=e.wasm.cwrap(hs,null,["number","array","number","number","array","number","number","number","number"])}function tK(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=_.sizeFromShape(m),y=_.sizeFromShape(f),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],w=o?[y,p,h]:[y,h,p],b=br({inputs:{x:a},backend:n,attrs:{shape:v}}),k=br({inputs:{x:s},backend:n,attrs:{shape:w}}),N=n.dataIdMap.get(b.dataId).id,C=n.dataIdMap.get(k.dataId).id,F=i?b.shape[2]:b.shape[1],O=o?k.shape[1]:k.shape[2],z=Math.max(A,y),V=n.makeOutput([z,F,O],b.dtype),j=n.dataIdMap.get(V.dataId).id,U=new Uint8Array(new Int32Array(b.shape).buffer),X=new Uint8Array(new Int32Array(k.shape).buffer);return b7(N,U,b.shape.length,C,X,k.shape.length,i,o,j),n.disposeData(b.dataId),n.disposeData(k.dataId),V.shape=x,V}var nK={kernelName:hs,backendName:"wasm",setupFunc:eK,kernelFunc:tK};function Tp(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var rK={kernelName:ds,backendName:"wasm",kernelFunc:Tp},aK=pn(ps),_7;function sK(e){_7=e.wasm.cwrap(Na,null,["number","number","number","number"])}function iK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(l.dataId).id;return _7(o,s,i,c),l}var oK={kernelName:Na,backendName:"wasm",setupFunc:sK,kernelFunc:iK};function v7(e){let{inputs:t,backend:n}=e,r=_.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=E.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>_.sizeFromShape(p.shape)>0);if(s.length===1)return Sp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(_.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(E.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(x=>{let v=_.sizeFromShape(x.shape.slice(r));return br({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));a=E.computeOutShape(p.map(x=>x.shape),1);let f=p[0].shape[0]===1,A=Hm(m,a,t[0].dtype,f),y=E.computeOutShape(s.map(x=>x.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=E.fromStringArrayToUint8(A),p.forEach(x=>n.disposeData(x.dataId)),i}let l=_.sizeFromShape(s[0].shape.slice(0,r)),c=0,u=s.map(p=>{let m=_.sizeFromShape(p.shape.slice(r));return c+=m,m}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p`cumsum does not support ${a.dtype} tensors in the WASM backend`);let c=E.getAxesPermutation([s],l),u=a;c!==null&&(u=Np({inputs:{x:a},attrs:{perm:c},backend:n}));let h=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(u.shape,u.dtype),p=u.shape[h],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;N7(m,i?1:0,o?1:0,p,f,Nn[a.dtype]);let A=d;if(c!==null){let y=E.getUndoAxesPermutation(c);A=Np({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return A}var bK={kernelName:ys,backendName:"wasm",setupFunc:xK,kernelFunc:wK},T7;function _K(e){T7=e.wasm.cwrap(Ao,null,["number","number","number","array","number","array","array","number","number"])}function vK(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=t.makeOutput(m,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(_.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(_.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return T7(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,x,m.length,v),f}var kK={kernelName:Ao,backendName:"wasm",setupFunc:_K,kernelFunc:vK},E7;function IK(e){E7=e.wasm.cwrap(gs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function SK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h}=n,d=c==null?[1,1]:c,p=E.computeConv2DInfo(a.shape,s.shape,l,d,u,h,!0),m=p.filterHeight,f=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,x=p.padInfo.left,v=p.dilationHeight,w=p.dilationWidth,b=p.strideHeight,k=p.strideWidth,N=p.inChannels,C=p.outChannels,F=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let O=r.makeOutput(p.outShape,"float32"),z=r.dataIdMap.get(O.dataId).id;return E7(i,a.shape[0],a.shape[1],a.shape[2],o,m,f,A,y,g,x,F,v,w,b,k,N,C,z),O}var NK={kernelName:gs,backendName:"wasm",setupFunc:IK,kernelFunc:SK},TK=!1,EK=fn(xo,TK,"bool"),CK=pn(ws);function kA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),br({inputs:{x:a},backend:r,attrs:{shape:o}})}var RK={kernelName:wo,backendName:"wasm",kernelFunc:kA};function MK(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var FK={kernelName:bu,backendName:"wasm",kernelFunc:MK},C7;function $K(e){C7=e.wasm.cwrap(_o,null,["number","number","number","number","number","number"])}function DK(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,c,u]=r.shape;return C7(s,o,l,c,u,i),a}var OK={kernelName:_o,backendName:"wasm",kernelFunc:DK,setupFunc:$K},zK=pn(bs),PK=!1,LK=fn(_s,PK),R7;function WK(e){R7=e.wasm.cwrap(vs,null,["number","number","number","number","number","number","number"])}function BK(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(_.sizeFromShape(s.shape)===0)return f;let A=t.dataIdMap.get(f.dataId).id;return R7(u,h,d,p,m,a,A),f}var VK={kernelName:vs,backendName:"wasm",setupFunc:WK,kernelFunc:BK},M7;function jK(e){M7=e.wasm.cwrap(ri,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function UK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d),A=wc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let w=f.filterHeight,b=f.filterWidth,k=f.padInfo.top,N=f.padInfo.right,C=f.padInfo.bottom,F=f.padInfo.left,O=f.dilationHeight,z=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return M7(y,G,ee,Y,g,w,b,v,k,N,C,F,X,O,z,V,j,U,x,A,ie,m||0,te),ae}var HK={kernelName:ri,backendName:"wasm",setupFunc:jK,kernelFunc:UK},F7;function GK(e){F7=e.wasm.cwrap(ai,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d,!0),A=wc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let w=f.filterHeight,b=f.filterWidth,k=f.padInfo.top,N=f.padInfo.right,C=f.padInfo.bottom,F=f.padInfo.left,O=f.dilationHeight,z=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return F7(y,G,ee,Y,g,w,b,v,k,N,C,F,X,O,z,V,j,U,x,A,ie,m||0,te),ae}var XK={kernelName:ai,backendName:"wasm",setupFunc:GK,kernelFunc:qK},$7;function KK(e){$7=e.wasm.cwrap(ko,null,["number","number","number","number","number","number","array","number"])}function ZK(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=Vf.prepareAndValidate(r,a),c=t.makeOutput(s,r.dtype);if(i===0)return c;let u=a.shape,h=u[u.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return $7(d,Nn[r.dtype],p,i,h,o,m,f),c}var YK={kernelName:ko,backendName:"wasm",setupFunc:KK,kernelFunc:ZK},D7;function JK(e){D7=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function QK(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=_.parseAxisParam(i,a.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=br({inputs:{x:a},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=_.sizeFromShape(s.shape),d=br({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),p=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],m=t.makeOutput(p,a.dtype);if(_.sizeFromShape(a.shape)===0)return m;let f=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(_.computeStrides(u.shape)).buffer),v=new Uint8Array(new Int32Array(_.computeStrides(p)).buffer);return D7(A,Nn[a.dtype],x,f,y,c.batchSize,v,g),t.disposeData(u.dataId),t.disposeData(d.dataId),m.shape=c.outputShape,m}var eZ={kernelName:vo,backendName:"wasm",setupFunc:JK,kernelFunc:QK},tZ=!1,nZ=fn(Io,tZ,"bool"),rZ=!1,aZ=fn(ks,rZ,"bool"),O7;function sZ(e){O7=e.wasm.cwrap(Ss,null,["number","number","number"])}function iZ(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(_.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;O7(a,n,i)}return s}var oZ={kernelName:Ss,backendName:"wasm",setupFunc:sZ,kernelFunc:iZ},lZ=!1,uZ=fn(Eo,lZ,"bool"),cZ=!1,hZ=fn(Co,cZ,"bool"),dZ=pn(Ns),pZ=!1,fZ=fn(Mo,pZ,"bool"),z7;function mZ(e){z7=e.wasm.cwrap(Ts,null,["number, number, number"])}function AZ(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:d}=ja(i,a,t);if(d){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let p=l.shape.length;E.assertAxesAreInnerMostDims("max",u,p);let[m,f]=E.computeOutAndReduceShapes(l.shape,u),A=_.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(_.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;z7(o,A,g)}if(d&&t.disposeData(c.dataId),s){let g=E.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var yZ={kernelName:Ts,backendName:"wasm",setupFunc:mZ,kernelFunc:AZ},gZ=!1,xZ=fn(Es,gZ),P7;function wZ(e){P7=e.wasm.cwrap(Cs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function bZ(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,x=u.strideHeight,v=u.strideWidth,w=u.inChannels,b=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let k=r.makeOutput(u.outShape,"float32"),N=r.dataIdMap.get(k.dataId).id;return P7(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,m,f,A,y,g,x,v,w,b,N),k}var _Z={kernelName:Cs,backendName:"wasm",setupFunc:wZ,kernelFunc:bZ},L7;function vZ(e){L7=e.wasm.cwrap(Rs,null,["number, number, number"])}function kZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=ja(i,a,t),m=h;if(p){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=c;c.dtype!=="float32"&&(g=Tp({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let x=t.makeOutput(f,"float32");if(_.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;L7(l,y,v)}if(p&&t.disposeData(u.dataId),s){let v=E.expandShapeToKeepDim(x.shape,d);x.shape=v}return c.dtype!=="float32"&&t.disposeData(g.dataId),x}var IZ={kernelName:Rs,backendName:"wasm",setupFunc:vZ,kernelFunc:kZ},W7;function SZ(e){W7=e.wasm.cwrap(Ms,null,["number, number, number"])}function NZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=ja(i,a,t);if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x)}let m=c.shape.length;E.assertAxesAreInnerMostDims("min",h,m);let[f,A]=E.computeOutAndReduceShapes(c.shape,h),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;W7(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var TZ={kernelName:Ms,backendName:"wasm",setupFunc:SZ,kernelFunc:NZ},EZ=!1,CZ=fn(Fs,EZ),IA;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(IA||(IA={}));var B7;function RZ(e){B7=e.wasm.cwrap($s,null,["number","array","number","number","array","array","number","number"])}function MZ(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,mode:a}}=e,s=r.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(m=>m[0]),h=r.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return B7(i,c,t.shape.length,Nn[t.dtype],d,p,IA[a],l),o}var FZ={kernelName:$s,backendName:"wasm",kernelFunc:MZ,setupFunc:RZ},$Z=!0,DZ=fn(Ds,$Z),OZ=pn($o);function SA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var V7;function zZ(e){V7=e.wasm.cwrap(Oo,"number",["number","number","number","number","number"])}function PZ(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,h=V7(c,u,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:m,pValidOutputs:f}=SA(t,h);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([p],"int32",d)}var LZ={kernelName:Oo,backendName:"wasm",setupFunc:zZ,kernelFunc:PZ},j7;function WZ(e){j7=e.wasm.cwrap(zo,"number",["number","number","number","number","number","bool"])}function BZ(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=j7(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=SA(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var VZ={kernelName:zo,backendName:"wasm",setupFunc:WZ,kernelFunc:BZ},U7;function jZ(e){U7=e.wasm.cwrap(Po,"number",["number","number","number","number","number","number"])}function UZ(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=U7(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=SA(t,d);t.wasm._free(A);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([m],"float32",f);return[y,g]}var HZ={kernelName:Po,backendName:"wasm",setupFunc:jZ,kernelFunc:UZ},GZ=!1,qZ=fn(Do,GZ,"bool"),H7;function XZ(e){H7=e.wasm.cwrap(Os,null,["number","number","number","number","number"])}function KZ(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(a.dataId).id;return H7(u,s,i,o,c),l}var ZZ={kernelName:Os,backendName:"wasm",setupFunc:XZ,kernelFunc:KZ};function YZ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var JZ={kernelName:Lo,backendName:"wasm",kernelFunc:YZ};function QZ(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return kA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=kA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=v7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeData(u.dataId)),c}var eY={kernelName:Wo,backendName:"wasm",kernelFunc:QZ},G7;function tY(e){G7=e.wasm.cwrap(zs,null,["number","array","number","number","array","array","number","number"])}function nY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(m=>m[0]),h=r.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return G7(i,c,t.shape.length,Nn[t.dtype],d,p,a,l),o}var rY={kernelName:zs,backendName:"wasm",kernelFunc:nY,setupFunc:tY},aY=!1,sY=fn(Ps,aY),q7;function iY(e){q7=e.wasm.cwrap(Ls,null,["number","number","number"])}function oY(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return q7(s,i,l),o}var lY={kernelName:Ls,backendName:"wasm",setupFunc:iY,kernelFunc:oY},X7;function uY(e){X7=e.wasm.cwrap(Bo,null,["number","number","number","number"])}function cY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=ja(i,a,t),m=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;X7(l,y,Nn[g.dtype],x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var hY={kernelName:Bo,backendName:"wasm",setupFunc:uY,kernelFunc:cY},dY=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=Xm(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},pY={kernelName:Su,backendName:"wasm",kernelFunc:dY},fY=!0,mY=fn(xs,fY),AY=pn(Ws),yY=pn(Vs),K7;function gY(e){K7=e.wasm.cwrap(Bs,null,["number","number","number","number","number","number","number","number","number","number"])}function xY(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,[u,h,d,p]=a.shape,m=[u,l,c,p],f=t.dataIdMap.get(a.dataId),A;f.dtype!=="float32"&&(A=Tp({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(A.dataId));let y=f.id,g=t.makeOutput(m,"float32");if(_.sizeFromShape(a.shape)===0)return g;let x=t.dataIdMap.get(g.dataId).id;return K7(y,u,h,d,p,l,c,s?1:0,i?1:0,x),A!=null&&t.disposeData(A.dataId),g}var wY={kernelName:Bs,backendName:"wasm",setupFunc:gY,kernelFunc:xY},Z7;function bY(e){Z7=e.wasm.cwrap(js,null,["number","array","number","array","number","number"])}function _Y(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=_.parseAxisParam(s,a.shape);if(a.shape.length===0)return Sp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);Z7(l,u,i.length,h,a.shape.length,c);let d=br({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var vY={kernelName:js,backendName:"wasm",kernelFunc:_Y,setupFunc:bY},Y7;function kY(e){Y7=e.wasm.cwrap(nl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function IY(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(l.dataId).id,[h,d,p,m]=a.shape,[f,A]=E.getImageCenter(o,d,p),y=i===0,g=255,x=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],v=new Uint8Array(new Int32Array(x).buffer);return Y7(c,h,d,p,m,s,f,A,v,x.length,u),l}var SY={kernelName:nl,backendName:"wasm",kernelFunc:IY,setupFunc:kY},NY=pn(Us),TY=pn(Hs),J7;function EY(e){J7=e.wasm.cwrap(Uo,null,["number","number","number","number","number","number","array","number","number"])}function CY(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(_.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=jf.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return J7(p,m,Nn[s.dtype],l,c,u,f,d,A),o}var RY={kernelName:Uo,backendName:"wasm",setupFunc:EY,kernelFunc:CY},Q7;function MY(e){Q7=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function FY(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(c.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:_.sizeFromShape(a.shape.slice(1));return Q7(i,o,l,p,u),c}var $Y={kernelName:Ho,backendName:"wasm",kernelFunc:FY,setupFunc:MY},ev;function DY(e){ev=e.wasm.cwrap(qs,null,["number","number"])}function OY(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return _.sizeFromShape(a.shape)===0||ev(r,s),a}var zY={kernelName:"Sigmoid",backendName:"wasm",setupFunc:DY,kernelFunc:OY},PY=pn(Gs);function Ep(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=sn.parseSliceParams(t,n,r),o=sn.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),c=a.makeOutput(i,t.dtype),u=_.computeStrides(t.shape),h=a.dataIdMap.get(c.dataId);if(o){let m=sn.computeFlatOffset(s,u);return t.dtype==="string"?h.stringBytes=l.slice(m,m+_.sizeFromShape(i)):a.typedArrayFromHeap(c).set(l.subarray(m,m+_.sizeFromShape(i))),c}if(t.dtype==="string"){let m=rp(l,s,i,t.shape,t.dtype);return h.stringBytes=m,c}let d=a.typedArrayFromHeap(c),p=t.shape.length;if(p===2)LY(l,u[0],d,s,i);else if(p===3)WY(l,u[0],u[1],d,s,i);else if(p===4)BY(l,u[0],u[1],u[2],d,s,i);else{let m=rp(l,s,i,t.shape,t.dtype);d.set(m)}return c}function LY(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let c=i;c{let d=[...u];d[o]=h;let p=Ep({inputs:{x:a},attrs:{begin:c,size:d},backend:r});return c[o]+=h,p})}var qY={kernelName:Yo,backendName:"wasm",kernelFunc:GY},XY=pn(Xs),KY=pn(Eu),ZY=!0,YY=fn(Ys,ZY),nv;function JY(e){nv=e.wasm.cwrap(Ea,null,["number","number","number"])}function QY(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return nv(i,a,l),o}var eJ={kernelName:Ea,backendName:"wasm",setupFunc:JY,kernelFunc:QY},rv;function tJ(e){rv=e.wasm.cwrap(Jo,null,["number","array","number","array","array","array","array","array","number","number"])}function nJ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,p=E.slice_util.maskToAxes(u);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=a.shape.length-s.length,f=E.slice_util.maskToAxes(h),A=a.shape.slice();f.forEach(F=>{s[F]=0,i[F]=1,A.splice(F,0,1)});let y=br({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:x,strides:v}=E.slice_util.getNormalizedAxes(y.shape,p,m,s,i,o,l,c,u);s=g,i=x,o=v;let w=E.slice_util.maskToAxes(d);w.forEach(F=>{i[F]=s[F]+1,o[F]=1});let b=E.slice_util.computeOutShape(s,i,o),k=b.filter((F,O)=>w.indexOf(O)===-1);if(o.every(F=>F===1)){let F=Ep({inputs:{x:y},attrs:{begin:s,size:b},backend:t});t.disposeData(y.dataId);let O=br({inputs:{x:F},attrs:{shape:k},backend:t});return t.disposeData(F.dataId),O}let N=t.makeOutput(k,"float32");if(!k.some(F=>F===0)){let F=t.dataIdMap.get(y.dataId).id,O=new Uint8Array(new Int32Array(_.computeStrides(y.shape)).buffer),z=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(k).buffer),X=new Uint8Array(new Int32Array(_.computeStrides(k)).buffer),G=t.dataIdMap.get(N.dataId).id;rv(F,O,y.shape.length,z,V,j,U,X,k.length,G)}t.disposeData(y.dataId);let C=br({inputs:{x:N},attrs:{shape:k},backend:t});return t.disposeData(N.dataId),C}var rJ={kernelName:Jo,backendName:"wasm",setupFunc:tJ,kernelFunc:nJ},aJ=!0,sJ=fn(Js,aJ),av;function iJ(e){av=e.wasm.cwrap(Ks,null,["number, number, number"])}function oJ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=ja(i,a,t),m=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;av(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var lJ={kernelName:Ks,backendName:"wasm",setupFunc:iJ,kernelFunc:oJ},uJ=pn(Qs),cJ=pn(ei),sv;function hJ(e){sv=e.wasm.cwrap(Ta,null,["number","array","number","array","number","number"])}function dJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let c=t.makeOutput(l,r.dtype),u=t.dataIdMap.get(c.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return iv(i,o,r.shape.length,Nn[r.dtype],a,s,u,d),[c,h]},AJ={kernelName:Qo,backendName:"wasm",setupFunc:fJ,kernelFunc:mJ};function yJ(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),c=0;for(let p=0;p({dataId:p,dtype:m,shape:l}))}var gJ={kernelName:el,backendName:"wasm",kernelFunc:yJ};function xJ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var wJ={kernelName:tl,backendName:"wasm",kernelFunc:xJ},bJ=[CX,MX,DX,jX,GX,KX,JX,nK,rK,aK,oK,lK,hK,fK,mK,gK,bK,kK,NK,EK,CK,RK,FK,OK,zK,LK,EX,VK,HK,XK,YK,eZ,nZ,aZ,OX,oZ,uZ,hZ,dZ,fZ,yZ,xZ,_Z,IZ,TZ,CZ,FZ,DZ,OZ,LZ,VZ,HZ,qZ,ZZ,JZ,eY,rY,sY,lY,hY,pY,mY,AY,yY,QX,wY,vY,SY,TY,NY,RY,$Y,zY,PY,VY,HY,qY,XY,KY,YY,eJ,rJ,sJ,lJ,uJ,cJ,pJ,AJ,WX,gJ,wJ];for(let e of bJ)si(e);var NA=J();NA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));NA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(NA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var ov=Qi(Zk()),_J='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',vJ=Qi(Yk()),lv=class extends du{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new kh(this,aa())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let c=t;this.dataIdMap.set(e,{id:s,stringBytes:c,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=_.sizeFromShape(n),o=i*_.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+_.sizeFromShape(r)*_.bytesPerElement(n));return kJ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=_.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=_.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function IJ(e){return(t,n)=>(_.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance,s.module)})})}),{})}function uv(e,t,n){if(Cp!=null)return Cp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),bc!=null&&bc[r]!=null?bc[r]:n+r}async function SJ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let c=_J,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return o.endsWith(".wasm")?uv(e,t,_c!=null?_c:l):l+o},TA&&(a.instantiateWasm=IJ(uv(e,t,_c!=null?_c:"")));let s=!1;a.onAbort=()=>{s||vc||(vc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Cp==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+ov.default.toString()],{type:"text/javascript"}),i=(0,ov.default)(a)):i=(0,vJ.default)(a),i.then(o=>{s=!0,vc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function kJ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var NJ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Cp=null,_c=null,bc={},vc=!1,TA=!1;function TJ(e,t=!1){if(Kf("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),vc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Cp=e,TA=t}function EJ(e,t=!1){if(vc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")_c=e;else{bc=e;let n=NJ.filter(r=>bc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}TA=t}var cv="3.5.0",CJ=2;hl("wasm",async()=>{let{wasm:e}=await SJ();return new lv(e)},CJ);Z().prototype.abs=function(){return this.throwIfDisposed(),Dt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),Yf(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),Jf(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),gd(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Vu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),ju(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),Qf(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),Ae(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),H(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),H(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),em(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),tm(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),nm(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),rm(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),am(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Hu(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Gu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),pi(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),pl(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),Ae(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),lm(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),In(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Le&&(e=[e]),ot([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),wd(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),bd(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ia(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),qu(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),_d(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),vd(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),hm(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ml(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),dm(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),pm(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),Ow(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),Al(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Da(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),fm(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),Xn(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),on(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),mm(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),rc(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),yl(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),Ad(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),fi(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),za(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),or(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),bl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),Wd(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),Pw(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),Lw(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),ym(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Ku(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),mi(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Id(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),gm(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),Vw(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Td(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),bm(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),Mn(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),Sd(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),lr(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),Zu(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),Ed(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),Gw(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Be(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),Yu(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Kn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Pr(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),vt(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),gl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),xl(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),vm(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),km(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),B(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),_t(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Ud(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),gi(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),ul(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),$n(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),oa(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),Kw(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),la(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),Qu(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),Rd(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),Nm(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),Lr(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),Fd(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),pb(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),fb(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Dn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),ac(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Tm(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),$d(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Dd(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Em(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),kn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),Cm(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Od(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),zd(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Re(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),nc(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),Ai(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Ju(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),ln(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),Jt(this)};Z().prototype.square=function(){return this.throwIfDisposed(),st(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Bd(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),Pa(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Le?[this,e]:[this,...e];return On(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),_l(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),Mm(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Ne(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),Fm(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),di(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Oa(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),Ae(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),Ae(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),Ae(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),$m(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),Ze(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),jd(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Dm(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),ur(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),Sn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),Ue(this)};var hv={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,_l(Ae(n,"float32"),-1))}}},RJ={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=st(Ae(n,"float32")),a=Jt(ye(ke(1),r));return _t(ge(e,a))}}}},MJ={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Jt(ye(st(Ae(n,"float32")),1));return ge(e,r)}}}},FJ={kernelName:Sa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=dt(n.shape,r.shape);return{a:()=>{let s=e,i=Ot(n.shape,a);return i.length>0&&(s=Ne(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Ot(r.shape,a);return i.length>0&&(s=Ne(s,i)),H(s,r.shape)}}}},$J={kernelName:ls,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},DJ={kernelName:us,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},OJ={kernelName:mu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},zJ={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,Jt(ye(ke(1),st(Ae(n,"float32")))))}}},PJ={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Jt(se(ke(1),st(Ae(n,"float32"))));return ge(e,r)}}}},LJ={kernelName:ho,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=dt(n.shape,r.shape);return{a:()=>{let s=se(st(n),st(r)),i=B(e,ge(r,s)),o=Ot(n.shape,a);return o.length>0&&(i=Ne(i,o)),H(i,n.shape)},b:()=>{let s=se(st(n),st(r)),i=_t(B(e,ge(n,s))),o=Ot(r.shape,a);return o.length>0&&(i=Ne(i,o)),H(i,r.shape)}}}},WJ={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,se(st(Ae(n,"float32")),1))}}},BJ={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,ye(ke(1),st(Ae(n,"float32"))))}}};function VJ(e,t,n,r,a,s){let i=R(e,"dy","avgPool3dGrad"),o=R(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&M(Bt(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:c},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=$.runKernel(Eh,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var jJ=D({avgPool3dGrad_:VJ}),UJ={kernelName:Au,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>jJ(e,r,a,s,i,o)}}};function HJ(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");M(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel(Th,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var GJ=D({avgPoolGrad_:HJ}),qJ={kernelName:cs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>GJ(e,r,a,s,i)}}},XJ={kernelName:hs,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Be(e,a,!1,!0),b:()=>Be(r,e,!0,!1)}:!s&&i?{a:()=>Be(e,a,!1,!1),b:()=>Be(e,r,!0,!1)}:s&&!i?{a:()=>Be(a,e,!1,!0),b:()=>Be(r,e,!1,!1)}:{a:()=>Be(a,e,!0,!0),b:()=>Be(e,r,!0,!0)}}},KJ={kernelName:yu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>Ju(e,r,a)}}},ZJ={kernelName:Ex,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l1&&o.push(l);return{x:()=>Ne(e,o,!0)}}},YJ={kernelName:ds,gradFunc:e=>({x:()=>e.clone()})},JJ={kernelName:ps,gradFunc:e=>({x:()=>Ue(e)})},QJ={kernelName:Na,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>Sn(lr(za(r,a),mi(r,s)),e,Ue(e))}}},eQ={kernelName:gu,inputsToSave:["x"],gradFunc:hv.gradFunc},tQ={kernelName:po,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=sr(a,t[0].shape)[0],i=r.map(o=>o[s]);return ln(e,i,s).map(o=>()=>o)}},nQ={kernelName:fs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return M($a(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>um(r.shape,e,a,i,o,l),filter:()=>Lm(r,e,a.shape,i,o,l)}}},rQ={kernelName:ms,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>ia(e,a,s,i,o,1,l),filter:()=>Lm(e,r,a.shape,s,i,o,l)}}};function aQ(e,t,n,r,a){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),M(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),M(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(Fh,o,l)}var sQ=D({conv3DBackpropFilter_:aQ}),iQ={kernelName:xu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;M($a(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>Fw(i.shape,e,o,a,s),filter:()=>sQ(i,e,o.shape,a,s)}}},oQ={kernelName:As,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(_t(Od(Ae(n,"float32"))),e)}}},lQ={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(zd(Ae(n,"float32")),e)}}},uQ={kernelName:ys,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=Hw([a],r.rank),l=vd(e,a,s,!i);return o!=null&&(l=Ze(l,o)),l}}}},cQ={kernelName:gs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;M($a(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),M(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),M(Or(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&M(Bt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>ib(l.shape,e,c,a,s,r,i),filter:()=>sb(l,e,c.shape,a,s,r,i)}}},hQ={kernelName:wu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(Lh,s,n),filter:()=>$.runKernel(Wh,i,n)}}},dQ={kernelName:yo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(Vh,r)}}},pQ={kernelName:go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=B(Xn(_t(st(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,r)}}},fQ={kernelName:ws,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},mQ={kernelName:wo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},AQ={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Xn(n))}}},yQ={kernelName:bs,gradFunc:e=>({x:()=>Ue(e)})},gQ={kernelName:_s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=dt(n.shape,r.shape);return{a:()=>{let s=ge(e,Ae(r,"float32")),i=Ot(n.shape,a);return i.length>0?H(Ne(s,i),n.shape):s},b:()=>{let s=B(e,Ae(n,"float32")),i=Ot(r.shape,a);i.length>0&&(s=H(Ne(s,i),r.shape));let o=st(r);return _t(ge(s,Ae(o,"float32")))}}}},xQ={kernelName:vs,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?ke(1):o,c=Ot(s.shape,a.shape),u=[];if(s.rank===1){for(let f=0;fs.rank===1?H(B(B(e,Oa(H(p,[1,1,1,s.shape[0]]),u)),l),a.shape):H(B(B(e,p),l),a.shape),mean:()=>{let f=B(B(p,ke(-1)),d);return s.rank===1&&(f=Ne(f,c)),H(f,s.shape)},variance:()=>{let f=B(B(m,h),d);return s.rank===1&&(f=Ne(f,c)),H(f,s.shape)},scale:()=>{let f=B(h,p),A=B(e,f);return s.rank===1&&(A=Ne(A,c)),H(A,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Ne(f,c)),H(f,s.shape)}}}},wQ={kernelName:vo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=sr(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,c=o.slice(0,i),u=c.length,h=o.slice(s,o.length).slice(1),d=h.length,p=dv(0,u),m=dv(u+1,u+1+d),f=pv([c,[l],h]),A=H(e,f),y=H(a,[l]),g=pv([[u],p,m]),x=Ze(A,g),v=Dm(x,y,r.shape[i]),w=wm(g);return v=Ze(v,w),v},indices:()=>a}}};function dv(e,t){let n=[];for(let r=e;r{let[n,r]=t;return{a:()=>Ue(n),b:()=>Ue(r)}}},_Q={kernelName:Is,gradFunc:e=>({x:()=>Ae(e,"float32")})},vQ={kernelName:So,gradFunc:e=>({x:()=>Ue(e)})},kQ={kernelName:No,gradFunc:e=>({x:()=>Ue(e)})},IQ={kernelName:To,gradFunc:e=>({x:()=>Ue(e)})},SQ={kernelName:Ss,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=or(r,0);return{x:()=>Sn(s,e,B(e,a))}}},NQ={kernelName:Ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,se(n,1))}}},TQ={kernelName:Ns,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,Ae(n,"float32"))}}},EQ={kernelName:Cx,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=Xn(r);return ye(e,B(Ne(e,a,s),i))}}}};function CQ(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(qh,o,l)}var RQ=D({localResponseNormalizationBackprop_:CQ}),MQ={kernelName:ku,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>RQ(r,a,e,s,i,o,l)}}};function fv(e,t,n,r){return t.rankB(e,Ae(Da(n,t),e.dtype))}}var mv={kernelName:Ts,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=sr(a,s.shape),l=fv(e,i,s,o);return{x:()=>l.x()}}},FQ={kernelName:Es,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>B(e,Ae(za(n,r),"float32")),b:()=>B(e,Ae(Id(n,r),"float32"))}}};function $Q(e,t,n,r,a,s,i){let o=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),c=R(n,"output","maxPool3dGrad"),u=o,h=l,d=c,p=!1;l.rank===4&&(p=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=H(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),M(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),M(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&M(Bt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:u,input:h,output:d},f={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=$.runKernel(Kh,m,f);return p?H(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var DQ=D({maxPool3dGrad_:$Q}),OQ={kernelName:Iu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>DQ(e,r,a,s,i,o,l)}}};function zQ(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),c=R(n,"output","maxPoolGrad");M(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),M(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&M(Bt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(Xh,u,h)}var PQ=D({maxPoolGrad_:zQ}),LQ={kernelName:Cs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>PQ(e,r,a,s,i,o)}}},WQ={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=sr(a,r.shape),i=Uw(r.shape,s)[1],o=Nt(i);return{x:()=>{let l=r.shape.slice();s.forEach(u=>{l[u]=1});let c=H(e,l);return ge(B(c,Fn(r.shape,"float32")),o)}}}},BQ={kernelName:Ms,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=sr(a,s.shape),l=fv(e,i,s,o);return{x:()=>l.x()}}},VQ={kernelName:Fs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>B(e,Ae(mi(n,r),"float32")),b:()=>B(e,Ae(or(n,r),"float32"))}}},jQ={kernelName:$s,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},UQ={kernelName:Fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=dt(n.shape,r.shape);return{a:()=>{let s=Ot(n.shape,a);return s.length>0?H(Ne(e,s),n.shape):e},b:()=>{let s=B(e,_t(yl(ge(n,r)))),i=Ot(r.shape,a);return i.length>0?H(Ne(s,i),r.shape):s}}}},HQ={kernelName:Ds,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=dt(n.shape,r.shape);return{a:()=>{let s=B(e,Ae(r,"float32")),i=Ot(n.shape,a);return i.length>0?H(Ne(s,i),n.shape):s},b:()=>{let s=B(e,Ae(n,"float32")),i=Ot(r.shape,a);return i.length>0?H(Ne(s,i),r.shape):s}}}},GQ={kernelName:$o,gradFunc:e=>({x:()=>_t(e)})},qQ={kernelName:Os,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Et(n.shape,"float32")}}},XQ={kernelName:Lo,gradFunc:e=>({x:()=>Ue(e)})},KQ={kernelName:Wo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return ur(e,r).map(a=>()=>a)}},Av={kernelName:zs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},ZQ={kernelName:Ps,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=dt(s.shape,i.shape);return{a:()=>{let l=Ae(i,"float32"),c=B(e,B(l,la(s,ye(l,ke(1))))),u=Ot(s.shape,o);return u.length>0&&(c=Ne(c,u)),H(c,s.shape)},b:()=>{let l=or(s,0),c=Sn(l,Mn(s),Ue(s)),u=B(e,B(a,c)),h=Ot(i.shape,o);return h.length>0&&(u=Ne(u,h)),H(u,i.shape)}}}},YQ={kernelName:Ls,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=or(n,0);return{x:()=>Sn(a,e,B(e,r)),alpha:()=>{let s=Sn(a,Ue(e),B(e,n)),i=Ot(r.shape,e.shape);return i.length>0&&(s=Ne(s,i)),H(s,r.shape)}}}},JQ={kernelName:xs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=dt(n.shape,r.shape);return{a:()=>{let s=ge(e,Ae(r,"float32")),i=Ot(n.shape,a);return i.length>0?H(Ne(s,i),n.shape):s},b:()=>{let s=B(e,Ae(n,"float32")),i=Ot(r.shape,a);i.length>0&&(s=H(Ne(s,i),r.shape));let o=st(r);return _t(ge(s,Ae(o,"float32")))}}}},QQ={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,_t(st(n)))}}},eee={kernelName:Vs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=B(mi(n,6),_l(n));return{x:()=>B(e,Ae(r,"float32"))}}},tee={kernelName:Ws,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Ae(_l(n),"float32"))}}},nee={kernelName:jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},ree={kernelName:Bs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(ed,a,n)}}},aee={kernelName:Nu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(Qh,a,n)}}},see={kernelName:js,gradFunc:(e,t,n)=>{let{dims:r}=n,a=sr(r,e.shape);return{x:()=>Dn(e,a)}}},iee={kernelName:Us,gradFunc:e=>({x:()=>Ue(e)})},oee={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_t(ge(e,B(la(n,1.5),2)))}}},lee={kernelName:Ho,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>Ae(Ue(n),"float32"),t:()=>B(e,Ae(n,e.dtype)),e:()=>B(e,Ae(Zu(n),e.dtype))}}},uee={kernelName:Go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=or(n,ke(0)),a=ke(gb),s=ke(xb),i=B(e,s),o=B(B(e,a),Xn(Ae(n,"float32")));return Sn(r,i,o)}}}},cee={kernelName:qs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,ye(ke(1),n)))}}},hee={kernelName:Ko,gradFunc:e=>({x:()=>Ue(e)})},dee={kernelName:Gs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(qu(Ae(n,"float32")),e)}}},pee={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(_d(Ae(n,"float32")),e)}}},fee={kernelName:qo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=mw(r,a,s),c=[];for(let u=0;uoa(e,c)}}},mee={kernelName:Zs,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=B(e,r);return{logits:()=>ye(i,B(Ne(i,[a],s),r))}}},Aee={kernelName:Zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,kn(n))}}},yv={kernelName:Tu,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Gu(e,r,a)}}},gv={kernelName:Yo,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>ot(e,r)}}},yee={kernelName:Xs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,B(Jt(Ae(n,"float32")),2))}}},gee={kernelName:Eu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(Ae(n,"float32"),2))}}},xee={kernelName:Ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ke(2);return{a:()=>B(e,B(a,ye(n,r))),b:()=>B(e,B(a,ye(r,n)))}}},wee={kernelName:Ea,gradFunc:e=>({x:()=>Ue(e)})},bee={kernelName:Js,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=dt(n.shape,r.shape);return{a:()=>{let s=e,i=Ot(n.shape,a);return i.length>0&&(s=Ne(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Ot(r.shape,a);return i.length>0&&(s=Ne(s,i)),H(_t(s),r.shape)}}}},_ee={kernelName:Ks,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;sr(s,r.shape).forEach(l=>{a[l]=1});let i=H(e,a),o=B(i,Fn(r.shape,"float32"));return{x:()=>o}}},vee={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,st(qu(n)))}}},kee={kernelName:ei,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(ye(ke(1),st(n)),e)}}},Iee={kernelName:Ta,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=Ue(r);if(r.rank===1)for(let i=0;i{let r=n,{perm:a}=r,s=wm(a);return{x:()=>Ze(e,s)}}},Nee={kernelName:el,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>On(e,a)}}},Eee={kernelName:Cu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Tee(e,n)}}};function Tee(e,t){let n=Pr(t,Ue(t)),r=fi(e,n),a=za(t,ke(0,"int32")),s=r.rank-a.rank;for(let o=0;o({x:()=>Ue(e)})},Ree=[hv,RJ,MJ,FJ,$J,DJ,OJ,zJ,PJ,LJ,WJ,BJ,UJ,qJ,XJ,KJ,ZJ,YJ,JJ,QJ,eQ,tQ,rQ,nQ,iQ,oQ,lQ,uQ,cQ,hQ,JQ,dQ,pQ,fQ,mQ,AQ,gQ,yQ,xQ,wQ,bQ,_Q,vQ,kQ,IQ,SQ,NQ,TQ,EQ,MQ,mv,mv,FQ,OQ,LQ,WQ,BQ,VQ,jQ,UQ,HQ,GQ,qQ,XQ,KQ,Av,Av,ZQ,YQ,QQ,eee,tee,nee,ree,aee,see,iee,oee,lee,uee,cee,hee,dee,pee,fee,mee,Aee,yv,yv,gv,gv,yee,xee,gee,wee,bee,_ee,vee,kee,Iee,See,Nee,Eee,Cee];for(let e of Ree)Rx(e);var xv={};Me(xv,{maxNorm:()=>Mee,minMaxNorm:()=>Dee,nonNeg:()=>$ee,unitNorm:()=>Fee});var EA;function zt(){return EA==null&&(EA=_w().epsilon()),EA}function _r(){return"channelsLast"}var da=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,da.prototype)}},vr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,vr.prototype)}},W=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,W.prototype)}},De=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,De.prototype)}},wv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,wv.prototype)}};function Ei(e,t){if(Array.isArray(e)){let n=[];for(let r=0;rn.toUpperCase())}var cr={};function CA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function RA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>RA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:RA(r))}}}function kc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in cr)i=cr[s];else if(i=t[s],i==null)throw new W(`Unknown ${r}: ${e}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. -2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new B(`${r}: Improper config format: ${JSON.stringify(s)}. -'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in Ar?[o,l]=Ar.className:i in t&&([o,l]=t[i]),o==null)throw new B(`Unknown ${r}: ${i}. This may be due to one of the following reasons: +2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new W(`${r}: Improper config format: ${JSON.stringify(s)}. +'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in cr?[o,l]=cr.className:i in t&&([o,l]=t[i]),o==null)throw new W(`Unknown ${r}: ${i}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. -2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let p of Object.keys(Ar))c[p]=Ar[p];for(let p of Object.keys(n))c[p]=n[p];let u=s.config;u.customObjects=c;let h=Object.assign({},Ar);for(let p of Object.keys(n))Ar[p]=n[p];VA(s.config);let d=l(o,s.config,n,a);return Ar=Object.assign({},h),d}else{let c=Object.assign({},Ar);for(let h of Object.keys(n))Ar[h]=n[h];let u=new o(s.config);return Ar=Object.assign({},c),u}}}function ste(e,t){return et?1:0}function Op(e,t){return-1*ste(e,t)}function Za(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function ite(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function zi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function jA(e,t,n=0,r=Infinity){return Kr(n>=0),Kr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function qt(e,t){Array.isArray(e)?(_.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>qt(n,`element ${r+1} of ${t}`))):_.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Uv(e)}.`)}function Uv(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Uv(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function ote(e,t){let n=_.now(),r;return(...a)=>{let s=_.now();return s-nen(Te(z(e,e),t,!0)))}var Cc=class extends re.Serializable{getConfig(){return{}}},HA=class extends Cc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=UA(e,this.axis),n=En(t,0,this.maxValue);return z(e,Ae(n,se(Wt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};HA.className="MaxNorm";re.registerClass(HA);var GA=class extends Cc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>Ae(e,se(Wt(),UA(e,this.axis))))}getConfig(){return{axis:this.axis}}};GA.className="UnitNorm";re.registerClass(GA);var qA=class extends Cc{apply(e){return Hr(e)}};qA.className="NonNeg";re.registerClass(qA);var XA=class extends Cc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=UA(e,this.axis),n=se(z(this.rate,En(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,Ae(n,se(Wt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};XA.className="MinMaxNorm";re.registerClass(XA);var Gv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Bt(e){return BA(e)}function qv(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Vt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Gv?Gv[e]:e,config:{}};return qv(t)}else return e instanceof Cc?e:qv(e)}function tte(e){return new HA(e)}function nte(e){return new GA(e)}function rte(){return new qA}function ate(e){return new XA(e)}var Xv={};Me(Xv,{constant:()=>cte,glorotNormal:()=>yte,glorotUniform:()=>Ate,heNormal:()=>gte,heUniform:()=>xte,identity:()=>fte,leCunNormal:()=>bte,leCunUniform:()=>wte,ones:()=>ute,orthogonal:()=>_te,randomNormal:()=>dte,randomUniform:()=>hte,truncatedNormal:()=>pte,varianceScaling:()=>mte,zeros:()=>lte});var vte=["channelsFirst","channelsLast"],kte=["nearest","bilinear"],Ite=["valid","same","causal"],Ste=["max","avg"],Nte=["sum","mul","concat","ave"],Hl=new Map;function Ct(e){zi(vte,"DataFormat",e)}function Tte(e){zi(kte,"InterpolationFormat",e)}function ar(e){zi(Ite,"PaddingMode",e)}function Kv(e){zi(Ste,"PoolMode",e)}var Rc=[],Zv="/";function Pi(e,t){Rc.push(e);try{let n=t();return Rc.pop(),n}catch(n){throw Rc.pop(),n}}function Ete(){return Rc.length===0?"":Rc.join(Zv)+Zv}function Jv(e){if(!Yv(e))throw new Error("Not a valid tensor name: '"+e+"'");return Ete()+e}function Qv(e){if(!Yv(e))throw new Error("Not a valid tensor name: '"+e+"'");Hl.has(e)||Hl.set(e,0);let t=Hl.get(e);if(Hl.set(e,Hl.get(e)+1),t>0){let n=`${e}_${t}`;return Hl.set(n,1),n}else return e}var Cte=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Yv(e){return!!e.match(Cte)}function Rte(e){return e===parseInt(e.toString(),10)}function Ya(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Fc(e,1);return KA(n,[1,t,1])})}function Fte(e){let t=[Ya(e.shape)];return e.reshape(t)}function $te(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ya(e.shape,1)];return e.reshape(t)}function Li(e,t,n){return P(()=>{switch(e.rank){case 1:return jd(e,t,n);case 2:return Vm(e,[t,0],[n,e.shape[1]]);case 3:return Ud(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return ic(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function ZA(e,t,n){return P(()=>{switch(e.rank){case 1:return jd(e,t,n);case 2:return Vm(e,[0,t],[e.shape[0],n]);case 3:return Ud(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return ic(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function zp(e,t,n,r){return P(()=>{switch(e.rank){case 1:return jd(e,t,n);case 2:switch(r){case 1:return Li(e,t,n);case 2:return ZA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return Li(e,t,n);case 2:return Ud(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return ZA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return Li(e,t,n);case 2:return ic(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return ic(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return ZA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function YA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ot(e,t)}function t6(e,t){switch(e.rank){case 1:return Jb([e,t]);case 2:return bl([e,t],0);case 3:return Qb([e,t],0);case 4:return ew([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function KA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Va(e,t)}function Pp(e,t=0,n=1,r,a){return gw(e,t,n,r,a)}function Zr(e,t,n,r){if(e.rank<2||t.rank<2)throw new De(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new De(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return Ha.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?JA(e.rank,r,Er()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(u).reshape([l,-1]);let h=[...a,...c],d=!1,p=!1;return Ha.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?JA(e.rank,r,Er()):null,activation:n}).reshape(h)}}function n6(e,t,n){return P(()=>(Array.isArray(t)?t=sn(t,"int32"):t=t.toInt(),bi(e,t,n)))}function $c(e){return z(e,e)}function JA(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function Mr(e,t,n){return P(()=>(n==null&&(n=Er()),Ct(n),e.add(JA(e.rank,t,n))))}function Dte(e,t=1){if(t!==1)throw new De(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return _l(e)}function Ote(e){return P(()=>Ae(e,zt(e).add(1)))}function r6(e,t,n,r){return P(()=>Iw(e,t,n,r))}function zte(e){return P(()=>{let t=se(.5,z(.2,e));return En(t,0,1)})}function Dc(e,t,n=!1){return n?e():t()}var Pte=["fanIn","fanOut","fanAvg"],Lte=["normal","uniform","truncatedNormal"];function Wte(e){zi(Pte,"FanMode",e)}function Bte(e){zi(Lte,"Distribution",e)}var yr=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},QA=class extends yr{apply(e,t){return Rt(e,t)}};QA.className="Zeros";re.registerClass(QA);var Lp=class extends yr{apply(e,t){return Pn(e,t)}};Lp.className="Ones";re.registerClass(Lp);var ey=class extends yr{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return P(()=>z(ve(this.value),Pn(e,t)))}getConfig(){return{value:this.value}}};ey.className="Constant";re.registerClass(ey);var ty=class extends yr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Sl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};ty.className="RandomUniform";re.registerClass(ty);var ny=class extends yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`randomNormal does not support dType ${t}.`);return Pp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ny.className="RandomNormal";re.registerClass(ny);var ry=class extends yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`truncatedNormal does not support dType ${t}.`);return qd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ry.className="TruncatedNormal";re.registerClass(ry);var ay=class extends yr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return P(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,Nm(e[0]))})}getConfig(){return{gain:this.gain}}};ay.className="Identity";re.registerClass(ay);function Vte(e,t="channelsLast"){let n,r;if(Ct(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Ya(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Ya(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Ya(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var $n=class extends yr{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Wte(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Bte(this.distribution),this.seed=e.seed}apply(e,t){let n=Vte(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`${this.getClassName()} does not support dType ${t}.`);return qd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Sl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};$n.className="VarianceScaling";re.registerClass($n);var Wp=class extends $n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Wp.className="GlorotUniform";re.registerClass(Wp);var Bp=class extends $n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Bp.className="GlorotNormal";re.registerClass(Bp);var Vp=class extends $n{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Vp.className="HeNormal";re.registerClass(Vp);var jp=class extends $n{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};jp.className="HeUniform";re.registerClass(jp);var Up=class extends $n{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Up.className="LeCunNormal";re.registerClass(Up);var Hp=class extends $n{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Hp.className="LeCunNormal";re.registerClass(Hp);var sy=class extends yr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new De("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return P(()=>{if(e.length<2)throw new De("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Pp(n,0,1,"float32"),a=Pw.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),z(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};sy.className="Orthogonal";re.registerClass(sy);var a6={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function s6(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function St(e){return BA(e)}function gt(e){if(typeof e=="string"){let t=e in a6?a6[e]:e;if(t==="GlorotNormal")return new Bp;if(t==="GlorotUniform")return new Wp;if(t==="HeNormal")return new Vp;if(t==="HeUniform")return new jp;if(t==="LeCunNormal")return new Up;if(t==="LeCunUniform")return new Hp;{let n={};return n.className=t,n.config={},s6(n)}}else return e instanceof yr?e:s6(e)}function lte(){return new QA}function ute(){return new Lp}function cte(e){return new ey(e)}function hte(e){return new ty(e)}function dte(e){return new ny(e)}function pte(e){return new ry(e)}function fte(e){return new ay(e)}function mte(e){return new $n(e)}function Ate(e){return new Wp(e)}function yte(e){return new Bp(e)}function gte(e){return new Vp(e)}function xte(e){return new jp(e)}function bte(e){return new Up(e)}function wte(e){return new Hp(e)}function _te(e){return new sy(e)}var i6={};Me(i6,{Layer:()=>qe,RNN:()=>Yr,RNNCell:()=>Oc,activation:()=>sne,add:()=>fne,alphaDropout:()=>Yne,average:()=>mne,averagePooling1d:()=>iy,averagePooling2d:()=>oy,averagePooling3d:()=>ly,avgPool1d:()=>kne,avgPool2d:()=>Sne,avgPool3d:()=>Tne,avgPooling1d:()=>Ine,avgPooling2d:()=>Nne,avgPooling3d:()=>Ene,batchNormalization:()=>wne,bidirectional:()=>jne,concatenate:()=>Ane,conv1d:()=>Zte,conv2d:()=>Yte,conv2dTranspose:()=>Jte,conv3d:()=>Qte,conv3dTranspose:()=>ene,convLstm2d:()=>Lne,convLstm2dCell:()=>Wne,cropping2D:()=>nne,dense:()=>ine,depthwiseConv2d:()=>ane,dot:()=>bne,dropout:()=>one,elu:()=>Ute,embedding:()=>pne,flatten:()=>une,gaussianDropout:()=>Zne,gaussianNoise:()=>Kne,globalAveragePooling1d:()=>Cne,globalAveragePooling2d:()=>Rne,globalMaxPool1d:()=>Hne,globalMaxPool2d:()=>Gne,globalMaxPooling1d:()=>l6,globalMaxPooling2d:()=>u6,gru:()=>Fne,gruCell:()=>$ne,input:()=>o6,inputLayer:()=>jte,layerNormalization:()=>_ne,leakyReLU:()=>Gte,lstm:()=>Dne,lstmCell:()=>One,masking:()=>Jne,maxPool1d:()=>qne,maxPool2d:()=>Xne,maxPooling1d:()=>c6,maxPooling2d:()=>h6,maxPooling3d:()=>Mne,maximum:()=>yne,minimum:()=>gne,multiply:()=>xne,permute:()=>dne,prelu:()=>qte,reLU:()=>Hte,repeatVector:()=>cne,reshape:()=>hne,rnn:()=>Bne,separableConv2d:()=>tne,simpleRNN:()=>zne,simpleRNNCell:()=>Pne,softmax:()=>Xte,spatialDropout1d:()=>lne,stackedRNNCells:()=>Vne,thresholdedReLU:()=>Kte,timeDistributed:()=>Une,upSampling2d:()=>rne,zeroPadding2d:()=>vne});var Qne=0;function d6(){return Qne++}var Gp={};function qp(e=""){return e in Gp||(Gp[e]=0),Gp[e]+=1,e+Gp[e].toString()}function uy(e){return Array.isArray(e)&&Array.isArray(e[0])}function Xp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function at(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Kp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var p6="Variable",f6=class{constructor(e,t="float32",n=p6,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=d6(),n=n==null?p6:n,this.originalName=Jv(n),this.name=Qv(this.originalName),this.trainable_=r,this.constraint=a,this.val=bw(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),ere(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function ere(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function cy(e){return e.map(t=>t.read())}function hy(e){e.forEach(t=>{t[0].write(t[1])})}var Ft=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Fr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=d6(),s!=null&&(this.originalName=Jv(s),this.name=Qv(this.originalName)),this.rank=t.length}},tre=0,Zp=class{constructor(e,t){this.callArgs=t,this.id=tre++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},nre=0,qe=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=nre++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ga(n)+"_"+qp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Cr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Fn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Fn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ya(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ya(`Layer ${this.name} is not connected, no input to return.`);return Fn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ya(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ya(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Fn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=At(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=At(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;na.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of At(e))s.push(i.shape);this.build(Fn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=At(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Fn(o),this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=rre(e),i=this.computeOutputShape(s),o,l=are(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new Fr(l,c,this,At(e),t,this.name,u)):o=new Fr(l,i,this,At(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ya(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ya(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Cr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Kp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return cy(e?this.trainableWeights:this.weights)}setWeights(e){P(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=cy(t);for(let a=0;aa.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=At(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=At(e);t=At(t),n=At(n),r=At(r),a=Xp(a),s=Xp(s);let l=[],c=[],u=[];for(let h of o)l.push(h.sourceLayer),c.push(h.nodeIndex),u.push(h.tensorIndex);new Zp({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;he.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function rre(e){e=At(e);let t=[];for(let n of e)t.push(n.shape);return Fn(t)}function are(e){return"float32"}function m6(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s0){let a=await Promise.all(t);for(let s=0;sse(this.totals[r],z(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:P(()=>{let r=z(Ae(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Ht(t[n])}))}},b6=class extends Xl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;inew w6(n,t))}var gr=class{constructor(){}static registerCallbackConstructor(e,t){_.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),gr.checkForDuplicate(t),gr.constructors[e]==null&&(gr.constructors[e]=[]),gr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in gr.constructors)gr.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){gr.constructors={}}static createCallbacks(e){let t=[];for(let n in gr.constructors){let r=+n;e>=r&&t.push(...gr.constructors[r])}return t.map(n=>new n)}};gr.constructors={};function v6(e,t,n,r,a,s,i,o,l){let c=new b6,u=[new ire,...gr.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let h=new x6(u);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:c}}function $r(e,t={},n=!1){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Yp(e,t){return P(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Te($c(e),t,!0),r=Qu(n.shape,Wt()),a=en(Ur(n,r));return Ae(e,a)})}function Wi(e,t){return P(()=>It($c(ye(t,e)),-1))}function Jp(e,t){return P(()=>It(zt(ye(t,e)),-1))}function Kl(e,t){return P(()=>{let n=ye(e,t),r=En(zt(e),Wt(),Number.MAX_VALUE),a=zt(Ae(n,r));return z(100,It(a,-1))})}function ore(e,t){return P(()=>{let n=En(t,Wt(),Number.MAX_VALUE),r=zn(se(1,n)),a=En(e,Wt(),Number.MAX_VALUE),s=zn(se(1,a));return It($c(ye(r,s)),-1)})}function lre(e,t){return P(()=>{let n=Ur(0,ye(1,z(e,t)));return It($c(n),-1)})}function ure(e,t){return P(()=>{let n=Ur(0,ye(1,z(e,t)));return It(n,-1)})}function cre(e,t){return P(()=>{let n=Te(z(e,t),-1),r=Rn(z(ye(1,e),t),-1);return Ur(0,se(1,ye(r,n)))})}function hre(e,t){return P(()=>{let n=Math.log(2),r=ye(t,e),a=ye(se(r,_i(z(-2,r))),n);return It(a,-1)})}function zc(e,t,n=!1){return P(()=>{if(n)t=oc(t);else{let r=Te(t,t.shape.length-1,!0);t=Ae(t,r)}return t=En(t,Wt(),1-Wt()),kt(Te(z(e.toFloat(),zn(t)),t.shape.length-1))})}function Qp(e,t,n=!1){return P(()=>{let r=vl(Fte(e)).toInt();t=En(t,Wt(),1-Wt());let a=t.shape,s=ml(r,a[a.length-1]).reshape(a);return zc(s,t,n)})}function dre(e,t){if(!_.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return P(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function e0(e,t){return P(()=>{let n;return n=En(t,Wt(),1-Wt()),n=zn(Ae(n,ye(1,n))),It(dre(e,n),-1)})}function pre(e,t){return P(()=>{let n=En(e,Wt(),1),r=En(t,Wt(),1);return Te(z(e,zn(Ae(n,r))),-1)})}function fre(e,t){return P(()=>{let n=zn(se(Wt(),t));return It(ye(t,z(e,n)),-1)})}function dy(e,t){return P(()=>{let n=Yp(e,-1),r=Yp(t,-1),a=z(n,r);return kt(Te(a,-1))})}var t0={meanSquaredError:Wi,meanAbsoluteError:Jp,meanAbsolutePercentageError:Kl,meanSquaredLogarithmicError:ore,squaredHinge:lre,hinge:ure,categoricalHinge:cre,logcosh:hre,categoricalCrossentropy:zc,sparseCategoricalCrossentropy:Qp,binaryCrossentropy:e0,kullbackLeiblerDivergence:pre,poisson:fre,cosineProximity:dy};function py(e){if(typeof e=="string"){if(e in t0)return t0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function fy(e,t){return P(()=>{let n=z(.5,Ln(t)),r=Mc(pr(t,n),e.dtype);return It(Ba(e,r),-1)})}function my(e,t){return P(()=>Mc(Ba(Ai(e,-1),Ai(t,-1)),"float32"))}function k6(e,t){return P(()=>fr(e.equal(1),t.equal(1)).sum().cast("float32"))}function mre(e,t){return P(()=>fr(e.equal(1),t.equal(0)).sum().cast("float32"))}function Are(e,t){return P(()=>fr(e.equal(0),t.equal(1)).sum().cast("float32"))}function I6(e,t){return P(()=>{let n=k6(e,t),r=Are(e,t),a=n.add(r);return Cn(pr(a,0),n.div(a),0).cast("float32")})}function yre(e,t){return P(()=>{let n=k6(e,t),r=mre(e,t),a=n.add(r);return Cn(pr(a,0),n.div(a),0).cast("float32")})}function S6(e,t){return e0(e,t)}function N6(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Ba(e,t).asType("float32")}var gre=Wi,xre=Wi,bre=Jp,wre=Jp,_re=Kl,vre=Kl,Ay=zc,kre=dy,T6=Qp,n0={binaryAccuracy:fy,categoricalAccuracy:my,precision:I6,categoricalCrossentropy:Ay,sparseCategoricalCrossentropy:T6,mse:gre,MSE:xre,mae:bre,MAE:wre,mape:_re,MAPE:vre,cosine:kre};function Ire(e){if(typeof e=="string"&&e in n0)return n0[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function r0(e){if(Kr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(t0))if(t0[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(n0))if(n0[n]===e){t=n;break}return t!==void 0?t:e.name}}function Sre(e){let t={Adagrad:()=>Si.adagrad(.01),Adadelta:()=>Si.adadelta(1,.95,Wt()),Adam:()=>Si.adam(.001,.9,.999,Wt()),Adamax:()=>Si.adamax(.002,.9,.999,Wt(),0),RMSProp:()=>Si.rmsprop(.001,.9,0,Wt()),SGD:()=>Si.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var E6=1*1024*1024;function C6(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!yy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>E6&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${E6}.`)}}function yy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!yy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!yy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Rre(e,t,n,r=console.log){let a=Tre(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!a){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}r("_".repeat(t)),a0(s,n,r),r("=".repeat(t));let o=e.layers;for(let u=0;u1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function a0(e,t,n=console.log){let r="";for(let a=0;a0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function Ere(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];a0(i,t,n)}function Cre(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(u){a="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let h=0;hm.name),l=[],c=t.names();for(let m of o)c.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),h,d;if(by[u]==null){let m=Fre(i,t);h=m.sorted,d=m.recipientCounts,by[u]=h,M6[u]=d}h=by[u],d={},a||Object.assign(d,M6[u]);let p=new Bi(t);for(let m=0;mr.maxNumTensors&&(r.maxNumTensors=C),C0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=F6(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=F6(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(c=>r[l].add(c))}}return{sorted:n,recipientCounts:Dre(r)}}function Dre(e){let t={};for(let n in e)t[n]=e[n].size;return t}function F6(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)a[c.name]==null&&(a[c.name]=new Set),a[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:r,recipientMap:a}}function $re(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;ry.name)}`);Za(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;Kr(x===0,"input layer has >1 nodes"),Kr(v===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,x,v,b,w)=>{(v==null||b==null||w==null)&&(v=y.sourceLayer,b=y.nodeIndex,w=y.tensorIndex);let k=v.inboundNodes[b];if(x.indexOf(k)!==-1)throw new Cr(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(g.indexOf(k)!==-1)return;this.containerNodes.add(Jr.nodeKey(v,b)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(k)===-1&&x.push(k);let N=k.inboundLayers.length;for(let C=0;C=0;)x.splice(x.indexOf(k),1);i.push(k)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],x=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,x),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let v=0;vparseInt(y,10)).sort(Op);this.layers=[];for(let y of p){let g=d[y];g.sort((x,v)=>{let b=s[x.id],w=s[v.id];return bw?1:0});for(let x of g)x instanceof Jr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(Op);let m=this.inputs.slice(),f=[];for(let y of p)for(let g of h[y]){let x=g.outboundLayer;if(x!=null){for(let v of g.inputTensors)if(m.indexOf(v)===-1)throw new Cr(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of g.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(x=>x===y).length;if(g!==1)throw new Cr(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Zp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${r} weights are not set: ${s}`)}hy(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${xy}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=gy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return P(()=>{e=At(e);let n=new Bi;for(let r=0;r{e=At(e);let n;return t==null?n=Di(null,e.length):n=At(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Xp(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;iparseInt(i,10)).sort(Op);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(c.id)!==-1)continue;let u=[];for(let m=0;mparseInt(o,10)).sort(Op);for(let o of r){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,h=c.inputTensors,d=c.outputTensors,p=new Array;for(let m of h)m.id in n&&p.push(n[m.id]);if(p.length===h.length){let m={},f,A,y,g;if(c.callArgs!=null&&(m=c.callArgs),p.length===1){let[x,v]=p[0];m.mask==null&&(m.mask=v),y=At(u.call(x,m)),g=At(u.computeMask(x,v)),f=[x],A=[v]}else f=p.map(x=>x[0]),A=p.map(x=>x[1]),m.mask==null&&(m.mask=A),y=At(u.call(f,m)),g=At(u.computeMask(f,A));if(u.activityRegularizer)throw new De("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x{let e=[];for(let t of this.layers)for(let n=0;n0){let m=[];for(let f=0;f0&&f.apply(Fn(y),g)}function l(f){let A=f.name,y=$r(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,f.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let c=t.name,u=t.layers;for(let f of u)l(f);for(;!ite(s);)for(let f of u){let A=a[f.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let f of p){let A=f[0],y=f[1],g=f[2];Kr(A in a);let x=a[A].inboundNodes[y].outputTensors;h.push(x[g])}let m=t.outputLayers;for(let f of m){let A=f[0],y=f[1],g=f[2];Kr(A in a);let x=a[A].inboundNodes[y].outputTensors;d.push(x[g])}return new e({inputs:h,outputs:d,name:c})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){P(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Ore(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function $6(e,t){return Ore(e,t,"classWeight")}async function D6(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=P(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());we(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),sn(i,"float32")}else return null}function zre(e,t){return z(e,t)}var Pre=32;function z6(e,t){let n,r,a=t;n=a.xs,r=a.ys,_.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=O6("input",e.inputNames,n),i=O6("output",e.outputNames,r),o=s[0].shape[0];_.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),_.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function O6(e,t,n){if(n instanceof Pe)return[n];if(Array.isArray(n))return _.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function Lre(e){if(e.length===3)throw new De("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Bre(e,t,n){let r=n.batchesPerEpoch!=null;if(_.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),_.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),_.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),_.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),_.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(P6(n.validationData))_.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Lre(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;a?c=l.slice().concat(l.map(A=>"val_"+A)):c=l.slice();let u=_6(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=v6(u,h,n.epochs,null,null,Wre(t,n),null,a,c);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m=n.batchesPerEpoch:x.done){if(a){let v;P6(n.validationData)?v=At(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=At(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Pre:n.validationBatchSize,verbose:0}));for(let b=0;b0)throw new De("Verbose mode is not implemented yet.");_.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=Vre(t)?t:await t.iterator(),o=0,l=0;for(;r?l{if(c.value){let{xs:u,ys:h}=z6(e,c.value),d=u.concat(h),p=P(()=>a(d));if(we(d),l===0)for(let f=0;fse(s[f],z(m,A))),l>0&&we(y)}we(p),o+=m,++l}return s}),c.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Wc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>Li(r,t,n-t)):Li(e,t,n-t)}function _y(e,t){return P(()=>e==null?null:Array.isArray(e)?e.map(n=>_y(n,t)):n6(e,t.dtype==="int32"?t:t.toInt()))}function vy(e,t){let n=[],r=0,a=null;for(;r=e&&(a=e),n.push([r,a]),r=a;return n}async function Ure(e,t,n,r,a,s,i,o,l,c,u,h,d,p,m){a==null&&(a=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let f=!1;if(l!=null&&c!=null&&(f=!0),m!=null&&(f=!0,p==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=Rr(0,A)),i==null&&(i=1);let{callbackList:g,history:x}=v6(o,i,s,d,A,p,a,f,h);g.setModel(e),e.history=x,await g.onTrainBegin(),e.stopTraining_=!1;for(let v=d;v{let F=k[N][0],O=k[N][1],L=Li(w,F,O-F);C.batch=N,C.size=O-F;let V=_y(n,L),j=t(V);for(let U=0;U0){if(m=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new De("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let w=!0,k=await e.standardizeUserData(i,o,null,null,w,h);l=k[0],c=k[1],f=l.concat(c)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){m=!0;let w=Math.floor(a[0].shape[0]*(1-r.validationSplit)),k=a[0].shape[0];l=Wc(a,w,k),a=Wc(a,0,w),c=Wc(s,w,k),s=Wc(s,0,w),f=l.concat(c)}else r.validationSteps!=null&&(m=!0);let A=a.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),x,v;m?(e.makeTestFunction(),x=e.testFunction,v=g.slice().concat(g.map(w=>"val_"+w))):(x=null,f=[],v=g.slice());let b=_6(r.callbacks,r.yieldEvery);return await Ure(e,y,A,g,h,r.epochs,r.verbose,b,x,f,r.shuffle,v,r.initialEpoch,null,null)}finally{e.isTraining=!1,Vi(a,t),Vi(s,n),Vi(l,i),Vi(c,o),u!=null&&we(u)}}function L6(e){let t=[];e instanceof Pe&&(e=[e]);for(let n=0;nn.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof Pe)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function Gre(e){return e instanceof Pe}function ky(e){return Array.isArray(e)}function W6(e){return!Gre(e)&&!ky(e)}function B6(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(ky(e)&&e.length>0)i=!0;else if(W6(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(W6(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(ky(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=L6(s),n!=null)for(let i=0;i=0&&c!==u)throw new B(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function qre(e,t,n){let r=Za(e.map(s=>s.shape[0]));r.sort();let a=Za(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!_.arraysEqual(r,a))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function Xre(e,t,n){let r=[Wi,e0,zc];for(let a=0;a1)throw new B(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var Zre="layers-model",xa=class extends Jr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Rre(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Sre(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ma))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(py(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>py(s))}else{let s=py(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s{for(let s=0;s1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=Kre(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Pi("metric",()=>{for(let s=0;s{let l="",c,u,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===e0?["accuracy","acc"].indexOf(d)!==-1?u=fy:["crossentropy","ce"].indexOf(d)!==-1&&(u=S6):this.lossFunctions[s]===Qp?["accuracy","acc"].indexOf(d)!==-1?u=N6:["crossentropy","ce"].indexOf(d)!==-1&&(u=T6):["accuracy","acc"].indexOf(d)!==-1?u=my:["crossentropy","ce"].indexOf(d)!==-1&&(u=Ay);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),h=u,c=l+f}else h=Ire(d),c=l+r0(d);let p;Pi(c,()=>{p=h}),a(s,c,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;wy(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return Fn(l)}finally{Vi(s[0],e),Vi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),jre(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new B(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new Bi;if(e instanceof Pe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;oi.name);for(let i=0;i0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return P(()=>{let r=this.checkNumSamples(e);if(n)throw new De("Verbose predictLoop() is not implemented yet.");let a=vy(r,t),s=this.outputs.map(i=>[]);for(let i=0;i{let o=a[i][0],l=a[i][1],c=Wc(e,o,l),u=[];if(Array.isArray(c))for(let d=0;ds[l].push(o));return Fn(s.map(i=>ot(i,0)))})}predict(e,t={}){let n=L6(e);V6(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return wy(r),this.predictLoop(n,r)}finally{Vi(n,e)}}predictOnBatch(e){V6(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new Cr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s0&&e[0].shape[0]%r!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let c=$6(r,this.outputNames);l=[];for(let u=0;u{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new De("Verbose mode is not implemented yet.");if(a!=null)throw new De("steps mode in testLoop() is not implemented yet");{let o=vy(s,n),l=sn(Rr(0,s));for(let c=0;c1&&(a+=`_${jv(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let p=0;p1&&p{d=se(d,p)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>P(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;lga(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=ga(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ga(r0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ga(r0(e)));{let e={};for(let t in this.metrics)e[t]=ga(r0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Pc(e.optimizer_config),n=$r(t),r;if(typeof e.loss=="string")r=Oi(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>Oi(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=Oi(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>Oi(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=Oi(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Nn.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Nn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:Zre,generatedBy:`TensorFlow.js tfjs-layers v${xy}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Nn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Nn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;C6(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){C6(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};xa.className="Model";re.registerClass(xa);var j6=class extends xa{};j6.className="Functional";re.registerClass(j6);async function Yre(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Pc(n),a=$r(r,t);if(e.weightsManifest!=null){let s=await Nn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),we(s)}return a}async function Qre(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Nn.getLoadHandlers(e,t);if(n.length===0)n.push(Nn.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Jre(e,void 0,t)}async function Jre(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=$r(Pc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=eae(r.weightData,r.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),we(c),we(u.map(h=>h.tensor))}return o}function eae(e,t){let n=Nn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Zl=class extends xa{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:qp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Zl||e instanceof xa,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=A6({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=m6(this.outputs[0])}this.inboundNodes=[],new Zp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Di(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(at(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new xa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");a=t}else _.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Zl))throw new De(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=$r(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Zl.className="Sequential";re.registerClass(Zl);function tae(e){return new xa(e)}function nae(e){return new Zl(e)}function rae(e,t){return t==null&&(t={}),Qre(e,t)}function o6(e){return A6(e)}function aae(e,t){gr.registerCallbackConstructor(e,t)}var Dn=class extends re.Serializable{getConfig(){return{}}},U6=class extends Dn{apply(e,t=1){return Dte(e,t)}};U6.className="elu";re.registerClass(U6);var H6=class extends Dn{apply(e){return Wd(e)}};H6.className="selu";re.registerClass(H6);var G6=class extends Dn{apply(e){return Hr(e)}};G6.className="relu";re.registerClass(G6);var q6=class extends Dn{apply(e){return P(()=>Il(6,Hr(e)))}};q6.className="relu6";re.registerClass(q6);var X6=class extends Dn{apply(e){return e}};X6.className="linear";re.registerClass(X6);var K6=class extends Dn{apply(e){return Tn(e)}};K6.className="sigmoid";re.registerClass(K6);var Z6=class extends Dn{apply(e){return zte(e)}};Z6.className="hardSigmoid";re.registerClass(Z6);var Y6=class extends Dn{apply(e){return _i(e)}};Y6.className="softplus";re.registerClass(Y6);var J6=class extends Dn{apply(e){return Ote(e)}};J6.className="softsign";re.registerClass(J6);var Q6=class extends Dn{apply(e){return gi(e)}};Q6.className="tanh";re.registerClass(Q6);var Iy=class extends Dn{apply(e,t=-1){return oc(e,t)}};Iy.className="softmax";re.registerClass(Iy);var e4=class extends Dn{apply(e,t=-1){return Fd(e,t)}};e4.className="logSoftmax";re.registerClass(e4);var t4=class extends Dn{apply(e,t=1){return P(()=>Tn(e.mul(t)).mul(e))}};t4.className="swish";re.registerClass(t4);var n4=class extends Dn{apply(e){return P(()=>z(e,gi(_i(e))))}};n4.className="mish";re.registerClass(n4);function es(e){return e.getClassName()}function Sy(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function ts(e){if(e==null){let t={};return t.className="linear",t.config={},Sy(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Sy(t)}else return e instanceof Dn?e:Sy(e)}function Ny(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var r4=class extends re.Serializable{},Bc=class extends r4{constructor(e){super();Ny(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return P(()=>{let t=Rt([1]);return this.hasL1&&(t=se(t,Te(z(this.l1,zt(e))))),this.hasL2&&(t=se(t,Te(z(this.l2,$c(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Bc.className="L1L2";re.registerClass(Bc);function sae(e){return Ny(e),new Bc({l1:e!=null?e.l1:null,l2:0})}function iae(e){return Ny(e),new Bc({l2:e!=null?e.l2:null,l1:0})}var a4={l1l2:"L1L2"};function ut(e){return BA(e)}function s4(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in a4?a4[e]:e,config:{}};return s4(t)}else return e instanceof r4?e:s4(e)}var Ty=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Hr(e);return this.maxValue!=null&&(n=En(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Ty.className="ReLU";re.registerClass(Ty);var Ey=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return ec(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Ey.className="LeakyReLU";re.registerClass(Ey);var Cy=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=gt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=xt(e.alphaRegularizer),this.alphaConstraint=Vt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=at(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r(Ct(t),t==="channelsFirst"?Je(e,[0,2,3,1]):e))}function i4(e,t){return P(()=>(Ct(t),t==="channelsFirst"?Je(e,[0,2,3,4,1]):e))}function oae(e,t,n,r=1,a="valid",s,i=1){return P(()=>{if(s==null&&(s=Er()),Ct(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Je(e,[0,2,1])),a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Id(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Mr(o,n)),o})}function o4(e,t,n,r=[1,1],a="valid",s,i,o=null){return P(()=>{if(s==null&&(s=Er()),Ct(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=$y(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ha.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Je(l,[0,3,1,2])),l})}function lae(e,t,n,r=[1,1,1],a="valid",s,i){return P(()=>{if(s==null&&(s=Er()),Ct(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=i4(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=wm(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Mr(o,n)),s==="channelsFirst"&&(o=Je(o,[0,4,1,2,3])),o})}var Dy=class extends qe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Dy.verifyArgs(t),this.rank=e,qt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new De(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Yl(t.kernelSize,e,"kernelSize"),this.strides=Yl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ar(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ct(this.dataFormat),this.activation=ts(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=gt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Vt(t.biasConstraint),this.biasRegularizer=xt(t.biasRegularizer),this.activityRegularizer=xt(t.activityRegularizer),this.dilationRate=Yl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Kr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!jA(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:es(this.activation),useBias:this.useBias,biasInitializer:St(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Vc=class extends Dy{constructor(e,t){super(e,t);this.kernel=null,Vc.verifyArgs(t),this.filters=t.filters,qt(this.filters,"filters"),this.kernelInitializer=gt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Vt(t.kernelConstraint),this.kernelRegularizer=xt(t.kernelRegularizer)}build(e){e=at(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return P(()=>{e=ze(e);let n,r=this.bias==null?null:this.bias.read(),a=Hv(this.activation.getClassName());if(a!=null&&this.rank===2)n=o4(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=oae(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=o4(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=lae(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new De("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=at(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a 0 but got ${JSON.stringify(e.filters)}`)}},jc=class extends Vc{constructor(e){super(2,e);jc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!jA(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};jc.className="Conv2D";re.registerClass(jc);var Uc=class extends Vc{constructor(e){super(3,e);Uc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Uc.className="Conv3D";re.registerClass(Uc);var Oy=class extends jc{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=ze(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],c=this.kernelSize[0],u=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=Qr(o,h,c,this.padding),m=Qr(l,d,u,this.padding),f=[a,p,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Je(n,[0,2,3,1]));let A=Sd(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=Je(A,[0,3,1,2])),this.bias!=null&&(A=Mr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=at(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Qr(t[r],o,s,this.padding),t[a]=Qr(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Oy.className="Conv2DTranspose";re.registerClass(Oy);var zy=class extends Uc{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==5)throw new B("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=ze(e);if(n.shape.length!==5)throw new B(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=r[o],c=r[s],u=r[i],h=this.kernelSize[0],d=this.kernelSize[1],p=this.kernelSize[2],m=this.strides[0],f=this.strides[1],A=this.strides[2],y=Qr(l,m,h,this.padding),g=Qr(c,f,d,this.padding),x=Qr(u,A,p,this.padding),v=[a,y,g,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Je(n,[0,2,3,4,1]));let b=nw(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(b=Je(b,[0,4,1,2,3])),this.bias!==null&&(b=Mr(b,this.bias.read(),this.dataFormat)),this.activation!==null&&(b=this.activation.apply(b)),b})}computeOutputShape(e){e=at(e);let t=e.slice(),n,r,a,s;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3,s=4):(n=4,r=1,a=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],h=this.strides[2];return t[n]=this.filters,t[r]=Qr(t[r],c,i,this.padding),t[a]=Qr(t[a],u,o,this.padding),t[s]=Qr(t[s],h,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};zy.className="Conv3DTranspose";re.registerClass(zy);var l4=class extends Vc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=xt(t.depthwiseRegularizer),this.depthwiseConstraint=Vt(t.depthwiseConstraint),this.pointwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=xt(t.pointwiseRegularizer),this.pointwiseConstraint=Vt(t.pointwiseConstraint)}build(e){if(e=at(e),e.length{e=ze(e);let n;if(this.rank===1)throw new De("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Je(e,[0,2,3,1])),n=Wm(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Mr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Je(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=St(this.depthwiseInitializer),e.pointwiseInitializer=St(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseConstraint),e.pointwiseConstraint=Bt(this.pointwiseConstraint),e}};l4.className="SeparableConv";var Py=class extends l4{constructor(e){super(2,e)}};Py.className="SeparableConv2D";re.registerClass(Py);var s0=class extends Vc{constructor(e){super(1,e);s0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!jA(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};s0.className="Conv1D";re.registerClass(s0);var Ly=class extends qe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return P(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=zp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return zp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=zp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return zp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ly.className="Cropping2D";re.registerClass(Ly);var Wy=class extends qe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Tte(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return P(()=>{let n=ze(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=Je(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return Je(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Wy.className="UpSampling2D";re.registerClass(Wy);function uae(e,t,n=[1,1],r="valid",a,s){return P(()=>{a==null&&(a=Er()),Ct(a);let i=$y(e,a);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=wl(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=Je(i,[0,3,1,2])),i})}var By=class extends Dy{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=gt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Vt(e.depthwiseConstraint),this.depthwiseRegularizer=xt(e.depthwiseRegularizer)}build(e){if(e=at(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{e=ze(e);let n=uae(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Mr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=Dr(t,this.kernelSize[0],this.padding,this.strides[0]),s=Dr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=St(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseRegularizer),e}};By.className="DepthwiseConv2D";re.registerClass(By);function u4(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function c4(e,t,n,r=!1,a,s,i=!1,o=!1){return P(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(Rr(2,l));if(t=Je(t,c),s!=null)throw new De("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=Qt(a,-1)),a=Je(a,c)),r&&(t=Wn(t,0),a!=null&&(a=Wn(a,0)));let u=[],h,d=n,p=t.shape[0],m=mr(t),f;a!=null&&(f=mr(a));for(let y=0;ye(g,d));if(a==null)h=x[0],d=x[1];else{let v=P(()=>{let b=f[y],w=Ln(b).sub(b),k=x[0].mul(b).add(d[0].mul(w)),N=d.map((C,F)=>x[1][F].mul(b).add(C.mul(w)));return{output:k,newStates:N}});h=v.output,d=v.newStates}o&&u.push(h)}let A;return o&&(A=cn(u,1)),[h,A,d]})}var Yr=class extends qe{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new i0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ft({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Rr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){uy(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return P(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;ni.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Ft({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new ya("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_=[Rt([n,this.cell.stateSize])];else if(e==null)we(this.states_),this.keptStates!=null&&(we(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_[0]=Rt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):we(this.states_);for(let r=0;rHt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=u4(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Ft({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof Fr){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=ze(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=c4((d,p)=>{let m=this.cell.call([d].concat(p),i);return[m[0],m.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,r);let h=this.returnSequences?c:l;return this.returnState?[h].concat(u):h})}getInitialState(e){return P(()=>{let t=Rt(e.shape);return t=Te(t,[1,2]),t=Fc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?KA(t,[1,n]):t):this.cell.stateSize>1?[KA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Yr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=$r(r,n);return new e(Object.assign(t,{cell:a}))}};Yr.className="RNN";re.registerClass(Yr);var Oc=class extends qe{},o0=class extends Oc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ja([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ja([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0Ln(e),rate:this.dropout,training:r})),0Ln(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Zr(z(e,s),this.kernel.read()):a=Zr(e,this.kernel.read()),this.bias!=null&&(a=Mr(a,this.bias.read())),i!=null&&(n=z(n,i));let o=se(a,Zr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:es(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),recurrentInitializer:St(this.recurrentInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};o0.className="SimpleRNNCell";re.registerClass(o0);var Vy=class extends Yr{constructor(e){e.cell=new o0(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};Vy.className="SimpleRNN";re.registerClass(Vy);var l0=class extends Oc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ts(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ja([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ja([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0Ln(e),rate:this.dropout,training:n,count:3})),0Ln(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0{this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};jy.className="GRU";re.registerClass(jy);var Hc=class extends Oc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ts(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ja([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ja([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=at(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends yr{apply(i,o){let l=a.apply([s]),c=new Lp().apply([s]),u=a.apply([s*2]);return t6(t6(l,c),u)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0Ln(e),rate:this.dropout,training:n,count:4})),0Ln(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0{this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Uy.className="LSTM";re.registerClass(Uy);var i0=class extends Oc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return P(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i{Pi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push($r(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return cy(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;sr6(t(),n),i=()=>Dc(s,t,r);return!a||a<=1?Ht(i().clone()):Array(a).fill(void 0).map(i).map(o=>Ht(o.clone()))}var cae=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a{if(this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return P(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Rt(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new ya("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_=[Rt(a)];else if(e==null)we(this.states_),this.keptStates!=null&&(we(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_[0]=Rt(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):we(this.states_);for(let s=0;sHt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=Dr(l,r[0],a,s[0],i[0]),h=Dr(c,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,h]:[u,h,n]]}};h4.className="ConvRNN2D";var u0=class extends Hc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,qt(this.filters,"filters"),this.kernelSize=Yl(n,2,"kernelSize"),this.kernelSize.forEach(o=>qt(o,"kernelSize")),this.strides=Yl(r||1,2,"strides"),this.strides.forEach(o=>qt(o,"strides")),this.padding=a||"valid",ar(this.padding),this.dataFormat=s||"channelsLast",Ct(this.dataFormat),this.dilationRate=Yl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>qt(o,"dilationRate"))}build(e){var t;e=at(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends yr{apply(u,h){let d=l.apply([c]),p=Pn([c]),m=l.apply([c*2]);return YA([d,p,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return P(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0Ln(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,ae,te)=>!ae||!ae[te]?Y:z(ae[te],Y),c=l(r,o,0),u=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0Ln(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,m=l(a,p,0),f=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[x,v,b,w]=Lt(this.kernel.read(),i,g),[k,N,C,F]=this.useBias?Lt(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,x,k,this.padding),u=this.inputConv(u,v,N,this.padding),h=this.inputConv(h,b,C,this.padding),d=this.inputConv(d,w,F,this.padding);let[O,L,V,j]=Lt(this.recurrentKernel.read(),i,g);m=this.recurrentConv(m,O),f=this.recurrentConv(f,L),A=this.recurrentConv(A,V),y=this.recurrentConv(y,j);let U=this.recurrentActivation.apply(se(c,m)),X=this.recurrentActivation.apply(se(u,f)),G=se(z(X,s),z(U,this.activation.apply(se(h,A)))),ee=z(this.recurrentActivation.apply(se(d,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=cae(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=ha(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Mr(a,n,this.dataFormat):a}recurrentConv(e,t){return ha(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};u0.className="ConvLSTM2DCell";re.registerClass(u0);var Hy=class extends h4{constructor(e){let t=new u0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Hy.className="ConvLSTM2D";re.registerClass(Hy);var c0=class extends qe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);if(0r6(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};c0.className="Dropout";re.registerClass(c0);var Gy=class extends c0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Gy.className="SpatialDropout1D";re.registerClass(Gy);var qy=class extends qe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Vt(e.kernelConstraint),this.biasConstraint=Vt(e.biasConstraint),this.kernelRegularizer=xt(e.kernelRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=at(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=at(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e),r=Hv(this.activation.getClassName()),a;return r!=null?a=Zr(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Zr(n,this.kernel.read()),this.bias!=null&&(a=Mr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:es(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};qy.className="Dense";re.registerClass(qy);var Xy=class extends qe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=at(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ya(e,1)]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:es(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Ky.className="Activation";re.registerClass(Ky);var Zy=class extends qe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return P(()=>(e=ze(e),Mte(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Zy.className="RepeatVector";re.registerClass(Zy);var Yy=class extends qe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=ze(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Yy.className="Reshape";re.registerClass(Yy);var Jy=class extends qe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Rr(1,e.dims.length+1);if(!_.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ft({ndim:this.dims.length+1})]}computeOutputShape(e){e=at(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return Je(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Jy.className="Permute";re.registerClass(Jy);var Qy=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),r=-1;return Xu(ki(n,this.maskValue),r)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e),r=-1,a=!0,s=Xu(ki(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};Qy.className="Masking";re.registerClass(Qy);var e2=class extends qe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(At(e.inputLength))}this.inputDim=e.inputDim,qt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,qt(this.outputDim,"outputDim"),this.embeddingsInitializer=gt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=xt(e.embeddingsRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.embeddingsConstraint=Vt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return P(()=>this.maskZero?(e=ze(e),ki(e,He(e))):null)}computeOutputShape(e){if(e=at(e),this.inputLength==null)return[...e,this.outputDim];let t=At(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);return n.dtype!=="int32"&&(n=Mc(n,"int32")),n6(this.embeddings.read(),n.as1D()).reshape(at(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:St(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Bt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};e2.className="Embedding";re.registerClass(e2);var ji=class extends qe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new De}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;aa.length);e.indexOf(null)===-1&&Za(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return P(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Ja(r);for(let s of e){let i=s.rank;for(let o=0;o1){let c=Rr(1,l).concat([0]);n.push(Je(o,c)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=Je(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(Rr(0,i-1));s=Je(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Qt(r,0));let n=t[0];for(let r=1;r{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return P(()=>YA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return P(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s3||t.shape.length>3)throw new De("batchDot is not implemented for tensors of 4D or higher rank yet");if(_.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),_.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new De("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return P(()=>{let i;if(r>a){i=r-a;let l=[];for(let c=0;cr){i=a-r;let l=[];for(let c=0;c0){let l;r>a?l=r+a-3:l=r-1;let c=[];for(let u=l;u"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new B(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>Gc(a,e[s].shape.length)):r=[Gc(this.axes,t.shape.length),Gc(this.axes,n.shape.length)],this.normalize&&(t=Yp(t,r[0]),n=Yp(n,r[1])),hae(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Gc(this.axes,e.length),Gc(this.axes,t.length)],n}computeOutputShape(e){_.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};o2.className="Dot";re.registerClass(o2);var l2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e);return Dc(()=>Pp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};l2.className="GaussianNoise";re.registerClass(l2);var u2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?Dc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(Pp(n.shape,1,r))},()=>n,t.training||!1):n})}};u2.className="GaussianDropout";re.registerClass(u2);var c2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Dc(()=>{let r=ze(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=ja(Sl(n),this.rate);o=Mc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>ze(e),t.training||!1)}return e})}};c2.className="AlphaDropout";re.registerClass(c2);function qc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=Xb(e,t,n,r,a,s);else if(e.rank===3)i=Kb(e,t,n,r,a,s);else if(e.rank===4)i=Zb(e,t,n,r,a,s);else throw new De(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function dae(e,t,n,r,a=.001){return P(()=>{let s=Dd(e,r),i=s.mean,o=s.variance;return[qc(e,i,o,n,t,a),i,o]})}function pae(e,t,n,r,a=.001){return P(()=>{let s=Dd(e,r),i=s.mean,o=s.variance,l=[];for(let p of Rr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let c=i.reshape(l),u=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[qc(e,c,u,d,h,a),i,o]})}function fae(e,t,n,r,a=.001){return _.arraysEqual(r.slice().sort(),Rr(0,e.rank-1))?dae(e,t,n,r,a):pae(e,t,n,r,a)}var h2=class extends qe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.movingMeanInitializer=gt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=gt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Vt(e.betaConstraint),this.gammaConstraint=Vt(e.gammaConstraint),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer)}build(e){e=at(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ft({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training,r=ze(e),a=r.shape,s=a.length,i=Rr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Di(1,s);l[o]=a[o];let c=i.slice();c.sort();let u=!_.arraysEqual(c,Rr(0,s).slice(0,s-1)),h=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return qc(r,A,y,g,x,this.epsilon)}else return qc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,m]=fae(r,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(A,y,g)=>{P(()=>{let x=1-g,v=A.read(),b=v.sub(y).mul(x);A.write(v.sub(b))})};return(()=>{f(this.movingMean,p,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:St(this.betaInitializer),gammaInitializer:St(this.gammaInitializer),movingMeanInitializer:St(this.movingMeanInitializer),movingVarianceInitializer:St(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Bt(this.betaConstraint),gammaConstraint:Bt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};h2.className="BatchNormalization";re.registerClass(h2);var d2=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=at(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Za(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=ze(e),r=n.shape,a=r.length;return P(()=>{let s=!0,{mean:i,variance:o}=Dd(n,this.axis,s),l=Di(1,a);for(let m of this.axis)l[m]=r[m];let c=m=>m!=null&&m.shape.length!==a&&this.axis!==[a-1]?m.reshape(l):m,u=c(this.gamma.read()),h=c(this.beta.read()),d=[],p=[];for(let m=0;m{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Er()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],da(e,r)})}var p2=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Er():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=at(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return P(()=>mae(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};p2.className="ZeroPadding2D";re.registerClass(p2);function h0(e,t,n,r,a,s){return P(()=>{Ct(a),Kv(s),ar(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=Er()),s==null&&(s="max"),e=$y(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=nc(e,t,n,o):i=Zu(e,t,n,o),a==="channelsFirst"&&(i=Je(i,[0,3,1,2])),i})}function d4(e,t,n,r,a,s){return P(()=>{Ct(a),Kv(s),ar(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=Er()),s==null&&(s="max"),e=i4(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Fm(e,t,n,o):i=gm(e,t,n,o),a==="channelsFirst"&&(i=Je(i,[0,4,1,2,3])),i})}var p4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(qt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ar(this.padding),this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){e=at(e);let t=Dr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return P(()=>{this.invokeCallHook(e,t),e=Fc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Ua(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},f2=class extends p4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),h0(e,t,n,r,a,"max")}};f2.className="MaxPooling1D";re.registerClass(f2);var m2=class extends p4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),h0(e,t,n,r,a,"avg")}};m2.className="AveragePooling1D";re.registerClass(m2);var f4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),ar(this.padding),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Dr(t,this.poolSize[0],this.padding,this.strides[0]),n=Dr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},A2=class extends f4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),h0(e,t,n,r,a,"max")}};A2.className="MaxPooling2D";re.registerClass(A2);var y2=class extends f4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),h0(e,t,n,r,a,"avg")}};y2.className="AveragePooling2D";re.registerClass(y2);var m4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),ar(this.padding),this.inputSpec=[new Ft({ndim:5})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Dr(t,this.poolSize[0],this.padding,this.strides[0]),n=Dr(n,this.poolSize[1],this.padding,this.strides[1]),r=Dr(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},g2=class extends m4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),d4(e,t,n,r,a,"max")}};g2.className="MaxPooling3D";re.registerClass(g2);var x2=class extends m4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),d4(e,t,n,r,a,"avg")}};x2.className="AveragePooling3D";re.registerClass(x2);var A4=class extends qe{constructor(e){super(e);this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new De}},b2=class extends A4{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=ze(e);return It(n,1)})}};b2.className="GlobalAveragePooling1D";re.registerClass(b2);var w2=class extends A4{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=ze(e);return Rn(n,1)})}};w2.className="GlobalMaxPooling1D";re.registerClass(w2);var y4=class extends qe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new De}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},_2=class extends y4{call(e,t){return P(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?It(n,[1,2]):It(n,[2,3])})}};_2.className="GlobalAveragePooling2D";re.registerClass(_2);var v2=class extends y4{call(e,t){return P(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Rn(n,[1,2]):Rn(n,[2,3])})}};v2.className="GlobalMaxPooling2D";re.registerClass(v2);var g4=class extends qe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=$r(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},k2=class extends g4{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=at(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=at(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return P(()=>(e=ze(e),c4((n,r)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};k2.className="TimeDistributed";re.registerClass(k2);function Aae(e){zi(Nte,"BidirectionalMergeMode",e)}var yae="concat",I2=class extends g4{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=$r(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=$r(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?yae:e.mergeMode,Aae(this.mergeMode),e.weights)throw new De("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):Fn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=u4(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Ft({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(r!=null)throw new De("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Fr;for(let l of s)if(l instanceof Fr!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let h=super.apply(l,t);return this.inputSpec=u,h}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Wn(a,1));let i;return this.mergeMode==="concat"?i=YA([r,a]):this.mergeMode==="sum"?i=se(r,a):this.mergeMode==="ave"?i=z(.5,se(r,a)):this.mergeMode==="mul"?i=z(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Pi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Pi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=$r(t.layer);if(delete t.layer,t.numConstants!=null)throw new De("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};I2.className="Bidirectional";re.registerClass(I2);function jte(e){return new ql(e)}function Ute(e){return new Ry(e)}function Hte(e){return new Ty(e)}function Gte(e){return new Ey(e)}function qte(e){return new Cy(e)}function Xte(e){return new Fy(e)}function Kte(e){return new My(e)}function Zte(e){return new s0(e)}function Yte(e){return new jc(e)}function Jte(e){return new Oy(e)}function Qte(e){return new Uc(e)}function ene(e){return new zy(e)}function tne(e){return new Py(e)}function nne(e){return new Ly(e)}function rne(e){return new Wy(e)}function ane(e){return new By(e)}function sne(e){return new Ky(e)}function ine(e){return new qy(e)}function one(e){return new c0(e)}function lne(e){return new Gy(e)}function une(e){return new Xy(e)}function cne(e){return new Zy(e)}function hne(e){return new Yy(e)}function dne(e){return new Jy(e)}function pne(e){return new e2(e)}function fne(e){return new t2(e)}function mne(e){return new r2(e)}function Ane(e){return new i2(e)}function yne(e){return new a2(e)}function gne(e){return new s2(e)}function xne(e){return new n2(e)}function bne(e){return new o2(e)}function wne(e){return new h2(e)}function _ne(e){return new d2(e)}function vne(e){return new p2(e)}function iy(e){return new m2(e)}function kne(e){return iy(e)}function Ine(e){return iy(e)}function oy(e){return new y2(e)}function Sne(e){return oy(e)}function Nne(e){return oy(e)}function ly(e){return new x2(e)}function Tne(e){return ly(e)}function Ene(e){return ly(e)}function Cne(e){return new b2(e)}function Rne(e){return new _2(e)}function l6(e){return new w2(e)}function u6(e){return new v2(e)}function c6(e){return new f2(e)}function h6(e){return new A2(e)}function Mne(e){return new g2(e)}function Fne(e){return new jy(e)}function $ne(e){return new l0(e)}function Dne(e){return new Uy(e)}function One(e){return new Hc(e)}function zne(e){return new Vy(e)}function Pne(e){return new o0(e)}function Lne(e){return new Hy(e)}function Wne(e){return new u0(e)}function Bne(e){return new Yr(e)}function Vne(e){return new i0(e)}function jne(e){return new I2(e)}function Une(e){return new k2(e)}var Hne=l6,Gne=u6,qne=c6,Xne=h6;function Kne(e){return new l2(e)}function Zne(e){return new u2(e)}function Yne(e){return new c2(e)}function Jne(e){return new Qy(e)}var x4={};Me(x4,{MAPE:()=>Tae,MSE:()=>Rae,binaryAccuracy:()=>gae,binaryCrossentropy:()=>xae,categoricalAccuracy:()=>wae,categoricalCrossentropy:()=>_ae,cosineProximity:()=>Iae,mape:()=>Eae,meanAbsoluteError:()=>Sae,meanAbsolutePercentageError:()=>Nae,meanSquaredError:()=>Cae,mse:()=>Mae,precision:()=>vae,recall:()=>kae,sparseCategoricalAccuracy:()=>bae});function gae(e,t){return fy(e,t)}function xae(e,t){return S6(e,t)}function bae(e,t){return N6(e,t)}function wae(e,t){return my(e,t)}function _ae(e,t){return Ay(e,t)}function vae(e,t){return I6(e,t)}function kae(e,t){return yre(e,t)}function Iae(e,t){return dy(e,t)}function Sae(e,t){return Jp(e,t)}function Nae(e,t){return Kl(e,t)}function Tae(e,t){return Kl(e,t)}function Eae(e,t){return Kl(e,t)}function Cae(e,t){return Wi(e,t)}function Rae(e,t){return Wi(e,t)}function Mae(e,t){return Wi(e,t)}var b4={};Me(b4,{modelFromJSON:()=>Yre});var w4={};Me(w4,{l1:()=>$ae,l1l2:()=>Fae,l2:()=>Dae});function Fae(e){return new Bc(e)}function $ae(e){return sae(e)}function Dae(e){return iae(e)}var _4=class extends Xl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof xa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function d0(e,t){return et}var k4=class extends _4{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new De("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=d0:this.mode==="max"?this.monitorFunc=v4:this.monitor.indexOf("acc")!==-1?this.monitorFunc=v4:this.monitorFunc=d0,this.monitorFunc===d0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===d0?Infinity:-Infinity}async onEpochEnd(e,t){await Qa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Oae(e){return new k4(e)}var zae={earlyStopping:Oae},Or;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Or||(Or={}));var I4;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(I4||(I4={}));var S2={};function Pae(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};S2[e]=n}function S4(e){return S2[e]}function Lae(e){delete S2[e]}function I(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return yn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>yn(h,n,r,a));let c=yn(t.inputNames.slice(o)[0],n,r,a),u=c.dataSync();return s.type==="number"?u[0]:_.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function yn(e,t,n,r){let[a,s]=jn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[p0(a,o)]);return i!==void 0?t[p0(a,i)][s]:void 0}function Wae(e,t,n){return t[p0(e,n.currentContextId)]}function ba(e,t){let[n,r]=jn(e);return[p0(n,t&&t.currentContextId),r]}function p0(e,t){return t?`${e}-${t}`:e}function jn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function f0(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function wa(e){return e.kept?e:Br(e)}var N4={};Me(N4,{json:()=>Bae});var Bae=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],T4={};Me(T4,{json:()=>Vae});var Vae=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],E4={};Me(E4,{json:()=>jae});var jae=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],C4={};Me(C4,{json:()=>Uae});var Uae=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],R4={};Me(R4,{json:()=>Hae});var Hae=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],M4={};Me(M4,{json:()=>Gae});var Gae=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],F4={};Me(F4,{json:()=>qae});var qae=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],$4={};Me($4,{json:()=>Xae});var Xae=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],D4={};Me(D4,{json:()=>Kae});var Kae=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],O4={};Me(O4,{json:()=>Zae});var Zae=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],z4={};Me(z4,{json:()=>Yae});var Yae=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],P4={};Me(P4,{json:()=>Jae});var Jae=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],L4={};Me(L4,{json:()=>Qae});var Qae=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],W4={};Me(W4,{json:()=>ese});var ese=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],B4={};Me(B4,{json:()=>tse});var tse=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],V4={};Me(V4,{json:()=>nse});var nse=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],j4={};Me(j4,{json:()=>rse});var rse=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],H4=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[N4,T4,E4,C4,R4,M4,F4,z4,O4,$4,P4,L4,W4,B4,V4,j4,D4],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?r.push(m[f.name]):f.op==="Const"?a.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(m=>{let f=i[m];f.inputNames.forEach(A=>{let[y]=ba(A);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(u).length===0?h.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(u).forEach(m=>{let[f]=ba(m),A=i[f];A!=null&&(A.signatureKey=u[m],l.push(A))}),Object.keys(c).length>0?Object.keys(c).forEach(m=>{let[f]=ba(m),A=i[f];A&&(A.signatureKey=c[m],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=S4(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=N2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=N2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=D2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=D2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=E2(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=E2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=$2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=$2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=T2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=T2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=z2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=z2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=F2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=F2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=O2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=O2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=R2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=R2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=M2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=M2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=U4(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=U4(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&r.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=ba(c.name),h={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:C2(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,s.push(h),a[u]=h}),Object.keys(a).forEach(c=>{let u=a[c];u.inputNames.forEach(h=>{let[d]=ba(h);u.inputs.push(a[d]),a[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,h]=ba(o[c.name]),d=a[u];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function ase(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function G4(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):ase(e);return t?n:n.toLowerCase()}function N2(e,t,n,r=!1){let a=e[t];return a!=null?G4(a.s,r):n}function T2(e,t,n){let r=e[t];return r?r.b:n}function E2(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function C2(e){switch(typeof e=="string"&&(e=Or[e]),e){case Or.DT_FLOAT:return"float32";case Or.DT_INT32:case Or.DT_INT64:case Or.DT_INT8:case Or.DT_UINT8:return"int32";case Or.DT_BOOL:return"bool";case Or.DT_DOUBLE:return"float32";case Or.DT_STRING:return"string";default:return null}}function U4(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function R2(e,t,n){let r=e[t];return r&&r.type?C2(r.type):n}function M2(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>C2(a)):n}function q4(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function F2(e,t,n){let r=e[t];return r&&r.shape?q4(r.shape):n}function $2(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function D2(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>G4(s,r)):n}function O2(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>q4(a)):n}function z2(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var sse=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return yn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return yn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return E2(this.node.rawAttrs,e,t);if(n.s!=null)return N2(this.node.rawAttrs,e,t);if(n.b!=null)return T2(this.node.rawAttrs,e,t);if(n.shape!=null)return F2(this.node.rawAttrs,e,t);if(n.type!=null)return R2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return $2(this.node.rawAttrs,e,t);if(n.list.s!=null)return D2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return O2(this.node.rawAttrs,e,t);if(n.list.b!=null)return z2(this.node.rawAttrs,e,t);if(n.list.type!=null)return M2(this.node.rawAttrs,e,t)}return t}},ise=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[La(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Dm(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[z(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[Ae(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[km(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[_d(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ye(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Il(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Ur(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[pa(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Gd(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ose=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[lm(I("x",e,t,n))];case"Acosh":return[um(I("x",e,t,n))];case"Asin":return[hm(I("x",e,t,n))];case"Asinh":return[dm(I("x",e,t,n))];case"Atan":return[pm(I("x",e,t,n))];case"Atan2":return[fm(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[mm(I("x",e,t,n))];case"Ceil":return[xm(I("x",e,t,n))];case"Complex":return[Da(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Ju(I("x",e,t,n))];case"Cosh":return[Nd(I("x",e,t,n))];case"Elu":return[_l(I("x",e,t,n))];case"Erf":return[Im(I("x",e,t,n))];case"Exp":return[Qn(I("x",e,t,n))];case"Expm1":return[Sm(I("x",e,t,n))];case"Floor":return[vl(I("x",e,t,n))];case"Log":return[zn(I("x",e,t,n))];case"Log1p":return[Rd(I("x",e,t,n))];case"Imag":return[Ed(I("x",e,t,n))];case"Neg":return[kt(I("x",e,t,n))];case"Reciprocal":return[Pm(I("x",e,t,n))];case"Real":return[sc(I("x",e,t,n))];case"Relu":return[Hr(I("x",e,t,n))];case"Round":return[Lm(I("x",e,t,n))];case"Selu":return[Wd(I("x",e,t,n))];case"Sigmoid":return[Tn(I("x",e,t,n))];case"Sin":return[Bd(I("x",e,t,n))];case"Sign":return[Bm(I("x",e,t,n))];case"Sinh":return[Vd(I("x",e,t,n))];case"Softplus":return[_i(I("x",e,t,n))];case"Sqrt":return[en(I("x",e,t,n))];case"Square":return[it(I("x",e,t,n))];case"Tanh":return[gi(I("x",e,t,n))];case"Tan":return[Um(I("x",e,t,n))];case"ClipByValue":return[En(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Pd(I("x",e,t,n))];case"Rsqrt":return[Ld(yn(e.inputNames[0],t,n))];case"Prod":return[Od(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[ec(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[ac(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[Tm(yn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function xr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){_.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;rn+` Shapes ${e} and ${t} must match`)}}}function X4(e){return!(typeof e=="number"||e.some(t=>t<0))}function Xc(e,t,n){let r=P2(e,n),a=!X4(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=P2(s.shape,r)}),!X4(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function P2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var lse=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ve(0),Ht(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, - because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),xr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ht(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,mr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to +2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let p of Object.keys(cr))c[p]=cr[p];for(let p of Object.keys(n))c[p]=n[p];let u=s.config;u.customObjects=c;let h=Object.assign({},cr);for(let p of Object.keys(n))cr[p]=n[p];RA(s.config);let d=l(o,s.config,n,a);return cr=Object.assign({},h),d}else{let c=Object.assign({},cr);for(let h of Object.keys(n))cr[h]=n[h];let u=new o(s.config);return cr=Object.assign({},c),u}}}function Oee(e,t){return et?1:0}function Rp(e,t){return-1*Oee(e,t)}function Ua(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function zee(e){if(e==null)throw new W(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Ri(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new W(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function MA(e,t,n=0,r=Infinity){return jr(n>=0),jr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function Ut(e,t){Array.isArray(e)?(_.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>Ut(n,`element ${r+1} of ${t}`))):_.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${_v(e)}.`)}function _v(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>_v(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function Pee(e,t){let n=_.now(),r;return(...a)=>{let s=_.now();return s-nJt(Ne(B(e,e),t,!0)))}var Ic=class extends re.Serializable{getConfig(){return{}}},$A=class extends Ic{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return L(()=>{let t=FA(e,this.axis),n=In(t,0,this.maxValue);return B(e,ge(n,se(zt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};$A.className="MaxNorm";re.registerClass($A);var DA=class extends Ic{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return L(()=>ge(e,se(zt(),FA(e,this.axis))))}getConfig(){return{axis:this.axis}}};DA.className="UnitNorm";re.registerClass(DA);var OA=class extends Ic{apply(e){return Lr(e)}};OA.className="NonNeg";re.registerClass(OA);var zA=class extends Ic{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return L(()=>{let t=FA(e,this.axis),n=se(B(this.rate,In(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,ge(n,se(zt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};zA.className="MinMaxNorm";re.registerClass(zA);var kv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Pt(e){return CA(e)}function Iv(e,t={}){return kc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Lt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in kv?kv[e]:e,config:{}};return Iv(t)}else return e instanceof Ic?e:Iv(e)}function Mee(e){return new $A(e)}function Fee(e){return new DA(e)}function $ee(){return new OA}function Dee(e){return new zA(e)}var Sv={};Me(Sv,{constant:()=>Bee,glorotNormal:()=>Xee,glorotUniform:()=>qee,heNormal:()=>Kee,heUniform:()=>Zee,identity:()=>Hee,leCunNormal:()=>Yee,leCunUniform:()=>Jee,ones:()=>Wee,orthogonal:()=>Qee,randomNormal:()=>jee,randomUniform:()=>Vee,truncatedNormal:()=>Uee,varianceScaling:()=>Gee,zeros:()=>Lee});var ete=["channelsFirst","channelsLast"],tte=["nearest","bilinear"],nte=["valid","same","causal"],rte=["max","avg"],ate=["sum","mul","concat","ave"],Ll=new Map;function Tt(e){Ri(ete,"DataFormat",e)}function ste(e){Ri(tte,"InterpolationFormat",e)}function er(e){Ri(nte,"PaddingMode",e)}function Nv(e){Ri(rte,"PoolMode",e)}var Sc=[],Tv="/";function Mi(e,t){Sc.push(e);try{let n=t();return Sc.pop(),n}catch(n){throw Sc.pop(),n}}function ite(){return Sc.length===0?"":Sc.join(Tv)+Tv}function Cv(e){if(!Ev(e))throw new Error("Not a valid tensor name: '"+e+"'");return ite()+e}function Rv(e){if(!Ev(e))throw new Error("Not a valid tensor name: '"+e+"'");Ll.has(e)||Ll.set(e,0);let t=Ll.get(e);if(Ll.set(e,Ll.get(e)+1),t>0){let n=`${e}_${t}`;return Ll.set(n,1),n}else return e}var ote=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Ev(e){return!!e.match(ote)}function lte(e){return e===parseInt(e.toString(),10)}function Ha(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a{if(e.shape.length!==2)throw new W(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Tc(e,1);return PA(n,[1,t,1])})}function cte(e){let t=[Ha(e.shape)];return e.reshape(t)}function hte(e){if(e.rank<=1)throw new W(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ha(e.shape,1)];return e.reshape(t)}function Fi(e,t,n){return L(()=>{switch(e.rank){case 1:return Pd(e,t,n);case 2:return Rm(e,[t,0],[n,e.shape[1]]);case 3:return Ld(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return tc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new W(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function LA(e,t,n){return L(()=>{switch(e.rank){case 1:return Pd(e,t,n);case 2:return Rm(e,[0,t],[e.shape[0],n]);case 3:return Ld(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return tc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new W(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Mp(e,t,n,r){return L(()=>{switch(e.rank){case 1:return Pd(e,t,n);case 2:switch(r){case 1:return Fi(e,t,n);case 2:return LA(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return Fi(e,t,n);case 2:return Ld(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return LA(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return Fi(e,t,n);case 2:return tc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return tc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return LA(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${r}`)}default:throw new W(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function WA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ot(e,t)}function Fv(e,t){switch(e.rank){case 1:return Cw([e,t]);case 2:return fl([e,t],0);case 3:return Rw([e,t],0);case 4:return Mw([e,t],0);default:throw new W(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function PA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new W(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Oa(e,t)}function Fp(e,t=0,n=1,r,a){return Zw(e,t,n,r,a)}function Ur(e,t,n,r){if(e.rank<2||t.rank<2)throw new De(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new De(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return La.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?BA(e.rank,r,_r()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(u).reshape([l,-1]);let h=[...a,...c],d=!1,p=!1;return La.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?BA(e.rank,r,_r()):null,activation:n}).reshape(h)}}function $v(e,t,n){return L(()=>(Array.isArray(t)?t=nn(t,"int32"):t=t.toInt(),fi(e,t,n)))}function Ec(e){return B(e,e)}function BA(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new W(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new W(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ir(e,t,n){return L(()=>(n==null&&(n=_r()),Tt(n),e.add(BA(e.rank,t,n))))}function dte(e,t=1){if(t!==1)throw new De(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Al(e)}function pte(e){return L(()=>ge(e,Dt(e).add(1)))}function Dv(e,t,n,r){return L(()=>rb(e,t,n,r))}function fte(e){return L(()=>{let t=se(.5,B(.2,e));return In(t,0,1)})}function Cc(e,t,n=!1){return n?e():t()}var mte=["fanIn","fanOut","fanAvg"],Ate=["normal","uniform","truncatedNormal"];function yte(e){Ri(mte,"FanMode",e)}function gte(e){Ri(Ate,"Distribution",e)}var hr=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},VA=class extends hr{apply(e,t){return Et(e,t)}};VA.className="Zeros";re.registerClass(VA);var $p=class extends hr{apply(e,t){return Fn(e,t)}};$p.className="Ones";re.registerClass($p);var jA=class extends hr{constructor(e){super();if(typeof e!="object")throw new W(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new W(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return L(()=>B(ke(this.value),Fn(e,t)))}getConfig(){return{value:this.value}}};jA.className="Constant";re.registerClass(jA);var UA=class extends hr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return wl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};UA.className="RandomUniform";re.registerClass(UA);var HA=class extends hr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`randomNormal does not support dType ${t}.`);return Fp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};HA.className="RandomNormal";re.registerClass(HA);var GA=class extends hr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`truncatedNormal does not support dType ${t}.`);return Vd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};GA.className="TruncatedNormal";re.registerClass(GA);var qA=class extends hr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return L(()=>{if(e.length!==2||e[0]!==e[1])throw new W("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,Am(e[0]))})}getConfig(){return{gain:this.gain}}};qA.className="Identity";re.registerClass(qA);function xte(e,t="channelsLast"){let n,r;if(Tt(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Ha(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Ha(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Ha(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var En=class extends hr{constructor(e){super();if(e.scale<0)throw new W(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,yte(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,gte(this.distribution),this.seed=e.seed}apply(e,t){let n=xte(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`${this.getClassName()} does not support dType ${t}.`);return Vd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return wl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};En.className="VarianceScaling";re.registerClass(En);var Dp=class extends En{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return En.className}};Dp.className="GlorotUniform";re.registerClass(Dp);var Op=class extends En{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return En.className}};Op.className="GlorotNormal";re.registerClass(Op);var zp=class extends En{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return En.className}};zp.className="HeNormal";re.registerClass(zp);var Pp=class extends En{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return En.className}};Pp.className="HeUniform";re.registerClass(Pp);var Lp=class extends En{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return En.className}};Lp.className="LeCunNormal";re.registerClass(Lp);var Wp=class extends En{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return En.className}};Wp.className="LeCunNormal";re.registerClass(Wp);var XA=class extends hr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new De("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return L(()=>{if(e.length<2)throw new De("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Fp(n,0,1,"float32"),a=Ab.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),B(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};XA.className="Orthogonal";re.registerClass(XA);var Ov={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function zv(e,t={}){return kc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function kt(e){return CA(e)}function At(e){if(typeof e=="string"){let t=e in Ov?Ov[e]:e;if(t==="GlorotNormal")return new Op;if(t==="GlorotUniform")return new Dp;if(t==="HeNormal")return new zp;if(t==="HeUniform")return new Pp;if(t==="LeCunNormal")return new Lp;if(t==="LeCunUniform")return new Wp;{let n={};return n.className=t,n.config={},zv(n)}}else return e instanceof hr?e:zv(e)}function Lee(){return new VA}function Wee(){return new $p}function Bee(e){return new jA(e)}function Vee(e){return new UA(e)}function jee(e){return new HA(e)}function Uee(e){return new GA(e)}function Hee(e){return new qA(e)}function Gee(e){return new En(e)}function qee(e){return new Dp(e)}function Xee(e){return new Op(e)}function Kee(e){return new zp(e)}function Zee(e){return new Pp(e)}function Yee(e){return new Lp(e)}function Jee(e){return new Wp(e)}function Qee(e){return new XA(e)}var Pv={};Me(Pv,{Layer:()=>Ge,RNN:()=>Hr,RNNCell:()=>Rc,activation:()=>Ote,add:()=>Hte,alphaDropout:()=>Tne,average:()=>Gte,averagePooling1d:()=>KA,averagePooling2d:()=>ZA,averagePooling3d:()=>YA,avgPool1d:()=>tne,avgPool2d:()=>rne,avgPool3d:()=>sne,avgPooling1d:()=>nne,avgPooling2d:()=>ane,avgPooling3d:()=>ine,batchNormalization:()=>Jte,bidirectional:()=>wne,concatenate:()=>qte,conv1d:()=>Nte,conv2d:()=>Tte,conv2dTranspose:()=>Ete,conv3d:()=>Cte,conv3dTranspose:()=>Rte,convLstm2d:()=>Ane,convLstm2dCell:()=>yne,cropping2D:()=>Fte,dense:()=>zte,depthwiseConv2d:()=>Dte,dot:()=>Yte,dropout:()=>Pte,elu:()=>bte,embedding:()=>Ute,flatten:()=>Wte,gaussianDropout:()=>Nne,gaussianNoise:()=>Sne,globalAveragePooling1d:()=>one,globalAveragePooling2d:()=>lne,globalMaxPool1d:()=>_ne,globalMaxPool2d:()=>vne,globalMaxPooling1d:()=>Wv,globalMaxPooling2d:()=>Bv,gru:()=>cne,gruCell:()=>hne,input:()=>Lv,inputLayer:()=>wte,layerNormalization:()=>Qte,leakyReLU:()=>vte,lstm:()=>dne,lstmCell:()=>pne,masking:()=>Ene,maxPool1d:()=>kne,maxPool2d:()=>Ine,maxPooling1d:()=>Vv,maxPooling2d:()=>jv,maxPooling3d:()=>une,maximum:()=>Xte,minimum:()=>Kte,multiply:()=>Zte,permute:()=>jte,prelu:()=>kte,reLU:()=>_te,repeatVector:()=>Bte,reshape:()=>Vte,rnn:()=>gne,separableConv2d:()=>Mte,simpleRNN:()=>fne,simpleRNNCell:()=>mne,softmax:()=>Ite,spatialDropout1d:()=>Lte,stackedRNNCells:()=>xne,thresholdedReLU:()=>Ste,timeDistributed:()=>bne,upSampling2d:()=>$te,zeroPadding2d:()=>ene});var Cne=0;function Uv(){return Cne++}var Bp={};function Vp(e=""){return e in Bp||(Bp[e]=0),Bp[e]+=1,e+Bp[e].toString()}function JA(e){return Array.isArray(e)&&Array.isArray(e[0])}function jp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new W(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function rt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new W(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Up(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var Hv="Variable",Gv=class{constructor(e,t="float32",n=Hv,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Uv(),n=n==null?Hv:n,this.originalName=Cv(n),this.name=Rv(this.originalName),this.trainable_=r,this.constraint=a,this.val=Jw(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),Rne(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function Rne(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function QA(e){return e.map(t=>t.read())}function ey(e){e.forEach(t=>{t[0].write(t[1])})}var Rt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Sr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=Uv(),s!=null&&(this.originalName=Cv(s),this.name=Rv(this.originalName)),this.rank=t.length}},Mne=0,Hp=class{constructor(e,t){this.callArgs=t,this.id=Mne++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},Fne=0,Ge=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=Fne++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=pa(n)+"_"+Vp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new vr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new W(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Tn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Tn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new da(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new da(`Layer ${this.name} is not connected, no input to return.`);return Tn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new da(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new da(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Tn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=ft(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=ft(this.inputSpec);if(e.length!==t.length)throw new W(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;na.maxNDim)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of ft(e))s.push(i.shape);this.build(Tn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=ft(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Tn(o),this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=$ne(e),i=this.computeOutputShape(s),o,l=Dne(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new Sr(l,c,this,ft(e),t,this.name,u)):o=new Sr(l,i,this,ft(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new da(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new da(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new vr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Up(this.weights)}build(e){this.built=!0}getWeights(e=!1){return QA(e?this.trainableWeights:this.weights)}setWeights(e){L(()=>{let t=this.weights;if(t.length!==e.length)throw new W(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=QA(t);for(let a=0;aa.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=ft(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=ft(e);t=ft(t),n=ft(n),r=ft(r),a=jp(a),s=jp(s);let l=[],c=[],u=[];for(let h of o)l.push(h.sourceLayer),c.push(h.nodeIndex),u.push(h.tensorIndex);new Hp({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;he.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function $ne(e){e=ft(e);let t=[];for(let n of e)t.push(n.shape);return Tn(t)}function Dne(e){return"float32"}function qv(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s0){let a=await Promise.all(t);for(let s=0;sse(this.totals[r],B(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:L(()=>{let r=B(ge(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Vt(t[n])}))}},Jv=class extends Vl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;inew Qv(n,t))}var dr=class{constructor(){}static registerCallbackConstructor(e,t){_.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),dr.checkForDuplicate(t),dr.constructors[e]==null&&(dr.constructors[e]=[]),dr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in dr.constructors)dr.constructors[+t].forEach(n=>{if(n===e)throw new W("Duplicate callback constructor.")})}static clear(){dr.constructors={}}static createCallbacks(e){let t=[];for(let n in dr.constructors){let r=+n;e>=r&&t.push(...dr.constructors[r])}return t.map(n=>new n)}};dr.constructors={};function t6(e,t,n,r,a,s,i,o,l){let c=new Jv,u=[new zne,...dr.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let h=new Yv(u);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:c}}function Nr(e,t={},n=!1){return kc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Gp(e,t){return L(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Ne(Ec(e),t,!0),r=Xu(n.shape,zt()),a=Jt(Pr(n,r));return ge(e,a)})}function $i(e,t){return L(()=>vt(Ec(ye(t,e)),-1))}function qp(e,t){return L(()=>vt(Dt(ye(t,e)),-1))}function jl(e,t){return L(()=>{let n=ye(e,t),r=In(Dt(e),zt(),Number.MAX_VALUE),a=Dt(ge(n,r));return B(100,vt(a,-1))})}function Pne(e,t){return L(()=>{let n=In(t,zt(),Number.MAX_VALUE),r=Mn(se(1,n)),a=In(e,zt(),Number.MAX_VALUE),s=Mn(se(1,a));return vt(Ec(ye(r,s)),-1)})}function Lne(e,t){return L(()=>{let n=Pr(0,ye(1,B(e,t)));return vt(Ec(n),-1)})}function Wne(e,t){return L(()=>{let n=Pr(0,ye(1,B(e,t)));return vt(n,-1)})}function Bne(e,t){return L(()=>{let n=Ne(B(e,t),-1),r=Kn(B(ye(1,e),t),-1);return Pr(0,se(1,ye(r,n)))})}function Vne(e,t){return L(()=>{let n=Math.log(2),r=ye(t,e),a=ye(se(r,Ai(B(-2,r))),n);return vt(a,-1)})}function Mc(e,t,n=!1){return L(()=>{if(n)t=nc(t);else{let r=Ne(t,t.shape.length-1,!0);t=ge(t,r)}return t=In(t,zt(),1-zt()),_t(Ne(B(e.toFloat(),Mn(t)),t.shape.length-1))})}function Xp(e,t,n=!1){return L(()=>{let r=yl(cte(e)).toInt();t=In(t,zt(),1-zt());let a=t.shape,s=ul(r,a[a.length-1]).reshape(a);return Mc(s,t,n)})}function jne(e,t){if(!_.arraysEqual(e.shape,t.shape))throw new W(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return L(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function Kp(e,t){return L(()=>{let n;return n=In(t,zt(),1-zt()),n=Mn(ge(n,ye(1,n))),vt(jne(e,n),-1)})}function Une(e,t){return L(()=>{let n=In(e,zt(),1),r=In(t,zt(),1);return Ne(B(e,Mn(ge(n,r))),-1)})}function Hne(e,t){return L(()=>{let n=Mn(se(zt(),t));return vt(ye(t,B(e,n)),-1)})}function ty(e,t){return L(()=>{let n=Gp(e,-1),r=Gp(t,-1),a=B(n,r);return _t(Ne(a,-1))})}var Zp={meanSquaredError:$i,meanAbsoluteError:qp,meanAbsolutePercentageError:jl,meanSquaredLogarithmicError:Pne,squaredHinge:Lne,hinge:Wne,categoricalHinge:Bne,logcosh:Vne,categoricalCrossentropy:Mc,sparseCategoricalCrossentropy:Xp,binaryCrossentropy:Kp,kullbackLeiblerDivergence:Une,poisson:Hne,cosineProximity:ty};function ny(e){if(typeof e=="string"){if(e in Zp)return Zp[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new W(t)}else return e}function ry(e,t){return L(()=>{let n=B(.5,$n(t)),r=Nc(or(t,n),e.dtype);return vt(Da(e,r),-1)})}function ay(e,t){return L(()=>Nc(Da(ju(e,-1),ju(t,-1)),"float32"))}function n6(e,t){return L(()=>lr(e.equal(1),t.equal(1)).sum().cast("float32"))}function Gne(e,t){return L(()=>lr(e.equal(1),t.equal(0)).sum().cast("float32"))}function qne(e,t){return L(()=>lr(e.equal(0),t.equal(1)).sum().cast("float32"))}function r6(e,t){return L(()=>{let n=n6(e,t),r=qne(e,t),a=n.add(r);return Sn(or(a,0),n.div(a),0).cast("float32")})}function Xne(e,t){return L(()=>{let n=n6(e,t),r=Gne(e,t),a=n.add(r);return Sn(or(a,0),n.div(a),0).cast("float32")})}function a6(e,t){return Kp(e,t)}function s6(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Da(e,t).asType("float32")}var Kne=$i,Zne=$i,Yne=qp,Jne=qp,Qne=jl,ere=jl,sy=Mc,tre=ty,i6=Xp,Yp={binaryAccuracy:ry,categoricalAccuracy:ay,precision:r6,categoricalCrossentropy:sy,sparseCategoricalCrossentropy:i6,mse:Kne,MSE:Zne,mae:Yne,MAE:Jne,mape:Qne,MAPE:ere,cosine:tre};function nre(e){if(typeof e=="string"&&e in Yp)return Yp[e];if(typeof e!="string"&&e!=null)return e;throw new W(`Unknown metric ${e}`)}function Jp(e){if(jr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Zp))if(Zp[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Yp))if(Yp[n]===e){t=n;break}return t!==void 0?t:e.name}}function rre(e){let t={Adagrad:()=>wi.adagrad(.01),Adadelta:()=>wi.adadelta(1,.95,zt()),Adam:()=>wi.adam(.001,.9,.999,zt()),Adamax:()=>wi.adamax(.002,.9,.999,zt(),0),RMSProp:()=>wi.rmsprop(.001,.9,0,zt()),SGD:()=>wi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new W(`Unknown Optimizer ${e}`)}var o6=1*1024*1024;function l6(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!iy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>o6&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${o6}.`)}}function iy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!iy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!iy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function lre(e,t,n,r=console.log){let a=sre(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!a){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}r("_".repeat(t)),Qp(s,n,r),r("=".repeat(t));let o=e.layers;for(let u=0;u1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Qp(e,t,n=console.log){let r="";for(let a=0;a0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function ire(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];Qp(i,t,n)}function ore(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(u){a="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let h=0;hm.name),l=[],c=t.names();for(let m of o)c.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),h,d;if(uy[u]==null){let m=cre(i,t);h=m.sorted,d=m.recipientCounts,uy[u]=h,c6[u]=d}h=uy[u],d={},a||Object.assign(d,c6[u]);let p=new Di(t);for(let m=0;mr.maxNumTensors&&(r.maxNumTensors=C),C0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=h6(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=h6(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(c=>r[l].add(c))}}return{sorted:n,recipientCounts:dre(r)}}function dre(e){let t={};for(let n in e)t[n]=e[n].size;return t}function h6(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)a[c.name]==null&&(a[c.name]=new Set),a[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:r,recipientMap:a}}function hre(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;ry.name)}`);Ua(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;jr(x===0,"input layer has >1 nodes"),jr(v===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,x,v,w,b)=>{(v==null||w==null||b==null)&&(v=y.sourceLayer,w=y.nodeIndex,b=y.tensorIndex);let k=v.inboundNodes[w];if(x.indexOf(k)!==-1)throw new vr(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(g.indexOf(k)!==-1)return;this.containerNodes.add(Gr.nodeKey(v,w)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(k)===-1&&x.push(k);let N=k.inboundLayers.length;for(let C=0;C=0;)x.splice(x.indexOf(k),1);i.push(k)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],x=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,x),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let v=0;vparseInt(y,10)).sort(Rp);this.layers=[];for(let y of p){let g=d[y];g.sort((x,v)=>{let w=s[x.id],b=s[v.id];return wb?1:0});for(let x of g)x instanceof Gr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(Rp);let m=this.inputs.slice(),f=[];for(let y of p)for(let g of h[y]){let x=g.outboundLayer;if(x!=null){for(let v of g.inputTensors)if(m.indexOf(v)===-1)throw new vr(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of g.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(x=>x===y).length;if(g!==1)throw new vr(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Hp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new W("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new W(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new W(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new W(`${s.length} of ${r} weights are not set: ${s}`)}ey(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${ly}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=oy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return L(()=>{e=ft(e);let n=new Di;for(let r=0;r{e=ft(e);let n;return t==null?n=Ei(null,e.length):n=ft(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=jp(e);if(t.length!==this.inputLayers.length)throw new W(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;iparseInt(i,10)).sort(Rp);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(c.id)!==-1)continue;let u=[];for(let m=0;mparseInt(o,10)).sort(Rp);for(let o of r){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,h=c.inputTensors,d=c.outputTensors,p=new Array;for(let m of h)m.id in n&&p.push(n[m.id]);if(p.length===h.length){let m={},f,A,y,g;if(c.callArgs!=null&&(m=c.callArgs),p.length===1){let[x,v]=p[0];m.mask==null&&(m.mask=v),y=ft(u.call(x,m)),g=ft(u.computeMask(x,v)),f=[x],A=[v]}else f=p.map(x=>x[0]),A=p.map(x=>x[1]),m.mask==null&&(m.mask=A),y=ft(u.call(f,m)),g=ft(u.computeMask(f,A));if(u.activityRegularizer)throw new De("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x{let e=[];for(let t of this.layers)for(let n=0;n0){let m=[];for(let f=0;f0&&f.apply(Tn(y),g)}function l(f){let A=f.name,y=Nr(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,f.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new W(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let c=t.name,u=t.layers;for(let f of u)l(f);for(;!zee(s);)for(let f of u){let A=a[f.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let f of p){let A=f[0],y=f[1],g=f[2];jr(A in a);let x=a[A].inboundNodes[y].outputTensors;h.push(x[g])}let m=t.outputLayers;for(let f of m){let A=f[0],y=f[1],g=f[2];jr(A in a);let x=a[A].inboundNodes[y].outputTensors;d.push(x[g])}return new e({inputs:h,outputs:d,name:c})}get stateful(){if(this._stateful)throw new W("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){L(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function pre(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function d6(e,t){return pre(e,t,"classWeight")}async function p6(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=L(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());Te(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),nn(i,"float32")}else return null}function fre(e,t){return B(e,t)}var mre=32;function m6(e,t){let n,r,a=t;n=a.xs,r=a.ys,_.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=f6("input",e.inputNames,n),i=f6("output",e.outputNames,r),o=s[0].shape[0];_.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),_.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function f6(e,t,n){if(n instanceof Le)return[n];if(Array.isArray(n))return _.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new W(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function Are(e){if(e.length===3)throw new De("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function gre(e,t,n){let r=n.batchesPerEpoch!=null;if(_.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),_.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),_.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),_.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),_.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(A6(n.validationData))_.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Are(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;a?c=l.slice().concat(l.map(A=>"val_"+A)):c=l.slice();let u=e6(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=t6(u,h,n.epochs,null,null,yre(t,n),null,a,c);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m=n.batchesPerEpoch:x.done){if(a){let v;A6(n.validationData)?v=ft(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=ft(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?mre:n.validationBatchSize,verbose:0}));for(let w=0;w0)throw new De("Verbose mode is not implemented yet.");_.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=xre(t)?t:await t.iterator(),o=0,l=0;for(;r?l{if(c.value){let{xs:u,ys:h}=m6(e,c.value),d=u.concat(h),p=L(()=>a(d));if(Te(d),l===0)for(let f=0;fse(s[f],B(m,A))),l>0&&Te(y)}Te(p),o+=m,++l}return s}),c.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Dc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>Fi(r,t,n-t)):Fi(e,t,n-t)}function hy(e,t){return L(()=>e==null?null:Array.isArray(e)?e.map(n=>hy(n,t)):$v(e,t.dtype==="int32"?t:t.toInt()))}function dy(e,t){let n=[],r=0,a=null;for(;r=e&&(a=e),n.push([r,a]),r=a;return n}async function bre(e,t,n,r,a,s,i,o,l,c,u,h,d,p,m){a==null&&(a=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let f=!1;if(l!=null&&c!=null&&(f=!0),m!=null&&(f=!0,p==null))throw new W("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=kr(0,A)),i==null&&(i=1);let{callbackList:g,history:x}=t6(o,i,s,d,A,p,a,f,h);g.setModel(e),e.history=x,await g.onTrainBegin(),e.stopTraining_=!1;for(let v=d;v{let F=k[N][0],O=k[N][1],z=Fi(b,F,O-F);C.batch=N,C.size=O-F;let V=hy(n,z),j=t(V);for(let U=0;U0){if(m=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new De("validationData including sample weights is not supported yet."):new W(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let b=!0,k=await e.standardizeUserData(i,o,null,null,b,h);l=k[0],c=k[1],f=l.concat(c)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){m=!0;let b=Math.floor(a[0].shape[0]*(1-r.validationSplit)),k=a[0].shape[0];l=Dc(a,b,k),a=Dc(a,0,b),c=Dc(s,b,k),s=Dc(s,0,b),f=l.concat(c)}else r.validationSteps!=null&&(m=!0);let A=a.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),x,v;m?(e.makeTestFunction(),x=e.testFunction,v=g.slice().concat(g.map(b=>"val_"+b))):(x=null,f=[],v=g.slice());let w=e6(r.callbacks,r.yieldEvery);return await bre(e,y,A,g,h,r.epochs,r.verbose,w,x,f,r.shuffle,v,r.initialEpoch,null,null)}finally{e.isTraining=!1,Oi(a,t),Oi(s,n),Oi(l,i),Oi(c,o),u!=null&&Te(u)}}function y6(e){let t=[];e instanceof Le&&(e=[e]);for(let n=0;nn.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof Le)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function vre(e){return e instanceof Le}function py(e){return Array.isArray(e)}function g6(e){return!vre(e)&&!py(e)}function x6(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(py(e)&&e.length>0)i=!0;else if(g6(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new W(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(g6(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new W(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(py(e)){if(e=e,e.length!==t.length)throw new W(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new W(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=y6(s),n!=null)for(let i=0;i=0&&c!==u)throw new W(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function kre(e,t,n){let r=Ua(e.map(s=>s.shape[0]));r.sort();let a=Ua(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new W(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new W(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!_.arraysEqual(r,a))throw new W(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function Ire(e,t,n){let r=[$i,Kp,Mc];for(let a=0;a1)throw new W(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var Nre="layers-model",fa=class extends Gr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new W("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");lre(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=rre(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ca))throw new W("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new W(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(ny(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new W(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>ny(s))}else{let s=ny(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s{for(let s=0;s1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=Sre(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Mi("metric",()=>{for(let s=0;s{let l="",c,u,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Kp?["accuracy","acc"].indexOf(d)!==-1?u=ry:["crossentropy","ce"].indexOf(d)!==-1&&(u=a6):this.lossFunctions[s]===Xp?["accuracy","acc"].indexOf(d)!==-1?u=s6:["crossentropy","ce"].indexOf(d)!==-1&&(u=i6):["accuracy","acc"].indexOf(d)!==-1?u=ay:["crossentropy","ce"].indexOf(d)!==-1&&(u=sy);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),h=u,c=l+f}else h=nre(d),c=l+Jp(d);let p;Mi(c,()=>{p=h}),a(s,c,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;cy(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return Tn(l)}finally{Oi(s[0],e),Oi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),wre(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new W(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new W(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new W("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new Di;if(e instanceof Le&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new W(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;oi.name);for(let i=0;i0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new W(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return L(()=>{let r=this.checkNumSamples(e);if(n)throw new De("Verbose predictLoop() is not implemented yet.");let a=dy(r,t),s=this.outputs.map(i=>[]);for(let i=0;i{let o=a[i][0],l=a[i][1],c=Dc(e,o,l),u=[];if(Array.isArray(c))for(let d=0;ds[l].push(o));return Tn(s.map(i=>ot(i,0)))})}predict(e,t={}){let n=y6(e);w6(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return cy(r),this.predictLoop(n,r)}finally{Oi(n,e)}}predictOnBatch(e){w6(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new vr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s0&&e[0].shape[0]%r!=0)throw new W(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let c=d6(r,this.outputNames);l=[];for(let u=0;u{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new De("Verbose mode is not implemented yet.");if(a!=null)throw new De("steps mode in testLoop() is not implemented yet");{let o=dy(s,n),l=nn(kr(0,s));for(let c=0;c1&&(a+=`_${bv(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let p=0;p1&&p{d=se(d,p)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>L(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;lpa(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=pa(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[pa(Jp(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>pa(Jp(e)));{let e={};for(let t in this.metrics)e[t]=pa(Jp(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Fc(e.optimizer_config),n=Nr(t),r;if(typeof e.loss=="string")r=Ci(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>Ci(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=Ci(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>Ci(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=Ci(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=vn.getSaveHandlers(e);if(i.length===0)throw new W(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new W(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new W("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await vn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:Nre,generatedBy:`TensorFlow.js tfjs-layers v${ly}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await vn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=vn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;l6(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){l6(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};fa.className="Model";re.registerClass(fa);var b6=class extends fa{};b6.className="Functional";re.registerClass(b6);async function Tre(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Fc(n),a=Nr(r,t);if(e.weightsManifest!=null){let s=await vn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),Te(s)}return a}async function Cre(e,t){if(t==null&&(t={}),typeof e=="string"){let n=vn.getLoadHandlers(e,t);if(n.length===0)n.push(vn.browserHTTPRequest(e,t));else if(n.length>1)throw new W(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Ere(e,void 0,t)}async function Ere(e,t,n){if(n==null&&(n={}),e.load==null)throw new W("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=Nr(Fc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new W("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=Rre(r.weightData,r.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),Te(c),Te(u.map(h=>h.tensor))}return o}function Rre(e,t){let n=vn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Ul=class extends fa{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Vp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new W(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Ul||e instanceof fa,n;if(t){if(n=e,n.outputs.length!==1)throw new W("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new W("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new W("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=Xv({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new W(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new W("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=qv(this.outputs[0])}this.inboundNodes=[],new Hp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Ei(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(rt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new fa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new vr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new vr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new vr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new vr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new W("Legacy serialization format not supported yet.");a=t}else _.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Ul))throw new De(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=Nr(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new W("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new W("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Ul.className="Sequential";re.registerClass(Ul);function Mre(e){return new fa(e)}function Fre(e){return new Ul(e)}function $re(e,t){return t==null&&(t={}),Cre(e,t)}function Lv(e){return Xv(e)}function Dre(e,t){dr.registerCallbackConstructor(e,t)}var Cn=class extends re.Serializable{getConfig(){return{}}},_6=class extends Cn{apply(e,t=1){return dte(e,t)}};_6.className="elu";re.registerClass(_6);var v6=class extends Cn{apply(e){return Dd(e)}};v6.className="selu";re.registerClass(v6);var k6=class extends Cn{apply(e){return Lr(e)}};k6.className="relu";re.registerClass(k6);var I6=class extends Cn{apply(e){return L(()=>xl(6,Lr(e)))}};I6.className="relu6";re.registerClass(I6);var S6=class extends Cn{apply(e){return e}};S6.className="linear";re.registerClass(S6);var N6=class extends Cn{apply(e){return kn(e)}};N6.className="sigmoid";re.registerClass(N6);var T6=class extends Cn{apply(e){return fte(e)}};T6.className="hardSigmoid";re.registerClass(T6);var E6=class extends Cn{apply(e){return Ai(e)}};E6.className="softplus";re.registerClass(E6);var C6=class extends Cn{apply(e){return pte(e)}};C6.className="softsign";re.registerClass(C6);var R6=class extends Cn{apply(e){return di(e)}};R6.className="tanh";re.registerClass(R6);var fy=class extends Cn{apply(e,t=-1){return nc(e,t)}};fy.className="softmax";re.registerClass(fy);var M6=class extends Cn{apply(e,t=-1){return Td(e,t)}};M6.className="logSoftmax";re.registerClass(M6);var F6=class extends Cn{apply(e,t=1){return L(()=>kn(e.mul(t)).mul(e))}};F6.className="swish";re.registerClass(F6);var $6=class extends Cn{apply(e){return L(()=>B(e,di(Ai(e))))}};$6.className="mish";re.registerClass($6);function Xa(e){return e.getClassName()}function my(e,t={}){return kc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function Ka(e){if(e==null){let t={};return t.className="linear",t.config={},my(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},my(t)}else return e instanceof Cn?e:my(e)}function Ay(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var D6=class extends re.Serializable{},Oc=class extends D6{constructor(e){super();Ay(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return L(()=>{let t=Et([1]);return this.hasL1&&(t=se(t,Ne(B(this.l1,Dt(e))))),this.hasL2&&(t=se(t,Ne(B(this.l2,Ec(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Oc.className="L1L2";re.registerClass(Oc);function Ore(e){return Ay(e),new Oc({l1:e!=null?e.l1:null,l2:0})}function zre(e){return Ay(e),new Oc({l2:e!=null?e.l2:null,l1:0})}var O6={l1l2:"L1L2"};function ut(e){return CA(e)}function z6(e,t={}){return kc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function yt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in O6?O6[e]:e,config:{}};return z6(t)}else return e instanceof D6?e:z6(e)}var yy=class extends Ge{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Lr(e);return this.maxValue!=null&&(n=In(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};yy.className="ReLU";re.registerClass(yy);var gy=class extends Ge{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return Ku(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};gy.className="LeakyReLU";re.registerClass(gy);var xy=class extends Ge{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=At(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=yt(e.alphaRegularizer),this.alphaConstraint=Lt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new W(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=rt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r(Tt(t),t==="channelsFirst"?Ze(e,[0,2,3,1]):e))}function P6(e,t){return L(()=>(Tt(t),t==="channelsFirst"?Ze(e,[0,2,3,4,1]):e))}function Pre(e,t,n,r=1,a="valid",s,i=1){return L(()=>{if(s==null&&(s=_r()),Tt(s),e.shape.length!==3)throw new W(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new W(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new W(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ze(e,[0,2,1])),a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=wd(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Ir(o,n)),o})}function L6(e,t,n,r=[1,1],a="valid",s,i,o=null){return L(()=>{if(s==null&&(s=_r()),Tt(s),e.rank!==3&&e.rank!==4)throw new W(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new W(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=vy(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=La.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ze(l,[0,3,1,2])),l})}function Lre(e,t,n,r=[1,1,1],a="valid",s,i){return L(()=>{if(s==null&&(s=_r()),Tt(s),e.rank!==4&&e.rank!==5)throw new W(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new W(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=P6(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=cm(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Ir(o,n)),s==="channelsFirst"&&(o=Ze(o,[0,4,1,2,3])),o})}var ky=class extends Ge{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",ky.verifyArgs(t),this.rank=e,Ut(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new De(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Hl(t.kernelSize,e,"kernelSize"),this.strides=Hl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,er(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Tt(this.dataFormat),this.activation=Ka(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=At(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Lt(t.biasConstraint),this.biasRegularizer=yt(t.biasRegularizer),this.activityRegularizer=yt(t.activityRegularizer),this.dilationRate=Hl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new W(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new W(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new W(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(jr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!MA(e.kernelSize,"number",1,3))throw new W(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Xa(this.activation),useBias:this.useBias,biasInitializer:kt(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},zc=class extends ky{constructor(e,t){super(e,t);this.kernel=null,zc.verifyArgs(t),this.filters=t.filters,Ut(this.filters,"filters"),this.kernelInitializer=At(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Lt(t.kernelConstraint),this.kernelRegularizer=yt(t.kernelRegularizer)}build(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new W(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return L(()=>{e=ze(e);let n,r=this.bias==null?null:this.bias.read(),a=vv(this.activation.getClassName());if(a!=null&&this.rank===2)n=L6(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=Pre(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=L6(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=Lre(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new De("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=rt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a 0 but got ${JSON.stringify(e.filters)}`)}},Pc=class extends zc{constructor(e){super(2,e);Pc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!MA(e.kernelSize,"number",1,2))throw new W(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Pc.className="Conv2D";re.registerClass(Pc);var Lc=class extends zc{constructor(e){super(3,e);Lc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new W(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Lc.className="Conv3D";re.registerClass(Lc);var Iy=class extends Pc{constructor(e){super(e);if(this.inputSpec=[new Rt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new W(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=rt(e),e.length!==4)throw new W("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new W("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Rt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return L(()=>{let n=ze(e);if(n.shape.length!==4)throw new W(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],c=this.kernelSize[0],u=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=qr(o,h,c,this.padding),m=qr(l,d,u,this.padding),f=[a,p,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ze(n,[0,2,3,1]));let A=bd(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=Ze(A,[0,3,1,2])),this.bias!=null&&(A=Ir(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=rt(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=qr(t[r],o,s,this.padding),t[a]=qr(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Iy.className="Conv2DTranspose";re.registerClass(Iy);var Sy=class extends Lc{constructor(e){super(e);if(this.inputSpec=[new Rt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new W(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=rt(e),e.length!==5)throw new W("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new W("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Rt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return L(()=>{let n=ze(e);if(n.shape.length!==5)throw new W(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=r[o],c=r[s],u=r[i],h=this.kernelSize[0],d=this.kernelSize[1],p=this.kernelSize[2],m=this.strides[0],f=this.strides[1],A=this.strides[2],y=qr(l,m,h,this.padding),g=qr(c,f,d,this.padding),x=qr(u,A,p,this.padding),v=[a,y,g,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ze(n,[0,2,3,4,1]));let w=$w(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=Ze(w,[0,4,1,2,3])),this.bias!==null&&(w=Ir(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=rt(e);let t=e.slice(),n,r,a,s;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3,s=4):(n=4,r=1,a=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],h=this.strides[2];return t[n]=this.filters,t[r]=qr(t[r],c,i,this.padding),t[a]=qr(t[a],u,o,this.padding),t[s]=qr(t[s],h,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Sy.className="Conv3DTranspose";re.registerClass(Sy);var W6=class extends zc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new W("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new W("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new W(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=At(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=yt(t.depthwiseRegularizer),this.depthwiseConstraint=Lt(t.depthwiseConstraint),this.pointwiseInitializer=At(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=yt(t.pointwiseRegularizer),this.pointwiseConstraint=Lt(t.pointwiseConstraint)}build(e){if(e=rt(e),e.length{e=ze(e);let n;if(this.rank===1)throw new De("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ze(e,[0,2,3,1])),n=Em(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ir(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ze(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.pointwiseInitializer=kt(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseConstraint),e.pointwiseConstraint=Pt(this.pointwiseConstraint),e}};W6.className="SeparableConv";var Ny=class extends W6{constructor(e){super(2,e)}};Ny.className="SeparableConv2D";re.registerClass(Ny);var e0=class extends zc{constructor(e){super(1,e);e0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!MA(e.kernelSize,"number",1,1))throw new W(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};e0.className="Conv1D";re.registerClass(e0);var Ty=class extends Ge{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return L(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=Mp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Mp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Mp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Mp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ty.className="Cropping2D";re.registerClass(Ty);var Ey=class extends Ge{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,ste(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return L(()=>{let n=ze(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=Ze(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return Ze(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ey.className="UpSampling2D";re.registerClass(Ey);function Wre(e,t,n=[1,1],r="valid",a,s){return L(()=>{a==null&&(a=_r()),Tt(a);let i=vy(e,a);if(e.rank!==4)throw new W(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new W(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=ml(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=Ze(i,[0,3,1,2])),i})}var Cy=class extends ky{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=At(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Lt(e.depthwiseConstraint),this.depthwiseRegularizer=yt(e.depthwiseRegularizer)}build(e){if(e=rt(e),e.length<4)throw new W(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new W(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return L(()=>{e=ze(e);let n=Wre(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ir(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=Tr(t,this.kernelSize[0],this.padding,this.strides[0]),s=Tr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseRegularizer),e}};Cy.className="DepthwiseConv2D";re.registerClass(Cy);function B6(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new W("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function V6(e,t,n,r=!1,a,s,i=!1,o=!1){return L(()=>{let l=t.shape.length;if(l<3)throw new W(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(kr(2,l));if(t=Ze(t,c),s!=null)throw new De("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=on(a,-1)),a=Ze(a,c)),r&&(t=Dn(t,0),a!=null&&(a=Dn(a,0)));let u=[],h,d=n,p=t.shape[0],m=ur(t),f;a!=null&&(f=ur(a));for(let y=0;ye(g,d));if(a==null)h=x[0],d=x[1];else{let v=L(()=>{let w=f[y],b=$n(w).sub(w),k=x[0].mul(w).add(d[0].mul(b)),N=d.map((C,F)=>x[1][F].mul(w).add(C.mul(b)));return{output:k,newStates:N}});h=v.output,d=v.newStates}o&&u.push(h)}let A;return o&&(A=On(u,1)),[h,A,d]})}var Hr=class extends Ge{constructor(e){super(e);let t;if(e.cell==null)throw new W("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new t0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new W("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Rt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return kr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){JA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return L(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;ni.shape[i.shape.length-1]),s))throw new W(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Rt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){L(()=>{if(!this.stateful)throw new da("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new W("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Et([n,r])):this.states_=[Et([n,this.cell.stateSize])];else if(e==null)Te(this.states_),this.keptStates!=null&&(Te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Et([n,r])):this.states_[0]=Et([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new W(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Te(this.states_);for(let r=0;rVt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=B6(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Rt({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof Sr){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return L(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=ze(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new W(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=V6((d,p)=>{let m=this.cell.call([d].concat(p),i);return[m[0],m.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,r);let h=this.returnSequences?c:l;return this.returnState?[h].concat(u):h})}getInitialState(e){return L(()=>{let t=Et(e.shape);return t=Ne(t,[1,2]),t=Tc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?PA(t,[1,n]):t):this.cell.stateSize>1?[PA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Hr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=Nr(r,n);return new e(Object.assign(t,{cell:a}))}};Hr.className="RNN";re.registerClass(Hr);var Rc=class extends Ge{},n0=class extends Rc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ut(this.units,"units"),this.activation=Ka(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=At(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=yt(e.kernelRegularizer),this.recurrentRegularizer=yt(e.recurrentRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Wl([1,Ga([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Wl([1,Ga([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=rt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return L(()=>{if(e=e,e.length!==2)throw new W(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0$n(e),rate:this.dropout,training:r})),0$n(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Ur(B(e,s),this.kernel.read()):a=Ur(e,this.kernel.read()),this.bias!=null&&(a=Ir(a,this.bias.read())),i!=null&&(n=B(n,i));let o=se(a,Ur(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Xa(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};n0.className="SimpleRNNCell";re.registerClass(n0);var Ry=class extends Hr{constructor(e){e.cell=new n0(e),super(e)}call(e,t){return L(()=>{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};Ry.className="SimpleRNN";re.registerClass(Ry);var r0=class extends Rc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new W("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Ut(this.units,"units"),this.activation=Ka(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ka(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=At(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=yt(e.kernelRegularizer),this.recurrentRegularizer=yt(e.recurrentRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Wl([1,Ga([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Wl([1,Ga([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=rt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return L(()=>{if(e=e,e.length!==2)throw new W(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0$n(e),rate:this.dropout,training:n,count:3})),0$n(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};My.className="GRU";re.registerClass(My);var Wc=class extends Rc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ut(this.units,"units"),this.activation=Ka(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ka(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=At(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=yt(e.kernelRegularizer),this.recurrentRegularizer=yt(e.recurrentRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Wl([1,Ga([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Wl([1,Ga([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=rt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends hr{apply(i,o){let l=a.apply([s]),c=new $p().apply([s]),u=a.apply([s*2]);return Fv(Fv(l,c),u)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return L(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new W(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0$n(e),rate:this.dropout,training:n,count:4})),0$n(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Fy.className="LSTM";re.registerClass(Fy);var t0=class extends Rc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return L(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i{Mi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(Nr(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return QA(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;sDv(t(),n),i=()=>Cc(s,t,r);return!a||a<=1?Vt(i().clone()):Array(a).fill(void 0).map(i).map(o=>Vt(o.clone()))}var Bre=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a{if(this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new W("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return L(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Et(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){L(()=>{if(!this.stateful)throw new da("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new W("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Et(a)):this.states_=[Et(a)];else if(e==null)Te(this.states_),this.keptStates!=null&&(Te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Et(a)):this.states_[0]=Et(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new W(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Te(this.states_);for(let s=0;sVt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=Tr(l,r[0],a,s[0],i[0]),h=Tr(c,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,h]:[u,h,n]]}};j6.className="ConvRNN2D";var a0=class extends Wc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Ut(this.filters,"filters"),this.kernelSize=Hl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Ut(o,"kernelSize")),this.strides=Hl(r||1,2,"strides"),this.strides.forEach(o=>Ut(o,"strides")),this.padding=a||"valid",er(this.padding),this.dataFormat=s||"channelsLast",Tt(this.dataFormat),this.dilationRate=Hl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Ut(o,"dilationRate"))}build(e){var t;e=rt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new W(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends hr{apply(u,h){let d=l.apply([c]),p=Fn([c]),m=l.apply([c*2]);return WA([d,p,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return L(()=>{if(e.length!==3)throw new W(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0$n(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,ae,te)=>!ae||!ae[te]?Y:B(ae[te],Y),c=l(r,o,0),u=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0$n(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,m=l(a,p,0),f=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[x,v,w,b]=ln(this.kernel.read(),i,g),[k,N,C,F]=this.useBias?ln(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,x,k,this.padding),u=this.inputConv(u,v,N,this.padding),h=this.inputConv(h,w,C,this.padding),d=this.inputConv(d,b,F,this.padding);let[O,z,V,j]=ln(this.recurrentKernel.read(),i,g);m=this.recurrentConv(m,O),f=this.recurrentConv(f,z),A=this.recurrentConv(A,V),y=this.recurrentConv(y,j);let U=this.recurrentActivation.apply(se(c,m)),X=this.recurrentActivation.apply(se(u,f)),G=se(B(X,s),B(U,this.activation.apply(se(h,A)))),ee=B(this.recurrentActivation.apply(se(d,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=Bre(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=ia(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ir(a,n,this.dataFormat):a}recurrentConv(e,t){return ia(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};a0.className="ConvLSTM2DCell";re.registerClass(a0);var $y=class extends j6{constructor(e){let t=new a0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};$y.className="ConvLSTM2D";re.registerClass($y);var s0=class extends Ge{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);if(0Dv(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};s0.className="Dropout";re.registerClass(s0);var Dy=class extends s0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Dy.className="SpatialDropout1D";re.registerClass(Dy);var Oy=class extends Ge{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Ut(this.units,"units"),this.activation=Ka(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Lt(e.kernelConstraint),this.biasConstraint=Lt(e.biasConstraint),this.kernelRegularizer=yt(e.kernelRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.activityRegularizer=yt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=rt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=rt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=ze(e),r=vv(this.activation.getClassName()),a;return r!=null?a=Ur(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Ur(n,this.kernel.read()),this.bias!=null&&(a=Ir(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Xa(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Oy.className="Dense";re.registerClass(Oy);var zy=class extends Ge{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=rt(e);for(let t of e.slice(1))if(t==null)throw new W(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ha(e,1)]}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:Xa(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Py.className="Activation";re.registerClass(Py);var Ly=class extends Ge{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return L(()=>(e=ze(e),ute(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Ly.className="RepeatVector";re.registerClass(Ly);var Wy=class extends Ge{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=ze(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Wy.className="Reshape";re.registerClass(Wy);var By=class extends Ge{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=kr(1,e.dims.length+1);if(!_.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Rt({ndim:this.dims.length+1})]}computeOutputShape(e){e=rt(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return Ze(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};By.className="Permute";re.registerClass(By);var Vy=class extends Ge{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),r=-1;return Vu(gi(n,this.maskValue),r)}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=ze(e),r=-1,a=!0,s=Vu(gi(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};Vy.className="Masking";re.registerClass(Vy);var jy=class extends Ge{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(ft(e.inputLength))}this.inputDim=e.inputDim,Ut(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Ut(this.outputDim,"outputDim"),this.embeddingsInitializer=At(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=yt(e.embeddingsRegularizer),this.activityRegularizer=yt(e.activityRegularizer),this.embeddingsConstraint=Lt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return L(()=>this.maskZero?(e=ze(e),gi(e,Ue(e))):null)}computeOutputShape(e){if(e=rt(e),this.inputLength==null)return[...e,this.outputDim];let t=ft(this.inputLength);if(t.length!==e.length-1)throw new W(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);return n.dtype!=="int32"&&(n=Nc(n,"int32")),$v(this.embeddings.read(),n.as1D()).reshape(rt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:kt(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Pt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};jy.className="Embedding";re.registerClass(jy);var zi=class extends Ge{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new De}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new W(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;aa.length);e.indexOf(null)===-1&&Ua(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return L(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Ga(r);for(let s of e){let i=s.rank;for(let o=0;o1){let c=kr(1,l).concat([0]);n.push(Ze(o,c)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=Ze(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(kr(0,i-1));s=Ze(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r{if(t==null)return null;if(!Array.isArray(t))throw new W("`mask` should be an Array");if(!Array.isArray(e))throw new W("`inputs` should be an Array");if(t.length!==e.length)throw new W(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:on(r,0));let n=t[0];for(let r=1;r{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new W("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return L(()=>WA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new W("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new W("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new W("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new W(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return L(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s3||t.shape.length>3)throw new De("batchDot is not implemented for tensors of 4D or higher rank yet");if(_.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),_.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new De("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return L(()=>{let i;if(r>a){i=r-a;let l=[];for(let c=0;cr){i=a-r;let l=[];for(let c=0;c0){let l;r>a?l=r+a-3:l=r-1;let c=[];for(let u=l;u"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new W(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new W(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>Bc(a,e[s].shape.length)):r=[Bc(this.axes,t.shape.length),Bc(this.axes,n.shape.length)],this.normalize&&(t=Gp(t,r[0]),n=Gp(n,r[1])),Vre(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Bc(this.axes,e.length),Bc(this.axes,t.length)],n}computeOutputShape(e){_.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Zy.className="Dot";re.registerClass(Zy);var Yy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=ze(e);return Cc(()=>Fp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Yy.className="GaussianNoise";re.registerClass(Yy);var Jy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?Cc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(Fp(n.shape,1,r))},()=>n,t.training||!1):n})}};Jy.className="GaussianDropout";re.registerClass(Jy);var Qy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return L(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Cc(()=>{let r=ze(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=za(wl(n),this.rate);o=Nc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>ze(e),t.training||!1)}return e})}};Qy.className="AlphaDropout";re.registerClass(Qy);function Vc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=Sw(e,t,n,r,a,s);else if(e.rank===3)i=Nw(e,t,n,r,a,s);else if(e.rank===4)i=Tw(e,t,n,r,a,s);else throw new De(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function jre(e,t,n,r,a=.001){return L(()=>{let s=Cd(e,r),i=s.mean,o=s.variance;return[Vc(e,i,o,n,t,a),i,o]})}function Ure(e,t,n,r,a=.001){return L(()=>{let s=Cd(e,r),i=s.mean,o=s.variance,l=[];for(let p of kr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let c=i.reshape(l),u=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[Vc(e,c,u,d,h,a),i,o]})}function Hre(e,t,n,r,a=.001){return _.arraysEqual(r.slice().sort(),kr(0,e.rank-1))?jre(e,t,n,r,a):Ure(e,t,n,r,a)}var e2=class extends Ge{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=At(e.betaInitializer||"zeros"),this.gammaInitializer=At(e.gammaInitializer||"ones"),this.movingMeanInitializer=At(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=At(e.movingVarianceInitializer||"ones"),this.betaConstraint=Lt(e.betaConstraint),this.gammaConstraint=Lt(e.gammaConstraint),this.betaRegularizer=yt(e.betaRegularizer),this.gammaRegularizer=yt(e.gammaRegularizer)}build(e){e=rt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new W(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Rt({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return L(()=>{let n=t.training==null?!1:t.training,r=ze(e),a=r.shape,s=a.length,i=kr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Ei(1,s);l[o]=a[o];let c=i.slice();c.sort();let u=!_.arraysEqual(c,kr(0,s).slice(0,s-1)),h=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return Vc(r,A,y,g,x,this.epsilon)}else return Vc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,m]=Hre(r,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(A,y,g)=>{L(()=>{let x=1-g,v=A.read(),w=v.sub(y).mul(x);A.write(v.sub(w))})};return(()=>{f(this.movingMean,p,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),movingMeanInitializer:kt(this.movingMeanInitializer),movingVarianceInitializer:kt(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Pt(this.betaConstraint),gammaConstraint:Pt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};e2.className="BatchNormalization";re.registerClass(e2);var t2=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=At(e.betaInitializer||"zeros"),this.gammaInitializer=At(e.gammaInitializer||"ones"),this.betaRegularizer=yt(e.betaRegularizer),this.gammaRegularizer=yt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=rt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Ua(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=ze(e),r=n.shape,a=r.length;return L(()=>{let s=!0,{mean:i,variance:o}=Cd(n,this.axis,s),l=Ei(1,a);for(let m of this.axis)l[m]=r[m];let c=m=>m!=null&&m.shape.length!==a&&this.axis!==[a-1]?m.reshape(l):m,u=c(this.gamma.read()),h=c(this.beta.read()),d=[],p=[];for(let m=0;m{if(e.rank!==4)throw new W(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new W("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=_r()),n!=="channelsLast"&&n!=="channelsFirst")throw new W(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],oa(e,r)})}var n2=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?_r():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new W(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new W(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new W(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Rt({ndim:4})]}computeOutputShape(e){e=rt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return L(()=>Gre(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};n2.className="ZeroPadding2D";re.registerClass(n2);function i0(e,t,n,r,a,s){return L(()=>{Tt(a),Nv(s),er(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=_r()),s==null&&(s="max"),e=vy(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Yu(e,t,n,o):i=Hu(e,t,n,o),a==="channelsFirst"&&(i=Ze(i,[0,3,1,2])),i})}function U6(e,t,n,r,a,s){return L(()=>{Tt(a),Nv(s),er(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=_r()),s==null&&(s="max"),e=P6(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=_m(e,t,n,o):i=om(e,t,n,o),a==="channelsFirst"&&(i=Ze(i,[0,4,1,2,3])),i})}var H6=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new W(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Ut(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new W(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,er(this.padding),this.inputSpec=[new Rt({ndim:3})]}computeOutputShape(e){e=rt(e);let t=Tr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return L(()=>{this.invokeCallHook(e,t),e=Tc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Pa(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},r2=class extends H6{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),er(r),i0(e,t,n,r,a,"max")}};r2.className="MaxPooling1D";re.registerClass(r2);var a2=class extends H6{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),er(r),i0(e,t,n,r,a,"avg")}};a2.className="AveragePooling1D";re.registerClass(a2);var G6=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new W(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Ut(this.poolSize,"poolSize"),Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),er(this.padding),this.inputSpec=[new Rt({ndim:4})]}computeOutputShape(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Tr(t,this.poolSize[0],this.padding,this.strides[0]),n=Tr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return L(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},s2=class extends G6{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),er(r),i0(e,t,n,r,a,"max")}};s2.className="MaxPooling2D";re.registerClass(s2);var i2=class extends G6{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),er(r),i0(e,t,n,r,a,"avg")}};i2.className="AveragePooling2D";re.registerClass(i2);var q6=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new W(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Ut(this.poolSize,"poolSize"),Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),er(this.padding),this.inputSpec=[new Rt({ndim:5})]}computeOutputShape(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Tr(t,this.poolSize[0],this.padding,this.strides[0]),n=Tr(n,this.poolSize[1],this.padding,this.strides[1]),r=Tr(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return L(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},o2=class extends q6{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),er(r),U6(e,t,n,r,a,"max")}};o2.className="MaxPooling3D";re.registerClass(o2);var l2=class extends q6{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),er(r),U6(e,t,n,r,a,"avg")}};l2.className="AveragePooling3D";re.registerClass(l2);var X6=class extends Ge{constructor(e){super(e);this.inputSpec=[new Rt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new De}},u2=class extends X6{constructor(e){super(e||{})}call(e,t){return L(()=>{let n=ze(e);return vt(n,1)})}};u2.className="GlobalAveragePooling1D";re.registerClass(u2);var c2=class extends X6{constructor(e){super(e||{})}call(e,t){return L(()=>{let n=ze(e);return Kn(n,1)})}};c2.className="GlobalMaxPooling1D";re.registerClass(c2);var K6=class extends Ge{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),this.inputSpec=[new Rt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new De}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},h2=class extends K6{call(e,t){return L(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?vt(n,[1,2]):vt(n,[2,3])})}};h2.className="GlobalAveragePooling2D";re.registerClass(h2);var d2=class extends K6{call(e,t){return L(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Kn(n,[1,2]):Kn(n,[2,3])})}};d2.className="GlobalMaxPooling2D";re.registerClass(d2);var Z6=class extends Ge{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=Nr(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},p2=class extends Z6{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=rt(e),e.length<3)throw new W(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=rt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return L(()=>(e=ze(e),V6((n,r)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};p2.className="TimeDistributed";re.registerClass(p2);function qre(e){Ri(ate,"BidirectionalMergeMode",e)}var Xre="concat",f2=class extends Z6{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Nr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=Nr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Xre:e.mergeMode,qre(this.mergeMode),e.weights)throw new De("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):Tn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=B6(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new W("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Rt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(r!=null)throw new De("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Sr;for(let l of s)if(l instanceof Sr!==o)throw new W("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let h=super.apply(l,t);return this.inputSpec=u,h}else return super.apply(e,t)}call(e,t){return L(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Dn(a,1));let i;return this.mergeMode==="concat"?i=WA([r,a]):this.mergeMode==="sum"?i=se(r,a):this.mergeMode==="ave"?i=B(.5,se(r,a)):this.mergeMode==="mul"?i=B(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Mi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Mi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Nr(t.layer);if(delete t.layer,t.numConstants!=null)throw new De("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};f2.className="Bidirectional";re.registerClass(f2);function wte(e){return new Bl(e)}function bte(e){return new wy(e)}function _te(e){return new yy(e)}function vte(e){return new gy(e)}function kte(e){return new xy(e)}function Ite(e){return new _y(e)}function Ste(e){return new by(e)}function Nte(e){return new e0(e)}function Tte(e){return new Pc(e)}function Ete(e){return new Iy(e)}function Cte(e){return new Lc(e)}function Rte(e){return new Sy(e)}function Mte(e){return new Ny(e)}function Fte(e){return new Ty(e)}function $te(e){return new Ey(e)}function Dte(e){return new Cy(e)}function Ote(e){return new Py(e)}function zte(e){return new Oy(e)}function Pte(e){return new s0(e)}function Lte(e){return new Dy(e)}function Wte(e){return new zy(e)}function Bte(e){return new Ly(e)}function Vte(e){return new Wy(e)}function jte(e){return new By(e)}function Ute(e){return new jy(e)}function Hte(e){return new Uy(e)}function Gte(e){return new Gy(e)}function qte(e){return new Ky(e)}function Xte(e){return new qy(e)}function Kte(e){return new Xy(e)}function Zte(e){return new Hy(e)}function Yte(e){return new Zy(e)}function Jte(e){return new e2(e)}function Qte(e){return new t2(e)}function ene(e){return new n2(e)}function KA(e){return new a2(e)}function tne(e){return KA(e)}function nne(e){return KA(e)}function ZA(e){return new i2(e)}function rne(e){return ZA(e)}function ane(e){return ZA(e)}function YA(e){return new l2(e)}function sne(e){return YA(e)}function ine(e){return YA(e)}function one(e){return new u2(e)}function lne(e){return new h2(e)}function Wv(e){return new c2(e)}function Bv(e){return new d2(e)}function Vv(e){return new r2(e)}function jv(e){return new s2(e)}function une(e){return new o2(e)}function cne(e){return new My(e)}function hne(e){return new r0(e)}function dne(e){return new Fy(e)}function pne(e){return new Wc(e)}function fne(e){return new Ry(e)}function mne(e){return new n0(e)}function Ane(e){return new $y(e)}function yne(e){return new a0(e)}function gne(e){return new Hr(e)}function xne(e){return new t0(e)}function wne(e){return new f2(e)}function bne(e){return new p2(e)}var _ne=Wv,vne=Bv,kne=Vv,Ine=jv;function Sne(e){return new Yy(e)}function Nne(e){return new Jy(e)}function Tne(e){return new Qy(e)}function Ene(e){return new Vy(e)}var Y6={};Me(Y6,{MAPE:()=>sae,MSE:()=>lae,binaryAccuracy:()=>Kre,binaryCrossentropy:()=>Zre,categoricalAccuracy:()=>Jre,categoricalCrossentropy:()=>Qre,cosineProximity:()=>nae,mape:()=>iae,meanAbsoluteError:()=>rae,meanAbsolutePercentageError:()=>aae,meanSquaredError:()=>oae,mse:()=>uae,precision:()=>eae,recall:()=>tae,sparseCategoricalAccuracy:()=>Yre});function Kre(e,t){return ry(e,t)}function Zre(e,t){return a6(e,t)}function Yre(e,t){return s6(e,t)}function Jre(e,t){return ay(e,t)}function Qre(e,t){return sy(e,t)}function eae(e,t){return r6(e,t)}function tae(e,t){return Xne(e,t)}function nae(e,t){return ty(e,t)}function rae(e,t){return qp(e,t)}function aae(e,t){return jl(e,t)}function sae(e,t){return jl(e,t)}function iae(e,t){return jl(e,t)}function oae(e,t){return $i(e,t)}function lae(e,t){return $i(e,t)}function uae(e,t){return $i(e,t)}var J6={};Me(J6,{modelFromJSON:()=>Tre});var Q6={};Me(Q6,{l1:()=>hae,l1l2:()=>cae,l2:()=>dae});function cae(e){return new Oc(e)}function hae(e){return Ore(e)}function dae(e){return zre(e)}var e4=class extends Vl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof fa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function o0(e,t){return et}var n4=class extends e4{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new De("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=o0:this.mode==="max"?this.monitorFunc=t4:this.monitor.indexOf("acc")!==-1?this.monitorFunc=t4:this.monitorFunc=o0,this.monitorFunc===o0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===o0?Infinity:-Infinity}async onEpochEnd(e,t){await qa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function pae(e){return new n4(e)}var fae={earlyStopping:pae},Er;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Er||(Er={}));var r4;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(r4||(r4={}));var m2={};function mae(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};m2[e]=n}function a4(e){return m2[e]}function Aae(e){delete m2[e]}function I(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return mn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>mn(h,n,r,a));let c=mn(t.inputNames.slice(o)[0],n,r,a),u=c.dataSync();return s.type==="number"?u[0]:_.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function mn(e,t,n,r){let[a,s]=Ln(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[l0(a,o)]);return i!==void 0?t[l0(a,i)][s]:void 0}function yae(e,t,n){return t[l0(e,n.currentContextId)]}function ma(e,t){let[n,r]=Ln(e);return[l0(n,t&&t.currentContextId),r]}function l0(e,t){return t?`${e}-${t}`:e}function Ln(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function u0(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function Aa(e){return e.kept?e:Dr(e)}var s4={};Me(s4,{json:()=>gae});var gae=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],i4={};Me(i4,{json:()=>xae});var xae=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],o4={};Me(o4,{json:()=>wae});var wae=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],l4={};Me(l4,{json:()=>bae});var bae=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],u4={};Me(u4,{json:()=>_ae});var _ae=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],c4={};Me(c4,{json:()=>vae});var vae=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],h4={};Me(h4,{json:()=>kae});var kae=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],d4={};Me(d4,{json:()=>Iae});var Iae=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],p4={};Me(p4,{json:()=>Sae});var Sae=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],f4={};Me(f4,{json:()=>Nae});var Nae=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],m4={};Me(m4,{json:()=>Tae});var Tae=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],A4={};Me(A4,{json:()=>Eae});var Eae=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],y4={};Me(y4,{json:()=>Cae});var Cae=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],g4={};Me(g4,{json:()=>Rae});var Rae=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],x4={};Me(x4,{json:()=>Mae});var Mae=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],w4={};Me(w4,{json:()=>Fae});var Fae=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],b4={};Me(b4,{json:()=>$ae});var $ae=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],v4=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[s4,i4,o4,l4,u4,c4,h4,m4,f4,d4,A4,y4,g4,x4,w4,b4,p4],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?r.push(m[f.name]):f.op==="Const"?a.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(m=>{let f=i[m];f.inputNames.forEach(A=>{let[y]=ma(A);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(u).length===0?h.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(u).forEach(m=>{let[f]=ma(m),A=i[f];A!=null&&(A.signatureKey=u[m],l.push(A))}),Object.keys(c).length>0?Object.keys(c).forEach(m=>{let[f]=ma(m),A=i[f];A&&(A.signatureKey=c[m],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=a4(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=A2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=A2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=k2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=k2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=g2(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=g2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=v2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=v2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=y2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=y2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=S2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=S2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=_2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=_2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=I2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=I2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=w2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=w2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=b2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=b2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=_4(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=_4(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&r.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=ma(c.name),h={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:x2(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,s.push(h),a[u]=h}),Object.keys(a).forEach(c=>{let u=a[c];u.inputNames.forEach(h=>{let[d]=ma(h);u.inputs.push(a[d]),a[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,h]=ma(o[c.name]),d=a[u];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Dae(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function k4(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):Dae(e);return t?n:n.toLowerCase()}function A2(e,t,n,r=!1){let a=e[t];return a!=null?k4(a.s,r):n}function y2(e,t,n){let r=e[t];return r?r.b:n}function g2(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function x2(e){switch(typeof e=="string"&&(e=Er[e]),e){case Er.DT_FLOAT:return"float32";case Er.DT_INT32:case Er.DT_INT64:case Er.DT_INT8:case Er.DT_UINT8:return"int32";case Er.DT_BOOL:return"bool";case Er.DT_DOUBLE:return"float32";case Er.DT_STRING:return"string";default:return null}}function _4(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function w2(e,t,n){let r=e[t];return r&&r.type?x2(r.type):n}function b2(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>x2(a)):n}function I4(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function _2(e,t,n){let r=e[t];return r&&r.shape?I4(r.shape):n}function v2(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function k2(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>k4(s,r)):n}function I2(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>I4(a)):n}function S2(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var Oae=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return mn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return mn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return g2(this.node.rawAttrs,e,t);if(n.s!=null)return A2(this.node.rawAttrs,e,t);if(n.b!=null)return y2(this.node.rawAttrs,e,t);if(n.shape!=null)return _2(this.node.rawAttrs,e,t);if(n.type!=null)return w2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return v2(this.node.rawAttrs,e,t);if(n.list.s!=null)return k2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return I2(this.node.rawAttrs,e,t);if(n.list.b!=null)return S2(this.node.rawAttrs,e,t);if(n.list.type!=null)return b2(this.node.rawAttrs,e,t)}return t}},zae=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[yd(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[km(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[B(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[ge(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[pm(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Ad(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ye(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[xl(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Pr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[la(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Bd(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pae=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Dt(I("x",e,t,n))];case"Acos":return[Yf(I("x",e,t,n))];case"Acosh":return[Jf(I("x",e,t,n))];case"Asin":return[em(I("x",e,t,n))];case"Asinh":return[tm(I("x",e,t,n))];case"Atan":return[nm(I("x",e,t,n))];case"Atan2":return[rm(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[am(I("x",e,t,n))];case"Ceil":return[lm(I("x",e,t,n))];case"Complex":return[Ca(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[qu(I("x",e,t,n))];case"Cosh":return[_d(I("x",e,t,n))];case"Elu":return[Al(I("x",e,t,n))];case"Erf":return[fm(I("x",e,t,n))];case"Exp":return[Xn(I("x",e,t,n))];case"Expm1":return[mm(I("x",e,t,n))];case"Floor":return[yl(I("x",e,t,n))];case"Log":return[Mn(I("x",e,t,n))];case"Log1p":return[Sd(I("x",e,t,n))];case"Imag":return[kd(I("x",e,t,n))];case"Neg":return[_t(I("x",e,t,n))];case"Reciprocal":return[Nm(I("x",e,t,n))];case"Real":return[ec(I("x",e,t,n))];case"Relu":return[Lr(I("x",e,t,n))];case"Round":return[Tm(I("x",e,t,n))];case"Selu":return[Dd(I("x",e,t,n))];case"Sigmoid":return[kn(I("x",e,t,n))];case"Sin":return[Od(I("x",e,t,n))];case"Sign":return[Cm(I("x",e,t,n))];case"Sinh":return[zd(I("x",e,t,n))];case"Softplus":return[Ai(I("x",e,t,n))];case"Sqrt":return[Jt(I("x",e,t,n))];case"Square":return[st(I("x",e,t,n))];case"Tanh":return[di(I("x",e,t,n))];case"Tan":return[Fm(I("x",e,t,n))];case"ClipByValue":return[In(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Fd(I("x",e,t,n))];case"Rsqrt":return[$d(mn(e.inputNames[0],t,n))];case"Prod":return[Rd(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Ku(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Qu(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[ym(mn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function pr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){_.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;rn+` Shapes ${e} and ${t} must match`)}}}function S4(e){return!(typeof e=="number"||e.some(t=>t<0))}function jc(e,t,n){let r=N2(e,n),a=!S4(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=N2(s.shape,r)}),!S4(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function N2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var Lae=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ke(0),Vt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, + because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),pr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Vt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ur(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is - ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];P(()=>{t=H(t,[1,n,a]);for(let o=0;o{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);xr(t,a.shape,"TensorList shape mismatch: "),Ht(a)}),this.idTensor=ve(0),this.maxNumElements=r,Ht(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Kc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);xr(e,this.elementShape,"TensorList shape mismatch: ");let r=Xc(this.elementShape,this.tensors,e);return P(()=>{let a=this.tensors.map(s=>H(s,r));return cn(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Xc(this.elementShape,this.tensors,e),r=this.tensors.pop();return xr(r.shape,e,"TensorList shape mismatch: "),H(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(xr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ht(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);xr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Xc(this.elementShape,this.tensors,t);return H(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);xr(this.elementShape,t.shape,"TensorList shape mismatch: "),Ht(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);xr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Xc(this.elementShape,this.tensors,n);return e.length===0?Sr([],[0].concat(r)):P(()=>{let a=e.map(s=>H(this.tensors[s],r));return cn(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);xr(this.elementShape,t,"TensorList shape mismatch: ");let n=Xc(this.elementShape,this.tensors,t);return this.size()===0?Sr([],[0].concat(n)):P(()=>{let r=this.tensors.map(a=>H(a,n));return ot(r,0)})}};function use(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);xr(a,t,"TensorList shape mismatch: ");let s=mr(e);return new Kc(s,t,r)}function cse(e,t,n){return new Kc([],e,t,n)}function hse(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Kc([],n,e.dtype,r),i=mr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function dse(e,t,n){let r=0,a=t.map(u=>(r+=u,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to + ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];L(()=>{t=H(t,[1,n,a]);for(let o=0;o{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);pr(t,a.shape,"TensorList shape mismatch: "),Vt(a)}),this.idTensor=ke(0),this.maxNumElements=r,Vt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Uc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);pr(e,this.elementShape,"TensorList shape mismatch: ");let r=jc(this.elementShape,this.tensors,e);return L(()=>{let a=this.tensors.map(s=>H(s,r));return On(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=jc(this.elementShape,this.tensors,e),r=this.tensors.pop();return pr(r.shape,e,"TensorList shape mismatch: "),H(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(pr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Vt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);pr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=jc(this.elementShape,this.tensors,t);return H(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);pr(this.elementShape,t.shape,"TensorList shape mismatch: "),Vt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);pr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=jc(this.elementShape,this.tensors,n);return e.length===0?xr([],[0].concat(r)):L(()=>{let a=e.map(s=>H(this.tensors[s],r));return On(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);pr(this.elementShape,t,"TensorList shape mismatch: ");let n=jc(this.elementShape,this.tensors,t);return this.size()===0?xr([],[0].concat(n)):L(()=>{let r=this.tensors.map(a=>H(a,n));return ot(r,0)})}};function Wae(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);pr(a,t,"TensorList shape mismatch: ");let s=ur(e);return new Uc(s,t,r)}function Bae(e,t,n){return new Uc([],e,t,n)}function Vae(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Uc([],n,e.dtype,r),i=ur(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function jae(e,t,n){let r=0,a=t.map(u=>(r+=u,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is - ${r}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=P2(s,n),o=r===0?0:e.size/r,l=P(()=>{let u=[];e=H(e,[1,r,o]);for(let h=0;h{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),a=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),a=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let h=c.map(p=>p.id);u.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return c}case"LoopCond":{let r=I("pred",e,t,n);return[wa(r)]}case"Switch":{let r=I("pred",e,t,n),a=I("data",e,t,n);return a.kept||(a=wa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>yn(a,t,n)!==void 0);if(r){let a=yn(r,t,n);return[wa(a)]}return}case"Enter":{let r=I("frameName",e,t,n),a=I("tensor",e,t,n);return n.enterFrame(r),[wa(a)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[wa(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[wa(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),a=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new lse(c,a,r,s,l,i,o);return n.addTensorArray(u),[u.idTensor,ve(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=I("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),a=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[ve(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),a=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=hse(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=cse(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),a=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=use(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),a=n.getTensorList(r.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),a=I("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=dse(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function K4(e,t,n){let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),u=f0(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[p,m]=I("args",e,t,n),f=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:h,dilations:d,biasArg:p,preluArg:m,activationFunc:a,leakyreluAlpha:f}}var fse=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Id(I("x",e,t,n),I("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=f0(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[ha(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=K4(e,t,n);return[Ha.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=K4(e,t,n);return[Ha.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),s=f0(e,t,n);return[Sd(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=f0(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[wl(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[wm(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Zu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[nc(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=mw(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[gm(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Fm(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dilations",e,t,n),i=r[1],o=r[2],l=s[1],c=s[2];return[vm(I("x",e,t,n),I("filter",e,t,n),[i,o],a,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},mse=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),s=I("value",e,t,n);return[Qu(r,s,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("num",e,t,n);return[lw(r,a,s)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),s=I("seed",e,t,n);return[Aw(r,a,s)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[ml(r,a,s,i)]}case"Ones":return[Pn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Ln(I("x",e,t,n))];case"RandomUniform":return[Sl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("step",e,t,n);return[zd(r,a,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[qd(r,a,s,I("dtype",e,t,n),i)]}case"Zeros":return[Rt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[He(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function L2(e,t,n){let r=I("boxes",e,t,n),a=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Ase=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=L2(e,t,n),c=await Le.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=L2(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Le.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=L2(e,t,n);return[await Le.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=ge(I("condition",e,t,n),"bool"),a=[await qm(r)];return r.dispose(),a}case"ListDiff":return xw(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},yse=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),s=I("sorted",e,t,n),i=Hm(r,a,s);return[i.values,i.indices]}case"Unique":{let r=I("x",e,t,n),a=Xd(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),s=Xd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},gse=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[yn(e.name,t,n)||r];case"Placeholder":return[yn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[wa(c)]}case"IdentityN":return I("x",e,t,n).map(c=>wa(c));case"Snapshot":let a=I("x",e,t,n);return[wa(a)];case"Shape":return[sn(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>sn(c.shape));case"Size":return[ve(I("x",e,t,n).size,"int32")];case"Rank":return[ve(I("x",e,t,n).rank,"int32")];case"NoOp":return[ve(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;ce.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ve(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),P(()=>{let r=mr(t),a=n.length,s=r.length;_.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i{let r=[];for(let a=0;a{switch(e.op){case"HashTable":case"HashTableV2":{let a=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new xse(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=I("tableHandle",e,t,n,r);return[r.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},wse=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Le.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Le.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Le.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_se=(e,t,n)=>{switch(e.op){case"Equal":return[Ba(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[ki(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[pr(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[ja(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Cd(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[wi(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[fr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[tc(I("a",e,t,n))];case"LogicalOr":return[$d(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Cn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},vse=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[sw(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Je(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[Ha.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kse=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[xi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[xi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Em(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[oc(I("x",e,t,n))];case"LogSoftmax":return[Fd(I("x",e,t,n))];case"SparseToDense":return[Xm(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ise=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Rn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[It(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[kl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Te(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[vd(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Xu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[Ai(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[cm(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Od(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Td(I("x",e,t,n),i,o,l)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),s=I("size",e,t,n);return[Yb(r,a,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[rw(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Sse=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,r),[ot(s,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[bi(r,ge(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[bi(s,ge(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i{let r=I("axis",e,t,n),a=I("tensors",e,t,n),s=a[0].shape,i=Ua(a[0]).shape,o=a.map(l=>{let c=_.arraysEqual(l.shape,s);if(!c&&!_.arraysEqual(Ua(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:H(l,s)});return[cn(o,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return mr(a,r)}case"Tile":{let r=I("reps",e,t,n);return[Va(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return Lt(s,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),s=I("shape",e,t,n);return[vw(r,a,s)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[kw(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Xm(r,s,a,s.dtype===i.dtype?i:ge(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nse=(e,t,n)=>{switch(e.op){case"SparseReshape":{let{outputIndices:r,outputShape:a}=Lw.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,a]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tse=(e,t,n)=>{switch(e.op){case"FFT":return[lc(I("x",e,t,n))];case"IFFT":return[Nl(I("x",e,t,n))];case"RFFT":return[uc(I("x",e,t,n))];case"IRFFT":return[Hd(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ese=(e,t,n)=>{switch(e.op){case"Cast":return[ge(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[Qt(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[Ua(I("x",e,t,n),r)]}case"Reshape":return[H(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[$m(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[da(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[rc(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[Yu(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[_m(I("x",e,t,n),r,a)]}case"BroadcastTo":return[xl(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Z4(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return P(()=>ise(s,i,o));case"basic_math":return P(()=>ose(s,i,o));case"control":return pse(s,i,o);case"convolution":return P(()=>fse(s,i,o));case"creation":return P(()=>mse(s,i,o));case"dynamic":return Ase(s,i,o);case"evaluation":return P(()=>yse(s,i,o));case"image":return P(()=>wse(s,i,o));case"graph":return P(()=>gse(s,i,o));case"logical":return P(()=>_se(s,i,o));case"matrices":return P(()=>vse(s,i,o));case"normalization":return P(()=>kse(s,i,o));case"reduction":return P(()=>Ise(s,i,o));case"slice_join":return P(()=>Sse(s,i,o));case"sparse":return P(()=>Nse(s,i,o));case"spectral":return P(()=>Tse(s,i,o));case"transformation":return P(()=>Ese(s,i,o));case"hash_table":return bse(s,i,o,r);case"custom":let l=S4(s.op);if(l&&l.customExecutor)return l.customExecutor(new sse(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return _.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var Y4=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Q4(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>jn(d)[0]),u=[];r!=null&&(u=r.map(d=>jn(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((J4(d)||Cse(d)||Rse(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Mse(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(u=>jn(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{r.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{r.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return c}var Fse=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],$se=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Dse=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function J4(e){return Fse.indexOf(e.op)>=0}function Cse(e){return $se.indexOf(e.op)>=0}function Rse(e){return Dse.indexOf(e.op)>=0}var W2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new W2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=Q4(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Mse(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[jn(u)[0]]),a=t.map(u=>jn(u)[0]),s=a.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return P(()=>{let u=new Y4(this.weightMap,l,c,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,A]=jn(m),y=[];y[A]=e[m],h[f]=y});let d=this.getFrozenTensorIds(h),p={};for(let m=0;myn(m,h,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Wae(o.name,n,r);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!a.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new Y4(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>yn(h,i,s)),l=o.map(h=>h.id),c=Object.keys(e).map(h=>e[h].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.kept&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[jn(g)[0]]),i=n.map(g=>jn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:h}=Q4(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[x,v]=jn(g),b=[];b[v]=e[g],p[x]=b});let m={},f=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,f,i,m,l);await Promise.all(g)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!J4(g)&&!yn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${c}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let h="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([h]=ba(u.node.name,n)),r[u.node.name]==null){let d=Z4(u.node,r,n,this._resourceManager);h||([h]=ba(u.node.name,n));let p=n.currentContext;_.isPromise(d)?c.push(d.then(m=>(r[h]=m,n.currentContext=p,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l),m))):(r[h]=d,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l))}else this.processChildNodes(u.node,t,n,r,a,l)}return c}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=ba(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=jn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);_.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&_.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=jn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=jn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Ose=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},zse="?tfjs-format=file",Pse="model.json",e8=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Ose}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Nn.browserHTTPRequest(e,this.loadOptions);else{let t=Nn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Nn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=Nn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new W2(H4.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=H4.Instance.transformGraph(e.modelInitializer);this.initializer=new W2(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Nn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Pe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function ct(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Pse}${zse}`);let n=new e8(e,t);return await n.load(),n}var Lse="3.5.0",t8={};Me(t8,{CSVDataset:()=>r8,Dataset:()=>Jl,FileDataSource:()=>a8,TextLineDataset:()=>n8,URLDataSource:()=>s8,array:()=>Wse,csv:()=>Vse,func:()=>jse,generator:()=>Use,microphone:()=>Gse,version_data:()=>qse,webcam:()=>Hse,zip:()=>Bse});var Xse=so(l5()),Kse=so(l5());function Zse(e,t){return m0(e,t)}function m0(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Ql(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=m0(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function Yse(e,t=o8){return i8(e,t)}function i8(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Ql(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(c=>c[i]),l=i8(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function o8(e){return e===null?null:Ql(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function l8(e,t){let n=new Map;m0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(_.isPromise(a)){let s=await a;n.set(r,s)}}return m0(e,t,n)}function Ql(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Pe))}function Qse(e){return e==null||Jse(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Pe||_.isTypedArray(e)}function Jse(e){return e===null||typeof e!="object"&&typeof e!="function"}function tie(e){return Zse(e,eie)}function eie(e){return e instanceof Pe?{value:e.clone(),recurse:!1}:Ql(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var u8=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},B2=class extends u8{constructor(){super(B2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;rt===!0)}rowMajorBatch(e,t=!0){return new cie(this,e,t)}columnMajorBatch(e,t=!0,n=o8){return this.rowMajorBatch(e,t).map(r=>Yse(r,n))}concatenate(e,t){return new h8(c8([this,e]),t)}take(e){return e<0||e==null?this:new uie(this,e)}skip(e){return e<0||e==null?this:new lie(this,e)}prefetch(e){return new p8(this,e)}shuffle(e,t){return new mie(this,e,t)}serial(){return new oie(this)}},nie=class extends Xt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:tie(e),done:!1}}},rie=class extends Xt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},oie=class extends Xt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},lie=class extends Xt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},cie=class extends Xt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},hie=class extends Xt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;we(e.value)}}},die=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=kr.getTensorsInContainer(e.value),n=this.transform(e.value),r=kr.getTensorsInContainer(n);for(let a of t)kr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},pie=class extends Xt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},d8=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=kr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=kr.getTensorsInContainer(n);for(let a of t)kr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},j2=class extends Xt{constructor(){super();this.outputQueue=new B2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},fie=class extends j2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=kr.getTensorsInContainer(e.value),n=this.transform(e.value),r=kr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)kr.isTensorInList(a,r)||a.dispose();return!0}},h8=class extends Xt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},rs;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(rs||(rs={}));var sie=class extends Xt{constructor(e,t=rs.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof Xt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await l8(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case rs.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case rs.SHORTEST:return{value:null,done:!0};case rs.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},p8=class extends Xt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new u8(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},mie=class extends p8{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Kse.alea(n||_.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Jl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;_.assert(e>0,()=>`batchSize needs to be positive, but it is - ${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Un(async()=>(await n.iterator()).columnMajorBatch(e,t,Aie),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Un(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Un(async()=>(await t.iterator()).filter(r=>P(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Un(async()=>(await t.iterator()).map(n=>P(()=>e(n))),this.size)}mapAsync(e){let t=this;return Un(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Un(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Un(async()=>{let r=V2(async()=>({value:await t.iterator(),done:!1}));return aie(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=Xse.alea(t||_.now().toString());return Un(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Un(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Jl.MAX_BUFFER_SIZE=1e4;function Un(e,t=null){return new class extends Jl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Wse(e){return Un(async()=>c8(e),e.length)}function Bse(e){if(!Ql(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await l8(e,r=>{if(r instanceof Jl)return{value:r.iterator(),recurse:!1};if(Ql(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return iie(n,rs.SHORTEST)},t)}function Aie(e){if(e===null)return null;let t=e[0];return Qse(t)?{value:yie(e),recurse:!1}:{value:null,recurse:!0}}function yie(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Pe?cn(e):Sr(e)}var n8=class extends Jl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` -`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},A0='"',Zc=Symbol("out"),f8=Symbol("field"),y0=Symbol("quote"),U2=Symbol("quoteafterquote"),m8=Symbol("quoteinquote"),r8=class extends Jl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new n8(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(_.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&_.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(_.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new A8(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(_.sizeFromShape(t));return n.set(e,n.length-e.length),Sr(n,t)}},y8=class extends Xt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=sn([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=er([s,a,o,i],[1,4])}else this.cropBox=er([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new y8(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&_.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=fi.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return P(()=>{let t=Qt(ge(e,"float32"),0),n;n=Le.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return H(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},g8=class{},x8=class extends Xt{split(e){return new gie(this,e)}},gie=class extends x8{constructor(e,t){super();this.upstream=e,this.impl=new xie(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},xie=class extends j2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},wie=class extends Xt{decodeUTF8(){return new bie(this)}},bie=class extends x8{constructor(e){super();this.upstream=e,this.impl=new _ie(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},_ie=class extends j2{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=T9();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},b8=class extends wie{constructor(e,t={}){super();this.file=e,this.options=t,_.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function kie(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=vie(e));let a=await _.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new b8(s,t)}else throw new Error(a.statusText)}var vie=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function w8(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var a8=class extends g8{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(w8(this.input)&&J().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new b8(this.input,this.options)}},s8=class extends g8{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return w8(this.url)?new a8(this.url,this.fileOptions).iterator():kie(this.url,this.fileOptions)}};function Vse(e,t={}){return new r8(new s8(e),t)}function jse(e){let t=V2(e);return Un(async()=>t)}function Use(e){return Un(async()=>{let t=await e();return V2(()=>t.next())})}async function Hse(e,t){return y8.create(e,t)}async function Gse(e){return A8.create(e)}var qse="3.5.0",Iie={tfjs:(wf==null?void 0:wf.version)||void 0,"tfjs-core":(_f==null?void 0:_f.version)||void 0,"tfjs-data":(vf==null?void 0:vf.version)||void 0,"tfjs-layers":(kf==null?void 0:kf.version)||void 0,"tfjs-converter":(If==null?void 0:If.version)||void 0,"tfjs-backend-cpu":g_||void 0,"tfjs-backend-webgl":B3||void 0,"tfjs-backend-wasm":Mv||void 0};var Hn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function _8(){if(!om(Hn.name)){le("backend registration:",Hn.name);try{Hn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Hn.width,Hn.height):document.createElement("canvas")}catch(e){le("error: cannot create canvas:",e);return}try{Hn.gl=Hn.canvas.getContext("webgl2",Hn.webGLattr)}catch(e){le("error: cannot get WebGL2 context:",e);return}try{Ap(2,Hn.gl)}catch(e){le("error: cannot set WebGL2 context:",e);return}try{let e=new bp(Hn.gl);yl(Hn.name,()=>new Bl(e),Hn.priority)}catch(e){le("error: cannot register WebGL backend:",e);return}try{cl("webgl").forEach(t=>{let n={...t,backendName:Hn.name};ci(n)})}catch(e){le("error: cannot update WebGL backend registration:",e);return}try{vr.set("WEBGL_VERSION",2)}catch(e){le("error: cannot set WebGL backend flags:",e);return}le("backend registered:",Hn.name)}}var H2={};lr(H2,{load:()=>G2,predict:()=>w0});var g0={};function gn(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(i=>i.kernelTimeMs>0).reduce((i,o)=>i+=o.kernelTimeMs,0),a=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.kernelTimeMs>0).sort((i,o)=>o.kernelTimeMs-i.kernelTimeMs),s=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.totalBytesSnapshot>0).sort((i,o)=>o.totalBytesSnapshot-i.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n),g0[e]={model:e,newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s},le("profiler",e,g0[e])}var br,x0={age:0},b0=Number.MAX_SAFE_INTEGER;async function G2(e){return br?e.debug&&le("cached model:",br.modelUrl):(br=await ct(pt(e.modelBasePath,e.face.age.modelPath)),!br||!br.modelUrl?le("load model failed:",e.face.age.modelPath):e.debug&&le("load model:",br.modelUrl)),br}async function w0(e,t){return br?b00?(b0++,x0):(t.videoOptimized?b0=0:b0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Le.resizeBilinear(e,[br.inputs[0].shape[2],br.inputs[0].shape[1]],!1),a=z(r,[255]);we(r);let s,i={age:0};if(!t.profile)t.face.age.enabled&&(s=await br.predict(a));else{let o=t.face.age.enabled?await an(()=>br.predict(a)):{};s=o.result.clone(),o.result.dispose(),gn("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),x0=i,n(i)})):null}var q2={};lr(q2,{load:()=>Y2,predict:()=>v0});var sr,X2={gender:""},_0=Number.MAX_SAFE_INTEGER,K2=!1,Z2=[.2989,.587,.114];async function Y2(e){return sr?e.debug&&le("cached model:",sr.modelUrl):(sr=await ct(pt(e.modelBasePath,e.face.gender.modelPath)),K2=sr.inputs[0].shape[3]===1,!sr||!sr.modelUrl?le("load model failed:",e.face.gender.modelPath):e.debug&&le("load model:",sr.modelUrl)),sr}async function v0(e,t){return sr?_0{let r=Le.resizeBilinear(e,[sr.inputs[0].shape[2],sr.inputs[0].shape[1]],!1),a;K2?a=P(()=>{let[o,l,c]=Lt(r,3,3),u=z(o,Z2[0]),h=z(l,Z2[1]),d=z(c,Z2[2]);return La([u,h,d]).sub(.5).mul(2)}):a=z(r,[255]),we(r);let s,i={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(s=await sr.predict(a));else{let o=t.face.gender.enabled?await an(()=>sr.predict(a)):{};s=o.result.clone(),o.result.dispose(),gn("gender",o)}if(a.dispose(),s)if(Array.isArray(s)){let o=s[0].dataSync(),l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l)),s.forEach(c=>we(c))}else{let o=s.dataSync();if(K2)(o[0]>t.face.gender.minConfidence||o[1]>t.face.gender.minConfidence)&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=o[0]>o[1]?Math.trunc(100*o[0])/100:Math.trunc(100*o[1])/100);else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}s.dispose()}X2=i,n(i)})):null}var J2={};lr(J2,{load:()=>tg,predict:()=>I0});var Sie=["angry","disgust","fear","happy","sad","surprise","neutral"],wr,Q2=[],k0=Number.MAX_SAFE_INTEGER,eg=[.2989,.587,.114];async function tg(e){return wr?e.debug&&le("cached model:",wr.modelUrl):(wr=await ct(pt(e.modelBasePath,e.face.emotion.modelPath)),!wr||!wr.modelUrl?le("load model failed:",e.face.emotion.modelPath):e.debug&&le("load model:",wr.modelUrl)),wr}async function I0(e,t){return wr?k00?(k0++,Q2):(t.videoOptimized?k0=0:k0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Le.resizeBilinear(e,[wr.inputs[0].shape[2],wr.inputs[0].shape[1]],!1),[a,s,i]=Lt(r,3,3);r.dispose();let o=z(a,eg[0]),l=z(s,eg[1]),c=z(i,eg[2]);a.dispose(),s.dispose(),i.dispose();let u=La([o,l,c]);o.dispose(),l.dispose(),c.dispose();let h=P(()=>u.sub(.5).mul(2));u.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let m=await an(()=>wr.predict(h));p=m.result.dataSync(),m.result.dispose(),gn("emotion",m)}else{let m=await wr.predict(h);p=m.dataSync(),we(m)}for(let m=0;mt.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*p[m])/100),emotion:Sie[m]});d.sort((m,f)=>f.score-m.score)}h.dispose(),Q2=d,n(d)})):null}var Gn;async function ng(e){return Gn?e.debug&&le("cached model:",Gn.modelUrl):(Gn=await ct(pt(e.modelBasePath,e.face.embedding.modelPath)),!Gn||!Gn.modelUrl?le("load model failed:",e.face.embedding.modelPath):e.debug&&le("load model:",Gn.modelUrl)),Gn}function v8(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(Math.trunc(1e3*(1-r))/1e3,0)}function Nie(e){return P(()=>{let n=[[.05,.15,.85,.85]],r=e.image||e.tensor;if(!(r instanceof Pe))return null;let a=r.shape.length===3?Le.cropAndResize(Qt(r,0),n,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]):Le.cropAndResize(r,n,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]),s=[.2989,.587,.114],[i,o,l]=Lt(a,3,3),c=z(i,s[0]),u=z(o,s[1]),h=z(l,s[2]),d=La([c,u,h]),p=cn([d,d,d],3).squeeze(4),m=p.sub(p.min());return m.div(m.max())})}async function rg(e,t){return Gn?new Promise(async n=>{let r=[];if(t.face.embedding.enabled){let a=Nie(e);if(!t.profile)r=P(()=>[...Gn.predict(a).reshape([128,2]).logSumExp(1).dataSync()]);else{let s=await an(()=>Gn.predict({img_inputs:a}));r=[...s.result.dataSync()],s.result.dispose(),gn("emotion",s)}we(a)}n(r)}):[]}var ag={};lr(ag,{enhance:()=>og,load:()=>sg,match:()=>k8,predict:()=>T0,similarity:()=>ig});var qn,S0={age:0},N0=Number.MAX_SAFE_INTEGER;async function sg(e){return qn?e.debug&&le("cached model:",qn.modelUrl):(qn=await ct(pt(e.modelBasePath,e.face.description.modelPath)),!qn||!qn.modelUrl?le("load model failed:",e.face.description.modelPath):e.debug&&le("load model:",qn.modelUrl)),qn}function ig(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-r)/100}function k8(e,t,n=0){let r={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return r;for(let a of t)if(a.embedding&&a.name){let s=ig(e,a.embedding);s>n&&s>r.similarity&&(r={...a,similarity:s})}return r}function og(e){return P(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Pe))return null;let r=[[.05,.15,.85,.85]];return(n.shape.length===3?Le.cropAndResize(Qt(n,0),r,[0],[qn.inputs[0].shape[2],qn.inputs[0].shape[1]]):Le.cropAndResize(n,r,[0],[qn.inputs[0].shape[2],qn.inputs[0].shape[1]])).mul(255)})}async function T0(e,t){return qn?N00?(N0++,S0):(t.videoOptimized?N0=0:N0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=og(e),a,s={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};if(!t.profile)t.face.description.enabled&&(a=await qn.predict(r));else{let i=t.face.description.enabled?await an(()=>qn.predict(r)):{};a=i.result,gn("faceres",i)}we(r),a&&(P(()=>{let i=a.find(h=>h.shape[1]===1).dataSync(),o=Math.trunc(200*Math.abs(i[0]-.5))/100;o>t.face.gender.minConfidence&&(s.gender=i[0]<=.5?"female":"male",s.genderConfidence=Math.min(.99,o));let l=a.find(h=>h.shape[1]===100).argMax(1).dataSync()[0],c=a.find(h=>h.shape[1]===100).dataSync();s.age=Math.round(c[l-1]>c[l+1]?10*l-100*c[l-1]:10*l+100*c[l+1])/10;let u=a.find(h=>h.shape[1]===1024);s.descriptor=[...u.dataSync()]}),a.forEach(i=>we(i))),S0=s,n(s)})):null}var Tie=(e,t)=>{let n=A=>A*180/Math.PI,r=A=>{let y=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=y,A[1]/=y,A[2]/=y,A},a=(A,y)=>{let g=A[0]-y[0],x=A[1]-y[1],v=A[2]-y[2];return[g,x,v]},s=(A,y)=>{let g=A[1]*y[2]-A[2]*y[1],x=A[2]*y[0]-A[0]*y[2],v=A[0]*y[1]-A[1]*y[0];return[g,x,v]},i=A=>{let[y,g,x,v,b,w,k,N,C]=A,F,O,L;return v<1?v>-1?(L=Math.asin(v),O=Math.atan2(-k,y),F=Math.atan2(-w,b)):(L=-Math.PI/2,O=-Math.atan2(N,C),F=0):(L=Math.PI/2,O=Math.atan2(N,C),F=0),{pitch:2*-F,yaw:2*-O,roll:2*-L}},o=A=>{let y=(x,v,b,w)=>Math.atan2(w-v,b-x);return{pitch:y(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:y(A[33][0],A[33][2],A[263][0],A[263][2]),roll:y(A[33][0],A[33][1],A[263][0],A[263][1])}},l=e.meshRaw;if(!l||l.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let c=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[l[10],l[152],l[234],l[454]].map(A=>[A[0]*t[0]/c,A[1]*t[1]/c,A[2]]),h=r(a(u[1],u[0])),d=r(a(u[3],u[2])),p=r(s(d,h));d=s(h,p);let m=[d[0],d[1],d[2],h[0],h[1],h[2],p[0],p[1],p[2]];return{angle:i(m),matrix:m}},lg=async(e,t)=>{var u,h,d,p,m,f,A;let n,r,a,s,i,o,l=[];e.state="run:face",n=Ye();let c=await((u=e.models.face)==null?void 0:u.estimateFaces(t,e.config));if(e.perf.face=Math.trunc(Ye()-n),!c)return[];for(let y of c){if(e.analyze("Get Face"),!y.image||y.image.isDisposedInternal){le("Face object is disposed:",y.image);continue}let g=Tie(y,[t.shape[2],t.shape[1]]);e.analyze("Start Age:"),e.config.async?r=e.config.face.age.enabled?w0(y.image,e.config):{}:(e.state="run:age",n=Ye(),r=e.config.face.age.enabled?await w0(y.image,e.config):{},e.perf.age=Math.trunc(Ye()-n)),e.analyze("Start Gender:"),e.config.async?a=e.config.face.gender.enabled?v0(y.image,e.config):{}:(e.state="run:gender",n=Ye(),a=e.config.face.gender.enabled?await v0(y.image,e.config):{},e.perf.gender=Math.trunc(Ye()-n)),e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?I0(y.image,e.config):{}:(e.state="run:emotion",n=Ye(),s=e.config.face.emotion.enabled?await I0(y.image,e.config):{},e.perf.emotion=Math.trunc(Ye()-n)),e.analyze("End Emotion:"),e.analyze("Start Embedding:"),e.config.async?i=e.config.face.embedding.enabled?rg(y,e.config):[]:(e.state="run:embedding",n=Ye(),i=e.config.face.embedding.enabled?await rg(y,e.config):[],e.perf.embedding=Math.trunc(Ye()-n)),e.analyze("End Embedding:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?T0(y,e.config):[]:(e.state="run:description",n=Ye(),o=e.config.face.description.enabled?await T0(y.image,e.config):[],e.perf.embedding=Math.trunc(Ye()-n)),e.analyze("End Description:"),e.config.async&&([r,a,s,i,o]=await Promise.all([r,a,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=y==null?void 0:y.annotations)==null?void 0:h.leftEyeIris)&&((d=y==null?void 0:y.annotations)==null?void 0:d.rightEyeIris)&&(delete y.annotations.leftEyeIris,delete y.annotations.rightEyeIris);let x=((p=y.annotations)==null?void 0:p.leftEyeIris)&&((m=y.annotations)==null?void 0:m.rightEyeIris)?11.7*Math.max(Math.abs(y.annotations.leftEyeIris[3][0]-y.annotations.leftEyeIris[1][0]),Math.abs(y.annotations.rightEyeIris[4][1]-y.annotations.rightEyeIris[2][1])):0;l.push({...y,age:o.age||r.age,gender:o.gender||a.gender,genderConfidence:o.genderConfidence||a.confidence,embedding:o.descriptor||i,emotion:s,iris:x!==0?Math.trunc(x)/100:0,rotation:g,tensor:e.config.face.detector.return?(f=y.image)==null?void 0:f.squeeze():null}),(A=y.image)==null||A.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),l};var fg={};lr(fg,{MediaPipeFaceMesh:()=>mg,load:()=>Ag,triangulation:()=>$8,uvmap:()=>D8});var I8=6;function Eie(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r({startEndTensor:e,startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});function Rie(e,t,n){let r=Re(e,[0,1],[-1,2]),a=se(r,t),s=Re(e,[0,3],[-1,2]),i=Ae(s,n),o=Ae(a,n),l=Ae(i,2),c=ye(o,l),u=se(o,l),h=z(c,n),d=z(u,n);return bl([h,d],1)}var S8=class{constructor(t,n){this.model=t,this.anchorsData=Eie(t.inputs[0].shape[1]),this.anchors=er(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=P(()=>{let d=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),p=this.model.predict(d),m;if(Array.isArray(p)){let g=p.sort((w,k)=>w.size-k.size),x=ot([g[0],g[2]],2),v=ot([g[1],g[3]],2);m=ot([v,x],1).squeeze(0)}else m=p.squeeze();let f=Rie(m,this.anchors,[this.inputSize,this.inputSize]),A=Re(m,[0,0],[-1,1]),y=Tn(A).squeeze();return[m,f,y]}),s=await Le.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>Re(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),c=a.dataSync(),u=[];for(let h=0;hthis.config.face.detector.minConfidence){let m=Cie(l[h]),f=this.anchorsData[d],A=P(()=>Re(n,[d,I8-1],[1,-1]).squeeze().reshape([I8,-1]));u.push({box:m,landmarks:A,anchor:f,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),{boxes:u,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function N8(e){let t=await ct(pt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new S8(t,e);return!t||!t.modelUrl?le("load model failed:",e.face.detector.modelPath):e.debug&&le("load model:",t.modelUrl),n}function T8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function Yc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function eu(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function tu(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Le.cropAndResize(t,s,[0],n)}function E0(e,t=1.5){let n=eu(e),r=Yc(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function C0(e){let t=eu(e),n=Yc(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}var R0=[[1,0,0],[0,1,0],[0,0,1]];function Mie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function ug(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Mie(n)}function E8(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function as(e,t){let n=0;for(let r=0;rJc[e]),Voe=Die.map(e=>Jc[e]),joe=Oie.map(e=>Jc[e]);var hg=ea.leftEyeLower0,dg=ea.rightEyeLower0,nu={leftBounds:[hg[0],hg[hg.length-1]],rightBounds:[dg[0],dg[dg.length-1]]},F0={count:468,mouth:13,symmetryLine:[13,ea.midwayBetweenEyes[0]]},F8={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},ru={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function $0(e,t,n,r){for(let a=0;a[s[0]/this.meshSize*(h[0]-this.meshSize/2),s[1]/this.meshSize*(h[1]-this.meshSize/2),h[2]]),o=r!==0?M0(r,[0,0]):R0,l=r!==0?i.map(h=>[...M8(h,o),h[2]]):i,c=r!==0?R8(a):R0,u=[...eu({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(h=>[h[0]+as(u,c[0]),h[1]+as(u,c[1]),h[2]])}getLeftToRightEyeDepthDifference(t){let n=t[nu.leftBounds[0]][2],r=t[nu.rightBounds[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=C0(E0(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Yc(i),l=Le.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&vr.flags.IS_BROWSER&&(l=Le.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i{let c=i;return l===2?c=a:l===4&&(c=s),[o[0],o[1],c]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,!n.videoOptimized||a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=P(()=>this.storedBoxes.map((i,o)=>{let l=i.confidence,c,u=0,h;if(n.face.detector.rotation&&n.face.mesh.enabled&&vr.flags.IS_BROWSER){let[b,w]=i.landmarks.length>=F0.count?F0.symmetryLine:F8.symmetryLine;u=ug(i.landmarks[b],i.landmarks[w]);let k=eu({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Le.rotateWithOffset(t,u,0,N);h=M0(-u,k),n.face.mesh.enabled?c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255):c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.boxSize,this.boxSize]).div(255)}else{h=R0;let b=t.clone();n.face.mesh.enabled?c=tu({startPoint:i.startPoint,endPoint:i.endPoint},b,[this.meshSize,this.meshSize]).div(255):c=tu({startPoint:i.startPoint,endPoint:i.endPoint},b,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,boxConfidence:l,confidence:i.confidence,image:c};let[,d,p]=this.meshDetector.predict(c),m=d.dataSync()[0];if(m=F0.count?F0.symmetryLine:F8.symmetryLine;u=ug(i.landmarks[b],i.landmarks[w]);let k=eu({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Le.rotateWithOffset(t.toFloat(),u,0,N);h=M0(-u,k),c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255)}let x={coords:g,box:i,faceConfidence:m,boxConfidence:l,image:c,rawCoords:A},v=C0(i);return this.storedBoxes[o]={...v,landmarks:y,confidence:i.confidence,faceConfidence:m},x}));return s=s.filter(i=>i!==null),n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.faceConfidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};var mg=class{constructor(t,n,r,a){this.facePipeline=new pg(t,n,r),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():[],o=i.map(h=>[h[0]/t.shape[2],h[1]/t.shape[1],h[2]/this.facePipeline.meshSize]),l={};if(i&&i.length>0)for(let h of Object.keys(ea))l[h]=ea[h].map(d=>i[d]);let c=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[2],s.box.endPoint[0])-Math.max(0,s.box.startPoint[0]),Math.min(t.shape[1],s.box.endPoint[1])-Math.max(0,s.box.startPoint[1])]:0,u=s.box?[s.box.startPoint[0]/t.shape[2],s.box.startPoint[1]/t.shape[1],(s.box.endPoint[0]-s.box.startPoint[0])/t.shape[2],(s.box.endPoint[1]-s.box.startPoint[1])/t.shape[1]]:[];a.push({confidence:Math.round(100*s.faceConfidence||100*s.boxConfidence||0)/100,boxConfidence:Math.round(100*s.boxConfidence)/100,faceConfidence:Math.round(100*s.faceConfidence)/100,box:c,boxRaw:u,mesh:i,meshRaw:o,annotations:l,image:s.image?s.image.clone():null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},Kt=[null,null,null];async function Ag(e){return!Kt[0]&&e.face.enabled||!Kt[1]&&e.face.mesh.enabled||!Kt[2]&&e.face.iris.enabled?(Kt=await Promise.all([!Kt[0]&&e.face.enabled?N8(e):null,!Kt[1]&&e.face.mesh.enabled?ct(pt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Kt[2]&&e.face.iris.enabled?ct(pt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Kt[1]||!Kt[1].modelUrl?le("load model failed:",e.face.mesh.modelPath):e.debug&&le("load model:",Kt[1].modelUrl)),e.face.iris.enabled&&(!Kt[2]||!Kt[1].modelUrl?le("load model failed:",e.face.iris.modelPath):e.debug&&le("load model:",Kt[2].modelUrl))):e.debug&&(le("cached model:",Kt[0].model.modelUrl),le("cached model:",Kt[1].modelUrl),le("cached model:",Kt[2].modelUrl)),new mg(Kt[0],Kt[1],Kt[2],e)}var $8=Ui,D8=Jc;var _g={};lr(_g,{load:()=>kg,predict:()=>vg});var Qc=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],O8=Qc.length,eh=Qc.reduce((e,t,n)=>(e[t]=n,e),{}),zie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Pie=zie.map(([e,t])=>[eh[e],eh[t]]),z8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function P8(e){let t=e.reduce(({maxX:n,maxY:r,minX:a,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(r,o),minX:Math.min(a,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function L8(e,[t,n],[r,a]){let s=(o,l,c)=>({score:o.score,box:[Math.trunc(o.box[0]*c),Math.trunc(o.box[1]*l),Math.trunc(o.box[2]*c),Math.trunc(o.box[3]*l)],keypoints:o.keypoints.map(({score:u,part:h,position:d})=>({score:u,part:h,position:{x:Math.trunc(d.x*c),y:Math.trunc(d.y*l)}}))});return e.map(o=>s(o,t/r,n/a))}var yg=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nn?n:e}function W8(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function wg(e,t){return{x:e.x+t.x,y:e.y+t.y}}var D0=1,B8=16;function V8(e,t,n,r,a,s,i,o=2){let l=g=>({y:i.get(g.y,g.x,e),x:i.get(g.y,g.x,i.shape[2]/2+e)}),c=(g,x,v)=>({y:bg(Math.round(g.y/s),0,x-1),x:bg(Math.round(g.x/s),0,v-1)}),[u,h]=r.shape,d=c(t.position,u,h),p=l(d),f=wg(t.position,p);for(let g=0;g[eh[f],eh[A]]),o=i.map(([,f])=>f),l=i.map(([f])=>f),c=t.shape[2],u=o.length,h=new Array(c),{part:d,score:p}=e,m=xg(d,r,n);h[d.id]={score:p,part:Qc[d.id],position:m};for(let f=u-1;f>=0;--f){let A=o[f],y=l[f];h[A]&&!h[y]&&(h[y]=V8(f,h[A],y,t,n,r,s))}for(let f=0;ft){o=!1;break}if(!o)break}return o}function Bie(e,t){let[n,r,a]=t.shape,s=new yg(n*r*a,({score:i})=>i);for(let i=0;i{let i=s[a].position;return W8(r,n,i.y,i.x)<=t})}function Vie(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(j8(e,t,s,o)||(a+=i),a),0)/n.length}function U8(e,t,n,r,a,s,i){let o=[],l=Bie(i,t),c=a**2;for(;o.lengthA.score>i),m=Vie(o,c,p),f=P8(p);m>i&&o.push({keypoints:p,box:f,score:Math.round(100*m)/100})}return o}var _r,jie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function vg(e,t){let n=P(()=>{let o=e.resizeBilinear([_r.inputs[0].shape[2],_r.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),c=_r.execute(o,jie).map(u=>u.squeeze([0]));return c[1]=c[1].sigmoid(),c}),r=await Promise.all(n.map(i=>i.buffer()));for(let i of n)i.dispose();let a=await U8(r[0],r[1],r[2],r[3],t.body.nmsRadius,t.body.maxDetections,t.body.scoreThreshold);return L8(a,[e.shape[1],e.shape[2]],[_r.inputs[0].shape[2],_r.inputs[0].shape[1]])}async function kg(e){return _r?e.debug&&le("cached model:",_r.modelUrl):(_r=await ct(pt(e.modelBasePath,e.body.modelPath)),!_r||!_r.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",_r.modelUrl)),_r}var Eg={};lr(Eg,{HandPose:()=>Rg,load:()=>Mg});function O0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function th(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function H8(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Le.cropAndResize(t,s,[0],n)}function G8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function z0(e,t=1.5){let n=th(e),r=O0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function P0(e){let t=th(e),n=O0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var Ig=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=er(this.anchors),this.inputSize=n,this.inputSizeTensor=sn([n,n]),this.doubleInputSizeTensor=sn([n*2,n*2])}normalizeBoxes(t){return P(()=>{let n=Re(t,[0,0],[-1,2]),r=Re(t,[0,2],[-1,2]),a=se(Ae(n,this.inputSizeTensor),this.anchorsTensor),s=Ae(r,this.doubleInputSizeTensor),i=z(ye(a,s),this.inputSizeTensor),o=z(se(a,s),this.inputSizeTensor);return bl([i,o],1)})}normalizeLandmarks(t,n){return P(()=>{let r=se(Ae(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return z(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=P(()=>Tn(Re(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Re(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let c=await Le.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),u=c.arraySync();s.dispose(),c.dispose();let h=[];for(let d of u)if(i[d]>=n.hand.minConfidence){let p=Re(l,[d,0],[1,-1]),m=Re(a,[d,5],[1,14]),f=P(()=>this.normalizeLandmarks(m,d).reshape([-1,2]));m.dispose(),h.push({box:p,palmLandmarks:f,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=P(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let c=l.box.dataSync(),u=c.slice(0,2),h=c.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(G8({startPoint:u,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/this.inputSize,r/this.inputSize]))}return o}};function Uie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function q8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Uie(n)}var X8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ss(e,t){let n=0;for(let r=0;rNg([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return z0(P0(a),Gie)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=z0(P0(n),Y8);r.palmLandmarks=[];for(let a=0;a[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=Sg(r,[0,0]),c=o.map(p=>[...Ng(p,l),p[2]]),u=Z8(a),h=[...th(n),1],d=[ss(h,u[0]),ss(h,u[1])];return c.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i=n.hand.minConfidence){let x=H(y,[-1,3]),v=x.arraySync();y.dispose(),x.dispose();let b=this.transformRawCoords(v,p,l,d),w=this.getBoxForHandLandmarks(b);this.storedBoxes[i]=w;let k={landmarks:b,confidence:g,box:{topLeft:w.startPoint,bottomRight:w.endPoint}};s.push(k)}else this.storedBoxes[i]=null;y.dispose()}else{let l=z0(P0(o),Y8),c={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(c)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};var Q8=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var Cg={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},Rg=class{constructor(t){this.handPipeline=t}static getAnnotations(){return Cg}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let c of Object.keys(Cg))i[c]=Cg[c].map(u=>s.landmarks[u]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-Math.max(0,s.box.topLeft[0]),Math.min(t.shape[1],s.box.bottomRight[1])-Math.max(0,s.box.topLeft[1])]:[],l=[s.box.topLeft[0]/t.shape[2],s.box.topLeft[1]/t.shape[1],(s.box.bottomRight[0]-s.box.topLeft[0])/t.shape[2],(s.box.bottomRight[1]-s.box.topLeft[1])/t.shape[1]];a.push({confidence:Math.round(100*s.confidence)/100,box:o,boxRaw:l,landmarks:s.landmarks,annotations:i})}return a}},ta,na;async function Mg(e){!ta||!na?([ta,na]=await Promise.all([e.hand.enabled?ct(pt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?ct(pt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ta||!ta.modelUrl?le("load model failed:",e.hand.detector.modelPath):e.debug&&le("load model:",ta.modelUrl),!na||!na.modelUrl?le("load model failed:",e.hand.skeleton.modelPath):e.debug&&le("load model:",na.modelUrl))):(e.debug&&le("cached model:",ta.modelUrl),e.debug&&le("cached model:",na.modelUrl));let t=new Ig(ta,ta==null?void 0:ta.inputs[0].shape[2],Q8),n=new Tg(t,na,na==null?void 0:na.inputs[0].shape[2]);return new Rg(n)}var Fg={};lr(Fg,{load:()=>$g,predict:()=>Dg});var ek=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],tk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var xn;async function $g(e){return xn?e.debug&&le("cached model:",xn.modelUrl):(xn=await ct(pt(e.modelBasePath,e.body.modelPath)),xn.width=parseInt(xn.signature.inputs["input_1:0"].tensorShape.dim[2].size),xn.height=parseInt(xn.signature.inputs["input_1:0"].tensorShape.dim[1].size),!xn||!xn.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",xn.modelUrl)),xn}async function Dg(e,t){if(!xn||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},r=Le.resizeBilinear(e,[xn.width,xn.height],!1),a=Ae(r,[255]);r.dispose();let s;if(t.profile){let u=await an(()=>xn.predict(a));s=u.result.find(h=>h.size===195||h.size===155).dataSync(),u.result.forEach(h=>h.dispose()),gn("blazepose",u)}else{let u=await xn.predict(a);s=u.find(h=>h.size===195||h.size===155).dataSync(),u.forEach(h=>h.dispose())}a.dispose();let i=[],o=s.length===195?ek:tk,l=5;for(let u=0;uh.score>u?h.score:u,0),keypoints:i}]}var bn,nh=[],L0=Number.MAX_SAFE_INTEGER,Kie=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function Og(e){return bn?e.debug&&le("cached model:",bn.modelUrl):(bn=await ct(pt(e.modelBasePath,e.body.modelPath)),!bn||!bn.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",bn.modelUrl)),bn}function Zie(e,t){let[n,r]=e.shape;return P(()=>{let a=(o,l)=>ye(o,z(Ae(o,ve(l,"int32")),ve(l,"int32"))),s=H(e,[r*n]),i=Rn(s,0).dataSync()[0];if(i>t){let o=Ai(s,0),l=a(o,n).dataSync()[0],c=Ae(o,ve(n,"int32")).dataSync()[0];return[l,c,i]}return[0,0,i]})}async function zg(e,t){return bn?L00?(L0++,nh):(t.videoOptimized?L0=0:L0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=P(()=>{let i=Le.resizeBilinear(e,[bn.inputs[0].shape[2],bn.inputs[0].shape[1]],!1);return z(i,2).sub(1)}),a;if(!t.profile)t.body.enabled&&(a=await bn.predict(r));else{let i=t.body.enabled?await an(()=>bn.predict(r)):{};a=i.result.clone(),i.result.dispose(),gn("body",i)}if(r.dispose(),a){let i=[],o=a.squeeze();we(a);let l=o.unstack(2);we(o);for(let c=0;ct.body.scoreThreshold&&i.push({id:c,score:Math.round(100*d)/100,part:Kie[c],positionRaw:{xRaw:u/bn.inputs[0].shape[2],yRaw:h/bn.inputs[0].shape[1]},position:{x:Math.round(e.shape[2]*u/bn.inputs[0].shape[2]),y:Math.round(e.shape[1]*h/bn.inputs[0].shape[1])}})}l.forEach(c=>we(c)),nh=i}let s=nh.reduce((i,o)=>o.score>i?o.score:i,0);n([{score:s,keypoints:nh}])})):null}var Pg={};lr(Pg,{load:()=>Wg,predict:()=>Bg});var W0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var wn,Lg=[],B0=Number.MAX_SAFE_INTEGER,V0=2.5;async function Wg(e){if(wn)e.debug&&le("cached model:",wn.modelUrl);else{wn=await ct(pt(e.modelBasePath,e.object.modelPath));let t=Object.values(wn.modelSignature.inputs);if(wn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!wn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!wn||!wn.modelUrl?le("load model failed:",e.object.modelPath):e.debug&&le("load model:",wn.modelUrl)}return wn}async function Yie(e,t,n,r){let a=0,s=[];for(let c of[1,2,4])P(()=>{var A,y;let u=c*13,h=(A=e.find(g=>g.shape[1]===u**2&&g.shape[2]===W0.length))==null?void 0:A.squeeze(),d=(y=e.find(g=>g.shape[1]===u**2&&g.shape[2]r.object.minConfidence&&x!==61){let b=(.5+Math.trunc(g%u))/u,w=(.5+Math.trunc(g/u))/u,k=m[g].map(U=>U*(u/c/t)),[N,C]=[b-V0/c*k[0],w-V0/c*k[1]],[F,O]=[b+V0/c*k[2]-N,w+V0/c*k[3]-C],L=[N,C,F,O];L=L.map(U=>Math.max(0,Math.min(U,1)));let V=[L[0]*n[0],L[1]*n[1],L[2]*n[0],L[3]*n[1]],j={id:a++,strideSize:c,score:Math.round(100*v)/100,class:x+1,label:W0[x].label,center:[Math.trunc(n[0]*b),Math.trunc(n[1]*w)],centerRaw:[b,w],box:V.map(U=>Math.trunc(U)),boxRaw:L};s.push(j)}}});e.forEach(c=>we(c));let i=s.map(c=>c.boxRaw),o=s.map(c=>c.score),l=[];if(i&&i.length>0){let c=await Le.nonMaxSuppressionAsync(i,o,r.object.maxResults,r.object.iouThreshold,r.object.minConfidence);l=c.dataSync(),we(c)}return s=s.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),s}async function Bg(e,t){return wn?B00?(B0++,Lg):(t.videoOptimized?B0=0:B0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=[e.shape[2],e.shape[1]],a=Le.resizeBilinear(e,[wn.inputSize,wn.inputSize],!1),s=a.div(255),i=s.transpose([0,3,1,2]);s.dispose(),a.dispose();let o;if(!t.profile)t.object.enabled&&(o=await wn.predict(i));else{let c=t.object.enabled?await an(()=>wn.predict(i)):{};o=c.result,gn("object",c)}i.dispose();let l=await Yie(o,wn.inputSize,r,t);Lg=l,n(l)})):null}var nk=e=>{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.yl.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},rk=e=>{if(!e)return[];let t=[];for(let n=0;n0){let r=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${r<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},ak=e=>{if(!e)return[];let t=[];for(let n=0;n.033||h>.033)&&(c=!1),d>.033&&t.push({iris:n,gesture:"looking right"}),h>.033&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].annotations.rightEyeIris[0][1],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].annotations.leftEyeIris[0][1];(m<.015||p<.015||m>.03||p>.03)&&(c=!1),(m<.015||p<.015)&&t.push({iris:n,gesture:"looking down"}),(m>.03||p>.03)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},sk=e=>{if(!e)return[];let t=[];for(let n=0;n0){let a=r.reduce((i,o)=>i.position[2]i.position[1]jg});function Jie(e,t,n){let r=function(o,l,c){let u=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(u,(h,d)=>(c[d]=0,h))},a=function(o,l){let c=e.createShader(l);if(e.shaderSource(c,o),e.compileShader(c),!e.getShaderParameter(c,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(c));return c};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function ik(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,c=null,u=null,h={},d=e.canvas||document.createElement("canvas"),p={},m={INTERMEDIATE:1},f=d.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let w=Array.prototype.slice.call(arguments,1),k=h[b];i.push({func:k,args:w})},this.reset=function(){i=[]};let A=function(b,w){if(!(b===o&&w===l)){if(d.width=b,o=b,d.height=w,l=w,!c){let k=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);c=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,c),f.bufferData(f.ARRAY_BUFFER,k,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},y=function(b,w){let k=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,k);let N=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,N);let C=f.createTexture();return f.bindTexture(f.TEXTURE_2D,C),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,b,w,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,C,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:k,texture:C}},g=function(b){return s[b]=s[b]||y(o,l),s[b]},x=function(b=null){var C,F;let w=null,k=null,N=!1;t===0?w=n:w=(C=g(a))==null?void 0:C.texture,t++,r&&!(b&m.INTERMEDIATE)?(k=null,N=t%2==0):(a=(a+1)%2,k=(F=g(a))==null?void 0:F.fbo),f.bindTexture(f.TEXTURE_2D,w),f.bindFramebuffer(f.FRAMEBUFFER,k),f.uniform1f(u.uniform.flipY,N?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(b){if(A(b.width,b.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,b),i.length===0)return x(),d;for(let w=0;w{let u=[];e=H(e,[1,r,o]);for(let h=0;h{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),a=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),a=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let h=c.map(p=>p.id);u.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return c}case"LoopCond":{let r=I("pred",e,t,n);return[Aa(r)]}case"Switch":{let r=I("pred",e,t,n),a=I("data",e,t,n);return a.kept||(a=Aa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>mn(a,t,n)!==void 0);if(r){let a=mn(r,t,n);return[Aa(a)]}return}case"Enter":{let r=I("frameName",e,t,n),a=I("tensor",e,t,n);return n.enterFrame(r),[Aa(a)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[Aa(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[Aa(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),a=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new Lae(c,a,r,s,l,i,o);return n.addTensorArray(u),[u.idTensor,ke(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=I("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),a=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[ke(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),a=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=Vae(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=Bae(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),a=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=Wae(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),a=n.getTensorList(r.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),a=I("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=jae(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function N4(e,t,n){let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),u=u0(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[p,m]=I("args",e,t,n),f=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:h,dilations:d,biasArg:p,preluArg:m,activationFunc:a,leakyreluAlpha:f}}var Hae=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[wd(I("x",e,t,n),I("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=u0(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[ia(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=N4(e,t,n);return[La.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=N4(e,t,n);return[La.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),s=u0(e,t,n);return[bd(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=u0(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[ml(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[cm(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Hu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Yu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=qw(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[om(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[_m(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dilations",e,t,n),i=r[1],o=r[2],l=s[1],c=s[2];return[dm(I("x",e,t,n),I("filter",e,t,n),[i,o],a,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Gae=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),s=I("value",e,t,n);return[Xu(r,s,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("num",e,t,n);return[Ww(r,a,s)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),s=I("seed",e,t,n);return[Xw(r,a,s)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[ul(r,a,s,i)]}case"Ones":return[Fn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[$n(I("x",e,t,n))];case"RandomUniform":return[wl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("step",e,t,n);return[Md(r,a,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Vd(r,a,s,I("dtype",e,t,n),i)]}case"Zeros":return[Et(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ue(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function T2(e,t,n){let r=I("boxes",e,t,n),a=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var qae=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=T2(e,t,n),c=await Ye.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=T2(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Ye.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=T2(e,t,n);return[await Ye.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=Ae(I("condition",e,t,n),"bool"),a=[await Om(r)];return r.dispose(),a}case"ListDiff":return Yw(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Xae=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),s=I("sorted",e,t,n),i=$m(r,a,s);return[i.values,i.indices]}case"Unique":{let r=I("x",e,t,n),a=jd(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),s=jd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Kae=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[mn(e.name,t,n)||r];case"Placeholder":return[mn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[Aa(c)]}case"IdentityN":return I("x",e,t,n).map(c=>Aa(c));case"Snapshot":let a=I("x",e,t,n);return[Aa(a)];case"Shape":return[nn(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>nn(c.shape));case"Size":return[ke(I("x",e,t,n).size,"int32")];case"Rank":return[ke(I("x",e,t,n).rank,"int32")];case"NoOp":return[ke(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;ce.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ke(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),L(()=>{let r=ur(t),a=n.length,s=r.length;_.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i{let r=[];for(let a=0;a{switch(e.op){case"HashTable":case"HashTableV2":{let a=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new Zae(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=I("tableHandle",e,t,n,r);return[r.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Jae=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ye.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ye.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Ye.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Qae=(e,t,n)=>{switch(e.op){case"Equal":return[Da(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[gi(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[or(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[za(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Id(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[mi(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[lr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Zu(I("a",e,t,n))];case"LogicalOr":return[Ed(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Sn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ese=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Be(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[zw(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Ze(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[La.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},tse=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[pi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[pi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[gm(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[nc(I("x",e,t,n))];case"LogSoftmax":return[Td(I("x",e,t,n))];case"SparseToDense":return[zm(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},nse=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Kn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[vt(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[gl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ne(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[gd(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Vu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[ju(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[Qf(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Rd(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[vd(I("x",e,t,n),i,o,l)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),s=I("size",e,t,n);return[Ew(r,a,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[Dw(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},rse=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,r),[ot(s,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[fi(r,Ae(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[fi(s,Ae(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i{let r=I("axis",e,t,n),a=I("tensors",e,t,n),s=a[0].shape,i=Pa(a[0]).shape,o=a.map(l=>{let c=_.arraysEqual(l.shape,s);if(!c&&!_.arraysEqual(Pa(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:H(l,s)});return[On(o,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return ur(a,r)}case"Tile":{let r=I("reps",e,t,n);return[Oa(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return ln(s,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),s=I("shape",e,t,n);return[tb(r,a,s)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[nb(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[zm(r,s,a,s.dtype===i.dtype?i:Ae(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},ase=(e,t,n)=>{switch(e.op){case"SparseReshape":{let{outputIndices:r,outputShape:a}=yb.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,a]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},sse=(e,t,n)=>{switch(e.op){case"FFT":return[rc(I("x",e,t,n))];case"IFFT":return[bl(I("x",e,t,n))];case"RFFT":return[ac(I("x",e,t,n))];case"IRFFT":return[Wd(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ise=(e,t,n)=>{switch(e.op){case"Cast":return[Ae(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[on(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[Pa(I("x",e,t,n),r)]}case"Reshape":return[H(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[vm(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[oa(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[Ju(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[Gu(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[hm(I("x",e,t,n),r,a)]}case"BroadcastTo":return[pl(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function T4(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return L(()=>zae(s,i,o));case"basic_math":return L(()=>Pae(s,i,o));case"control":return Uae(s,i,o);case"convolution":return L(()=>Hae(s,i,o));case"creation":return L(()=>Gae(s,i,o));case"dynamic":return qae(s,i,o);case"evaluation":return L(()=>Xae(s,i,o));case"image":return L(()=>Jae(s,i,o));case"graph":return L(()=>Kae(s,i,o));case"logical":return L(()=>Qae(s,i,o));case"matrices":return L(()=>ese(s,i,o));case"normalization":return L(()=>tse(s,i,o));case"reduction":return L(()=>nse(s,i,o));case"slice_join":return L(()=>rse(s,i,o));case"sparse":return L(()=>ase(s,i,o));case"spectral":return L(()=>sse(s,i,o));case"transformation":return L(()=>ise(s,i,o));case"hash_table":return Yae(s,i,o,r);case"custom":let l=a4(s.op);if(l&&l.customExecutor)return l.customExecutor(new Oae(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return _.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var E4=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function R4(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>Ln(d)[0]),u=[];r!=null&&(u=r.map(d=>Ln(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((C4(d)||ose(d)||lse(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function use(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(u=>Ln(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{r.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{r.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return c}var cse=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],hse=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],dse=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function C4(e){return cse.indexOf(e.op)>=0}function ose(e){return hse.indexOf(e.op)>=0}function lse(e){return dse.indexOf(e.op)>=0}var E2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new E2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=R4(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return use(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[Ln(u)[0]]),a=t.map(u=>Ln(u)[0]),s=a.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return L(()=>{let u=new E4(this.weightMap,l,c,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,A]=Ln(m),y=[];y[A]=e[m],h[f]=y});let d=this.getFrozenTensorIds(h),p={};for(let m=0;mmn(m,h,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=yae(o.name,n,r);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!a.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new E4(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>mn(h,i,s)),l=o.map(h=>h.id),c=Object.keys(e).map(h=>e[h].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.kept&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[Ln(g)[0]]),i=n.map(g=>Ln(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:h}=R4(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[x,v]=Ln(g),w=[];w[v]=e[g],p[x]=w});let m={},f=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,f,i,m,l);await Promise.all(g)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!C4(g)&&!mn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${c}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let h="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([h]=ma(u.node.name,n)),r[u.node.name]==null){let d=T4(u.node,r,n,this._resourceManager);h||([h]=ma(u.node.name,n));let p=n.currentContext;_.isPromise(d)?c.push(d.then(m=>(r[h]=m,n.currentContext=p,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l),m))):(r[h]=d,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l))}else this.processChildNodes(u.node,t,n,r,a,l)}return c}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=ma(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!mn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!mn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=Ln(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);_.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&_.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=Ln(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Ln(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},pse=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},fse="?tfjs-format=file",mse="model.json",M4=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new pse}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=vn.browserHTTPRequest(e,this.loadOptions);else{let t=vn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(vn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=vn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new E2(v4.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=v4.Instance.transformGraph(e.modelInitializer);this.initializer=new E2(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=vn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Le)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Ht(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${mse}${fse}`);let n=new M4(e,t);return await n.load(),n}var Ase="3.5.0",F4={};Me(F4,{CSVDataset:()=>D4,Dataset:()=>Gl,FileDataSource:()=>O4,TextLineDataset:()=>$4,URLDataSource:()=>z4,array:()=>yse,csv:()=>xse,func:()=>wse,generator:()=>bse,microphone:()=>vse,version_data:()=>kse,webcam:()=>_se,zip:()=>gse});var Ise=Qi(Wg()),Sse=Qi(Wg());function Nse(e,t){return c0(e,t)}function c0(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(ql(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=c0(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function Tse(e,t=L4){return P4(e,t)}function P4(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(ql(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(c=>c[i]),l=P4(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function L4(e){return e===null?null:ql(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function W4(e,t){let n=new Map;c0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(_.isPromise(a)){let s=await a;n.set(r,s)}}return c0(e,t,n)}function ql(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Le))}function Cse(e){return e==null||Ese(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Le||_.isTypedArray(e)}function Ese(e){return e===null||typeof e!="object"&&typeof e!="function"}function Mse(e){return Nse(e,Rse)}function Rse(e){return e instanceof Le?{value:e.clone(),recurse:!1}:ql(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var B4=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},C2=class extends B4{constructor(){super(C2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;rt===!0)}rowMajorBatch(e,t=!0){return new Bse(this,e,t)}columnMajorBatch(e,t=!0,n=L4){return this.rowMajorBatch(e,t).map(r=>Tse(r,n))}concatenate(e,t){return new j4(V4([this,e]),t)}take(e){return e<0||e==null?this:new Wse(this,e)}skip(e){return e<0||e==null?this:new Lse(this,e)}prefetch(e){return new H4(this,e)}shuffle(e,t){return new Gse(this,e,t)}serial(){return new Pse(this)}},Fse=class extends Gt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Mse(e),done:!1}}},$se=class extends Gt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Pse=class extends Gt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Lse=class extends Gt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Bse=class extends Gt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Vse=class extends Gt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Te(e.value)}}},jse=class extends Gt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=yr.getTensorsInContainer(e.value),n=this.transform(e.value),r=yr.getTensorsInContainer(n);for(let a of t)yr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Use=class extends Gt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},U4=class extends Gt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=yr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=yr.getTensorsInContainer(n);for(let a of t)yr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},M2=class extends Gt{constructor(){super();this.outputQueue=new C2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Hse=class extends M2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=yr.getTensorsInContainer(e.value),n=this.transform(e.value),r=yr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)yr.isTensorInList(a,r)||a.dispose();return!0}},j4=class extends Gt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Ya;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Ya||(Ya={}));var Ose=class extends Gt{constructor(e,t=Ya.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof Gt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await W4(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Ya.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Ya.SHORTEST:return{value:null,done:!0};case Ya.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},H4=class extends Gt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new B4(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Gse=class extends H4{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Sse.alea(n||_.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Gl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;_.assert(e>0,()=>`batchSize needs to be positive, but it is + ${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Wn(async()=>(await n.iterator()).columnMajorBatch(e,t,qse),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Wn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Wn(async()=>(await t.iterator()).filter(r=>L(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Wn(async()=>(await t.iterator()).map(n=>L(()=>e(n))),this.size)}mapAsync(e){let t=this;return Wn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Wn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Wn(async()=>{let r=R2(async()=>({value:await t.iterator(),done:!1}));return Dse(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=Ise.alea(t||_.now().toString());return Wn(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Wn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Gl.MAX_BUFFER_SIZE=1e4;function Wn(e,t=null){return new class extends Gl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function yse(e){return Wn(async()=>V4(e),e.length)}function gse(e){if(!ql(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await W4(e,r=>{if(r instanceof Gl)return{value:r.iterator(),recurse:!1};if(ql(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return zse(n,Ya.SHORTEST)},t)}function qse(e){if(e===null)return null;let t=e[0];return Cse(t)?{value:Xse(e),recurse:!1}:{value:null,recurse:!0}}function Xse(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Le?On(e):xr(e)}var $4=class extends Gl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` +`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},h0='"',Hc=Symbol("out"),G4=Symbol("field"),d0=Symbol("quote"),F2=Symbol("quoteafterquote"),q4=Symbol("quoteinquote"),D4=class extends Gl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new $4(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(_.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&_.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(_.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new X4(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(_.sizeFromShape(t));return n.set(e,n.length-e.length),xr(n,t)}},K4=class extends Gt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=nn([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=Zn([s,a,o,i],[1,4])}else this.cropBox=Zn([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new K4(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&_.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=ui.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return L(()=>{let t=on(Ae(e,"float32"),0),n;n=Ye.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return H(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},Z4=class{},Y4=class extends Gt{split(e){return new Kse(this,e)}},Kse=class extends Y4{constructor(e,t){super();this.upstream=e,this.impl=new Zse(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Zse=class extends M2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Jse=class extends Gt{decodeUTF8(){return new Yse(this)}},Yse=class extends Y4{constructor(e){super();this.upstream=e,this.impl=new Qse(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Qse=class extends M2{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=s9();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},J4=class extends Jse{constructor(e,t={}){super();this.file=e,this.options=t,_.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function tie(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=eie(e));let a=await _.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new J4(s,t)}else throw new Error(a.statusText)}var eie=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function Q4(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var O4=class extends Z4{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Q4(this.input)&&J().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new J4(this.input,this.options)}},z4=class extends Z4{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Q4(this.url)?new O4(this.url,this.fileOptions).iterator():tie(this.url,this.fileOptions)}};function xse(e,t={}){return new D4(new z4(e),t)}function wse(e){let t=R2(e);return Wn(async()=>t)}function bse(e){return Wn(async()=>{let t=await e();return R2(()=>t.next())})}async function _se(e,t){return K4.create(e,t)}async function vse(e){return X4.create(e)}var kse="3.5.0",nie={tfjs:(cf==null?void 0:cf.version)||void 0,"tfjs-core":(hf==null?void 0:hf.version)||void 0,"tfjs-data":(df==null?void 0:df.version)||void 0,"tfjs-layers":(pf==null?void 0:pf.version)||void 0,"tfjs-converter":(ff==null?void 0:ff.version)||void 0,"tfjs-backend-cpu":Zb||void 0,"tfjs-backend-webgl":x3||void 0,"tfjs-backend-wasm":cv||void 0};var Bn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function e8(){if(!Zf(Bn.name)){pe("backend registration:",Bn.name);try{Bn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Bn.width,Bn.height):document.createElement("canvas")}catch(e){pe("error: cannot create canvas:",e);return}try{Bn.gl=Bn.canvas.getContext("webgl2",Bn.webGLattr)}catch(e){pe("error: cannot get WebGL2 context:",e);return}try{hp(2,Bn.gl)}catch(e){pe("error: cannot set WebGL2 context:",e);return}try{let e=new mp(Bn.gl);hl(Bn.name,()=>new Dl(e),Bn.priority)}catch(e){pe("error: cannot register WebGL backend:",e);return}try{al("webgl").forEach(t=>{let n={...t,backendName:Bn.name};si(n)})}catch(e){pe("error: cannot update WebGL backend registration:",e);return}try{Ar.set("WEBGL_VERSION",2)}catch(e){pe("error: cannot set WebGL backend flags:",e);return}pe("backend registered:",Bn.name)}}var $2={};Mr($2,{load:()=>z2,predict:()=>m0});var p0={};function Ja(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(i=>i.kernelTimeMs>0).reduce((i,o)=>i+=o.kernelTimeMs,0),a=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.kernelTimeMs>0).sort((i,o)=>o.kernelTimeMs-i.kernelTimeMs),s=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.totalBytesSnapshot>0).sort((i,o)=>o.totalBytesSnapshot-i.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n),p0[e]={model:e,newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s},pe("profiler",e,p0[e])}var rie=["angry","disgust","fear","happy","sad","surprise","neutral"],fr,D2=[],f0=Number.MAX_SAFE_INTEGER,O2=[.2989,.587,.114];async function z2(e){return fr?e.debug&&pe("cached model:",fr.modelUrl):(fr=await Ht(Yt(e.modelBasePath,e.face.emotion.modelPath)),!fr||!fr.modelUrl?pe("load model failed:",e.face.emotion.modelPath):e.debug&&pe("load model:",fr.modelUrl)),fr}async function m0(e,t){return fr?f00?(f0++,D2):(t.videoOptimized?f0=0:f0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ye.resizeBilinear(e,[fr.inputs[0].shape[2],fr.inputs[0].shape[1]],!1),[a,s,i]=ln(r,3,3);r.dispose();let o=B(a,O2[0]),l=B(s,O2[1]),c=B(i,O2[2]);a.dispose(),s.dispose(),i.dispose();let u=yd([o,l,c]);o.dispose(),l.dispose(),c.dispose();let h=L(()=>u.sub(.5).mul(2));u.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let m=await sa(()=>fr.predict(h));p=m.result.dataSync(),m.result.dispose(),Ja("emotion",m)}else{let m=await fr.predict(h);p=m.dataSync(),Te(m)}for(let m=0;mt.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*p[m])/100),emotion:rie[m]});d.sort((m,f)=>f.score-m.score)}h.dispose(),D2=d,n(d)})):null}var P2={};Mr(P2,{enhance:()=>B2,load:()=>L2,match:()=>t8,predict:()=>g0,similarity:()=>W2});var Vn,A0={age:0},y0=Number.MAX_SAFE_INTEGER;async function L2(e){return Vn?e.debug&&pe("cached model:",Vn.modelUrl):(Vn=await Ht(Yt(e.modelBasePath,e.face.description.modelPath)),!Vn||!Vn.modelUrl?pe("load model failed:",e.face.description.modelPath):e.debug&&pe("load model:",Vn.modelUrl)),Vn}function W2(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-r)/100}function t8(e,t,n=0){let r={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return r;for(let a of t)if(a.embedding&&a.name){let s=W2(e,a.embedding);s>n&&s>r.similarity&&(r={...a,similarity:s})}return r}function B2(e){return L(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Le))return null;let r=[[.05,.15,.85,.85]];return(n.shape.length===3?Ye.cropAndResize(on(n,0),r,[0],[Vn.inputs[0].shape[2],Vn.inputs[0].shape[1]]):Ye.cropAndResize(n,r,[0],[Vn.inputs[0].shape[2],Vn.inputs[0].shape[1]])).mul(255)})}async function g0(e,t){return Vn?y00?(y0++,A0):(t.videoOptimized?y0=0:y0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=B2(e),a,s={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};if(!t.profile)t.face.description.enabled&&(a=await Vn.predict(r));else{let i=t.face.description.enabled?await sa(()=>Vn.predict(r)):{};a=i.result,Ja("faceres",i)}Te(r),a&&(L(()=>{let i=a.find(h=>h.shape[1]===1).dataSync(),o=Math.trunc(200*Math.abs(i[0]-.5))/100;o>t.face.description.minConfidence&&(s.gender=i[0]<=.5?"female":"male",s.genderConfidence=Math.min(.99,o));let l=a.find(h=>h.shape[1]===100).argMax(1).dataSync()[0],c=a.find(h=>h.shape[1]===100).dataSync();s.age=Math.round(c[l-1]>c[l+1]?10*l-100*c[l-1]:10*l+100*c[l+1])/10;let u=a.find(h=>h.shape[1]===1024);s.descriptor=[...u.dataSync()]}),a.forEach(i=>Te(i))),A0=s,n(s)})):null}var aie=(e,t)=>{let n=A=>A*180/Math.PI,r=A=>{let y=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=y,A[1]/=y,A[2]/=y,A},a=(A,y)=>{let g=A[0]-y[0],x=A[1]-y[1],v=A[2]-y[2];return[g,x,v]},s=(A,y)=>{let g=A[1]*y[2]-A[2]*y[1],x=A[2]*y[0]-A[0]*y[2],v=A[0]*y[1]-A[1]*y[0];return[g,x,v]},i=A=>{let[y,g,x,v,w,b,k,N,C]=A,F,O,z;return v<1?v>-1?(z=Math.asin(v),O=Math.atan2(-k,y),F=Math.atan2(-b,w)):(z=-Math.PI/2,O=-Math.atan2(N,C),F=0):(z=Math.PI/2,O=Math.atan2(N,C),F=0),{pitch:2*-F,yaw:2*-O,roll:2*-z}},o=A=>{let y=(x,v,w,b)=>Math.atan2(b-v,w-x);return{pitch:y(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:y(A[33][0],A[33][2],A[263][0],A[263][2]),roll:y(A[33][0],A[33][1],A[263][0],A[263][1])}},l=e.meshRaw;if(!l||l.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let c=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[l[10],l[152],l[234],l[454]].map(A=>[A[0]*t[0]/c,A[1]*t[1]/c,A[2]]),h=r(a(u[1],u[0])),d=r(a(u[3],u[2])),p=r(s(d,h));d=s(h,p);let m=[d[0],d[1],d[2],h[0],h[1],h[2],p[0],p[1],p[2]];return{angle:i(m),matrix:m}},V2=async(e,t)=>{var u,h,d,p,m,f,A;let n,r,a,s,i,o,l=[];e.state="run:face",n=it();let c=await((u=e.models.face)==null?void 0:u.estimateFaces(t,e.config));if(e.perf.face=Math.trunc(it()-n),!c)return[];for(let y of c){if(e.analyze("Get Face"),!y.image||y.image.isDisposedInternal){pe("Face object is disposed:",y.image);continue}let g=aie(y,[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?m0(y.image,e.config):{}:(e.state="run:emotion",n=it(),s=e.config.face.emotion.enabled?await m0(y.image,e.config):{},e.perf.emotion=Math.trunc(it()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?g0(y,e.config):[]:(e.state="run:description",n=it(),o=e.config.face.description.enabled?await g0(y.image,e.config):[],e.perf.embedding=Math.trunc(it()-n)),e.analyze("End Description:"),e.config.async&&([r,a,s,i,o]=await Promise.all([r,a,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=y==null?void 0:y.annotations)==null?void 0:h.leftEyeIris)&&((d=y==null?void 0:y.annotations)==null?void 0:d.rightEyeIris)&&(delete y.annotations.leftEyeIris,delete y.annotations.rightEyeIris);let x=((p=y.annotations)==null?void 0:p.leftEyeIris)&&((m=y.annotations)==null?void 0:m.rightEyeIris)?11.7*Math.max(Math.abs(y.annotations.leftEyeIris[3][0]-y.annotations.leftEyeIris[1][0]),Math.abs(y.annotations.rightEyeIris[4][1]-y.annotations.rightEyeIris[2][1])):0;l.push({...y,age:o.age,gender:o.gender,genderConfidence:o.genderConfidence,embedding:o.descriptor,emotion:s,iris:x!==0?Math.trunc(x)/100:0,rotation:g,tensor:e.config.face.detector.return?(f=y.image)==null?void 0:f.squeeze():null}),(A=y.image)==null||A.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),l};var X2={};Mr(X2,{MediaPipeFaceMesh:()=>K2,load:()=>Z2,triangulation:()=>h8,uvmap:()=>d8});var n8=6;function sie(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r({startEndTensor:e,startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});function oie(e,t,n){let r=Re(e,[0,1],[-1,2]),a=se(r,t),s=Re(e,[0,3],[-1,2]),i=ge(s,n),o=ge(a,n),l=ge(i,2),c=ye(o,l),u=se(o,l),h=B(c,n),d=B(u,n);return fl([h,d],1)}var r8=class{constructor(t,n){this.model=t,this.anchorsData=sie(t.inputs[0].shape[1]),this.anchors=Zn(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=L(()=>{let d=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),p=this.model.predict(d),m;if(Array.isArray(p)){let g=p.sort((b,k)=>b.size-k.size),x=ot([g[0],g[2]],2),v=ot([g[1],g[3]],2);m=ot([v,x],1).squeeze(0)}else m=p.squeeze();let f=oie(m,this.anchors,[this.inputSize,this.inputSize]),A=Re(m,[0,0],[-1,1]),y=kn(A).squeeze();return[m,f,y]}),s=await Ye.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>Re(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),c=a.dataSync(),u=[];for(let h=0;hthis.config.face.detector.minConfidence){let m=iie(l[h]),f=this.anchorsData[d],A=L(()=>Re(n,[d,n8-1],[1,-1]).squeeze().reshape([n8,-1]));u.push({box:m,landmarks:A,anchor:f,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),{boxes:u,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function a8(e){let t=await Ht(Yt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new r8(t,e);return!t||!t.modelUrl?pe("load model failed:",e.face.detector.modelPath):e.debug&&pe("load model:",t.modelUrl),n}function s8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function Gc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Xl(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Kl(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Ye.cropAndResize(t,s,[0],n)}function x0(e,t=1.5){let n=Xl(e),r=Gc(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function w0(e){let t=Xl(e),n=Gc(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}var b0=[[1,0,0],[0,1,0],[0,0,1]];function lie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function j2(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return lie(n)}function i8(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function Qa(e,t){let n=0;for(let r=0;rqc[e]),roe=hie.map(e=>qc[e]),aoe=die.map(e=>qc[e]);var H2=Xr.leftEyeLower0,G2=Xr.rightEyeLower0,Zl={leftBounds:[H2[0],H2[H2.length-1]],rightBounds:[G2[0],G2[G2.length-1]]},v0={count:468,mouth:13,symmetryLine:[13,Xr.midwayBetweenEyes[0]]},c8={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Yl={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function k0(e,t,n,r){for(let a=0;a[s[0]/this.meshSize*(h[0]-this.meshSize/2),s[1]/this.meshSize*(h[1]-this.meshSize/2),h[2]]),o=r!==0?_0(r,[0,0]):b0,l=r!==0?i.map(h=>[...u8(h,o),h[2]]):i,c=r!==0?l8(a):b0,u=[...Xl({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(h=>[h[0]+Qa(u,c[0]),h[1]+Qa(u,c[1]),h[2]])}getLeftToRightEyeDepthDifference(t){let n=t[Zl.leftBounds[0]][2],r=t[Zl.rightBounds[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=w0(x0(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Gc(i),l=Ye.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&Ar.flags.IS_BROWSER&&(l=Ye.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i{let c=i;return l===2?c=a:l===4&&(c=s),[o[0],o[1],c]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,!n.videoOptimized||a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=L(()=>this.storedBoxes.map((i,o)=>{let l=i.confidence,c,u=0,h;if(n.face.detector.rotation&&n.face.mesh.enabled&&Ar.flags.IS_BROWSER){let[w,b]=i.landmarks.length>=v0.count?v0.symmetryLine:c8.symmetryLine;u=j2(i.landmarks[w],i.landmarks[b]);let k=Xl({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Ye.rotateWithOffset(t,u,0,N);h=_0(-u,k),n.face.mesh.enabled?c=Kl({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255):c=Kl({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.boxSize,this.boxSize]).div(255)}else{h=b0;let w=t.clone();n.face.mesh.enabled?c=Kl({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.meshSize,this.meshSize]).div(255):c=Kl({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,boxConfidence:l,confidence:i.confidence,image:c};let[,d,p]=this.meshDetector.predict(c),m=d.dataSync()[0];if(m=v0.count?v0.symmetryLine:c8.symmetryLine;u=j2(i.landmarks[w],i.landmarks[b]);let k=Xl({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Ye.rotateWithOffset(t.toFloat(),u,0,N);h=_0(-u,k),c=Kl({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255)}let x={coords:g,box:i,faceConfidence:m,boxConfidence:l,image:c,rawCoords:A},v=w0(i);return this.storedBoxes[o]={...v,landmarks:y,confidence:i.confidence,faceConfidence:m},x}));return s=s.filter(i=>i!==null),n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.faceConfidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};var K2=class{constructor(t,n,r,a){this.facePipeline=new q2(t,n,r),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():[],o=i.map(h=>[h[0]/t.shape[2],h[1]/t.shape[1],h[2]/this.facePipeline.meshSize]),l={};if(i&&i.length>0)for(let h of Object.keys(Xr))l[h]=Xr[h].map(d=>i[d]);let c=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[2],s.box.endPoint[0])-Math.max(0,s.box.startPoint[0]),Math.min(t.shape[1],s.box.endPoint[1])-Math.max(0,s.box.startPoint[1])]:0,u=s.box?[s.box.startPoint[0]/t.shape[2],s.box.startPoint[1]/t.shape[1],(s.box.endPoint[0]-s.box.startPoint[0])/t.shape[2],(s.box.endPoint[1]-s.box.startPoint[1])/t.shape[1]]:[];a.push({confidence:Math.round(100*s.faceConfidence||100*s.boxConfidence||0)/100,boxConfidence:Math.round(100*s.boxConfidence)/100,faceConfidence:Math.round(100*s.faceConfidence)/100,box:c,boxRaw:u,mesh:i,meshRaw:o,annotations:l,image:s.image?s.image.clone():null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},qt=[null,null,null];async function Z2(e){return!qt[0]&&e.face.enabled||!qt[1]&&e.face.mesh.enabled||!qt[2]&&e.face.iris.enabled?(qt=await Promise.all([!qt[0]&&e.face.enabled?a8(e):null,!qt[1]&&e.face.mesh.enabled?Ht(Yt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!qt[2]&&e.face.iris.enabled?Ht(Yt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!qt[1]||!qt[1].modelUrl?pe("load model failed:",e.face.mesh.modelPath):e.debug&&pe("load model:",qt[1].modelUrl)),e.face.iris.enabled&&(!qt[2]||!qt[1].modelUrl?pe("load model failed:",e.face.iris.modelPath):e.debug&&pe("load model:",qt[2].modelUrl))):e.debug&&(pe("cached model:",qt[0].model.modelUrl),pe("cached model:",qt[1].modelUrl),pe("cached model:",qt[2].modelUrl)),new K2(qt[0],qt[1],qt[2],e)}var h8=Pi,d8=qc;var ng={};Mr(ng,{load:()=>ag,predict:()=>rg});var Xc=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],p8=Xc.length,Kc=Xc.reduce((e,t,n)=>(e[t]=n,e),{}),pie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],fie=pie.map(([e,t])=>[Kc[e],Kc[t]]),f8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function m8(e){let t=e.reduce(({maxX:n,maxY:r,minX:a,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(r,o),minX:Math.min(a,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function A8(e,[t,n],[r,a]){let s=(o,l,c)=>({score:o.score,box:[Math.trunc(o.box[0]*c),Math.trunc(o.box[1]*l),Math.trunc(o.box[2]*c),Math.trunc(o.box[3]*l)],keypoints:o.keypoints.map(({score:u,part:h,position:d})=>({score:u,part:h,position:{x:Math.trunc(d.x*c),y:Math.trunc(d.y*l)}}))});return e.map(o=>s(o,t/r,n/a))}var Y2=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nn?n:e}function y8(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function tg(e,t){return{x:e.x+t.x,y:e.y+t.y}}var I0=1,g8=16;function x8(e,t,n,r,a,s,i,o=2){let l=g=>({y:i.get(g.y,g.x,e),x:i.get(g.y,g.x,i.shape[2]/2+e)}),c=(g,x,v)=>({y:eg(Math.round(g.y/s),0,x-1),x:eg(Math.round(g.x/s),0,v-1)}),[u,h]=r.shape,d=c(t.position,u,h),p=l(d),f=tg(t.position,p);for(let g=0;g[Kc[f],Kc[A]]),o=i.map(([,f])=>f),l=i.map(([f])=>f),c=t.shape[2],u=o.length,h=new Array(c),{part:d,score:p}=e,m=Q2(d,r,n);h[d.id]={score:p,part:Xc[d.id],position:m};for(let f=u-1;f>=0;--f){let A=o[f],y=l[f];h[A]&&!h[y]&&(h[y]=x8(f,h[A],y,t,n,r,s))}for(let f=0;ft){o=!1;break}if(!o)break}return o}function yie(e,t){let[n,r,a]=t.shape,s=new Y2(n*r*a,({score:i})=>i);for(let i=0;i{let i=s[a].position;return y8(r,n,i.y,i.x)<=t})}function gie(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(w8(e,t,s,o)||(a+=i),a),0)/n.length}function b8(e,t,n,r,a,s,i){let o=[],l=yie(i,t),c=a**2;for(;o.lengthA.score>i),m=gie(o,c,p),f=m8(p);m>i&&o.push({keypoints:p,box:f,score:Math.round(100*m)/100})}return o}var mr,xie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function rg(e,t){let n=L(()=>{let o=e.resizeBilinear([mr.inputs[0].shape[2],mr.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),c=mr.execute(o,xie).map(u=>u.squeeze([0]));return c[1]=c[1].sigmoid(),c}),r=await Promise.all(n.map(i=>i.buffer()));for(let i of n)i.dispose();let a=await b8(r[0],r[1],r[2],r[3],t.body.nmsRadius,t.body.maxDetections,t.body.scoreThreshold);return A8(a,[e.shape[1],e.shape[2]],[mr.inputs[0].shape[2],mr.inputs[0].shape[1]])}async function ag(e){return mr?e.debug&&pe("cached model:",mr.modelUrl):(mr=await Ht(Yt(e.modelBasePath,e.body.modelPath)),!mr||!mr.modelUrl?pe("load model failed:",e.body.modelPath):e.debug&&pe("load model:",mr.modelUrl)),mr}var ug={};Mr(ug,{HandPose:()=>hg,load:()=>dg});function S0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Zc(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function _8(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Ye.cropAndResize(t,s,[0],n)}function v8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function N0(e,t=1.5){let n=Zc(e),r=S0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function T0(e){let t=Zc(e),n=S0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var sg=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=Zn(this.anchors),this.inputSize=n,this.inputSizeTensor=nn([n,n]),this.doubleInputSizeTensor=nn([n*2,n*2])}normalizeBoxes(t){return L(()=>{let n=Re(t,[0,0],[-1,2]),r=Re(t,[0,2],[-1,2]),a=se(ge(n,this.inputSizeTensor),this.anchorsTensor),s=ge(r,this.doubleInputSizeTensor),i=B(ye(a,s),this.inputSizeTensor),o=B(se(a,s),this.inputSizeTensor);return fl([i,o],1)})}normalizeLandmarks(t,n){return L(()=>{let r=se(ge(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return B(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=L(()=>kn(Re(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Re(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let c=await Ye.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),u=c.arraySync();s.dispose(),c.dispose();let h=[];for(let d of u)if(i[d]>=n.hand.minConfidence){let p=Re(l,[d,0],[1,-1]),m=Re(a,[d,5],[1,14]),f=L(()=>this.normalizeLandmarks(m,d).reshape([-1,2]));m.dispose(),h.push({box:p,palmLandmarks:f,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=L(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let c=l.box.dataSync(),u=c.slice(0,2),h=c.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(v8({startPoint:u,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/this.inputSize,r/this.inputSize]))}return o}};function wie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function k8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return wie(n)}var I8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function es(e,t){let n=0;for(let r=0;rog([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return N0(T0(a),_ie)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=N0(T0(n),T8);r.palmLandmarks=[];for(let a=0;a[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=ig(r,[0,0]),c=o.map(p=>[...og(p,l),p[2]]),u=N8(a),h=[...Zc(n),1],d=[es(h,u[0]),es(h,u[1])];return c.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i=n.hand.minConfidence){let x=H(y,[-1,3]),v=x.arraySync();y.dispose(),x.dispose();let w=this.transformRawCoords(v,p,l,d),b=this.getBoxForHandLandmarks(w);this.storedBoxes[i]=b;let k={landmarks:w,confidence:g,box:{topLeft:b.startPoint,bottomRight:b.endPoint}};s.push(k)}else this.storedBoxes[i]=null;y.dispose()}else{let l=N0(T0(o),T8),c={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(c)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};var C8=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var cg={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},hg=class{constructor(t){this.handPipeline=t}static getAnnotations(){return cg}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let c of Object.keys(cg))i[c]=cg[c].map(u=>s.landmarks[u]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-Math.max(0,s.box.topLeft[0]),Math.min(t.shape[1],s.box.bottomRight[1])-Math.max(0,s.box.topLeft[1])]:[],l=[s.box.topLeft[0]/t.shape[2],s.box.topLeft[1]/t.shape[1],(s.box.bottomRight[0]-s.box.topLeft[0])/t.shape[2],(s.box.bottomRight[1]-s.box.topLeft[1])/t.shape[1]];a.push({confidence:Math.round(100*s.confidence)/100,box:o,boxRaw:l,landmarks:s.landmarks,annotations:i})}return a}},Kr,Zr;async function dg(e){!Kr||!Zr?([Kr,Zr]=await Promise.all([e.hand.enabled?Ht(Yt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Ht(Yt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!Kr||!Kr.modelUrl?pe("load model failed:",e.hand.detector.modelPath):e.debug&&pe("load model:",Kr.modelUrl),!Zr||!Zr.modelUrl?pe("load model failed:",e.hand.skeleton.modelPath):e.debug&&pe("load model:",Zr.modelUrl))):(e.debug&&pe("cached model:",Kr.modelUrl),e.debug&&pe("cached model:",Zr.modelUrl));let t=new sg(Kr,Kr==null?void 0:Kr.inputs[0].shape[2],C8),n=new lg(t,Zr,Zr==null?void 0:Zr.inputs[0].shape[2]);return new hg(n)}var pg={};Mr(pg,{load:()=>fg,predict:()=>mg});var R8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],M8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var An;async function fg(e){return An?e.debug&&pe("cached model:",An.modelUrl):(An=await Ht(Yt(e.modelBasePath,e.body.modelPath)),An.width=parseInt(An.signature.inputs["input_1:0"].tensorShape.dim[2].size),An.height=parseInt(An.signature.inputs["input_1:0"].tensorShape.dim[1].size),!An||!An.modelUrl?pe("load model failed:",e.body.modelPath):e.debug&&pe("load model:",An.modelUrl)),An}async function mg(e,t){if(!An||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},r=Ye.resizeBilinear(e,[An.width,An.height],!1),a=ge(r,[255]);r.dispose();let s;if(t.profile){let u=await sa(()=>An.predict(a));s=u.result.find(h=>h.size===195||h.size===155).dataSync(),u.result.forEach(h=>h.dispose()),Ja("blazepose",u)}else{let u=await An.predict(a);s=u.find(h=>h.size===195||h.size===155).dataSync(),u.forEach(h=>h.dispose())}a.dispose();let i=[],o=s.length===195?R8:M8,l=5;for(let u=0;uh.score>u?h.score:u,0),keypoints:i}]}var Ag={};Mr(Ag,{load:()=>gg,predict:()=>xg});var E0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var yn,yg=[],C0=Number.MAX_SAFE_INTEGER,R0=2.5;async function gg(e){if(yn)e.debug&&pe("cached model:",yn.modelUrl);else{yn=await Ht(Yt(e.modelBasePath,e.object.modelPath));let t=Object.values(yn.modelSignature.inputs);if(yn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!yn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!yn||!yn.modelUrl?pe("load model failed:",e.object.modelPath):e.debug&&pe("load model:",yn.modelUrl)}return yn}async function Iie(e,t,n,r){let a=0,s=[];for(let c of[1,2,4])L(()=>{var A,y;let u=c*13,h=(A=e.find(g=>g.shape[1]===u**2&&g.shape[2]===E0.length))==null?void 0:A.squeeze(),d=(y=e.find(g=>g.shape[1]===u**2&&g.shape[2]r.object.minConfidence&&x!==61){let w=(.5+Math.trunc(g%u))/u,b=(.5+Math.trunc(g/u))/u,k=m[g].map(U=>U*(u/c/t)),[N,C]=[w-R0/c*k[0],b-R0/c*k[1]],[F,O]=[w+R0/c*k[2]-N,b+R0/c*k[3]-C],z=[N,C,F,O];z=z.map(U=>Math.max(0,Math.min(U,1)));let V=[z[0]*n[0],z[1]*n[1],z[2]*n[0],z[3]*n[1]],j={id:a++,strideSize:c,score:Math.round(100*v)/100,class:x+1,label:E0[x].label,center:[Math.trunc(n[0]*w),Math.trunc(n[1]*b)],centerRaw:[w,b],box:V.map(U=>Math.trunc(U)),boxRaw:z};s.push(j)}}});e.forEach(c=>Te(c));let i=s.map(c=>c.boxRaw),o=s.map(c=>c.score),l=[];if(i&&i.length>0){let c=await Ye.nonMaxSuppressionAsync(i,o,r.object.maxResults,r.object.iouThreshold,r.object.minConfidence);l=c.dataSync(),Te(c)}return s=s.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),s}async function xg(e,t){return yn?C00?(C0++,yg):(t.videoOptimized?C0=0:C0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=[e.shape[2],e.shape[1]],a=Ye.resizeBilinear(e,[yn.inputSize,yn.inputSize],!1),s=a.div(255),i=s.transpose([0,3,1,2]);s.dispose(),a.dispose();let o;if(!t.profile)t.object.enabled&&(o=await yn.predict(i));else{let c=t.object.enabled?await sa(()=>yn.predict(i)):{};o=c.result,Ja("object",c)}i.dispose();let l=await Iie(o,yn.inputSize,r,t);yg=l,n(l)})):null}var F8=e=>{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.yl.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},$8=e=>{if(!e)return[];let t=[];for(let n=0;n0){let r=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${r<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},D8=e=>{if(!e)return[];let t=[];for(let n=0;n.033||h>.033)&&(c=!1),d>.033&&t.push({iris:n,gesture:"looking right"}),h>.033&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].annotations.rightEyeIris[0][1],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].annotations.leftEyeIris[0][1];(m<.015||p<.015||m>.03||p>.03)&&(c=!1),(m<.015||p<.015)&&t.push({iris:n,gesture:"looking down"}),(m>.03||p>.03)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},O8=e=>{if(!e)return[];let t=[];for(let n=0;n0){let a=r.reduce((i,o)=>i.position[2]i.position[1]bg});function Sie(e,t,n){let r=function(o,l,c){let u=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(u,(h,d)=>(c[d]=0,h))},a=function(o,l){let c=e.createShader(l);if(e.shaderSource(c,o),e.compileShader(c),!e.getShaderParameter(c,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(c));return c};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function z8(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,c=null,u=null,h={},d=e.canvas||document.createElement("canvas"),p={},m={INTERMEDIATE:1},f=d.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(w){let b=Array.prototype.slice.call(arguments,1),k=h[w];i.push({func:k,args:b})},this.reset=function(){i=[]};let A=function(w,b){if(!(w===o&&b===l)){if(d.width=w,o=w,d.height=b,l=b,!c){let k=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);c=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,c),f.bufferData(f.ARRAY_BUFFER,k,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},y=function(w,b){let k=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,k);let N=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,N);let C=f.createTexture();return f.bindTexture(f.TEXTURE_2D,C),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,w,b,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,C,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:k,texture:C}},g=function(w){return s[w]=s[w]||y(o,l),s[w]},x=function(w=null){var C,F;let b=null,k=null,N=!1;t===0?b=n:b=(C=g(a))==null?void 0:C.texture,t++,r&&!(w&m.INTERMEDIATE)?(k=null,N=t%2==0):(a=(a+1)%2,k=(F=g(a))==null?void 0:F.fbo),f.bindTexture(f.TEXTURE_2D,b),f.bindFramebuffer(f.FRAMEBUFFER,k),f.uniform1f(u.uniform.flipY,N?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(w){if(A(w.width,w.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,w),i.length===0)return x(),d;for(let b=0;b0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=a,o=s;if(i>j0&&(i=j0,o=i*s/a),o>j0&&(o=j0,i=o*a/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=a*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/a)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==i||(Ee==null?void 0:Ee.height)!==o)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==i&&(Ee.width=i),(Ee==null?void 0:Ee.height)!==o&&(Ee.height=o));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(a,0),l.scale(-1,1),l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!$t||!bt||Ee.width!==bt.width||(Ee==null?void 0:Ee.height)!==(bt==null?void 0:bt.height))&&(bt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(bt==null?void 0:bt.width)!==(Ee==null?void 0:Ee.width)&&(bt.width=Ee==null?void 0:Ee.width),(bt==null?void 0:bt.height)!==(Ee==null?void 0:Ee.height)&&(bt.height=Ee==null?void 0:Ee.height),$t=vr.flags.IS_BROWSER?new ik({canvas:bt}):null),!$t)return{tensor:null,canvas:Ee};$t.reset(),$t.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&$t.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&$t.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&$t.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&$t.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&$t.addFilter("hue",t.filter.hue),t.filter.negative&&$t.addFilter("negative"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.vintage&&$t.addFilter("brownie"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.kodachrome&&$t.addFilter("kodachrome"),t.filter.technicolor&&$t.addFilter("technicolor"),t.filter.polaroid&&$t.addFilter("polaroid"),t.filter.pixelate!==0&&$t.addFilter("pixelate",t.filter.pixelate),$t.apply(Ee)}else bt=Ee,$t&&($t=null);let c;if(bt.data){let h=[bt.height,bt.width,3];c=xd(bt.data,h,"int32")}else if(bt instanceof ImageData)c=fi.fromPixels(bt);else if(t.backend==="webgl"||t.backend==="humangl"){let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(bt,0,0),c=fi.fromPixels(h)}else{let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(bt,0,0);let p=d==null?void 0:d.getImageData(0,0,i,o);c=fi.fromPixels(p)}let u=c.toFloat();n=u.expandDims(0),c.dispose(),u.dispose()}let r=t.filter.return?bt:null;return{tensor:n,canvas:r}}var Ug={};lr(Ug,{all:()=>eoe,body:()=>uk,canvas:()=>Qie,face:()=>lk,gesture:()=>ok,hand:()=>ck,object:()=>hk,options:()=>Hi});var ht={backend:"webgl",modelBasePath:"../models/",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface-back.json",rotation:!1,maxFaces:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,scoreThreshold:.2,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"},age:{enabled:!1,modelPath:"age.json",skipFrames:33},gender:{enabled:!1,minConfidence:.1,modelPath:"gender.json",skipFrames:34},embedding:{enabled:!1,modelPath:"mobileface.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetections:1,scoreThreshold:.2,nmsRadius:20},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxResults:10,skipFrames:41}};var Hi={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function U0(e,t,n,r=0,a){e.fillStyle=a.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:a.color,e.beginPath(),e.arc(t,n,a.pointSize,0,2*Math.PI),e.fill()}function Gi(e,t,n,r,a,s){if(e.beginPath(),s.useCurves){let i=(t+t+r)/2,o=(n+n+a)/2;e.ellipse(i,o,r/2,a/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+r-s.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+s.roundRect),e.lineTo(t+r,n+a-s.roundRect),e.quadraticCurveTo(t+r,n+a,t+r-s.roundRect,n+a),e.lineTo(t+s.roundRect,n+a),e.quadraticCurveTo(t,n+a,t,n+a-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function Hg(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let r of t)e.strokeStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.lineTo(r[0],parseInt(r[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function rh(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Hg(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let r=0;r1&&l[1].length>0){let c=o[1]>0?`#${o[1]}`:"",u=`${o[0]} ${c}: ${l[1]}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(u,8,2+s*r.lineHeight)),a.fillStyle=r.labelColor,a.fillText(u,6,0+s*r.lineHeight),s+=1}}}async function lk(e,t,n){let r=Yn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a)for(let s of t){a.font=r.font,a.strokeStyle=r.color,a.fillStyle=r.color,r.drawBoxes&&(r.useRawBoxes?Gi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Gi(a,s.box[0],s.box[1],s.box[2],s.box[3],r));let i=[];if(i.push(`face confidence: ${Math.trunc(100*s.confidence)}%`),s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}s.rotation&&s.rotation.angle&&s.rotation.angle.roll&&i.push(`roll: ${Math.trunc(100*s.rotation.angle.roll)/100} yaw:${Math.trunc(100*s.rotation.angle.yaw)/100} pitch:${Math.trunc(100*s.rotation.angle.pitch)/100}`),i.length===0&&i.push("face"),a.fillStyle=r.color;for(let o=i.length-1;o>=0;o--){let l=Math.max(s.box[0],0),c=o*r.lineHeight+s.box[1];r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i[o],l+5,c+16)),a.fillStyle=r.labelColor,a.fillText(i[o],l+4,c+15)}if(a.lineWidth=1,s.mesh&&s.mesh.length>0){if(r.drawPoints)for(let o of s.mesh)U0(a,o[0],o[1],o[2],r);if(r.drawPolygons){a.lineWidth=1;for(let o=0;os.mesh[c]);Hg(a,l,r)}if(s.annotations&&s.annotations.leftEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;a.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}if(s.annotations&&s.annotations.rightEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;a.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}}}}}var is=[];async function uk(e,t,n){let r=Yn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round";for(let s=0;sl.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),o.length===4&&Hg(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftKnee"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftAnkle"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHeel"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftFoot"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightKnee"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightAnkle"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHeel"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightFoot"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftElbow"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftWrist"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftPalm"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightElbow"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightWrist"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightPalm"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r)}}}}async function ck(e,t,n){let r=Yn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t){if(r.drawBoxes){a.strokeStyle=r.color,a.fillStyle=r.color;let i;if(!r.calculateHandBox)i=r.useRawBoxes?s.boxRaw:s.box;else if(i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],s.landmarks&&s.landmarks.length>0){for(let o of s.landmarks)o[0]i[2]&&(i[2]=o[0]),o[1]>i[3]&&(i[3]=o[1]);i[2]-=i[0],i[3]-=i[1]}r.useRawBoxes?Gi(a,e.width*i[0],e.height*i[1],e.width*i[2],e.height*i[3],r):Gi(a,i[0],i[1],i[2],i[3],r),r.drawLabels&&(r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText("hand",i[0]+3,1+i[1]+r.lineHeight,i[2])),a.fillStyle=r.labelColor,a.fillText("hand",i[0]+2,0+i[1]+r.lineHeight,i[2])),a.stroke()}if(r.drawPoints&&s.landmarks&&s.landmarks.length>0)for(let i of s.landmarks)a.fillStyle=r.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:r.color,U0(a,i[0],i[1],0,r);if(r.drawPolygons){let i=o=>{if(!!o)for(let l=0;l0?l-1:0][0],o[l>0?l-1:0][1]),a.lineTo(o[l][0],o[l][1]),a.stroke()};i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function hk(e,t,n){let r=Yn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t)if(r.drawBoxes){if(a.strokeStyle=r.color,a.fillStyle=r.color,r.useRawBoxes?Gi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Gi(a,s.box[0],s.box[1],s.box[2],s.box[3],r),r.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i,s.box[0]+3,1+s.box[1]+r.lineHeight,s.box[2])),a.fillStyle=r.labelColor,a.fillText(i,s.box[0]+2,0+s.box[1]+r.lineHeight,s.box[2])}a.stroke()}}}async function Qie(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function eoe(e,t,n){let r=Yn(Hi,n);!t||!e||e instanceof HTMLCanvasElement&&(lk(e,t.face,r),uk(e,t.body,r),ck(e,t.hand,r),ok(e,t.gesture,r),hk(e,t.object,r))}var H0=` +`),h.brightness=function(w){let b=(w||0)+1;h.colorMatrix([b,0,0,0,0,0,b,0,0,0,0,0,b,0,0,0,0,0,1,0])},h.saturation=function(w){let b=(w||0)*2/3+1,k=(b-1)*-.5;h.colorMatrix([b,k,k,0,0,k,b,k,0,0,k,k,b,0,0,0,0,0,1,0])},h.desaturate=function(){h.saturation(-1)},h.contrast=function(w){let b=(w||0)+1,k=-128*(b-1);h.colorMatrix([b,0,0,0,k,0,b,0,0,k,0,0,b,0,k,0,0,0,1,0])},h.negative=function(){h.contrast(-2)},h.hue=function(w){w=(w||0)/180*Math.PI;let b=Math.cos(w),k=Math.sin(w),N=.213,C=.715,F=.072;h.colorMatrix([N+b*(1-N)+k*-N,C+b*-C+k*-C,F+b*-F+k*(1-F),0,0,N+b*-N+k*.143,C+b*(1-C)+k*.14,F+b*-F+k*-.283,0,0,N+b*-N+k*-(1-N),C+b*-C+k*C,F+b*(1-F)+k*F,0,0,0,0,0,1,0])},h.desaturateLuminance=function(){h.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},h.sepia=function(){h.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},h.brownie=function(){h.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},h.vintagePinhole=function(){h.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},h.kodachrome=function(){h.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},h.technicolor=function(){h.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},h.polaroid=function(){h.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},h.shiftToBGR=function(){h.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},h.convolution=function(w){let b=new Float32Array(w),k=1/o,N=1/l,C=v(h.convolution.SHADER);f.uniform1fv(C.uniform.m,b),f.uniform2f(C.uniform.px,k,N),x()},h.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(` +`),h.detectEdges=function(){h.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},h.sobelX=function(){h.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},h.sobelY=function(){h.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},h.sharpen=function(w){let b=w||1;h.convolution.call(this,[0,-1*b,0,-1*b,1+4*b,-1*b,0,-1*b,0])},h.emboss=function(w){let b=w||1;h.convolution.call(this,[-2*b,-1*b,0,-1*b,1,1*b,0,1*b,2*b])},h.blur=function(w){let b=w/7/o,k=w/7/l,N=v(h.blur.SHADER);f.uniform2f(N.uniform.px,0,k),x(m.INTERMEDIATE),f.uniform2f(N.uniform.px,b,0),x()},h.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(` +`),h.pixelate=function(w){let b=w/o,k=w/l,N=v(h.pixelate.SHADER);f.uniform2f(N.uniform.size,b,k),x()},h.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(` +`)}var M0=2048,Ee,gt,Mt;function bg(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Le)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Le)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Dr(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let a=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=a,o=s;if(i>M0&&(i=M0,o=i*s/a),o>M0&&(o=M0,i=o*a/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=a*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/a)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==i||(Ee==null?void 0:Ee.height)!==o)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==i&&(Ee.width=i),(Ee==null?void 0:Ee.height)!==o&&(Ee.height=o));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(a,0),l.scale(-1,1),l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!Mt||!gt||Ee.width!==gt.width||(Ee==null?void 0:Ee.height)!==(gt==null?void 0:gt.height))&&(gt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(gt==null?void 0:gt.width)!==(Ee==null?void 0:Ee.width)&&(gt.width=Ee==null?void 0:Ee.width),(gt==null?void 0:gt.height)!==(Ee==null?void 0:Ee.height)&&(gt.height=Ee==null?void 0:Ee.height),Mt=Ar.flags.IS_BROWSER?new z8({canvas:gt}):null),!Mt)return{tensor:null,canvas:Ee};Mt.reset(),Mt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Mt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Mt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Mt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Mt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Mt.addFilter("hue",t.filter.hue),t.filter.negative&&Mt.addFilter("negative"),t.filter.sepia&&Mt.addFilter("sepia"),t.filter.vintage&&Mt.addFilter("brownie"),t.filter.sepia&&Mt.addFilter("sepia"),t.filter.kodachrome&&Mt.addFilter("kodachrome"),t.filter.technicolor&&Mt.addFilter("technicolor"),t.filter.polaroid&&Mt.addFilter("polaroid"),t.filter.pixelate!==0&&Mt.addFilter("pixelate",t.filter.pixelate),Mt.apply(Ee)}else gt=Ee,Mt&&(Mt=null);let c;if(gt.data){let h=[gt.height,gt.width,3];c=pd(gt.data,h,"int32")}else if(gt instanceof ImageData)c=ui.fromPixels(gt);else if(t.backend==="webgl"||t.backend==="humangl"){let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(gt,0,0),c=ui.fromPixels(h)}else{let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(gt,0,0);let p=d==null?void 0:d.getImageData(0,0,i,o);c=ui.fromPixels(p)}let u=c.toFloat();n=u.expandDims(0),c.dispose(),u.dispose()}let r=t.filter.return?gt:null;return{tensor:n,canvas:r}}var _g={};Mr(_g,{all:()=>Tie,body:()=>W8,canvas:()=>Nie,face:()=>L8,gesture:()=>P8,hand:()=>B8,object:()=>V8,options:()=>Li});var ct={backend:"webgl",modelBasePath:"../models/",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface-back.json",rotation:!1,maxFaces:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,scoreThreshold:.2,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetections:1,scoreThreshold:.2,nmsRadius:20},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxResults:10,skipFrames:41}};var Li={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function F0(e,t,n,r=0,a){e.fillStyle=a.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:a.color,e.beginPath(),e.arc(t,n,a.pointSize,0,2*Math.PI),e.fill()}function Wi(e,t,n,r,a,s){if(e.beginPath(),s.useCurves){let i=(t+t+r)/2,o=(n+n+a)/2;e.ellipse(i,o,r/2,a/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+r-s.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+s.roundRect),e.lineTo(t+r,n+a-s.roundRect),e.quadraticCurveTo(t+r,n+a,t+r-s.roundRect,n+a),e.lineTo(t+s.roundRect,n+a),e.quadraticCurveTo(t,n+a,t,n+a-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function vg(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let r of t)e.strokeStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.lineTo(r[0],parseInt(r[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Yc(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){vg(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let r=0;r1&&l[1].length>0){let c=o[1]>0?`#${o[1]}`:"",u=`${o[0]} ${c}: ${l[1]}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(u,8,2+s*r.lineHeight)),a.fillStyle=r.labelColor,a.fillText(u,6,0+s*r.lineHeight),s+=1}}}async function L8(e,t,n){let r=Gn(Li,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a)for(let s of t){a.font=r.font,a.strokeStyle=r.color,a.fillStyle=r.color,r.drawBoxes&&(r.useRawBoxes?Wi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Wi(a,s.box[0],s.box[1],s.box[2],s.box[3],r));let i=[];if(i.push(`face confidence: ${Math.trunc(100*s.confidence)}%`),s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}s.rotation&&s.rotation.angle&&s.rotation.angle.roll&&i.push(`roll: ${Math.trunc(100*s.rotation.angle.roll)/100} yaw:${Math.trunc(100*s.rotation.angle.yaw)/100} pitch:${Math.trunc(100*s.rotation.angle.pitch)/100}`),i.length===0&&i.push("face"),a.fillStyle=r.color;for(let o=i.length-1;o>=0;o--){let l=Math.max(s.box[0],0),c=o*r.lineHeight+s.box[1];r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i[o],l+5,c+16)),a.fillStyle=r.labelColor,a.fillText(i[o],l+4,c+15)}if(a.lineWidth=1,s.mesh&&s.mesh.length>0){if(r.drawPoints)for(let o of s.mesh)F0(a,o[0],o[1],o[2],r);if(r.drawPolygons){a.lineWidth=1;for(let o=0;os.mesh[c]);vg(a,l,r)}if(s.annotations&&s.annotations.leftEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;a.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}if(s.annotations&&s.annotations.rightEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;a.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}}}}}var ts=[];async function W8(e,t,n){let r=Gn(Li,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round";for(let s=0;sl.part==="leftShoulder"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),Yc(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),o.length===4&&vg(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftKnee"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftAnkle"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHeel"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftFoot"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),Yc(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightKnee"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightAnkle"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHeel"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightFoot"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),Yc(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftElbow"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftWrist"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftPalm"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),Yc(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightElbow"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightWrist"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightPalm"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),Yc(a,o,r)}}}}async function B8(e,t,n){let r=Gn(Li,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t){if(r.drawBoxes){a.strokeStyle=r.color,a.fillStyle=r.color;let i;if(!r.calculateHandBox)i=r.useRawBoxes?s.boxRaw:s.box;else if(i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],s.landmarks&&s.landmarks.length>0){for(let o of s.landmarks)o[0]i[2]&&(i[2]=o[0]),o[1]>i[3]&&(i[3]=o[1]);i[2]-=i[0],i[3]-=i[1]}r.useRawBoxes?Wi(a,e.width*i[0],e.height*i[1],e.width*i[2],e.height*i[3],r):Wi(a,i[0],i[1],i[2],i[3],r),r.drawLabels&&(r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText("hand",i[0]+3,1+i[1]+r.lineHeight,i[2])),a.fillStyle=r.labelColor,a.fillText("hand",i[0]+2,0+i[1]+r.lineHeight,i[2])),a.stroke()}if(r.drawPoints&&s.landmarks&&s.landmarks.length>0)for(let i of s.landmarks)a.fillStyle=r.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:r.color,F0(a,i[0],i[1],0,r);if(r.drawPolygons){let i=o=>{if(!!o)for(let l=0;l0?l-1:0][0],o[l>0?l-1:0][1]),a.lineTo(o[l][0],o[l][1]),a.stroke()};i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function V8(e,t,n){let r=Gn(Li,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t)if(r.drawBoxes){if(a.strokeStyle=r.color,a.fillStyle=r.color,r.useRawBoxes?Wi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Wi(a,s.box[0],s.box[1],s.box[2],s.box[3],r),r.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i,s.box[0]+3,1+s.box[1]+r.lineHeight,s.box[2])),a.fillStyle=r.labelColor,a.fillText(i,s.box[0]+2,0+s.box[1]+r.lineHeight,s.box[2])}a.stroke()}}}async function Nie(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function Tie(e,t,n){let r=Gn(Li,n);!t||!e||e instanceof HTMLCanvasElement&&(L8(e,t.face,r),W8(e,t.body,r),B8(e,t.hand,r),P8(e,t.gesture,r),V8(e,t.object,r))}var $0=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob @@ -4344,7 +4344,7 @@ PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1 8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3 ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY -euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,G0=` +euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,D0=` /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA @@ -4912,7 +4912,7 @@ AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ -2Q==`;var dk="1.6.1";var au,ah,sh,qi,q0,ih,X0,K0,Z0,noe=class{constructor(t={}){au.set(this,void 0);ah.set(this,void 0);sh.set(this,void 0);qi.set(this,void 0);this.analyze=(...t)=>{if(!ur(this,ah))return;let n=this.tf.engine().state.numTensors,r=ur(this,au);cs(this,au,n);let a=n-r;a!==0&&le(...t,a)};q0.set(this,t=>{if(!ur(this,sh))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Pe))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});ih.set(this,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let r=Ye();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&le("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&le("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let a=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&le(`wasm execution: ${a?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!a&&le("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&_8();try{await this.tf.setBackend(this.config.backend)}catch(a){le("error: cannot set backend:",this.config.backend,a)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),this.config.deallocate&&(le("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let a=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&le(`gl version:${a.getParameter(a.VERSION)} renderer:${a.getParameter(a.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(Ye()-r)}});X0.set(this,async()=>{let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t(H0);break;case"full":n=await t(G0);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,this.config),a.close()}return r});K0.set(this,async()=>new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+H0;break;case"full":case"body":r=1200,n="data:image/jpeg;base64,"+G0;break;default:n=null}let a=new Image;a.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=a.naturalWidth,s.height=a.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(a,0,0);let o=await this.detect(s,this.config);t(o)},n?a.src=n:t(null)}));Z0.set(this,async()=>{let t=a=>Buffer.from(a,"base64"),n;if(this.config.warmup==="face"&&(n=t(H0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(G0)),!n)return null;let r;if(typeof void 0!="undefined"){let a=(void 0).decodeJpeg(n),s=a.expandDims(0);this.tf.dispose(a),r=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&le("Warmup tfjs-node not loaded");return r});this.tf=Au,this.draw=Ug,this.version=dk,this.config=Yn(ht,t),this.state="idle",cs(this,au,0),cs(this,ah,!1),cs(this,sh,!1),cs(this,qi,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=n=>jg(n,this.config),this.classes={facemesh:fg,age:H2,gender:q2,emotion:J2,faceres:ag,body:this.config.body.modelPath.includes("posenet")?_g:Fg,hand:Eg,nanodet:Pg},this.faceTriangulation=$8,this.faceUVMap=D8,this.sysinfo=s5()}profileData(){return this.config.profile?g0:{}}similarity(t,n){return this.config.face.description.enabled?ig(t,n):this.config.face.embedding.enabled?v8(t,n):0}enhance(t){return og(t)}match(t,n,r=0){return k8(t,n,r)}async load(t={}){this.state="load";let n=Ye();t&&(this.config=Yn(this.config,t)),ur(this,qi)&&(this.config.debug&&le(`version: ${this.version}`),this.config.debug&&le(`tfjs version: ${this.tf.version_core}`),this.config.debug&&le("platform:",this.sysinfo.platform),this.config.debug&&le("agent:",this.sysinfo.agent),await ur(this,ih).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&le("configuration:",this.config),this.config.debug&&le("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.efficientpose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?Ag(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?G2(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?Y2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?tg(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?ng(this.config):null),this.models.handpose||(this.config.hand.enabled?Mg(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?kg(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?$g(this.config):null),this.models.efficientpose||(this.config.body.enabled&&this.config.body.modelPath.includes("efficientpose")?Og(this.config):null),this.models.nanodet||(this.config.object.enabled?Wg(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?sg(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await Ag(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await G2(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await Y2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await tg(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await ng(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await Mg(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await kg(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await $g(this.config)),this.config.body.enabled&&!this.models.efficientpose&&this.config.body.modelPath.includes("efficientpose")&&(this.models.efficientpose=await Og(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await Wg(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await sg(this.config))),ur(this,qi)&&(this.config.debug&&le("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),cs(this,qi,!1));let r=Math.trunc(Ye()-n);r>(this.perf.load||0)&&(this.perf.load=r)}async detect(t,n={}){return new Promise(async r=>{var A,y;this.state="config";let a;this.config=Yn(this.config,n),this.state="check";let s=ur(this,q0).call(this,t);s&&(le(s,t),r({error:s}));let i=Ye();await ur(this,ih).call(this),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:");let o;t&&this.config.videoOptimized&&(typeof HTMLImageElement!="undefined"&&t instanceof HTMLImageElement||typeof Image!="undefined"&&t instanceof Image||typeof ImageData!="undefined"&&t instanceof ImageData||typeof ImageBitmap!="undefined"&&Vg instanceof ImageBitmap)&&(le("disabling video optimization"),o=this.config.videoOptimized,this.config.videoOptimized=!1),a=Ye();let l=jg(t,this.config);if(!l||!l.tensor){le("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(Ye()-a),this.analyze("Get Image:");let c,u,h,d,p;this.config.async?(h=this.config.face.enabled?lg(this,l.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",a=Ye(),h=this.config.face.enabled?await lg(this,l.tensor):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.face=p)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?vg(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?Dg(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(c=this.config.body.enabled?zg(l.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",a=Ye(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await vg(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await Dg(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(c=this.config.body.enabled?await zg(l.tensor,this.config):[]),p=Math.trunc(Ye()-a),p>0&&(this.perf.body=p)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?(A=this.models.handpose)==null?void 0:A.estimateHands(l.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",a=Ye(),u=this.config.hand.enabled?await((y=this.models.handpose)==null?void 0:y.estimateHands(l.tensor,this.config)):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.hand=p)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(d=this.config.object.enabled?Bg(l.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",a=Ye(),d=this.config.object.enabled?await Bg(l.tensor,this.config):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.object=p)),this.analyze("End Object:"),this.config.async&&([h,c,u,d]=await Promise.all([h,c,u,d])),we(l.tensor),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let m=[];this.config.gesture.enabled&&(a=Ye(),m=[...rk(h),...nk(c),...sk(u),...ak(h)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(Ye()-a)),o&&(this.config.videoOptimized=o),this.perf.total=Math.trunc(Ye()-i),this.state="idle";let f={face:h,body:c,hand:u,gesture:m,object:d,performance:this.perf,canvas:l.canvas};r(f)})}async warmup(t={}){let n=Ye();if(t&&(this.config=Yn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await ur(this,X0).call(this):typeof Image!="undefined"?a=await ur(this,K0).call(this):a=await ur(this,Z0).call(this),this.config.videoOptimized=r;let s=Ye();return this.config.debug&&le("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};au=new WeakMap,ah=new WeakMap,sh=new WeakMap,qi=new WeakMap,q0=new WeakMap,ih=new WeakMap,X0=new WeakMap,K0=new WeakMap,Z0=new WeakMap;export{noe as Human,noe as default}; +2Q==`;var j8="1.7.0";var Jl,Jc,Qc,Bi,O0,eh,z0,P0,L0,Cie=class{constructor(t={}){Jl.set(this,void 0);Jc.set(this,void 0);Qc.set(this,void 0);Bi.set(this,void 0);this.analyze=(...t)=>{if(!rr(this,Jc))return;let n=this.tf.engine().state.numTensors,r=rr(this,Jl);ss(this,Jl,n);let a=n-r;a!==0&&pe(...t,a)};O0.set(this,t=>{if(!rr(this,Qc))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Le))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});eh.set(this,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let r=it();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&pe("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&pe("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let a=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&pe(`wasm execution: ${a?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!a&&pe("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&e8();try{await this.tf.setBackend(this.config.backend)}catch(a){pe("error: cannot set backend:",this.config.backend,a)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),this.config.deallocate&&(pe("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let a=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&pe(`gl version:${a.getParameter(a.VERSION)} renderer:${a.getParameter(a.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(it()-r)}});z0.set(this,async()=>{let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t($0);break;case"full":n=await t(D0);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,this.config),a.close()}return r});P0.set(this,async()=>new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+$0;break;case"full":case"body":r=1200,n="data:image/jpeg;base64,"+D0;break;default:n=null}let a=new Image;a.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=a.naturalWidth,s.height=a.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(a,0,0);let o=await this.detect(s,this.config);t(o)},n?a.src=n:t(null)}));L0.set(this,async()=>{let t=a=>Buffer.from(a,"base64"),n;if(this.config.warmup==="face"&&(n=t($0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(D0)),!n)return null;let r;if(typeof void 0!="undefined"){let a=(void 0).decodeJpeg(n),s=a.expandDims(0);this.tf.dispose(a),r=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&pe("Warmup tfjs-node not loaded");return r});this.tf=cu,this.draw=_g,this.version=j8,this.config=Gn(ct,t),this.state="idle",ss(this,Jl,0),ss(this,Jc,!1),ss(this,Qc,!1),ss(this,Bi,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=n=>bg(n,this.config),this.classes={facemesh:X2,emotion:$2,faceres:P2,body:this.config.body.modelPath.includes("posenet")?ng:pg,hand:ug,nanodet:Ag},this.faceTriangulation=h8,this.faceUVMap=d8,this.sysinfo=zg()}profileData(){return this.config.profile?p0:{}}similarity(t,n){return W2(t,n)}enhance(t){return B2(t)}match(t,n,r=0){return t8(t,n,r)}async load(t={}){this.state="load";let n=it();t&&(this.config=Gn(this.config,t)),rr(this,Bi)&&(this.config.debug&&pe(`version: ${this.version}`),this.config.debug&&pe(`tfjs version: ${this.tf.version_core}`),this.config.debug&&pe("platform:",this.sysinfo.platform),this.config.debug&&pe("agent:",this.sysinfo.agent),await rr(this,eh).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&pe("configuration:",this.config),this.config.debug&&pe("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.emotion,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?Z2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?z2(this.config):null),this.models.handpose||(this.config.hand.enabled?dg(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?ag(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?fg(this.config):null),this.models.nanodet||(this.config.object.enabled?gg(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?L2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await Z2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await z2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await dg(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await ag(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await fg(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await gg(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await L2(this.config))),rr(this,Bi)&&(this.config.debug&&pe("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),ss(this,Bi,!1));let r=Math.trunc(it()-n);r>(this.perf.load||0)&&(this.perf.load=r)}async detect(t,n={}){return new Promise(async r=>{var A,y;this.state="config";let a;this.config=Gn(this.config,n),this.state="check";let s=rr(this,O0).call(this,t);s&&(pe(s,t),r({error:s}));let i=it();await rr(this,eh).call(this),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:");let o;t&&this.config.videoOptimized&&(typeof HTMLImageElement!="undefined"&&t instanceof HTMLImageElement||typeof Image!="undefined"&&t instanceof Image||typeof ImageData!="undefined"&&t instanceof ImageData||typeof ImageBitmap!="undefined"&&wg instanceof ImageBitmap)&&(pe("disabling video optimization"),o=this.config.videoOptimized,this.config.videoOptimized=!1),a=it();let l=bg(t,this.config);if(!l||!l.tensor){pe("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(it()-a),this.analyze("Get Image:");let c,u,h,d,p;this.config.async?(h=this.config.face.enabled?V2(this,l.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",a=it(),h=this.config.face.enabled?await V2(this,l.tensor):[],p=Math.trunc(it()-a),p>0&&(this.perf.face=p)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?rg(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")&&(c=this.config.body.enabled?mg(l.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",a=it(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await rg(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")&&(c=this.config.body.enabled?await mg(l.tensor,this.config):[]),p=Math.trunc(it()-a),p>0&&(this.perf.body=p)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?(A=this.models.handpose)==null?void 0:A.estimateHands(l.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",a=it(),u=this.config.hand.enabled?await((y=this.models.handpose)==null?void 0:y.estimateHands(l.tensor,this.config)):[],p=Math.trunc(it()-a),p>0&&(this.perf.hand=p)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(d=this.config.object.enabled?xg(l.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",a=it(),d=this.config.object.enabled?await xg(l.tensor,this.config):[],p=Math.trunc(it()-a),p>0&&(this.perf.object=p)),this.analyze("End Object:"),this.config.async&&([h,c,u,d]=await Promise.all([h,c,u,d])),Te(l.tensor),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let m=[];this.config.gesture.enabled&&(a=it(),m=[...$8(h),...F8(c),...O8(u),...D8(h)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(it()-a)),o&&(this.config.videoOptimized=o),this.perf.total=Math.trunc(it()-i),this.state="idle";let f={face:h,body:c,hand:u,gesture:m,object:d,performance:this.perf,canvas:l.canvas};r(f)})}async warmup(t={}){let n=it();if(t&&(this.config=Gn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await rr(this,z0).call(this):typeof Image!="undefined"?a=await rr(this,P0).call(this):a=await rr(this,L0).call(this),this.config.videoOptimized=r;let s=it();return this.config.debug&&pe("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};Jl=new WeakMap,Jc=new WeakMap,Qc=new WeakMap,Bi=new WeakMap,O0=new WeakMap,eh=new WeakMap,z0=new WeakMap,P0=new WeakMap,L0=new WeakMap;export{Cie as Human,Cie as default}; /** * @license * Copyright 2017 Google LLC. All Rights Reserved. diff --git a/dist/human.esm.js.map b/dist/human.esm.js.map index e9e04cbf..1e59ca2f 100644 --- a/dist/human.esm.js.map +++ b/dist/human.esm.js.map @@ -1,7 +1,7 @@ { "version": 3, - "sources": ["../src/helpers.ts", "../src/sysinfo.ts", "../node_modules/.pnpm/node-fetch@2.6.1/node_modules/node-fetch/browser.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js", "(disabled):crypto", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js", "(disabled):path", "(disabled):worker_threads", "(disabled):perf_hooks", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js", "../node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/backend.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/util_base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/environment.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/global_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/kernel_names.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/kernel_registry.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/profiler.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor_format.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/engine.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/device_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/flags.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor_util_env.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/operation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/io_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/router_registry.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/indexed_db.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/local_storage.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/model_management.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/platforms/platform_browser.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/platforms/platform_node.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/clone.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/print.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/base_side_effects.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/io.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/browser_files.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/progress.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/weights_loader.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/http.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/passthrough.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/one_hot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/confusion_matrix.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/browser.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/gather_nd_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/scatter_nd_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/serialization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/test_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/globals.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/floorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/div.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/add_n.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/all.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/arg_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/arg_min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/basic_lstm_cell.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batch_to_space_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/broadcast_to.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/clip_by_value.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dense_bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depth_to_space.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dilation2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/broadcast_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/where.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/zeros_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/div_no_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/expand_dims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/eye.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/gather.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/greater_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/is_finite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/is_inf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/is_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/leaky_relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/less_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linspace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/local_response_normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log_sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log_softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/axis_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log_sum_exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_and.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_not.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_or.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_xor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_with_argmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/zeros.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ones.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/meshgrid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mirror_pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/moments.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/multi_rnn_cell.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/not_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ones_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/outer_product.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/space_to_batch_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rand.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rand_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/random_gamma.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/random_normal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/random_uniform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/scalar.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/separable_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/setdiff1d_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/fft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/ifft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/irfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/split.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/rfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/squared_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/squeeze.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/stack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/strided_slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor5d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor6d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/topk.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/truncated_normal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/unsorted_segment_sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/unstack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/variable.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/where_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/where_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/boolean_mask.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/norm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/moving_average.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/scatter_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse_to_dense_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse_to_dense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/gather_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dropout_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dropout.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/in_top_k.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused_ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d_native_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d_native_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/hamming_window.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/hann_window.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/frame.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/stft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/crop_and_resize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/flip_left_right.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/rotate_with_offset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/nonmax_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/non_max_suppression_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/non_max_suppression_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_with_score.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_with_score_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_padded.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_padded_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/resize_bilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/resize_nearest_neighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/band_part.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/gram_schmidt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/qr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/loss_ops_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/compute_weighted_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/absolute_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/cosine_distance.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/hinge_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/huber_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/log_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/mean_squared_error.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/sigmoid_cross_entropy.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/softmax_cross_entropy.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adadelta_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adagrad_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adam_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adamax_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/sgd_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/momentum_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/rmsprop_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/optimizer_constructors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/train.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/browser_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/backend_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reduce_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rotate_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/array_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/selu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/erf_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/complex_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/einsum_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/split_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/segment_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/kernel_impls.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/cpu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/backend_cpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/binary_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/zeros_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/binary_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Bincount_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/unary_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/unary_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Concat_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherV2_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LinSpace_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Max_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transpose_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Range_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseReshape_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StridedSlice_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tile_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/TopK_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unique_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/fused_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ArgMin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/pool_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchToSpaceND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Clip.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ComplexAbs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3DBackpropFilterV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3DBackpropInputV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DenseBincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNativeBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNativeBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/EluGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/fft_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IFFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsFinite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsInf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsNaN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LinSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalNot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalOr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LRN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LRNGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolWithArgmax_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolWithArgmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeBilinearGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeNearestNeighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeNearestNeighborGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Scatter_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SpaceToBatchND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseReshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseToDense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/UnsortedSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/webgl_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/canvas_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/tex_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/flags_webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/glsl_version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/shader_compiler_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/decode_matrix_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/decode_matrix_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_float_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_float_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_matrix_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_matrix_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_context.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/shader_compiler.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/packing_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pack_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reshape_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/texture_manager.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unaryop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unaryop_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unpack_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/backend_webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/kernel_funcs_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mulmat_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_complex_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mean_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reduce_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/reduce.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transpose_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transpose_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transpose_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sum_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchMatMul_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/addn_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/addn_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/argminmax_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/argminmax_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/arg_min_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ArgMin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pool_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/avg_pool_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/batchnorm_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/batchnorm_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/slice_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/slice_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchToSpaceND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/int.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/clip_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/clip_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ClipByValue.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/complex_abs_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ComplexAbs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/concat_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/concat_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Concat_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/im2col_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2D_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3DBackpropFilterV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3DBackpropInputV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/crop_and_resize_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/cumsum_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DenseBincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/depth_to_space_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_packed_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_backprop_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNativeBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNativeBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/diag_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/dilation_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Dilation2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/EluGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/fft_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FFT_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/fill_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/flip_left_right_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels_utils/from_pixels_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels_utils/from_pixels_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gather_nd_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gather_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IFFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsFinite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsInf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsNaN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LinSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalNot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalOr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LRN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_grad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LRNGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Max_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/max_pool_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolWithArgmax_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolWithArgmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mean_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mirror_pad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mirror_pad_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/multinomial_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/onehot_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pad_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeBilinearGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_nearest_neighbor_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeNearestNeighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_nearest_neighbor_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeNearestNeighborGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reverse_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reverse_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/rotate_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/scatter_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/select_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SpaceToBatchND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseReshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseToDense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/strided_slice_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/tile_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transform_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/segment_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/UnsortedSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/unary_kernel.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/binary_kernel.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/kernel_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ClipByValue.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernel_utils/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedBatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppression_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/flags_wasm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/backend_wasm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/all.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/arg_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/arg_min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as_scalar.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as_type.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as5d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/avg_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/batch_to_space_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/batchnorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/broadcast_to.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/clip_by_value.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/conv1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/conv2d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/depth_to_space.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/dilation2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/div_no_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/div.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/dot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/expand_dims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/fft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/flatten.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/floorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/gather.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/greater_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/ifft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/irfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/is_finite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/is_inf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/is_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/leaky_relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/less_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/local_response_normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log_sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log_softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log_sum_exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_and.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_not.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_or.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_xor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/max_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mirror_pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/norm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/not_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/one_hot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/ones_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reshape_as.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/resize_bilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/resize_nearest_neighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/rfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/separable_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/space_to_batch_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/split.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/squared_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/squeeze.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/stack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/strided_slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/to_bool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/to_float.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/to_int.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/topk.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/unsorted_segment_sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/unstack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/where.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/zeros_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/register_all_chained_ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Abs_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Acos_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Acosh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Add_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/AddN_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ArgMax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ArgMin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Asin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Asinh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atan2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atanh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_3d_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/AvgPool3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/AvgPool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/BatchMatMul_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/BatchToSpaceND_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/BroadcastTo_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cast_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Ceil_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ClipByValue_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ComplexAbs_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Concat_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv2D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv2DBackpropInput_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cos_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cosh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cumsum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/DepthwiseConv2dNative_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Dilation2D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Elu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Erf_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Exp_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ExpandDims_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Expm1_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Floor_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/FloorDiv_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/FusedBatchNorm_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/GatherV2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/GreaterEqual_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Identity_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsFinite_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsInf_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsNan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/LeakyRelu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Log1p_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Log_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/LogSoftmax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/local_response_normalization_backprop.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/LRN_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/min_max_grad_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Max_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Maximum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_3d_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/MaxPool3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/MaxPool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Mean_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Min_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Minimum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/MirrorPad_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Mod_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Multiply_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Neg_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/OneHot_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/OnesLike_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Pack_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/PadV2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Pow_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Prelu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/RealDiv_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reciprocal_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Relu6_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Relu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reshape_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ResizeBilinear_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ResizeNearestNeighbor_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reverse_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Round_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Rsqrt_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Select_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Selu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sigmoid_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sign_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sinh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Slice_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Softmax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Softplus_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/SpaceToBatchND_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/SplitV_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sqrt_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Square_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/SquaredDifference_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Step_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sub_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tanh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tile_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Transpose_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Unpack_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/UnsortedSegmentSum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ZerosLike_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/register_all_gradients.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_constraints.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/backend/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/errors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/generic_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/constraints.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_initializers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/keras_format/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/math_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/backend/tfjs_backend.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/keras_format/initializer_config.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/initializers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_layers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/backend/state.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/types_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/variable_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/variables.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/topology.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/input_layer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/logs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/base_callbacks.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/serialization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/losses.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/metrics.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/optimizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/user_defined_metadata.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/layer_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/serialization_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/container.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_tensors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/models.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/activations.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/regularizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/advanced_activations.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/conv_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/recurrent.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional_recurrent.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/core.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/embeddings.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/merge.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/noise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/padding.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/pooling.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/wrappers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_metrics.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_models.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_regularizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/callbacks.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/data/compiled_api.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/custom_op/register.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/arithmetic.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/basic_math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/control.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/convolution.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/creation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/dynamic.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/evaluation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/graph.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/hash_table.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/image.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/logical.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/matrices.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/reduction.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/slice_join.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/spectral.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/transformation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/operation_mapper.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/custom_op/node_value_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/arithmetic_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/basic_math_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_array.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_list.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/control_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/convolution_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/creation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/dynamic_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/evaluation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/graph_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/hash_table.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/hash_table_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/image_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/logical_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/matrices_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/normalization_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/reduction_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/slice_join_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/sparse_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/spectral_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/transformation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/operation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/execution_context.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/model_analysis.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/graph_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/resource_manager.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/graph_model.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/lazy_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/deep_map.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/deep_clone.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/ring_buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/growing_ring_buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/datasets/text_line_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/datasets/csv_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/microphone_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/webcam_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/datasource.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/string_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/byte_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/file_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/url_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/source_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/sources/file_data_source.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/sources/url_data_source.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/readers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/version.ts", "../src/tfjs/tf-browser.ts", "../src/tfjs/backend.ts", "../src/age/age.ts", "../src/profile.ts", "../src/gender/gender.ts", "../src/emotion/emotion.ts", "../src/embedding/embedding.ts", "../src/faceres/faceres.ts", "../src/faceall.ts", "../src/blazeface/facemesh.ts", "../src/blazeface/blazeface.ts", "../src/blazeface/box.ts", "../src/blazeface/util.ts", "../src/blazeface/coords.ts", "../src/blazeface/facepipeline.ts", "../src/posenet/posenet.ts", "../src/posenet/keypoints.ts", "../src/posenet/utils.ts", "../src/posenet/poses.ts", "../src/handpose/handpose.ts", "../src/handpose/box.ts", "../src/handpose/handdetector.ts", "../src/handpose/util.ts", "../src/handpose/handpipeline.ts", "../src/handpose/anchors.ts", "../src/blazepose/blazepose.ts", "../src/blazepose/annotations.ts", "../src/efficientpose/efficientpose.ts", "../src/nanodet/nanodet.ts", "../src/nanodet/labels.ts", "../src/gesture/gesture.ts", "../src/image/image.ts", "../src/image/imagefx.js", "../src/draw/draw.ts", "../src/config.ts", "../src/sample.ts", "../src/human.ts"], - "sourcesContent": ["// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`Human: ModelPath Error: ${path} Expecting JSON file`);\n return path;\n}\n\n// helper function: wrapper around console output\nexport function log(...msg) {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n", "export function info(): { platform: string, agent: string } {\n let platform;\n let agent;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n platform = platformMatch ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n agent = navigator.userAgent.replace(raw[0], '');\n if (platform[1]) agent = agent.replace(raw[1], '');\n agent = agent.replace(/ /g, ' ');\n }\n } else if (typeof process !== 'undefined') {\n platform = `${process.platform} ${process.arch}`;\n agent = `NodeJS ${process.version}`;\n }\n return { platform, agent };\n}\n", "", "// A port of an algorithm by Johannes Baag\u00F8e , 2010\n// http://baagoe.com/en/RandomMusings/javascript/\n// https://github.com/nquinlan/better-random-numbers-for-javascript-mirror\n// Original work is under MIT license -\n\n// Copyright (C) 2010 by Johannes Baag\u00F8e \n//\n// Permission is hereby granted, free of charge, to any person obtaining a copy\n// of this software and associated documentation files (the \"Software\"), to deal\n// in the Software without restriction, including without limitation the rights\n// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n// copies of the Software, and to permit persons to whom the Software is\n// furnished to do so, subject to the following conditions:\n// \n// The above copyright notice and this permission notice shall be included in\n// all copies or substantial portions of the Software.\n// \n// THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\n// THE SOFTWARE.\n\n\n\n(function(global, module, define) {\n\nfunction Alea(seed) {\n var me = this, mash = Mash();\n\n me.next = function() {\n var t = 2091639 * me.s0 + me.c * 2.3283064365386963e-10; // 2^-32\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t - (me.c = t | 0);\n };\n\n // Apply the seeding algorithm from Baagoe.\n me.c = 1;\n me.s0 = mash(' ');\n me.s1 = mash(' ');\n me.s2 = mash(' ');\n me.s0 -= mash(seed);\n if (me.s0 < 0) { me.s0 += 1; }\n me.s1 -= mash(seed);\n if (me.s1 < 0) { me.s1 += 1; }\n me.s2 -= mash(seed);\n if (me.s2 < 0) { me.s2 += 1; }\n mash = null;\n}\n\nfunction copy(f, t) {\n t.c = f.c;\n t.s0 = f.s0;\n t.s1 = f.s1;\n t.s2 = f.s2;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new Alea(seed),\n state = opts && opts.state,\n prng = xg.next;\n prng.int32 = function() { return (xg.next() * 0x100000000) | 0; }\n prng.double = function() {\n return prng() + (prng() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53\n };\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nfunction Mash() {\n var n = 0xefc8249d;\n\n var mash = function(data) {\n data = data.toString();\n for (var i = 0; i < data.length; i++) {\n n += data.charCodeAt(i);\n var h = 0.02519603282416938 * n;\n n = h >>> 0;\n h -= n;\n h *= n;\n n = h >>> 0;\n h -= n;\n n += h * 0x100000000; // 2^32\n }\n return (n >>> 0) * 2.3283064365386963e-10; // 2^-32\n };\n\n return mash;\n}\n\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.alea = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xor128\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n\n // Set up generator function.\n me.next = function() {\n var t = me.x ^ (me.x << 11);\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= (me.w >>> 19) ^ t ^ (t >>> 8);\n };\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor128 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorwow\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var t = (me.x ^ (me.x >>> 2));\n me.x = me.y; me.y = me.z; me.z = me.w; me.w = me.v;\n return (me.d = (me.d + 362437 | 0)) +\n (me.v = (me.v ^ (me.v << 4)) ^ (t ^ (t << 1))) | 0;\n };\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n t.v = f.v;\n t.d = f.d;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorwow = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorshift7\" algorithm by\n// Fran\u00E7ois Panneton and Pierre L'ecuyer:\n// \"On the Xorgshift Random Number Generators\"\n// http://saluc.engr.uconn.edu/refs/crypto/rng/panneton05onthexorshift.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n // Update xor generator.\n var X = me.x, i = me.i, t, v, w;\n t = X[i]; t ^= (t >>> 7); v = t ^ (t << 24);\n t = X[(i + 1) & 7]; v ^= t ^ (t >>> 10);\n t = X[(i + 3) & 7]; v ^= t ^ (t >>> 3);\n t = X[(i + 4) & 7]; v ^= t ^ (t << 7);\n t = X[(i + 7) & 7]; t = t ^ (t << 13); v ^= t ^ (t << 9);\n X[i] = v;\n me.i = (i + 1) & 7;\n return v;\n };\n\n function init(me, seed) {\n var j, w, X = [];\n\n if (seed === (seed | 0)) {\n // Seed state array using a 32-bit integer.\n w = X[0] = seed;\n } else {\n // Seed state using a string.\n seed = '' + seed;\n for (j = 0; j < seed.length; ++j) {\n X[j & 7] = (X[j & 7] << 15) ^\n (seed.charCodeAt(j) + X[(j + 1) & 7] << 13);\n }\n }\n // Enforce an array length of 8, not all zeroes.\n while (X.length < 8) X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j);\n if (j == 8) w = X[7] = -1; else w = X[j];\n\n me.x = X;\n me.i = 0;\n\n // Discard an initial 256 values.\n for (j = 256; j > 0; --j) {\n me.next();\n }\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.x = f.x.slice();\n t.i = f.i;\n return t;\n}\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorshift7 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n", "// A Javascript implementaion of Richard Brent's Xorgens xor4096 algorithm.\n//\n// This fast non-cryptographic random number generator is designed for\n// use in Monte-Carlo algorithms. It combines a long-period xorshift\n// generator with a Weyl generator, and it passes all common batteries\n// of stasticial tests for randomness while consuming only a few nanoseconds\n// for each prng generated. For background on the generator, see Brent's\n// paper: \"Some long-period random number generators using shifts and xors.\"\n// http://arxiv.org/pdf/1004.3115v1.pdf\n//\n// Usage:\n//\n// var xor4096 = require('xor4096');\n// random = xor4096(1); // Seed with int32 or string.\n// assert.equal(random(), 0.1520436450538547); // (0, 1) range, 53 bits.\n// assert.equal(random.int32(), 1806534897); // signed int32, 32 bits.\n//\n// For nonzero numeric keys, this impelementation provides a sequence\n// identical to that by Brent's xorgens 3 implementaion in C. This\n// implementation also provides for initalizing the generator with\n// string seeds, or for saving and restoring the state of the generator.\n//\n// On Chrome, this prng benchmarks about 2.1 times slower than\n// Javascript's built-in Math.random().\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n var w = me.w,\n X = me.X, i = me.i, t, v;\n // Update Weyl generator.\n me.w = w = (w + 0x61c88647) | 0;\n // Update xor generator.\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n // Update Xor generator array state.\n v = X[i] = v ^ t;\n me.i = i;\n // Result is the combination.\n return (v + (w ^ (w >>> 16))) | 0;\n };\n\n function init(me, seed) {\n var t, v, i, j, w, X = [], limit = 128;\n if (seed === (seed | 0)) {\n // Numeric seeds initialize v, which is used to generates X.\n v = seed;\n seed = null;\n } else {\n // String seeds are mixed into v and X one character at a time.\n seed = seed + '\\0';\n v = 0;\n limit = Math.max(limit, seed.length);\n }\n // Initialize circular array and weyl value.\n for (i = 0, j = -32; j < limit; ++j) {\n // Put the unicode characters into the array, and shuffle them.\n if (seed) v ^= seed.charCodeAt((j + 32) % seed.length);\n // After 32 shuffles, take v as the starting w value.\n if (j === 0) w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = (w + 0x61c88647) | 0; // Weyl.\n t = (X[j & 127] ^= (v + w)); // Combine xor and weyl to init array.\n i = (0 == t) ? i + 1 : 0; // Count zeroes.\n }\n }\n // We have detected all zeroes; make the key nonzero.\n if (i >= 128) {\n X[(seed && seed.length || 0) & 127] = -1;\n }\n // Run the generator 512 times to further mix the state before using it.\n // Factoring this as a function slows the main generator, so it is just\n // unrolled here. The weyl generator is not advanced while warming up.\n i = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n X[i] = v ^ t;\n }\n // Storing state as object members is faster than using closure variables.\n me.w = w;\n me.X = X;\n me.i = i;\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.i = f.i;\n t.w = f.w;\n t.X = f.X.slice();\n return t;\n};\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor4096 = impl;\n}\n\n})(\n this, // window object or global\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n", "// A Javascript implementaion of the \"Tyche-i\" prng algorithm by\n// Samuel Neves and Filipe Araujo.\n// See https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a = me.a;\n b = (b << 25) ^ (b >>> 7) ^ c;\n c = (c - d) | 0;\n d = (d << 24) ^ (d >>> 8) ^ a;\n a = (a - b) | 0;\n me.b = b = (b << 20) ^ (b >>> 12) ^ c;\n me.c = c = (c - d) | 0;\n me.d = (d << 16) ^ (c >>> 16) ^ a;\n return me.a = (a - b) | 0;\n };\n\n /* The following is non-inverted tyche, which has better internal\n * bit diffusion, but which is about 25% slower than tyche-i in JS.\n me.next = function() {\n var a = me.a, b = me.b, c = me.c, d = me.d;\n a = (me.a + me.b | 0) >>> 0;\n d = me.d ^ a; d = d << 16 ^ d >>> 16;\n c = me.c + d | 0;\n b = me.b ^ c; b = b << 12 ^ d >>> 20;\n me.a = a = a + b | 0;\n d = d ^ a; me.d = d = d << 8 ^ d >>> 24;\n me.c = c = c + d | 0;\n b = b ^ c;\n return me.b = (b << 7 ^ b >>> 25);\n }\n */\n\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n\n if (seed === Math.floor(seed)) {\n // Integer seed.\n me.a = (seed / 0x100000000) | 0;\n me.b = seed | 0;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.a = f.a;\n t.b = f.b;\n t.c = f.c;\n t.d = f.d;\n return t;\n};\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.tychei = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "", "/*\nCopyright 2014 David Bau.\n\nPermission is hereby granted, free of charge, to any person obtaining\na copy of this software and associated documentation files (the\n\"Software\"), to deal in the Software without restriction, including\nwithout limitation the rights to use, copy, modify, merge, publish,\ndistribute, sublicense, and/or sell copies of the Software, and to\npermit persons to whom the Software is furnished to do so, subject to\nthe following conditions:\n\nThe above copyright notice and this permission notice shall be\nincluded in all copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\nEXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\nMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.\nIN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY\nCLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,\nTORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE\nSOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n\n*/\n\n(function (pool, math) {\n//\n// The following constants are related to IEEE 754 limits.\n//\nvar global = this,\n width = 256, // each RC4 output is 0 <= x < 256\n chunks = 6, // at least six RC4 outputs for each double\n digits = 52, // there are 52 significant digits in a double\n rngname = 'random', // rngname: name for Math.random and Math.seedrandom\n startdenom = math.pow(width, chunks),\n significance = math.pow(2, digits),\n overflow = significance * 2,\n mask = width - 1,\n nodecrypto; // node.js crypto module, initialized at the bottom.\n\n//\n// seedrandom()\n// This is the seedrandom function described above.\n//\nfunction seedrandom(seed, options, callback) {\n var key = [];\n options = (options == true) ? { entropy: true } : (options || {});\n\n // Flatten the seed string or build one from local entropy if needed.\n var shortseed = mixkey(flatten(\n options.entropy ? [seed, tostring(pool)] :\n (seed == null) ? autoseed() : seed, 3), key);\n\n // Use the seed to initialize an ARC4 generator.\n var arc4 = new ARC4(key);\n\n // This function returns a random double in [0, 1) that contains\n // randomness in every bit of the mantissa of the IEEE 754 value.\n var prng = function() {\n var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48\n d = startdenom, // and denominator d = 2 ^ 48.\n x = 0; // and no 'extra last byte'.\n while (n < significance) { // Fill up all significant digits by\n n = (n + x) * width; // shifting numerator and\n d *= width; // denominator and generating a\n x = arc4.g(1); // new least-significant-byte.\n }\n while (n >= overflow) { // To avoid rounding up, before adding\n n /= 2; // last byte, shift everything\n d /= 2; // right using integer math until\n x >>>= 1; // we have exactly the desired bits.\n }\n return (n + x) / d; // Form the number within [0, 1).\n };\n\n prng.int32 = function() { return arc4.g(4) | 0; }\n prng.quick = function() { return arc4.g(4) / 0x100000000; }\n prng.double = prng;\n\n // Mix the randomness into accumulated entropy.\n mixkey(tostring(arc4.S), pool);\n\n // Calling convention: what to return as a function of prng, seed, is_math.\n return (options.pass || callback ||\n function(prng, seed, is_math_call, state) {\n if (state) {\n // Load the arc4 state from the given state if it has an S array.\n if (state.S) { copy(state, arc4); }\n // Only provide the .state method if requested via options.state.\n prng.state = function() { return copy(arc4, {}); }\n }\n\n // If called as a method of Math (Math.seedrandom()), mutate\n // Math.random because that is how seedrandom.js has worked since v1.0.\n if (is_math_call) { math[rngname] = prng; return seed; }\n\n // Otherwise, it is a newer calling convention, so return the\n // prng directly.\n else return prng;\n })(\n prng,\n shortseed,\n 'global' in options ? options.global : (this == math),\n options.state);\n}\nmath['seed' + rngname] = seedrandom;\n\n//\n// ARC4\n//\n// An ARC4 implementation. The constructor takes a key in the form of\n// an array of at most (width) integers that should be 0 <= x < (width).\n//\n// The g(count) method returns a pseudorandom integer that concatenates\n// the next (count) outputs from ARC4. Its return value is a number x\n// that is in the range 0 <= x < (width ^ count).\n//\nfunction ARC4(key) {\n var t, keylen = key.length,\n me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];\n\n // The empty key [] is treated as [0].\n if (!keylen) { key = [keylen++]; }\n\n // Set up S using the standard key scheduling algorithm.\n while (i < width) {\n s[i] = i++;\n }\n for (i = 0; i < width; i++) {\n s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];\n s[j] = t;\n }\n\n // The \"g\" method returns the next (count) outputs as one number.\n (me.g = function(count) {\n // Using instance members instead of closure state nearly doubles speed.\n var t, r = 0,\n i = me.i, j = me.j, s = me.S;\n while (count--) {\n t = s[i = mask & (i + 1)];\n r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];\n }\n me.i = i; me.j = j;\n return r;\n // For robust unpredictability, the function call below automatically\n // discards an initial batch of values. This is called RC4-drop[256].\n // See http://google.com/search?q=rsa+fluhrer+response&btnI\n })(width);\n}\n\n//\n// copy()\n// Copies internal state of ARC4 to or from a plain object.\n//\nfunction copy(f, t) {\n t.i = f.i;\n t.j = f.j;\n t.S = f.S.slice();\n return t;\n};\n\n//\n// flatten()\n// Converts an object tree to nested arrays of strings.\n//\nfunction flatten(obj, depth) {\n var result = [], typ = (typeof obj), prop;\n if (depth && typ == 'object') {\n for (prop in obj) {\n try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}\n }\n }\n return (result.length ? result : typ == 'string' ? obj : obj + '\\0');\n}\n\n//\n// mixkey()\n// Mixes a string seed into a key that is an array of integers, and\n// returns a shortened string seed that is equivalent to the result key.\n//\nfunction mixkey(seed, key) {\n var stringseed = seed + '', smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] =\n mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));\n }\n return tostring(key);\n}\n\n//\n// autoseed()\n// Returns an object for autoseeding, using window.crypto and Node crypto\n// module if available.\n//\nfunction autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n // The use of 'out' to remember randomBytes makes tight minified code.\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global.crypto || global.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e) {\n var browser = global.navigator,\n plugins = browser && browser.plugins;\n return [+new Date, global, plugins, global.screen, tostring(pool)];\n }\n}\n\n//\n// tostring()\n// Converts an array of charcodes to a string\n//\nfunction tostring(a) {\n return String.fromCharCode.apply(0, a);\n}\n\n//\n// When seedrandom.js is loaded, we immediately mix a few bits\n// from the built-in RNG into the entropy pool. Because we do\n// not want to interfere with deterministic PRNG state later,\n// seedrandom will not call math.random on its own again after\n// initialization.\n//\nmixkey(math.random(), pool);\n\n//\n// Nodejs and AMD support: export the implementation as a module using\n// either convention.\n//\nif ((typeof module) == 'object' && module.exports) {\n module.exports = seedrandom;\n // When in node.js, try using crypto package for autoseeding.\n try {\n nodecrypto = require('crypto');\n } catch (ex) {}\n} else if ((typeof define) == 'function' && define.amd) {\n define(function() { return seedrandom; });\n}\n\n// End anonymous scope, and pass initial values.\n})(\n [], // pool: entropy pool starts empty\n Math // math: package containing random, pow, and seedrandom\n);\n", "// A library of seedable RNGs implemented in Javascript.\n//\n// Usage:\n//\n// var seedrandom = require('seedrandom');\n// var random = seedrandom(1); // or any seed.\n// var x = random(); // 0 <= x < 1. Every bit is random.\n// var x = random.quick(); // 0 <= x < 1. 32 bits of randomness.\n\n// alea, a 53-bit multiply-with-carry generator by Johannes Baag\u00F8e.\n// Period: ~2^116\n// Reported to pass all BigCrush tests.\nvar alea = require('./lib/alea');\n\n// xor128, a pure xor-shift generator by George Marsaglia.\n// Period: 2^128-1.\n// Reported to fail: MatrixRank and LinearComp.\nvar xor128 = require('./lib/xor128');\n\n// xorwow, George Marsaglia's 160-bit xor-shift combined plus weyl.\n// Period: 2^192-2^32\n// Reported to fail: CollisionOver, SimpPoker, and LinearComp.\nvar xorwow = require('./lib/xorwow');\n\n// xorshift7, by Fran\u00E7ois Panneton and Pierre L'ecuyer, takes\n// a different approach: it adds robustness by allowing more shifts\n// than Marsaglia's original three. It is a 7-shift generator\n// with 256 bits, that passes BigCrush with no systmatic failures.\n// Period 2^256-1.\n// No systematic BigCrush failures reported.\nvar xorshift7 = require('./lib/xorshift7');\n\n// xor4096, by Richard Brent, is a 4096-bit xor-shift with a\n// very long period that also adds a Weyl generator. It also passes\n// BigCrush with no systematic failures. Its long period may\n// be useful if you have many generators and need to avoid\n// collisions.\n// Period: 2^4128-2^32.\n// No systematic BigCrush failures reported.\nvar xor4096 = require('./lib/xor4096');\n\n// Tyche-i, by Samuel Neves and Filipe Araujo, is a bit-shifting random\n// number generator derived from ChaCha, a modern stream cipher.\n// https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n// Period: ~2^127\n// No systematic BigCrush failures reported.\nvar tychei = require('./lib/tychei');\n\n// The original ARC4-based prng included in this library.\n// Period: ~2^1600\nvar sr = require('./seedrandom');\n\nsr.alea = alea;\nsr.xor128 = xor128;\nsr.xorwow = xorwow;\nsr.xorshift7 = xorshift7;\nsr.xor4096 = xor4096;\nsr.tychei = tychei;\n\nmodule.exports = sr;\n", "", "", "", "\nvar WasmBackendModuleThreadedSimd = (function() {\n var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined;\n if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename;\n return (\nfunction(WasmBackendModuleThreadedSimd) {\n WasmBackendModuleThreadedSimd = WasmBackendModuleThreadedSimd || {};\n\nfunction GROWABLE_HEAP_I8(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAP8}function GROWABLE_HEAP_U8(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPU8}function GROWABLE_HEAP_I32(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAP32}function GROWABLE_HEAP_U32(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPU32}function GROWABLE_HEAP_F64(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPF64}var Module=typeof WasmBackendModuleThreadedSimd!==\"undefined\"?WasmBackendModuleThreadedSimd:{};var readyPromiseResolve,readyPromiseReject;Module[\"ready\"]=new Promise(function(resolve,reject){readyPromiseResolve=resolve;readyPromiseReject=reject});var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var arguments_=[];var thisProgram=\"./this.program\";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window===\"object\";ENVIRONMENT_IS_WORKER=typeof importScripts===\"function\";ENVIRONMENT_IS_NODE=typeof process===\"object\"&&typeof process.versions===\"object\"&&typeof process.versions.node===\"string\";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var ENVIRONMENT_IS_PTHREAD=Module[\"ENVIRONMENT_IS_PTHREAD\"]||false;if(ENVIRONMENT_IS_PTHREAD){buffer=Module[\"buffer\"]}var scriptDirectory=\"\";function locateFile(path){if(Module[\"locateFile\"]){return Module[\"locateFile\"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=require(\"path\").dirname(scriptDirectory)+\"/\"}else{scriptDirectory=__dirname+\"/\"}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process[\"argv\"].length>1){thisProgram=process[\"argv\"][1].replace(/\\\\/g,\"/\")}arguments_=process[\"argv\"].slice(2);process[\"on\"](\"uncaughtException\",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process[\"on\"](\"unhandledRejection\",abort);quit_=function(status){process[\"exit\"](status)};Module[\"inspect\"]=function(){return\"[Emscripten Module object]\"};var nodeWorkerThreads;try{nodeWorkerThreads=require(\"worker_threads\")}catch(e){console.error('The \"worker_threads\" module is not supported in this node.js build - perhaps a newer version is needed?');throw e}global.Worker=nodeWorkerThreads.Worker}else if(ENVIRONMENT_IS_SHELL){if(typeof read!=\"undefined\"){read_=function shell_read(f){return read(f)}}readBinary=function readBinary(f){var data;if(typeof readbuffer===\"function\"){return new Uint8Array(readbuffer(f))}data=read(f,\"binary\");assert(typeof data===\"object\");return data};if(typeof scriptArgs!=\"undefined\"){arguments_=scriptArgs}else if(typeof arguments!=\"undefined\"){arguments_=arguments}if(typeof quit===\"function\"){quit_=function(status){quit(status)}}if(typeof print!==\"undefined\"){if(typeof console===\"undefined\")console={};console.log=print;console.warn=console.error=typeof printErr!==\"undefined\"?printErr:print}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(typeof document!==\"undefined\"&&document.currentScript){scriptDirectory=document.currentScript.src}if(typeof _scriptDir !== \"undefined\" && _scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf(\"blob:\")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf(\"/\")+1)}else{scriptDirectory=\"\"}if(ENVIRONMENT_IS_NODE){read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret}}else{read_=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.responseType=\"arraybuffer\";xhr.send(null);return new Uint8Array(xhr.response)}}readAsync=function(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,true);xhr.responseType=\"arraybuffer\";xhr.onload=function(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=function(title){document.title=title}}else{}if(ENVIRONMENT_IS_NODE){if(typeof performance===\"undefined\"){global.performance=require(\"perf_hooks\").performance}}var out=Module[\"print\"]||console.log.bind(console);var err=Module[\"printErr\"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=null;if(Module[\"arguments\"])arguments_=Module[\"arguments\"];if(Module[\"thisProgram\"])thisProgram=Module[\"thisProgram\"];if(Module[\"quit\"])quit_=Module[\"quit\"];var Atomics_load=Atomics.load;var Atomics_store=Atomics.store;var Atomics_compareExchange=Atomics.compareExchange;var wasmBinary;if(Module[\"wasmBinary\"])wasmBinary=Module[\"wasmBinary\"];var noExitRuntime=Module[\"noExitRuntime\"]||true;if(typeof WebAssembly!==\"object\"){abort(\"no native wasm support detected\")}var wasmMemory;var wasmModule;var ABORT=false;var EXITSTATUS;function assert(condition,text){if(!condition){abort(\"Assertion failed: \"+text)}}function getCFunc(ident){var func=Module[\"_\"+ident];assert(func,\"Cannot call unknown function \"+ident+\", make sure it is exported\");return func}function ccall(ident,returnType,argTypes,args,opts){var toC={\"string\":function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){var len=(str.length<<2)+1;ret=stackAlloc(len);stringToUTF8(str,ret,len)}return ret},\"array\":function(arr){var ret=stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}};function convertReturnValue(ret){if(returnType===\"string\")return UTF8ToString(ret);if(returnType===\"boolean\")return Boolean(ret);return ret}var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i=endIdx)){var u0=heap[idx++];if(!u0)return str;if(!(u0&128)){str+=String.fromCharCode(u0);continue}var u1=heap[idx++]&63;if((u0&224)==192){str+=String.fromCharCode((u0&31)<<6|u1);continue}var u2=heap[idx++]&63;if((u0&240)==224){u0=(u0&15)<<12|u1<<6|u2}else{u0=(u0&7)<<18|u1<<12|u2<<6|heap[idx++]&63}if(u0<65536){str+=String.fromCharCode(u0)}else{var ch=u0-65536;str+=String.fromCharCode(55296|ch>>10,56320|ch&1023)}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(GROWABLE_HEAP_U8(),ptr,maxBytesToRead):\"\"}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,GROWABLE_HEAP_U8(),outPtr,maxBytesToWrite)}function lengthBytesUTF8(str){var len=0;for(var i=0;i=55296&&u<=57343)u=65536+((u&1023)<<10)|str.charCodeAt(++i)&1023;if(u<=127)++len;else if(u<=2047)len+=2;else if(u<=65535)len+=3;else len+=4}return len}function writeArrayToMemory(array,buffer){GROWABLE_HEAP_I8().set(array,buffer)}function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var buffer,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer=buf;Module[\"HEAP8\"]=HEAP8=new Int8Array(buf);Module[\"HEAP16\"]=HEAP16=new Int16Array(buf);Module[\"HEAP32\"]=HEAP32=new Int32Array(buf);Module[\"HEAPU8\"]=HEAPU8=new Uint8Array(buf);Module[\"HEAPU16\"]=HEAPU16=new Uint16Array(buf);Module[\"HEAPU32\"]=HEAPU32=new Uint32Array(buf);Module[\"HEAPF32\"]=HEAPF32=new Float32Array(buf);Module[\"HEAPF64\"]=HEAPF64=new Float64Array(buf)}var INITIAL_MEMORY=Module[\"INITIAL_MEMORY\"]||16777216;if(ENVIRONMENT_IS_PTHREAD){wasmMemory=Module[\"wasmMemory\"];buffer=Module[\"buffer\"]}else{if(Module[\"wasmMemory\"]){wasmMemory=Module[\"wasmMemory\"]}else{wasmMemory=new WebAssembly.Memory({\"initial\":INITIAL_MEMORY/65536,\"maximum\":2147483648/65536,\"shared\":true});if(!(wasmMemory.buffer instanceof SharedArrayBuffer)){err(\"requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag\");if(ENVIRONMENT_IS_NODE){console.log(\"(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)\")}throw Error(\"bad memory\")}}}if(wasmMemory){buffer=wasmMemory.buffer}INITIAL_MEMORY=buffer.byteLength;updateGlobalBufferAndViews(buffer);var wasmTable;var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATEXIT__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;var runtimeExited=false;if(!ENVIRONMENT_IS_PTHREAD)__ATINIT__.push({func:function(){___wasm_call_ctors()}});function preRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module[\"preRun\"]){if(typeof Module[\"preRun\"]==\"function\")Module[\"preRun\"]=[Module[\"preRun\"]];while(Module[\"preRun\"].length){addOnPreRun(Module[\"preRun\"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;if(ENVIRONMENT_IS_PTHREAD)return;callRuntimeCallbacks(__ATINIT__)}function preMain(){if(ENVIRONMENT_IS_PTHREAD)return;callRuntimeCallbacks(__ATMAIN__)}function exitRuntime(){if(ENVIRONMENT_IS_PTHREAD)return;runtimeExited=true}function postRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module[\"postRun\"]){if(typeof Module[\"postRun\"]==\"function\")Module[\"postRun\"]=[Module[\"postRun\"]];while(Module[\"postRun\"].length){addOnPostRun(Module[\"postRun\"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){assert(!ENVIRONMENT_IS_PTHREAD,\"addRunDependency cannot be used in a pthread worker\");runDependencies++;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module[\"preloadedImages\"]={};Module[\"preloadedAudios\"]={};function abort(what){if(Module[\"onAbort\"]){Module[\"onAbort\"](what)}if(ENVIRONMENT_IS_PTHREAD)console.error(\"Pthread aborting at \"+(new Error).stack);what+=\"\";err(what);ABORT=true;EXITSTATUS=1;what=\"abort(\"+what+\"). Build with -s ASSERTIONS=1 for more info.\";var e=new WebAssembly.RuntimeError(what);readyPromiseReject(e);throw e}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix=\"data:application/octet-stream;base64,\";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix=\"file://\";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile=\"tfjs-backend-wasm-threaded-simd.wasm\";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(file){try{if(file==wasmBinaryFile&&wasmBinary){return new Uint8Array(wasmBinary)}if(readBinary){return readBinary(file)}else{throw\"both async and sync fetching of the wasm failed\"}}catch(err){abort(err)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)){if(typeof fetch===\"function\"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){if(!response[\"ok\"]){throw\"failed to load wasm binary file at '\"+wasmBinaryFile+\"'\"}return response[\"arrayBuffer\"]()}).catch(function(){return getBinary(wasmBinaryFile)})}else{if(readAsync){return new Promise(function(resolve,reject){readAsync(wasmBinaryFile,function(response){resolve(new Uint8Array(response))},reject)})}}}return Promise.resolve().then(function(){return getBinary(wasmBinaryFile)})}function createWasm(){var info={\"a\":asmLibraryArg};function receiveInstance(instance,module){var exports=instance.exports;Module[\"asm\"]=exports;wasmTable=Module[\"asm\"][\"F\"];wasmModule=module;if(!ENVIRONMENT_IS_PTHREAD){var numWorkersToLoad=PThread.unusedWorkers.length;PThread.unusedWorkers.forEach(function(w){PThread.loadWasmModuleToWorker(w,function(){if(!--numWorkersToLoad)removeRunDependency(\"wasm-instantiate\")})})}}if(!ENVIRONMENT_IS_PTHREAD){addRunDependency(\"wasm-instantiate\")}function receiveInstantiatedSource(output){receiveInstance(output[\"instance\"],output[\"module\"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err(\"failed to asynchronously prepare wasm: \"+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming===\"function\"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch===\"function\"){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err(\"wasm streaming compile failed: \"+reason);err(\"falling back to ArrayBuffer instantiation\");return instantiateArrayBuffer(receiveInstantiatedSource)})})}else{return instantiateArrayBuffer(receiveInstantiatedSource)}}if(Module[\"instantiateWasm\"]){try{var exports=Module[\"instantiateWasm\"](info,receiveInstance);return exports}catch(e){err(\"Module.instantiateWasm callback failed with error: \"+e);return false}}instantiateAsync().catch(readyPromiseReject);return{}}var ASM_CONSTS={9816:function(){throw\"Canceled!\"},9834:function($0,$1){setTimeout(function(){__emscripten_do_dispatch_to_thread($0,$1)},0)}};function initPthreadsJS(){PThread.initRuntime()}function callRuntimeCallbacks(callbacks){while(callbacks.length>0){var callback=callbacks.shift();if(typeof callback==\"function\"){callback(Module);continue}var func=callback.func;if(typeof func===\"number\"){if(callback.arg===undefined){wasmTable.get(func)()}else{wasmTable.get(func)(callback.arg)}}else{func(callback.arg===undefined?null:callback.arg)}}}function _emscripten_futex_wake(addr,count){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&3!=0||count<0)return-28;if(count==0)return 0;if(count>=2147483647)count=Infinity;var mainThreadWaitAddress=Atomics.load(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2);var mainThreadWoken=0;if(mainThreadWaitAddress==addr){var loadedAddr=Atomics.compareExchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,mainThreadWaitAddress,0);if(loadedAddr==mainThreadWaitAddress){--count;mainThreadWoken=1;if(count<=0)return 1}}var ret=Atomics.notify(GROWABLE_HEAP_I32(),addr>>2,count);if(ret>=0)return ret+mainThreadWoken;throw\"Atomics.notify returned an unexpected value \"+ret}Module[\"_emscripten_futex_wake\"]=_emscripten_futex_wake;function killThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! killThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in killThread!\";GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var pthread=PThread.pthreads[pthread_ptr];pthread.worker.terminate();PThread.freeThreadData(pthread);PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(pthread.worker),1);pthread.worker.pthread=undefined}function cancelThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! cancelThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in cancelThread!\";var pthread=PThread.pthreads[pthread_ptr];pthread.worker.postMessage({\"cmd\":\"cancel\"})}function cleanupThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! cleanupThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in cleanupThread!\";var pthread=PThread.pthreads[pthread_ptr];if(pthread){GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var worker=pthread.worker;PThread.returnWorkerToPool(worker)}}var PThread={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){var pthreadPoolSize=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2));for(var i=0;i>2]=tb;var headPtr=tb+152;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;var tlsMemory=_malloc(512);for(var i=0;i<128;++i)GROWABLE_HEAP_U32()[tlsMemory/4+i]=0;Atomics.store(GROWABLE_HEAP_U32(),tb+100>>2,tlsMemory);Atomics.store(GROWABLE_HEAP_U32(),tb+40>>2,tb);__emscripten_thread_init(tb,!ENVIRONMENT_IS_WORKER,1);_emscripten_register_main_browser_thread_id(tb)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){while(PThread.threadExitHandlers.length>0){PThread.threadExitHandlers.pop()()}if(ENVIRONMENT_IS_PTHREAD&&_pthread_self())___pthread_tsd_run_dtors()},runExitHandlersAndDeinitThread:function(tb,exitCode){Atomics.store(GROWABLE_HEAP_U32(),tb+56>>2,1);Atomics.store(GROWABLE_HEAP_U32(),tb+60>>2,0);PThread.runExitHandlers();Atomics.store(GROWABLE_HEAP_U32(),tb+4>>2,exitCode);Atomics.store(GROWABLE_HEAP_U32(),tb+0>>2,1);_emscripten_futex_wake(tb+0,2147483647);__emscripten_thread_init(0,0,0)},threadExit:function(exitCode){var tb=_pthread_self();if(tb){PThread.runExitHandlersAndDeinitThread(tb,exitCode);if(ENVIRONMENT_IS_PTHREAD){postMessage({\"cmd\":\"exit\"})}}},threadCancel:function(){PThread.runExitHandlersAndDeinitThread(_pthread_self(),-1);postMessage({\"cmd\":\"cancelDone\"})},terminateAllThreads:function(){for(var t in PThread.pthreads){var pthread=PThread.pthreads[t];if(pthread&&pthread.worker){PThread.returnWorkerToPool(pthread.worker)}}PThread.pthreads={};for(var i=0;i>2];GROWABLE_HEAP_I32()[pthread.threadInfoStruct+100>>2]=0;_free(tlsMemory);_free(pthread.threadInfoStruct)}pthread.threadInfoStruct=0;if(pthread.allocatedOwnStack&&pthread.stackBase)_free(pthread.stackBase);pthread.stackBase=0;if(pthread.worker)pthread.worker.pthread=null},returnWorkerToPool:function(worker){PThread.runWithoutMainThreadQueuedCalls(function(){delete PThread.pthreads[worker.pthread.threadInfoStruct];PThread.unusedWorkers.push(worker);PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(worker),1);PThread.freeThreadData(worker.pthread);worker.pthread=undefined})},runWithoutMainThreadQueuedCalls:function(func){GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls>>2]=0;try{func()}finally{GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls>>2]=1}},receiveObjectTransfer:function(data){},loadWasmModuleToWorker:function(worker,onFinishedLoading){worker.onmessage=function(e){var d=e[\"data\"];var cmd=d[\"cmd\"];if(worker.pthread)PThread.currentProxiedOperationCallerThread=worker.pthread.threadInfoStruct;if(d[\"targetThread\"]&&d[\"targetThread\"]!=_pthread_self()){var thread=PThread.pthreads[d.targetThread];if(thread){thread.worker.postMessage(e.data,d[\"transferList\"])}else{console.error('Internal error! Worker sent a message \"'+cmd+'\" to target pthread '+d[\"targetThread\"]+\", but that thread no longer exists!\")}PThread.currentProxiedOperationCallerThread=undefined;return}if(cmd===\"processQueuedMainThreadWork\"){_emscripten_main_thread_process_queued_calls()}else if(cmd===\"spawnThread\"){spawnThread(e.data)}else if(cmd===\"cleanupThread\"){cleanupThread(d[\"thread\"])}else if(cmd===\"killThread\"){killThread(d[\"thread\"])}else if(cmd===\"cancelThread\"){cancelThread(d[\"thread\"])}else if(cmd===\"loaded\"){worker.loaded=true;if(onFinishedLoading)onFinishedLoading(worker);if(worker.runPthread){worker.runPthread();delete worker.runPthread}}else if(cmd===\"print\"){out(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"printErr\"){err(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"alert\"){alert(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"exit\"){var detached=worker.pthread&&Atomics.load(GROWABLE_HEAP_U32(),worker.pthread.threadInfoStruct+64>>2);if(detached){PThread.returnWorkerToPool(worker)}}else if(cmd===\"exitProcess\"){try{exit(d[\"returnCode\"])}catch(e){if(e instanceof ExitStatus)return;throw e}}else if(cmd===\"cancelDone\"){PThread.returnWorkerToPool(worker)}else if(cmd===\"objectTransfer\"){PThread.receiveObjectTransfer(e.data)}else if(e.data.target===\"setimmediate\"){worker.postMessage(e.data)}else{err(\"worker sent an unknown command \"+cmd)}PThread.currentProxiedOperationCallerThread=undefined};worker.onerror=function(e){err(\"pthread sent an error! \"+e.filename+\":\"+e.lineno+\": \"+e.message)};if(ENVIRONMENT_IS_NODE){worker.on(\"message\",function(data){worker.onmessage({data:data})});worker.on(\"error\",function(data){worker.onerror(data)});worker.on(\"exit\",function(data){})}worker.postMessage({\"cmd\":\"load\",\"urlOrBlob\":Module[\"mainScriptUrlOrBlob\"]||_scriptDir,\"wasmMemory\":wasmMemory,\"wasmModule\":wasmModule})},allocateUnusedWorker:function(){var pthreadMainJs=locateFile(\"tfjs-backend-wasm-threaded-simd.worker.js\");PThread.unusedWorkers.push(new Worker(pthreadMainJs))},getNewWorker:function(){if(PThread.unusedWorkers.length==0){PThread.allocateUnusedWorker();PThread.loadWasmModuleToWorker(PThread.unusedWorkers[0])}if(PThread.unusedWorkers.length>0)return PThread.unusedWorkers.pop();else return null},busySpinWait:function(msecs){var t=performance.now()+msecs;while(performance.now()>2]=value;return value}function _atexit(func,arg){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(1,1,func,arg)}function __emscripten_notify_thread_queue(targetThreadId,mainThreadId){if(targetThreadId==mainThreadId){postMessage({\"cmd\":\"processQueuedMainThreadWork\"})}else if(ENVIRONMENT_IS_PTHREAD){postMessage({\"targetThread\":targetThreadId,\"cmd\":\"processThreadQueue\"})}else{var pthread=PThread.pthreads[targetThreadId];var worker=pthread&&pthread.worker;if(!worker){return}worker.postMessage({\"cmd\":\"processThreadQueue\"})}return 1}function _abort(){abort()}function _emscripten_asm_const_int(code,sigPtr,argbuf){var args=readAsmConstArgs(sigPtr,argbuf);return ASM_CONSTS[code].apply(null,args)}function _emscripten_conditional_set_current_thread_status(expectedStatus,newStatus){}function _emscripten_futex_wait(addr,val,timeout){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&3!=0)return-28;if(!ENVIRONMENT_IS_WEB){var ret=Atomics.wait(GROWABLE_HEAP_I32(),addr>>2,val,timeout);if(ret===\"timed-out\")return-73;if(ret===\"not-equal\")return-6;if(ret===\"ok\")return 0;throw\"Atomics.wait returned an unexpected value \"+ret}else{if(Atomics.load(GROWABLE_HEAP_I32(),addr>>2)!=val){return-6}var tNow=performance.now();var tEnd=tNow+timeout;var lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,addr);while(1){tNow=performance.now();if(tNow>tEnd){lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,0);return-73}lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,0);if(lastAddr==0){break}_emscripten_main_thread_process_queued_calls();if(Atomics.load(GROWABLE_HEAP_I32(),addr>>2)!=val){return-6}lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,addr)}return 0}}function _emscripten_memcpy_big(dest,src,num){GROWABLE_HEAP_U8().copyWithin(dest,src,src+num)}function _emscripten_num_logical_cores(){if(ENVIRONMENT_IS_NODE)return require(\"os\").cpus().length;return navigator[\"hardwareConcurrency\"]}function _emscripten_proxy_to_main_thread_js(index,sync){var numCallArgs=arguments.length-2;var stack=stackSave();var serializedNumCallArgs=numCallArgs;var args=stackAlloc(serializedNumCallArgs*8);var b=args>>3;for(var i=0;i>=2;while(ch=GROWABLE_HEAP_U8()[sigPtr++]){var double=ch<105;if(double&&buf&1)buf++;readAsmConstArgsArray.push(double?GROWABLE_HEAP_F64()[buf++>>1]:GROWABLE_HEAP_I32()[buf]);++buf}return readAsmConstArgsArray}function _emscripten_receive_on_main_thread_js(index,numCallArgs,args){_emscripten_receive_on_main_thread_js_callArgs.length=numCallArgs;var b=args>>3;for(var i=0;i>>16);updateGlobalBufferAndViews(wasmMemory.buffer);return 1}catch(e){}}function _emscripten_resize_heap(requestedSize){var oldSize=_emscripten_get_heap_size();if(requestedSize<=oldSize){return false}var maxHeapSize=2147483648;if(requestedSize>maxHeapSize){return false}for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(requestedSize,overGrownHeapSize),65536));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}var JSEvents={inEventHandler:0,removeAllEventListeners:function(){for(var i=JSEvents.eventHandlers.length-1;i>=0;--i){JSEvents._removeHandler(i)}JSEvents.eventHandlers=[];JSEvents.deferredCalls=[]},registerRemoveEventListeners:function(){if(!JSEvents.removeEventListenersRegistered){__ATEXIT__.push(JSEvents.removeAllEventListeners);JSEvents.removeEventListenersRegistered=true}},deferredCalls:[],deferCall:function(targetFunction,precedence,argsList){function arraysHaveEqualContent(arrA,arrB){if(arrA.length!=arrB.length)return false;for(var i in arrA){if(arrA[i]!=arrB[i])return false}return true}for(var i in JSEvents.deferredCalls){var call=JSEvents.deferredCalls[i];if(call.targetFunction==targetFunction&&arraysHaveEqualContent(call.argsList,argsList)){return}}JSEvents.deferredCalls.push({targetFunction:targetFunction,precedence:precedence,argsList:argsList});JSEvents.deferredCalls.sort(function(x,y){return x.precedence>2]=eventTypeId;GROWABLE_HEAP_I32()[varargs+4>>2]=eventData;GROWABLE_HEAP_I32()[varargs+8>>2]=userData;__emscripten_call_on_thread(0,targetThread,637534208,eventHandlerFunc,eventData,varargs);stackRestore(stackTop)},getTargetThreadForEventCallback:function(targetThread){switch(targetThread){case 1:return 0;case 2:return PThread.currentProxiedOperationCallerThread;default:return targetThread}},getNodeNameForTarget:function(target){if(!target)return\"\";if(target==window)return\"#window\";if(target==screen)return\"#screen\";return target&&target.nodeName?target.nodeName:\"\"},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function stringToNewUTF8(jsString){var length=lengthBytesUTF8(jsString)+1;var cString=_malloc(length);stringToUTF8(jsString,cString,length);return cString}function _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height){var stackTop=stackSave();var varargs=stackAlloc(12);var targetCanvasPtr=0;if(targetCanvas){targetCanvasPtr=stringToNewUTF8(targetCanvas)}GROWABLE_HEAP_I32()[varargs>>2]=targetCanvasPtr;GROWABLE_HEAP_I32()[varargs+4>>2]=width;GROWABLE_HEAP_I32()[varargs+8>>2]=height;__emscripten_call_on_thread(0,targetThread,657457152,0,targetCanvasPtr,varargs);stackRestore(stackTop)}function _emscripten_set_offscreencanvas_size_on_target_thread(targetThread,targetCanvas,width,height){targetCanvas=targetCanvas?UTF8ToString(targetCanvas):\"\";_emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height)}function maybeCStringToJsString(cString){return cString>2?UTF8ToString(cString):cString}var specialHTMLTargets=[0,typeof document!==\"undefined\"?document:0,typeof window!==\"undefined\"?window:0];function findEventTarget(target){target=maybeCStringToJsString(target);var domElement=specialHTMLTargets[target]||(typeof document!==\"undefined\"?document.querySelector(target):undefined);return domElement}function findCanvasEventTarget(target){return findEventTarget(target)}function _emscripten_set_canvas_element_size_calling_thread(target,width,height){var canvas=findCanvasEventTarget(target);if(!canvas)return-4;if(canvas.canvasSharedPtr){GROWABLE_HEAP_I32()[canvas.canvasSharedPtr>>2]=width;GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+4>>2]=height}if(canvas.offscreenCanvas||!canvas.controlTransferredOffscreen){if(canvas.offscreenCanvas)canvas=canvas.offscreenCanvas;var autoResizeViewport=false;if(canvas.GLctxObject&&canvas.GLctxObject.GLctx){var prevViewport=canvas.GLctxObject.GLctx.getParameter(2978);autoResizeViewport=prevViewport[0]===0&&prevViewport[1]===0&&prevViewport[2]===canvas.width&&prevViewport[3]===canvas.height}canvas.width=width;canvas.height=height;if(autoResizeViewport){canvas.GLctxObject.GLctx.viewport(0,0,width,height)}}else if(canvas.canvasSharedPtr){var targetThread=GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+8>>2];_emscripten_set_offscreencanvas_size_on_target_thread(targetThread,target,width,height);return 1}else{return-4}return 0}function _emscripten_set_canvas_element_size_main_thread(target,width,height){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(2,1,target,width,height);return _emscripten_set_canvas_element_size_calling_thread(target,width,height)}function _emscripten_set_canvas_element_size(target,width,height){var canvas=findCanvasEventTarget(target);if(canvas){return _emscripten_set_canvas_element_size_calling_thread(target,width,height)}else{return _emscripten_set_canvas_element_size_main_thread(target,width,height)}}function _emscripten_set_current_thread_status(newStatus){}function _emscripten_set_thread_name(threadId,name){}function __webgl_enable_ANGLE_instanced_arrays(ctx){var ext=ctx.getExtension(\"ANGLE_instanced_arrays\");if(ext){ctx[\"vertexAttribDivisor\"]=function(index,divisor){ext[\"vertexAttribDivisorANGLE\"](index,divisor)};ctx[\"drawArraysInstanced\"]=function(mode,first,count,primcount){ext[\"drawArraysInstancedANGLE\"](mode,first,count,primcount)};ctx[\"drawElementsInstanced\"]=function(mode,count,type,indices,primcount){ext[\"drawElementsInstancedANGLE\"](mode,count,type,indices,primcount)};return 1}}function __webgl_enable_OES_vertex_array_object(ctx){var ext=ctx.getExtension(\"OES_vertex_array_object\");if(ext){ctx[\"createVertexArray\"]=function(){return ext[\"createVertexArrayOES\"]()};ctx[\"deleteVertexArray\"]=function(vao){ext[\"deleteVertexArrayOES\"](vao)};ctx[\"bindVertexArray\"]=function(vao){ext[\"bindVertexArrayOES\"](vao)};ctx[\"isVertexArray\"]=function(vao){return ext[\"isVertexArrayOES\"](vao)};return 1}}function __webgl_enable_WEBGL_draw_buffers(ctx){var ext=ctx.getExtension(\"WEBGL_draw_buffers\");if(ext){ctx[\"drawBuffers\"]=function(n,bufs){ext[\"drawBuffersWEBGL\"](n,bufs)};return 1}}function __webgl_enable_WEBGL_multi_draw(ctx){return!!(ctx.multiDrawWebgl=ctx.getExtension(\"WEBGL_multi_draw\"))}var GL={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function recordError(errorCode){if(!GL.lastError){GL.lastError=errorCode}},getNewId:function(table){var ret=GL.counter++;for(var i=table.length;i>2]:-1;source+=UTF8ToString(GROWABLE_HEAP_I32()[string+i*4>>2],len<0?undefined:len)}return source},createContext:function(canvas,webGLContextAttributes){var ctx=canvas.getContext(\"webgl\",webGLContextAttributes);if(!ctx)return 0;var handle=GL.registerContext(ctx,webGLContextAttributes);return handle},registerContext:function(ctx,webGLContextAttributes){var handle=_malloc(8);GROWABLE_HEAP_I32()[handle+4>>2]=_pthread_self();var context={handle:handle,attributes:webGLContextAttributes,version:webGLContextAttributes.majorVersion,GLctx:ctx};if(ctx.canvas)ctx.canvas.GLctxObject=context;GL.contexts[handle]=context;if(typeof webGLContextAttributes.enableExtensionsByDefault===\"undefined\"||webGLContextAttributes.enableExtensionsByDefault){GL.initExtensions(context)}return handle},makeContextCurrent:function(contextHandle){GL.currentContext=GL.contexts[contextHandle];Module.ctx=GLctx=GL.currentContext&&GL.currentContext.GLctx;return!(contextHandle&&!GLctx)},getContext:function(contextHandle){return GL.contexts[contextHandle]},deleteContext:function(contextHandle){if(GL.currentContext===GL.contexts[contextHandle])GL.currentContext=null;if(typeof JSEvents===\"object\")JSEvents.removeAllHandlersOnTarget(GL.contexts[contextHandle].GLctx.canvas);if(GL.contexts[contextHandle]&&GL.contexts[contextHandle].GLctx.canvas)GL.contexts[contextHandle].GLctx.canvas.GLctxObject=undefined;_free(GL.contexts[contextHandle].handle);GL.contexts[contextHandle]=null},initExtensions:function(context){if(!context)context=GL.currentContext;if(context.initExtensionsDone)return;context.initExtensionsDone=true;var GLctx=context.GLctx;__webgl_enable_ANGLE_instanced_arrays(GLctx);__webgl_enable_OES_vertex_array_object(GLctx);__webgl_enable_WEBGL_draw_buffers(GLctx);GLctx.disjointTimerQueryExt=GLctx.getExtension(\"EXT_disjoint_timer_query\");__webgl_enable_WEBGL_multi_draw(GLctx);var exts=GLctx.getSupportedExtensions()||[];exts.forEach(function(ext){if(ext.indexOf(\"lose_context\")<0&&ext.indexOf(\"debug\")<0){GLctx.getExtension(ext)}})},populateUniformTable:function(program){var p=GL.programs[program];var ptable=GL.programInfos[program]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1};var utable=ptable.uniforms;var numUniforms=GLctx.getProgramParameter(p,35718);for(var i=0;i>2;var powerPreference=GROWABLE_HEAP_I32()[a+(24>>2)];var contextAttributes={\"alpha\":!!GROWABLE_HEAP_I32()[a+(0>>2)],\"depth\":!!GROWABLE_HEAP_I32()[a+(4>>2)],\"stencil\":!!GROWABLE_HEAP_I32()[a+(8>>2)],\"antialias\":!!GROWABLE_HEAP_I32()[a+(12>>2)],\"premultipliedAlpha\":!!GROWABLE_HEAP_I32()[a+(16>>2)],\"preserveDrawingBuffer\":!!GROWABLE_HEAP_I32()[a+(20>>2)],\"powerPreference\":__emscripten_webgl_power_preferences[powerPreference],\"failIfMajorPerformanceCaveat\":!!GROWABLE_HEAP_I32()[a+(28>>2)],majorVersion:GROWABLE_HEAP_I32()[a+(32>>2)],minorVersion:GROWABLE_HEAP_I32()[a+(36>>2)],enableExtensionsByDefault:GROWABLE_HEAP_I32()[a+(40>>2)],explicitSwapControl:GROWABLE_HEAP_I32()[a+(44>>2)],proxyContextToMainThread:GROWABLE_HEAP_I32()[a+(48>>2)],renderViaOffscreenBackBuffer:GROWABLE_HEAP_I32()[a+(52>>2)]};var canvas=findCanvasEventTarget(target);if(!canvas){return 0}if(contextAttributes.explicitSwapControl){return 0}var contextHandle=GL.createContext(canvas,contextAttributes);return contextHandle}function _emscripten_webgl_create_context(a0,a1){return _emscripten_webgl_do_create_context(a0,a1)}var SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer=SYSCALLS.buffers[stream];if(curr===0||curr===10){(stream===1?out:err)(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}},varargs:undefined,get:function(){SYSCALLS.varargs+=4;var ret=GROWABLE_HEAP_I32()[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(3,1,fd);return 0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(4,1,fd,offset_low,offset_high,whence,newOffset)}function _fd_write(fd,iov,iovcnt,pnum){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(5,1,fd,iov,iovcnt,pnum);var num=0;for(var i=0;i>2];var len=GROWABLE_HEAP_I32()[iov+(i*8+4)>>2];for(var j=0;j>2]=num;return 0}function _pthread_cleanup_pop(execute){var routine=PThread.threadExitHandlers.pop();if(execute)routine()}function _pthread_cleanup_push(routine,arg){PThread.threadExitHandlers.push(function(){wasmTable.get(routine)(arg)})}function spawnThread(threadParams){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! spawnThread() can only ever be called from main application thread!\";var worker=PThread.getNewWorker();if(worker.pthread!==undefined)throw\"Internal error!\";if(!threadParams.pthread_ptr)throw\"Internal error, no pthread ptr!\";PThread.runningWorkers.push(worker);var tlsMemory=_malloc(128*4);for(var i=0;i<128;++i){GROWABLE_HEAP_I32()[tlsMemory+i*4>>2]=0}var stackHigh=threadParams.stackBase+threadParams.stackSize;var pthread=PThread.pthreads[threadParams.pthread_ptr]={worker:worker,stackBase:threadParams.stackBase,stackSize:threadParams.stackSize,allocatedOwnStack:threadParams.allocatedOwnStack,threadInfoStruct:threadParams.pthread_ptr};var tis=pthread.threadInfoStruct>>2;Atomics.store(GROWABLE_HEAP_U32(),tis+(64>>2),threadParams.detached);Atomics.store(GROWABLE_HEAP_U32(),tis+(100>>2),tlsMemory);Atomics.store(GROWABLE_HEAP_U32(),tis+(40>>2),pthread.threadInfoStruct);Atomics.store(GROWABLE_HEAP_U32(),tis+(80>>2),threadParams.stackSize);Atomics.store(GROWABLE_HEAP_U32(),tis+(76>>2),stackHigh);Atomics.store(GROWABLE_HEAP_U32(),tis+(104>>2),threadParams.stackSize);Atomics.store(GROWABLE_HEAP_U32(),tis+(104+8>>2),stackHigh);Atomics.store(GROWABLE_HEAP_U32(),tis+(104+12>>2),threadParams.detached);var global_libc=_emscripten_get_global_libc();var global_locale=global_libc+40;Atomics.store(GROWABLE_HEAP_U32(),tis+(172>>2),global_locale);worker.pthread=pthread;var msg={\"cmd\":\"run\",\"start_routine\":threadParams.startRoutine,\"arg\":threadParams.arg,\"threadInfoStruct\":threadParams.pthread_ptr,\"stackBase\":threadParams.stackBase,\"stackSize\":threadParams.stackSize};worker.runPthread=function(){msg.time=performance.now();worker.postMessage(msg,threadParams.transferList)};if(worker.loaded){worker.runPthread();delete worker.runPthread}}function _pthread_create(pthread_ptr,attr,start_routine,arg){if(typeof SharedArrayBuffer===\"undefined\"){err(\"Current environment does not support SharedArrayBuffer, pthreads are not available!\");return 6}if(!pthread_ptr){err(\"pthread_create called with a null thread pointer!\");return 28}var transferList=[];var error=0;if(ENVIRONMENT_IS_PTHREAD&&(transferList.length===0||error)){return _emscripten_sync_run_in_main_thread_4(687865856,pthread_ptr,attr,start_routine,arg)}if(error)return error;var stackSize=0;var stackBase=0;var detached=0;if(attr&&attr!=-1){stackSize=GROWABLE_HEAP_I32()[attr>>2];stackSize+=81920;stackBase=GROWABLE_HEAP_I32()[attr+8>>2];detached=GROWABLE_HEAP_I32()[attr+12>>2]!==0}else{stackSize=2097152}var allocatedOwnStack=stackBase==0;if(allocatedOwnStack){stackBase=_memalign(16,stackSize)}else{stackBase-=stackSize;assert(stackBase>0)}var threadInfoStruct=_malloc(228);for(var i=0;i<228>>2;++i)GROWABLE_HEAP_U32()[(threadInfoStruct>>2)+i]=0;GROWABLE_HEAP_I32()[pthread_ptr>>2]=threadInfoStruct;GROWABLE_HEAP_I32()[threadInfoStruct+12>>2]=threadInfoStruct;var headPtr=threadInfoStruct+152;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;var threadParams={stackBase:stackBase,stackSize:stackSize,allocatedOwnStack:allocatedOwnStack,detached:detached,startRoutine:start_routine,pthread_ptr:threadInfoStruct,arg:arg,transferList:transferList};if(ENVIRONMENT_IS_PTHREAD){threadParams.cmd=\"spawnThread\";postMessage(threadParams,transferList)}else{spawnThread(threadParams)}return 0}function _sysconf(name){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(6,1,name);switch(name){case 30:return 16384;case 85:var maxHeapSize=2147483648;return maxHeapSize/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:{if(typeof navigator===\"object\")return navigator[\"hardwareConcurrency\"]||1;return 1}}setErrNo(28);return-1}if(!ENVIRONMENT_IS_PTHREAD)PThread.initMainThreadBlock();var GLctx;var proxiedFunctionTable=[null,_atexit,_emscripten_set_canvas_element_size_main_thread,_fd_close,_fd_seek,_fd_write,_sysconf];var asmLibraryArg={\"e\":___assert_fail,\"r\":___call_main,\"x\":__emscripten_notify_thread_queue,\"b\":_abort,\"y\":_emscripten_asm_const_int,\"j\":_emscripten_conditional_set_current_thread_status,\"c\":_emscripten_futex_wait,\"d\":_emscripten_futex_wake,\"f\":_emscripten_get_now,\"p\":_emscripten_memcpy_big,\"z\":_emscripten_num_logical_cores,\"u\":_emscripten_receive_on_main_thread_js,\"q\":_emscripten_resize_heap,\"v\":_emscripten_set_canvas_element_size,\"i\":_emscripten_set_current_thread_status,\"t\":_emscripten_set_thread_name,\"w\":_emscripten_webgl_create_context,\"m\":_fd_close,\"n\":_fd_seek,\"g\":_fd_write,\"o\":initPthreadsJS,\"a\":wasmMemory||Module[\"wasmMemory\"],\"k\":_pthread_cleanup_pop,\"l\":_pthread_cleanup_push,\"h\":_pthread_create,\"s\":_sysconf};var asm=createWasm();var ___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=function(){return(___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=Module[\"asm\"][\"A\"]).apply(null,arguments)};var _init=Module[\"_init\"]=function(){return(_init=Module[\"_init\"]=Module[\"asm\"][\"B\"]).apply(null,arguments)};var _register_tensor=Module[\"_register_tensor\"]=function(){return(_register_tensor=Module[\"_register_tensor\"]=Module[\"asm\"][\"C\"]).apply(null,arguments)};var _dispose_data=Module[\"_dispose_data\"]=function(){return(_dispose_data=Module[\"_dispose_data\"]=Module[\"asm\"][\"D\"]).apply(null,arguments)};var _dispose=Module[\"_dispose\"]=function(){return(_dispose=Module[\"_dispose\"]=Module[\"asm\"][\"E\"]).apply(null,arguments)};var _Abs=Module[\"_Abs\"]=function(){return(_Abs=Module[\"_Abs\"]=Module[\"asm\"][\"G\"]).apply(null,arguments)};var _Add=Module[\"_Add\"]=function(){return(_Add=Module[\"_Add\"]=Module[\"asm\"][\"H\"]).apply(null,arguments)};var _AddN=Module[\"_AddN\"]=function(){return(_AddN=Module[\"_AddN\"]=Module[\"asm\"][\"I\"]).apply(null,arguments)};var _All=Module[\"_All\"]=function(){return(_All=Module[\"_All\"]=Module[\"asm\"][\"J\"]).apply(null,arguments)};var _Any=Module[\"_Any\"]=function(){return(_Any=Module[\"_Any\"]=Module[\"asm\"][\"K\"]).apply(null,arguments)};var _ArgMax=Module[\"_ArgMax\"]=function(){return(_ArgMax=Module[\"_ArgMax\"]=Module[\"asm\"][\"L\"]).apply(null,arguments)};var _AvgPool=Module[\"_AvgPool\"]=function(){return(_AvgPool=Module[\"_AvgPool\"]=Module[\"asm\"][\"M\"]).apply(null,arguments)};var _BatchMatMul=Module[\"_BatchMatMul\"]=function(){return(_BatchMatMul=Module[\"_BatchMatMul\"]=Module[\"asm\"][\"N\"]).apply(null,arguments)};var _Ceil=Module[\"_Ceil\"]=function(){return(_Ceil=Module[\"_Ceil\"]=Module[\"asm\"][\"O\"]).apply(null,arguments)};var _ClipByValue=Module[\"_ClipByValue\"]=function(){return(_ClipByValue=Module[\"_ClipByValue\"]=Module[\"asm\"][\"P\"]).apply(null,arguments)};var _Conv2D=Module[\"_Conv2D\"]=function(){return(_Conv2D=Module[\"_Conv2D\"]=Module[\"asm\"][\"Q\"]).apply(null,arguments)};var _Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=function(){return(_Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=Module[\"asm\"][\"R\"]).apply(null,arguments)};var _Cos=Module[\"_Cos\"]=function(){return(_Cos=Module[\"_Cos\"]=Module[\"asm\"][\"S\"]).apply(null,arguments)};var _CropAndResize=Module[\"_CropAndResize\"]=function(){return(_CropAndResize=Module[\"_CropAndResize\"]=Module[\"asm\"][\"T\"]).apply(null,arguments)};var _Cumsum=Module[\"_Cumsum\"]=function(){return(_Cumsum=Module[\"_Cumsum\"]=Module[\"asm\"][\"U\"]).apply(null,arguments)};var _DepthToSpace=Module[\"_DepthToSpace\"]=function(){return(_DepthToSpace=Module[\"_DepthToSpace\"]=Module[\"asm\"][\"V\"]).apply(null,arguments)};var _DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=function(){return(_DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=Module[\"asm\"][\"W\"]).apply(null,arguments)};var _Equal=Module[\"_Equal\"]=function(){return(_Equal=Module[\"_Equal\"]=Module[\"asm\"][\"X\"]).apply(null,arguments)};var _Exp=Module[\"_Exp\"]=function(){return(_Exp=Module[\"_Exp\"]=Module[\"asm\"][\"Y\"]).apply(null,arguments)};var _FlipLeftRight=Module[\"_FlipLeftRight\"]=function(){return(_FlipLeftRight=Module[\"_FlipLeftRight\"]=Module[\"asm\"][\"Z\"]).apply(null,arguments)};var _Floor=Module[\"_Floor\"]=function(){return(_Floor=Module[\"_Floor\"]=Module[\"asm\"][\"_\"]).apply(null,arguments)};var _FloorDiv=Module[\"_FloorDiv\"]=function(){return(_FloorDiv=Module[\"_FloorDiv\"]=Module[\"asm\"][\"$\"]).apply(null,arguments)};var _FusedBatchNorm=Module[\"_FusedBatchNorm\"]=function(){return(_FusedBatchNorm=Module[\"_FusedBatchNorm\"]=Module[\"asm\"][\"aa\"]).apply(null,arguments)};var _FusedConv2D=Module[\"_FusedConv2D\"]=function(){return(_FusedConv2D=Module[\"_FusedConv2D\"]=Module[\"asm\"][\"ba\"]).apply(null,arguments)};var _FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=function(){return(_FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=Module[\"asm\"][\"ca\"]).apply(null,arguments)};var _Gather=Module[\"_Gather\"]=function(){return(_Gather=Module[\"_Gather\"]=Module[\"asm\"][\"da\"]).apply(null,arguments)};var _GatherNd=Module[\"_GatherNd\"]=function(){return(_GatherNd=Module[\"_GatherNd\"]=Module[\"asm\"][\"ea\"]).apply(null,arguments)};var _Greater=Module[\"_Greater\"]=function(){return(_Greater=Module[\"_Greater\"]=Module[\"asm\"][\"fa\"]).apply(null,arguments)};var _GreaterEqual=Module[\"_GreaterEqual\"]=function(){return(_GreaterEqual=Module[\"_GreaterEqual\"]=Module[\"asm\"][\"ga\"]).apply(null,arguments)};var _LeakyRelu=Module[\"_LeakyRelu\"]=function(){return(_LeakyRelu=Module[\"_LeakyRelu\"]=Module[\"asm\"][\"ha\"]).apply(null,arguments)};var _Less=Module[\"_Less\"]=function(){return(_Less=Module[\"_Less\"]=Module[\"asm\"][\"ia\"]).apply(null,arguments)};var _LessEqual=Module[\"_LessEqual\"]=function(){return(_LessEqual=Module[\"_LessEqual\"]=Module[\"asm\"][\"ja\"]).apply(null,arguments)};var _Log=Module[\"_Log\"]=function(){return(_Log=Module[\"_Log\"]=Module[\"asm\"][\"ka\"]).apply(null,arguments)};var _LogicalAnd=Module[\"_LogicalAnd\"]=function(){return(_LogicalAnd=Module[\"_LogicalAnd\"]=Module[\"asm\"][\"la\"]).apply(null,arguments)};var _Max=Module[\"_Max\"]=function(){return(_Max=Module[\"_Max\"]=Module[\"asm\"][\"ma\"]).apply(null,arguments)};var _MaxPool=Module[\"_MaxPool\"]=function(){return(_MaxPool=Module[\"_MaxPool\"]=Module[\"asm\"][\"na\"]).apply(null,arguments)};var _Maximum=Module[\"_Maximum\"]=function(){return(_Maximum=Module[\"_Maximum\"]=Module[\"asm\"][\"oa\"]).apply(null,arguments)};var _Mean=Module[\"_Mean\"]=function(){return(_Mean=Module[\"_Mean\"]=Module[\"asm\"][\"pa\"]).apply(null,arguments)};var _Min=Module[\"_Min\"]=function(){return(_Min=Module[\"_Min\"]=Module[\"asm\"][\"qa\"]).apply(null,arguments)};var _Minimum=Module[\"_Minimum\"]=function(){return(_Minimum=Module[\"_Minimum\"]=Module[\"asm\"][\"ra\"]).apply(null,arguments)};var _MirrorPad=Module[\"_MirrorPad\"]=function(){return(_MirrorPad=Module[\"_MirrorPad\"]=Module[\"asm\"][\"sa\"]).apply(null,arguments)};var _Multiply=Module[\"_Multiply\"]=function(){return(_Multiply=Module[\"_Multiply\"]=Module[\"asm\"][\"ta\"]).apply(null,arguments)};var _Neg=Module[\"_Neg\"]=function(){return(_Neg=Module[\"_Neg\"]=Module[\"asm\"][\"ua\"]).apply(null,arguments)};var _NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=function(){return(_NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=Module[\"asm\"][\"va\"]).apply(null,arguments)};var _NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=function(){return(_NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=Module[\"asm\"][\"wa\"]).apply(null,arguments)};var _NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=function(){return(_NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=Module[\"asm\"][\"xa\"]).apply(null,arguments)};var _NotEqual=Module[\"_NotEqual\"]=function(){return(_NotEqual=Module[\"_NotEqual\"]=Module[\"asm\"][\"ya\"]).apply(null,arguments)};var _OneHot=Module[\"_OneHot\"]=function(){return(_OneHot=Module[\"_OneHot\"]=Module[\"asm\"][\"za\"]).apply(null,arguments)};var _PadV2=Module[\"_PadV2\"]=function(){return(_PadV2=Module[\"_PadV2\"]=Module[\"asm\"][\"Aa\"]).apply(null,arguments)};var _Pow=Module[\"_Pow\"]=function(){return(_Pow=Module[\"_Pow\"]=Module[\"asm\"][\"Ba\"]).apply(null,arguments)};var _Prelu=Module[\"_Prelu\"]=function(){return(_Prelu=Module[\"_Prelu\"]=Module[\"asm\"][\"Ca\"]).apply(null,arguments)};var _Prod=Module[\"_Prod\"]=function(){return(_Prod=Module[\"_Prod\"]=Module[\"asm\"][\"Da\"]).apply(null,arguments)};var _RealDiv=Module[\"_RealDiv\"]=function(){return(_RealDiv=Module[\"_RealDiv\"]=Module[\"asm\"][\"Ea\"]).apply(null,arguments)};var _Relu=Module[\"_Relu\"]=function(){return(_Relu=Module[\"_Relu\"]=Module[\"asm\"][\"Fa\"]).apply(null,arguments)};var _Relu6=Module[\"_Relu6\"]=function(){return(_Relu6=Module[\"_Relu6\"]=Module[\"asm\"][\"Ga\"]).apply(null,arguments)};var _ResizeBilinear=Module[\"_ResizeBilinear\"]=function(){return(_ResizeBilinear=Module[\"_ResizeBilinear\"]=Module[\"asm\"][\"Ha\"]).apply(null,arguments)};var _Reverse=Module[\"_Reverse\"]=function(){return(_Reverse=Module[\"_Reverse\"]=Module[\"asm\"][\"Ia\"]).apply(null,arguments)};var _RotateWithOffset=Module[\"_RotateWithOffset\"]=function(){return(_RotateWithOffset=Module[\"_RotateWithOffset\"]=Module[\"asm\"][\"Ja\"]).apply(null,arguments)};var _Round=Module[\"_Round\"]=function(){return(_Round=Module[\"_Round\"]=Module[\"asm\"][\"Ka\"]).apply(null,arguments)};var _Rsqrt=Module[\"_Rsqrt\"]=function(){return(_Rsqrt=Module[\"_Rsqrt\"]=Module[\"asm\"][\"La\"]).apply(null,arguments)};var _ScatterNd=Module[\"_ScatterNd\"]=function(){return(_ScatterNd=Module[\"_ScatterNd\"]=Module[\"asm\"][\"Ma\"]).apply(null,arguments)};var _SelectV2=Module[\"_SelectV2\"]=function(){return(_SelectV2=Module[\"_SelectV2\"]=Module[\"asm\"][\"Na\"]).apply(null,arguments)};var _Sigmoid=Module[\"_Sigmoid\"]=function(){return(_Sigmoid=Module[\"_Sigmoid\"]=Module[\"asm\"][\"Oa\"]).apply(null,arguments)};var _Sin=Module[\"_Sin\"]=function(){return(_Sin=Module[\"_Sin\"]=Module[\"asm\"][\"Pa\"]).apply(null,arguments)};var _Softmax=Module[\"_Softmax\"]=function(){return(_Softmax=Module[\"_Softmax\"]=Module[\"asm\"][\"Qa\"]).apply(null,arguments)};var _Sqrt=Module[\"_Sqrt\"]=function(){return(_Sqrt=Module[\"_Sqrt\"]=Module[\"asm\"][\"Ra\"]).apply(null,arguments)};var _Square=Module[\"_Square\"]=function(){return(_Square=Module[\"_Square\"]=Module[\"asm\"][\"Sa\"]).apply(null,arguments)};var _SquaredDifference=Module[\"_SquaredDifference\"]=function(){return(_SquaredDifference=Module[\"_SquaredDifference\"]=Module[\"asm\"][\"Ta\"]).apply(null,arguments)};var _Step=Module[\"_Step\"]=function(){return(_Step=Module[\"_Step\"]=Module[\"asm\"][\"Ua\"]).apply(null,arguments)};var _StridedSlice=Module[\"_StridedSlice\"]=function(){return(_StridedSlice=Module[\"_StridedSlice\"]=Module[\"asm\"][\"Va\"]).apply(null,arguments)};var _Sub=Module[\"_Sub\"]=function(){return(_Sub=Module[\"_Sub\"]=Module[\"asm\"][\"Wa\"]).apply(null,arguments)};var _Sum=Module[\"_Sum\"]=function(){return(_Sum=Module[\"_Sum\"]=Module[\"asm\"][\"Xa\"]).apply(null,arguments)};var _Tan=Module[\"_Tan\"]=function(){return(_Tan=Module[\"_Tan\"]=Module[\"asm\"][\"Ya\"]).apply(null,arguments)};var _Tanh=Module[\"_Tanh\"]=function(){return(_Tanh=Module[\"_Tanh\"]=Module[\"asm\"][\"Za\"]).apply(null,arguments)};var _Tile=Module[\"_Tile\"]=function(){return(_Tile=Module[\"_Tile\"]=Module[\"asm\"][\"_a\"]).apply(null,arguments)};var _TopK=Module[\"_TopK\"]=function(){return(_TopK=Module[\"_TopK\"]=Module[\"asm\"][\"$a\"]).apply(null,arguments)};var _Transpose=Module[\"_Transpose\"]=function(){return(_Transpose=Module[\"_Transpose\"]=Module[\"asm\"][\"ab\"]).apply(null,arguments)};var __FusedMatMul=Module[\"__FusedMatMul\"]=function(){return(__FusedMatMul=Module[\"__FusedMatMul\"]=Module[\"asm\"][\"bb\"]).apply(null,arguments)};var _malloc=Module[\"_malloc\"]=function(){return(_malloc=Module[\"_malloc\"]=Module[\"asm\"][\"cb\"]).apply(null,arguments)};var _free=Module[\"_free\"]=function(){return(_free=Module[\"_free\"]=Module[\"asm\"][\"db\"]).apply(null,arguments)};var ___errno_location=Module[\"___errno_location\"]=function(){return(___errno_location=Module[\"___errno_location\"]=Module[\"asm\"][\"eb\"]).apply(null,arguments)};var _emscripten_get_global_libc=Module[\"_emscripten_get_global_libc\"]=function(){return(_emscripten_get_global_libc=Module[\"_emscripten_get_global_libc\"]=Module[\"asm\"][\"fb\"]).apply(null,arguments)};var _pthread_self=Module[\"_pthread_self\"]=function(){return(_pthread_self=Module[\"_pthread_self\"]=Module[\"asm\"][\"gb\"]).apply(null,arguments)};var ___pthread_tsd_run_dtors=Module[\"___pthread_tsd_run_dtors\"]=function(){return(___pthread_tsd_run_dtors=Module[\"___pthread_tsd_run_dtors\"]=Module[\"asm\"][\"hb\"]).apply(null,arguments)};var _emscripten_main_thread_process_queued_calls=Module[\"_emscripten_main_thread_process_queued_calls\"]=function(){return(_emscripten_main_thread_process_queued_calls=Module[\"_emscripten_main_thread_process_queued_calls\"]=Module[\"asm\"][\"ib\"]).apply(null,arguments)};var _emscripten_current_thread_process_queued_calls=Module[\"_emscripten_current_thread_process_queued_calls\"]=function(){return(_emscripten_current_thread_process_queued_calls=Module[\"_emscripten_current_thread_process_queued_calls\"]=Module[\"asm\"][\"jb\"]).apply(null,arguments)};var _emscripten_register_main_browser_thread_id=Module[\"_emscripten_register_main_browser_thread_id\"]=function(){return(_emscripten_register_main_browser_thread_id=Module[\"_emscripten_register_main_browser_thread_id\"]=Module[\"asm\"][\"kb\"]).apply(null,arguments)};var __emscripten_do_dispatch_to_thread=Module[\"__emscripten_do_dispatch_to_thread\"]=function(){return(__emscripten_do_dispatch_to_thread=Module[\"__emscripten_do_dispatch_to_thread\"]=Module[\"asm\"][\"lb\"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread_4=Module[\"_emscripten_sync_run_in_main_thread_4\"]=function(){return(_emscripten_sync_run_in_main_thread_4=Module[\"_emscripten_sync_run_in_main_thread_4\"]=Module[\"asm\"][\"mb\"]).apply(null,arguments)};var _emscripten_run_in_main_runtime_thread_js=Module[\"_emscripten_run_in_main_runtime_thread_js\"]=function(){return(_emscripten_run_in_main_runtime_thread_js=Module[\"_emscripten_run_in_main_runtime_thread_js\"]=Module[\"asm\"][\"nb\"]).apply(null,arguments)};var __emscripten_call_on_thread=Module[\"__emscripten_call_on_thread\"]=function(){return(__emscripten_call_on_thread=Module[\"__emscripten_call_on_thread\"]=Module[\"asm\"][\"ob\"]).apply(null,arguments)};var _emscripten_tls_init=Module[\"_emscripten_tls_init\"]=function(){return(_emscripten_tls_init=Module[\"_emscripten_tls_init\"]=Module[\"asm\"][\"pb\"]).apply(null,arguments)};var __emscripten_thread_init=Module[\"__emscripten_thread_init\"]=function(){return(__emscripten_thread_init=Module[\"__emscripten_thread_init\"]=Module[\"asm\"][\"qb\"]).apply(null,arguments)};var stackSave=Module[\"stackSave\"]=function(){return(stackSave=Module[\"stackSave\"]=Module[\"asm\"][\"rb\"]).apply(null,arguments)};var stackRestore=Module[\"stackRestore\"]=function(){return(stackRestore=Module[\"stackRestore\"]=Module[\"asm\"][\"sb\"]).apply(null,arguments)};var stackAlloc=Module[\"stackAlloc\"]=function(){return(stackAlloc=Module[\"stackAlloc\"]=Module[\"asm\"][\"tb\"]).apply(null,arguments)};var _emscripten_stack_set_limits=Module[\"_emscripten_stack_set_limits\"]=function(){return(_emscripten_stack_set_limits=Module[\"_emscripten_stack_set_limits\"]=Module[\"asm\"][\"ub\"]).apply(null,arguments)};var _memalign=Module[\"_memalign\"]=function(){return(_memalign=Module[\"_memalign\"]=Module[\"asm\"][\"vb\"]).apply(null,arguments)};var __emscripten_allow_main_runtime_queued_calls=Module[\"__emscripten_allow_main_runtime_queued_calls\"]=9808;var __emscripten_main_thread_futex=Module[\"__emscripten_main_thread_futex\"]=11432;Module[\"cwrap\"]=cwrap;Module[\"PThread\"]=PThread;Module[\"PThread\"]=PThread;Module[\"wasmMemory\"]=wasmMemory;Module[\"ExitStatus\"]=ExitStatus;var calledRun;function ExitStatus(status){this.name=\"ExitStatus\";this.message=\"Program terminated with exit(\"+status+\")\";this.status=status}dependenciesFulfilled=function runCaller(){if(!calledRun)run();if(!calledRun)dependenciesFulfilled=runCaller};function run(args){args=args||arguments_;if(runDependencies>0){return}if(ENVIRONMENT_IS_PTHREAD){readyPromiseResolve(Module);initRuntime();postMessage({\"cmd\":\"loaded\"});return}preRun();if(runDependencies>0){return}function doRun(){if(calledRun)return;calledRun=true;Module[\"calledRun\"]=true;if(ABORT)return;initRuntime();preMain();readyPromiseResolve(Module);if(Module[\"onRuntimeInitialized\"])Module[\"onRuntimeInitialized\"]();postRun()}if(Module[\"setStatus\"]){Module[\"setStatus\"](\"Running...\");setTimeout(function(){setTimeout(function(){Module[\"setStatus\"](\"\")},1);doRun()},1)}else{doRun()}}Module[\"run\"]=run;function exit(status,implicit){if(implicit&&noExitRuntime&&status===0){return}if(!implicit){if(ENVIRONMENT_IS_PTHREAD){postMessage({\"cmd\":\"exitProcess\",\"returnCode\":status});throw new ExitStatus(status)}else{}}if(noExitRuntime){}else{PThread.terminateAllThreads();EXITSTATUS=status;exitRuntime();if(Module[\"onExit\"])Module[\"onExit\"](status);ABORT=true}quit_(status,new ExitStatus(status))}if(Module[\"preInit\"]){if(typeof Module[\"preInit\"]==\"function\")Module[\"preInit\"]=[Module[\"preInit\"]];while(Module[\"preInit\"].length>0){Module[\"preInit\"].pop()()}}if(ENVIRONMENT_IS_PTHREAD){noExitRuntime=false;PThread.initWorker()}run();\n\n\n return WasmBackendModuleThreadedSimd.ready\n}\n);\n})();\nif (typeof exports === 'object' && typeof module === 'object')\n module.exports = WasmBackendModuleThreadedSimd;\nelse if (typeof define === 'function' && define['amd'])\n define([], function() { return WasmBackendModuleThreadedSimd; });\nelse if (typeof exports === 'object')\n exports[\"WasmBackendModuleThreadedSimd\"] = WasmBackendModuleThreadedSimd;\n", "\nvar WasmBackendModule = (function() {\n var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined;\n if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename;\n return (\nfunction(WasmBackendModule) {\n WasmBackendModule = WasmBackendModule || {};\n\nvar Module=typeof WasmBackendModule!==\"undefined\"?WasmBackendModule:{};var readyPromiseResolve,readyPromiseReject;Module[\"ready\"]=new Promise(function(resolve,reject){readyPromiseResolve=resolve;readyPromiseReject=reject});var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var arguments_=[];var thisProgram=\"./this.program\";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window===\"object\";ENVIRONMENT_IS_WORKER=typeof importScripts===\"function\";ENVIRONMENT_IS_NODE=typeof process===\"object\"&&typeof process.versions===\"object\"&&typeof process.versions.node===\"string\";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var scriptDirectory=\"\";function locateFile(path){if(Module[\"locateFile\"]){return Module[\"locateFile\"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=require(\"path\").dirname(scriptDirectory)+\"/\"}else{scriptDirectory=__dirname+\"/\"}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process[\"argv\"].length>1){thisProgram=process[\"argv\"][1].replace(/\\\\/g,\"/\")}arguments_=process[\"argv\"].slice(2);process[\"on\"](\"uncaughtException\",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process[\"on\"](\"unhandledRejection\",abort);quit_=function(status){process[\"exit\"](status)};Module[\"inspect\"]=function(){return\"[Emscripten Module object]\"}}else if(ENVIRONMENT_IS_SHELL){if(typeof read!=\"undefined\"){read_=function shell_read(f){return read(f)}}readBinary=function readBinary(f){var data;if(typeof readbuffer===\"function\"){return new Uint8Array(readbuffer(f))}data=read(f,\"binary\");assert(typeof data===\"object\");return data};if(typeof scriptArgs!=\"undefined\"){arguments_=scriptArgs}else if(typeof arguments!=\"undefined\"){arguments_=arguments}if(typeof quit===\"function\"){quit_=function(status){quit(status)}}if(typeof print!==\"undefined\"){if(typeof console===\"undefined\")console={};console.log=print;console.warn=console.error=typeof printErr!==\"undefined\"?printErr:print}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(typeof document!==\"undefined\"&&document.currentScript){scriptDirectory=document.currentScript.src}if(_scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf(\"blob:\")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf(\"/\")+1)}else{scriptDirectory=\"\"}{read_=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.responseType=\"arraybuffer\";xhr.send(null);return new Uint8Array(xhr.response)}}readAsync=function(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,true);xhr.responseType=\"arraybuffer\";xhr.onload=function(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=function(title){document.title=title}}else{}var out=Module[\"print\"]||console.log.bind(console);var err=Module[\"printErr\"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=null;if(Module[\"arguments\"])arguments_=Module[\"arguments\"];if(Module[\"thisProgram\"])thisProgram=Module[\"thisProgram\"];if(Module[\"quit\"])quit_=Module[\"quit\"];var wasmBinary;if(Module[\"wasmBinary\"])wasmBinary=Module[\"wasmBinary\"];var noExitRuntime=Module[\"noExitRuntime\"]||true;if(typeof WebAssembly!==\"object\"){abort(\"no native wasm support detected\")}var wasmMemory;var ABORT=false;var EXITSTATUS;function assert(condition,text){if(!condition){abort(\"Assertion failed: \"+text)}}function getCFunc(ident){var func=Module[\"_\"+ident];assert(func,\"Cannot call unknown function \"+ident+\", make sure it is exported\");return func}function ccall(ident,returnType,argTypes,args,opts){var toC={\"string\":function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){var len=(str.length<<2)+1;ret=stackAlloc(len);stringToUTF8(str,ret,len)}return ret},\"array\":function(arr){var ret=stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}};function convertReturnValue(ret){if(returnType===\"string\")return UTF8ToString(ret);if(returnType===\"boolean\")return Boolean(ret);return ret}var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i=endIdx))++endPtr;if(endPtr-idx>16&&heap.subarray&&UTF8Decoder){return UTF8Decoder.decode(heap.subarray(idx,endPtr))}else{var str=\"\";while(idx>10,56320|ch&1023)}}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(HEAPU8,ptr,maxBytesToRead):\"\"}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,HEAPU8,outPtr,maxBytesToWrite)}function writeArrayToMemory(array,buffer){HEAP8.set(array,buffer)}function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var buffer,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer=buf;Module[\"HEAP8\"]=HEAP8=new Int8Array(buf);Module[\"HEAP16\"]=HEAP16=new Int16Array(buf);Module[\"HEAP32\"]=HEAP32=new Int32Array(buf);Module[\"HEAPU8\"]=HEAPU8=new Uint8Array(buf);Module[\"HEAPU16\"]=HEAPU16=new Uint16Array(buf);Module[\"HEAPU32\"]=HEAPU32=new Uint32Array(buf);Module[\"HEAPF32\"]=HEAPF32=new Float32Array(buf);Module[\"HEAPF64\"]=HEAPF64=new Float64Array(buf)}var INITIAL_MEMORY=Module[\"INITIAL_MEMORY\"]||16777216;var wasmTable;var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;__ATINIT__.push({func:function(){___wasm_call_ctors()}});function preRun(){if(Module[\"preRun\"]){if(typeof Module[\"preRun\"]==\"function\")Module[\"preRun\"]=[Module[\"preRun\"]];while(Module[\"preRun\"].length){addOnPreRun(Module[\"preRun\"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;callRuntimeCallbacks(__ATINIT__)}function preMain(){callRuntimeCallbacks(__ATMAIN__)}function postRun(){if(Module[\"postRun\"]){if(typeof Module[\"postRun\"]==\"function\")Module[\"postRun\"]=[Module[\"postRun\"]];while(Module[\"postRun\"].length){addOnPostRun(Module[\"postRun\"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){runDependencies++;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module[\"preloadedImages\"]={};Module[\"preloadedAudios\"]={};function abort(what){if(Module[\"onAbort\"]){Module[\"onAbort\"](what)}what+=\"\";err(what);ABORT=true;EXITSTATUS=1;what=\"abort(\"+what+\"). Build with -s ASSERTIONS=1 for more info.\";var e=new WebAssembly.RuntimeError(what);readyPromiseReject(e);throw e}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix=\"data:application/octet-stream;base64,\";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix=\"file://\";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile=\"tfjs-backend-wasm.wasm\";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(file){try{if(file==wasmBinaryFile&&wasmBinary){return new Uint8Array(wasmBinary)}if(readBinary){return readBinary(file)}else{throw\"both async and sync fetching of the wasm failed\"}}catch(err){abort(err)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)){if(typeof fetch===\"function\"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){if(!response[\"ok\"]){throw\"failed to load wasm binary file at '\"+wasmBinaryFile+\"'\"}return response[\"arrayBuffer\"]()}).catch(function(){return getBinary(wasmBinaryFile)})}else{if(readAsync){return new Promise(function(resolve,reject){readAsync(wasmBinaryFile,function(response){resolve(new Uint8Array(response))},reject)})}}}return Promise.resolve().then(function(){return getBinary(wasmBinaryFile)})}function createWasm(){var info={\"a\":asmLibraryArg};function receiveInstance(instance,module){var exports=instance.exports;Module[\"asm\"]=exports;wasmMemory=Module[\"asm\"][\"i\"];updateGlobalBufferAndViews(wasmMemory.buffer);wasmTable=Module[\"asm\"][\"o\"];removeRunDependency(\"wasm-instantiate\")}addRunDependency(\"wasm-instantiate\");function receiveInstantiatedSource(output){receiveInstance(output[\"instance\"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err(\"failed to asynchronously prepare wasm: \"+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming===\"function\"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch===\"function\"){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err(\"wasm streaming compile failed: \"+reason);err(\"falling back to ArrayBuffer instantiation\");return instantiateArrayBuffer(receiveInstantiatedSource)})})}else{return instantiateArrayBuffer(receiveInstantiatedSource)}}if(Module[\"instantiateWasm\"]){try{var exports=Module[\"instantiateWasm\"](info,receiveInstance);return exports}catch(e){err(\"Module.instantiateWasm callback failed with error: \"+e);return false}}instantiateAsync().catch(readyPromiseReject);return{}}function callRuntimeCallbacks(callbacks){while(callbacks.length>0){var callback=callbacks.shift();if(typeof callback==\"function\"){callback(Module);continue}var func=callback.func;if(typeof func===\"number\"){if(callback.arg===undefined){wasmTable.get(func)()}else{wasmTable.get(func)(callback.arg)}}else{func(callback.arg===undefined?null:callback.arg)}}}function _abort(){abort()}function _emscripten_memcpy_big(dest,src,num){HEAPU8.copyWithin(dest,src,src+num)}function _emscripten_get_heap_size(){return HEAPU8.length}function emscripten_realloc_buffer(size){try{wasmMemory.grow(size-buffer.byteLength+65535>>>16);updateGlobalBufferAndViews(wasmMemory.buffer);return 1}catch(e){}}function _emscripten_resize_heap(requestedSize){var oldSize=_emscripten_get_heap_size();var maxHeapSize=2147483648;if(requestedSize>maxHeapSize){return false}for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(requestedSize,overGrownHeapSize),65536));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}var SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer=SYSCALLS.buffers[stream];if(curr===0||curr===10){(stream===1?out:err)(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}},varargs:undefined,get:function(){SYSCALLS.varargs+=4;var ret=HEAP32[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){return 0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){}function _fd_write(fd,iov,iovcnt,pnum){var num=0;for(var i=0;i>2];var len=HEAP32[iov+(i*8+4)>>2];for(var j=0;j>2]=num;return 0}function _pthread_create(){return 6}function setErrNo(value){HEAP32[___errno_location()>>2]=value;return value}function _sysconf(name){switch(name){case 30:return 16384;case 85:var maxHeapSize=2147483648;return maxHeapSize/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:{if(typeof navigator===\"object\")return navigator[\"hardwareConcurrency\"]||1;return 1}}setErrNo(28);return-1}var asmLibraryArg={\"a\":_abort,\"d\":_emscripten_memcpy_big,\"e\":_emscripten_resize_heap,\"f\":_fd_close,\"c\":_fd_seek,\"b\":_fd_write,\"g\":_pthread_create,\"h\":_sysconf};var asm=createWasm();var ___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=function(){return(___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=Module[\"asm\"][\"j\"]).apply(null,arguments)};var _init=Module[\"_init\"]=function(){return(_init=Module[\"_init\"]=Module[\"asm\"][\"k\"]).apply(null,arguments)};var _register_tensor=Module[\"_register_tensor\"]=function(){return(_register_tensor=Module[\"_register_tensor\"]=Module[\"asm\"][\"l\"]).apply(null,arguments)};var _dispose_data=Module[\"_dispose_data\"]=function(){return(_dispose_data=Module[\"_dispose_data\"]=Module[\"asm\"][\"m\"]).apply(null,arguments)};var _dispose=Module[\"_dispose\"]=function(){return(_dispose=Module[\"_dispose\"]=Module[\"asm\"][\"n\"]).apply(null,arguments)};var _Abs=Module[\"_Abs\"]=function(){return(_Abs=Module[\"_Abs\"]=Module[\"asm\"][\"p\"]).apply(null,arguments)};var _Add=Module[\"_Add\"]=function(){return(_Add=Module[\"_Add\"]=Module[\"asm\"][\"q\"]).apply(null,arguments)};var _AddN=Module[\"_AddN\"]=function(){return(_AddN=Module[\"_AddN\"]=Module[\"asm\"][\"r\"]).apply(null,arguments)};var _All=Module[\"_All\"]=function(){return(_All=Module[\"_All\"]=Module[\"asm\"][\"s\"]).apply(null,arguments)};var _Any=Module[\"_Any\"]=function(){return(_Any=Module[\"_Any\"]=Module[\"asm\"][\"t\"]).apply(null,arguments)};var _ArgMax=Module[\"_ArgMax\"]=function(){return(_ArgMax=Module[\"_ArgMax\"]=Module[\"asm\"][\"u\"]).apply(null,arguments)};var _AvgPool=Module[\"_AvgPool\"]=function(){return(_AvgPool=Module[\"_AvgPool\"]=Module[\"asm\"][\"v\"]).apply(null,arguments)};var _BatchMatMul=Module[\"_BatchMatMul\"]=function(){return(_BatchMatMul=Module[\"_BatchMatMul\"]=Module[\"asm\"][\"w\"]).apply(null,arguments)};var _Ceil=Module[\"_Ceil\"]=function(){return(_Ceil=Module[\"_Ceil\"]=Module[\"asm\"][\"x\"]).apply(null,arguments)};var _ClipByValue=Module[\"_ClipByValue\"]=function(){return(_ClipByValue=Module[\"_ClipByValue\"]=Module[\"asm\"][\"y\"]).apply(null,arguments)};var _Conv2D=Module[\"_Conv2D\"]=function(){return(_Conv2D=Module[\"_Conv2D\"]=Module[\"asm\"][\"z\"]).apply(null,arguments)};var _Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=function(){return(_Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=Module[\"asm\"][\"A\"]).apply(null,arguments)};var _Cos=Module[\"_Cos\"]=function(){return(_Cos=Module[\"_Cos\"]=Module[\"asm\"][\"B\"]).apply(null,arguments)};var _CropAndResize=Module[\"_CropAndResize\"]=function(){return(_CropAndResize=Module[\"_CropAndResize\"]=Module[\"asm\"][\"C\"]).apply(null,arguments)};var _Cumsum=Module[\"_Cumsum\"]=function(){return(_Cumsum=Module[\"_Cumsum\"]=Module[\"asm\"][\"D\"]).apply(null,arguments)};var _DepthToSpace=Module[\"_DepthToSpace\"]=function(){return(_DepthToSpace=Module[\"_DepthToSpace\"]=Module[\"asm\"][\"E\"]).apply(null,arguments)};var _DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=function(){return(_DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=Module[\"asm\"][\"F\"]).apply(null,arguments)};var _Equal=Module[\"_Equal\"]=function(){return(_Equal=Module[\"_Equal\"]=Module[\"asm\"][\"G\"]).apply(null,arguments)};var _Exp=Module[\"_Exp\"]=function(){return(_Exp=Module[\"_Exp\"]=Module[\"asm\"][\"H\"]).apply(null,arguments)};var _FlipLeftRight=Module[\"_FlipLeftRight\"]=function(){return(_FlipLeftRight=Module[\"_FlipLeftRight\"]=Module[\"asm\"][\"I\"]).apply(null,arguments)};var _Floor=Module[\"_Floor\"]=function(){return(_Floor=Module[\"_Floor\"]=Module[\"asm\"][\"J\"]).apply(null,arguments)};var _FloorDiv=Module[\"_FloorDiv\"]=function(){return(_FloorDiv=Module[\"_FloorDiv\"]=Module[\"asm\"][\"K\"]).apply(null,arguments)};var _FusedBatchNorm=Module[\"_FusedBatchNorm\"]=function(){return(_FusedBatchNorm=Module[\"_FusedBatchNorm\"]=Module[\"asm\"][\"L\"]).apply(null,arguments)};var _FusedConv2D=Module[\"_FusedConv2D\"]=function(){return(_FusedConv2D=Module[\"_FusedConv2D\"]=Module[\"asm\"][\"M\"]).apply(null,arguments)};var _FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=function(){return(_FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=Module[\"asm\"][\"N\"]).apply(null,arguments)};var _Gather=Module[\"_Gather\"]=function(){return(_Gather=Module[\"_Gather\"]=Module[\"asm\"][\"O\"]).apply(null,arguments)};var _GatherNd=Module[\"_GatherNd\"]=function(){return(_GatherNd=Module[\"_GatherNd\"]=Module[\"asm\"][\"P\"]).apply(null,arguments)};var _Greater=Module[\"_Greater\"]=function(){return(_Greater=Module[\"_Greater\"]=Module[\"asm\"][\"Q\"]).apply(null,arguments)};var _GreaterEqual=Module[\"_GreaterEqual\"]=function(){return(_GreaterEqual=Module[\"_GreaterEqual\"]=Module[\"asm\"][\"R\"]).apply(null,arguments)};var _LeakyRelu=Module[\"_LeakyRelu\"]=function(){return(_LeakyRelu=Module[\"_LeakyRelu\"]=Module[\"asm\"][\"S\"]).apply(null,arguments)};var _Less=Module[\"_Less\"]=function(){return(_Less=Module[\"_Less\"]=Module[\"asm\"][\"T\"]).apply(null,arguments)};var _LessEqual=Module[\"_LessEqual\"]=function(){return(_LessEqual=Module[\"_LessEqual\"]=Module[\"asm\"][\"U\"]).apply(null,arguments)};var _Log=Module[\"_Log\"]=function(){return(_Log=Module[\"_Log\"]=Module[\"asm\"][\"V\"]).apply(null,arguments)};var _LogicalAnd=Module[\"_LogicalAnd\"]=function(){return(_LogicalAnd=Module[\"_LogicalAnd\"]=Module[\"asm\"][\"W\"]).apply(null,arguments)};var _Max=Module[\"_Max\"]=function(){return(_Max=Module[\"_Max\"]=Module[\"asm\"][\"X\"]).apply(null,arguments)};var _MaxPool=Module[\"_MaxPool\"]=function(){return(_MaxPool=Module[\"_MaxPool\"]=Module[\"asm\"][\"Y\"]).apply(null,arguments)};var _Maximum=Module[\"_Maximum\"]=function(){return(_Maximum=Module[\"_Maximum\"]=Module[\"asm\"][\"Z\"]).apply(null,arguments)};var _Mean=Module[\"_Mean\"]=function(){return(_Mean=Module[\"_Mean\"]=Module[\"asm\"][\"_\"]).apply(null,arguments)};var _Min=Module[\"_Min\"]=function(){return(_Min=Module[\"_Min\"]=Module[\"asm\"][\"$\"]).apply(null,arguments)};var _Minimum=Module[\"_Minimum\"]=function(){return(_Minimum=Module[\"_Minimum\"]=Module[\"asm\"][\"aa\"]).apply(null,arguments)};var _MirrorPad=Module[\"_MirrorPad\"]=function(){return(_MirrorPad=Module[\"_MirrorPad\"]=Module[\"asm\"][\"ba\"]).apply(null,arguments)};var _Multiply=Module[\"_Multiply\"]=function(){return(_Multiply=Module[\"_Multiply\"]=Module[\"asm\"][\"ca\"]).apply(null,arguments)};var _Neg=Module[\"_Neg\"]=function(){return(_Neg=Module[\"_Neg\"]=Module[\"asm\"][\"da\"]).apply(null,arguments)};var _NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=function(){return(_NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=Module[\"asm\"][\"ea\"]).apply(null,arguments)};var _NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=function(){return(_NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=Module[\"asm\"][\"fa\"]).apply(null,arguments)};var _NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=function(){return(_NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=Module[\"asm\"][\"ga\"]).apply(null,arguments)};var _NotEqual=Module[\"_NotEqual\"]=function(){return(_NotEqual=Module[\"_NotEqual\"]=Module[\"asm\"][\"ha\"]).apply(null,arguments)};var _OneHot=Module[\"_OneHot\"]=function(){return(_OneHot=Module[\"_OneHot\"]=Module[\"asm\"][\"ia\"]).apply(null,arguments)};var _PadV2=Module[\"_PadV2\"]=function(){return(_PadV2=Module[\"_PadV2\"]=Module[\"asm\"][\"ja\"]).apply(null,arguments)};var _Pow=Module[\"_Pow\"]=function(){return(_Pow=Module[\"_Pow\"]=Module[\"asm\"][\"ka\"]).apply(null,arguments)};var _Prelu=Module[\"_Prelu\"]=function(){return(_Prelu=Module[\"_Prelu\"]=Module[\"asm\"][\"la\"]).apply(null,arguments)};var _Prod=Module[\"_Prod\"]=function(){return(_Prod=Module[\"_Prod\"]=Module[\"asm\"][\"ma\"]).apply(null,arguments)};var _RealDiv=Module[\"_RealDiv\"]=function(){return(_RealDiv=Module[\"_RealDiv\"]=Module[\"asm\"][\"na\"]).apply(null,arguments)};var _Relu=Module[\"_Relu\"]=function(){return(_Relu=Module[\"_Relu\"]=Module[\"asm\"][\"oa\"]).apply(null,arguments)};var _Relu6=Module[\"_Relu6\"]=function(){return(_Relu6=Module[\"_Relu6\"]=Module[\"asm\"][\"pa\"]).apply(null,arguments)};var _ResizeBilinear=Module[\"_ResizeBilinear\"]=function(){return(_ResizeBilinear=Module[\"_ResizeBilinear\"]=Module[\"asm\"][\"qa\"]).apply(null,arguments)};var _Reverse=Module[\"_Reverse\"]=function(){return(_Reverse=Module[\"_Reverse\"]=Module[\"asm\"][\"ra\"]).apply(null,arguments)};var _RotateWithOffset=Module[\"_RotateWithOffset\"]=function(){return(_RotateWithOffset=Module[\"_RotateWithOffset\"]=Module[\"asm\"][\"sa\"]).apply(null,arguments)};var _Round=Module[\"_Round\"]=function(){return(_Round=Module[\"_Round\"]=Module[\"asm\"][\"ta\"]).apply(null,arguments)};var _Rsqrt=Module[\"_Rsqrt\"]=function(){return(_Rsqrt=Module[\"_Rsqrt\"]=Module[\"asm\"][\"ua\"]).apply(null,arguments)};var _ScatterNd=Module[\"_ScatterNd\"]=function(){return(_ScatterNd=Module[\"_ScatterNd\"]=Module[\"asm\"][\"va\"]).apply(null,arguments)};var _SelectV2=Module[\"_SelectV2\"]=function(){return(_SelectV2=Module[\"_SelectV2\"]=Module[\"asm\"][\"wa\"]).apply(null,arguments)};var _Sigmoid=Module[\"_Sigmoid\"]=function(){return(_Sigmoid=Module[\"_Sigmoid\"]=Module[\"asm\"][\"xa\"]).apply(null,arguments)};var _Sin=Module[\"_Sin\"]=function(){return(_Sin=Module[\"_Sin\"]=Module[\"asm\"][\"ya\"]).apply(null,arguments)};var _Softmax=Module[\"_Softmax\"]=function(){return(_Softmax=Module[\"_Softmax\"]=Module[\"asm\"][\"za\"]).apply(null,arguments)};var _Sqrt=Module[\"_Sqrt\"]=function(){return(_Sqrt=Module[\"_Sqrt\"]=Module[\"asm\"][\"Aa\"]).apply(null,arguments)};var _Square=Module[\"_Square\"]=function(){return(_Square=Module[\"_Square\"]=Module[\"asm\"][\"Ba\"]).apply(null,arguments)};var _SquaredDifference=Module[\"_SquaredDifference\"]=function(){return(_SquaredDifference=Module[\"_SquaredDifference\"]=Module[\"asm\"][\"Ca\"]).apply(null,arguments)};var _Step=Module[\"_Step\"]=function(){return(_Step=Module[\"_Step\"]=Module[\"asm\"][\"Da\"]).apply(null,arguments)};var _StridedSlice=Module[\"_StridedSlice\"]=function(){return(_StridedSlice=Module[\"_StridedSlice\"]=Module[\"asm\"][\"Ea\"]).apply(null,arguments)};var _Sub=Module[\"_Sub\"]=function(){return(_Sub=Module[\"_Sub\"]=Module[\"asm\"][\"Fa\"]).apply(null,arguments)};var _Sum=Module[\"_Sum\"]=function(){return(_Sum=Module[\"_Sum\"]=Module[\"asm\"][\"Ga\"]).apply(null,arguments)};var _Tan=Module[\"_Tan\"]=function(){return(_Tan=Module[\"_Tan\"]=Module[\"asm\"][\"Ha\"]).apply(null,arguments)};var _Tanh=Module[\"_Tanh\"]=function(){return(_Tanh=Module[\"_Tanh\"]=Module[\"asm\"][\"Ia\"]).apply(null,arguments)};var _Tile=Module[\"_Tile\"]=function(){return(_Tile=Module[\"_Tile\"]=Module[\"asm\"][\"Ja\"]).apply(null,arguments)};var _TopK=Module[\"_TopK\"]=function(){return(_TopK=Module[\"_TopK\"]=Module[\"asm\"][\"Ka\"]).apply(null,arguments)};var _Transpose=Module[\"_Transpose\"]=function(){return(_Transpose=Module[\"_Transpose\"]=Module[\"asm\"][\"La\"]).apply(null,arguments)};var __FusedMatMul=Module[\"__FusedMatMul\"]=function(){return(__FusedMatMul=Module[\"__FusedMatMul\"]=Module[\"asm\"][\"Ma\"]).apply(null,arguments)};var _malloc=Module[\"_malloc\"]=function(){return(_malloc=Module[\"_malloc\"]=Module[\"asm\"][\"Na\"]).apply(null,arguments)};var _free=Module[\"_free\"]=function(){return(_free=Module[\"_free\"]=Module[\"asm\"][\"Oa\"]).apply(null,arguments)};var ___errno_location=Module[\"___errno_location\"]=function(){return(___errno_location=Module[\"___errno_location\"]=Module[\"asm\"][\"Pa\"]).apply(null,arguments)};var stackSave=Module[\"stackSave\"]=function(){return(stackSave=Module[\"stackSave\"]=Module[\"asm\"][\"Qa\"]).apply(null,arguments)};var stackRestore=Module[\"stackRestore\"]=function(){return(stackRestore=Module[\"stackRestore\"]=Module[\"asm\"][\"Ra\"]).apply(null,arguments)};var stackAlloc=Module[\"stackAlloc\"]=function(){return(stackAlloc=Module[\"stackAlloc\"]=Module[\"asm\"][\"Sa\"]).apply(null,arguments)};Module[\"cwrap\"]=cwrap;var calledRun;function ExitStatus(status){this.name=\"ExitStatus\";this.message=\"Program terminated with exit(\"+status+\")\";this.status=status}dependenciesFulfilled=function runCaller(){if(!calledRun)run();if(!calledRun)dependenciesFulfilled=runCaller};function run(args){args=args||arguments_;if(runDependencies>0){return}preRun();if(runDependencies>0){return}function doRun(){if(calledRun)return;calledRun=true;Module[\"calledRun\"]=true;if(ABORT)return;initRuntime();preMain();readyPromiseResolve(Module);if(Module[\"onRuntimeInitialized\"])Module[\"onRuntimeInitialized\"]();postRun()}if(Module[\"setStatus\"]){Module[\"setStatus\"](\"Running...\");setTimeout(function(){setTimeout(function(){Module[\"setStatus\"](\"\")},1);doRun()},1)}else{doRun()}}Module[\"run\"]=run;if(Module[\"preInit\"]){if(typeof Module[\"preInit\"]==\"function\")Module[\"preInit\"]=[Module[\"preInit\"]];while(Module[\"preInit\"].length>0){Module[\"preInit\"].pop()()}}run();\n\n\n return WasmBackendModule.ready\n}\n);\n})();\nif (typeof exports === 'object' && typeof module === 'object')\n module.exports = WasmBackendModule;\nelse if (typeof define === 'function' && define['amd'])\n define([], function() { return WasmBackendModule; });\nelse if (typeof exports === 'object')\n exports[\"WasmBackendModule\"] = WasmBackendModule;\n", "// A port of an algorithm by Johannes Baag\u00F8e , 2010\n// http://baagoe.com/en/RandomMusings/javascript/\n// https://github.com/nquinlan/better-random-numbers-for-javascript-mirror\n// Original work is under MIT license -\n\n// Copyright (C) 2010 by Johannes Baag\u00F8e \n//\n// Permission is hereby granted, free of charge, to any person obtaining a copy\n// of this software and associated documentation files (the \"Software\"), to deal\n// in the Software without restriction, including without limitation the rights\n// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n// copies of the Software, and to permit persons to whom the Software is\n// furnished to do so, subject to the following conditions:\n//\n// The above copyright notice and this permission notice shall be included in\n// all copies or substantial portions of the Software.\n//\n// THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\n// THE SOFTWARE.\n\n\n\n(function(global, module, define) {\n\nfunction Alea(seed) {\n var me = this, mash = Mash();\n\n me.next = function() {\n var t = 2091639 * me.s0 + me.c * 2.3283064365386963e-10; // 2^-32\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t - (me.c = t | 0);\n };\n\n // Apply the seeding algorithm from Baagoe.\n me.c = 1;\n me.s0 = mash(' ');\n me.s1 = mash(' ');\n me.s2 = mash(' ');\n me.s0 -= mash(seed);\n if (me.s0 < 0) { me.s0 += 1; }\n me.s1 -= mash(seed);\n if (me.s1 < 0) { me.s1 += 1; }\n me.s2 -= mash(seed);\n if (me.s2 < 0) { me.s2 += 1; }\n mash = null;\n}\n\nfunction copy(f, t) {\n t.c = f.c;\n t.s0 = f.s0;\n t.s1 = f.s1;\n t.s2 = f.s2;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new Alea(seed),\n state = opts && opts.state,\n prng = xg.next;\n prng.int32 = function() { return (xg.next() * 0x100000000) | 0; }\n prng.double = function() {\n return prng() + (prng() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53\n };\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nfunction Mash() {\n var n = 0xefc8249d;\n\n var mash = function(data) {\n data = String(data);\n for (var i = 0; i < data.length; i++) {\n n += data.charCodeAt(i);\n var h = 0.02519603282416938 * n;\n n = h >>> 0;\n h -= n;\n h *= n;\n n = h >>> 0;\n h -= n;\n n += h * 0x100000000; // 2^32\n }\n return (n >>> 0) * 2.3283064365386963e-10; // 2^-32\n };\n\n return mash;\n}\n\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.alea = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xor128\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n\n // Set up generator function.\n me.next = function() {\n var t = me.x ^ (me.x << 11);\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= (me.w >>> 19) ^ t ^ (t >>> 8);\n };\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor128 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorwow\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var t = (me.x ^ (me.x >>> 2));\n me.x = me.y; me.y = me.z; me.z = me.w; me.w = me.v;\n return (me.d = (me.d + 362437 | 0)) +\n (me.v = (me.v ^ (me.v << 4)) ^ (t ^ (t << 1))) | 0;\n };\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n t.v = f.v;\n t.d = f.d;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorwow = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorshift7\" algorithm by\n// Fran\u00E7ois Panneton and Pierre L'ecuyer:\n// \"On the Xorgshift Random Number Generators\"\n// http://saluc.engr.uconn.edu/refs/crypto/rng/panneton05onthexorshift.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n // Update xor generator.\n var X = me.x, i = me.i, t, v, w;\n t = X[i]; t ^= (t >>> 7); v = t ^ (t << 24);\n t = X[(i + 1) & 7]; v ^= t ^ (t >>> 10);\n t = X[(i + 3) & 7]; v ^= t ^ (t >>> 3);\n t = X[(i + 4) & 7]; v ^= t ^ (t << 7);\n t = X[(i + 7) & 7]; t = t ^ (t << 13); v ^= t ^ (t << 9);\n X[i] = v;\n me.i = (i + 1) & 7;\n return v;\n };\n\n function init(me, seed) {\n var j, w, X = [];\n\n if (seed === (seed | 0)) {\n // Seed state array using a 32-bit integer.\n w = X[0] = seed;\n } else {\n // Seed state using a string.\n seed = '' + seed;\n for (j = 0; j < seed.length; ++j) {\n X[j & 7] = (X[j & 7] << 15) ^\n (seed.charCodeAt(j) + X[(j + 1) & 7] << 13);\n }\n }\n // Enforce an array length of 8, not all zeroes.\n while (X.length < 8) X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j);\n if (j == 8) w = X[7] = -1; else w = X[j];\n\n me.x = X;\n me.i = 0;\n\n // Discard an initial 256 values.\n for (j = 256; j > 0; --j) {\n me.next();\n }\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.x = f.x.slice();\n t.i = f.i;\n return t;\n}\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorshift7 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n", "// A Javascript implementaion of Richard Brent's Xorgens xor4096 algorithm.\n//\n// This fast non-cryptographic random number generator is designed for\n// use in Monte-Carlo algorithms. It combines a long-period xorshift\n// generator with a Weyl generator, and it passes all common batteries\n// of stasticial tests for randomness while consuming only a few nanoseconds\n// for each prng generated. For background on the generator, see Brent's\n// paper: \"Some long-period random number generators using shifts and xors.\"\n// http://arxiv.org/pdf/1004.3115v1.pdf\n//\n// Usage:\n//\n// var xor4096 = require('xor4096');\n// random = xor4096(1); // Seed with int32 or string.\n// assert.equal(random(), 0.1520436450538547); // (0, 1) range, 53 bits.\n// assert.equal(random.int32(), 1806534897); // signed int32, 32 bits.\n//\n// For nonzero numeric keys, this impelementation provides a sequence\n// identical to that by Brent's xorgens 3 implementaion in C. This\n// implementation also provides for initalizing the generator with\n// string seeds, or for saving and restoring the state of the generator.\n//\n// On Chrome, this prng benchmarks about 2.1 times slower than\n// Javascript's built-in Math.random().\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n var w = me.w,\n X = me.X, i = me.i, t, v;\n // Update Weyl generator.\n me.w = w = (w + 0x61c88647) | 0;\n // Update xor generator.\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n // Update Xor generator array state.\n v = X[i] = v ^ t;\n me.i = i;\n // Result is the combination.\n return (v + (w ^ (w >>> 16))) | 0;\n };\n\n function init(me, seed) {\n var t, v, i, j, w, X = [], limit = 128;\n if (seed === (seed | 0)) {\n // Numeric seeds initialize v, which is used to generates X.\n v = seed;\n seed = null;\n } else {\n // String seeds are mixed into v and X one character at a time.\n seed = seed + '\\0';\n v = 0;\n limit = Math.max(limit, seed.length);\n }\n // Initialize circular array and weyl value.\n for (i = 0, j = -32; j < limit; ++j) {\n // Put the unicode characters into the array, and shuffle them.\n if (seed) v ^= seed.charCodeAt((j + 32) % seed.length);\n // After 32 shuffles, take v as the starting w value.\n if (j === 0) w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = (w + 0x61c88647) | 0; // Weyl.\n t = (X[j & 127] ^= (v + w)); // Combine xor and weyl to init array.\n i = (0 == t) ? i + 1 : 0; // Count zeroes.\n }\n }\n // We have detected all zeroes; make the key nonzero.\n if (i >= 128) {\n X[(seed && seed.length || 0) & 127] = -1;\n }\n // Run the generator 512 times to further mix the state before using it.\n // Factoring this as a function slows the main generator, so it is just\n // unrolled here. The weyl generator is not advanced while warming up.\n i = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n X[i] = v ^ t;\n }\n // Storing state as object members is faster than using closure variables.\n me.w = w;\n me.X = X;\n me.i = i;\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.i = f.i;\n t.w = f.w;\n t.X = f.X.slice();\n return t;\n};\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor4096 = impl;\n}\n\n})(\n this, // window object or global\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n", "// A Javascript implementaion of the \"Tyche-i\" prng algorithm by\n// Samuel Neves and Filipe Araujo.\n// See https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a = me.a;\n b = (b << 25) ^ (b >>> 7) ^ c;\n c = (c - d) | 0;\n d = (d << 24) ^ (d >>> 8) ^ a;\n a = (a - b) | 0;\n me.b = b = (b << 20) ^ (b >>> 12) ^ c;\n me.c = c = (c - d) | 0;\n me.d = (d << 16) ^ (c >>> 16) ^ a;\n return me.a = (a - b) | 0;\n };\n\n /* The following is non-inverted tyche, which has better internal\n * bit diffusion, but which is about 25% slower than tyche-i in JS.\n me.next = function() {\n var a = me.a, b = me.b, c = me.c, d = me.d;\n a = (me.a + me.b | 0) >>> 0;\n d = me.d ^ a; d = d << 16 ^ d >>> 16;\n c = me.c + d | 0;\n b = me.b ^ c; b = b << 12 ^ d >>> 20;\n me.a = a = a + b | 0;\n d = d ^ a; me.d = d = d << 8 ^ d >>> 24;\n me.c = c = c + d | 0;\n b = b ^ c;\n return me.b = (b << 7 ^ b >>> 25);\n }\n */\n\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n\n if (seed === Math.floor(seed)) {\n // Integer seed.\n me.a = (seed / 0x100000000) | 0;\n me.b = seed | 0;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.a = f.a;\n t.b = f.b;\n t.c = f.c;\n t.d = f.d;\n return t;\n};\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.tychei = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "/*\nCopyright 2019 David Bau.\n\nPermission is hereby granted, free of charge, to any person obtaining\na copy of this software and associated documentation files (the\n\"Software\"), to deal in the Software without restriction, including\nwithout limitation the rights to use, copy, modify, merge, publish,\ndistribute, sublicense, and/or sell copies of the Software, and to\npermit persons to whom the Software is furnished to do so, subject to\nthe following conditions:\n\nThe above copyright notice and this permission notice shall be\nincluded in all copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\nEXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\nMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.\nIN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY\nCLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,\nTORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE\nSOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n\n*/\n\n(function (global, pool, math) {\n//\n// The following constants are related to IEEE 754 limits.\n//\n\nvar width = 256, // each RC4 output is 0 <= x < 256\n chunks = 6, // at least six RC4 outputs for each double\n digits = 52, // there are 52 significant digits in a double\n rngname = 'random', // rngname: name for Math.random and Math.seedrandom\n startdenom = math.pow(width, chunks),\n significance = math.pow(2, digits),\n overflow = significance * 2,\n mask = width - 1,\n nodecrypto; // node.js crypto module, initialized at the bottom.\n\n//\n// seedrandom()\n// This is the seedrandom function described above.\n//\nfunction seedrandom(seed, options, callback) {\n var key = [];\n options = (options == true) ? { entropy: true } : (options || {});\n\n // Flatten the seed string or build one from local entropy if needed.\n var shortseed = mixkey(flatten(\n options.entropy ? [seed, tostring(pool)] :\n (seed == null) ? autoseed() : seed, 3), key);\n\n // Use the seed to initialize an ARC4 generator.\n var arc4 = new ARC4(key);\n\n // This function returns a random double in [0, 1) that contains\n // randomness in every bit of the mantissa of the IEEE 754 value.\n var prng = function() {\n var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48\n d = startdenom, // and denominator d = 2 ^ 48.\n x = 0; // and no 'extra last byte'.\n while (n < significance) { // Fill up all significant digits by\n n = (n + x) * width; // shifting numerator and\n d *= width; // denominator and generating a\n x = arc4.g(1); // new least-significant-byte.\n }\n while (n >= overflow) { // To avoid rounding up, before adding\n n /= 2; // last byte, shift everything\n d /= 2; // right using integer math until\n x >>>= 1; // we have exactly the desired bits.\n }\n return (n + x) / d; // Form the number within [0, 1).\n };\n\n prng.int32 = function() { return arc4.g(4) | 0; }\n prng.quick = function() { return arc4.g(4) / 0x100000000; }\n prng.double = prng;\n\n // Mix the randomness into accumulated entropy.\n mixkey(tostring(arc4.S), pool);\n\n // Calling convention: what to return as a function of prng, seed, is_math.\n return (options.pass || callback ||\n function(prng, seed, is_math_call, state) {\n if (state) {\n // Load the arc4 state from the given state if it has an S array.\n if (state.S) { copy(state, arc4); }\n // Only provide the .state method if requested via options.state.\n prng.state = function() { return copy(arc4, {}); }\n }\n\n // If called as a method of Math (Math.seedrandom()), mutate\n // Math.random because that is how seedrandom.js has worked since v1.0.\n if (is_math_call) { math[rngname] = prng; return seed; }\n\n // Otherwise, it is a newer calling convention, so return the\n // prng directly.\n else return prng;\n })(\n prng,\n shortseed,\n 'global' in options ? options.global : (this == math),\n options.state);\n}\n\n//\n// ARC4\n//\n// An ARC4 implementation. The constructor takes a key in the form of\n// an array of at most (width) integers that should be 0 <= x < (width).\n//\n// The g(count) method returns a pseudorandom integer that concatenates\n// the next (count) outputs from ARC4. Its return value is a number x\n// that is in the range 0 <= x < (width ^ count).\n//\nfunction ARC4(key) {\n var t, keylen = key.length,\n me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];\n\n // The empty key [] is treated as [0].\n if (!keylen) { key = [keylen++]; }\n\n // Set up S using the standard key scheduling algorithm.\n while (i < width) {\n s[i] = i++;\n }\n for (i = 0; i < width; i++) {\n s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];\n s[j] = t;\n }\n\n // The \"g\" method returns the next (count) outputs as one number.\n (me.g = function(count) {\n // Using instance members instead of closure state nearly doubles speed.\n var t, r = 0,\n i = me.i, j = me.j, s = me.S;\n while (count--) {\n t = s[i = mask & (i + 1)];\n r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];\n }\n me.i = i; me.j = j;\n return r;\n // For robust unpredictability, the function call below automatically\n // discards an initial batch of values. This is called RC4-drop[256].\n // See http://google.com/search?q=rsa+fluhrer+response&btnI\n })(width);\n}\n\n//\n// copy()\n// Copies internal state of ARC4 to or from a plain object.\n//\nfunction copy(f, t) {\n t.i = f.i;\n t.j = f.j;\n t.S = f.S.slice();\n return t;\n};\n\n//\n// flatten()\n// Converts an object tree to nested arrays of strings.\n//\nfunction flatten(obj, depth) {\n var result = [], typ = (typeof obj), prop;\n if (depth && typ == 'object') {\n for (prop in obj) {\n try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}\n }\n }\n return (result.length ? result : typ == 'string' ? obj : obj + '\\0');\n}\n\n//\n// mixkey()\n// Mixes a string seed into a key that is an array of integers, and\n// returns a shortened string seed that is equivalent to the result key.\n//\nfunction mixkey(seed, key) {\n var stringseed = seed + '', smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] =\n mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));\n }\n return tostring(key);\n}\n\n//\n// autoseed()\n// Returns an object for autoseeding, using window.crypto and Node crypto\n// module if available.\n//\nfunction autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n // The use of 'out' to remember randomBytes makes tight minified code.\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global.crypto || global.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e) {\n var browser = global.navigator,\n plugins = browser && browser.plugins;\n return [+new Date, global, plugins, global.screen, tostring(pool)];\n }\n}\n\n//\n// tostring()\n// Converts an array of charcodes to a string\n//\nfunction tostring(a) {\n return String.fromCharCode.apply(0, a);\n}\n\n//\n// When seedrandom.js is loaded, we immediately mix a few bits\n// from the built-in RNG into the entropy pool. Because we do\n// not want to interfere with deterministic PRNG state later,\n// seedrandom will not call math.random on its own again after\n// initialization.\n//\nmixkey(math.random(), pool);\n\n//\n// Nodejs and AMD support: export the implementation as a module using\n// either convention.\n//\nif ((typeof module) == 'object' && module.exports) {\n module.exports = seedrandom;\n // When in node.js, try using crypto package for autoseeding.\n try {\n nodecrypto = require('crypto');\n } catch (ex) {}\n} else if ((typeof define) == 'function' && define.amd) {\n define(function() { return seedrandom; });\n} else {\n // When included as a plain script, set up Math.seedrandom global.\n math['seed' + rngname] = seedrandom;\n}\n\n\n// End anonymous scope, and pass initial values.\n})(\n // global: `self` in browsers (including strict mode and web workers),\n // otherwise `this` in Node and other environments\n (typeof self !== 'undefined') ? self : this,\n [], // pool: entropy pool starts empty\n Math // math: package containing random, pow, and seedrandom\n);\n", "// A library of seedable RNGs implemented in Javascript.\n//\n// Usage:\n//\n// var seedrandom = require('seedrandom');\n// var random = seedrandom(1); // or any seed.\n// var x = random(); // 0 <= x < 1. Every bit is random.\n// var x = random.quick(); // 0 <= x < 1. 32 bits of randomness.\n\n// alea, a 53-bit multiply-with-carry generator by Johannes Baag\u00F8e.\n// Period: ~2^116\n// Reported to pass all BigCrush tests.\nvar alea = require('./lib/alea');\n\n// xor128, a pure xor-shift generator by George Marsaglia.\n// Period: 2^128-1.\n// Reported to fail: MatrixRank and LinearComp.\nvar xor128 = require('./lib/xor128');\n\n// xorwow, George Marsaglia's 160-bit xor-shift combined plus weyl.\n// Period: 2^192-2^32\n// Reported to fail: CollisionOver, SimpPoker, and LinearComp.\nvar xorwow = require('./lib/xorwow');\n\n// xorshift7, by Fran\u00E7ois Panneton and Pierre L'ecuyer, takes\n// a different approach: it adds robustness by allowing more shifts\n// than Marsaglia's original three. It is a 7-shift generator\n// with 256 bits, that passes BigCrush with no systmatic failures.\n// Period 2^256-1.\n// No systematic BigCrush failures reported.\nvar xorshift7 = require('./lib/xorshift7');\n\n// xor4096, by Richard Brent, is a 4096-bit xor-shift with a\n// very long period that also adds a Weyl generator. It also passes\n// BigCrush with no systematic failures. Its long period may\n// be useful if you have many generators and need to avoid\n// collisions.\n// Period: 2^4128-2^32.\n// No systematic BigCrush failures reported.\nvar xor4096 = require('./lib/xor4096');\n\n// Tyche-i, by Samuel Neves and Filipe Araujo, is a bit-shifting random\n// number generator derived from ChaCha, a modern stream cipher.\n// https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n// Period: ~2^127\n// No systematic BigCrush failures reported.\nvar tychei = require('./lib/tychei');\n\n// The original ARC4-based prng included in this library.\n// Period: ~2^1600\nvar sr = require('./seedrandom');\n\nsr.alea = alea;\nsr.xor128 = xor128;\nsr.xorwow = xorwow;\nsr.xorshift7 = xorshift7;\nsr.xor4096 = xor4096;\nsr.tychei = tychei;\n\nmodule.exports = sr;\n", "", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Backend, DataId} from '../tensor';\nimport {BackendValues, DataType} from '../types';\n\nexport const EPSILON_FLOAT32 = 1e-7;\nexport const EPSILON_FLOAT16 = 1e-4;\n\n// Required information for all backends.\nexport interface BackendTimingInfo {\n kernelMs: number|{error: string};\n getExtraProfileInfo?(): string; // a field for additional timing information\n // e.g. packing / unpacking for WebGL backend\n}\n\nexport interface TensorStorage {\n read(dataId: DataId): Promise;\n readSync(dataId: DataId): BackendValues;\n disposeData(dataId: DataId, force?: boolean): boolean;\n write(values: BackendValues, shape: number[], dtype: DataType): DataId;\n move(\n dataId: DataId, values: BackendValues, shape: number[], dtype: DataType,\n refCount: number): void;\n memory(): {unreliable: boolean;}; // Backend-specific information.\n /** Returns number of data ids currently in the storage. */\n numDataIds(): number;\n refCount(dataId: DataId): number;\n}\n\n/** Convenient class for storing tensor-related data. */\nexport class DataStorage {\n private data = new WeakMap();\n private dataIdsCount = 0;\n\n constructor(private backend: KernelBackend, private dataMover: DataMover) {}\n\n get(dataId: DataId) {\n if (!this.data.has(dataId)) {\n this.dataMover.moveData(this.backend, dataId);\n }\n return this.data.get(dataId);\n }\n\n set(dataId: DataId, value: T): void {\n this.dataIdsCount++;\n this.data.set(dataId, value);\n }\n\n has(dataId: DataId): boolean {\n return this.data.has(dataId);\n }\n\n delete(dataId: DataId): boolean {\n this.dataIdsCount--;\n return this.data.delete(dataId);\n }\n\n numDataIds(): number {\n return this.dataIdsCount;\n }\n}\n\nexport interface DataMover {\n /**\n * To be called by backends whenever they see a dataId that they don't own.\n * Upon calling this method, the mover will fetch the tensor from another\n * backend and register it with the current active backend.\n */\n moveData(backend: KernelBackend, dataId: DataId): void;\n}\n\nexport interface BackendTimer {\n // check if backend timer is available\n timerAvailable(): boolean;\n time(f: () => void): Promise;\n}\n\n/**\n * The interface that defines the kernels that should be implemented when\n * adding a new backend. New backends don't need to implement every one of the\n * methods, this can be done gradually (throw an error for unimplemented\n * methods).\n */\nexport class KernelBackend implements TensorStorage, Backend, BackendTimer {\n refCount(dataId: DataId): number {\n return notYetImplemented('refCount');\n }\n incRef(dataId: DataId): void {\n return notYetImplemented('incRef');\n }\n timerAvailable(): boolean {\n return true;\n }\n time(f: () => void): Promise {\n return notYetImplemented('time');\n }\n read(dataId: object): Promise {\n return notYetImplemented('read');\n }\n readSync(dataId: object): BackendValues {\n return notYetImplemented('readSync');\n }\n numDataIds(): number {\n return notYetImplemented('numDataIds');\n }\n disposeData(dataId: object, force?: boolean): boolean {\n return notYetImplemented('disposeData');\n }\n write(values: BackendValues, shape: number[], dtype: DataType): DataId {\n return notYetImplemented('write');\n }\n move(\n dataId: DataId, values: BackendValues, shape: number[], dtype: DataType,\n refCount: number): void {\n return notYetImplemented('move');\n }\n memory(): {unreliable: boolean; reasons?: string[]} {\n return notYetImplemented('memory');\n }\n /** Returns the highest precision for floats in bits (e.g. 16 or 32) */\n floatPrecision(): 16|32 {\n return notYetImplemented('floatPrecision');\n }\n /** Returns the smallest representable number. */\n epsilon(): number {\n return this.floatPrecision() === 32 ? EPSILON_FLOAT32 : EPSILON_FLOAT16;\n }\n dispose(): void {\n return notYetImplemented('dispose');\n }\n}\n\nfunction notYetImplemented(kernelName: string): never {\n throw new Error(\n `'${kernelName}' not yet implemented or not found in the registry. ` +\n `This kernel may not be supported by the tfjs backend you have chosen`);\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {DataType, DataTypeMap, FlatVector, NumericDataType, RecursiveArray, TensorLike, TypedArray} from './types';\n\n/**\n * Shuffles the array in-place using Fisher-Yates algorithm.\n *\n * ```js\n * const a = [1, 2, 3, 4, 5];\n * tf.util.shuffle(a);\n * console.log(a);\n * ```\n *\n * @param array The array to shuffle in-place.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\n// tslint:disable-next-line:no-any\nexport function shuffle(array: any[]|Uint32Array|Int32Array|\n Float32Array): void {\n let counter = array.length;\n let temp = 0;\n let index = 0;\n // While there are elements in the array\n while (counter > 0) {\n // Pick a random index\n index = (Math.random() * counter) | 0;\n // Decrease counter by 1\n counter--;\n // And swap the last element with it\n temp = array[counter];\n array[counter] = array[index];\n array[index] = temp;\n }\n}\n\n/**\n * Shuffles two arrays in-place the same way using Fisher-Yates algorithm.\n *\n * ```js\n * const a = [1,2,3,4,5];\n * const b = [11,22,33,44,55];\n * tf.util.shuffleCombo(a, b);\n * console.log(a, b);\n * ```\n *\n * @param array The first array to shuffle in-place.\n * @param array2 The second array to shuffle in-place with the same permutation\n * as the first array.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function shuffleCombo(\n // tslint:disable-next-line:no-any\n array: any[]|Uint32Array|Int32Array|Float32Array,\n // tslint:disable-next-line:no-any\n array2: any[]|Uint32Array|Int32Array|Float32Array): void {\n if (array.length !== array2.length) {\n throw new Error(\n `Array sizes must match to be shuffled together ` +\n `First array length was ${array.length}` +\n `Second array length was ${array2.length}`);\n }\n let counter = array.length;\n let temp, temp2;\n let index = 0;\n // While there are elements in the array\n while (counter > 0) {\n // Pick a random index\n index = (Math.random() * counter) | 0;\n // Decrease counter by 1\n counter--;\n // And swap the last element of each array with it\n temp = array[counter];\n temp2 = array2[counter];\n array[counter] = array[index];\n array2[counter] = array2[index];\n array[index] = temp;\n array2[index] = temp2;\n }\n}\n\n/** Clamps a value to a specified range. */\nexport function clamp(min: number, x: number, max: number): number {\n return Math.max(min, Math.min(x, max));\n}\n\nexport function nearestLargerEven(val: number): number {\n return val % 2 === 0 ? val : val + 1;\n}\n\nexport function sum(arr: number[]): number {\n let sum = 0;\n for (let i = 0; i < arr.length; i++) {\n sum += arr[i];\n }\n return sum;\n}\n\n/**\n * Returns a sample from a uniform [a, b) distribution.\n *\n * @param a The minimum support (inclusive).\n * @param b The maximum support (exclusive).\n * @return A pseudorandom number on the half-open interval [a,b).\n */\nexport function randUniform(a: number, b: number) {\n const r = Math.random();\n return (b * r) + (1 - r) * a;\n}\n\n/** Returns the squared Euclidean distance between two vectors. */\nexport function distSquared(a: FlatVector, b: FlatVector): number {\n let result = 0;\n for (let i = 0; i < a.length; i++) {\n const diff = Number(a[i]) - Number(b[i]);\n result += diff * diff;\n }\n return result;\n}\n\n/**\n * Asserts that the expression is true. Otherwise throws an error with the\n * provided message.\n *\n * ```js\n * const x = 2;\n * tf.util.assert(x === 2, 'x is not 2');\n * ```\n *\n * @param expr The expression to assert (as a boolean).\n * @param msg A function that returns the message to report when throwing an\n * error. We use a function for performance reasons.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function assert(expr: boolean, msg: () => string) {\n if (!expr) {\n throw new Error(typeof msg === 'string' ? msg : msg());\n }\n}\n\nexport function assertShapesMatch(\n shapeA: number[], shapeB: number[], errorMessagePrefix = ''): void {\n assert(\n arraysEqual(shapeA, shapeB),\n () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`);\n}\n\nexport function assertNonNull(a: TensorLike): void {\n assert(\n a != null,\n () => `The input to the tensor constructor must be a non-null value.`);\n}\n\n// NOTE: We explicitly type out what T extends instead of any so that\n// util.flatten on a nested array of number doesn't try to infer T as a\n// number[][], causing us to explicitly type util.flatten().\n/**\n * Flattens an arbitrarily nested array.\n *\n * ```js\n * const a = [[1, 2], [3, 4], [5, [6, [7]]]];\n * const flat = tf.util.flatten(a);\n * console.log(flat);\n * ```\n *\n * @param arr The nested array to flatten.\n * @param result The destination array which holds the elements.\n * @param skipTypedArray If true, avoids flattening the typed arrays. Defaults\n * to false.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function\nflatten|TypedArray>(\n arr: T|RecursiveArray, result: T[] = [], skipTypedArray = false): T[] {\n if (result == null) {\n result = [];\n }\n if (Array.isArray(arr) || isTypedArray(arr) && !skipTypedArray) {\n for (let i = 0; i < arr.length; ++i) {\n flatten(arr[i], result, skipTypedArray);\n }\n } else {\n result.push(arr as T);\n }\n return result;\n}\n\n/**\n * Returns the size (number of elements) of the tensor given its shape.\n *\n * ```js\n * const shape = [3, 4, 2];\n * const size = tf.util.sizeFromShape(shape);\n * console.log(size);\n * ```\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function sizeFromShape(shape: number[]): number {\n if (shape.length === 0) {\n // Scalar.\n return 1;\n }\n let size = shape[0];\n for (let i = 1; i < shape.length; i++) {\n size *= shape[i];\n }\n return size;\n}\n\nexport function isScalarShape(shape: number[]): boolean {\n return shape.length === 0;\n}\n\nexport function arraysEqual(n1: FlatVector, n2: FlatVector) {\n if (n1 === n2) {\n return true;\n }\n if (n1 == null || n2 == null) {\n return false;\n }\n\n if (n1.length !== n2.length) {\n return false;\n }\n for (let i = 0; i < n1.length; i++) {\n if (n1[i] !== n2[i]) {\n return false;\n }\n }\n return true;\n}\n\nexport function isInt(a: number): boolean {\n return a % 1 === 0;\n}\n\nexport function tanh(x: number): number {\n // tslint:disable-next-line:no-any\n if ((Math as any).tanh != null) {\n // tslint:disable-next-line:no-any\n return (Math as any).tanh(x);\n }\n if (x === Infinity) {\n return 1;\n } else if (x === -Infinity) {\n return -1;\n } else {\n const e2x = Math.exp(2 * x);\n return (e2x - 1) / (e2x + 1);\n }\n}\n\nexport function sizeToSquarishShape(size: number): [number, number] {\n const width = Math.ceil(Math.sqrt(size));\n return [width, Math.ceil(size / width)];\n}\n\n/**\n * Creates a new array with randomized indicies to a given quantity.\n *\n * ```js\n * const randomTen = tf.util.createShuffledIndices(10);\n * console.log(randomTen);\n * ```\n *\n * @param number Quantity of how many shuffled indicies to create.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function createShuffledIndices(n: number): Uint32Array {\n const shuffledIndices = new Uint32Array(n);\n for (let i = 0; i < n; ++i) {\n shuffledIndices[i] = i;\n }\n shuffle(shuffledIndices);\n return shuffledIndices;\n}\n\nexport function rightPad(a: string, size: number): string {\n if (size <= a.length) {\n return a;\n }\n return a + ' '.repeat(size - a.length);\n}\n\nexport function repeatedTry(\n checkFn: () => boolean, delayFn = (counter: number) => 0,\n maxCounter?: number): Promise {\n return new Promise((resolve, reject) => {\n let tryCount = 0;\n\n const tryFn = () => {\n if (checkFn()) {\n resolve();\n return;\n }\n\n tryCount++;\n\n const nextBackoff = delayFn(tryCount);\n\n if (maxCounter != null && tryCount >= maxCounter) {\n reject();\n return;\n }\n setTimeout(tryFn, nextBackoff);\n };\n\n tryFn();\n });\n}\n\n/**\n * Given the full size of the array and a shape that may contain -1 as the\n * implicit dimension, returns the inferred shape where -1 is replaced.\n * E.g. For shape=[2, -1, 3] and size=24, it will return [2, 4, 3].\n *\n * @param shape The shape, which may contain -1 in some dimension.\n * @param size The full size (number of elements) of the array.\n * @return The inferred shape where -1 is replaced with the inferred size.\n */\nexport function inferFromImplicitShape(\n shape: number[], size: number): number[] {\n let shapeProd = 1;\n let implicitIdx = -1;\n\n for (let i = 0; i < shape.length; ++i) {\n if (shape[i] >= 0) {\n shapeProd *= shape[i];\n } else if (shape[i] === -1) {\n if (implicitIdx !== -1) {\n throw Error(\n `Shapes can only have 1 implicit size. ` +\n `Found -1 at dim ${implicitIdx} and dim ${i}`);\n }\n implicitIdx = i;\n } else if (shape[i] < 0) {\n throw Error(`Shapes can not be < 0. Found ${shape[i]} at dim ${i}`);\n }\n }\n\n if (implicitIdx === -1) {\n if (size > 0 && size !== shapeProd) {\n throw Error(`Size(${size}) must match the product of shape ${shape}`);\n }\n return shape;\n }\n\n if (shapeProd === 0) {\n throw Error(\n `Cannot infer the missing size in [${shape}] when ` +\n `there are 0 elements`);\n }\n if (size % shapeProd !== 0) {\n throw Error(\n `The implicit shape can't be a fractional number. ` +\n `Got ${size} / ${shapeProd}`);\n }\n\n const newShape = shape.slice();\n newShape[implicitIdx] = size / shapeProd;\n return newShape;\n}\n\nexport function parseAxisParam(\n axis: number|number[], shape: number[]): number[] {\n const rank = shape.length;\n\n // Normalize input\n axis = axis == null ? shape.map((s, i) => i) : [].concat(axis);\n\n // Check for valid range\n assert(\n axis.every(ax => ax >= -rank && ax < rank),\n () =>\n `All values in axis param must be in range [-${rank}, ${rank}) but ` +\n `got axis ${axis}`);\n\n // Check for only integers\n assert(\n axis.every(ax => isInt(ax)),\n () => `All values in axis param must be integers but ` +\n `got axis ${axis}`);\n\n // Handle negative axis.\n return axis.map(a => a < 0 ? rank + a : a);\n}\n\n/** Reduces the shape by removing all dimensions of shape 1. */\nexport function squeezeShape(shape: number[], axis?: number[]):\n {newShape: number[], keptDims: number[]} {\n const newShape: number[] = [];\n const keptDims: number[] = [];\n const isEmptyArray = axis != null && Array.isArray(axis) && axis.length === 0;\n const axes = (axis == null || isEmptyArray) ?\n null :\n parseAxisParam(axis, shape).sort();\n let j = 0;\n for (let i = 0; i < shape.length; ++i) {\n if (axes != null) {\n if (axes[j] === i && shape[i] !== 1) {\n throw new Error(\n `Can't squeeze axis ${i} since its dim '${shape[i]}' is not 1`);\n }\n if ((axes[j] == null || axes[j] > i) && shape[i] === 1) {\n newShape.push(shape[i]);\n keptDims.push(i);\n }\n if (axes[j] <= i) {\n j++;\n }\n }\n if (shape[i] !== 1) {\n newShape.push(shape[i]);\n keptDims.push(i);\n }\n }\n return {newShape, keptDims};\n}\n\nexport function getTypedArrayFromDType(\n dtype: D, size: number): DataTypeMap[D] {\n let values = null;\n if (dtype == null || dtype === 'float32') {\n values = new Float32Array(size);\n } else if (dtype === 'int32') {\n values = new Int32Array(size);\n } else if (dtype === 'bool') {\n values = new Uint8Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values as DataTypeMap[D];\n}\n\nexport function getArrayFromDType(\n dtype: D, size: number): DataTypeMap[D] {\n let values = null;\n if (dtype == null || dtype === 'float32') {\n values = new Float32Array(size);\n } else if (dtype === 'int32') {\n values = new Int32Array(size);\n } else if (dtype === 'bool') {\n values = new Uint8Array(size);\n } else if (dtype === 'string') {\n values = new Array<'string'>(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values as DataTypeMap[D];\n}\n\nexport function checkConversionForErrors(\n vals: DataTypeMap[D]|number[], dtype: D): void {\n for (let i = 0; i < vals.length; i++) {\n const num = vals[i] as number;\n if (isNaN(num) || !isFinite(num)) {\n throw Error(`A tensor of type ${dtype} being uploaded contains ${num}.`);\n }\n }\n}\n\n/** Returns true if the dtype is valid. */\nexport function isValidDtype(dtype: DataType): boolean {\n return dtype === 'bool' || dtype === 'complex64' || dtype === 'float32' ||\n dtype === 'int32' || dtype === 'string';\n}\n\n/**\n * Returns true if the new type can't encode the old type without loss of\n * precision.\n */\nexport function hasEncodingLoss(oldType: DataType, newType: DataType): boolean {\n if (newType === 'complex64') {\n return false;\n }\n if (newType === 'float32' && oldType !== 'complex64') {\n return false;\n }\n if (newType === 'int32' && oldType !== 'float32' && oldType !== 'complex64') {\n return false;\n }\n if (newType === 'bool' && oldType === 'bool') {\n return false;\n }\n return true;\n}\n\nexport function isTypedArray(a: {}): a is Float32Array|Int32Array|Uint8Array {\n return a instanceof Float32Array || a instanceof Int32Array ||\n a instanceof Uint8Array;\n}\n\nexport function bytesPerElement(dtype: DataType): number {\n if (dtype === 'float32' || dtype === 'int32') {\n return 4;\n } else if (dtype === 'complex64') {\n return 8;\n } else if (dtype === 'bool') {\n return 1;\n } else {\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\n\n/**\n * Returns the approximate number of bytes allocated in the string array - 2\n * bytes per character. Computing the exact bytes for a native string in JS is\n * not possible since it depends on the encoding of the html page that serves\n * the website.\n */\nexport function bytesFromStringArray(arr: Uint8Array[]): number {\n if (arr == null) {\n return 0;\n }\n let bytes = 0;\n arr.forEach(x => bytes += x.length);\n return bytes;\n}\n\n/** Returns true if the value is a string. */\nexport function isString(value: {}): value is string {\n return typeof value === 'string' || value instanceof String;\n}\n\nexport function isBoolean(value: {}): boolean {\n return typeof value === 'boolean';\n}\n\nexport function isNumber(value: {}): boolean {\n return typeof value === 'number';\n}\n\nexport function inferDtype(values: TensorLike): DataType {\n if (Array.isArray(values)) {\n return inferDtype(values[0]);\n }\n if (values instanceof Float32Array) {\n return 'float32';\n } else if (values instanceof Int32Array || values instanceof Uint8Array) {\n return 'int32';\n } else if (isNumber(values)) {\n return 'float32';\n } else if (isString(values)) {\n return 'string';\n } else if (isBoolean(values)) {\n return 'bool';\n }\n return 'float32';\n}\n\nexport function isFunction(f: Function) {\n return !!(f && f.constructor && f.call && f.apply);\n}\n\nexport function nearestDivisor(size: number, start: number): number {\n for (let i = start; i < size; ++i) {\n if (size % i === 0) {\n return i;\n }\n }\n return size;\n}\n\nexport function computeStrides(shape: number[]): number[] {\n const rank = shape.length;\n if (rank < 2) {\n return [];\n }\n\n // Last dimension has implicit stride of 1, thus having D-1 (instead of D)\n // strides.\n const strides = new Array(rank - 1);\n strides[rank - 2] = shape[rank - 1];\n for (let i = rank - 3; i >= 0; --i) {\n strides[i] = strides[i + 1] * shape[i + 1];\n }\n return strides;\n}\n\nfunction createNestedArray(\n offset: number, shape: number[], a: TypedArray, isComplex = false) {\n const ret = new Array();\n if (shape.length === 1) {\n const d = shape[0] * (isComplex ? 2 : 1);\n for (let i = 0; i < d; i++) {\n ret[i] = a[offset + i];\n }\n } else {\n const d = shape[0];\n const rest = shape.slice(1);\n const len = rest.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n for (let i = 0; i < d; i++) {\n ret[i] = createNestedArray(offset + i * len, rest, a, isComplex);\n }\n }\n return ret;\n}\n\n// Provide a nested array of TypedArray in given shape.\nexport function toNestedArray(\n shape: number[], a: TypedArray, isComplex = false) {\n if (shape.length === 0) {\n // Scalar type should return a single number.\n return a[0];\n }\n const size = shape.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n if (size === 0) {\n // A tensor with shape zero should be turned into empty list.\n return [];\n }\n if (size !== a.length) {\n throw new Error(`[${shape}] does not match the input size ${a.length}${\n isComplex ? ' for a complex tensor' : ''}.`);\n }\n\n return createNestedArray(0, shape, a, isComplex);\n}\n\nexport function makeOnesTypedArray(\n size: number, dtype: D): DataTypeMap[D] {\n const array = makeZerosTypedArray(size, dtype);\n for (let i = 0; i < array.length; i++) {\n array[i] = 1;\n }\n return array;\n}\n\nexport function makeZerosTypedArray(\n size: number, dtype: D): DataTypeMap[D] {\n if (dtype == null || dtype === 'float32' || dtype === 'complex64') {\n return new Float32Array(size) as DataTypeMap[D];\n } else if (dtype === 'int32') {\n return new Int32Array(size) as DataTypeMap[D];\n } else if (dtype === 'bool') {\n return new Uint8Array(size) as DataTypeMap[D];\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\n/**\n * Make nested `TypedArray` filled with zeros.\n * @param shape The shape information for the nested array.\n * @param dtype dtype of the array element.\n */\nexport function makeZerosNestedTypedArray(\n shape: number[], dtype: D) {\n const size = shape.reduce((prev, curr) => prev * curr, 1);\n if (dtype == null || dtype === 'float32') {\n return toNestedArray(shape, new Float32Array(size));\n } else if (dtype === 'int32') {\n return toNestedArray(shape, new Int32Array(size));\n } else if (dtype === 'bool') {\n return toNestedArray(shape, new Uint8Array(size));\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\nexport function assertNonNegativeIntegerDimensions(shape: number[]) {\n shape.forEach(dimSize => {\n assert(\n Number.isInteger(dimSize) && dimSize >= 0,\n () =>\n `Tensor must have a shape comprised of positive integers but got ` +\n `shape [${shape}].`);\n });\n}\n\n/**\n * Computes flat index for a given location (multidimentionsal index) in a\n * Tensor/multidimensional array.\n *\n * @param locs Location in the tensor.\n * @param rank Rank of the tensor.\n * @param strides Tensor strides.\n */\nexport function locToIndex(\n locs: number[], rank: number, strides: number[]): number {\n if (rank === 0) {\n return 0;\n } else if (rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += strides[i] * locs[i];\n }\n return index;\n}\n\n/**\n * Computes the location (multidimensional index) in a tensor/multidimentional\n * array for a given flat index.\n *\n * @param index Index in flat array.\n * @param rank Rank of tensor.\n * @param strides Strides of tensor.\n */\nexport function indexToLoc(\n index: number, rank: number, strides: number[]): number[] {\n if (rank === 0) {\n return [];\n } else if (rank === 1) {\n return [index];\n }\n const locs: number[] = new Array(rank);\n for (let i = 0; i < locs.length - 1; ++i) {\n locs[i] = Math.floor(index / strides[i]);\n index -= locs[i] * strides[i];\n }\n locs[locs.length - 1] = index;\n return locs;\n}\n\n/**\n * This method asserts whether an object is a Promise instance.\n * @param object\n */\n// tslint:disable-next-line: no-any\nexport function isPromise(object: any) {\n // We chose to not use 'obj instanceOf Promise' for two reasons:\n // 1. It only reliably works for es6 Promise, not other Promise\n // implementations.\n // 2. It doesn't work with framework that uses zone.js. zone.js monkey patch\n // the async calls, so it is possible the obj (patched) is comparing to a\n // pre-patched Promise.\n return object && object.then && typeof object.then === 'function';\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Platform} from './platforms/platform';\nimport {isPromise} from './util_base';\n\n// Expects flags from URL in the format ?tfjsflags=FLAG1:1,FLAG2:true.\nconst TENSORFLOWJS_FLAGS_PREFIX = 'tfjsflags';\n\ntype FlagValue = number|boolean;\ntype FlagEvaluationFn = (() => FlagValue)|(() => Promise);\nexport type Flags = {\n [featureName: string]: FlagValue\n};\nexport type FlagRegistryEntry = {\n evaluationFn: FlagEvaluationFn;\n setHook?: (value: FlagValue) => void;\n};\n\n/**\n * The environment contains evaluated flags as well as the registered platform.\n * This is always used as a global singleton and can be retrieved with\n * `tf.env()`.\n *\n * @doc {heading: 'Environment'}\n */\nexport class Environment {\n private flags: Flags = {};\n private flagRegistry: {[flagName: string]: FlagRegistryEntry} = {};\n\n private urlFlags: Flags = {};\n\n platformName: string;\n platform: Platform;\n\n // Jasmine spies on this in 'environment_test.ts'\n getQueryParams = getQueryParams;\n\n // tslint:disable-next-line: no-any\n constructor(public global: any) {\n this.populateURLFlags();\n }\n\n setPlatform(platformName: string, platform: Platform) {\n if (this.platform != null) {\n console.warn(\n `Platform ${this.platformName} has already been set. ` +\n `Overwriting the platform with ${platform}.`);\n }\n this.platformName = platformName;\n this.platform = platform;\n }\n\n registerFlag(\n flagName: string, evaluationFn: FlagEvaluationFn,\n setHook?: (value: FlagValue) => void) {\n this.flagRegistry[flagName] = {evaluationFn, setHook};\n\n // Override the flag value from the URL. This has to happen here because the\n // environment is initialized before flags get registered.\n if (this.urlFlags[flagName] != null) {\n const flagValue = this.urlFlags[flagName];\n console.warn(\n `Setting feature override from URL ${flagName}: ${flagValue}.`);\n this.set(flagName, flagValue);\n }\n }\n\n async getAsync(flagName: string): Promise {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n\n this.flags[flagName] = await this.evaluateFlag(flagName);\n return this.flags[flagName];\n }\n\n get(flagName: string): FlagValue {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n\n const flagValue = this.evaluateFlag(flagName);\n if (isPromise(flagValue)) {\n throw new Error(\n `Flag ${flagName} cannot be synchronously evaluated. ` +\n `Please use getAsync() instead.`);\n }\n\n this.flags[flagName] = flagValue as number | boolean;\n\n return this.flags[flagName];\n }\n\n getNumber(flagName: string): number {\n return this.get(flagName) as number;\n }\n\n getBool(flagName: string): boolean {\n return this.get(flagName) as boolean;\n }\n\n getFlags(): Flags {\n return this.flags;\n }\n // For backwards compatibility.\n get features(): Flags {\n return this.flags;\n }\n\n set(flagName: string, value: FlagValue): void {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(\n `Cannot set flag ${flagName} as it has not been registered.`);\n }\n this.flags[flagName] = value;\n if (this.flagRegistry[flagName].setHook != null) {\n this.flagRegistry[flagName].setHook(value);\n }\n }\n\n private evaluateFlag(flagName: string): FlagValue|Promise {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(\n `Cannot evaluate flag '${flagName}': no evaluation function found.`);\n }\n return this.flagRegistry[flagName].evaluationFn();\n }\n\n setFlags(flags: Flags) {\n this.flags = Object.assign({}, flags);\n }\n\n reset() {\n this.flags = {};\n this.urlFlags = {};\n this.populateURLFlags();\n }\n\n private populateURLFlags(): void {\n if (typeof this.global === 'undefined' ||\n typeof this.global.location === 'undefined' ||\n typeof this.global.location.search === 'undefined') {\n return;\n }\n\n const urlParams = this.getQueryParams(this.global.location.search);\n if (TENSORFLOWJS_FLAGS_PREFIX in urlParams) {\n const keyValues = urlParams[TENSORFLOWJS_FLAGS_PREFIX].split(',');\n keyValues.forEach(keyValue => {\n const [key, value] = keyValue.split(':') as [string, string];\n this.urlFlags[key] = parseValue(key, value);\n });\n }\n }\n}\n\nexport function getQueryParams(queryString: string): {[key: string]: string} {\n const params = {};\n queryString.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g, (s, ...t) => {\n decodeParam(params, t[0], t[1]);\n return t.join('=');\n });\n return params;\n}\n\nfunction decodeParam(\n params: {[key: string]: string}, name: string, value?: string) {\n params[decodeURIComponent(name)] = decodeURIComponent(value || '');\n}\n\nfunction parseValue(flagName: string, value: string): FlagValue {\n value = value.toLowerCase();\n if (value === 'true' || value === 'false') {\n return value === 'true';\n } else if (`${+ value}` === value) {\n return +value;\n }\n throw new Error(\n `Could not parse value flag value ${value} for flag ${flagName}.`);\n}\n\n/**\n * Returns the current environment (a global singleton).\n *\n * The environment object contains the evaluated feature values as well as the\n * active platform.\n *\n * @doc {heading: 'Environment'}\n */\nexport function env() {\n return ENV;\n}\n\nexport let ENV: Environment = null;\nexport function setEnvironmentGlobal(environment: Environment) {\n ENV = environment;\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Note that the identifier globalNameSpace is scoped to this module, but will\n// always resolve to the same global object regardless of how the module is\n// resolved.\n// tslint:disable-next-line:no-any\nlet globalNameSpace: {_tfGlobals: Map};\n// tslint:disable-next-line:no-any\nexport function getGlobalNamespace(): {_tfGlobals: Map} {\n if (globalNameSpace == null) {\n // tslint:disable-next-line:no-any\n let ns: any;\n if (typeof (window) !== 'undefined') {\n ns = window;\n } else if (typeof (global) !== 'undefined') {\n ns = global;\n } else if (typeof (process) !== 'undefined') {\n ns = process;\n } else if (typeof (self) !== 'undefined') {\n ns = self;\n } else {\n throw new Error('Could not find a global object');\n }\n globalNameSpace = ns;\n }\n return globalNameSpace;\n}\n\n// tslint:disable-next-line:no-any\nfunction getGlobalMap(): Map {\n const ns = getGlobalNamespace();\n if (ns._tfGlobals == null) {\n ns._tfGlobals = new Map();\n }\n return ns._tfGlobals;\n}\n\n/**\n * Returns a globally accessible 'singleton' object.\n *\n * @param key the name of the object\n * @param init a function to initialize to initialize this object\n * the first time it is fetched.\n */\nexport function getGlobal(key: string, init: () => T): T {\n const globalMap = getGlobalMap();\n if (globalMap.has(key)) {\n return globalMap.get(key);\n } else {\n const singleton = init();\n globalMap.set(key, singleton);\n return globalMap.get(key);\n }\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n// Allow UpperCamelCase variable names\n// tslint:disable: variable-name\n// Unfortunately just enabling PascalCase per file (tslint:enable:\n// allow-pascal-case) doesn't work.\nimport {NamedTensorInfoMap, TensorInfo} from './kernel_registry';\nimport {ExplicitPadding} from './ops/conv_util';\nimport {Activation} from './ops/fused_types';\nimport {DataType, PixelData} from './types';\n\nexport const Abs = 'Abs';\nexport type AbsInputs = UnaryInputs;\n\nexport const Acos = 'Acos';\nexport type AcosInputs = UnaryInputs;\n\nexport const Acosh = 'Acosh';\nexport type AcoshInputs = UnaryInputs;\n\nexport const Add = 'Add';\nexport type AddInputs = BinaryInputs;\n\nexport const AddN = 'AddN';\nexport type AddNInputs = TensorInfo[];\n\nexport const All = 'All';\nexport type AllInputs = Pick;\nexport interface AllAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Any = 'Any';\nexport type AnyInputs = Pick;\nexport interface AnyAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const ArgMax = 'ArgMax';\nexport type ArgMaxInputs = Pick;\nexport interface ArgMaxAttrs {\n axis: number;\n}\n\nexport const ArgMin = 'ArgMin';\nexport type ArgMinInputs = Pick;\nexport interface ArgMinAttrs {\n axis: number;\n}\n\nexport const Asin = 'Asin';\nexport type AsinInputs = UnaryInputs;\n\nexport const Asinh = 'Asinh';\nexport type AsinhInputs = UnaryInputs;\n\nexport const Atan = 'Atan';\nexport type AtanInputs = UnaryInputs;\n\nexport const Atanh = 'Atanh';\nexport type AtanhInputs = UnaryInputs;\n\nexport const Atan2 = 'Atan2';\nexport type Atan2Inputs = BinaryInputs;\n\nexport const AvgPool = 'AvgPool';\nexport type AvgPoolInputs = Pick;\nexport interface AvgPoolAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const AvgPoolGrad = 'AvgPoolGrad';\nexport type AvgPoolGradInputs = Pick;\nexport interface AvgPoolGradAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n}\n\nexport const AvgPool3D = 'AvgPool3D';\nexport type AvgPool3DInputs = Pick;\nexport interface AvgPool3DAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n dataFormat: 'NDHWC'|'NCDHW';\n}\n\nexport const AvgPool3DGrad = 'AvgPool3DGrad';\nexport type AvgPool3DGradInputs = Pick;\nexport interface AvgPool3DGradAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const BatchMatMul = 'BatchMatMul';\nexport type BatchMatMulInputs = Pick;\nexport interface BatchMatMulAttrs {\n transposeA: boolean;\n transposeB: boolean;\n}\n\nexport const BatchToSpaceND = 'BatchToSpaceND';\nexport type BatchToSpaceNDInputs = Pick;\nexport interface BatchToSpaceNDAttrs {\n blockShape: number[];\n crops: number[][];\n}\n\nexport type BinaryInputs = Pick;\n\nexport const Bincount = 'Bincount';\nexport type BincountInputs = Pick;\nexport interface BincountAttrs {\n size: number;\n}\n\nexport const BroadcastTo = 'BroadcastTo';\nexport type BroadcastToInputs = Pick;\nexport interface BroadCastToAttrs {\n shape: number[];\n inputShape: number[]; // for gradient\n}\n\nexport const Cast = 'Cast';\nexport type CastInputs = UnaryInputs;\nexport interface CastAttrs {\n dtype: DataType;\n}\n\nexport const Ceil = 'Ceil';\nexport type CeilInputs = UnaryInputs;\n\nexport const ClipByValue = 'ClipByValue';\nexport type ClipByValueInputs = UnaryInputs;\nexport interface ClipByValueAttrs {\n clipValueMin: number;\n clipValueMax: number;\n}\n\nexport const Complex = 'Complex';\nexport type ComplexInputs = Pick;\n\nexport const ComplexAbs = 'ComplexAbs';\nexport type ComplexAbsInputs = UnaryInputs;\n\nexport const Concat = 'Concat';\nexport type ConcatInputs = TensorInfo[];\nexport interface ConcatAttrs {\n axis: number;\n}\n\nexport const Conv2D = 'Conv2D';\nexport type Conv2DInputs = Pick;\nexport interface Conv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const Conv2DBackpropFilter = 'Conv2DBackpropFilter';\nexport type Conv2DBackpropFilterInputs = Pick;\nexport interface Conv2DBackpropFilterAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n filterShape: [number, number, number, number];\n}\n\nexport const Conv2DBackpropInput = 'Conv2DBackpropInput';\nexport type Conv2DBackpropInputInputs = Pick;\nexport interface Conv2DBackpropInputAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n inputShape: [number, number, number, number];\n}\n\nexport const Conv3D = 'Conv3D';\nexport type Conv3DInputs = Pick;\nexport interface Conv3DAttrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n dataFormat: 'NDHWC'|'NCDHW';\n dilations: [number, number, number]|number;\n}\n\nexport const Conv3DBackpropFilterV2 = 'Conv3DBackpropFilterV2';\nexport type Conv3DBackpropFilterV2Inputs = Pick;\n\nexport interface Conv3DBackpropFilterV2Attrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n filterShape: [number, number, number, number, number];\n}\n\nexport const Conv3DBackpropInputV2 = 'Conv3DBackpropInputV2';\nexport type Conv3DBackpropInputV2Inputs =\n Pick;\nexport interface Conv3DBackpropInputV2Attrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n inputShape: [number, number, number, number, number];\n}\n\nexport const Cos = 'Cos';\nexport type CosInputs = UnaryInputs;\n\nexport const Cosh = 'Cosh';\nexport type CoshInputs = UnaryInputs;\n\nexport const Cumsum = 'Cumsum';\nexport type CumsumInputs = Pick;\nexport interface CumsumAttrs {\n axis: number;\n exclusive: boolean;\n reverse: boolean;\n}\n\nexport const CropAndResize = 'CropAndResize';\nexport type CropAndResizeInputs =\n Pick;\nexport interface CropAndResizeAttrs {\n cropSize: [number, number];\n method: 'bilinear'|'nearest';\n extrapolationValue: number;\n}\n\nexport const DenseBincount = 'DenseBincount';\nexport type DenseBincountInputs = Pick;\nexport interface DenseBincountAttrs {\n size: number;\n binaryOutput?: boolean;\n}\n\nexport const DepthToSpace = 'DepthToSpace';\nexport type DepthToSpaceInputs = Pick;\nexport interface DepthToSpaceAttrs {\n blockSize: number;\n dataFormat: 'NHWC'|'NCHW';\n}\n\nexport const DepthwiseConv2dNative = 'DepthwiseConv2dNative';\nexport type DepthwiseConv2dNativeInputs =\n Pick;\nexport interface DepthwiseConv2dNativeAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const DepthwiseConv2dNativeBackpropFilter =\n 'DepthwiseConv2dNativeBackpropFilter';\nexport type DepthwiseConv2dNativeBackpropFilterInputs =\n Pick;\nexport interface DepthwiseConv2dNativeBackpropFilterAttrs {\n strides: [number, number]|number;\n dilations: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n filterShape: [number, number, number, number];\n}\n\nexport const DepthwiseConv2dNativeBackpropInput =\n 'DepthwiseConv2dNativeBackpropInput';\nexport type DepthwiseConv2dNativeBackpropInputInputs =\n Pick;\nexport interface DepthwiseConv2dNativeBackpropInputAttrs {\n strides: [number, number]|number;\n dilations: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n inputShape: [number, number, number, number];\n}\n\nexport const Diag = 'Diag';\nexport type DiagInputs = Pick;\n\nexport const Dilation2D = 'Dilation2D';\nexport type Dilation2DInputs = Pick;\nexport interface Dilation2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dilations: [number, number]|number;\n}\n\nexport const Dilation2DBackpropInput = 'Dilation2DBackpropInput';\nexport type Dilation2DBackpropInputInputs =\n Pick;\n\nexport const Dilation2DBackpropFilter = 'Dilation2DBackpropFilter';\nexport type Dilation2DBackpropFilterInputs =\n Pick;\n\nexport const RealDiv = 'RealDiv';\nexport type RealDivInputs = BinaryInputs;\n\nexport const Einsum = 'Einsum';\nexport type EinsumInputs = TensorInfo[];\nexport interface EinsumAttrs {\n equation: string;\n}\n\nexport const Elu = 'Elu';\nexport type EluInputs = Pick;\n\nexport const EluGrad = 'EluGrad';\nexport type EluGradInputs = Pick;\n\nexport const Erf = 'Erf';\nexport type ErfInputs = UnaryInputs;\n\nexport const Equal = 'Equal';\nexport type EqualInputs = BinaryInputs;\n\nexport const Exp = 'Exp';\nexport type ExpInputs = UnaryInputs;\n\nexport const ExpandDims = 'ExpandDims';\nexport type ExpandDimsInputs = Pick;\nexport interface ExpandDimsAttrs {\n dim: number;\n}\n\nexport const Expm1 = 'Expm1';\nexport type Expm1Inputs = UnaryInputs;\n\nexport const FFT = 'FFT';\nexport type FFTInputs = Pick;\n\nexport const Fill = 'Fill';\nexport interface FillAttrs {\n shape: number[];\n value: number|string;\n dtype: DataType;\n}\n\nexport const FlipLeftRight = 'FlipLeftRight';\nexport type FlipLeftRightInputs = Pick;\n\nexport const Floor = 'Floor';\nexport type FloorInputs = UnaryInputs;\n\nexport const FloorDiv = 'FloorDiv';\nexport type FloorDivInputs = BinaryInputs;\n\nexport const FusedBatchNorm = 'FusedBatchNorm';\nexport type FusedBatchNormInputs =\n Pick;\nexport interface FusedBatchNormAttrs {\n varianceEpsilon: number;\n}\n\nexport const GatherV2 = 'GatherV2';\nexport type GatherV2Inputs = Pick;\nexport interface GatherV2Attrs {\n axis: number;\n batchDims: number;\n}\n\nexport const GatherNd = 'GatherNd';\nexport type GatherNdInputs = Pick;\n\nexport const Greater = 'Greater';\nexport type GreaterInputs = BinaryInputs;\n\nexport const GreaterEqual = 'GreaterEqual';\nexport type GreaterEqualInputs = BinaryInputs;\n\nexport const Identity = 'Identity';\nexport type IdentityInputs = Pick;\n\nexport const IFFT = 'IFFT';\nexport type IFFTInputs = Pick;\n\nexport const Imag = 'Imag';\nexport type ImagInputs = Pick;\n\nexport const IsFinite = 'IsFinite';\nexport type IsFiniteInputs = UnaryInputs;\n\nexport const IsInf = 'IsInf';\nexport type IsInfInputs = UnaryInputs;\n\nexport const IsNan = 'IsNan';\nexport type IsNanInputs = UnaryInputs;\n\nexport const LeakyRelu = 'LeakyRelu';\nexport type LeakyReluInputs = Pick;\nexport interface LeakyReluAttrs {\n alpha: number;\n}\n\nexport const Less = 'Less';\nexport type LessInputs = BinaryInputs;\n\nexport const LessEqual = 'LessEqual';\nexport type LessEqualInputs = BinaryInputs;\n\nexport const LinSpace = 'LinSpace';\nexport interface LinSpaceAttrs {\n start: number;\n stop: number;\n num: number;\n}\nexport const Log = 'Log';\nexport type LogInputs = UnaryInputs;\n\nexport const Log1p = 'Log1p';\nexport type Log1pInputs = UnaryInputs;\n\nexport const LogicalAnd = 'LogicalAnd';\nexport type LogicalAndInputs = BinaryInputs;\n\nexport const LogicalNot = 'LogicalNot';\nexport type LogicalNotInputs = Pick;\n\nexport const LogicalOr = 'LogicalOr';\nexport type LogicalOrInputs = BinaryInputs;\n\nexport const LogSoftmax = 'LogSoftmax';\nexport type LogSoftmaxInputs = Pick;\nexport interface LogSoftmaxAttrs {\n axis: number;\n}\n\nexport const LRN = 'LRN';\nexport type LRNInputs = Pick;\nexport interface LRNAttrs {\n depthRadius: number;\n bias: number;\n alpha: number;\n beta: number;\n}\n\nexport const LRNGrad = 'LRNGrad';\nexport type LRNGradInputs = Pick;\nexport interface LRNGradAttrs {\n depthRadius: number;\n bias: number;\n alpha: number;\n beta: number;\n}\n\nexport const Max = 'Max';\nexport type MaxInputs = Pick;\nexport interface MaxAttrs {\n reductionIndices: number|number[];\n keepDims: boolean;\n}\n\nexport const Maximum = 'Maximum';\nexport type MaximumInputs = BinaryInputs;\n\nexport const MaxPool = 'MaxPool';\nexport type MaxPoolInputs = Pick;\nexport interface MaxPoolAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPoolGrad = 'MaxPoolGrad';\nexport type MaxPoolGradInputs = Pick;\nexport interface MaxPoolGradAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPool3D = 'MaxPool3D';\nexport type MaxPool3DInputs = Pick;\nexport interface MaxPool3DAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dataFormat: 'NDHWC'|'NCDHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPool3DGrad = 'MaxPool3DGrad';\nexport type MaxPool3DGradInputs =\n Pick;\nexport interface MaxPool3DGradAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPoolWithArgmax = 'MaxPoolWithArgmax';\nexport type MaxPoolWithArgmaxInputs = Pick;\nexport interface MaxPoolWithArgmaxAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n includeBatchInIndex: boolean;\n}\n\nexport const Mean = 'Mean';\nexport type MeanInputs = Pick;\nexport interface MeanAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Min = 'Min';\nexport type MinInputs = Pick;\nexport interface MinAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Minimum = 'Minimum';\nexport type MinimumInputs = BinaryInputs;\n\nexport const MirrorPad = 'MirrorPad';\nexport type MirrorPadInputs = Pick;\nexport interface MirrorPadAttrs {\n paddings: Array<[number, number]>;\n mode: 'reflect'|'symmetric';\n}\n\nexport const Mod = 'Mod';\nexport type ModInputs = BinaryInputs;\n\nexport const Multinomial = 'Multinomial';\nexport type MultinomialInputs = Pick;\nexport interface MultinomialAttrs {\n numSamples: number;\n seed: number;\n normalized: boolean;\n}\n\nexport const Multiply = 'Multiply';\nexport type MultiplyInputs = BinaryInputs;\n\nexport const Neg = 'Neg';\nexport type NegInputs = UnaryInputs;\n\nexport const NotEqual = 'NotEqual';\nexport type NotEqualInputs = BinaryInputs;\n\nexport const NonMaxSuppressionV3 = 'NonMaxSuppressionV3';\nexport type NonMaxSuppressionV3Inputs =\n Pick;\nexport interface NonMaxSuppressionV3Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n}\n\nexport const NonMaxSuppressionV4 = 'NonMaxSuppressionV4';\nexport type NonMaxSuppressionV4Inputs =\n Pick;\nexport interface NonMaxSuppressionV4Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n padToMaxOutputSize: boolean;\n}\n\nexport const NonMaxSuppressionV5 = 'NonMaxSuppressionV5';\nexport type NonMaxSuppressionV5Inputs =\n Pick;\nexport interface NonMaxSuppressionV5Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n softNmsSigma: number;\n}\n\nexport const OnesLike = 'OnesLike';\nexport type OnesLikeInputs = UnaryInputs;\n\nexport const OneHot = 'OneHot';\nexport type OneHotInputs = Pick;\nexport interface OneHotAttrs {\n depth: number;\n onValue: number;\n offValue: number;\n}\n\nexport const Pack = 'Pack';\nexport type PackInputs = TensorInfo[];\nexport interface PackAttrs {\n axis: number;\n}\n\nexport const PadV2 = 'PadV2';\nexport type PadV2Inputs = Pick;\nexport interface PadV2Attrs {\n paddings: Array<[number, number]>;\n constantValue: number;\n}\n\nexport const Pool = 'Pool';\nexport type PoolInputs = Pick;\n\nexport const Pow = 'Pow';\nexport type PowInputs = BinaryInputs;\n\nexport const Prelu = 'Prelu';\nexport type PreluInputs = Pick;\n\nexport const Prod = 'Prod';\nexport type ProdInputs = Pick;\nexport interface ProdAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Range = 'Range';\nexport interface RangeAttrs {\n start: number;\n stop: number;\n step: number;\n dtype: 'float32'|'int32';\n}\n\nexport const Real = 'Real';\nexport type RealInputs = Pick;\n\nexport const Reciprocal = 'Reciprocal';\nexport type ReciprocalInputs = UnaryInputs;\n\nexport const Relu = 'Relu';\nexport type ReluInputs = Pick;\n\nexport const Reshape = 'Reshape';\nexport type ReshapeInputs = Pick;\nexport interface ReshapeAttrs {\n shape: number[];\n}\n\nexport const ResizeNearestNeighbor = 'ResizeNearestNeighbor';\nexport type ResizeNearestNeighborInputs = Pick;\nexport interface ResizeNearestNeighborAttrs {\n alignCorners: boolean;\n halfPixelCenters: boolean;\n size: [number, number];\n}\n\nexport const ResizeNearestNeighborGrad = 'ResizeNearestNeighborGrad';\nexport type ResizeNearestNeighborGradInputs =\n Pick;\nexport type ResizeNearestNeighborGradAttrs = ResizeNearestNeighborAttrs;\n\nexport const ResizeBilinear = 'ResizeBilinear';\nexport type ResizeBilinearInputs = Pick;\nexport interface ResizeBilinearAttrs {\n alignCorners: boolean;\n halfPixelCenters: boolean;\n size: [number, number];\n}\n\nexport const ResizeBilinearGrad = 'ResizeBilinearGrad';\nexport type ResizeBilinearGradInputs = Pick;\nexport type ResizeBilinearGradAttrs = ResizeBilinearAttrs;\n\nexport const Relu6 = 'Relu6';\nexport type Relu6Inputs = Pick;\n\nexport const Reverse = 'Reverse';\nexport type ReverseInputs = Pick;\nexport interface ReverseAttrs {\n dims: number|number[];\n}\n\nexport const Round = 'Round';\nexport type RoundInputs = UnaryInputs;\n\nexport const Rsqrt = 'Rsqrt';\nexport type RsqrtInputs = UnaryInputs;\n\nexport const ScatterNd = 'ScatterNd';\nexport type ScatterNdInputs = Pick;\nexport interface ScatterNdAttrs {\n shape: number[];\n}\n\nexport const Select = 'Select';\nexport type SelectInputs = Pick;\n\nexport const Selu = 'Selu';\nexport type SeluInputs = Pick;\n\nexport const Slice = 'Slice';\nexport type SliceInputs = Pick;\nexport interface SliceAttrs {\n begin: number|number[];\n size: number|number[];\n}\nexport const Sin = 'Sin';\nexport type SinInputs = UnaryInputs;\n\nexport const Sinh = 'Sinh';\nexport type SinhInputs = UnaryInputs;\n\nexport const Sign = 'Sign';\nexport type SignInputs = UnaryInputs;\n\nexport const Sigmoid = 'Sigmoid';\nexport type SigmoidInputs = UnaryInputs;\n\nexport const Softplus = 'Softplus';\nexport type SoftplusInputs = UnaryInputs;\n\nexport const Sqrt = 'Sqrt';\nexport type SqrtInputs = UnaryInputs;\n\nexport const Sum = 'Sum';\nexport type SumInputs = Pick;\nexport interface SumAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const SpaceToBatchND = 'SpaceToBatchND';\nexport type SpaceToBatchNDInputs = Pick;\nexport interface SpaceToBatchNDAttrs {\n blockShape: number[];\n paddings: number[][];\n}\n\nexport const SplitV = 'SplitV';\nexport type SplitVInputs = Pick;\nexport interface SplitVAttrs {\n numOrSizeSplits: number[]|number;\n axis: number;\n}\n\nexport const Softmax = 'Softmax';\nexport type SoftmaxInputs = Pick;\nexport interface SoftmaxAttrs {\n dim: number;\n}\n\nexport const SparseReshape = 'SparseReshape';\nexport type SparseReshapeInputs =\n Pick;\n\nexport const SparseToDense = 'SparseToDense';\nexport type SparseToDenseInputs =\n Pick;\nexport interface SparseToDenseAttrs {\n outputShape: number[];\n}\n\nexport const SquaredDifference = 'SquaredDifference';\nexport type SquaredDifferenceInputs = BinaryInputs;\n\nexport const Square = 'Square';\nexport type SquareInputs = Pick;\n\nexport const StridedSlice = 'StridedSlice';\nexport type StridedSliceInputs = Pick;\nexport interface StridedSliceAttrs {\n begin: number[];\n end: number[];\n strides: number[];\n beginMask: number;\n endMask: number;\n ellipsisMask: number;\n newAxisMask: number;\n shrinkAxisMask: number;\n}\n\nexport const Sub = 'Sub';\nexport type SubInputs = BinaryInputs;\n\nexport const Tan = 'Tan';\nexport type TanInputs = UnaryInputs;\n\nexport const Tanh = 'Tanh';\nexport type TanhInputs = UnaryInputs;\n\nexport const Tile = 'Tile';\nexport type TileInputs = Pick;\nexport interface TileAttrs {\n reps: number[];\n}\n\nexport const TopK = 'TopK';\nexport type TopKInputs = Pick;\nexport interface TopKAttrs {\n k: number;\n sorted: boolean;\n}\n\nexport const Transform = 'Transform';\nexport type TransformInputs = Pick;\nexport interface TransformAttrs {\n interpolation: 'nearest'|'bilinear';\n fillMode: 'constant'|'reflect'|'wrap'|'nearest';\n fillValue: number;\n outputShape?: [number, number];\n}\n\nexport const Transpose = 'Transpose';\nexport type TransposeInputs = Pick;\nexport interface TransposeAttrs {\n perm: number[];\n}\n\nexport const Unique = 'Unique';\nexport type UniqueInputs = Pick;\nexport interface UniqueAttrs {\n axis: number;\n}\n\nexport type UnaryInputs = Pick;\n\nexport const Unpack = 'Unpack';\nexport type UnpackInputs = Pick;\nexport interface UnpackAttrs {\n axis: number;\n}\n\nexport const UnsortedSegmentSum = 'UnsortedSegmentSum';\nexport type UnsortedSegmentSumInputs =\n Pick;\nexport interface UnsortedSegmentSumAttrs {\n numSegments: number;\n}\n\nexport const ZerosLike = 'ZerosLike';\nexport type ZerosLikeInputs = UnaryInputs;\n\n/**\n * TensorFlow.js-only kernels\n */\nexport const Step = 'Step';\nexport type StepInputs = UnaryInputs;\nexport interface StepAttrs {\n alpha: number;\n}\n\nexport const FromPixels = 'FromPixels';\nexport interface FromPixelsInputs {\n pixels: PixelData|ImageData|HTMLImageElement|HTMLCanvasElement|\n HTMLVideoElement|ImageBitmap;\n}\nexport interface FromPixelsAttrs {\n numChannels: number;\n}\n\nexport const RotateWithOffset = 'RotateWithOffset';\nexport type RotateWithOffsetInputs = Pick;\nexport interface RotateWithOffsetAttrs {\n radians: number;\n fillValue: number|[number, number, number];\n center: number|[number, number];\n}\n\nexport const _FusedMatMul = '_FusedMatMul';\n// tslint:disable-next-line: class-name\nexport interface _FusedMatMulInputs extends NamedTensorInfoMap {\n a: TensorInfo;\n b: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\n// tslint:disable-next-line: class-name\nexport interface _FusedMatMulAttrs {\n transposeA: boolean;\n transposeB: boolean;\n activation: Activation;\n leakyreluAlpha?: number;\n}\n\nexport const FusedConv2D = 'FusedConv2D';\nexport interface FusedConv2DInputs extends NamedTensorInfoMap {\n x: TensorInfo;\n filter: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\nexport interface FusedConv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode: 'floor'|'round'|'ceil';\n activation: Activation;\n leakyreluAlpha?: number;\n}\n\nexport const FusedDepthwiseConv2D = 'FusedDepthwiseConv2D';\nexport interface FusedDepthwiseConv2DInputs extends NamedTensorInfoMap {\n x: TensorInfo;\n filter: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\nexport interface FusedDepthwiseConv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode: 'floor'|'round'|'ceil';\n activation: Activation;\n leakyreluAlpha?: number;\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {env} from './environment';\n\nimport {getGlobal} from './global_util';\nimport {NamedGradientMap} from './tape';\nimport {Tensor} from './tensor';\nimport {DataType, RecursiveArray} from './types';\n\nconst kernelRegistry =\n getGlobal('kernelRegistry', () => new Map());\nconst gradRegistry =\n getGlobal('gradRegistry', () => new Map());\n\nexport type DataId = object;\n\ntype AttributeValue =\n number|number[]|boolean|boolean[]|string|string[]|NamedAttrMap;\n\n/** These are extra non-tensor/primitive params passed to kernel functions. */\nexport type Attribute = AttributeValue|RecursiveArray;\n\n/** Specifies the code to run when executing a kernel. */\nexport type KernelFunc = (params: {\n inputs: NamedTensorInfoMap,\n backend: {},\n attrs?: NamedAttrMap,\n}) => TensorInfo|TensorInfo[];\n\n/** The function to run when computing a gradient during backprop. */\nexport type GradFunc =\n (dy: Tensor|Tensor[], saved: Tensor[], attrs: NamedAttrMap) =>\n NamedGradientMap;\n\n/** Function that gets called after the backend initializes. */\nexport type KernelSetupFunc = (backend: {}) => void;\n/** Function that gets called right before the backend is disposed. */\nexport type KernelDisposeFunc = KernelSetupFunc;\n\n/** Config object for registering a kernel in the global registry. */\nexport interface KernelConfig {\n kernelName: string;\n backendName: string;\n kernelFunc: KernelFunc;\n setupFunc?: KernelSetupFunc;\n disposeFunc?: KernelDisposeFunc;\n}\n\n/** Config object for registering a gradient in the global registry. */\nexport interface GradConfig {\n kernelName: string;\n inputsToSave?: string[];\n // When saveAllInputs is true, all inputs will be saved. Only use this flag\n // if inputs is an array of Tensors.\n saveAllInputs?: boolean;\n outputsToSave?: boolean[];\n gradFunc: GradFunc;\n}\n\n/** Holds metadata for a given tensor. */\nexport interface TensorInfo {\n dataId: DataId;\n shape: number[];\n dtype: DataType;\n}\n\nexport interface NamedTensorInfoMap {\n [name: string]: TensorInfo;\n}\n\nexport interface NamedAttrMap {\n [name: string]: Attribute;\n}\n\n/**\n * Returns the kernel function (code) associated with the provided names.\n *\n * @param kernelName The official name of the kernel.\n * @param backendName The official name of the backend.\n */\nexport function getKernel(\n kernelName: string, backendName: string): KernelConfig {\n const key = makeKey(kernelName, backendName);\n return kernelRegistry.get(key);\n}\n\n/**\n * Returns the registered gradient info associated with the provided kernel.\n * @param kernelName The official TF kernel name.\n */\nexport function getGradient(kernelName: string): GradConfig {\n return gradRegistry.get(kernelName);\n}\n\nexport function getKernelsForBackend(backendName: string): KernelConfig[] {\n const it = kernelRegistry.entries();\n const result: KernelConfig[] = [];\n\n while (true) {\n const {done, value} = it.next();\n if (done) {\n break;\n }\n const [key, config] = value;\n const [backend, ] = key.split('_');\n if (backend === backendName) {\n result.push(config);\n }\n }\n return result;\n}\n\n/**\n * Registers the function (forward pass) for the kernel in a global registry.\n *\n * @param config A config object with the following properties:\n * - `kernelName` The official name of the kernel.\n * - `backendName` The official name of the backend.\n * - `kernelFunc` The function to run during the forward pass of the kernel.\n * - `setupFunc` Optional. Gets called once, after the backend initializes.\n * - `disposeFunc` Optional. Gets called once, right before the backend is\n * disposed.\n */\nexport function registerKernel(config: KernelConfig) {\n const {kernelName, backendName} = config;\n const key = makeKey(kernelName, backendName);\n if (kernelRegistry.has(key)) {\n console.warn(\n `The kernel '${kernelName}' for backend ` +\n `'${backendName}' is already registered`);\n }\n kernelRegistry.set(key, config);\n}\n\n/**\n * Registers a gradient function for a given kernel in the global registry,\n * to be used during the back-propagation of that kernel.\n *\n * @param config An object with the following properties:\n * - `kernelName` The name of the kernel that the gradient function is for.\n * - `gradFunc` The function to run during back-propagation.\n */\nexport function registerGradient(config: GradConfig) {\n const {kernelName} = config;\n\n if (gradRegistry.has(kernelName)) {\n // TODO (yassogba) after 3.0 assess whether we need to keep this gated\n // to debug mode.\n if (env().getBool('DEBUG')) {\n console.warn(`Overriding the gradient for '${kernelName}'`);\n }\n }\n gradRegistry.set(kernelName, config);\n}\n\n/**\n * Removes the kernel function from the registry.\n *\n * @param kernelName The official name of the kernel.\n * @param backendName The official name of the backend.\n *\n */\nexport function unregisterKernel(\n kernelName: string, backendName: string): void {\n const key = makeKey(kernelName, backendName);\n if (!kernelRegistry.has(key)) {\n throw new Error(\n `The kernel '${kernelName}' for backend ` +\n `'${backendName}' is not registered`);\n }\n kernelRegistry.delete(key);\n}\n\n/** Removes the registered gradient from the global registry. */\nexport function unregisterGradient(kernelName: string): void {\n if (!gradRegistry.has(kernelName)) {\n throw new Error(\n `The gradient '${kernelName}' for backend is not registered`);\n }\n gradRegistry.delete(kernelName);\n}\n\n/**\n * Finds kernels that have already been registered to a backend and re-registers\n * them for a new backend. Useful for registering custom backends.\n * @param registeredBackendName Already registered backend.\n * @param newBackendName New backend.\n */\nexport function copyRegisteredKernels(\n registeredBackendName: string, newBackendName: string): void {\n const kernels = getKernelsForBackend(registeredBackendName);\n kernels.forEach(kernelConfig => {\n const newKernelConfig =\n Object.assign({}, kernelConfig, {backendName: newBackendName});\n registerKernel(newKernelConfig);\n });\n}\n\nfunction makeKey(kernelName: string, backendName: string) {\n return `${backendName}_${kernelName}`;\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {env} from './environment';\nimport {BackendValues, DataType, TensorLike, TypedArray} from './types';\nimport * as base from './util_base';\nexport * from './util_base';\n\n/**\n * Create typed array for scalar value. Used for storing in `DataStorage`.\n */\nexport function createScalarValue(\n value: DataType, dtype: DataType): BackendValues {\n if (dtype === 'string') {\n return encodeString(value);\n }\n\n return toTypedArray([value], dtype);\n}\n\nfunction noConversionNeeded(a: TensorLike, dtype: DataType): boolean {\n return (a instanceof Float32Array && dtype === 'float32') ||\n (a instanceof Int32Array && dtype === 'int32') ||\n (a instanceof Uint8Array && dtype === 'bool');\n}\n\nexport function toTypedArray(a: TensorLike, dtype: DataType): TypedArray {\n if (dtype === 'string') {\n throw new Error('Cannot convert a string[] to a TypedArray');\n }\n if (Array.isArray(a)) {\n a = base.flatten(a);\n }\n\n if (env().getBool('DEBUG')) {\n base.checkConversionForErrors(a as number[], dtype);\n }\n if (noConversionNeeded(a, dtype)) {\n return a as TypedArray;\n }\n if (dtype == null || dtype === 'float32' || dtype === 'complex64') {\n return new Float32Array(a as number[]);\n } else if (dtype === 'int32') {\n return new Int32Array(a as number[]);\n } else if (dtype === 'bool') {\n const bool = new Uint8Array((a as number[]).length);\n for (let i = 0; i < bool.length; ++i) {\n if (Math.round((a as number[])[i]) !== 0) {\n bool[i] = 1;\n }\n }\n return bool;\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\n/**\n * Returns the current high-resolution time in milliseconds relative to an\n * arbitrary time in the past. It works across different platforms (node.js,\n * browsers).\n *\n * ```js\n * console.log(tf.util.now());\n * ```\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function now(): number {\n return env().platform.now();\n}\n\n/**\n * Returns a platform-specific implementation of\n * [`fetch`](https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API).\n *\n * If `fetch` is defined on the global object (`window`, `process`, etc.),\n * `tf.util.fetch` returns that function.\n *\n * If not, `tf.util.fetch` returns a platform-specific solution.\n *\n * ```js\n * const resource = await tf.util.fetch('https://unpkg.com/@tensorflow/tfjs');\n * // handle response\n * ```\n *\n * @doc {heading: 'Util'}\n */\nexport function fetch(\n path: string, requestInits?: RequestInit): Promise {\n return env().platform.fetch(path, requestInits);\n}\n\n/**\n * Encodes the provided string into bytes using the provided encoding scheme.\n *\n * @param s The string to encode.\n * @param encoding The encoding scheme. Defaults to utf-8.\n *\n * @doc {heading: 'Util'}\n */\nexport function encodeString(s: string, encoding = 'utf-8'): Uint8Array {\n encoding = encoding || 'utf-8';\n return env().platform.encode(s, encoding);\n}\n\n/**\n * Decodes the provided bytes into a string using the provided encoding scheme.\n * @param bytes The bytes to decode.\n *\n * @param encoding The encoding scheme. Defaults to utf-8.\n *\n * @doc {heading: 'Util'}\n */\nexport function decodeString(bytes: Uint8Array, encoding = 'utf-8'): string {\n encoding = encoding || 'utf-8';\n return env().platform.decode(bytes, encoding);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {BackendTimer, BackendTimingInfo} from './backends/backend';\nimport {env} from './environment';\nimport {Tensor} from './tensor';\nimport {NamedTensorMap} from './tensor_types';\nimport {DataType, DataTypeMap, TypedArray} from './types';\nimport * as util from './util';\n\nexport type KernelProfile = {\n kernelName: string,\n outputs: Tensor[],\n inputs: NamedTensorMap,\n timeMs: Promise,\n extraInfo: Promise\n};\n\nexport class Profiler {\n constructor(private backendTimer: BackendTimer, private logger?: Logger) {\n if (logger == null) {\n this.logger = new Logger();\n }\n }\n\n profileKernel(kernelName: string, inputs: NamedTensorMap, f: () => Tensor[]):\n KernelProfile {\n let outputs: Tensor[];\n const holdResultWrapperFn = () => {\n outputs = f();\n };\n let timer: Promise;\n const start = util.now();\n if (this.backendTimer.timerAvailable()) {\n timer = this.backendTimer.time(holdResultWrapperFn);\n } else {\n holdResultWrapperFn();\n for (const output of outputs) {\n output.dataSync();\n }\n timer = Promise.resolve({kernelMs: util.now() - start});\n }\n if (env().getBool('CHECK_COMPUTATION_FOR_ERRORS')) {\n for (let i = 0; i < outputs.length; i++) {\n const output = outputs[i];\n // Dangling promise here because we don't want to propagate up\n // asynchronicity.\n output.data().then(tensorVals => {\n checkComputationForErrors(tensorVals, output.dtype, kernelName);\n });\n }\n }\n\n const kernelProfile = {\n kernelName,\n outputs,\n inputs,\n timeMs: timer.then(timing => timing.kernelMs),\n extraInfo: timer.then(\n timing => timing.getExtraProfileInfo != null ?\n timing.getExtraProfileInfo() :\n '')\n };\n return kernelProfile;\n }\n\n logKernelProfile(kernelProfile: KernelProfile): void {\n const {kernelName, outputs, timeMs, inputs, extraInfo} = kernelProfile;\n\n outputs.forEach(result => {\n Promise.all([result.data(), timeMs, extraInfo]).then(valueContainer => {\n this.logger.logKernelProfile(\n kernelName, result, valueContainer[0], valueContainer[1], inputs,\n valueContainer[2]);\n });\n });\n }\n}\n\nexport function checkComputationForErrors(\n vals: DataTypeMap[D], dtype: D, kernelName: string): boolean {\n if (dtype !== 'float32') {\n // Only floating point computations will generate NaN values\n return false;\n }\n for (let i = 0; i < vals.length; i++) {\n const num = vals[i] as number;\n if (isNaN(num) || !isFinite(num)) {\n // Throwing custom exception so behavior is testable.\n console.warn(`Found ${num} in the result of '${kernelName}'`);\n return true;\n }\n }\n return false;\n}\n\nexport class Logger {\n logKernelProfile(\n name: string, result: Tensor, vals: TypedArray,\n timeMs: number|{error: string}, inputs: NamedTensorMap,\n extraInfo?: string) {\n const time = typeof timeMs === 'number' ? util.rightPad(`${timeMs}ms`, 9) :\n timeMs['error'];\n const paddedName = util.rightPad(name, 25);\n const rank = result.rank;\n const size = result.size;\n const shape = util.rightPad(result.shape.toString(), 14);\n let inputShapesDescription = '';\n\n for (const name in inputs) {\n const input = inputs[name];\n if (input != null) {\n // The input might be a non-tensor (e.g HTMLImageElement), in which case\n // we claim the output shape as input shape.\n const inputShape = input.shape || result.shape;\n const inputRank = inputShape.length;\n inputShapesDescription +=\n `${name}: ${inputRank}D ${inputRank > 0 ? inputShape : ''} `;\n }\n }\n\n console.log(\n `%c${paddedName}\\t%c${time}\\t%c${rank}D ${shape}\\t%c${size}\\t%c${\n inputShapesDescription}\\t%c${extraInfo}`,\n 'font-weight:bold', 'color:red', 'color:blue', 'color: orange',\n 'color: green', 'color: steelblue');\n }\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from './tensor';\nimport {NamedTensorMap} from './tensor_types';\nimport * as util from './util';\n\nexport interface TapeNode {\n id: number;\n kernelName: string;\n outputs: Tensor[];\n inputs: NamedTensorMap;\n // Optional params, defined only for ops with gradient impl.\n gradient?: (dys: Tensor[]) => NamedGradientMap;\n saved?: Tensor[];\n}\n\nexport type NamedGradientMap = {\n [inputName: string]: () => Tensor;\n};\n\n/**\n * Computes a list of TapeNodes that connect x to y, filtering everything else\n * out and preserving the order of the original tape elements.\n *\n * @param tape The tape elements to filter.\n * @param xs The input Tensors.\n * @param y The output Tensor.\n */\nexport function getFilteredNodesXToY(\n tape: TapeNode[], xs: Tensor[], y: Tensor): TapeNode[] {\n // Forward pass to compute all the nodes and Tensors that are transitively a\n // function of x.\n const tensorsFromX: {[tensorId: number]: boolean} = {};\n const nodesFromX: {[nodeId: number]: boolean} = {};\n for (let i = 0; i < xs.length; i++) {\n tensorsFromX[xs[i].id] = true;\n }\n\n for (let i = 0; i < tape.length; i++) {\n const node = tape[i];\n const nodeInputs = node.inputs;\n for (const inputName in nodeInputs) {\n const input = nodeInputs[inputName];\n\n let anyInputFromX = false;\n for (let j = 0; j < xs.length; j++) {\n if (tensorsFromX[input.id]) {\n node.outputs.forEach(output => tensorsFromX[output.id] = true);\n anyInputFromX = true;\n nodesFromX[node.id] = true;\n break;\n }\n }\n\n if (anyInputFromX) {\n break;\n }\n }\n }\n\n // Backward pass to find all of the nodes and Tensors that lead to y.\n const tensorsLeadToY: {[tensorId: number]: boolean} = {};\n tensorsLeadToY[y.id] = true;\n const nodesToY: {[nodeId: number]: boolean} = {};\n\n for (let i = tape.length - 1; i >= 0; i--) {\n const node = tape[i];\n const nodeInputs = node.inputs;\n\n // If any of the outputs lead to y, mark all of the inputs as leading to y.\n for (let j = 0; j < node.outputs.length; j++) {\n if (tensorsLeadToY[node.outputs[j].id]) {\n for (const inputName in nodeInputs) {\n tensorsLeadToY[nodeInputs[inputName].id] = true;\n nodesToY[node.id] = true;\n }\n break;\n }\n }\n }\n\n // Return the paths that come from x and lead to y.\n const filteredTape: TapeNode[] = [];\n for (let i = 0; i < tape.length; i++) {\n const node = tape[i];\n\n if (nodesFromX[node.id] && nodesToY[node.id]) {\n // Prune the inputs from the node that aren't a function of x.\n const prunedInputs: {[inputName: string]: Tensor} = {};\n for (const inputName in node.inputs) {\n const nodeInput = node.inputs[inputName];\n if (tensorsFromX[nodeInput.id]) {\n prunedInputs[inputName] = nodeInput;\n }\n }\n\n // Copy the node and overwrite inputsAndArgs to the pruned version.\n const prunedNode = Object.assign({}, node);\n prunedNode.inputs = prunedInputs;\n prunedNode.outputs = node.outputs;\n\n filteredTape.push(prunedNode);\n }\n }\n\n return filteredTape;\n}\n\n/**\n * Backpropagate gradients through the filtered TapeNodes.\n *\n * @param tensorAccumulatedGradientMap A map of Tensor to its gradient. This map\n * is mutated by this method.\n * @param filteredTape The filtered TapeNodes to backprop through.\n */\nexport function backpropagateGradients(\n tensorAccumulatedGradientMap: {[tensorId: number]: Tensor},\n filteredTape: TapeNode[], tidy: (f: Function) => Tensor,\n add: (a: Tensor, b: Tensor) => Tensor) {\n // Walk the tape backward and keep a map of Tensor to its gradient.\n for (let i = filteredTape.length - 1; i >= 0; i--) {\n const node = filteredTape[i];\n\n const dys: Tensor[] = [];\n node.outputs.forEach(o => {\n const gradTensor = tensorAccumulatedGradientMap[o.id];\n if (gradTensor != null) {\n dys.push(gradTensor);\n } else {\n // This particular output is not in the back-propagation subgraph, so it\n // does not affect the final output, thus we put null for its dy.\n dys.push(null);\n }\n });\n\n if (node.gradient == null) {\n throw new Error(\n `Cannot compute gradient: gradient function not found ` +\n `for ${node.kernelName}.`);\n }\n\n // Backprop dy through this node and accumulate gradients over the inputs.\n const inputGradients = node.gradient(dys);\n\n for (const inputName in node.inputs) {\n if (!(inputName in inputGradients)) {\n throw new Error(\n `Cannot backprop through input ${inputName}. ` +\n `Available gradients found: ${Object.keys(inputGradients)}.`);\n }\n\n // Call the gradient function.\n const dx = tidy(() => inputGradients[inputName]());\n if (dx.dtype !== 'float32') {\n throw new Error(\n `Error in gradient for op ${\n node.kernelName}. The gradient of input ` +\n `${inputName} must have 'float32' dtype, but has '${dx.dtype}'`);\n }\n const x = node.inputs[inputName];\n if (!util.arraysEqual(dx.shape, x.shape)) {\n throw new Error(\n `Error in gradient for op ${\n node.kernelName}. The gradient of input ` +\n `'${inputName}' has shape '${dx.shape}', which does not match ` +\n `the shape of the input '${x.shape}'`);\n }\n\n if (tensorAccumulatedGradientMap[x.id] == null) {\n tensorAccumulatedGradientMap[x.id] = dx;\n } else {\n const curGradient = tensorAccumulatedGradientMap[x.id];\n tensorAccumulatedGradientMap[x.id] = add(curGradient, dx);\n curGradient.dispose();\n }\n }\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {DataType, TypedArray} from './types';\nimport {computeStrides, isString, rightPad, sizeFromShape} from './util';\n\n// Maximum number of values before we decide to show ellipsis.\nconst FORMAT_LIMIT_NUM_VALS = 20;\n// Number of first and last values to show when displaying a, b,...,y, z.\nconst FORMAT_NUM_FIRST_LAST_VALS = 3;\n// Number of significant digits to show.\nconst FORMAT_NUM_SIG_DIGITS = 7;\n\nexport function tensorToString(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n verbose: boolean) {\n const strides = computeStrides(shape);\n const padPerCol = computeMaxSizePerColumn(vals, shape, dtype, strides);\n const rank = shape.length;\n const valsLines = subTensorToString(vals, shape, dtype, strides, padPerCol);\n const lines = ['Tensor'];\n if (verbose) {\n lines.push(` dtype: ${dtype}`);\n lines.push(` rank: ${rank}`);\n lines.push(` shape: [${shape}]`);\n lines.push(` values:`);\n }\n lines.push(valsLines.map(l => ' ' + l).join('\\n'));\n return lines.join('\\n');\n}\n\nfunction computeMaxSizePerColumn(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n strides: number[]): number[] {\n const n = sizeFromShape(shape);\n const numCols = strides[strides.length - 1];\n const padPerCol = new Array(numCols).fill(0);\n const rank = shape.length;\n const valuesOrTuples =\n dtype === 'complex64' ? createComplexTuples(vals) : vals;\n\n if (rank > 1) {\n for (let row = 0; row < n / numCols; row++) {\n const offset = row * numCols;\n for (let j = 0; j < numCols; j++) {\n padPerCol[j] = Math.max(\n padPerCol[j],\n valToString(valuesOrTuples[offset + j], 0, dtype).length);\n }\n }\n }\n return padPerCol;\n}\n\nfunction valToString(\n val: number|string|[number, number], pad: number, dtype: DataType) {\n let valStr: string;\n if (Array.isArray(val)) {\n valStr = `${parseFloat(val[0].toFixed(FORMAT_NUM_SIG_DIGITS))} + ` +\n `${parseFloat(val[1].toFixed(FORMAT_NUM_SIG_DIGITS))}j`;\n } else if (isString(val)) {\n valStr = `'${val}'`;\n } else if (dtype === 'bool') {\n valStr = boolNumToString(val);\n } else {\n valStr = parseFloat(val.toFixed(FORMAT_NUM_SIG_DIGITS)).toString();\n }\n\n return rightPad(valStr, pad);\n}\n\nfunction boolNumToString(v: number): string {\n return v === 0 ? 'false' : 'true';\n}\n\nfunction subTensorToString(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n strides: number[], padPerCol: number[], isLast = true): string[] {\n const storagePerElement = dtype === 'complex64' ? 2 : 1;\n\n const size = shape[0];\n const rank = shape.length;\n if (rank === 0) {\n if (dtype === 'complex64') {\n const complexTuple = createComplexTuples(vals);\n return [valToString(complexTuple[0], 0, dtype)];\n }\n if (dtype === 'bool') {\n return [boolNumToString(vals[0] as number)];\n }\n return [vals[0].toString()];\n }\n\n if (rank === 1) {\n if (size > FORMAT_LIMIT_NUM_VALS) {\n const firstValsSize = FORMAT_NUM_FIRST_LAST_VALS * storagePerElement;\n\n let firstVals = Array.from(\n vals.slice(0, firstValsSize));\n let lastVals = Array.from(vals.slice(\n (size - FORMAT_NUM_FIRST_LAST_VALS) * storagePerElement,\n size * storagePerElement));\n if (dtype === 'complex64') {\n firstVals = createComplexTuples(firstVals);\n lastVals = createComplexTuples(lastVals);\n }\n return [\n '[' +\n firstVals.map((x, i) => valToString(x, padPerCol[i], dtype))\n .join(', ') +\n ', ..., ' +\n lastVals\n .map(\n (x, i) => valToString(\n x, padPerCol[size - FORMAT_NUM_FIRST_LAST_VALS + i], dtype))\n .join(', ') +\n ']'\n ];\n }\n const displayVals: Array =\n dtype === 'complex64' ? createComplexTuples(vals) :\n Array.from(vals);\n\n return [\n '[' +\n displayVals.map((x, i) => valToString(x, padPerCol[i], dtype))\n .join(', ') +\n ']'\n ];\n }\n\n // The array is rank 2 or more.\n const subshape = shape.slice(1);\n const substrides = strides.slice(1);\n const stride = strides[0] * storagePerElement;\n const lines: string[] = [];\n if (size > FORMAT_LIMIT_NUM_VALS) {\n for (let i = 0; i < FORMAT_NUM_FIRST_LAST_VALS; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n false /* isLast */));\n }\n lines.push('...');\n for (let i = size - FORMAT_NUM_FIRST_LAST_VALS; i < size; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n i === size - 1 /* isLast */));\n }\n } else {\n for (let i = 0; i < size; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n i === size - 1 /* isLast */));\n }\n }\n const sep = rank === 2 ? ',' : '';\n lines[0] = '[' + lines[0] + sep;\n for (let i = 1; i < lines.length - 1; i++) {\n lines[i] = ' ' + lines[i] + sep;\n }\n let newLineSep = ',\\n';\n for (let i = 2; i < rank; i++) {\n newLineSep += '\\n';\n }\n lines[lines.length - 1] =\n ' ' + lines[lines.length - 1] + ']' + (isLast ? '' : newLineSep);\n return lines;\n}\n\nfunction createComplexTuples(vals: Array<{}>|\n TypedArray): Array<[number, number]> {\n const complexTuples: Array<[number, number]> = [];\n for (let i = 0; i < vals.length; i += 2) {\n complexTuples.push([vals[i], vals[i + 1]] as [number, number]);\n }\n return complexTuples;\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {getGlobal} from './global_util';\nimport {tensorToString} from './tensor_format';\nimport {ArrayMap, BackendValues, DataType, DataTypeMap, DataValues, NumericDataType, Rank, ShapeMap, SingleValueMap, TypedArray} from './types';\nimport * as util from './util';\nimport {computeStrides, toNestedArray} from './util';\n\nexport interface TensorData {\n dataId?: DataId;\n values?: DataTypeMap[D];\n}\n\n// This interface mimics KernelBackend (in backend.ts), which would create a\n// circular dependency if imported.\nexport interface Backend {}\n\n/**\n * A mutable object, similar to `tf.Tensor`, that allows users to set values\n * at locations before converting to an immutable `tf.Tensor`.\n *\n * See `tf.buffer` for creating a tensor buffer.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class TensorBuffer {\n size: number;\n shape: ShapeMap[R];\n strides: number[];\n values: DataTypeMap[D];\n\n constructor(shape: ShapeMap[R], public dtype: D, values?: DataTypeMap[D]) {\n this.shape = shape.slice() as ShapeMap[R];\n this.size = util.sizeFromShape(shape);\n\n if (values != null) {\n const n = values.length;\n util.assert(\n n === this.size,\n () => `Length of values '${n}' does not match the size ` +\n `inferred by the shape '${this.size}'.`);\n }\n if (dtype === 'complex64') {\n throw new Error(\n `complex64 dtype TensorBuffers are not supported. Please create ` +\n `a TensorBuffer for the real and imaginary parts separately and ` +\n `call tf.complex(real, imag).`);\n }\n this.values = values || util.getArrayFromDType(dtype, this.size);\n this.strides = computeStrides(shape);\n }\n\n /**\n * Sets a value in the buffer at a given location.\n *\n * @param value The value to set.\n * @param locs The location indices.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n set(value: SingleValueMap[D], ...locs: number[]): void {\n if (locs.length === 0) {\n locs = [0];\n }\n util.assert(\n locs.length === this.rank,\n () => `The number of provided coordinates (${locs.length}) must ` +\n `match the rank (${this.rank})`);\n\n const index = this.locToIndex(locs);\n this.values[index] = value as number;\n }\n\n /**\n * Returns the value in the buffer at the provided location.\n *\n * @param locs The location indices.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n get(...locs: number[]): SingleValueMap[D] {\n if (locs.length === 0) {\n locs = [0];\n }\n let i = 0;\n for (const loc of locs) {\n if (loc < 0 || loc >= this.shape[i]) {\n const msg = `Requested out of range element at ${locs}. ` +\n ` Buffer shape=${this.shape}`;\n throw new Error(msg);\n }\n i++;\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += this.strides[i] * locs[i];\n }\n return this.values[index] as SingleValueMap[D];\n }\n\n locToIndex(locs: number[]): number {\n if (this.rank === 0) {\n return 0;\n } else if (this.rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += this.strides[i] * locs[i];\n }\n return index;\n }\n\n indexToLoc(index: number): number[] {\n if (this.rank === 0) {\n return [];\n } else if (this.rank === 1) {\n return [index];\n }\n const locs: number[] = new Array(this.shape.length);\n for (let i = 0; i < locs.length - 1; ++i) {\n locs[i] = Math.floor(index / this.strides[i]);\n index -= locs[i] * this.strides[i];\n }\n locs[locs.length - 1] = index;\n return locs;\n }\n\n get rank() {\n return this.shape.length;\n }\n\n /**\n * Creates an immutable `tf.Tensor` object from the buffer.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n toTensor(): Tensor {\n return trackerFn().makeTensor(this.values, this.shape, this.dtype) as\n Tensor;\n }\n}\n\nexport interface TensorTracker {\n makeTensor(\n values: DataValues, shape: number[], dtype: DataType,\n backend?: Backend): Tensor;\n makeVariable(\n initialValue: Tensor, trainable?: boolean, name?: string,\n dtype?: DataType): Variable;\n incRef(a: Tensor, backend: Backend): void;\n disposeTensor(t: Tensor): void;\n disposeVariable(v: Variable): void;\n read(dataId: DataId): Promise;\n readSync(dataId: DataId): BackendValues;\n}\n\n/**\n * The Tensor class calls into this handler to delegate chaining operations.\n */\nexport interface OpHandler {\n cast(x: T, dtype: DataType): T;\n buffer(\n shape: ShapeMap[R], dtype: D,\n values?: DataTypeMap[D]): TensorBuffer;\n print(x: T, verbose: boolean): void;\n clone(x: T): T;\n // TODO(yassogba) bring reshape back?\n}\n\n// For tracking tensor creation and disposal.\nlet trackerFn: () => TensorTracker = null;\n// Used by chaining methods to call into ops.\nlet opHandler: OpHandler = null;\n// Used to warn about deprecated methods.\nlet deprecationWarningFn: (msg: string) => void = null;\n// This here so that we can use this method on dev branches and keep the\n// functionality at master.\n// tslint:disable-next-line:no-unused-expression\n[deprecationWarningFn];\n\n/**\n * An external consumer can register itself as the tensor tracker. This way\n * the Tensor class can notify the tracker for every tensor created and\n * disposed.\n */\nexport function setTensorTracker(fn: () => TensorTracker) {\n trackerFn = fn;\n}\n\n/**\n * An external consumer can register itself as the op handler. This way the\n * Tensor class can have chaining methods that call into ops via the op\n * handler.\n */\nexport function setOpHandler(handler: OpHandler) {\n opHandler = handler;\n}\n\n/**\n * Sets the deprecation warning function to be used by this file. This way the\n * Tensor class can be a leaf but still use the environment.\n */\nexport function setDeprecationWarningFn(fn: (msg: string) => void) {\n deprecationWarningFn = fn;\n}\n\n/**\n * We wrap data id since we use weak map to avoid memory leaks.\n * Since we have our own memory management, we have a reference counter\n * mapping a tensor to its data, so there is always a pointer (even if that\n * data is otherwise garbage collectable).\n * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/\n * Global_Objects/WeakMap\n */\nexport type DataId = object; // object instead of {} to force non-primitive.\n\n// Declare this namespace to make Tensor class augmentation work in google3.\nexport declare namespace Tensor {}\n/**\n * A `tf.Tensor` object represents an immutable, multidimensional array of\n * numbers that has a shape and a data type.\n *\n * For performance reasons, functions that create tensors do not necessarily\n * perform a copy of the data passed to them (e.g. if the data is passed as a\n * `Float32Array`), and changes to the data will change the tensor. This is not\n * a feature and is not supported. To avoid this behavior, use the tensor before\n * changing the input data or create a copy with `copy = tf.add(yourTensor, 0)`.\n *\n * See `tf.tensor` for details on how to create a `tf.Tensor`.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class Tensor {\n /** Unique id of this tensor. */\n readonly id: number;\n /**\n * Id of the bucket holding the data for this tensor. Multiple arrays can\n * point to the same bucket (e.g. when calling array.reshape()).\n */\n dataId: DataId;\n /** The shape of the tensor. */\n readonly shape: ShapeMap[R];\n /** Number of elements in the tensor. */\n readonly size: number;\n /** The data type for the array. */\n readonly dtype: DataType;\n /** The rank type for the array (see `Rank` enum). */\n readonly rankType: R;\n\n /** Whether this tensor has been globally kept. */\n kept = false;\n /** The id of the scope this tensor is being tracked in. */\n scopeId: number;\n\n /**\n * Number of elements to skip in each dimension when indexing. See\n * https://docs.scipy.org/doc/numpy/reference/generated/\\\n * numpy.ndarray.strides.html\n */\n readonly strides: number[];\n\n constructor(shape: ShapeMap[R], dtype: DataType, dataId: DataId, id: number) {\n this.shape = shape.slice() as ShapeMap[R];\n this.dtype = dtype || 'float32';\n this.size = util.sizeFromShape(shape);\n this.strides = computeStrides(shape);\n this.dataId = dataId;\n this.id = id;\n this.rankType = (this.rank < 5 ? this.rank.toString() : 'higher') as R;\n }\n\n get rank(): number {\n return this.shape.length;\n }\n\n /**\n * Returns a promise of `tf.TensorBuffer` that holds the underlying data.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async buffer(): Promise> {\n const vals = await this.data();\n return opHandler.buffer(this.shape, this.dtype as D, vals);\n }\n\n /**\n * Returns a `tf.TensorBuffer` that holds the underlying data.\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n bufferSync(): TensorBuffer {\n return opHandler.buffer(this.shape, this.dtype as D, this.dataSync());\n }\n\n /**\n * Returns the tensor data as a nested array. The transfer of data is done\n * asynchronously.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async array(): Promise {\n const vals = await this.data();\n return toNestedArray(this.shape, vals, this.dtype === 'complex64') as\n ArrayMap[R];\n }\n\n /**\n * Returns the tensor data as a nested array. The transfer of data is done\n * synchronously.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n arraySync(): ArrayMap[R] {\n return toNestedArray(\n this.shape, this.dataSync(), this.dtype === 'complex64') as\n ArrayMap[R];\n }\n\n /**\n * Asynchronously downloads the values from the `tf.Tensor`. Returns a\n * promise of `TypedArray` that resolves when the computation has finished.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async data(): Promise {\n this.throwIfDisposed();\n const data = trackerFn().read(this.dataId);\n if (this.dtype === 'string') {\n const bytes = await data as Uint8Array[];\n try {\n return bytes.map(b => util.decodeString(b)) as DataTypeMap[D];\n } catch {\n throw new Error(\n 'Failed to decode the string bytes into utf-8. ' +\n 'To get the original bytes, call tensor.bytes().');\n }\n }\n return data as Promise;\n }\n\n /**\n * Synchronously downloads the values from the `tf.Tensor`. This blocks the\n * UI thread until the values are ready, which can cause performance issues.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n dataSync(): DataTypeMap[D] {\n this.throwIfDisposed();\n const data = trackerFn().readSync(this.dataId);\n if (this.dtype === 'string') {\n try {\n return (data as Uint8Array[]).map(b => util.decodeString(b)) as\n DataTypeMap[D];\n } catch {\n throw new Error(\n 'Failed to decode the string bytes into utf-8. ' +\n 'To get the original bytes, call tensor.bytes().');\n }\n }\n return data as DataTypeMap[D];\n }\n\n /** Returns the underlying bytes of the tensor's data. */\n async bytes(): Promise {\n this.throwIfDisposed();\n const data = await trackerFn().read(this.dataId);\n if (this.dtype === 'string') {\n return data as Uint8Array[];\n } else {\n return new Uint8Array((data as TypedArray).buffer);\n }\n }\n\n /**\n * Disposes `tf.Tensor` from memory.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n dispose(): void {\n if (this.isDisposed) {\n return;\n }\n trackerFn().disposeTensor(this);\n this.isDisposedInternal = true;\n }\n\n protected isDisposedInternal = false;\n get isDisposed(): boolean {\n return this.isDisposedInternal;\n }\n\n throwIfDisposed() {\n if (this.isDisposed) {\n throw new Error(`Tensor is disposed.`);\n }\n }\n\n /**\n * Prints the `tf.Tensor`. See `tf.print` for details.\n *\n * @param verbose Whether to print verbose information about the tensor,\n * including dtype and size.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n print(verbose = false): void {\n return opHandler.print(this, verbose);\n }\n\n /**\n * Returns a copy of the tensor. See `tf.clone` for details.\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n clone(this: T): T {\n this.throwIfDisposed();\n return opHandler.clone(this);\n }\n\n /**\n * Returns a human-readable description of the tensor. Useful for logging.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n toString(verbose = false): string {\n const vals = this.dataSync();\n return tensorToString(vals, this.shape, this.dtype, verbose);\n }\n\n cast(dtype: DataType): T {\n this.throwIfDisposed();\n return opHandler.cast(this as T, dtype);\n }\n variable(trainable = true, name?: string, dtype?: DataType): Variable {\n this.throwIfDisposed();\n return trackerFn().makeVariable(this, trainable, name, dtype) as\n Variable;\n }\n}\nObject.defineProperty(Tensor, Symbol.hasInstance, {\n value: (instance: Tensor) => {\n // Implementation note: we should use properties of the object that will be\n // defined before the constructor body has finished executing (methods).\n // This is because when this code is transpiled by babel, babel will call\n // classCallCheck before the constructor body is run.\n // See https://github.com/tensorflow/tfjs/issues/3384 for backstory.\n return !!instance && instance.data != null && instance.dataSync != null &&\n instance.throwIfDisposed != null;\n }\n});\n\nexport function getGlobalTensorClass() {\n // Use getGlobal so that we can augment the Tensor class across package\n // boundaries becase the node resolution alg may result in different modules\n // being returned for this file depending on the path they are loaded from.\n return getGlobal('Tensor', () => {\n return Tensor;\n });\n}\n\n// Global side effect. Cache global reference to Tensor class\ngetGlobalTensorClass();\n\nexport interface NumericTensor extends Tensor {\n dtype: NumericDataType;\n dataSync(): DataTypeMap[D];\n data(): Promise;\n}\n\nexport interface StringTensor extends Tensor {\n dtype: 'string';\n dataSync(): DataTypeMap[D];\n data(): Promise;\n}\n\n/** @doclink Tensor */\nexport type Scalar = Tensor;\n/** @doclink Tensor */\nexport type Tensor1D = Tensor;\n/** @doclink Tensor */\nexport type Tensor2D = Tensor;\n/** @doclink Tensor */\nexport type Tensor3D = Tensor;\n/** @doclink Tensor */\nexport type Tensor4D = Tensor;\n/** @doclink Tensor */\nexport type Tensor5D = Tensor;\n/** @doclink Tensor */\nexport type Tensor6D = Tensor;\n\n/**\n * A mutable `tf.Tensor`, useful for persisting state, e.g. for training.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class Variable extends Tensor {\n name: string;\n\n constructor(\n initialValue: Tensor, public trainable: boolean, name: string,\n tensorId: number) {\n super(\n initialValue.shape, initialValue.dtype, initialValue.dataId, tensorId);\n this.name = name;\n }\n\n /**\n * Assign a new `tf.Tensor` to this variable. The new `tf.Tensor` must have\n * the same shape and dtype as the old `tf.Tensor`.\n *\n * @param newValue New tensor to be assigned to this variable.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n assign(newValue: Tensor): void {\n if (newValue.dtype !== this.dtype) {\n throw new Error(\n `dtype of the new value (${newValue.dtype}) and ` +\n `previous value (${this.dtype}) must match`);\n }\n if (!util.arraysEqual(newValue.shape, this.shape)) {\n throw new Error(\n `shape of the new value (${newValue.shape}) and ` +\n `previous value (${this.shape}) must match`);\n }\n trackerFn().disposeTensor(this);\n this.dataId = newValue.dataId;\n trackerFn().incRef(this, null /* backend */);\n }\n\n dispose(): void {\n trackerFn().disposeVariable(this);\n this.isDisposedInternal = true;\n }\n}\n\nObject.defineProperty(Variable, Symbol.hasInstance, {\n value: (instance: Variable) => {\n return instance instanceof Tensor && instance.assign != null &&\n instance.assign instanceof Function;\n }\n});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from './tensor';\nimport {TensorContainer, TensorContainerArray} from './tensor_types';\nimport {upcastType} from './types';\nimport {assert} from './util';\n\nexport function makeTypesMatch(a: T, b: T): [T, T] {\n if (a.dtype === b.dtype) {\n return [a, b];\n }\n const dtype = upcastType(a.dtype, b.dtype);\n return [a.cast(dtype), b.cast(dtype)];\n}\n\nexport function assertTypesMatch(a: Tensor, b: Tensor): void {\n assert(\n a.dtype === b.dtype,\n () => `The dtypes of the first(${a.dtype}) and` +\n ` second(${b.dtype}) input must match`);\n}\n\nexport function isTensorInList(tensor: Tensor, tensorList: Tensor[]): boolean {\n return tensorList.some(x => x.id === tensor.id);\n}\n\n/**\n * Extracts any `Tensor`s found within the provided object.\n *\n * @param container an object that may be a `Tensor` or may directly contain\n * `Tensor`s, such as a `Tensor[]` or `{key: Tensor, ...}`. In general it\n * is safe to pass any object here, except that `Promise`s are not\n * supported.\n * @returns An array of `Tensors` found within the passed object. If the\n * argument is simply a `Tensor', a list containing that `Tensor` is\n * returned. If the object is not a `Tensor` or does not\n * contain `Tensors`, an empty list is returned.\n */\nexport function getTensorsInContainer(result: TensorContainer): Tensor[] {\n const list: Tensor[] = [];\n const seen = new Set<{}|void>();\n walkTensorContainer(result, list, seen);\n return list;\n}\n\nfunction walkTensorContainer(\n container: TensorContainer, list: Tensor[], seen: Set<{}|void>): void {\n if (container == null) {\n return;\n }\n if (container instanceof Tensor) {\n list.push(container);\n return;\n }\n if (!isIterable(container)) {\n return;\n }\n // Iteration over keys works also for arrays.\n const iterable = container as TensorContainerArray;\n for (const k in iterable) {\n const val = iterable[k];\n if (!seen.has(val)) {\n seen.add(val);\n walkTensorContainer(val, list, seen);\n }\n }\n}\n\n// tslint:disable-next-line:no-any\nfunction isIterable(obj: any): boolean {\n return Array.isArray(obj) || typeof obj === 'object';\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/** @docalias number[] */\nexport interface ShapeMap {\n R0: number[];\n R1: [number];\n R2: [number, number];\n R3: [number, number, number];\n R4: [number, number, number, number];\n R5: [number, number, number, number, number];\n R6: [number, number, number, number, number, number];\n}\n\n/** @docalias number[] */\nexport interface ArrayMap {\n R0: number;\n R1: number[];\n R2: number[][];\n R3: number[][][];\n R4: number[][][][];\n R5: number[][][][][];\n R6: number[][][][][][];\n}\n\nexport interface DataTypeMap {\n float32: Float32Array;\n int32: Int32Array;\n bool: Uint8Array;\n complex64: Float32Array;\n string: string[];\n}\n\nexport interface SingleValueMap {\n bool: boolean;\n int32: number;\n float32: number;\n complex64: number;\n string: string;\n}\n\n/** @docalias 'float32'|'int32'|'bool'|'complex64'|'string' */\nexport type DataType = keyof DataTypeMap;\nexport type NumericDataType = 'float32'|'int32'|'bool'|'complex64';\nexport type TypedArray = Float32Array|Int32Array|Uint8Array;\n/** Tensor data used in tensor creation and user-facing API. */\nexport type DataValues = DataTypeMap[DataType];\n/** The underlying tensor data that gets stored in a backend. */\nexport type BackendValues = Float32Array|Int32Array|Uint8Array|Uint8Array[];\n\nexport enum Rank {\n R0 = 'R0',\n R1 = 'R1',\n R2 = 'R2',\n R3 = 'R3',\n R4 = 'R4',\n R5 = 'R5',\n R6 = 'R6'\n}\n\nexport type FlatVector = boolean[]|number[]|TypedArray;\nexport type RegularArray =\n T[]|T[][]|T[][][]|T[][][][]|T[][][][][]|T[][][][][][];\n\n// tslint:disable-next-line:no-any\nexport interface RecursiveArray {\n [index: number]: T|RecursiveArray;\n}\n\n// Looks for upcasting types. Used, for example, in operations with mixed dtype\n// inputs.\nenum UpcastInt32AndMap {\n 'float32' = 'float32',\n 'int32' = 'int32',\n 'bool' = 'int32',\n 'complex64' = 'complex64'\n}\n\nenum UpcastBoolAndMap {\n 'float32' = 'float32',\n 'int32' = 'int32',\n 'bool' = 'bool',\n 'complex64' = 'complex64'\n}\n\nenum UpcastFloat32AndMap {\n 'float32' = 'float32',\n 'int32' = 'float32',\n 'bool' = 'float32',\n 'complex64' = 'complex64'\n}\n\nenum UpcastComplex64AndMap {\n 'float32' = 'complex64',\n 'int32' = 'complex64',\n 'bool' = 'complex64',\n 'complex64' = 'complex64'\n}\n\nconst upcastTypeMap = {\n 'float32': UpcastFloat32AndMap,\n 'int32': UpcastInt32AndMap,\n 'bool': UpcastBoolAndMap,\n 'complex64': UpcastComplex64AndMap\n};\n\nexport function upcastType(typeA: DataType, typeB: DataType): DataType {\n if (typeA === 'string' || typeB === 'string') {\n if (typeA === 'string' && typeB === 'string') {\n return 'string';\n }\n throw new Error(`Can not upcast ${typeA} with ${typeB}`);\n }\n return upcastTypeMap[typeA][typeB];\n}\n\n/** Returns the output type after summation. */\nexport function sumOutType(type: DataType): DataType {\n return upcastType(type, 'int32');\n}\n\n/** @docalias TypedArray|Array */\nexport type TensorLike =\n TypedArray|number|boolean|string|RecursiveArray|\n RecursiveArray|RecursiveArray|Uint8Array[];\nexport type ScalarLike = number|boolean|string|Uint8Array;\n/** @docalias TypedArray|Array */\nexport type TensorLike1D = TypedArray|number[]|boolean[]|string[]|Uint8Array[];\n/** @docalias TypedArray|Array */\nexport type TensorLike2D = TypedArray|number[]|number[][]|boolean[]|boolean[][]|\n string[]|string[][]|Uint8Array[]|Uint8Array[][];\n/** @docalias TypedArray|Array */\nexport type TensorLike3D = TypedArray|number[]|number[][][]|boolean[]|\n boolean[][][]|string[]|string[][][]|Uint8Array[]|Uint8Array[][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike4D = TypedArray|number[]|number[][][][]|boolean[]|\n boolean[][][][]|string[]|string[][][][]|Uint8Array[]|Uint8Array[][][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike5D =\n TypedArray|number[]|number[][][][][]|boolean[]|boolean[][][][][]|string[]|\n string[][][][][]|Uint8Array[]|Uint8Array[][][][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike6D =\n TypedArray|number[]|number[][][][][][]|boolean[]|boolean[][][][][][]|\n string[]|string[][][][][][]|Uint8Array[]|Uint8Array[][][][][];\n\n/** Type for representing image data in Uint8Array type. */\nexport interface PixelData {\n width: number;\n height: number;\n data: Uint8Array;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {BackendTimingInfo, DataMover, KernelBackend} from './backends/backend';\nimport {Environment, setEnvironmentGlobal} from './environment';\nimport {getGlobalNamespace} from './global_util';\nimport {Add, Cast, Identity} from './kernel_names';\nimport {getGradient, getKernel, getKernelsForBackend, GradFunc, NamedAttrMap, TensorInfo} from './kernel_registry';\nimport {KernelProfile, Profiler} from './profiler';\nimport {backpropagateGradients, getFilteredNodesXToY, TapeNode} from './tape';\nimport {DataId, setTensorTracker, Tensor, TensorTracker, Variable} from './tensor';\nimport {GradSaveFunc, NamedTensorMap, NamedVariableMap, TensorContainer} from './tensor_types';\nimport {getTensorsInContainer} from './tensor_util';\nimport {BackendValues, DataType, DataValues} from './types';\nimport * as util from './util';\nimport {bytesFromStringArray, makeOnesTypedArray, now, sizeFromShape} from './util';\n\n/**\n * A function that computes an output. The save function is for saving tensors\n * computed in the forward pass, that we need in the backward pass.\n */\nexport type ForwardFunc = (backend: KernelBackend, save?: GradSaveFunc) => T;\n\n/**\n * @docalias (a: Tensor, b: Tensor,..., save?: Function) => {\n * value: Tensor,\n * gradFunc: (dy: Tensor, saved?: NamedTensorMap) => Tensor | Tensor[]\n * }\n */\nexport type CustomGradientFunc =\n (...inputs: Array) => {\n value: T;\n gradFunc: (dy: T, saved: Tensor[]) => Tensor | Tensor[];\n };\n\nexport type MemoryInfo = {\n numTensors: number; numDataBuffers: number; numBytes: number;\n unreliable?: boolean; reasons: string[];\n};\n\ntype KernelInfo = {\n name: string; bytesAdded: number; totalBytesSnapshot: number;\n tensorsAdded: number;\n totalTensorsSnapshot: number;\n inputShapes: number[][];\n outputShapes: number[][];\n kernelTimeMs: number | {error: string} | Promise;\n extraInfo: string | Promise;\n};\n\nexport type ProfileInfo = {\n newBytes: number; newTensors: number; peakBytes: number;\n kernels: KernelInfo[];\n result: TensorContainer;\n kernelNames: string[];\n};\n\nexport interface TimingInfo extends BackendTimingInfo {\n wallMs: number;\n}\n\n/** @docalias Function */\nexport type ScopeFn = () => T;\n\ninterface ScopeState {\n track: Tensor[];\n name: string;\n id: number;\n}\n\ninterface RegisteredKernelInvocation {\n kernelName: string;\n inputs: I;\n attrs?: NamedAttrMap;\n}\n\ninterface CustomGradKernelInvocation {\n forwardFunc: ForwardFunc;\n backwardsFunc: (dy: T, saved: Tensor[]) => {\n [P in keyof I]: () => I[P]\n };\n inputs: I;\n attrs?: NamedAttrMap;\n}\n\nfunction isRegisteredKernelInvocation(\n kernelInvocation: RegisteredKernelInvocation|\n CustomGradKernelInvocation):\n kernelInvocation is RegisteredKernelInvocation {\n return (kernelInvocation as RegisteredKernelInvocation).kernelName != null;\n}\n\nclass EngineState {\n // Public since optimizers will use it.\n registeredVariables: NamedVariableMap = {};\n\n nextTapeNodeId = 0;\n numBytes = 0;\n numTensors = 0;\n numStringTensors = 0;\n numDataBuffers = 0;\n\n activeTape: TapeNode[];\n // Number of nested tf.grad() statements when computing higher-order\n // gradients. E.g. `1` for first-order gradients and `2` for second-order\n // gradients. Used to track if the tape should be removed after a backprop.\n gradientDepth = 0;\n // Number of nested kernel calls. When kernel depth is greater than 1, we turn\n // off the tape.\n kernelDepth = 0;\n\n // Keep Tensors that parallel the tapes.\n activeScope: ScopeState;\n scopeStack: ScopeState[] = [];\n /**\n * Keeps track of the number of data moves during a kernel execution. We\n * maintain a stack since kernels can call other kernels, recursively.\n */\n numDataMovesStack: number[] = [];\n nextScopeId = 0;\n\n tensorInfo = new WeakMap();\n\n profiling = false;\n activeProfile: ProfileInfo = {\n newBytes: 0,\n newTensors: 0,\n peakBytes: 0,\n kernels: [],\n result: null,\n get kernelNames():\n string[] {\n return Array.from(new Set(this.kernels.map(k => k.name)));\n }\n };\n\n dispose() {\n for (const variableName in this.registeredVariables) {\n this.registeredVariables[variableName].dispose();\n }\n }\n}\n\nexport class Engine implements TensorTracker, DataMover {\n state: EngineState;\n backendName: string;\n registry: {[id: string]: KernelBackend} = {};\n registryFactory: {\n [id: string]: {\n factory: () => KernelBackend | Promise,\n priority: number\n }\n } = {};\n\n private profiler: Profiler;\n private backendInstance: KernelBackend;\n private pendingBackendInit: Promise;\n private pendingBackendInitId = 0;\n\n constructor(public ENV: Environment) {\n this.state = new EngineState();\n }\n\n async ready(): Promise {\n if (this.pendingBackendInit != null) {\n return this.pendingBackendInit.then(() => {});\n }\n if (this.backendInstance != null) {\n return;\n }\n const sortedBackends = this.getSortedBackends();\n\n for (let i = 0; i < sortedBackends.length; i++) {\n const backendName = sortedBackends[i];\n const success = await this.initializeBackend(backendName).success;\n if (success) {\n await this.setBackend(backendName);\n return;\n }\n }\n\n throw new Error(\n `Could not initialize any backends, all backend initializations ` +\n `failed.`);\n }\n\n get backend(): KernelBackend {\n if (this.pendingBackendInit != null) {\n throw new Error(\n `Backend '${this.backendName}' has not yet been initialized. Make ` +\n `sure to await tf.ready() or await tf.setBackend() before calling ` +\n `other methods`);\n }\n if (this.backendInstance == null) {\n const {name, asyncInit} = this.initializeBackendsAndReturnBest();\n if (asyncInit) {\n throw new Error(\n `The highest priority backend '${name}' has not yet been ` +\n `initialized. Make sure to await tf.ready() or ` +\n `await tf.setBackend() before calling other methods`);\n }\n this.setBackend(name);\n }\n return this.backendInstance;\n }\n\n backendNames(): string[] {\n return Object.keys(this.registryFactory);\n }\n\n findBackend(backendName: string): KernelBackend {\n if (!(backendName in this.registry)) {\n // If the backend hasn't been initialized but we have a registry entry for\n // it, initialize it and return it.\n if (backendName in this.registryFactory) {\n const {asyncInit} = this.initializeBackend(backendName);\n if (asyncInit) {\n // Backend is not ready yet.\n return null;\n }\n } else {\n return null;\n }\n }\n return this.registry[backendName];\n }\n\n findBackendFactory(backendName: string):\n () => KernelBackend | Promise {\n if (!(backendName in this.registryFactory)) {\n return null;\n }\n return this.registryFactory[backendName].factory;\n }\n\n registerBackend(\n backendName: string,\n factory: () => KernelBackend | Promise,\n priority = 1): boolean {\n if (backendName in this.registryFactory) {\n console.warn(\n `${backendName} backend was already registered. ` +\n `Reusing existing backend factory.`);\n return false;\n }\n this.registryFactory[backendName] = {factory, priority};\n return true;\n }\n\n async setBackend(backendName: string): Promise {\n if (this.registryFactory[backendName] == null) {\n throw new Error(`Backend name '${backendName}' not found in registry`);\n }\n this.backendName = backendName;\n if (this.registry[backendName] == null) {\n this.backendInstance = null;\n const {success, asyncInit} = this.initializeBackend(backendName);\n const result = asyncInit ? await success : success;\n if (!result) {\n return false;\n }\n }\n this.backendInstance = this.registry[backendName];\n this.setupRegisteredKernels();\n // Reset the profiler.\n this.profiler = new Profiler(this.backendInstance);\n\n return true;\n }\n\n private setupRegisteredKernels(): void {\n const kernels = getKernelsForBackend(this.backendName);\n kernels.forEach(kernel => {\n if (kernel.setupFunc != null) {\n kernel.setupFunc(this.backendInstance);\n }\n });\n }\n\n private disposeRegisteredKernels(backendName: string): void {\n const kernels = getKernelsForBackend(backendName);\n kernels.forEach(kernel => {\n if (kernel.disposeFunc != null) {\n kernel.disposeFunc(this.registry[backendName]);\n }\n });\n }\n\n /**\n * Initializes a backend by looking up the backend name in the factory\n * registry and calling the factory method. Returns a boolean representing\n * whether the initialization of the backend suceeded. Throws an error if\n * there is no backend in the factory registry.\n */\n private initializeBackend(backendName: string):\n {success: boolean|Promise, asyncInit: boolean} {\n const registryFactoryEntry = this.registryFactory[backendName];\n if (registryFactoryEntry == null) {\n throw new Error(\n `Cannot initialize backend ${backendName}, no registration found.`);\n }\n\n try {\n const backend = registryFactoryEntry.factory();\n /* Test if the factory returns a promise.\n Done in a more liberal way than\n previous 'Promise.resolve(backend)===backend'\n as we needed to account for custom Promise\n implementations (e.g. Angular) */\n if (backend && !(backend instanceof KernelBackend) &&\n typeof backend.then === 'function') {\n const promiseId = ++this.pendingBackendInitId;\n const success =\n backend\n .then(backendInstance => {\n // Outdated promise. Another backend was set in the meantime.\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.registry[backendName] = backendInstance;\n this.pendingBackendInit = null;\n return true;\n })\n .catch(err => {\n // Outdated promise. Another backend was set in the meantime.\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.pendingBackendInit = null;\n console.warn(\n `Initialization of backend ${backendName} failed`);\n console.warn(err.stack || err.message);\n return false;\n });\n this.pendingBackendInit = success;\n return {success, asyncInit: true};\n } else {\n this.registry[backendName] = backend as KernelBackend;\n return {success: true, asyncInit: false};\n }\n } catch (err) {\n console.warn(`Initialization of backend ${backendName} failed`);\n console.warn(err.stack || err.message);\n return {success: false, asyncInit: false};\n }\n }\n\n removeBackend(backendName: string): void {\n if (!(backendName in this.registryFactory)) {\n throw new Error(`${backendName} backend not found in registry`);\n }\n if (this.backendName === backendName && this.pendingBackendInit != null) {\n // There is a pending promise of the backend we want to remove. Make it\n // obsolete.\n this.pendingBackendInitId++;\n }\n\n if (backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n\n delete this.registryFactory[backendName];\n\n // Unset the backend if it is active.\n if (this.backendName === backendName) {\n this.pendingBackendInit = null;\n this.backendName = null;\n this.backendInstance = null;\n }\n }\n\n private getSortedBackends(): string[] {\n if (Object.keys(this.registryFactory).length === 0) {\n throw new Error('No backend found in registry.');\n }\n return Object.keys(this.registryFactory).sort((a: string, b: string) => {\n // Highest priority comes first.\n return this.registryFactory[b].priority -\n this.registryFactory[a].priority;\n });\n }\n\n private initializeBackendsAndReturnBest():\n {name: string, asyncInit: boolean} {\n const sortedBackends = this.getSortedBackends();\n\n for (let i = 0; i < sortedBackends.length; i++) {\n const backendName = sortedBackends[i];\n const {success, asyncInit} = this.initializeBackend(backendName);\n if (asyncInit || success) {\n return {name: backendName, asyncInit};\n }\n }\n throw new Error(\n `Could not initialize any backends, all backend initializations ` +\n `failed.`);\n }\n\n moveData(backend: KernelBackend, dataId: DataId) {\n const info = this.state.tensorInfo.get(dataId);\n const srcBackend = info.backend;\n const values = this.readSync(dataId);\n const refCount = srcBackend.refCount(dataId);\n // Delete the tensor from the old backend and move it to the new\n // backend.\n srcBackend.disposeData(dataId, true);\n info.backend = backend;\n backend.move(dataId, values, info.shape, info.dtype, refCount);\n if (this.shouldCheckForMemLeaks()) {\n // Track the number of moves during a kernel execution to correctly\n // detect memory leaks.\n this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]++;\n }\n }\n\n tidy(nameOrFn: string|ScopeFn, fn?: ScopeFn):\n T {\n let name: string = null;\n if (fn == null) {\n // Called with only 1 argument.\n if (typeof nameOrFn !== 'function') {\n throw new Error('Please provide a function to tidy()');\n }\n fn = nameOrFn;\n } else {\n // Called with 2 arguments.\n if (typeof nameOrFn !== 'string' && !(nameOrFn instanceof String)) {\n throw new Error(\n 'When calling with two arguments, the first argument ' +\n 'to tidy() must be a string');\n }\n if (typeof fn !== 'function') {\n throw new Error(\n 'When calling with two arguments, the 2nd argument ' +\n 'to tidy() must be a function');\n }\n name = nameOrFn as string;\n // TODO(nsthorat,smilkov): Do operation logging and performance\n // profiling.\n }\n let result: T;\n return this.scopedRun(\n () => this.startScope(name), () => this.endScope(result), () => {\n result = fn();\n if (result instanceof Promise) {\n console.error('Cannot return a Promise inside of tidy.');\n }\n return result;\n });\n }\n\n private scopedRun(start: () => void, end: () => void, f: () => T): T {\n start();\n try {\n const res = f();\n end();\n return res;\n } catch (ex) {\n end();\n throw ex;\n }\n }\n\n private static nextTensorId = 0;\n private nextTensorId(): number {\n return Engine.nextTensorId++;\n }\n\n private static nextVariableId = 0;\n private nextVariableId(): number {\n return Engine.nextVariableId++;\n }\n\n /**\n * This method is called instead of the public-facing tensor.clone() when\n * saving a tensor for backwards pass. It makes sure to add the clone\n * operation to the tape regardless of being called inside a kernel\n * execution.\n */\n private clone(x: Tensor): Tensor {\n const y: Tensor = ENGINE.runKernel(Identity, {x} as {} as NamedTensorMap);\n const inputs = {x};\n const grad = (dy: Tensor) => ({\n x: () => {\n const dtype = 'float32';\n const gradInputs = {x: dy};\n const attrs = {dtype};\n\n return ENGINE.runKernel(\n Cast, gradInputs as {} as NamedTensorMap,\n // tslint:disable-next-line: no-unnecessary-type-assertion\n attrs as {} as NamedAttrMap) as Tensor;\n }\n });\n const saved: Tensor[] = [];\n this.addTapeNode(this.state.activeScope.name, inputs, [y], grad, saved, {});\n return y;\n }\n\n /**\n * Execute a kernel with the given name and return the output tensor.\n *\n * @param kernelName The name of the kernel to execute.\n * @param inputs A map of input names to tensors.\n * @param attrs A map of attribute names to their values. An attribute is a\n * primitive (non-tensor) input to the kernel.\n * @param inputsToSave A list of tensors, inputs to save for the backprop\n * computation.\n * @param outputsToSave A list of booleans, specifying which output to save\n * for the backprop computation. These are booleans since the output\n * tensors are not visible to the user.\n */\n runKernel(\n kernelName: string, inputs: NamedTensorMap, attrs?: NamedAttrMap): T {\n const hasKernel = getKernel(kernelName, this.backendName) != null;\n if (!hasKernel) {\n throw new Error(`Kernel '${kernelName}' not registered for backend '${\n this.backendName}'`);\n }\n return this.runKernelFunc({kernelName, inputs, attrs});\n }\n\n private shouldCheckForMemLeaks(): boolean {\n return this.ENV.getBool('IS_TEST');\n }\n\n private checkKernelForMemLeak(\n kernelName: string, numDataIdsBefore: number,\n outInfos: TensorInfo[]): void {\n const numDataIdsAfter = this.backend.numDataIds();\n\n // Count the number of data ids associated with the result of the kernel.\n let numOutputDataIds = 0;\n outInfos.forEach(info => {\n // Complex numbers allocate 3 data ids, one for 'real', one for\n // 'imaginary', and one for the container that holds the former two.\n numOutputDataIds += (info.dtype === 'complex64' ? 3 : 1);\n });\n\n // Account for the number of moves during kernel execution. A \"data move\"\n // can happen in the middle of a kernel execution, placing a new (key,value)\n // pair in the data storage. Since data moves have net zero effect (we\n // always remove the data from the old backend), we have to cancel them out\n // when detecting memory leaks.\n const numMoves =\n this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1];\n const dataIdsLeaked =\n numDataIdsAfter - numDataIdsBefore - numOutputDataIds - numMoves;\n if (dataIdsLeaked > 0) {\n throw new Error(\n `Backend '${this.backendName}' has an internal memory leak ` +\n `(${dataIdsLeaked} data ids) after running '${kernelName}'`);\n }\n }\n\n /**\n * Internal helper method to execute a kernel Func\n *\n * Use `runKernel` to execute kernels from outside of engine.\n */\n private runKernelFunc(\n kernelParams: RegisteredKernelInvocation|\n CustomGradKernelInvocation): T {\n let outputs: Tensor[];\n let saved: Tensor[] = [];\n const isTapeOn = this.isTapeOn();\n\n const startingBytecount = this.state.numBytes;\n const startingNumTensors = this.state.numTensors;\n\n if (this.shouldCheckForMemLeaks()) {\n this.state.numDataMovesStack.push(0);\n }\n\n let kernelFunc: () => Tensor[];\n if (this.backendName == null) {\n // backend has not been initialized yet (backend initialization is lazy\n // can be deferred until an op/ kernel is run).\n // The below getter has side effects that will try to initialize the\n // backend and set properties like this.backendName\n // tslint:disable-next-line: no-unused-expression\n this.backend;\n }\n\n let out: TensorInfo|TensorInfo[];\n\n const kernelOrScopeName = isRegisteredKernelInvocation(kernelParams) ?\n kernelParams.kernelName :\n this.state.activeScope != null ? this.state.activeScope.name : '';\n\n // Create the kernelFunc from either a registered kernel OR passed in\n // forward/backward functions (used by custom grad). In this context a\n // kernelFunc wraps a kernel implementation with some bookkeeping.\n\n if (isRegisteredKernelInvocation(kernelParams)) {\n const {kernelName, inputs, attrs} = kernelParams;\n if (this.backendName == null) {\n // backend has not been initialized yet (backend initialization is lazy\n // can be deferred until an op/ kernel is run).\n // The below getter has side effects that will try to initialize the\n // backend and set properties like this.backendName\n // tslint:disable-next-line: no-unused-expression\n this.backend;\n }\n const kernel = getKernel(kernelName, this.backendName);\n util.assert(\n kernel != null,\n () => `Cannot find registered kernel '${kernelName}' for backend '${\n this.backendName}'`);\n\n kernelFunc = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = kernel.kernelFunc({inputs, attrs, backend: this.backend});\n const outInfos = Array.isArray(out) ? out : [out];\n if (this.shouldCheckForMemLeaks()) {\n this.checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos);\n }\n\n const outTensors = outInfos.map((outInfo: TensorInfo|Tensor) => {\n // todo (yassogba) remove this option (Tensor) when node backend\n // methods have been modularized and they all return tensorInfo.\n // TensorInfos do not have a rank attribute.\n if ((outInfo as Tensor).rank != null) {\n return outInfo as Tensor;\n }\n const {dataId, shape, dtype} = outInfo as TensorInfo;\n return this.makeTensorFromDataId(dataId, shape, dtype);\n });\n\n // Save any required inputs and outputs.\n\n // Do not save unless we are recording to the tape. Otherwise it would\n // cause a mem leak since there would be no backprop for these tensors\n // (which would otherwise dispose them).\n if (isTapeOn) {\n const tensorsToSave =\n this.getTensorsForGradient(kernelName, inputs, outTensors);\n saved = this.saveTensorsForBackwardMode(tensorsToSave);\n }\n return outTensors;\n };\n } else {\n const {forwardFunc} = kernelParams;\n // Running a customGrad op.\n const saveFunc: GradSaveFunc = (tensors) => {\n // Do not save unless we are recording to the tape. Otherwise it would\n // cause a mem leak since we would never run backprop, which disposes\n // the kept tensors.\n if (!isTapeOn) {\n return;\n }\n saved = tensors.map(tensor => this.keep(this.clone(tensor)));\n };\n\n kernelFunc = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = this.tidy(() => forwardFunc(this.backend, saveFunc));\n const outs = (Array.isArray(out) ? out : [out]) as Tensor[];\n if (this.shouldCheckForMemLeaks()) {\n // Scope name is used to print a more helpful error message if needed.\n this.checkKernelForMemLeak(kernelOrScopeName, numDataIdsBefore, outs);\n }\n return outs;\n };\n }\n\n //\n // Run the kernelFunc. Optionally profiling it.\n //\n const {inputs, attrs} = kernelParams;\n const backwardsFunc = isRegisteredKernelInvocation(kernelParams) ?\n null :\n kernelParams.backwardsFunc;\n\n let kernelProfile: KernelProfile;\n this.scopedRun(\n // Stop recording to a tape when running a kernel.\n () => this.state.kernelDepth++, () => this.state.kernelDepth--, () => {\n if (!this.ENV.getBool('DEBUG') && !this.state.profiling) {\n outputs = kernelFunc();\n } else {\n kernelProfile = this.profiler.profileKernel(\n kernelOrScopeName, inputs, () => kernelFunc());\n if (this.ENV.getBool('DEBUG')) {\n this.profiler.logKernelProfile(kernelProfile);\n }\n outputs = kernelProfile.outputs;\n }\n });\n\n if (isTapeOn) {\n this.addTapeNode(\n kernelOrScopeName, inputs, outputs, backwardsFunc, saved, attrs);\n }\n\n if (this.state.profiling) {\n this.state.activeProfile.kernels.push({\n name: kernelOrScopeName,\n bytesAdded: this.state.numBytes - startingBytecount,\n totalBytesSnapshot: this.state.numBytes,\n tensorsAdded: this.state.numTensors - startingNumTensors,\n totalTensorsSnapshot: this.state.numTensors,\n inputShapes: Object.keys(inputs).map(\n key => inputs[key] != null ? inputs[key].shape : null),\n outputShapes: outputs.map(item => item.shape),\n kernelTimeMs: kernelProfile.timeMs,\n extraInfo: kernelProfile.extraInfo\n });\n }\n return (Array.isArray(out) ? outputs : outputs[0]) as T;\n }\n\n /**\n * Saves tensors used in forward mode for use in backward mode.\n *\n * @param tensors the list of tensors to save.\n */\n private saveTensorsForBackwardMode(tensors: Tensor[]): Tensor[] {\n const saved = tensors.map(tensor => this.keep(this.clone(tensor)));\n return saved;\n }\n\n /**\n * Returns a list of tensors to save for a given gradient calculation.\n *\n * @param kernelName name of kernel to look up gradient for.\n * @param inputs a map of input tensors.\n * @param outputs an array of output tensors from forward mode of kernel.\n */\n private getTensorsForGradient(\n kernelName: string, inputs: NamedTensorMap,\n outputs: Tensor[]): Tensor[]|null {\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n const inputsToSave: string[] = gradConfig.inputsToSave || [];\n const outputsToSave: boolean[] = gradConfig.outputsToSave || [];\n\n // If saveAllInputs is true, all inputs will be saved. Otherwise, inputs\n // specified in inputsToSave will be saved.\n let inputTensorsToSave: Tensor[];\n if (gradConfig.saveAllInputs) {\n util.assert(\n Array.isArray(inputs),\n () => 'saveAllInputs is true, expected inputs to be an array.');\n\n inputTensorsToSave = Object.keys(inputs).map((key) => inputs[key]);\n } else {\n inputTensorsToSave = inputsToSave.map((inputName) => inputs[inputName]);\n }\n\n const outputTensorsToSave: Tensor[] =\n outputs.filter((_, i) => outputsToSave[i]);\n\n return inputTensorsToSave.concat(outputTensorsToSave);\n }\n // We return an empty list rather than throw an error because the kernel we\n // are looking up may not actually be relevant to backproping through the\n // overall function\n //\n // See 'does not error if irrelevant (pruned) ops are missing grads' test\n // in gradients_test.ts for an example.\n return [];\n }\n\n /**\n * Internal method used by public APIs for tensor creation. Makes a new\n * tensor with the provided shape, dtype and values. It always\n * creates a new data id and writes the values to the underlying backend.\n */\n makeTensor(\n values: DataValues, shape: number[], dtype: DataType,\n backend?: KernelBackend): Tensor {\n if (values == null) {\n throw new Error('Values passed to engine.makeTensor() are null');\n }\n dtype = dtype || 'float32';\n backend = backend || this.backend;\n let backendVals = values as BackendValues;\n if (dtype === 'string' && util.isString(values[0])) {\n backendVals = (values as string[]).map(d => util.encodeString(d));\n }\n const dataId = backend.write(backendVals, shape, dtype);\n const t = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t, backend);\n\n // Count bytes for string tensors.\n if (dtype === 'string') {\n const info = this.state.tensorInfo.get(dataId);\n const newBytes = bytesFromStringArray(backendVals as Uint8Array[]);\n this.state.numBytes += newBytes - info.bytes;\n info.bytes = newBytes;\n }\n return t;\n }\n\n /**\n * Internal method used by backends. Makes a new tensor\n * that is a wrapper around an existing data id. It doesn't create\n * a new data id, only increments the ref count used in memory tracking.\n */\n makeTensorFromDataId(\n dataId: DataId, shape: number[], dtype: DataType,\n backend?: KernelBackend): Tensor {\n dtype = dtype || 'float32';\n const t = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t, backend);\n return t;\n }\n\n makeVariable(\n initialValue: Tensor, trainable = true, name?: string,\n dtype?: DataType): Variable {\n name = name || this.nextVariableId().toString();\n if (dtype != null && dtype !== initialValue.dtype) {\n initialValue = initialValue.cast(dtype);\n }\n const v = new Variable(initialValue, trainable, name, this.nextTensorId());\n if (this.state.registeredVariables[v.name] != null) {\n throw new Error(`Variable with name ${v.name} was already registered`);\n }\n this.state.registeredVariables[v.name] = v;\n this.incRef(v, this.backend);\n return v;\n }\n\n trackTensor(a: Tensor, backend: KernelBackend): void {\n this.state.numTensors++;\n if (a.dtype === 'string') {\n this.state.numStringTensors++;\n }\n // Bytes for complex numbers are counted by their components. Bytes for\n // string tensors are counted when writing values.\n let bytes = 0;\n if (a.dtype !== 'complex64' && a.dtype !== 'string') {\n bytes = a.size * util.bytesPerElement(a.dtype);\n }\n this.state.numBytes += bytes;\n\n if (!this.state.tensorInfo.has(a.dataId)) {\n this.state.numDataBuffers++;\n this.state.tensorInfo.set(a.dataId, {\n backend: backend || this.backend,\n dtype: a.dtype,\n shape: a.shape,\n bytes\n });\n }\n\n if (!(a instanceof Variable)) {\n this.track(a);\n }\n }\n\n // Track the tensor by dataId and increase the refCount for the dataId in the\n // backend.\n // TODO(pyu10055): This is currently used by makeVariable method, to increase\n // refCount on the backend for the dataId. It can potentially be replaced with\n // Identity op indead of calling backend directly.\n incRef(a: Tensor, backend: KernelBackend): void {\n this.trackTensor(a, backend);\n this.backend.incRef(a.dataId);\n }\n\n removeDataId(dataId: DataId, backend: KernelBackend) {\n if (this.state.tensorInfo.has(dataId) &&\n this.state.tensorInfo.get(dataId).backend === backend) {\n this.state.tensorInfo.delete(dataId);\n this.state.numDataBuffers--;\n }\n }\n disposeTensor(a: Tensor): void {\n if (!this.state.tensorInfo.has(a.dataId)) {\n return;\n }\n const info = this.state.tensorInfo.get(a.dataId);\n\n this.state.numTensors--;\n if (a.dtype === 'string') {\n this.state.numStringTensors--;\n this.state.numBytes -= info.bytes;\n }\n // Don't count bytes for complex numbers as they are counted by their\n // components.\n if (a.dtype !== 'complex64' && a.dtype !== 'string') {\n const bytes = a.size * util.bytesPerElement(a.dtype);\n this.state.numBytes -= bytes;\n }\n\n // Remove the reference to dataId if backend dispose the data successfully\n if (info.backend.disposeData(a.dataId)) {\n this.removeDataId(a.dataId, info.backend);\n }\n\n // TODO(nsthorat): Construct an error and save the stack trace for\n // debugging when in debug mode. Creating a stack trace is too expensive\n // to do unconditionally.\n }\n\n disposeVariables(): void {\n for (const varName in this.state.registeredVariables) {\n const v = this.state.registeredVariables[varName];\n this.disposeVariable(v);\n }\n }\n\n disposeVariable(v: Variable): void {\n this.disposeTensor(v);\n if (this.state.registeredVariables[v.name] != null) {\n delete this.state.registeredVariables[v.name];\n }\n }\n\n memory(): MemoryInfo {\n const info = this.backend.memory() as MemoryInfo;\n info.numTensors = this.state.numTensors;\n info.numDataBuffers = this.state.numDataBuffers;\n info.numBytes = this.state.numBytes;\n if (this.state.numStringTensors > 0) {\n info.unreliable = true;\n if (info.reasons == null) {\n info.reasons = [];\n }\n info.reasons.push(\n 'Memory usage by string tensors is approximate ' +\n '(2 bytes per character)');\n }\n return info;\n }\n\n async profile(query: () => (TensorContainer | Promise)):\n Promise {\n this.state.profiling = true;\n\n const startBytes = this.state.numBytes;\n const startNumTensors = this.state.numTensors;\n\n this.state.activeProfile.kernels = [];\n this.state.activeProfile.result = await query();\n\n this.state.profiling = false;\n\n this.state.activeProfile.peakBytes = Math.max(\n ...this.state.activeProfile.kernels.map(d => d.totalBytesSnapshot));\n this.state.activeProfile.newBytes = this.state.numBytes - startBytes;\n this.state.activeProfile.newTensors =\n this.state.numTensors - startNumTensors;\n for (const kernel of this.state.activeProfile.kernels) {\n kernel.kernelTimeMs = await kernel.kernelTimeMs;\n kernel.extraInfo = await kernel.extraInfo;\n }\n return this.state.activeProfile;\n }\n\n isTapeOn(): boolean {\n return this.state.gradientDepth > 0 && this.state.kernelDepth === 0;\n }\n\n private addTapeNode(\n kernelName: string, inputs: NamedTensorMap, outputs: Tensor[],\n gradientsFunc: GradFunc, saved: Tensor[], attrs: NamedAttrMap): void {\n const tapeNode: TapeNode =\n {id: this.state.nextTapeNodeId++, kernelName, inputs, outputs, saved};\n\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n gradientsFunc = gradConfig.gradFunc;\n }\n if (gradientsFunc != null) {\n tapeNode.gradient = (dys: Tensor[]) => {\n // TODO(smilkov): To optimize back-prop, pass dys that are not used in\n // the backprop graph to the user as null instead of zeros\n dys = dys.map((dy, i) => {\n if (dy == null) {\n const output = outputs[i];\n const vals = util.makeZerosTypedArray(output.size, output.dtype);\n return this.makeTensor(vals, output.shape, output.dtype);\n }\n return dy;\n });\n // Grad functions of ops with single outputs expect a dy, while ops\n // with multiple outputs expect dys (array of dy).\n return gradientsFunc(dys.length > 1 ? dys : dys[0], saved, attrs);\n };\n }\n this.state.activeTape.push(tapeNode);\n }\n\n keep(result: T): T {\n result.kept = true;\n return result;\n }\n\n private startTape() {\n if (this.state.gradientDepth === 0) {\n this.state.activeTape = [];\n }\n this.state.gradientDepth++;\n }\n\n private endTape() {\n this.state.gradientDepth--;\n }\n\n /**\n * Start a scope. Use this with endScope() to achieve the same functionality\n * as scope() without the need for a function closure.\n */\n startScope(name?: string) {\n const scopeInfo: ScopeState = {\n track: [],\n name: 'unnamed scope',\n id: this.state.nextScopeId++\n };\n if (name) {\n scopeInfo.name = name;\n }\n this.state.scopeStack.push(scopeInfo);\n this.state.activeScope = scopeInfo;\n }\n\n /**\n * End a scope. Use this with startScope() to achieve the same functionality\n * as scope() without the need for a function closure.\n */\n endScope(result?: TensorContainer) {\n const tensorsToTrackInParent = getTensorsInContainer(result);\n const tensorsToTrackInParentSet =\n new Set(tensorsToTrackInParent.map(t => t.id));\n\n // Dispose the arrays tracked in this scope.\n for (let i = 0; i < this.state.activeScope.track.length; i++) {\n const tensor = this.state.activeScope.track[i];\n if (!tensor.kept && !tensorsToTrackInParentSet.has(tensor.id)) {\n tensor.dispose();\n }\n }\n\n const oldScope = this.state.scopeStack.pop();\n this.state.activeScope = this.state.scopeStack.length === 0 ?\n null :\n this.state.scopeStack[this.state.scopeStack.length - 1];\n\n // Track the current result in the parent scope.\n tensorsToTrackInParent.forEach(tensor => {\n // Only track the tensor if was allocated in the inner scope and is not\n // globally kept.\n if (!tensor.kept && tensor.scopeId === oldScope.id) {\n this.track(tensor);\n }\n });\n }\n\n /**\n * Returns gradients of `f` with respect to each of the `xs`. The gradients\n * returned are of the same length as `xs`, but some might be null if `f`\n * was not a function of that `x`. It also takes optional dy to multiply the\n * gradient, which defaults to `1`.\n */\n gradients(\n f: () => T, xs: Tensor[], dy?: T,\n allowNoGradients = false): {value: T, grads: Tensor[]} {\n util.assert(\n xs.length > 0, () => 'gradients() received an empty list of xs.');\n if (dy != null && dy.dtype !== 'float32') {\n throw new Error(`dy must have 'float32' dtype, but has '${dy.dtype}'`);\n }\n\n const y = this.scopedRun(\n () => this.startTape(), () => this.endTape(),\n () => this.tidy('forward', f));\n\n util.assert(\n y instanceof Tensor,\n () => 'The result y returned by f() must be a tensor.');\n // Filter out the nodes that don't connect x => y.\n const filteredTape = getFilteredNodesXToY(this.state.activeTape, xs, y);\n if (!allowNoGradients && filteredTape.length === 0 && xs.length > 0) {\n throw new Error(\n 'Cannot compute gradient of y=f(x) with respect to x. Make sure ' +\n 'that the f you passed encloses all operations that lead from x ' +\n 'to y.');\n }\n\n return this.tidy('backward', () => {\n const accumulatedGradientMap: {[tensorId: number]: Tensor} = {};\n accumulatedGradientMap[y.id] = (dy == null) ? ones(y.shape) : dy;\n\n // Backprop gradients through the filtered nodes.\n backpropagateGradients(\n accumulatedGradientMap, filteredTape,\n // Pass the tidy function to avoid circular dep with `tape.ts`.\n f => this.tidy(f as ScopeFn),\n // Pass an add function to avoide a circular dep with `tape.ts`.\n add);\n const grads = xs.map(x => accumulatedGradientMap[x.id]);\n\n if (this.state.gradientDepth === 0) {\n // This means that we are not computing higher-order gradients\n // and can clean up the tape.\n this.state.activeTape.forEach(node => {\n for (const tensor of node.saved) {\n tensor.dispose();\n }\n });\n this.state.activeTape = null;\n }\n return {value: y, grads};\n });\n }\n\n customGrad(f: CustomGradientFunc):\n (...args: Array) => T {\n util.assert(\n util.isFunction(f),\n () => 'The f passed in customGrad(f) must be a function.');\n return (...inputs: Tensor[]): T => {\n util.assert(\n inputs.every(t => t instanceof Tensor),\n () => 'The args passed in customGrad(f)(x1, x2,...) must all be ' +\n 'tensors');\n\n let res: {\n value: T,\n gradFunc: (dy: T, saved: Tensor[]) => Tensor | Tensor[],\n };\n const inputMap: NamedTensorMap = {};\n inputs.forEach((input, i) => {\n inputMap[i] = input;\n });\n\n const forwardFunc: ForwardFunc = (_, save) => {\n res = f(...[...inputs, save]);\n util.assert(\n res.value instanceof Tensor,\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.value` is a tensor');\n util.assert(\n util.isFunction(res.gradFunc),\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function.');\n return res.value;\n };\n\n const backwardsFunc = (dy: T, saved: Tensor[]) => {\n const gradRes = res.gradFunc(dy, saved);\n const grads: Tensor[] = Array.isArray(gradRes) ? gradRes : [gradRes];\n util.assert(\n grads.length === inputs.length,\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function that returns ' +\n 'the same number of tensors as inputs passed to f(...).');\n util.assert(\n grads.every(t => t instanceof Tensor),\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function that returns ' +\n 'a list of only tensors.');\n const gradMap: {[key: string]: () => Tensor} = {};\n grads.forEach((grad, i) => {\n gradMap[i] = () => grad;\n });\n return gradMap;\n };\n\n return this.runKernelFunc({\n forwardFunc,\n backwardsFunc,\n inputs: inputMap,\n });\n };\n }\n\n readSync(dataId: DataId): BackendValues {\n // Route the read to the correct backend.\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.readSync(dataId);\n }\n read(dataId: DataId): Promise {\n // Route the read to the correct backend.\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.read(dataId);\n }\n\n async time(query: () => void): Promise {\n const start = now();\n const timingInfo = await this.backend.time(query) as TimingInfo;\n timingInfo.wallMs = now() - start;\n return timingInfo;\n }\n\n /**\n * Tracks a Tensor in the current scope to be automatically cleaned up\n * when the current scope ends, and returns the value.\n *\n * @param result The Tensor to track in the current scope.\n */\n private track(result: T): T {\n if (this.state.activeScope != null) {\n result.scopeId = this.state.activeScope.id;\n this.state.activeScope.track.push(result);\n }\n\n return result;\n }\n\n get registeredVariables(): NamedVariableMap {\n return this.state.registeredVariables;\n }\n\n /**\n * Resets the engine state. Removes all backends but does not remove\n * registered backend factories.\n */\n reset(): void {\n // Make any pending promise obsolete.\n this.pendingBackendInitId++;\n\n this.state.dispose();\n this.ENV.reset();\n this.state = new EngineState();\n\n for (const backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n this.backendName = null;\n this.backendInstance = null;\n this.pendingBackendInit = null;\n }\n}\n\nfunction ones(shape: number[]): Tensor {\n const values = makeOnesTypedArray(sizeFromShape(shape), 'float32');\n return ENGINE.makeTensor(values, shape, 'float32');\n}\n\nexport function getOrMakeEngine(): Engine {\n const ns = getGlobalNamespace() as {} as {_tfengine: Engine};\n if (ns._tfengine == null) {\n const environment = new Environment(ns);\n ns._tfengine = new Engine(environment);\n }\n setEnvironmentGlobal(ns._tfengine.ENV);\n\n // Tell the current tensor interface that the global engine is responsible\n // for tracking.\n setTensorTracker(() => ns._tfengine);\n return ns._tfengine;\n}\n\nexport const ENGINE = getOrMakeEngine();\n\n/**\n * A implementation of the add op for use within engine and tape.\n *\n * This allows us to avoid a circular dependency between add.ts and engine.\n * It is exported to be available in tape tests.\n */\nexport function add(a: Tensor, b: Tensor): Tensor {\n // We duplicate Add here to avoid a circular dependency with add.ts.\n const inputs = {a, b};\n return ENGINE.runKernel(Add, inputs as {} as NamedTensorMap);\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// tslint:disable-next-line:no-any\nfunction _isNavigatorDefined(): boolean {\n return typeof navigator !== 'undefined' && navigator != null;\n}\n\nexport function isMobile(nav?: Navigator): boolean {\n if (nav || _isNavigatorDefined()) {\n if (!nav) {\n nav = navigator;\n }\n if (nav.product === 'ReactNative') {\n return true;\n }\n\n // tslint:disable-next-line:no-any\n const a = nav.userAgent || nav.vendor || (window as any).opera;\n // tslint:disable-next-line:max-line-length\n return /(android|bb\\d+|meego).+mobile|avantgo|bada\\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i\n .test(a) ||\n // tslint:disable-next-line:max-line-length\n /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\\-(n|u)|c55\\/|capi|ccwa|cdm\\-|cell|chtm|cldc|cmd\\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\\-s|devi|dica|dmob|do(c|p)o|ds(12|\\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\\-|_)|g1 u|g560|gene|gf\\-5|g\\-mo|go(\\.w|od)|gr(ad|un)|haie|hcit|hd\\-(m|p|t)|hei\\-|hi(pt|ta)|hp( i|ip)|hs\\-c|ht(c(\\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\\-(20|go|ma)|i230|iac( |\\-|\\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\\/)|klon|kpt |kwc\\-|kyo(c|k)|le(no|xi)|lg( g|\\/(k|l|u)|50|54|\\-[a-w])|libw|lynx|m1\\-w|m3ga|m50\\/|ma(te|ui|xo)|mc(01|21|ca)|m\\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\\-2|po(ck|rt|se)|prox|psio|pt\\-g|qa\\-a|qc(07|12|21|32|60|\\-[2-7]|i\\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\\-|oo|p\\-)|sdk\\/|se(c(\\-|0|1)|47|mc|nd|ri)|sgh\\-|shar|sie(\\-|m)|sk\\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\\-|v\\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\\-|tdg\\-|tel(i|m)|tim\\-|t\\-mo|to(pl|sh)|ts(70|m\\-|m3|m5)|tx\\-9|up(\\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\\-|your|zeto|zte\\-/i\n .test(a.substr(0, 4));\n }\n return false;\n}\n\nexport function isBrowser(): boolean {\n return (typeof window !== 'undefined' && window.document != null) ||\n //@ts-ignore\n (typeof WorkerGlobalScope !== 'undefined');\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport './engine';\n\nimport * as device_util from './device_util';\nimport {env} from './environment';\n\nconst ENV = env();\n\n/**\n * This file contains environment-related flag registrations.\n */\n\n/** Whether to enable debug mode. */\nENV.registerFlag('DEBUG', () => false, debugValue => {\n if (debugValue) {\n console.warn(\n 'Debugging mode is ON. The output of every math call will ' +\n 'be downloaded to CPU and checked for NaNs. ' +\n 'This significantly impacts performance.');\n }\n});\n\n/** Whether we are in a browser (as versus, say, node.js) environment. */\nENV.registerFlag('IS_BROWSER', () => device_util.isBrowser());\n\n/** Whether we are in a browser (as versus, say, node.js) environment. */\nENV.registerFlag(\n 'IS_NODE',\n () => (typeof process !== 'undefined') &&\n (typeof process.versions !== 'undefined') &&\n (typeof process.versions.node !== 'undefined'));\n\n/** Whether this browser is Chrome. */\nENV.registerFlag(\n 'IS_CHROME',\n () => typeof navigator !== 'undefined' && navigator != null &&\n navigator.userAgent != null && /Chrome/.test(navigator.userAgent) &&\n /Google Inc/.test(navigator.vendor));\n\n/**\n * True when the environment is \"production\" where we disable safety checks\n * to gain performance.\n */\nENV.registerFlag('PROD', () => false);\n\n/**\n * Whether to do sanity checks when inferring a shape from user-provided\n * values, used when creating a new tensor.\n */\nENV.registerFlag(\n 'TENSORLIKE_CHECK_SHAPE_CONSISTENCY', () => ENV.getBool('DEBUG'));\n\n/** Whether deprecation warnings are enabled. */\nENV.registerFlag('DEPRECATION_WARNINGS_ENABLED', () => true);\n\n/** True if running unit tests. */\nENV.registerFlag('IS_TEST', () => false);\n\n/** Whether to check computation result for errors. */\nENV.registerFlag('CHECK_COMPUTATION_FOR_ERRORS', () => true);\n\n/** Whether the backend needs to wrap input to imageBitmap. */\nENV.registerFlag('WRAP_TO_IMAGEBITMAP', () => false);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from './engine';\nimport {env} from './environment';\nimport {Tensor} from './tensor';\nimport {DataType, TensorLike} from './types';\nimport {assert, flatten, inferDtype, isTypedArray, toTypedArray} from './util';\n\nexport function inferShape(val: TensorLike, dtype?: DataType): number[] {\n let firstElem: typeof val = val;\n\n if (isTypedArray(val)) {\n return dtype === 'string' ? [] : [val.length];\n }\n if (!Array.isArray(val)) {\n return []; // Scalar.\n }\n const shape: number[] = [];\n\n while (Array.isArray(firstElem) ||\n isTypedArray(firstElem) && dtype !== 'string') {\n shape.push(firstElem.length);\n firstElem = firstElem[0];\n }\n if (Array.isArray(val) &&\n env().getBool('TENSORLIKE_CHECK_SHAPE_CONSISTENCY')) {\n deepAssertShapeConsistency(val, shape, []);\n }\n\n return shape;\n}\n\nfunction deepAssertShapeConsistency(\n val: TensorLike, shape: number[], indices: number[]) {\n indices = indices || [];\n if (!(Array.isArray(val)) && !isTypedArray(val)) {\n assert(\n shape.length === 0,\n () => `Element arr[${indices.join('][')}] is a primitive, ` +\n `but should be an array/TypedArray of ${shape[0]} elements`);\n return;\n }\n assert(\n shape.length > 0,\n () => `Element arr[${indices.join('][')}] should be a primitive, ` +\n `but is an array of ${val.length} elements`);\n assert(\n val.length === shape[0],\n () => `Element arr[${indices.join('][')}] should have ${shape[0]} ` +\n `elements, but has ${val.length} elements`);\n const subShape = shape.slice(1);\n for (let i = 0; i < val.length; ++i) {\n deepAssertShapeConsistency(val[i], subShape, indices.concat(i));\n }\n}\n\nfunction assertDtype(\n expectedDtype: DataType|'numeric'|'string_or_numeric',\n actualDType: DataType, argName: string, functionName: string) {\n if (expectedDtype === 'string_or_numeric') {\n return;\n }\n if (expectedDtype == null) {\n throw new Error(`Expected dtype cannot be null.`);\n }\n if (expectedDtype !== 'numeric' && expectedDtype !== actualDType ||\n expectedDtype === 'numeric' && actualDType === 'string') {\n throw new Error(\n `Argument '${argName}' passed to '${functionName}' must ` +\n `be ${expectedDtype} tensor, but got ${actualDType} tensor`);\n }\n}\n\nexport function convertToTensor(\n x: T|TensorLike, argName: string, functionName: string,\n parseAsDtype: DataType|'numeric'|'string_or_numeric' = 'numeric'): T {\n if (x instanceof Tensor) {\n assertDtype(parseAsDtype, x.dtype, argName, functionName);\n return x;\n }\n let inferredDtype = inferDtype(x);\n // If the user expects a bool/int/float, use that info to update the\n // inferredDtype when it is not a string.\n if (inferredDtype !== 'string' &&\n ['bool', 'int32', 'float32'].indexOf(parseAsDtype) >= 0) {\n inferredDtype = parseAsDtype as DataType;\n }\n assertDtype(parseAsDtype, inferredDtype, argName, functionName);\n\n if ((x == null) ||\n (!isTypedArray(x) && !Array.isArray(x) && typeof x !== 'number' &&\n typeof x !== 'boolean' && typeof x !== 'string')) {\n const type = x == null ? 'null' : (x as {}).constructor.name;\n throw new Error(\n `Argument '${argName}' passed to '${functionName}' must be a ` +\n `Tensor or TensorLike, but got '${type}'`);\n }\n const inferredShape = inferShape(x, inferredDtype);\n if (!isTypedArray(x) && !Array.isArray(x)) {\n x = [x] as number[];\n }\n const skipTypedArray = true;\n const values = inferredDtype !== 'string' ?\n toTypedArray(x, inferredDtype as DataType) :\n flatten(x as string[], [], skipTypedArray) as string[];\n return ENGINE.makeTensor(values, inferredShape, inferredDtype) as T;\n}\n\nexport function convertToTensorArray(\n arg: Array, argName: string, functionName: string,\n parseAsDtype: DataType|'numeric'|'string_or_numeric' = 'numeric'): T[] {\n if (!Array.isArray(arg)) {\n throw new Error(\n `Argument ${argName} passed to ${functionName} must be a ` +\n '`Tensor[]` or `TensorLike[]`');\n }\n const tensors = arg as T[];\n return tensors.map(\n (t, i) =>\n convertToTensor(t, `${argName}[${i}]`, functionName, parseAsDtype));\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {isPromise} from '../util';\n\nexport const OP_SCOPE_SUFFIX = '__op';\n\n/**\n * Used for wrapping functions that perform math operations on\n * Tensors. The function will be wrapped in a named scope that cleans all\n * memory usage after the function is done.\n */\nexport function op(f: {[name: string]: T}): T {\n const keys = Object.keys(f);\n if (keys.length !== 1) {\n throw new Error(\n `Please provide an object with a single key ` +\n `(operation name) mapping to a function. Got an object with ` +\n `${keys.length} keys.`);\n }\n\n let opName = keys[0];\n const fn = f[opName];\n\n // Strip the underscore from the end of the function name.\n if (opName.endsWith('_')) {\n opName = opName.substring(0, opName.length - 1);\n }\n\n // add an __op suffix to distinguish ops from kernels in tf.profile\n opName = opName + OP_SCOPE_SUFFIX;\n\n // tslint:disable-next-line:no-any\n const f2 = (...args: any[]) => {\n ENGINE.startScope(opName);\n try {\n const result = fn(...args);\n if (isPromise(result)) {\n console.error('Cannot return a Promise inside of tidy.');\n }\n ENGINE.endScope(result);\n return result;\n } catch (ex) {\n ENGINE.endScope(null);\n throw ex;\n }\n };\n Object.defineProperty(f2, 'name', {value: opName, configurable: true});\n\n // tslint:disable-next-line:no-any\n return f2 as any as T;\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {Complex, ComplexInputs} from '../kernel_names';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Converts two real numbers to a complex number.\n *\n * Given a tensor `real` representing the real part of a complex number, and a\n * tensor `imag` representing the imaginary part of a complex number, this\n * operation returns complex numbers elementwise of the form [r0, i0, r1, i1],\n * where r represents the real part and i represents the imag part.\n *\n * The input tensors real and imag must have the same shape.\n *\n * ```js\n * const real = tf.tensor1d([2.25, 3.25]);\n * const imag = tf.tensor1d([4.75, 5.75]);\n * const complex = tf.complex(real, imag);\n *\n * complex.print();\n * ```\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction complex_(real: T|TensorLike, imag: T|TensorLike): T {\n const $real = convertToTensor(real, 'real', 'complex');\n const $imag = convertToTensor(imag, 'imag', 'complex');\n util.assertShapesMatch(\n $real.shape, $imag.shape,\n `real and imag shapes, ${$real.shape} and ${$imag.shape}, ` +\n `must match in call to tf.complex().`);\n\n const inputs: ComplexInputs = {real: $real, imag: $imag};\n return ENGINE.runKernel(Complex, inputs as {} as NamedTensorMap);\n}\n\nexport const complex = op({complex_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Tensor} from '../tensor';\nimport {TensorLike, TypedArray} from '../types';\nimport {DataType} from '../types';\nimport {assert, assertNonNegativeIntegerDimensions, flatten, inferDtype, isTypedArray, sizeFromShape, toTypedArray} from '../util';\n\n/** This is shared code across all tensor creation methods. */\nexport function makeTensor(\n values: TensorLike, shape: number[], inferredShape: number[],\n dtype?: DataType): Tensor {\n if (dtype == null) {\n dtype = inferDtype(values);\n }\n if (dtype === 'complex64') {\n throw new Error(\n `Cannot construct a complex64 tensor directly. ` +\n `Please use tf.complex(real, imag).`);\n }\n if (!isTypedArray(values) && !Array.isArray(values) &&\n typeof values !== 'number' && typeof values !== 'boolean' &&\n typeof values !== 'string') {\n throw new Error(\n 'values passed to tensor(values) must be a number/boolean/string or ' +\n 'an array of numbers/booleans/strings, or a TypedArray');\n }\n if (shape != null) {\n assertNonNegativeIntegerDimensions(shape);\n\n const providedSize = sizeFromShape(shape);\n const inferredSize = sizeFromShape(inferredShape);\n assert(\n providedSize === inferredSize,\n () =>\n `Based on the provided shape, [${shape}], the tensor should have ` +\n `${providedSize} values but has ${inferredSize}`);\n\n for (let i = 0; i < inferredShape.length; ++i) {\n const inferred = inferredShape[i];\n const flatDimsDontMatch = i === inferredShape.length - 1 ?\n inferred !== sizeFromShape(shape.slice(i)) :\n true;\n assert(\n inferredShape[i] === shape[i] || !flatDimsDontMatch,\n () => `Error creating a new Tensor. Inferred shape ` +\n `(${inferredShape}) does not match the provided ` +\n `shape (${shape}). `);\n }\n }\n\n if (!isTypedArray(values) && !Array.isArray(values)) {\n values = [values] as number[];\n }\n\n shape = shape || inferredShape;\n values = dtype !== 'string' ?\n toTypedArray(values, dtype) :\n flatten(values as string[], [], true) as string[];\n return ENGINE.makeTensor(values as TypedArray, shape, dtype);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from '../tensor';\nimport {inferShape} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport {DataType, Rank, ShapeMap} from '../types';\n\nimport {makeTensor} from './tensor_ops_util';\n\n/**\n * Creates a `tf.Tensor` with the provided values, shape and dtype.\n *\n * ```js\n * // Pass an array of values to create a vector.\n * tf.tensor([1, 2, 3, 4]).print();\n * ```\n *\n * ```js\n * // Pass a nested array of values to make a matrix or a higher\n * // dimensional tensor.\n * tf.tensor([[1, 2], [3, 4]]).print();\n * ```\n *\n * ```js\n * // Pass a flat array and specify a shape yourself.\n * tf.tensor([1, 2, 3, 4], [2, 2]).print();\n * ```\n *\n * @param values The values of the tensor. Can be nested array of numbers,\n * or a flat array, or a `TypedArray`. If the values are strings,\n * they will be encoded as utf-8 and kept as `Uint8Array[]`.\n * @param shape The shape of the tensor. Optional. If not provided,\n * it is inferred from `values`.\n * @param dtype The data type.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function tensor(\n values: TensorLike, shape?: ShapeMap[R], dtype?: DataType): Tensor {\n const inferredShape = inferShape(values, dtype);\n return makeTensor(values, shape, inferredShape, dtype) as Tensor;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/* Type definitions for exporting and importing of models. */\n\n/**\n * A map from Tensor dtype to number of bytes per element of the Tensor.\n */\nexport const DTYPE_VALUE_SIZE_MAP: {[dtype: string]: number} = {\n 'float32': 4,\n 'float16': 2,\n 'int32': 4,\n 'uint16': 2,\n 'uint8': 1,\n 'bool': 1,\n 'complex64': 8\n};\n\n/**\n * A weight manifest.\n *\n * The weight manifest consists of an ordered list of weight-manifest groups.\n * Each weight-manifest group (\"group\" for short hereafter) consists of a\n * number of weight values stored in a number of paths.\n * See the documentation of `WeightManifestGroupConfig` below for more details.\n */\nexport declare type WeightsManifestConfig = WeightsManifestGroupConfig[];\n\n/**\n * A weight-manifest group.\n *\n * Consists of an ordered list of weight values encoded in binary format,\n * stored in an ordered list of paths.\n */\nexport declare interface WeightsManifestGroupConfig {\n /**\n * An ordered list of paths.\n *\n * Paths are intentionally abstract in order to be general. For example, they\n * can be relative URL paths or relative paths on the file system.\n */\n paths: string[];\n\n /**\n * Specifications of the weights stored in the paths.\n */\n weights: WeightsManifestEntry[];\n}\n\n/**\n * Group to which the weight belongs.\n *\n * - 'optimizer': Weight from a stateful optimizer.\n */\nexport type WeightGroup = 'model'|'optimizer';\n\n/**\n * An entry in the weight manifest.\n *\n * The entry contains specification of a weight.\n */\nexport declare interface WeightsManifestEntry {\n /**\n * Name of the weight, e.g., 'Dense_1/bias'\n */\n name: string;\n\n /**\n * Shape of the weight.\n */\n shape: number[];\n\n /**\n * Data type of the weight.\n */\n dtype: 'float32'|'int32'|'bool'|'string'|'complex64';\n\n /**\n * Type of the weight.\n *\n * Optional.\n *\n * The value 'optimizer' indicates the weight belongs to an optimizer\n * (i.e., used only during model training and not during inference).\n */\n group?: WeightGroup;\n\n /**\n * Information for dequantization of the weight.\n */\n quantization?: {\n scale?: number, // The scaling constant to multiply by.\n min?: number, // The (possibly nudged) minimum weight to add.\n dtype: 'uint16'|'uint8'|'float16' // The dtype of the quantized weights.\n };\n}\n\n/**\n * Options for saving a model.\n * @innamespace io\n */\nexport interface SaveConfig {\n /**\n * Whether to save only the trainable weights of the model, ignoring the\n * non-trainable ones.\n */\n trainableOnly?: boolean;\n\n /**\n * Whether the optimizer will be saved (if exists).\n *\n * Default: `false`.\n */\n includeOptimizer?: boolean;\n}\n\n/**\n * Result of a saving operation.\n */\nexport interface SaveResult {\n /**\n * Information about the model artifacts saved.\n */\n modelArtifactsInfo: ModelArtifactsInfo;\n\n /**\n * HTTP responses from the server that handled the model-saving request (if\n * any). This is applicable only to server-based saving routes.\n */\n responses?: Response[];\n\n /**\n * Error messages and related data (if any).\n */\n errors?: Array<{}|string>;\n}\n\nexport declare interface ModelArtifactsInfo {\n /**\n * Timestamp for when the model is saved.\n */\n dateSaved: Date;\n\n /**\n * TODO (cais,yassogba) consider removing GraphDef as GraphDefs now\n * come in a JSON format and none of our IOHandlers support a non json\n * format. We could conder replacing this with 'Binary' if we want to\n * allow future handlers to save to non json formats (though they will\n * probably want more information than 'Binary').\n * Type of the model topology\n *\n * Type of the model topology\n *\n * Possible values:\n * - JSON: JSON config (human-readable, e.g., Keras JSON).\n * - GraphDef: TensorFlow\n * [GraphDef](https://www.tensorflow.org/extend/tool_developers/#graphdef)\n * protocol buffer (binary).\n */\n modelTopologyType: 'JSON'|'GraphDef';\n\n /**\n * Size of model topology (Keras JSON or GraphDef), in bytes.\n */\n modelTopologyBytes?: number;\n\n /**\n * Size of weight specification or manifest, in bytes.\n */\n weightSpecsBytes?: number;\n\n /**\n * Size of weight value data, in bytes.\n */\n weightDataBytes?: number;\n}\n\n/** Model training configuration. */\nexport declare interface TrainingConfig {\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n // See\n // tslint:disable-next-line:max-line-length\n // https://github.com/tensorflow/tfjs-layers/blob/master/src/keras_format/training_config.ts\n /** Optimizer used for the model training. */\n optimizer_config: {};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n /** Loss function(s) for the model's output(s). */\n loss: string|string[]|{[key: string]: string};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n /** Metric function(s) for the model's output(s). */\n metrics?: string[]|{[key: string]: string};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n weighted_metrics?: string[];\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n sample_weight_mode?: string;\n\n loss_weights?: number[]|{[key: string]: number};\n}\n\n/**\n * The serialized artifacts of a model, including topology and weights.\n *\n * The `modelTopology`, `trainingConfig`, `weightSpecs` and `weightData` fields\n * of this interface are optional, in order to support topology- or weights-only\n * saving and loading.\n *\n * Note this interface is used internally in IOHandlers. For the file format\n * written to disk as `model.json`, see `ModelJSON`.\n */\nexport declare interface ModelArtifacts {\n /**\n * Model topology.\n *\n * For Keras-style `tf.Model`s, this is a JSON object.\n * For TensorFlow-style models (e.g., `SavedModel`), this is the JSON\n * encoding of the `GraphDef` protocol buffer.\n */\n modelTopology?: {}|ArrayBuffer;\n\n /**\n * Serialized configuration for the model's training.\n */\n trainingConfig?: TrainingConfig;\n\n /**\n * Weight specifications.\n *\n * This corresponds to the weightsData below.\n */\n weightSpecs?: WeightsManifestEntry[];\n\n /**\n * Binary buffer for all weight values concatenated in the order specified\n * by `weightSpecs`.\n */\n weightData?: ArrayBuffer;\n\n /**\n * Hard-coded format name for models saved from TensorFlow.js or converted\n * by TensorFlow.js Converter.\n */\n format?: string;\n\n /**\n * What library is responsible for originally generating this artifact.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js v1.0.0'.\n */\n generatedBy?: string;\n\n /**\n * What library or tool is responsible for converting the original model\n * to this format, applicable only if the model is output by a converter.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js Converter v1.0.0'.\n *\n * A value of `null` means the model artifacts are generated without any\n * conversion process (e.g., saved directly from a TensorFlow.js\n * `tf.LayersModel` instance.)\n */\n convertedBy?: string|null;\n\n /**\n * Inputs and outputs signature for saved model.\n */\n signature?: {};\n\n /**\n * User-defined metadata about the model.\n */\n userDefinedMetadata?: {[key: string]: {}};\n\n /**\n * Initializer for the model.\n */\n modelInitializer?: {};\n}\n\n/**\n * The on-disk format of the `model.json` file.\n *\n * TF.js 1.0 always populates the optional fields when writing model.json.\n * Prior versions did not provide those fields.\n */\nexport declare interface ModelJSON {\n /**\n * Model topology.\n *\n * For Keras-style `tf.Model`s, this is a JSON object.\n * For TensorFlow-style models (e.g., `SavedModel`), this is the JSON\n * encoding of the `GraphDef` protocol buffer.\n */\n modelTopology: {};\n\n /** Model training configuration. */\n trainingConfig?: TrainingConfig;\n\n /**\n * Weights manifest.\n *\n * The weights manifest consists of an ordered list of weight-manifest\n * groups. Each weight-manifest group consists of a number of weight values\n * stored in a number of paths. See the documentation of\n * `WeightsManifestConfig` for more details.\n */\n weightsManifest: WeightsManifestConfig;\n\n /**\n * Hard-coded format name for models saved from TensorFlow.js or converted\n * by TensorFlow.js Converter.\n */\n format?: string;\n\n /**\n * What library is responsible for originally generating this artifact.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js v1.0.0'.\n */\n generatedBy?: string;\n\n /**\n * What library or tool is responsible for converting the original model\n * to this format, applicable only if the model is output by a converter.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js Converter v1.0.0'.\n *\n * A value of `null` means the model artifacts are generated without any\n * conversion process (e.g., saved directly from a TensorFlow.js\n * `tf.LayersModel` instance.)\n */\n convertedBy?: string|null;\n\n /**\n * Inputs and outputs signature for saved model.\n */\n signature?: {};\n\n /**\n * User-defined metadata about the model.\n */\n userDefinedMetadata?: {[key: string]: {}};\n\n /**\n * Initializer for the model.\n */\n modelInitializer?: {};\n}\n\n/**\n * Type definition for handlers of loading operations.\n */\nexport type LoadHandler = () => Promise;\n\n/**\n * Type definition for handlers of saving operations.\n */\nexport type SaveHandler = (modelArtifact: ModelArtifacts) =>\n Promise;\n\n/**\n * Interface for a model import/export handler.\n *\n * The `save` and `load` handlers are both optional, in order to allow handlers\n * that support only saving or loading.\n */\n// tslint:disable-next-line:interface-name\nexport interface IOHandler {\n save?: SaveHandler;\n load?: LoadHandler;\n}\n\n/**\n * An interface for the manager of a model store.\n *\n * A model store is defined as a storage medium on which multiple models can\n * be stored. Each stored model has a unique `path` as its identifier.\n * A `ModelStoreManager` for the store allows actions including\n *\n * - Listing the models stored in the store.\n * - Deleting a model from the store.\n */\nexport interface ModelStoreManager {\n /**\n * List all models in the model store.\n *\n * @returns A dictionary mapping paths of existing models to their\n * model artifacts info. Model artifacts info include type of the model's\n * topology, byte sizes of the topology, weights, etc.\n */\n listModels(): Promise<{[path: string]: ModelArtifactsInfo}>;\n\n /**\n * Remove a model specified by `path`.\n *\n * @param path\n * @returns ModelArtifactsInfo of the deleted model (if and only if deletion\n * is successful).\n * @throws Error if deletion fails, e.g., if no model exists at `path`.\n */\n removeModel(path: string): Promise;\n}\n\n/**\n * Callback for the progress of a long-running action such as an HTTP\n * request for a large binary object.\n *\n * `fraction` should be a number in the [0, 1] interval, indicating how\n * much of the action has completed.\n */\nexport type OnProgressCallback = (fraction: number) => void;\n\n/** @innamespace io */\nexport interface LoadOptions {\n /**\n * RequestInit (options) for HTTP requests.\n *\n * For detailed information on the supported fields, see\n * [https://developer.mozilla.org/en-US/docs/Web/API/Request/Request](\n * https://developer.mozilla.org/en-US/docs/Web/API/Request/Request)\n */\n requestInit?: RequestInit;\n\n /**\n * Progress callback.\n */\n onProgress?: OnProgressCallback;\n\n /**\n * A function used to override the `window.fetch` function.\n */\n fetchFunc?: Function;\n\n /**\n * Strict loading model: whether extraneous weights or missing\n * weights should trigger an `Error`.\n *\n * If `true`, require that the provided weights exactly match those\n * required by the layers. `false` means that both extra weights\n * and missing weights will be silently ignored.\n *\n * Default: `true`.\n */\n strict?: boolean;\n\n /**\n * Path prefix for weight files, by default this is calculated from the\n * path of the model JSON file.\n *\n * For instance, if the path to the model JSON file is\n * `http://localhost/foo/model.json`, then the default path prefix will be\n * `http://localhost/foo/`. If a weight file has the path value\n * `group1-shard1of2` in the weight manifest, then the weight file will be\n * loaded from `http://localhost/foo/group1-shard1of2` by default. However,\n * if you provide a `weightPathPrefix` value of\n * `http://localhost/foo/alt-weights`, then the weight file will be loaded\n * from the path `http://localhost/foo/alt-weights/group1-shard1of2` instead.\n */\n weightPathPrefix?: string;\n\n /**\n * Whether the module or model is to be loaded from TF Hub.\n *\n * Setting this to `true` allows passing a TF-Hub module URL, omitting the\n * standard model file name and the query parameters.\n *\n * Default: `false`.\n */\n fromTFHub?: boolean;\n\n /**\n * An async function to convert weight file name to URL. The weight file\n * names are stored in model.json's weightsManifest.paths field. By default we\n * consider weight files are colocated with the model.json file. For example:\n * model.json URL: https://www.google.com/models/1/model.json\n * group1-shard1of1.bin url:\n * https://www.google.com/models/1/group1-shard1of1.bin\n *\n * With this func you can convert the weight file name to any URL.\n */\n weightUrlConverter?: (weightFileName: string) => Promise;\n}\n\n/**\n * Additional options for Platform.fetch\n */\nexport interface RequestDetails {\n /**\n * Is this request for a binary file (as opposed to a json file)\n */\n isBinary?: boolean;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {complex} from '../ops/complex';\n\nimport {tensor} from '../ops/tensor';\nimport {NamedTensor, NamedTensorMap} from '../tensor_types';\nimport {TypedArray} from '../types';\nimport {sizeFromShape} from '../util';\n\nimport {DTYPE_VALUE_SIZE_MAP, ModelArtifacts, ModelArtifactsInfo, WeightGroup, WeightsManifestEntry} from './types';\n\n/** Number of bytes reserved for the length of the string. (32bit integer). */\nconst NUM_BYTES_STRING_LENGTH = 4;\n\n/**\n * Encode a map from names to weight values as an ArrayBuffer, along with an\n * `Array` of `WeightsManifestEntry` as specification of the encoded weights.\n *\n * This function does not perform sharding.\n *\n * This function is the reverse of `decodeWeights`.\n *\n * @param tensors A map (\"dict\") from names to tensors.\n * @param group Group to which the weights belong (optional).\n * @returns A `Promise` of\n * - A flat `ArrayBuffer` with all the binary values of the `Tensor`s\n * concatenated.\n * - An `Array` of `WeightManifestEntry`s, carrying information including\n * tensor names, `dtype`s and shapes.\n * @throws Error: on unsupported tensor `dtype`.\n */\nexport async function encodeWeights(\n tensors: NamedTensorMap|NamedTensor[], group?: WeightGroup):\n Promise<{data: ArrayBuffer, specs: WeightsManifestEntry[]}> {\n // TODO(adarob, cais): Support quantization.\n const specs: WeightsManifestEntry[] = [];\n const dataPromises: Array> = [];\n\n const names: string[] = Array.isArray(tensors) ?\n tensors.map(tensor => tensor.name) :\n Object.keys(tensors);\n\n for (let i = 0; i < names.length; ++i) {\n const name = names[i];\n const t = Array.isArray(tensors) ? tensors[i].tensor : tensors[name];\n if (t.dtype !== 'float32' && t.dtype !== 'int32' && t.dtype !== 'bool' &&\n t.dtype !== 'string' && t.dtype !== 'complex64') {\n throw new Error(`Unsupported dtype in weight '${name}': ${t.dtype}`);\n }\n const spec: WeightsManifestEntry = {name, shape: t.shape, dtype: t.dtype};\n if (t.dtype === 'string') {\n const utf8bytes = new Promise(async resolve => {\n const vals = await t.bytes() as Uint8Array[];\n const totalNumBytes = vals.reduce((p, c) => p + c.length, 0) +\n NUM_BYTES_STRING_LENGTH * vals.length;\n const bytes = new Uint8Array(totalNumBytes);\n let offset = 0;\n for (let i = 0; i < vals.length; i++) {\n const val = vals[i];\n const bytesOfLength =\n new Uint8Array(new Uint32Array([val.length]).buffer);\n bytes.set(bytesOfLength, offset);\n offset += NUM_BYTES_STRING_LENGTH;\n bytes.set(val, offset);\n offset += val.length;\n }\n resolve(bytes);\n });\n dataPromises.push(utf8bytes);\n } else {\n dataPromises.push(t.data());\n }\n if (group != null) {\n spec.group = group;\n }\n specs.push(spec);\n }\n\n const tensorValues = await Promise.all(dataPromises);\n return {data: concatenateTypedArrays(tensorValues), specs};\n}\n\n/**\n * Decode flat ArrayBuffer as weights.\n *\n * This function does not handle sharding.\n *\n * This function is the reverse of `encodeWeights`.\n *\n * @param buffer A flat ArrayBuffer carrying the binary values of the tensors\n * concatenated in the order specified in `specs`.\n * @param specs Specifications of the names, dtypes and shapes of the tensors\n * whose value are encoded by `buffer`.\n * @return A map from tensor name to tensor value, with the names corresponding\n * to names in `specs`.\n * @throws Error, if any of the tensors has unsupported dtype.\n */\nexport function decodeWeights(\n buffer: ArrayBuffer, specs: WeightsManifestEntry[]): NamedTensorMap {\n // TODO(adarob, cais): Support quantization.\n const out: NamedTensorMap = {};\n let float16Decode: (buffer: Uint16Array) => Float32Array | undefined;\n let offset = 0;\n for (const spec of specs) {\n const name = spec.name;\n const dtype = spec.dtype;\n const shape = spec.shape;\n const size = sizeFromShape(shape);\n let values: TypedArray|string[]|Uint8Array[];\n\n if ('quantization' in spec) {\n const quantization = spec.quantization;\n if (quantization.dtype === 'uint8' || quantization.dtype === 'uint16') {\n if (!('min' in quantization && 'scale' in quantization)) {\n throw new Error(\n `Weight ${spec.name} with quantization ${quantization.dtype} ` +\n `doesn't have corresponding metadata min and scale.`);\n }\n } else if (quantization.dtype === 'float16') {\n if (dtype !== 'float32') {\n throw new Error(\n `Weight ${spec.name} is quantized with ${quantization.dtype} ` +\n `which only supports weights of type float32 not ${dtype}.`);\n }\n } else {\n throw new Error(\n `Weight ${spec.name} has unknown ` +\n `quantization dtype ${quantization.dtype}. ` +\n `Supported quantization dtypes are: ` +\n `'uint8', 'uint16', and 'float16'.`);\n }\n const quantizationSizeFactor = DTYPE_VALUE_SIZE_MAP[quantization.dtype];\n const byteBuffer =\n buffer.slice(offset, offset + size * quantizationSizeFactor);\n const quantizedArray = (quantization.dtype === 'uint8') ?\n new Uint8Array(byteBuffer) :\n new Uint16Array(byteBuffer);\n if (dtype === 'float32') {\n if (quantization.dtype === 'uint8' || quantization.dtype === 'uint16') {\n values = new Float32Array(quantizedArray.length);\n for (let i = 0; i < quantizedArray.length; i++) {\n const v = quantizedArray[i];\n values[i] = v * quantization.scale + quantization.min;\n }\n } else if (quantization.dtype === 'float16') {\n if (float16Decode === undefined) {\n float16Decode = getFloat16Decoder();\n }\n values = float16Decode(quantizedArray as Uint16Array);\n } else {\n throw new Error(\n `Unsupported quantization type ${quantization.dtype} ` +\n `for weight type float32.`);\n }\n } else if (dtype === 'int32') {\n if (quantization.dtype !== 'uint8' && quantization.dtype !== 'uint16') {\n throw new Error(\n `Unsupported quantization type ${quantization.dtype} ` +\n `for weight type int32.`);\n }\n values = new Int32Array(quantizedArray.length);\n for (let i = 0; i < quantizedArray.length; i++) {\n const v = quantizedArray[i];\n values[i] = Math.round(v * quantization.scale + quantization.min);\n }\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * quantizationSizeFactor;\n } else if (dtype === 'string') {\n const size = sizeFromShape(spec.shape);\n values = [];\n for (let i = 0; i < size; i++) {\n const byteLength = new Uint32Array(\n buffer.slice(offset, offset + NUM_BYTES_STRING_LENGTH))[0];\n offset += NUM_BYTES_STRING_LENGTH;\n const bytes = new Uint8Array(buffer.slice(offset, offset + byteLength));\n (values as Uint8Array[]).push(bytes);\n offset += byteLength;\n }\n } else {\n const dtypeFactor = DTYPE_VALUE_SIZE_MAP[dtype];\n const byteBuffer = buffer.slice(offset, offset + size * dtypeFactor);\n\n if (dtype === 'float32') {\n values = new Float32Array(byteBuffer);\n } else if (dtype === 'int32') {\n values = new Int32Array(byteBuffer);\n } else if (dtype === 'bool') {\n values = new Uint8Array(byteBuffer);\n } else if (dtype === 'complex64') {\n values = new Float32Array(byteBuffer);\n const real = new Float32Array(values.length / 2);\n const image = new Float32Array(values.length / 2);\n for (let i = 0; i < real.length; i++) {\n real[i] = values[i * 2];\n image[i] = values[i * 2 + 1];\n }\n const realTensor = tensor(real, shape, 'float32');\n const imageTensor = tensor(image, shape, 'float32');\n out[name] = complex(realTensor, imageTensor);\n realTensor.dispose();\n imageTensor.dispose();\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * dtypeFactor;\n }\n if (dtype !== 'complex64') {\n out[name] = tensor(values, shape, dtype);\n }\n }\n return out;\n}\n\n/**\n * Concatenate TypedArrays into an ArrayBuffer.\n */\nexport function concatenateTypedArrays(xs: TypedArray[]): ArrayBuffer {\n // TODO(adarob, cais): Support quantization.\n if (xs === null) {\n throw new Error(`Invalid input value: ${JSON.stringify(xs)}`);\n }\n\n let totalByteLength = 0;\n\n // `normalizedXs` is here for this reason: a `TypedArray`'s `buffer'\n // can have a different byte length from that of the `TypedArray` itself,\n // for example, when the `TypedArray` is created from an offset in an\n // `ArrayBuffer`. `normliazedXs` holds `TypedArray`s whose `buffer`s match\n // the `TypedArray` in byte length. If an element of `xs` does not show\n // this property, a new `TypedArray` that satisfy this property will be\n // constructed and pushed into `normalizedXs`.\n const normalizedXs: TypedArray[] = [];\n xs.forEach((x: TypedArray) => {\n totalByteLength += x.byteLength;\n // tslint:disable:no-any\n normalizedXs.push(\n x.byteLength === x.buffer.byteLength ? x :\n new (x.constructor as any)(x));\n if (!(x as any instanceof Float32Array || x as any instanceof Int32Array ||\n x as any instanceof Uint8Array)) {\n throw new Error(`Unsupported TypedArray subtype: ${x.constructor.name}`);\n }\n // tslint:enable:no-any\n });\n\n const y = new Uint8Array(totalByteLength);\n let offset = 0;\n normalizedXs.forEach((x: TypedArray) => {\n y.set(new Uint8Array(x.buffer), offset);\n offset += x.byteLength;\n });\n\n return y.buffer;\n}\n\n// Use Buffer on Node.js instead of Blob/atob/btoa\nconst useNodeBuffer = typeof Buffer !== 'undefined' &&\n (typeof Blob === 'undefined' || typeof atob === 'undefined' ||\n typeof btoa === 'undefined');\n\n/**\n * Calculate the byte length of a JavaScript string.\n *\n * Note that a JavaScript string can contain wide characters, therefore the\n * length of the string is not necessarily equal to the byte length.\n *\n * @param str Input string.\n * @returns Byte length.\n */\nexport function stringByteLength(str: string): number {\n if (useNodeBuffer) {\n return Buffer.byteLength(str);\n }\n return new Blob([str]).size;\n}\n\n/**\n * Encode an ArrayBuffer as a base64 encoded string.\n *\n * @param buffer `ArrayBuffer` to be converted.\n * @returns A string that base64-encodes `buffer`.\n */\nexport function arrayBufferToBase64String(buffer: ArrayBuffer): string {\n if (useNodeBuffer) {\n return Buffer.from(buffer).toString('base64');\n }\n const buf = new Uint8Array(buffer);\n let s = '';\n for (let i = 0, l = buf.length; i < l; i++) {\n s += String.fromCharCode(buf[i]);\n }\n return btoa(s);\n}\n\n/**\n * Decode a base64 string as an ArrayBuffer.\n *\n * @param str Base64 string.\n * @returns Decoded `ArrayBuffer`.\n */\nexport function base64StringToArrayBuffer(str: string): ArrayBuffer {\n if (useNodeBuffer) {\n const buf = Buffer.from(str, 'base64');\n return buf.buffer.slice(buf.byteOffset, buf.byteOffset + buf.byteLength);\n }\n const s = atob(str);\n const buffer = new Uint8Array(s.length);\n for (let i = 0; i < s.length; ++i) {\n buffer.set([s.charCodeAt(i)], i);\n }\n return buffer.buffer;\n}\n\n/**\n * Concatenate a number of ArrayBuffers into one.\n *\n * @param buffers A number of array buffers to concatenate.\n * @returns Result of concatenating `buffers` in order.\n */\nexport function concatenateArrayBuffers(buffers: ArrayBuffer[]): ArrayBuffer {\n if (buffers.length === 1) {\n return buffers[0];\n }\n\n let totalByteLength = 0;\n buffers.forEach((buffer: ArrayBuffer) => {\n totalByteLength += buffer.byteLength;\n });\n\n const temp = new Uint8Array(totalByteLength);\n let offset = 0;\n buffers.forEach((buffer: ArrayBuffer) => {\n temp.set(new Uint8Array(buffer), offset);\n offset += buffer.byteLength;\n });\n return temp.buffer;\n}\n\n/**\n * Get the basename of a path.\n *\n * Behaves in a way analogous to Linux's basename command.\n *\n * @param path\n */\nexport function basename(path: string): string {\n const SEPARATOR = '/';\n path = path.trim();\n while (path.endsWith(SEPARATOR)) {\n path = path.slice(0, path.length - 1);\n }\n const items = path.split(SEPARATOR);\n return items[items.length - 1];\n}\n\n/**\n * Populate ModelArtifactsInfo fields for a model with JSON topology.\n * @param modelArtifacts\n * @returns A ModelArtifactsInfo object.\n */\nexport function getModelArtifactsInfoForJSON(modelArtifacts: ModelArtifacts):\n ModelArtifactsInfo {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error('Expected JSON model topology, received ArrayBuffer.');\n }\n\n return {\n dateSaved: new Date(),\n modelTopologyType: 'JSON',\n modelTopologyBytes: modelArtifacts.modelTopology == null ?\n 0 :\n stringByteLength(JSON.stringify(modelArtifacts.modelTopology)),\n weightSpecsBytes: modelArtifacts.weightSpecs == null ?\n 0 :\n stringByteLength(JSON.stringify(modelArtifacts.weightSpecs)),\n weightDataBytes: modelArtifacts.weightData == null ?\n 0 :\n modelArtifacts.weightData.byteLength,\n };\n}\n\n/**\n * Computes mantisa table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 2048 mantissa lookup values.\n */\nfunction computeFloat16MantisaTable(): Uint32Array {\n const convertMantissa = (i: number): number => {\n let m = i << 13;\n let e = 0;\n\n while ((m & 0x00800000) === 0) {\n e -= 0x00800000;\n m <<= 1;\n }\n m &= ~0x00800000;\n e += 0x38800000;\n\n return m | e;\n };\n\n const mantisaTable = new Uint32Array(2048);\n\n mantisaTable[0] = 0;\n for (let i = 1; i < 1024; i++) {\n mantisaTable[i] = convertMantissa(i);\n }\n for (let i = 1024; i < 2048; i++) {\n mantisaTable[i] = 0x38000000 + ((i - 1024) << 13);\n }\n\n return mantisaTable;\n}\n\n/**\n * Computes exponent table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 64 exponent lookup values.\n */\nfunction computeFloat16ExponentTable(): Uint32Array {\n const exponentTable = new Uint32Array(64);\n\n exponentTable[0] = 0;\n exponentTable[31] = 0x47800000;\n exponentTable[32] = 0x80000000;\n exponentTable[63] = 0xc7800000;\n for (let i = 1; i < 31; i++) {\n exponentTable[i] = i << 23;\n }\n for (let i = 33; i < 63; i++) {\n exponentTable[i] = 0x80000000 + ((i - 32) << 23);\n }\n\n return exponentTable;\n}\n\n/**\n * Computes offset table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 6d offset values.\n */\nfunction computeFloat16OffsetTable(): Uint32Array {\n const offsetTable = new Uint32Array(64);\n\n for (let i = 0; i < 64; i++) {\n offsetTable[i] = 1024;\n }\n offsetTable[0] = offsetTable[32] = 0;\n\n return offsetTable;\n}\n\n/**\n * Retrieve a Float16 decoder which will decode a ByteArray of Float16 values\n * to a Float32Array.\n *\n * @returns Function (buffer: Uint16Array) => Float32Array which decodes\n * the Uint16Array of Float16 bytes to a Float32Array.\n */\nexport function getFloat16Decoder(): (buffer: Uint16Array) => Float32Array {\n // Algorithm is based off of\n // http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n\n // Cache lookup tables\n const mantisaTable = computeFloat16MantisaTable();\n const exponentTable = computeFloat16ExponentTable();\n const offsetTable = computeFloat16OffsetTable();\n\n return (quantizedArray: Uint16Array) => {\n const buffer = new ArrayBuffer(4 * quantizedArray.length);\n const bufferUint32View = new Uint32Array(buffer);\n for (let index = 0; index < quantizedArray.length; index++) {\n const float16Bits = quantizedArray[index];\n const float32Bits =\n mantisaTable[offsetTable[float16Bits >> 10] + (float16Bits & 0x3ff)] +\n exponentTable[float16Bits >> 10];\n bufferUint32View[index] = float32Bits;\n }\n return new Float32Array(buffer);\n };\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {IOHandler, LoadOptions} from './types';\n\nexport type IORouter = (url: string|string[], loadOptions?: LoadOptions) =>\n IOHandler;\n\nexport class IORouterRegistry {\n // Singleton instance.\n private static instance: IORouterRegistry;\n\n private saveRouters: IORouter[];\n private loadRouters: IORouter[];\n\n private constructor() {\n this.saveRouters = [];\n this.loadRouters = [];\n }\n\n private static getInstance(): IORouterRegistry {\n if (IORouterRegistry.instance == null) {\n IORouterRegistry.instance = new IORouterRegistry();\n }\n return IORouterRegistry.instance;\n }\n\n /**\n * Register a save-handler router.\n *\n * @param saveRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `save` method defined or `null`.\n */\n static registerSaveRouter(saveRouter: IORouter) {\n IORouterRegistry.getInstance().saveRouters.push(saveRouter);\n }\n\n /**\n * Register a load-handler router.\n *\n * @param loadRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `load` method defined or `null`.\n */\n static registerLoadRouter(loadRouter: IORouter) {\n IORouterRegistry.getInstance().loadRouters.push(loadRouter);\n }\n\n /**\n * Look up IOHandler for saving, given a URL-like string.\n *\n * @param url\n * @returns If only one match is found, an instance of IOHandler with the\n * `save` method defined. If no match is found, `null`.\n * @throws Error, if more than one match is found.\n */\n static getSaveHandlers(url: string|string[]): IOHandler[] {\n return IORouterRegistry.getHandlers(url, 'save');\n }\n\n /**\n * Look up IOHandler for loading, given a URL-like string.\n *\n * @param url\n * @param loadOptions Optional, custom load options.\n * @returns All valid handlers for `url`, given the currently registered\n * handler routers.\n */\n static getLoadHandlers(url: string|string[], loadOptions?: LoadOptions):\n IOHandler[] {\n return IORouterRegistry.getHandlers(url, 'load', loadOptions);\n }\n\n private static getHandlers(\n url: string|string[], handlerType: 'save'|'load',\n loadOptions?: LoadOptions): IOHandler[] {\n const validHandlers: IOHandler[] = [];\n const routers = handlerType === 'load' ?\n IORouterRegistry.getInstance().loadRouters :\n IORouterRegistry.getInstance().saveRouters;\n routers.forEach(router => {\n const handler = router(url, loadOptions);\n if (handler !== null) {\n validHandlers.push(handler);\n }\n });\n return validHandlers;\n }\n}\n\nexport const registerSaveRouter = (loudRouter: IORouter) =>\n IORouterRegistry.registerSaveRouter(loudRouter);\nexport const registerLoadRouter = (loudRouter: IORouter) =>\n IORouterRegistry.registerLoadRouter(loudRouter);\nexport const getSaveHandlers = (url: string|string[]) =>\n IORouterRegistry.getSaveHandlers(url);\nexport const getLoadHandlers =\n (url: string|string[], loadOptions?: LoadOptions) =>\n IORouterRegistry.getLoadHandlers(url, loadOptions);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\n\nimport {env} from '../environment';\n\nimport {getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelArtifactsInfo, ModelStoreManager, SaveResult} from './types';\n\nconst DATABASE_NAME = 'tensorflowjs';\nconst DATABASE_VERSION = 1;\n\n// Model data and ModelArtifactsInfo (metadata) are stored in two separate\n// stores for efficient access of the list of stored models and their metadata.\n// 1. The object store for model data: topology, weights and weight manifests.\nconst MODEL_STORE_NAME = 'models_store';\n// 2. The object store for ModelArtifactsInfo, including meta-information such\n// as the type of topology (JSON vs binary), byte size of the topology, byte\n// size of the weights, etc.\nconst INFO_STORE_NAME = 'model_info_store';\n\n/**\n * Delete the entire database for tensorflow.js, including the models store.\n */\nexport async function deleteDatabase(): Promise {\n const idbFactory = getIndexedDBFactory();\n\n return new Promise((resolve, reject) => {\n const deleteRequest = idbFactory.deleteDatabase(DATABASE_NAME);\n deleteRequest.onsuccess = () => resolve();\n deleteRequest.onerror = error => reject(error);\n });\n}\n\nfunction getIndexedDBFactory(): IDBFactory {\n if (!env().getBool('IS_BROWSER')) {\n // TODO(cais): Add more info about what IOHandler subtypes are available.\n // Maybe point to a doc page on the web and/or automatically determine\n // the available IOHandlers and print them in the error message.\n throw new Error(\n 'Failed to obtain IndexedDB factory because the current environment' +\n 'is not a web browser.');\n }\n // tslint:disable-next-line:no-any\n const theWindow: any = typeof window === 'undefined' ? self : window;\n const factory = theWindow.indexedDB || theWindow.mozIndexedDB ||\n theWindow.webkitIndexedDB || theWindow.msIndexedDB ||\n theWindow.shimIndexedDB;\n if (factory == null) {\n throw new Error(\n 'The current browser does not appear to support IndexedDB.');\n }\n return factory;\n}\n\nfunction setUpDatabase(openRequest: IDBRequest) {\n const db = openRequest.result as IDBDatabase;\n db.createObjectStore(MODEL_STORE_NAME, {keyPath: 'modelPath'});\n db.createObjectStore(INFO_STORE_NAME, {keyPath: 'modelPath'});\n}\n\n/**\n * IOHandler subclass: Browser IndexedDB.\n *\n * See the doc string of `browserIndexedDB` for more details.\n */\nexport class BrowserIndexedDB implements IOHandler {\n protected readonly indexedDB: IDBFactory;\n protected readonly modelPath: string;\n\n static readonly URL_SCHEME = 'indexeddb://';\n\n constructor(modelPath: string) {\n this.indexedDB = getIndexedDBFactory();\n\n if (modelPath == null || !modelPath) {\n throw new Error(\n 'For IndexedDB, modelPath must not be null, undefined or empty.');\n }\n this.modelPath = modelPath;\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n // TODO(cais): Support saving GraphDef models.\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserLocalStorage.save() does not support saving model topology ' +\n 'in binary formats yet.');\n }\n\n return this.databaseAction(this.modelPath, modelArtifacts) as\n Promise;\n }\n\n async load(): Promise {\n return this.databaseAction(this.modelPath) as Promise;\n }\n\n /**\n * Perform database action to put model artifacts into or read model artifacts\n * from IndexedDB object store.\n *\n * Whether the action is put or get depends on whether `modelArtifacts` is\n * specified. If it is specified, the action will be put; otherwise the action\n * will be get.\n *\n * @param modelPath A unique string path for the model.\n * @param modelArtifacts If specified, it will be the model artifacts to be\n * stored in IndexedDB.\n * @returns A `Promise` of `SaveResult`, if the action is put, or a `Promise`\n * of `ModelArtifacts`, if the action is get.\n */\n private databaseAction(modelPath: string, modelArtifacts?: ModelArtifacts):\n Promise {\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n\n if (modelArtifacts == null) {\n // Read model out from object store.\n const modelTx = db.transaction(MODEL_STORE_NAME, 'readonly');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const getRequest = modelStore.get(this.modelPath);\n getRequest.onsuccess = () => {\n if (getRequest.result == null) {\n db.close();\n return reject(new Error(\n `Cannot find model with path '${this.modelPath}' ` +\n `in IndexedDB.`));\n } else {\n resolve(getRequest.result.modelArtifacts);\n }\n };\n getRequest.onerror = error => {\n db.close();\n return reject(getRequest.error);\n };\n modelTx.oncomplete = () => db.close();\n } else {\n // Put model into object store.\n const modelArtifactsInfo: ModelArtifactsInfo =\n getModelArtifactsInfoForJSON(modelArtifacts);\n // First, put ModelArtifactsInfo into info store.\n const infoTx = db.transaction(INFO_STORE_NAME, 'readwrite');\n let infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const putInfoRequest =\n infoStore.put({modelPath: this.modelPath, modelArtifactsInfo});\n let modelTx: IDBTransaction;\n putInfoRequest.onsuccess = () => {\n // Second, put model data into model store.\n modelTx = db.transaction(MODEL_STORE_NAME, 'readwrite');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const putModelRequest = modelStore.put({\n modelPath: this.modelPath,\n modelArtifacts,\n modelArtifactsInfo\n });\n putModelRequest.onsuccess = () => resolve({modelArtifactsInfo});\n putModelRequest.onerror = error => {\n // If the put-model request fails, roll back the info entry as\n // well.\n infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const deleteInfoRequest = infoStore.delete(this.modelPath);\n deleteInfoRequest.onsuccess = () => {\n db.close();\n return reject(putModelRequest.error);\n };\n deleteInfoRequest.onerror = error => {\n db.close();\n return reject(putModelRequest.error);\n };\n };\n };\n putInfoRequest.onerror = error => {\n db.close();\n return reject(putInfoRequest.error);\n };\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n }\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n}\n\nexport const indexedDBRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserIndexedDB.URL_SCHEME)) {\n return browserIndexedDB(url.slice(BrowserIndexedDB.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(indexedDBRouter);\nIORouterRegistry.registerLoadRouter(indexedDBRouter);\n\n/**\n * Creates a browser IndexedDB IOHandler for saving and loading models.\n *\n * ```js\n * const model = tf.sequential();\n * model.add(\n * tf.layers.dense({units: 1, inputShape: [100], activation: 'sigmoid'}));\n *\n * const saveResult = await model.save('indexeddb://MyModel'));\n * console.log(saveResult);\n * ```\n *\n * @param modelPath A unique identifier for the model to be saved. Must be a\n * non-empty string.\n * @returns An instance of `BrowserIndexedDB` (sublcass of `IOHandler`),\n * which can be used with, e.g., `tf.Model.save`.\n */\nexport function browserIndexedDB(modelPath: string): IOHandler {\n return new BrowserIndexedDB(modelPath);\n}\n\nfunction maybeStripScheme(key: string) {\n return key.startsWith(BrowserIndexedDB.URL_SCHEME) ?\n key.slice(BrowserIndexedDB.URL_SCHEME.length) :\n key;\n}\n\nexport class BrowserIndexedDBManager implements ModelStoreManager {\n private indexedDB: IDBFactory;\n\n constructor() {\n this.indexedDB = getIndexedDBFactory();\n }\n\n async listModels(): Promise<{[path: string]: ModelArtifactsInfo}> {\n return new Promise<{[path: string]: ModelArtifactsInfo}>(\n (resolve, reject) => {\n const openRequest =\n this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const tx = db.transaction(INFO_STORE_NAME, 'readonly');\n const store = tx.objectStore(INFO_STORE_NAME);\n // tslint:disable:max-line-length\n // Need to cast `store` as `any` here because TypeScript's DOM\n // library does not have the `getAll()` method even though the\n // method is supported in the latest version of most mainstream\n // browsers:\n // https://developer.mozilla.org/en-US/docs/Web/API/IDBObjectStore/getAll\n // tslint:enable:max-line-length\n // tslint:disable-next-line:no-any\n const getAllInfoRequest = (store as any).getAll() as IDBRequest;\n getAllInfoRequest.onsuccess = () => {\n const out: {[path: string]: ModelArtifactsInfo} = {};\n for (const item of getAllInfoRequest.result) {\n out[item.modelPath] = item.modelArtifactsInfo;\n }\n resolve(out);\n };\n getAllInfoRequest.onerror = error => {\n db.close();\n return reject(getAllInfoRequest.error);\n };\n tx.oncomplete = () => db.close();\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n\n async removeModel(path: string): Promise {\n path = maybeStripScheme(path);\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const infoTx = db.transaction(INFO_STORE_NAME, 'readwrite');\n const infoStore = infoTx.objectStore(INFO_STORE_NAME);\n\n const getInfoRequest = infoStore.get(path);\n let modelTx: IDBTransaction;\n getInfoRequest.onsuccess = () => {\n if (getInfoRequest.result == null) {\n db.close();\n return reject(new Error(\n `Cannot find model with path '${path}' ` +\n `in IndexedDB.`));\n } else {\n // First, delete the entry in the info store.\n const deleteInfoRequest = infoStore.delete(path);\n const deleteModelData = () => {\n // Second, delete the entry in the model store.\n modelTx = db.transaction(MODEL_STORE_NAME, 'readwrite');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const deleteModelRequest = modelStore.delete(path);\n deleteModelRequest.onsuccess = () =>\n resolve(getInfoRequest.result.modelArtifactsInfo);\n deleteModelRequest.onerror = error =>\n reject(getInfoRequest.error);\n };\n // Proceed with deleting model data regardless of whether deletion\n // of info data succeeds or not.\n deleteInfoRequest.onsuccess = deleteModelData;\n deleteInfoRequest.onerror = error => {\n deleteModelData();\n db.close();\n return reject(getInfoRequest.error);\n };\n }\n };\n getInfoRequest.onerror = error => {\n db.close();\n return reject(getInfoRequest.error);\n };\n\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\nimport {env} from '../environment';\n\nimport {assert} from '../util';\nimport {arrayBufferToBase64String, base64StringToArrayBuffer, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelArtifactsInfo, ModelStoreManager, SaveResult} from './types';\n\nconst PATH_SEPARATOR = '/';\nconst PATH_PREFIX = 'tensorflowjs_models';\nconst INFO_SUFFIX = 'info';\nconst MODEL_TOPOLOGY_SUFFIX = 'model_topology';\nconst WEIGHT_SPECS_SUFFIX = 'weight_specs';\nconst WEIGHT_DATA_SUFFIX = 'weight_data';\nconst MODEL_METADATA_SUFFIX = 'model_metadata';\n\n/**\n * Purge all tensorflow.js-saved model artifacts from local storage.\n *\n * @returns Paths of the models purged.\n */\nexport function purgeLocalStorageArtifacts(): string[] {\n if (!env().getBool('IS_BROWSER') || typeof window === 'undefined' ||\n typeof window.localStorage === 'undefined') {\n throw new Error(\n 'purgeLocalStorageModels() cannot proceed because local storage is ' +\n 'unavailable in the current environment.');\n }\n const LS = window.localStorage;\n const purgedModelPaths: string[] = [];\n for (let i = 0; i < LS.length; ++i) {\n const key = LS.key(i);\n const prefix = PATH_PREFIX + PATH_SEPARATOR;\n if (key.startsWith(prefix) && key.length > prefix.length) {\n LS.removeItem(key);\n const modelName = getModelPathFromKey(key);\n if (purgedModelPaths.indexOf(modelName) === -1) {\n purgedModelPaths.push(modelName);\n }\n }\n }\n return purgedModelPaths;\n}\n\nfunction getModelKeys(path: string): {\n info: string,\n topology: string,\n weightSpecs: string,\n weightData: string,\n modelMetadata: string\n} {\n return {\n info: [PATH_PREFIX, path, INFO_SUFFIX].join(PATH_SEPARATOR),\n topology: [PATH_PREFIX, path, MODEL_TOPOLOGY_SUFFIX].join(PATH_SEPARATOR),\n weightSpecs: [PATH_PREFIX, path, WEIGHT_SPECS_SUFFIX].join(PATH_SEPARATOR),\n weightData: [PATH_PREFIX, path, WEIGHT_DATA_SUFFIX].join(PATH_SEPARATOR),\n modelMetadata:\n [PATH_PREFIX, path, MODEL_METADATA_SUFFIX].join(PATH_SEPARATOR)\n };\n}\n\n/**\n * Get model path from a local-storage key.\n *\n * E.g., 'tensorflowjs_models/my/model/1/info' --> 'my/model/1'\n *\n * @param key\n */\nfunction getModelPathFromKey(key: string) {\n const items = key.split(PATH_SEPARATOR);\n if (items.length < 3) {\n throw new Error(`Invalid key format: ${key}`);\n }\n return items.slice(1, items.length - 1).join(PATH_SEPARATOR);\n}\n\nfunction maybeStripScheme(key: string) {\n return key.startsWith(BrowserLocalStorage.URL_SCHEME) ?\n key.slice(BrowserLocalStorage.URL_SCHEME.length) :\n key;\n}\n\ndeclare type LocalStorageKeys = {\n info: string,\n topology: string,\n weightSpecs: string,\n weightData: string,\n modelMetadata: string\n};\n\n/**\n * IOHandler subclass: Browser Local Storage.\n *\n * See the doc string to `browserLocalStorage` for more details.\n */\nexport class BrowserLocalStorage implements IOHandler {\n protected readonly LS: Storage;\n protected readonly modelPath: string;\n protected readonly keys: LocalStorageKeys;\n\n static readonly URL_SCHEME = 'localstorage://';\n\n constructor(modelPath: string) {\n if (!env().getBool('IS_BROWSER') || typeof window === 'undefined' ||\n typeof window.localStorage === 'undefined') {\n // TODO(cais): Add more info about what IOHandler subtypes are\n // available.\n // Maybe point to a doc page on the web and/or automatically determine\n // the available IOHandlers and print them in the error message.\n throw new Error(\n 'The current environment does not support local storage.');\n }\n this.LS = window.localStorage;\n\n if (modelPath == null || !modelPath) {\n throw new Error(\n 'For local storage, modelPath must not be null, undefined or empty.');\n }\n this.modelPath = modelPath;\n this.keys = getModelKeys(this.modelPath);\n }\n\n /**\n * Save model artifacts to browser local storage.\n *\n * See the documentation to `browserLocalStorage` for details on the saved\n * artifacts.\n *\n * @param modelArtifacts The model artifacts to be stored.\n * @returns An instance of SaveResult.\n */\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserLocalStorage.save() does not support saving model topology ' +\n 'in binary formats yet.');\n } else {\n const topology = JSON.stringify(modelArtifacts.modelTopology);\n const weightSpecs = JSON.stringify(modelArtifacts.weightSpecs);\n\n const modelArtifactsInfo: ModelArtifactsInfo =\n getModelArtifactsInfoForJSON(modelArtifacts);\n\n try {\n this.LS.setItem(this.keys.info, JSON.stringify(modelArtifactsInfo));\n this.LS.setItem(this.keys.topology, topology);\n this.LS.setItem(this.keys.weightSpecs, weightSpecs);\n this.LS.setItem(\n this.keys.weightData,\n arrayBufferToBase64String(modelArtifacts.weightData));\n const result: ModelArtifacts = {\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy\n };\n if (modelArtifacts.signature != null) {\n result.signature = modelArtifacts.signature;\n }\n if (modelArtifacts.userDefinedMetadata != null) {\n result.userDefinedMetadata = modelArtifacts.userDefinedMetadata;\n }\n if (modelArtifacts.modelInitializer != null) {\n result.modelInitializer = modelArtifacts.modelInitializer;\n }\n this.LS.setItem(this.keys.modelMetadata, JSON.stringify(result));\n\n return {modelArtifactsInfo};\n } catch (err) {\n // If saving failed, clean up all items saved so far.\n this.LS.removeItem(this.keys.info);\n this.LS.removeItem(this.keys.topology);\n this.LS.removeItem(this.keys.weightSpecs);\n this.LS.removeItem(this.keys.weightData);\n this.LS.removeItem(this.keys.modelMetadata);\n\n throw new Error(\n `Failed to save model '${this.modelPath}' to local storage: ` +\n `size quota being exceeded is a possible cause of this failure: ` +\n `modelTopologyBytes=${modelArtifactsInfo.modelTopologyBytes}, ` +\n `weightSpecsBytes=${modelArtifactsInfo.weightSpecsBytes}, ` +\n `weightDataBytes=${modelArtifactsInfo.weightDataBytes}.`);\n }\n }\n }\n\n /**\n * Load a model from local storage.\n *\n * See the documentation to `browserLocalStorage` for details on the saved\n * artifacts.\n *\n * @returns The loaded model (if loading succeeds).\n */\n async load(): Promise {\n const info =\n JSON.parse(this.LS.getItem(this.keys.info)) as ModelArtifactsInfo;\n if (info == null) {\n throw new Error(\n `In local storage, there is no model with name '${this.modelPath}'`);\n }\n\n if (info.modelTopologyType !== 'JSON') {\n throw new Error(\n 'BrowserLocalStorage does not support loading non-JSON model ' +\n 'topology yet.');\n }\n\n const out: ModelArtifacts = {};\n\n // Load topology.\n const topology = JSON.parse(this.LS.getItem(this.keys.topology));\n if (topology == null) {\n throw new Error(\n `In local storage, the topology of model '${this.modelPath}' ` +\n `is missing.`);\n }\n out.modelTopology = topology;\n\n // Load weight specs.\n const weightSpecs = JSON.parse(this.LS.getItem(this.keys.weightSpecs));\n if (weightSpecs == null) {\n throw new Error(\n `In local storage, the weight specs of model '${this.modelPath}' ` +\n `are missing.`);\n }\n out.weightSpecs = weightSpecs;\n\n // Load meta-data fields.\n const metadataString = this.LS.getItem(this.keys.modelMetadata);\n if (metadataString != null) {\n const metadata = JSON.parse(metadataString) as ModelArtifacts;\n out.format = metadata['format'];\n out.generatedBy = metadata['generatedBy'];\n out.convertedBy = metadata['convertedBy'];\n if (metadata['signature'] != null) {\n out.signature = metadata['signature'];\n }\n if (metadata['userDefinedMetadata'] != null) {\n out.userDefinedMetadata = metadata['userDefinedMetadata'];\n }\n if (metadata['modelInitializer'] != null) {\n out.modelInitializer = metadata['modelInitializer'];\n }\n }\n\n // Load weight data.\n const weightDataBase64 = this.LS.getItem(this.keys.weightData);\n if (weightDataBase64 == null) {\n throw new Error(\n `In local storage, the binary weight values of model ` +\n `'${this.modelPath}' are missing.`);\n }\n out.weightData = base64StringToArrayBuffer(weightDataBase64);\n\n return out;\n }\n}\n\nexport const localStorageRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserLocalStorage.URL_SCHEME)) {\n return browserLocalStorage(\n url.slice(BrowserLocalStorage.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(localStorageRouter);\nIORouterRegistry.registerLoadRouter(localStorageRouter);\n\n/**\n * Factory function for local storage IOHandler.\n *\n * This `IOHandler` supports both `save` and `load`.\n *\n * For each model's saved artifacts, four items are saved to local storage.\n * - `${PATH_SEPARATOR}/${modelPath}/info`: Contains meta-info about the\n * model, such as date saved, type of the topology, size in bytes, etc.\n * - `${PATH_SEPARATOR}/${modelPath}/topology`: Model topology. For Keras-\n * style models, this is a stringized JSON.\n * - `${PATH_SEPARATOR}/${modelPath}/weight_specs`: Weight specs of the\n * model, can be used to decode the saved binary weight values (see\n * item below).\n * - `${PATH_SEPARATOR}/${modelPath}/weight_data`: Concatenated binary\n * weight values, stored as a base64-encoded string.\n *\n * Saving may throw an `Error` if the total size of the artifacts exceed the\n * browser-specific quota.\n *\n * @param modelPath A unique identifier for the model to be saved. Must be a\n * non-empty string.\n * @returns An instance of `IOHandler`, which can be used with, e.g.,\n * `tf.Model.save`.\n */\nexport function browserLocalStorage(modelPath: string): IOHandler {\n return new BrowserLocalStorage(modelPath);\n}\n\nexport class BrowserLocalStorageManager implements ModelStoreManager {\n private readonly LS: Storage;\n\n constructor() {\n assert(\n env().getBool('IS_BROWSER'),\n () => 'Current environment is not a web browser');\n assert(\n typeof window === 'undefined' ||\n typeof window.localStorage !== 'undefined',\n () => 'Current browser does not appear to support localStorage');\n this.LS = window.localStorage;\n }\n\n async listModels(): Promise<{[path: string]: ModelArtifactsInfo}> {\n const out: {[path: string]: ModelArtifactsInfo} = {};\n const prefix = PATH_PREFIX + PATH_SEPARATOR;\n const suffix = PATH_SEPARATOR + INFO_SUFFIX;\n for (let i = 0; i < this.LS.length; ++i) {\n const key = this.LS.key(i);\n if (key.startsWith(prefix) && key.endsWith(suffix)) {\n const modelPath = getModelPathFromKey(key);\n out[modelPath] = JSON.parse(this.LS.getItem(key)) as ModelArtifactsInfo;\n }\n }\n return out;\n }\n\n async removeModel(path: string): Promise {\n path = maybeStripScheme(path);\n const keys = getModelKeys(path);\n if (this.LS.getItem(keys.info) == null) {\n throw new Error(`Cannot find model at path '${path}'`);\n }\n const info = JSON.parse(this.LS.getItem(keys.info)) as ModelArtifactsInfo;\n\n this.LS.removeItem(keys.info);\n this.LS.removeItem(keys.topology);\n this.LS.removeItem(keys.weightSpecs);\n this.LS.removeItem(keys.weightData);\n return info;\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * Classes and functions for model management across multiple storage mediums.\n *\n * Supported client actions:\n * - Listing models on all registered storage mediums.\n * - Remove model by URL from any registered storage mediums, by using URL\n * string.\n * - Moving or copying model from one path to another in the same medium or from\n * one medium to another, by using URL strings.\n */\n\nimport {assert} from '../util';\n\nimport {IORouterRegistry} from './router_registry';\nimport {ModelArtifactsInfo, ModelStoreManager} from './types';\n\nconst URL_SCHEME_SUFFIX = '://';\n\nexport class ModelStoreManagerRegistry {\n // Singleton instance.\n private static instance: ModelStoreManagerRegistry;\n\n private managers: {[scheme: string]: ModelStoreManager};\n\n private constructor() {\n this.managers = {};\n }\n\n private static getInstance(): ModelStoreManagerRegistry {\n if (ModelStoreManagerRegistry.instance == null) {\n ModelStoreManagerRegistry.instance = new ModelStoreManagerRegistry();\n }\n return ModelStoreManagerRegistry.instance;\n }\n\n /**\n * Register a save-handler router.\n *\n * @param saveRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `save` method defined or `null`.\n */\n static registerManager(scheme: string, manager: ModelStoreManager) {\n assert(scheme != null, () => 'scheme must not be undefined or null.');\n if (scheme.endsWith(URL_SCHEME_SUFFIX)) {\n scheme = scheme.slice(0, scheme.indexOf(URL_SCHEME_SUFFIX));\n }\n assert(scheme.length > 0, () => 'scheme must not be an empty string.');\n const registry = ModelStoreManagerRegistry.getInstance();\n assert(\n registry.managers[scheme] == null,\n () => `A model store manager is already registered for scheme '${\n scheme}'.`);\n registry.managers[scheme] = manager;\n }\n\n static getManager(scheme: string): ModelStoreManager {\n const manager = this.getInstance().managers[scheme];\n if (manager == null) {\n throw new Error(`Cannot find model manager for scheme '${scheme}'`);\n }\n return manager;\n }\n\n static getSchemes(): string[] {\n return Object.keys(this.getInstance().managers);\n }\n}\n\n/**\n * Helper method for parsing a URL string into a scheme and a path.\n *\n * @param url E.g., 'localstorage://my-model'\n * @returns A dictionary with two fields: scheme and path.\n * Scheme: e.g., 'localstorage' in the example above.\n * Path: e.g., 'my-model' in the example above.\n */\nfunction parseURL(url: string): {scheme: string, path: string} {\n if (url.indexOf(URL_SCHEME_SUFFIX) === -1) {\n throw new Error(\n `The url string provided does not contain a scheme. ` +\n `Supported schemes are: ` +\n `${ModelStoreManagerRegistry.getSchemes().join(',')}`);\n }\n return {\n scheme: url.split(URL_SCHEME_SUFFIX)[0],\n path: url.split(URL_SCHEME_SUFFIX)[1],\n };\n}\n\nasync function cloneModelInternal(\n sourceURL: string, destURL: string,\n deleteSource = false): Promise {\n assert(\n sourceURL !== destURL,\n () => `Old path and new path are the same: '${sourceURL}'`);\n\n const loadHandlers = IORouterRegistry.getLoadHandlers(sourceURL);\n assert(\n loadHandlers.length > 0,\n () => `Copying failed because no load handler is found for source URL ${\n sourceURL}.`);\n assert(\n loadHandlers.length < 2,\n () => `Copying failed because more than one (${loadHandlers.length}) ` +\n `load handlers for source URL ${sourceURL}.`);\n const loadHandler = loadHandlers[0];\n\n const saveHandlers = IORouterRegistry.getSaveHandlers(destURL);\n assert(\n saveHandlers.length > 0,\n () => `Copying failed because no save handler is found for destination ` +\n `URL ${destURL}.`);\n assert(\n saveHandlers.length < 2,\n () => `Copying failed because more than one (${loadHandlers.length}) ` +\n `save handlers for destination URL ${destURL}.`);\n const saveHandler = saveHandlers[0];\n\n const sourceScheme = parseURL(sourceURL).scheme;\n const sourcePath = parseURL(sourceURL).path;\n const sameMedium = sourceScheme === parseURL(sourceURL).scheme;\n\n const modelArtifacts = await loadHandler.load();\n\n // If moving within the same storage medium, remove the old model as soon as\n // the loading is done. Without doing this, it is possible that the combined\n // size of the two models will cause the cloning to fail.\n if (deleteSource && sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme)\n .removeModel(sourcePath);\n }\n\n const saveResult = await saveHandler.save(modelArtifacts);\n\n // If moving between mediums, the deletion is done after the save succeeds.\n // This guards against the case in which saving to the destination medium\n // fails.\n if (deleteSource && !sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme)\n .removeModel(sourcePath);\n }\n\n return saveResult.modelArtifactsInfo;\n}\n\n/**\n * List all models stored in registered storage mediums.\n *\n * For a web browser environment, the registered mediums are Local Storage and\n * IndexedDB.\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Delete the model.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n * ```\n *\n * @returns A `Promise` of a dictionary mapping URLs of existing models to\n * their model artifacts info. URLs include medium-specific schemes, e.g.,\n * 'indexeddb://my/model/1'. Model artifacts info include type of the\n * model's topology, byte sizes of the topology, weights, etc.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function listModels(): Promise<{[url: string]: ModelArtifactsInfo}> {\n const schemes = ModelStoreManagerRegistry.getSchemes();\n const out: {[url: string]: ModelArtifactsInfo} = {};\n for (const scheme of schemes) {\n const schemeOut =\n await ModelStoreManagerRegistry.getManager(scheme).listModels();\n for (const path in schemeOut) {\n const url = scheme + URL_SCHEME_SUFFIX + path;\n out[url] = schemeOut[path];\n }\n }\n return out;\n}\n\n/**\n * Remove a model specified by URL from a reigstered storage medium.\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Delete the model.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n * ```\n *\n * @param url A URL to a stored model, with a scheme prefix, e.g.,\n * 'localstorage://my-model-1', 'indexeddb://my/model/2'.\n * @returns ModelArtifactsInfo of the deleted model (if and only if deletion\n * is successful).\n * @throws Error if deletion fails, e.g., if no model exists at `path`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function removeModel(url: string): Promise {\n const schemeAndPath = parseURL(url);\n const manager = ModelStoreManagerRegistry.getManager(schemeAndPath.scheme);\n return manager.removeModel(schemeAndPath.path);\n}\n\n/**\n * Copy a model from one URL to another.\n *\n * This function supports:\n *\n * 1. Copying within a storage medium, e.g.,\n * `tf.io.copyModel('localstorage://model-1', 'localstorage://model-2')`\n * 2. Copying between two storage mediums, e.g.,\n * `tf.io.copyModel('localstorage://model-1', 'indexeddb://model-1')`\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Copy the model, from Local Storage to IndexedDB.\n * await tf.io.copyModel(\n * 'localstorage://demo/management/model1',\n * 'indexeddb://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Remove both models.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n * await tf.io.removeModel('indexeddb://demo/management/model1');\n * ```\n *\n * @param sourceURL Source URL of copying.\n * @param destURL Destination URL of copying.\n * @returns ModelArtifactsInfo of the copied model (if and only if copying\n * is successful).\n * @throws Error if copying fails, e.g., if no model exists at `sourceURL`, or\n * if `oldPath` and `newPath` are identical.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function copyModel(\n sourceURL: string, destURL: string): Promise {\n const deleteSource = false;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\n\n/**\n * Move a model from one URL to another.\n *\n * This function supports:\n *\n * 1. Moving within a storage medium, e.g.,\n * `tf.io.moveModel('localstorage://model-1', 'localstorage://model-2')`\n * 2. Moving between two storage mediums, e.g.,\n * `tf.io.moveModel('localstorage://model-1', 'indexeddb://model-1')`\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Move the model, from Local Storage to IndexedDB.\n * await tf.io.moveModel(\n * 'localstorage://demo/management/model1',\n * 'indexeddb://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Remove the moved model.\n * await tf.io.removeModel('indexeddb://demo/management/model1');\n * ```\n *\n * @param sourceURL Source URL of moving.\n * @param destURL Destination URL of moving.\n * @returns ModelArtifactsInfo of the copied model (if and only if copying\n * is successful).\n * @throws Error if moving fails, e.g., if no model exists at `sourceURL`, or\n * if `oldPath` and `newPath` are identical.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function moveModel(\n sourceURL: string, destURL: string): Promise {\n const deleteSource = true;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\n\nexport {moveModel, copyModel, removeModel, listModels};\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\n\nimport {env} from '../environment';\nimport {BrowserIndexedDB, BrowserIndexedDBManager} from '../io/indexed_db';\nimport {BrowserLocalStorage, BrowserLocalStorageManager} from '../io/local_storage';\nimport {ModelStoreManagerRegistry} from '../io/model_management';\n\nimport {Platform} from './platform';\n\nexport class PlatformBrowser implements Platform {\n // According to the spec, the built-in encoder can do only UTF-8 encoding.\n // https://developer.mozilla.org/en-US/docs/Web/API/TextEncoder/TextEncoder\n private textEncoder: TextEncoder;\n\n fetch(path: string, init?: RequestInit): Promise {\n return fetch(path, init);\n }\n\n now(): number {\n return performance.now();\n }\n\n encode(text: string, encoding: string): Uint8Array {\n if (encoding !== 'utf-8' && encoding !== 'utf8') {\n throw new Error(\n `Browser's encoder only supports utf-8, but got ${encoding}`);\n }\n if (this.textEncoder == null) {\n this.textEncoder = new TextEncoder();\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes: Uint8Array, encoding: string): string {\n return new TextDecoder(encoding).decode(bytes);\n }\n}\n\nif (env().get('IS_BROWSER')) {\n env().setPlatform('browser', new PlatformBrowser());\n\n // Register LocalStorage IOHandler\n try {\n ModelStoreManagerRegistry.registerManager(\n BrowserLocalStorage.URL_SCHEME, new BrowserLocalStorageManager());\n } catch (err) {\n }\n\n // Register IndexedDB IOHandler\n try {\n ModelStoreManagerRegistry.registerManager(\n BrowserIndexedDB.URL_SCHEME, new BrowserIndexedDBManager());\n } catch (err) {\n }\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {env} from '../environment';\n\nimport {Platform} from './platform';\n\n// We are wrapping this within an object so it can be stubbed by Jasmine.\nexport const getNodeFetch = {\n // tslint:disable-next-line:no-require-imports\n importFetch: () => require('node-fetch')\n};\n\ntype FetchFn = (url: string, init?: RequestInit) => Promise;\nlet systemFetch: FetchFn;\n// These getters and setters are for testing so we don't export a mutable\n// variable.\nexport function resetSystemFetch() {\n systemFetch = null;\n}\nexport function setSystemFetch(fetchFn: FetchFn) {\n systemFetch = fetchFn;\n}\nexport function getSystemFetch(): FetchFn {\n return systemFetch;\n}\n\nexport class PlatformNode implements Platform {\n private textEncoder: TextEncoder;\n // tslint:disable-next-line:no-any\n util: any;\n\n constructor() {\n // tslint:disable-next-line:no-require-imports\n this.util = require('util');\n // According to the spec, the built-in encoder can do only UTF-8 encoding.\n // https://developer.mozilla.org/en-US/docs/Web/API/TextEncoder/TextEncoder\n this.textEncoder = new this.util.TextEncoder();\n }\n\n fetch(path: string, requestInits?: RequestInit): Promise {\n if (env().global.fetch != null) {\n return env().global.fetch(path, requestInits);\n }\n\n if (systemFetch == null) {\n systemFetch = getNodeFetch.importFetch();\n }\n return systemFetch(path, requestInits);\n }\n\n now(): number {\n const time = process.hrtime();\n return time[0] * 1000 + time[1] / 1000000;\n }\n\n encode(text: string, encoding: string): Uint8Array {\n if (encoding !== 'utf-8' && encoding !== 'utf8') {\n throw new Error(\n `Node built-in encoder only supports utf-8, but got ${encoding}`);\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes: Uint8Array, encoding: string): string {\n if (bytes.length === 0) {\n return '';\n }\n return new this.util.TextDecoder(encoding).decode(bytes);\n }\n}\n\nif (env().get('IS_NODE')) {\n env().setPlatform('node', new PlatformNode());\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {TensorBuffer} from '../tensor';\nimport {DataType, DataTypeMap, Rank, ShapeMap} from '../types';\nimport * as util from '../util';\n\n/**\n * Creates an empty `tf.TensorBuffer` with the specified `shape` and `dtype`.\n *\n * The values are stored in CPU as `TypedArray`. Fill the buffer using\n * `buffer.set()`, or by modifying directly `buffer.values`.\n *\n * When done, call `buffer.toTensor()` to get an immutable `tf.Tensor` with\n * those values.\n *\n * ```js\n * // Create a buffer and set values at particular indices.\n * const buffer = tf.buffer([2, 2]);\n * buffer.set(3, 0, 0);\n * buffer.set(5, 1, 0);\n *\n * // Convert the buffer back to a tensor.\n * buffer.toTensor().print();\n * ```\n *\n * @param shape An array of integers defining the output tensor shape.\n * @param dtype The dtype of the buffer. Defaults to 'float32'.\n * @param values The values of the buffer as `TypedArray`. Defaults to\n * zeros.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function buffer(\n shape: ShapeMap[R], dtype: D = 'float32' as D,\n values?: DataTypeMap[D]): TensorBuffer {\n dtype = dtype || 'float32' as D;\n util.assertNonNegativeIntegerDimensions(shape);\n return new TensorBuffer(shape, dtype, values);\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {Cast, CastAttrs, CastInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {DataType, TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Casts a `tf.Tensor` to a new dtype.\n *\n * ```js\n * const x = tf.tensor1d([1.5, 2.5, 3]);\n * tf.cast(x, 'int32').print();\n * ```\n * @param x The input tensor to be casted.\n * @param dtype The dtype to cast the input tensor to.\n *\n * @doc {heading: 'Tensors', subheading: 'Transformations'}\n */\nfunction cast_(x: T|TensorLike, dtype: DataType): T {\n const $x = convertToTensor(x, 'x', 'cast');\n\n // Sanity checks.\n if (!util.isValidDtype(dtype)) {\n throw new Error(`Failed to cast to unknown dtype ${dtype}`);\n }\n if (dtype === 'string' && $x.dtype !== 'string' ||\n dtype !== 'string' && $x.dtype === 'string') {\n throw new Error('Only strings can be casted to strings');\n }\n\n const inputs: CastInputs = {x: $x};\n const attrs: CastAttrs = {dtype};\n\n return ENGINE.runKernel(\n Cast, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const cast = op({cast_});\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Identity, IdentityInputs} from '../kernel_names';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Creates a new tensor with the same values and shape as the specified\n * tensor.\n *\n * ```js\n * const x = tf.tensor([1, 2]);\n *\n * x.clone().print();\n * ```\n *\n * @param x The tensor to clone.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction clone_(x: T|TensorLike): T {\n const $x = convertToTensor(x, 'x', 'clone', 'string_or_numeric');\n const inputs: IdentityInputs = {x: $x};\n\n // Note this op is called tf.identity in python. Hence the kernel name used\n // here.\n return ENGINE.runKernel(Identity, inputs as {} as NamedTensorMap);\n}\n\nexport const clone = op({clone_});\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from '../tensor';\n\n/**\n * Prints information about the `tf.Tensor` including its data.\n *\n * ```js\n * const verbose = true;\n * tf.tensor2d([1, 2, 3, 4], [2, 2]).print(verbose);\n * ```\n * @param x The tensor to be printed.\n * @param verbose Whether to print verbose information about the ` Tensor`,\n * including dtype and size.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function print(x: T, verbose = false): void {\n console.log(x.toString(verbose));\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Required side effectful code for tfjs-core\n\n// Set up Engine and ENV\nimport {getOrMakeEngine} from './engine';\ngetOrMakeEngine();\n\n// Register backend-agnostic flags.\nimport './flags';\n// Register platforms\nimport './platforms/platform_browser';\nimport './platforms/platform_node';\n\n// Set up OpHandler\nimport {buffer} from './ops/buffer';\nimport {cast} from './ops/cast';\nimport {clone} from './ops/clone';\nimport {print} from './ops/print';\nimport {OpHandler, setOpHandler} from './tensor';\nconst opHandler: OpHandler = {\n buffer,\n cast,\n clone,\n print\n};\nsetOpHandler(opHandler);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Importing local_storage and indexed_db is necessary for the routers to be\n// registered.\nimport './indexed_db';\nimport './local_storage';\n\nimport {browserFiles} from './browser_files';\nimport {browserHTTPRequest, http, isHTTPScheme} from './http';\nimport {concatenateArrayBuffers, decodeWeights, encodeWeights, getModelArtifactsInfoForJSON} from './io_utils';\nimport {fromMemory, withSaveHandler} from './passthrough';\nimport {getLoadHandlers, getSaveHandlers, registerLoadRouter, registerSaveRouter} from './router_registry';\nimport {IOHandler, LoadHandler, LoadOptions, ModelArtifacts, ModelArtifactsInfo, ModelJSON, ModelStoreManager, OnProgressCallback, RequestDetails, SaveConfig, SaveHandler, SaveResult, WeightGroup, WeightsManifestConfig, WeightsManifestEntry} from './types';\nimport {loadWeights, weightsLoaderFactory} from './weights_loader';\n\nexport {copyModel, listModels, moveModel, removeModel} from './model_management';\nexport {\n browserFiles,\n browserHTTPRequest,\n concatenateArrayBuffers,\n decodeWeights,\n encodeWeights,\n fromMemory,\n getLoadHandlers,\n getModelArtifactsInfoForJSON,\n getSaveHandlers,\n http,\n IOHandler,\n isHTTPScheme,\n LoadHandler,\n LoadOptions,\n loadWeights,\n ModelArtifacts,\n ModelArtifactsInfo,\n ModelJSON,\n ModelStoreManager,\n OnProgressCallback,\n registerLoadRouter,\n registerSaveRouter,\n RequestDetails,\n SaveConfig,\n SaveHandler,\n SaveResult,\n WeightGroup,\n weightsLoaderFactory,\n WeightsManifestConfig,\n WeightsManifestEntry,\n withSaveHandler\n};\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandlers related to files, such as browser-triggered file downloads,\n * user-selected files in browser.\n */\n\nimport '../flags';\nimport {env} from '../environment';\n\nimport {basename, concatenateArrayBuffers, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelJSON, SaveResult, WeightsManifestConfig, WeightsManifestEntry} from './types';\n\nconst DEFAULT_FILE_NAME_PREFIX = 'model';\nconst DEFAULT_JSON_EXTENSION_NAME = '.json';\nconst DEFAULT_WEIGHT_DATA_EXTENSION_NAME = '.weights.bin';\n\nfunction defer(f: () => T): Promise {\n return new Promise(resolve => setTimeout(resolve)).then(f);\n}\n\nexport class BrowserDownloads implements IOHandler {\n private readonly modelTopologyFileName: string;\n private readonly weightDataFileName: string;\n private readonly jsonAnchor: HTMLAnchorElement;\n private readonly weightDataAnchor: HTMLAnchorElement;\n\n static readonly URL_SCHEME = 'downloads://';\n\n constructor(fileNamePrefix?: string) {\n if (!env().getBool('IS_BROWSER')) {\n // TODO(cais): Provide info on what IOHandlers are available under the\n // current environment.\n throw new Error(\n 'browserDownloads() cannot proceed because the current environment ' +\n 'is not a browser.');\n }\n\n if (fileNamePrefix.startsWith(BrowserDownloads.URL_SCHEME)) {\n fileNamePrefix = fileNamePrefix.slice(BrowserDownloads.URL_SCHEME.length);\n }\n if (fileNamePrefix == null || fileNamePrefix.length === 0) {\n fileNamePrefix = DEFAULT_FILE_NAME_PREFIX;\n }\n\n this.modelTopologyFileName = fileNamePrefix + DEFAULT_JSON_EXTENSION_NAME;\n this.weightDataFileName =\n fileNamePrefix + DEFAULT_WEIGHT_DATA_EXTENSION_NAME;\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (typeof (document) === 'undefined') {\n throw new Error(\n 'Browser downloads are not supported in ' +\n 'this environment since `document` is not present');\n }\n const weightsURL = window.URL.createObjectURL(new Blob(\n [modelArtifacts.weightData], {type: 'application/octet-stream'}));\n\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserDownloads.save() does not support saving model topology ' +\n 'in binary formats yet.');\n } else {\n const weightsManifest: WeightsManifestConfig = [{\n paths: ['./' + this.weightDataFileName],\n weights: modelArtifacts.weightSpecs\n }];\n const modelTopologyAndWeightManifest: ModelJSON = {\n modelTopology: modelArtifacts.modelTopology,\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy,\n weightsManifest\n };\n if (modelArtifacts.signature != null) {\n modelTopologyAndWeightManifest.signature = modelArtifacts.signature;\n }\n if (modelArtifacts.userDefinedMetadata != null) {\n modelTopologyAndWeightManifest.userDefinedMetadata =\n modelArtifacts.userDefinedMetadata;\n }\n if (modelArtifacts.modelInitializer != null) {\n modelTopologyAndWeightManifest.modelInitializer =\n modelArtifacts.modelInitializer;\n }\n const modelTopologyAndWeightManifestURL =\n window.URL.createObjectURL(new Blob(\n [JSON.stringify(modelTopologyAndWeightManifest)],\n {type: 'application/json'}));\n\n // If anchor elements are not provided, create them without attaching them\n // to parents, so that the downloaded file names can be controlled.\n const jsonAnchor = this.jsonAnchor == null ? document.createElement('a') :\n this.jsonAnchor;\n jsonAnchor.download = this.modelTopologyFileName;\n jsonAnchor.href = modelTopologyAndWeightManifestURL;\n // Trigger downloads by evoking a click event on the download anchors.\n // When multiple downloads are started synchronously, Firefox will only\n // save the last one.\n await defer(() => jsonAnchor.dispatchEvent(new MouseEvent('click')));\n\n if (modelArtifacts.weightData != null) {\n const weightDataAnchor = this.weightDataAnchor == null ?\n document.createElement('a') :\n this.weightDataAnchor;\n weightDataAnchor.download = this.weightDataFileName;\n weightDataAnchor.href = weightsURL;\n await defer(\n () => weightDataAnchor.dispatchEvent(new MouseEvent('click')));\n }\n\n return {modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts)};\n }\n }\n}\n\nclass BrowserFiles implements IOHandler {\n private readonly files: File[];\n\n constructor(files: File[]) {\n if (files == null || files.length < 1) {\n throw new Error(\n `When calling browserFiles, at least 1 file is required, ` +\n `but received ${files}`);\n }\n this.files = files;\n }\n\n async load(): Promise {\n const jsonFile = this.files[0];\n const weightFiles = this.files.slice(1);\n\n return new Promise((resolve, reject) => {\n const jsonReader = new FileReader();\n jsonReader.onload = (event: Event) => {\n // tslint:disable-next-line:no-any\n const modelJSON = JSON.parse((event.target as any).result) as ModelJSON;\n const modelTopology = modelJSON.modelTopology;\n if (modelTopology == null) {\n reject(new Error(\n `modelTopology field is missing from file ${jsonFile.name}`));\n return;\n }\n\n if (weightFiles.length === 0) {\n resolve({modelTopology});\n }\n\n const weightsManifest = modelJSON.weightsManifest;\n if (weightsManifest == null) {\n reject(new Error(\n `weightManifest field is missing from file ${jsonFile.name}`));\n return;\n }\n\n let pathToFile: {[path: string]: File};\n try {\n pathToFile =\n this.checkManifestAndWeightFiles(weightsManifest, weightFiles);\n } catch (err) {\n reject(err);\n return;\n }\n\n const weightSpecs: WeightsManifestEntry[] = [];\n const paths: string[] = [];\n const perFileBuffers: ArrayBuffer[] = [];\n weightsManifest.forEach(weightsGroup => {\n weightsGroup.paths.forEach(path => {\n paths.push(path);\n perFileBuffers.push(null);\n });\n weightSpecs.push(...weightsGroup.weights);\n });\n\n weightsManifest.forEach(weightsGroup => {\n weightsGroup.paths.forEach(path => {\n const weightFileReader = new FileReader();\n weightFileReader.onload = (event: Event) => {\n // tslint:disable-next-line:no-any\n const weightData = (event.target as any).result as ArrayBuffer;\n const index = paths.indexOf(path);\n perFileBuffers[index] = weightData;\n if (perFileBuffers.indexOf(null) === -1) {\n const result: ModelArtifacts = {\n modelTopology,\n weightSpecs,\n weightData: concatenateArrayBuffers(perFileBuffers),\n format: modelJSON.format,\n generatedBy: modelJSON.generatedBy,\n convertedBy: modelJSON.convertedBy\n };\n if (modelJSON.signature != null) {\n result.signature = modelJSON.signature;\n }\n if (modelJSON.userDefinedMetadata != null) {\n result.userDefinedMetadata = modelJSON.userDefinedMetadata;\n }\n if (modelJSON.modelInitializer != null) {\n result.modelInitializer = modelJSON.modelInitializer;\n }\n resolve(result);\n }\n };\n weightFileReader.onerror = error =>\n reject(`Failed to weights data from file of path '${path}'.`);\n weightFileReader.readAsArrayBuffer(pathToFile[path]);\n });\n });\n };\n jsonReader.onerror = error => reject(\n `Failed to read model topology and weights manifest JSON ` +\n `from file '${jsonFile.name}'. BrowserFiles supports loading ` +\n `Keras-style tf.Model artifacts only.`);\n jsonReader.readAsText(jsonFile);\n });\n }\n\n /**\n * Check the compatibility between weights manifest and weight files.\n */\n private checkManifestAndWeightFiles(\n manifest: WeightsManifestConfig, files: File[]): {[path: string]: File} {\n const basenames: string[] = [];\n const fileNames = files.map(file => basename(file.name));\n const pathToFile: {[path: string]: File} = {};\n for (const group of manifest) {\n group.paths.forEach(path => {\n const pathBasename = basename(path);\n if (basenames.indexOf(pathBasename) !== -1) {\n throw new Error(\n `Duplicate file basename found in weights manifest: ` +\n `'${pathBasename}'`);\n }\n basenames.push(pathBasename);\n if (fileNames.indexOf(pathBasename) === -1) {\n throw new Error(\n `Weight file with basename '${pathBasename}' is not provided.`);\n } else {\n pathToFile[path] = files[fileNames.indexOf(pathBasename)];\n }\n });\n }\n\n if (basenames.length !== files.length) {\n throw new Error(\n `Mismatch in the number of files in weights manifest ` +\n `(${basenames.length}) and the number of weight files provided ` +\n `(${files.length}).`);\n }\n return pathToFile;\n }\n}\n\nexport const browserDownloadsRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserDownloads.URL_SCHEME)) {\n return browserDownloads(url.slice(BrowserDownloads.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(browserDownloadsRouter);\n\n/**\n * Creates an IOHandler that triggers file downloads from the browser.\n *\n * The returned `IOHandler` instance can be used as model exporting methods such\n * as `tf.Model.save` and supports only saving.\n *\n * ```js\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * const saveResult = await model.save('downloads://mymodel');\n * // This will trigger downloading of two files:\n * // 'mymodel.json' and 'mymodel.weights.bin'.\n * console.log(saveResult);\n * ```\n *\n * @param fileNamePrefix Prefix name of the files to be downloaded. For use with\n * `tf.Model`, `fileNamePrefix` should follow either of the following two\n * formats:\n * 1. `null` or `undefined`, in which case the default file\n * names will be used:\n * - 'model.json' for the JSON file containing the model topology and\n * weights manifest.\n * - 'model.weights.bin' for the binary file containing the binary weight\n * values.\n * 2. A single string or an Array of a single string, as the file name prefix.\n * For example, if `'foo'` is provided, the downloaded JSON\n * file and binary weights file will be named 'foo.json' and\n * 'foo.weights.bin', respectively.\n * @param config Additional configuration for triggering downloads.\n * @returns An instance of `BrowserDownloads` `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function browserDownloads(fileNamePrefix = 'model'): IOHandler {\n return new BrowserDownloads(fileNamePrefix);\n}\n\n/**\n * Creates an IOHandler that loads model artifacts from user-selected files.\n *\n * This method can be used for loading from files such as user-selected files\n * in the browser.\n * When used in conjunction with `tf.loadLayersModel`, an instance of\n * `tf.LayersModel` (Keras-style) can be constructed from the loaded artifacts.\n *\n * ```js\n * // Note: This code snippet won't run properly without the actual file input\n * // elements in the HTML DOM.\n *\n * // Suppose there are two HTML file input (``)\n * // elements.\n * const uploadJSONInput = document.getElementById('upload-json');\n * const uploadWeightsInput = document.getElementById('upload-weights');\n * const model = await tf.loadLayersModel(tf.io.browserFiles(\n * [uploadJSONInput.files[0], uploadWeightsInput.files[0]]));\n * ```\n *\n * @param files `File`s to load from. Currently, this function supports only\n * loading from files that contain Keras-style models (i.e., `tf.Model`s), for\n * which an `Array` of `File`s is expected (in that order):\n * - A JSON file containing the model topology and weight manifest.\n * - Optionally, One or more binary files containing the binary weights.\n * These files must have names that match the paths in the `weightsManifest`\n * contained by the aforementioned JSON file, or errors will be thrown\n * during loading. These weights files have the same format as the ones\n * generated by `tensorflowjs_converter` that comes with the `tensorflowjs`\n * Python PIP package. If no weights files are provided, only the model\n * topology will be loaded from the JSON file above.\n * @returns An instance of `Files` `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function browserFiles(files: File[]): IOHandler {\n return new BrowserFiles(files);\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {assert} from '../util';\n\nimport {OnProgressCallback} from './types';\n\n/**\n * Monitor Promise.all progress, fire onProgress callback function.\n *\n * @param promises Promise list going to be monitored\n * @param onProgress Callback function. Fired when a promise resolved.\n * @param startFraction Optional fraction start. Default to 0.\n * @param endFraction Optional fraction end. Default to 1.\n */\nexport function monitorPromisesProgress(\n promises: Array>, onProgress: OnProgressCallback,\n startFraction?: number, endFraction?: number) {\n checkPromises(promises);\n startFraction = startFraction == null ? 0 : startFraction;\n endFraction = endFraction == null ? 1 : endFraction;\n checkFraction(startFraction, endFraction);\n let resolvedPromise = 0;\n\n const registerMonitor = (promise: Promise<{}>) => {\n promise.then(value => {\n const fraction = startFraction +\n ++resolvedPromise / promises.length * (endFraction - startFraction);\n // pass fraction as parameter to callback function.\n onProgress(fraction);\n return value;\n });\n return promise;\n };\n\n function checkPromises(promises: Array>): void {\n assert(\n promises != null && Array.isArray(promises) && promises.length > 0,\n () => 'promises must be a none empty array');\n }\n\n function checkFraction(startFraction: number, endFraction: number): void {\n assert(\n startFraction >= 0 && startFraction <= 1,\n () => `Progress fraction must be in range [0, 1], but ` +\n `got startFraction ${startFraction}`);\n assert(\n endFraction >= 0 && endFraction <= 1,\n () => `Progress fraction must be in range [0, 1], but ` +\n `got endFraction ${endFraction}`);\n assert(\n endFraction >= startFraction,\n () => `startFraction must be no more than endFraction, but ` +\n `got startFraction ${startFraction} and endFraction ` +\n `${endFraction}`);\n }\n\n return Promise.all(promises.map(registerMonitor));\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {env} from '../environment';\n\nimport {NamedTensorMap} from '../tensor_types';\nimport * as util from '../util';\nimport {decodeWeights} from './io_utils';\nimport {monitorPromisesProgress} from './progress';\nimport {DTYPE_VALUE_SIZE_MAP, LoadOptions, WeightsManifestConfig, WeightsManifestEntry} from './types';\n\n/**\n * Reads binary weights data from a number of URLs.\n *\n * @param fetchURLs URLs to send the HTTP requests at, using `fetch` calls.\n * @param requestOptions RequestInit (options) for the HTTP requests.\n * @param fetchFunc Optional overriding value for the `window.fetch` function.\n * @param onProgress Optional, progress callback function, fired periodically\n * before the load is completed.\n * @returns A `Promise` of an Array of `ArrayBuffer`. The Array has the same\n * length as `fetchURLs`.\n */\nexport async function loadWeightsAsArrayBuffer(\n fetchURLs: string[], loadOptions?: LoadOptions): Promise {\n if (loadOptions == null) {\n loadOptions = {};\n }\n\n const fetchFunc = loadOptions.fetchFunc == null ? env().platform.fetch :\n loadOptions.fetchFunc;\n\n // Create the requests for all of the weights in parallel.\n const requests = fetchURLs.map(\n fetchURL =>\n fetchFunc(fetchURL, loadOptions.requestInit, {isBinary: true}));\n\n const fetchStartFraction = 0;\n const fetchEndFraction = 0.5;\n\n const responses = loadOptions.onProgress == null ?\n await Promise.all(requests) :\n await monitorPromisesProgress(\n requests, loadOptions.onProgress, fetchStartFraction,\n fetchEndFraction);\n\n const bufferPromises = responses.map(response => response.arrayBuffer());\n\n const bufferStartFraction = 0.5;\n const bufferEndFraction = 1;\n\n const buffers = loadOptions.onProgress == null ?\n await Promise.all(bufferPromises) :\n await monitorPromisesProgress(\n bufferPromises, loadOptions.onProgress, bufferStartFraction,\n bufferEndFraction);\n return buffers;\n}\n\n/**\n * Reads a weights manifest JSON configuration, fetches the weights and\n * returns them as `Tensor`s.\n *\n * @param manifest The weights manifest JSON.\n * @param filePathPrefix The path prefix for filenames given in the manifest.\n * Defaults to the empty string.\n * @param weightNames The names of the weights to be fetched.\n */\nexport async function loadWeights(\n manifest: WeightsManifestConfig, filePathPrefix = '',\n weightNames?: string[],\n requestInit?: RequestInit): Promise {\n // TODO(nsthorat): Groups are currently fetched atomically. If you need a\n // single weight from a group, the whole group will be fetched. At a future\n // date, we should support fetching only the individual shards within a\n // group that are needed to reconstruct the requested weight.\n // TODO(cais): Use `decodeWeights` for implementation.\n\n const fetchWeights = (fetchUrls: string[]) =>\n loadWeightsAsArrayBuffer(fetchUrls, {requestInit});\n const loadWeights = weightsLoaderFactory(fetchWeights);\n\n return loadWeights(manifest, filePathPrefix, weightNames);\n}\n\n/**\n * Creates a function, which reads a weights manifest JSON configuration,\n * fetches the weight files using the specified function and returns them as\n * `Tensor`s.\n *\n * ```js\n * // example for creating a nodejs weight loader, which reads the weight files\n * // from disk using fs.readFileSync\n *\n * import * as fs from 'fs'\n *\n * const fetchWeightsFromDisk = (filePaths: string[]) =>\n * filePaths.map(filePath => fs.readFileSync(filePath).buffer)\n *\n * const loadWeights = tf.io.weightsLoaderFactory(fetchWeightsFromDisk)\n *\n * const manifest = JSON.parse(\n * fs.readFileSync('./my_model-weights_manifest').toString()\n * )\n * const weightMap = await loadWeights(manifest, './')\n * ```\n * @param fetchWeightsFunction The function used for fetching the weight files.\n * @returns Weight loading function.\n */\nexport function weightsLoaderFactory(\n fetchWeightsFunction: (fetchUrls: string[]) => Promise):\n (manifest: WeightsManifestConfig, filePathPrefix?: string,\n weightNames?: string[]) => Promise {\n return async(\n manifest: WeightsManifestConfig, filePathPrefix = '',\n weightNames?: string[]): Promise => {\n // Collect all the groups, weights, and their relative offsets to be\n // fetched.\n const groupIndicesToFetchMap = manifest.map(() => false);\n const groupWeightsToFetch: {\n [group: number]: Array<{\n manifestEntry: WeightsManifestEntry; groupOffset: number;\n sizeBytes: number;\n }>\n } = {};\n const weightsFound =\n weightNames != null ? weightNames.map(() => false) : [];\n const allManifestWeightNames: string[] = [];\n manifest.forEach((manifestGroupConfig, groupIndex) => {\n let groupOffset = 0;\n manifestGroupConfig.weights.forEach(weightsEntry => {\n const rawDtype = ('quantization' in weightsEntry) ?\n weightsEntry.quantization.dtype :\n weightsEntry.dtype;\n\n const weightsBytes = DTYPE_VALUE_SIZE_MAP[rawDtype] *\n util.sizeFromShape(weightsEntry.shape);\n\n const enqueueWeightsForFetchingFn = () => {\n groupIndicesToFetchMap[groupIndex] = true;\n if (groupWeightsToFetch[groupIndex] == null) {\n groupWeightsToFetch[groupIndex] = [];\n }\n\n groupWeightsToFetch[groupIndex].push({\n manifestEntry: weightsEntry,\n groupOffset,\n sizeBytes: weightsBytes\n });\n };\n\n if (weightNames != null) {\n weightNames.forEach((weightName, weightIndex) => {\n if (weightName === weightsEntry.name) {\n enqueueWeightsForFetchingFn();\n weightsFound[weightIndex] = true;\n }\n });\n } else {\n enqueueWeightsForFetchingFn();\n }\n\n allManifestWeightNames.push(weightsEntry.name);\n groupOffset += weightsBytes;\n });\n });\n\n if (!weightsFound.every(found => found)) {\n const weightsNotFound = weightNames.filter((_, i) => !weightsFound[i]);\n throw new Error(\n `Could not find weights in manifest with names: ` +\n `${weightsNotFound.join(', ')}. \\n` +\n `Manifest JSON has weights with names: ` +\n `${allManifestWeightNames.join(', ')}.`);\n }\n\n // Convert the one-hot boolean groupId => shouldFetch map to a list of group\n // IDs.\n const groupIndicesToFetch =\n groupIndicesToFetchMap.reduce((accumulator, shouldFetch, i) => {\n if (shouldFetch) {\n accumulator.push(i);\n }\n return accumulator;\n }, []);\n\n const fetchUrls: string[] = [];\n groupIndicesToFetch.forEach(i => {\n manifest[i].paths.forEach(filepath => {\n const fetchUrl = filePathPrefix +\n (!filePathPrefix.endsWith('/') ? '/' : '') + filepath;\n fetchUrls.push(fetchUrl);\n });\n });\n const buffers = await fetchWeightsFunction(fetchUrls);\n\n const weightsTensorMap: NamedTensorMap = {};\n let bufferIndexOffset = 0;\n groupIndicesToFetch.forEach(i => {\n const numBuffers = manifest[i].paths.length;\n\n let groupBytes = 0;\n for (let i = 0; i < numBuffers; i++) {\n groupBytes += buffers[bufferIndexOffset + i].byteLength;\n }\n\n // Create a buffer for the whole group.\n const groupBuffer = new ArrayBuffer(groupBytes);\n const groupByteBuffer = new Uint8Array(groupBuffer);\n let groupBufferOffset = 0;\n for (let i = 0; i < numBuffers; i++) {\n const buffer = new Uint8Array(buffers[bufferIndexOffset + i]);\n groupByteBuffer.set(buffer, groupBufferOffset);\n groupBufferOffset += buffer.byteLength;\n }\n\n const weightsEntries = groupWeightsToFetch[i];\n weightsEntries.forEach(weightsEntry => {\n const byteBuffer = groupBuffer.slice(\n weightsEntry.groupOffset,\n weightsEntry.groupOffset + weightsEntry.sizeBytes);\n const nameToTensorMap =\n decodeWeights(byteBuffer, [weightsEntry.manifestEntry]);\n for (const name in nameToTensorMap) {\n weightsTensorMap[name] = nameToTensorMap[name];\n }\n });\n\n bufferIndexOffset += numBuffers;\n });\n\n return weightsTensorMap;\n };\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandler implementations based on HTTP requests in the web browser.\n *\n * Uses [`fetch`](https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API).\n */\n\nimport {env} from '../environment';\n\nimport {assert} from '../util';\nimport {concatenateArrayBuffers, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, LoadOptions, ModelArtifacts, ModelJSON, OnProgressCallback, SaveResult, WeightsManifestConfig, WeightsManifestEntry} from './types';\nimport {loadWeightsAsArrayBuffer} from './weights_loader';\n\nconst OCTET_STREAM_MIME_TYPE = 'application/octet-stream';\nconst JSON_TYPE = 'application/json';\nexport class HTTPRequest implements IOHandler {\n protected readonly path: string;\n protected readonly requestInit: RequestInit;\n\n private readonly fetch: Function;\n private readonly weightUrlConverter: (weightName: string) => Promise;\n\n readonly DEFAULT_METHOD = 'POST';\n\n static readonly URL_SCHEME_REGEX = /^https?:\\/\\//;\n\n private readonly weightPathPrefix: string;\n private readonly onProgress: OnProgressCallback;\n\n constructor(path: string, loadOptions?: LoadOptions) {\n if (loadOptions == null) {\n loadOptions = {};\n }\n this.weightPathPrefix = loadOptions.weightPathPrefix;\n this.onProgress = loadOptions.onProgress;\n this.weightUrlConverter = loadOptions.weightUrlConverter;\n\n if (loadOptions.fetchFunc != null) {\n assert(\n typeof loadOptions.fetchFunc === 'function',\n () => 'Must pass a function that matches the signature of ' +\n '`fetch` (see ' +\n 'https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)');\n this.fetch = loadOptions.fetchFunc;\n } else {\n this.fetch = env().platform.fetch;\n }\n\n assert(\n path != null && path.length > 0,\n () => 'URL path for http must not be null, undefined or ' +\n 'empty.');\n\n if (Array.isArray(path)) {\n assert(\n path.length === 2,\n () => 'URL paths for http must have a length of 2, ' +\n `(actual length is ${path.length}).`);\n }\n this.path = path;\n\n if (loadOptions.requestInit != null &&\n loadOptions.requestInit.body != null) {\n throw new Error(\n 'requestInit is expected to have no pre-existing body, but has one.');\n }\n this.requestInit = loadOptions.requestInit || {};\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserHTTPRequest.save() does not support saving model topology ' +\n 'in binary formats yet.');\n }\n\n const init = Object.assign({method: this.DEFAULT_METHOD}, this.requestInit);\n init.body = new FormData();\n\n const weightsManifest: WeightsManifestConfig = [{\n paths: ['./model.weights.bin'],\n weights: modelArtifacts.weightSpecs,\n }];\n const modelTopologyAndWeightManifest: ModelJSON = {\n modelTopology: modelArtifacts.modelTopology,\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy,\n weightsManifest\n };\n if (modelArtifacts.signature != null) {\n modelTopologyAndWeightManifest.signature = modelArtifacts.signature;\n }\n if (modelArtifacts.userDefinedMetadata != null) {\n modelTopologyAndWeightManifest.userDefinedMetadata =\n modelArtifacts.userDefinedMetadata;\n }\n if (modelArtifacts.modelInitializer != null) {\n modelTopologyAndWeightManifest.modelInitializer =\n modelArtifacts.modelInitializer;\n }\n\n init.body.append(\n 'model.json',\n new Blob(\n [JSON.stringify(modelTopologyAndWeightManifest)],\n {type: JSON_TYPE}),\n 'model.json');\n\n if (modelArtifacts.weightData != null) {\n init.body.append(\n 'model.weights.bin',\n new Blob([modelArtifacts.weightData], {type: OCTET_STREAM_MIME_TYPE}),\n 'model.weights.bin');\n }\n\n const response = await this.fetch(this.path, init);\n\n if (response.ok) {\n return {\n modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts),\n responses: [response],\n };\n } else {\n throw new Error(\n `BrowserHTTPRequest.save() failed due to HTTP response status ` +\n `${response.status}.`);\n }\n }\n\n /**\n * Load model artifacts via HTTP request(s).\n *\n * See the documentation to `tf.io.http` for details on the saved\n * artifacts.\n *\n * @returns The loaded model artifacts (if loading succeeds).\n */\n async load(): Promise {\n const modelConfigRequest = await this.fetch(this.path, this.requestInit);\n\n if (!modelConfigRequest.ok) {\n throw new Error(\n `Request to ${this.path} failed with status code ` +\n `${modelConfigRequest.status}. Please verify this URL points to ` +\n `the model JSON of the model to load.`);\n }\n let modelConfig: ModelJSON;\n try {\n modelConfig = await modelConfigRequest.json();\n } catch (e) {\n let message = `Failed to parse model JSON of response from ${this.path}.`;\n // TODO(nsthorat): Remove this after some time when we're comfortable that\n // .pb files are mostly gone.\n if (this.path.endsWith('.pb')) {\n message += ' Your path contains a .pb file extension. ' +\n 'Support for .pb models have been removed in TensorFlow.js 1.0 ' +\n 'in favor of .json models. You can re-convert your Python ' +\n 'TensorFlow model using the TensorFlow.js 1.0 conversion scripts ' +\n 'or you can convert your.pb models with the \\'pb2json\\'' +\n 'NPM script in the tensorflow/tfjs-converter repository.';\n } else {\n message += ' Please make sure the server is serving valid ' +\n 'JSON for this request.';\n }\n throw new Error(message);\n }\n const modelTopology = modelConfig.modelTopology;\n const weightsManifest = modelConfig.weightsManifest;\n const generatedBy = modelConfig.generatedBy;\n const convertedBy = modelConfig.convertedBy;\n const format = modelConfig.format;\n const signature = modelConfig.signature;\n const userDefinedMetadata = modelConfig.userDefinedMetadata;\n\n // We do not allow both modelTopology and weightsManifest to be missing.\n if (modelTopology == null && weightsManifest == null) {\n throw new Error(\n `The JSON from HTTP path ${this.path} contains neither model ` +\n `topology or manifest for weights.`);\n }\n\n let weightSpecs: WeightsManifestEntry[];\n let weightData: ArrayBuffer;\n if (weightsManifest != null) {\n const results = await this.loadWeights(weightsManifest);\n [weightSpecs, weightData] = results;\n }\n\n const artifacts: ModelArtifacts = {\n modelTopology,\n weightSpecs,\n weightData,\n generatedBy,\n convertedBy,\n format\n };\n\n if (signature != null) {\n artifacts.signature = signature;\n }\n if (userDefinedMetadata != null) {\n artifacts.userDefinedMetadata = userDefinedMetadata;\n }\n\n const initializer = modelConfig.modelInitializer;\n if (initializer) {\n artifacts.modelInitializer = initializer;\n }\n\n return artifacts;\n }\n\n private async loadWeights(weightsManifest: WeightsManifestConfig):\n Promise<[WeightsManifestEntry[], ArrayBuffer]> {\n const weightPath = Array.isArray(this.path) ? this.path[1] : this.path;\n const [prefix, suffix] = parseUrl(weightPath);\n const pathPrefix = this.weightPathPrefix || prefix;\n\n const weightSpecs = [];\n for (const entry of weightsManifest) {\n weightSpecs.push(...entry.weights);\n }\n\n const fetchURLs: string[] = [];\n const urlPromises: Array> = [];\n for (const weightsGroup of weightsManifest) {\n for (const path of weightsGroup.paths) {\n if (this.weightUrlConverter != null) {\n urlPromises.push(this.weightUrlConverter(path));\n } else {\n fetchURLs.push(pathPrefix + path + suffix);\n }\n }\n }\n\n if (this.weightUrlConverter) {\n fetchURLs.push(...await Promise.all(urlPromises));\n }\n\n const buffers = await loadWeightsAsArrayBuffer(fetchURLs, {\n requestInit: this.requestInit,\n fetchFunc: this.fetch,\n onProgress: this.onProgress\n });\n return [weightSpecs, concatenateArrayBuffers(buffers)];\n }\n}\n\n/**\n * Extract the prefix and suffix of the url, where the prefix is the path before\n * the last file, and suffix is the search params after the last file.\n * ```\n * const url = 'http://tfhub.dev/model/1/tensorflowjs_model.pb?tfjs-format=file'\n * [prefix, suffix] = parseUrl(url)\n * // prefix = 'http://tfhub.dev/model/1/'\n * // suffix = '?tfjs-format=file'\n * ```\n * @param url the model url to be parsed.\n */\nexport function parseUrl(url: string): [string, string] {\n const lastSlash = url.lastIndexOf('/');\n const lastSearchParam = url.lastIndexOf('?');\n const prefix = url.substring(0, lastSlash);\n const suffix =\n lastSearchParam > lastSlash ? url.substring(lastSearchParam) : '';\n return [prefix + '/', suffix];\n}\n\nexport function isHTTPScheme(url: string): boolean {\n return url.match(HTTPRequest.URL_SCHEME_REGEX) != null;\n}\n\nexport const httpRouter: IORouter =\n (url: string, loadOptions?: LoadOptions) => {\n if (typeof fetch === 'undefined' &&\n (loadOptions == null || loadOptions.fetchFunc == null)) {\n // `http` uses `fetch` or `node-fetch`, if one wants to use it in\n // an environment that is not the browser or node they have to setup a\n // global fetch polyfill.\n return null;\n } else {\n let isHTTP = true;\n if (Array.isArray(url)) {\n isHTTP = url.every(urlItem => isHTTPScheme(urlItem));\n } else {\n isHTTP = isHTTPScheme(url);\n }\n if (isHTTP) {\n return http(url, loadOptions);\n }\n }\n return null;\n };\nIORouterRegistry.registerSaveRouter(httpRouter);\nIORouterRegistry.registerLoadRouter(httpRouter);\n\n/**\n * Creates an IOHandler subtype that sends model artifacts to HTTP server.\n *\n * An HTTP request of the `multipart/form-data` mime type will be sent to the\n * `path` URL. The form data includes artifacts that represent the topology\n * and/or weights of the model. In the case of Keras-style `tf.Model`, two\n * blobs (files) exist in form-data:\n * - A JSON file consisting of `modelTopology` and `weightsManifest`.\n * - A binary weights file consisting of the concatenated weight values.\n * These files are in the same format as the one generated by\n * [tfjs_converter](https://js.tensorflow.org/tutorials/import-keras.html).\n *\n * The following code snippet exemplifies the client-side code that uses this\n * function:\n *\n * ```js\n * const model = tf.sequential();\n * model.add(\n * tf.layers.dense({units: 1, inputShape: [100], activation: 'sigmoid'}));\n *\n * const saveResult = await model.save(tf.io.http(\n * 'http://model-server:5000/upload', {requestInit: {method: 'PUT'}}));\n * console.log(saveResult);\n * ```\n *\n * If the default `POST` method is to be used, without any custom parameters\n * such as headers, you can simply pass an HTTP or HTTPS URL to `model.save`:\n *\n * ```js\n * const saveResult = await model.save('http://model-server:5000/upload');\n * ```\n *\n * The following GitHub Gist\n * https://gist.github.com/dsmilkov/1b6046fd6132d7408d5257b0976f7864\n * implements a server based on [flask](https://github.com/pallets/flask) that\n * can receive the request. Upon receiving the model artifacts via the requst,\n * this particular server reconsistutes instances of [Keras\n * Models](https://keras.io/models/model/) in memory.\n *\n *\n * @param path A URL path to the model.\n * Can be an absolute HTTP path (e.g.,\n * 'http://localhost:8000/model-upload)') or a relative path (e.g.,\n * './model-upload').\n * @param requestInit Request configurations to be used when sending\n * HTTP request to server using `fetch`. It can contain fields such as\n * `method`, `credentials`, `headers`, `mode`, etc. See\n * https://developer.mozilla.org/en-US/docs/Web/API/Request/Request\n * for more information. `requestInit` must not have a body, because the\n * body will be set by TensorFlow.js. File blobs representing the model\n * topology (filename: 'model.json') and the weights of the model (filename:\n * 'model.weights.bin') will be appended to the body. If `requestInit` has a\n * `body`, an Error will be thrown.\n * @param loadOptions Optional configuration for the loading. It includes the\n * following fields:\n * - weightPathPrefix Optional, this specifies the path prefix for weight\n * files, by default this is calculated from the path param.\n * - fetchFunc Optional, custom `fetch` function. E.g., in Node.js,\n * the `fetch` from node-fetch can be used here.\n * - onProgress Optional, progress callback function, fired periodically\n * before the load is completed.\n * @returns An instance of `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function http(path: string, loadOptions?: LoadOptions): IOHandler {\n return new HTTPRequest(path, loadOptions);\n}\n\n/**\n * Deprecated. Use `tf.io.http`.\n * @param path\n * @param loadOptions\n */\nexport function browserHTTPRequest(\n path: string, loadOptions?: LoadOptions): IOHandler {\n return http(path, loadOptions);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandlers that pass through the in-memory ModelArtifacts format.\n */\n\nimport {IOHandler, ModelArtifacts, SaveResult, TrainingConfig, WeightsManifestEntry} from './types';\n\nclass PassthroughLoader implements IOHandler {\n constructor(private readonly modelArtifacts?: ModelArtifacts) {}\n\n async load(): Promise {\n return this.modelArtifacts;\n }\n}\n\nclass PassthroughSaver implements IOHandler {\n constructor(\n private readonly saveHandler:\n (artifacts: ModelArtifacts) => Promise) {}\n\n async save(modelArtifacts: ModelArtifacts) {\n return this.saveHandler(modelArtifacts);\n }\n}\n\n/**\n * Creates an IOHandler that loads model artifacts from memory.\n *\n * When used in conjunction with `tf.loadLayersModel`, an instance of\n * `tf.LayersModel` (Keras-style) can be constructed from the loaded artifacts.\n *\n * ```js\n * const model = await tf.loadLayersModel(tf.io.fromMemory(\n * modelTopology, weightSpecs, weightData));\n * ```\n *\n * @param modelArtifacts a object containing model topology (i.e., parsed from\n * the JSON format).\n * @param weightSpecs An array of `WeightsManifestEntry` objects describing the\n * names, shapes, types, and quantization of the weight data.\n * @param weightData A single `ArrayBuffer` containing the weight data,\n * concatenated in the order described by the weightSpecs.\n * @param trainingConfig Model training configuration. Optional.\n *\n * @returns A passthrough `IOHandler` that simply loads the provided data.\n */\nexport function fromMemory(\n modelArtifacts: {}|ModelArtifacts, weightSpecs?: WeightsManifestEntry[],\n weightData?: ArrayBuffer, trainingConfig?: TrainingConfig): IOHandler {\n if (arguments.length === 1) {\n const isModelArtifacts =\n (modelArtifacts as ModelArtifacts).modelTopology != null ||\n (modelArtifacts as ModelArtifacts).weightSpecs != null;\n if (isModelArtifacts) {\n return new PassthroughLoader(modelArtifacts as ModelArtifacts);\n } else {\n // Legacy support: with only modelTopology.\n // TODO(cais): Remove this deprecated API.\n console.warn(\n 'Please call tf.io.fromMemory() with only one argument. ' +\n 'The argument should be of type ModelArtifacts. ' +\n 'The multi-argument signature of tf.io.fromMemory() has been ' +\n 'deprecated and will be removed in a future release.');\n return new PassthroughLoader({modelTopology: modelArtifacts as {}});\n }\n } else {\n // Legacy support.\n // TODO(cais): Remove this deprecated API.\n console.warn(\n 'Please call tf.io.fromMemory() with only one argument. ' +\n 'The argument should be of type ModelArtifacts. ' +\n 'The multi-argument signature of tf.io.fromMemory() has been ' +\n 'deprecated and will be removed in a future release.');\n return new PassthroughLoader({\n modelTopology: modelArtifacts as {},\n weightSpecs,\n weightData,\n trainingConfig\n });\n }\n}\n\n/**\n * Creates an IOHandler that passes saved model artifacts to a callback.\n *\n * ```js\n * function handleSave(artifacts) {\n * // ... do something with the artifacts ...\n * return {modelArtifactsInfo: {...}, ...};\n * }\n *\n * const saveResult = model.save(tf.io.withSaveHandler(handleSave));\n * ```\n *\n * @param saveHandler A function that accepts a `ModelArtifacts` and returns a\n * `SaveResult`.\n */\nexport function withSaveHandler(\n saveHandler: (artifacts: ModelArtifacts) =>\n Promise): IOHandler {\n return new PassthroughSaver(saveHandler);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * Exports under the tf.math.* namespace.\n */\n\nimport {confusionMatrix} from './ops/confusion_matrix';\n\nexport {confusionMatrix};\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {BatchMatMul, BatchMatMulAttrs, BatchMatMulInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {makeTypesMatch} from '../tensor_util';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Computes the dot product of two matrices, A * B. These must be matrices.\n *\n * ```js\n * const a = tf.tensor2d([1, 2], [1, 2]);\n * const b = tf.tensor2d([1, 2, 3, 4], [2, 2]);\n *\n * a.matMul(b).print(); // or tf.matMul(a, b)\n * ```\n * @param a First matrix in dot product operation.\n * @param b Second matrix in dot product operation.\n * @param transposeA If true, `a` is transposed before multiplication.\n * @param transposeB If true, `b` is transposed before multiplication.\n *\n * @doc {heading: 'Operations', subheading: 'Matrices'}\n */\nfunction matMul_(\n a: Tensor|TensorLike, b: Tensor|TensorLike, transposeA = false,\n transposeB = false): T {\n let $a = convertToTensor(a, 'a', 'matMul');\n let $b = convertToTensor(b, 'b', 'matMul');\n [$a, $b] = makeTypesMatch($a, $b);\n\n const inputs: BatchMatMulInputs = {a: $a, b: $b};\n const attrs: BatchMatMulAttrs = {transposeA, transposeB};\n\n return ENGINE.runKernel(\n BatchMatMul, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const matMul = op({matMul_});\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {OneHot, OneHotAttrs, OneHotInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Creates a one-hot `tf.Tensor`. The locations represented by `indices` take\n * value `onValue` (defaults to 1), while all other locations take value\n * `offValue` (defaults to 0). If `indices` is rank `R`, the output has rank\n * `R+1` with the last axis of size `depth`.\n *\n * ```js\n * tf.oneHot(tf.tensor1d([0, 1], 'int32'), 3).print();\n * ```\n *\n * @param indices `tf.Tensor` of indices with dtype `int32`.\n * @param depth The depth of the one hot dimension.\n * @param onValue A number used to fill in the output when the index matches\n * the location.\n * @param offValue A number used to fill in the output when the index does\n * not match the location.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction oneHot_(\n indices: Tensor|TensorLike, depth: number, onValue = 1,\n offValue = 0): Tensor {\n if (depth < 2) {\n throw new Error(`Error in oneHot: depth must be >=2, but it is ${depth}`);\n }\n const $indices = convertToTensor(indices, 'indices', 'oneHot', 'int32');\n\n const inputs: OneHotInputs = {indices: $indices};\n const attrs: OneHotAttrs = {depth, onValue, offValue};\n\n return ENGINE.runKernel(\n OneHot, inputs as unknown as NamedTensorMap,\n attrs as unknown as NamedAttrMap);\n}\n\nexport const oneHot = op({oneHot_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Transpose, TransposeAttrs, TransposeInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Transposes the `tf.Tensor`. Permutes the dimensions according to `perm`.\n *\n * The returned `tf.Tensor`'s dimension `i` will correspond to the input\n * dimension `perm[i]`. If `perm` is not given, it is set to `[n-1...0]`,\n * where `n` is the rank of the input `tf.Tensor`. Hence by default, this\n * operation performs a regular matrix transpose on 2-D input `tf.Tensor`s.\n *\n * ```js\n * const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);\n *\n * a.transpose().print(); // or tf.transpose(a)\n * ```\n *\n * @param x The tensor to transpose.\n * @param perm The permutation of the dimensions of a.\n *\n * @doc {heading: 'Operations', subheading: 'Matrices'}\n */\nfunction transpose_(x: T|TensorLike, perm?: number[]): T {\n const $x = convertToTensor(x, 'x', 'transpose');\n\n if (perm == null) {\n perm = $x.shape.map((s, i) => i).reverse();\n }\n util.assert(\n $x.rank === perm.length,\n () => `Error in transpose: rank of input ${$x.rank} ` +\n `must match length of perm ${perm}.`);\n perm.forEach(axis => {\n util.assert(\n axis >= 0 && axis < $x.rank,\n () => `All entries in 'perm' must be between 0 and ${$x.rank - 1}` +\n ` but got ${perm}`);\n });\n\n if ($x.rank <= 1) {\n return $x.clone();\n }\n\n const inputs: TransposeInputs = {x: $x};\n const attrs: TransposeAttrs = {perm};\n\n return ENGINE.runKernel(\n Transpose, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const transpose = op({transpose_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor1D, Tensor2D} from '../tensor';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {cast} from './cast';\nimport {matMul} from './mat_mul';\nimport {oneHot} from './one_hot';\nimport {op} from './operation';\nimport {transpose} from './transpose';\n\n/**\n * Computes the confusion matrix from true labels and predicted labels.\n *\n * ```js\n * const labels = tf.tensor1d([0, 1, 2, 1, 0], 'int32');\n * const predictions = tf.tensor1d([0, 2, 2, 1, 0], 'int32');\n * const numClasses = 3;\n * const out = tf.math.confusionMatrix(labels, predictions, numClasses);\n * out.print();\n * // Expected output matrix:\n * // [[2, 0, 0],\n * // [0, 1, 1],\n * // [0, 0, 1]]\n * ```\n *\n * @param labels The target labels, assumed to be 0-based integers\n * for the classes. The shape is `[numExamples]`, where\n * `numExamples` is the number of examples included.\n * @param predictions The predicted classes, assumed to be\n * 0-based integers for the classes. Must have the same shape as `labels`.\n * @param numClasses Number of all classes, as an integer.\n * Its value must be larger than the largest element in `labels` and\n * `predictions`.\n * @returns The confusion matrix as a int32-type 2D tensor. The value at\n * row `r` and column `c` is the number of times examples of actual class\n * `r` were predicted as class `c`.\n *\n * @doc {heading: 'Operations', subheading: 'Evaluation'}\n */\nexport function confusionMatrix_(\n labels: Tensor1D|TensorLike, predictions: Tensor1D|TensorLike,\n numClasses: number): Tensor2D {\n const $labels = convertToTensor(labels, 'labels', 'confusionMatrix');\n const $predictions =\n convertToTensor(predictions, 'predictions', 'confusionMatrix');\n\n util.assert(\n numClasses == null || numClasses > 0 && Number.isInteger(numClasses),\n () => `If provided, numClasses must be a positive integer, ` +\n `but got ${numClasses}`);\n util.assert(\n $labels.rank === 1,\n () => `Expected the rank of labels to be 1, but got ${$labels.rank}`);\n util.assert(\n $predictions.rank === 1,\n () => `Expected the rank of predictions to be 1, ` +\n `but got ${$predictions.rank}`);\n util.assert(\n $labels.shape[0] === $predictions.shape[0],\n () => `Mismatch in the number of examples: ` +\n `${$labels.shape[0]} vs. ${$predictions.shape[0]}. ` +\n `Labels and predictions should have the same number of elements.`);\n util.assert(\n numClasses > 0 && Number.isInteger(numClasses),\n () => `numClasses is required to be a positive integer, but got ` +\n `${numClasses}`);\n // TODO(cais): In the future, if oneHot supports tensors inputs for\n // `numClasses`, `confusionMatrix` can make `numClasses` optional.\n\n const oneHotLabels = oneHot(cast($labels, 'int32'), numClasses) as Tensor2D;\n const oneHotPredictions =\n oneHot(cast($predictions, 'int32'), numClasses) as Tensor2D;\n const oneHotLabelsT: Tensor2D = transpose(oneHotLabels);\n const product: Tensor2D = matMul(oneHotLabelsT, oneHotPredictions);\n return cast(product, 'int32');\n}\n\nexport const confusionMatrix = op({confusionMatrix_});\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {env} from '../environment';\nimport {FromPixels, FromPixelsAttrs, FromPixelsInputs} from '../kernel_names';\nimport {getKernel, NamedAttrMap} from '../kernel_registry';\nimport {Tensor, Tensor2D, Tensor3D} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {PixelData, TensorLike} from '../types';\n\nimport {cast} from './cast';\nimport {op} from './operation';\nimport {tensor3d} from './tensor3d';\n\nlet fromPixels2DContext: CanvasRenderingContext2D;\n\n/**\n * Creates a `tf.Tensor` from an image.\n *\n * ```js\n * const image = new ImageData(1, 1);\n * image.data[0] = 100;\n * image.data[1] = 150;\n * image.data[2] = 200;\n * image.data[3] = 255;\n *\n * tf.browser.fromPixels(image).print();\n * ```\n *\n * @param pixels The input image to construct the tensor from. The\n * supported image types are all 4-channel. You can also pass in an image\n * object with following attributes:\n * `{data: Uint8Array; width: number; height: number}`\n * @param numChannels The number of channels of the output tensor. A\n * numChannels value less than 4 allows you to ignore channels. Defaults to\n * 3 (ignores alpha channel of input image).\n *\n * @returns A Tensor3D with the shape `[height, width, numChannels]`.\n *\n * @doc {heading: 'Browser', namespace: 'browser', ignoreCI: true}\n */\nfunction fromPixels_(\n pixels: PixelData|ImageData|HTMLImageElement|HTMLCanvasElement|\n HTMLVideoElement|ImageBitmap,\n numChannels = 3): Tensor3D {\n // Sanity checks.\n if (numChannels > 4) {\n throw new Error(\n 'Cannot construct Tensor with more than 4 channels from pixels.');\n }\n if (pixels == null) {\n throw new Error('pixels passed to tf.browser.fromPixels() can not be null');\n }\n let isPixelData = false;\n let isImageData = false;\n let isVideo = false;\n let isImage = false;\n let isCanvasLike = false;\n let isImageBitmap = false;\n if ((pixels as PixelData).data instanceof Uint8Array) {\n isPixelData = true;\n } else if (\n typeof (ImageData) !== 'undefined' && pixels instanceof ImageData) {\n isImageData = true;\n } else if (\n typeof (HTMLVideoElement) !== 'undefined' &&\n pixels instanceof HTMLVideoElement) {\n isVideo = true;\n } else if (\n typeof (HTMLImageElement) !== 'undefined' &&\n pixels instanceof HTMLImageElement) {\n isImage = true;\n // tslint:disable-next-line: no-any\n } else if ((pixels as any).getContext != null) {\n isCanvasLike = true;\n } else if (\n typeof (ImageBitmap) !== 'undefined' && pixels instanceof ImageBitmap) {\n isImageBitmap = true;\n } else {\n throw new Error(\n 'pixels passed to tf.browser.fromPixels() must be either an ' +\n `HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData ` +\n `in browser, or OffscreenCanvas, ImageData in webworker` +\n ` or {data: Uint32Array, width: number, height: number}, ` +\n `but was ${(pixels as {}).constructor.name}`);\n }\n if (isVideo) {\n const HAVE_CURRENT_DATA_READY_STATE = 2;\n if (isVideo &&\n (pixels as HTMLVideoElement).readyState <\n HAVE_CURRENT_DATA_READY_STATE) {\n throw new Error(\n 'The video element has not loaded data yet. Please wait for ' +\n '`loadeddata` event on the eb){let A=Wu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Wu)*i,o*i));return n==="complex64"&&(y=Vu(y),g=Vu(g)),["["+y.map((x,v)=>Bu(x,a[v],n)).join(", ")+", ..., "+g.map((x,v)=>Bu(x,a[o-Wu+v],n)).join(", ")+"]"]}let f=n==="complex64"?Vu(e):Array.from(e);return["["+f.map((A,y)=>Bu(A,a[y],n)).join(", ")+"]"]}let c=t.slice(1),u=r.slice(1),h=r[0]*i,d=[];if(o>eb){for(let f=0;f1)for(let c=0;cMx){let A=$u*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-$u)*i,o*i));return n==="complex64"&&(y=Ou(y),g=Ou(g)),["["+y.map((x,v)=>Du(x,a[v],n)).join(", ")+", ..., "+g.map((x,v)=>Du(x,a[o-$u+v],n)).join(", ")+"]"]}let f=n==="complex64"?Ou(e):Array.from(e);return["["+f.map((A,y)=>Du(A,a[y],n)).join(", ")+"]"]}let c=t.slice(1),u=r.slice(1),h=r[0]*i,d=[];if(o>Mx){for(let f=0;f<$u;f++){let A=f*h,y=A+h;d.push(...ud(e.slice(A,y),c,n,u,a,!1))}d.push("...");for(let f=o-$u;f`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Bx(t,this.size),this.strides=io(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;rfd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Lr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>fd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Lr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Lr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return hl.print(this,e)}clone(){return this.throwIfDisposed(),hl.clone(this)}toString(e=!1){let t=this.dataSync();return AI(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),hl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Lr().makeVariable(this,e,t,n)}};Object.defineProperty(Pe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return Rf("Tensor",()=>Pe)}Z();var ju=class extends Pe{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!la(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Lr().disposeTensor(this),this.dataId=e.dataId,Lr().incRef(this,null)}dispose(){Lr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ju,Symbol.hasInstance,{value:e=>e instanceof Pe&&e.assign!=null&&e.assign instanceof Function});var kr={};Me(kr,{assertTypesMatch:()=>nb,getTensorsInContainer:()=>Df,isTensorInList:()=>wI,makeTypesMatch:()=>vt});var Of;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Of||(Of={}));var zf;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(zf||(zf={}));var Pf;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Pf||(Pf={}));var Lf;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Lf||(Lf={}));var Wf;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Wf||(Wf={}));var _I={float32:Lf,int32:zf,bool:Pf,complex64:Wf};function dr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return _I[e][t]}function Ad(e){return dr(e,"int32")}function vt(e,t){if(e.dtype===t.dtype)return[e,t];let n=dr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function nb(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function wI(e,t){return t.some(n=>n.id===e.id)}function Df(e){let t=[],n=new Set;return rb(e,t,n),t}function rb(e,t,n){if(e==null)return;if(e instanceof Pe){t.push(e);return}if(!vI(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),rb(s,t,n))}}function vI(e){return Array.isArray(e)||typeof e=="object"}function Bf(e){return e.kernelName!=null}var ab=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Uu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new ab}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){cl(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof gu)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Uu.nextTensorId++}nextVariableId(){return Uu.nextVariableId++}clone(e){let t=$.runKernel(Cs,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(ys,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(dd(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Bf(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Bf(e)){let{kernelName:p,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=dd(p,this.backendName);M(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let x=g.map(v=>{if(v.rank!=null)return v;let{dataId:b,shape:w,dtype:k}=v;return this.makeTensorFromDataId(b,w,k)});if(r){let v=this.getTensorsForGradient(p,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:p}=e,m=f=>{!r||(n=f.map(A=>this.keep(this.clone(A))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,m));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:c,attrs:u}=e,h=Bf(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,c,t,h,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(p=>c[p]!=null?c[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=Ff(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&Ea(e[0])&&(a=e.map(o=>Lu(o)));let s=r.write(a,t,n),i=new Pe(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=Ux(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Pe(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new ju(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Sf(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof ju||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Sf(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=Ff(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let h=n[u],d=Fh(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return c}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Df(e),n=new Set(t.map(a=>a.id));for(let a=0;a{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(a instanceof Pe,()=>"The result y returned by f() must be a tensor.");let s=pI(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?kI(a.shape):n,fI(i,s,l=>this.tidy(l),II);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return M(Ca(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(i=>i instanceof Pe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),M(n.value instanceof Pe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Ca(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];M(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(c.every(h=>h instanceof Pe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((h,d)=>{u[d]=()=>h}),u};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Pu(),n=await this.backend.time(e);return n.wallMs=Pu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new ab;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Uu.nextTensorId=0;Uu.nextVariableId=0;function kI(e){let t=Nf(Et(e),"float32");return $.makeTensor(t,e,"float32")}function sb(){let e=Zx();if(e._tfengine==null){let t=new Kx(e);e._tfengine=new Uu(t)}return tI(e._tfengine.ENV),gI(()=>e._tfengine),e._tfengine}var $=sb();function II(e,t){let n={a:e,b:t};return $.runKernel(Ra,n)}var Hu={};Me(Hu,{isBrowser:()=>ib,isMobile:()=>SI});function NI(){return typeof navigator!="undefined"&&navigator!=null}function SI(e){if(e||NI()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function ib(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ir=J();Ir.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ir.registerFlag("IS_BROWSER",()=>ib());Ir.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ir.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ir.registerFlag("PROD",()=>!1);Ir.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ir.getBool("DEBUG"));Ir.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ir.registerFlag("IS_TEST",()=>!1);Ir.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ir.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Wr(e,t){let n=e;if(rn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||rn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&ob(e,r,[]),r}function ob(e,t,n){if(n=n||[],!Array.isArray(e)&&!rn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a=0&&(a=r),lb(r,a,t,n),e==null||!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Wr(e,a);!rn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?pd(e,a):ds(e,[],!0);return $.makeTensor(i,s,a)}function Gu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var ub="__op";function D(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+ub;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return Ef(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function TI(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");ln(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(zh,a)}var Da=D({complex_:TI});function Oa(e,t,n,r){if(r==null&&(r=Rh(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Tf(t);let a=Et(t),s=Et(n);M(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!rn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?pd(e,r):ds(e,[],!0),$.makeTensor(e,t,r)}function Sr(e,t,n){let r=Wr(e,n);return Oa(e,t,r,n)}var Vf={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},yd=4;async function CI(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+yd*d.length,m=new Uint8Array(p),f=0;for(let A=0;A{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var jf=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function hb(e){return jf?Buffer.byteLength(e):new Blob([e]).size}function MI(e){if(jf)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function db(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function qu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:hb(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:hb(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function $I(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function DI(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function OI(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function RI(){let e=$I(),t=DI(),n=OI();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Tt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Tt.instance==null&&(Tt.instance=new Tt),Tt.instance}static registerSaveRouter(e){Tt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Tt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Tt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Tt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Tt.getInstance().loadRouters:Tt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},zI=e=>Tt.registerSaveRouter(e),PI=e=>Tt.registerLoadRouter(e),LI=e=>Tt.getSaveHandlers(e),WI=(e,t)=>Tt.getLoadHandlers(e,t),Hf="tensorflowjs",Gf=1,hi="models_store",za="model_info_store";function pb(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function qf(e){let t=e.result;t.createObjectStore(hi,{keyPath:"modelPath"}),t.createObjectStore(za,{keyPath:"modelPath"})}var di=class{constructor(e){if(this.indexedDB=pb(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(Hf,Gf);a.onupgradeneeded=()=>qf(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(hi,"readonly"),o=i.objectStore(hi).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=qu(t),o=s.transaction(za,"readwrite"),l=o.objectStore(za),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(hi,"readwrite");let h=u.objectStore(hi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(za);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=m=>(s.close(),r(h.error))}},c.onerror=h=>(s.close(),r(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};di.URL_SCHEME="indexeddb://";var fb=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(di.URL_SCHEME)?BI(e.slice(di.URL_SCHEME.length)):null;Tt.registerSaveRouter(fb);Tt.registerLoadRouter(fb);function BI(e){return new di(e)}function VI(e){return e.startsWith(di.URL_SCHEME)?e.slice(di.URL_SCHEME.length):e}var jI=class{constructor(){this.indexedDB=pb()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Hf,Gf);n.onupgradeneeded=()=>qf(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(za,"readonly"),s=a.objectStore(za).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=VI(e),new Promise((t,n)=>{let r=this.indexedDB.open(Hf,Gf);r.onupgradeneeded=()=>qf(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(za,"readwrite"),i=s.objectStore(za),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=a.transaction(hi,"readwrite");let h=l.objectStore(hi).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=h=>(u(),a.close(),n(o.error))}},o.onerror=c=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},ua="/",dl="tensorflowjs_models",mb="info",UI="model_topology",HI="weight_specs",GI="weight_data",qI="model_metadata";function Ab(e){return{info:[dl,e,mb].join(ua),topology:[dl,e,UI].join(ua),weightSpecs:[dl,e,HI].join(ua),weightData:[dl,e,GI].join(ua),modelMetadata:[dl,e,qI].join(ua)}}function XI(e){let t=e.split(ua);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ua)}function KI(e){return e.startsWith(pi.URL_SCHEME)?e.slice(pi.URL_SCHEME.length):e}var pi=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Ab(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=qu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,MI(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=FI(s),t}};pi.URL_SCHEME="localstorage://";var yb=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(pi.URL_SCHEME)?ZI(e.slice(pi.URL_SCHEME.length)):null;Tt.registerSaveRouter(yb);Tt.registerLoadRouter(yb);function ZI(e){return new pi(e)}var YI=class{constructor(){M(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=dl+ua,n=ua+mb;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(pl)&&(e=e.slice(0,e.indexOf(pl))),M(e.length>0,()=>"scheme must not be an empty string.");let n=Qn.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function gd(e){if(e.indexOf(pl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Qn.getSchemes().join(",")}`);return{scheme:e.split(pl)[0],path:e.split(pl)[1]}}async function gb(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Tt.getLoadHandlers(e);M(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=Tt.getSaveHandlers(t);M(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=gd(e).scheme,l=gd(e).path,c=o===gd(e).scheme,u=await a.load();n&&c&&await Qn.getManager(o).removeModel(l);let h=await i.save(u);return n&&!c&&await Qn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function JI(){let e=Qn.getSchemes(),t={};for(let n of e){let r=await Qn.getManager(n).listModels();for(let a in r){let s=n+pl+a;t[s]=r[a]}}return t}async function QI(e){let t=gd(e);return Qn.getManager(t.scheme).removeModel(t.path)}async function eS(e,t){return gb(e,t,!1)}async function tS(e,t){return gb(e,t,!0)}var nS=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new nS);try{Qn.registerManager(pi.URL_SCHEME,new YI)}catch(e){}try{Qn.registerManager(di.URL_SCHEME,new jI)}catch(e){}}var rS={importFetch:()=>c9()},Xf,aS=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Xf==null&&(Xf=rS.importFetch()),Xf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new aS);function Be(e,t="float32",n){return t=t||"float32",Tf(e),new Ot(e,t,n)}function sS(e,t){let n=R(e,"x","cast");if(!jx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(ys,r,a)}var ge=D({cast_:sS});function iS(e){let t={x:R(e,"x","clone","string_or_numeric")};return $.runKernel(Cs,t)}var Br=D({clone_:iS});function xb(e,t=!1){console.log(e.toString(t))}sb();var oS={buffer:Be,cast:ge,clone:Br,print:xb};xI(oS);var Nn={};Me(Nn,{browserFiles:()=>lS,browserHTTPRequest:()=>cS,concatenateArrayBuffers:()=>Uf,copyModel:()=>eS,decodeWeights:()=>cb,encodeWeights:()=>CI,fromMemory:()=>hS,getLoadHandlers:()=>WI,getModelArtifactsInfoForJSON:()=>qu,getSaveHandlers:()=>LI,http:()=>Zf,isHTTPScheme:()=>Kf,listModels:()=>JI,loadWeights:()=>uS,moveModel:()=>tS,registerLoadRouter:()=>PI,registerSaveRouter:()=>zI,removeModel:()=>QI,weightsLoaderFactory:()=>bb,withSaveHandler:()=>dS});var pS="model",fS=".json",mS=".weights.bin";function wb(e){return new Promise(t=>setTimeout(t)).then(e)}var fl=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(fl.URL_SCHEME)&&(e=e.slice(fl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=pS),this.modelTopologyFileName=e+fS,this.weightDataFileName=e+mS}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await wb(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await wb(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:qu(e)}}}};fl.URL_SCHEME="downloads://";var AS=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let u=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(m=>{h.push(m),d.push(null)}),u.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(m=>{let f=new FileReader;f.onload=A=>{let y=A.target.result,g=h.indexOf(m);if(d[g]=y,d.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:u,weightData:Uf(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=A=>r(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(c[m])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>db(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=db(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},gS=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(fl.URL_SCHEME)?yS(e.slice(fl.URL_SCHEME.length)):null;Tt.registerSaveRouter(gS);function yS(e="model"){return new fl(e)}function lS(e){return new AS(e)}function _b(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(c=>{let u=n+ ++a/e.length*(r-n);return t(u),c}),l);function i(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),M(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function vb(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(c=>n(c,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await _b(r,t.onProgress,a,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await _b(i,t.onProgress,o,l)}async function uS(e,t="",n,r){return bb(a=>vb(a,{requestInit:r}))(e,t,n)}function bb(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,m)=>{let f=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=Vf[y]*Et(A.shape),x=()=>{a[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:A,groupOffset:f,sizeBytes:g})};r!=null?r.forEach((v,b)=>{v===A.name&&(x(),i[b]=!0)}):x(),o.push(A.name),f+=g})}),!i.every(p=>p)){let p=r.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. -Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,m,f)=>(m&&p.push(f),p),[]),c=[];l.forEach(p=>{t[p].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;c.push(f)})});let u=await e(c),h={},d=0;return l.forEach(p=>{let m=t[p].paths.length,f=0;for(let x=0;x{let v=A.slice(x.groupOffset,x.groupOffset+x.sizeBytes),b=cb(v,[x.manifestEntry]);for(let w in b)h[w]=b[w]}),d+=m}),h}}var xS="application/octet-stream",bS="application/json",Yf=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:bS}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:xS}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:qu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;r!=null&&([c,u]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=wS(t),a=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(a+u+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await vb(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Uf(l)]}};Yf.URL_SCHEME_REGEX=/^https?:\/\//;function wS(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Kf(e){return e.match(Yf.URL_SCHEME_REGEX)!=null}var kb=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Kf(r)):n=Kf(e),n)return Zf(e,t)}return null};Tt.registerSaveRouter(kb);Tt.registerLoadRouter(kb);function Zf(e,t){return new Yf(e,t)}function cS(e,t){return Zf(e,t)}var Jf=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},_S=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function hS(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Jf(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jf({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jf({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function dS(e){return new _S(e)}var Ib={};Me(Ib,{confusionMatrix:()=>vS});function kS(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=vt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(As,i,o)}var Ve=D({matMul_:kS});function IS(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(Bs,a,s)}var ml=D({oneHot_:IS});function SS(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{M(s>=0&&s`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(ii,r,a)}var Je=D({transpose_:SS});function NS(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),M(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),M(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=ml(ge(r,"int32"),n),i=ml(ge(a,"int32"),n),o=Je(s),l=Ve(o,i);return ge(l,"int32")}var vS=D({confusionMatrix_:NS}),fi={};Me(fi,{fromPixels:()=>CS,fromPixelsAsync:()=>TS,toPixels:()=>ES});function xd(e,t,n){if(hs(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Wr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Oa(e,t,r,n)}var Al;function Sb(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState element.")}if(dd(hd,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(hd,d,p)}let[l,c]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:r||n?u=e.data:(s||a||o)&&(Al==null&&(Al=document.createElement("canvas").getContext("2d")),Al.canvas.width=l,Al.canvas.height=c,Al.drawImage(e,0,0,l,c),u=Al.getImageData(0,0,l,c).data);let h;if(t===4)h=new Int32Array(u);else{let d=l*c;h=new Int32Array(d*t);for(let p=0;p4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let c=0;c1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(u[0]=p*o,u[1]=p*o,u[2]=p*o):u[d]=p*o}let h=c*4;l[h+0]=Math.round(u[0]),l[h+1]=Math.round(u[1]),l[h+2]=Math.round(u[2]),l[h+3]=Math.round(u[3])}if(t!=null){t.width=a,t.height=r;let c=t.getContext("2d"),u=new ImageData(l,a,r);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var CS=D({fromPixels_:Sb}),Qf={};Me(Qf,{prepareAndValidate:()=>Nb});function Nb(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Et(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;hh/c),1].slice(0,s);return[l,i,c,u]}var em={};Me(em,{calculateShapes:()=>Tb,validateInput:()=>nm,validateUpdateShape:()=>tm});function tm(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;hDS,computeFlatOffset:()=>zS,computeOutShape:()=>Eb,getNormalizedAxes:()=>Rb,isSliceContinous:()=>OS,maskToAxes:()=>bd,parseSliceParams:()=>zb,sliceInfo:()=>PS,startForAxis:()=>Db,startIndicesWithElidedDims:()=>Mb,stopForAxis:()=>Ob,stopIndicesWithElidedDims:()=>Fb,stridesForAxis:()=>$b,stridesWithElidedDims:()=>Cb});function DS(e,t,n){let r=e.shape.length;M(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),M(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function bd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Eb(e,t,n){let r=[];for(let a=0;a0){let p=t[0],m=n+1;u=Mb(i,p,m,r,e),h=Fb(o,p,m,a,e),d=Cb(s,p,m,e)}else for(let p=0;p-1)s[o]=0;else{let l=Pb(t,n,o),c=r[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=Pb(t,n,o),c=r[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=xu(0,i,l-1),i}function Ob(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=xu(0,i,l):i=xu(-1,i,l-1),i}function OS(e,t,n){let r=n.length;for(let a=0;a1){r=a;break}for(let a=r+1;a0||n[a]!==e[a])return!1;return!0}function zS(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{M(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.lengthi>=0?i:(M(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function PS(e,t,n,r,a,s,i,o,l){let c=t.slice(),u=n.slice(),h=r;r==null&&(h=new Array(c.length));let d=bd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-c.length,m=bd(o),f=e.slice();m.forEach(w=>{c[w]=0,u[w]=1,f.splice(w,0,1)});let{begin:A,end:y,strides:g}=Rb(f,d,p,c,u,h,a,s,i);c=A,u=y,h=g;let x=bd(l);x.forEach(w=>{u[w]=c[w]+1,h[w]=1});let v=Eb(c,u,h),b=v.filter((w,k)=>x.indexOf(k)===-1);return{nonStrided:h.every(w=>w===1),$begin:c,$end:u,$strides:h,size:v,newShape:f,outShape:b}}var re={};Me(re,{Serializable:()=>Wb,SerializationMap:()=>mi,registerClass:()=>Pa});var Wb=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},mi=class{constructor(){this.classNameMap={}}static getMap(){return mi.instance==null&&(mi.instance=new mi),mi.instance}static register(e){mi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Pa(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),mi.register(e)}var Bb={};Me(Bb,{TEST_EPSILON_FLOAT16:()=>Vb,encodeStrings:()=>jb,expectArrayBuffersEqual:()=>US,expectArraysClose:()=>LS,expectArraysEqual:()=>BS,expectNumbersClose:()=>VS,expectPromiseToFail:()=>WS,expectValuesInRange:()=>jS,testEpsilon:()=>rm});var HS=.001,Vb=.1;function LS(e,t,n){return n==null&&(n=rm()),am(e,t,(r,a)=>sm(r,a,n))}function rm(){return $.backend.floatPrecision()===32?HS:Vb}function am(e,t,n){let r=!0;if((rn(e)||rn(t))&&(r=!1),rn(e)&&rn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Wr(e),o=Wr(t);if(!la(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=rn(e)?e:ds(e),s=rn(t)?t:ds(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}. +`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":m),d}function Ou(e){let t=[];for(let n=0;n`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||xx(t,this.size),this.strides=eo(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;rld(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Fr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>ld(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Fr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Fr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return sl.print(this,e)}clone(){return this.throwIfDisposed(),sl.clone(this)}toString(e=!1){let t=this.dataSync();return q9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),sl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Fr().makeVariable(this,e,t,n)}};Object.defineProperty(Le,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return wf("Tensor",()=>Le)}Z();var zu=class extends Le{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!na(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Fr().disposeTensor(this),this.dataId=e.dataId,Fr().incRef(this,null)}dispose(){Fr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(zu,Symbol.hasInstance,{value:e=>e instanceof Le&&e.assign!=null&&e.assign instanceof Function});var gr={};Me(gr,{assertTypesMatch:()=>$x,getTensorsInContainer:()=>kf,isTensorInList:()=>J9,makeTypesMatch:()=>bt});var If;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(If||(If={}));var Sf;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Sf||(Sf={}));var Nf;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Nf||(Nf={}));var Tf;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Tf||(Tf={}));var Ef;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Ef||(Ef={}));var Q9={float32:Tf,int32:Sf,bool:Nf,complex64:Ef};function ir(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return Q9[e][t]}function cd(e){return ir(e,"int32")}function bt(e,t){if(e.dtype===t.dtype)return[e,t];let n=ir(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function $x(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function J9(e,t){return t.some(n=>n.id===e.id)}function kf(e){let t=[],n=new Set;return Dx(e,t,n),t}function Dx(e,t,n){if(e==null)return;if(e instanceof Le){t.push(e);return}if(!eI(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),Dx(s,t,n))}}function eI(e){return Array.isArray(e)||typeof e=="object"}function Cf(e){return e.kernelName!=null}var Ox=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Pu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Ox}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){al(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof du)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Pu.nextTensorId++}nextVariableId(){return Pu.nextVariableId++}clone(e){let t=$.runKernel(Is,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(ds,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(id(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Cf(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Cf(e)){let{kernelName:p,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=id(p,this.backendName);M(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let x=g.map(v=>{if(v.rank!=null)return v;let{dataId:w,shape:b,dtype:k}=v;return this.makeTensorFromDataId(w,b,k)});if(r){let v=this.getTensorsForGradient(p,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:p}=e,m=f=>{!r||(n=f.map(A=>this.keep(this.clone(A))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,m));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:c,attrs:u}=e,h=Cf(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,c,t,h,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(p=>c[p]!=null?c[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=_f(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&ka(e[0])&&(a=e.map(o=>Fu(o)));let s=r.write(a,t,n),i=new Le(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=_x(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Le(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new zu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*mf(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof zu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*mf(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=_f(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let h=n[u],d=Nh(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return c}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=kf(e),n=new Set(t.map(a=>a.id));for(let a=0;a{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(a instanceof Le,()=>"The result y returned by f() must be a tensor.");let s=U9(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?tI(a.shape):n,H9(i,s,l=>this.tidy(l),nI);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return M(Ia(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(i=>i instanceof Le),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),M(n.value instanceof Le,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Ia(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];M(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(c.every(h=>h instanceof Le),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((h,d)=>{u[d]=()=>h}),u};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Mu(),n=await this.backend.time(e);return n.wallMs=Mu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Ox;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Pu.nextTensorId=0;Pu.nextVariableId=0;function tI(e){let t=Af(Nt(e),"float32");return $.makeTensor(t,e,"float32")}function zx(){let e=Tx();if(e._tfengine==null){let t=new Nx(e);e._tfengine=new Pu(t)}return M9(e._tfengine.ENV),K9(()=>e._tfengine),e._tfengine}var $=zx();function nI(e,t){let n={a:e,b:t};return $.runKernel(Sa,n)}var Lu={};Me(Lu,{isBrowser:()=>Px,isMobile:()=>rI});function aI(){return typeof navigator!="undefined"&&navigator!=null}function rI(e){if(e||aI()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Px(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var xr=J();xr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});xr.registerFlag("IS_BROWSER",()=>Px());xr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");xr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));xr.registerFlag("PROD",()=>!1);xr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>xr.getBool("DEBUG"));xr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);xr.registerFlag("IS_TEST",()=>!1);xr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);xr.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function $r(e,t){let n=e;if(tn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||tn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Lx(e,r,[]),r}function Lx(e,t,n){if(n=n||[],!Array.isArray(e)&&!tn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a=0&&(a=r),Wx(r,a,t,n),e==null||!tn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=$r(e,a);!tn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?od(e,a):os(e,[],!0);return $.makeTensor(i,s,a)}function Wu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var Bx="__op";function D(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Bx;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return gf(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function sI(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");an(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(Rh,a)}var Ca=D({complex_:sI});function Ra(e,t,n,r){if(r==null&&(r=Ih(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!tn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){yf(t);let a=Nt(t),s=Nt(n);M(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!tn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?od(e,r):os(e,[],!0),$.makeTensor(e,t,r)}function wr(e,t,n){let r=$r(e,n);return Ra(e,t,r,n)}var Rf={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},hd=4;async function oI(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+hd*d.length,m=new Uint8Array(p),f=0;for(let A=0;A{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var Mf=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function jx(e){return Mf?Buffer.byteLength(e):new Blob([e]).size}function uI(e){if(Mf)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function Ux(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Bu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:jx(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:jx(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function hI(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function dI(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function pI(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function lI(){let e=hI(),t=dI(),n=pI();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var St=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return St.instance==null&&(St.instance=new St),St.instance}static registerSaveRouter(e){St.getInstance().saveRouters.push(e)}static registerLoadRouter(e){St.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return St.getHandlers(e,"save")}static getLoadHandlers(e,t){return St.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?St.getInstance().loadRouters:St.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},fI=e=>St.registerSaveRouter(e),mI=e=>St.registerLoadRouter(e),AI=e=>St.getSaveHandlers(e),yI=(e,t)=>St.getLoadHandlers(e,t),$f="tensorflowjs",Df=1,ii="models_store",Ma="model_info_store";function Hx(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Of(e){let t=e.result;t.createObjectStore(ii,{keyPath:"modelPath"}),t.createObjectStore(Ma,{keyPath:"modelPath"})}var oi=class{constructor(e){if(this.indexedDB=Hx(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open($f,Df);a.onupgradeneeded=()=>Of(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(ii,"readonly"),o=i.objectStore(ii).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=Bu(t),o=s.transaction(Ma,"readwrite"),l=o.objectStore(Ma),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(ii,"readwrite");let h=u.objectStore(ii).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(Ma);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=m=>(s.close(),r(h.error))}},c.onerror=h=>(s.close(),r(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};oi.URL_SCHEME="indexeddb://";var Gx=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(oi.URL_SCHEME)?gI(e.slice(oi.URL_SCHEME.length)):null;St.registerSaveRouter(Gx);St.registerLoadRouter(Gx);function gI(e){return new oi(e)}function xI(e){return e.startsWith(oi.URL_SCHEME)?e.slice(oi.URL_SCHEME.length):e}var wI=class{constructor(){this.indexedDB=Hx()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open($f,Df);n.onupgradeneeded=()=>Of(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(Ma,"readonly"),s=a.objectStore(Ma).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=xI(e),new Promise((t,n)=>{let r=this.indexedDB.open($f,Df);r.onupgradeneeded=()=>Of(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(Ma,"readwrite"),i=s.objectStore(Ma),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=a.transaction(ii,"readwrite");let h=l.objectStore(ii).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=h=>(u(),a.close(),n(o.error))}},o.onerror=c=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},ra="/",il="tensorflowjs_models",qx="info",bI="model_topology",_I="weight_specs",vI="weight_data",kI="model_metadata";function Xx(e){return{info:[il,e,qx].join(ra),topology:[il,e,bI].join(ra),weightSpecs:[il,e,_I].join(ra),weightData:[il,e,vI].join(ra),modelMetadata:[il,e,kI].join(ra)}}function II(e){let t=e.split(ra);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ra)}function SI(e){return e.startsWith(li.URL_SCHEME)?e.slice(li.URL_SCHEME.length):e}var li=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Xx(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Bu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,uI(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=cI(s),t}};li.URL_SCHEME="localstorage://";var Kx=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(li.URL_SCHEME)?NI(e.slice(li.URL_SCHEME.length)):null;St.registerSaveRouter(Kx);St.registerLoadRouter(Kx);function NI(e){return new li(e)}var TI=class{constructor(){M(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=il+ra,n=ra+qx;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(ol)&&(e=e.slice(0,e.indexOf(ol))),M(e.length>0,()=>"scheme must not be an empty string.");let n=qn.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function dd(e){if(e.indexOf(ol)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${qn.getSchemes().join(",")}`);return{scheme:e.split(ol)[0],path:e.split(ol)[1]}}async function Zx(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=St.getLoadHandlers(e);M(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=St.getSaveHandlers(t);M(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=dd(e).scheme,l=dd(e).path,c=o===dd(e).scheme,u=await a.load();n&&c&&await qn.getManager(o).removeModel(l);let h=await i.save(u);return n&&!c&&await qn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function EI(){let e=qn.getSchemes(),t={};for(let n of e){let r=await qn.getManager(n).listModels();for(let a in r){let s=n+ol+a;t[s]=r[a]}}return t}async function CI(e){let t=dd(e);return qn.getManager(t.scheme).removeModel(t.path)}async function RI(e,t){return Zx(e,t,!1)}async function MI(e,t){return Zx(e,t,!0)}var FI=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new FI);try{qn.registerManager(li.URL_SCHEME,new TI)}catch(e){}try{qn.registerManager(oi.URL_SCHEME,new wI)}catch(e){}}var $I={importFetch:()=>Bk()},zf,DI=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(zf==null&&(zf=$I.importFetch()),zf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new DI);function We(e,t="float32",n){return t=t||"float32",yf(e),new $t(e,t,n)}function OI(e,t){let n=R(e,"x","cast");if(!bx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(ds,r,a)}var Ae=D({cast_:OI});function zI(e){let t={x:R(e,"x","clone","string_or_numeric")};return $.runKernel(Is,t)}var Dr=D({clone_:zI});function Yx(e,t=!1){console.log(e.toString(t))}zx();var PI={buffer:We,cast:Ae,clone:Dr,print:Yx};Z9(PI);var vn={};Me(vn,{browserFiles:()=>LI,browserHTTPRequest:()=>BI,concatenateArrayBuffers:()=>Ff,copyModel:()=>RI,decodeWeights:()=>Vx,encodeWeights:()=>oI,fromMemory:()=>VI,getLoadHandlers:()=>yI,getModelArtifactsInfoForJSON:()=>Bu,getSaveHandlers:()=>AI,http:()=>Lf,isHTTPScheme:()=>Pf,listModels:()=>EI,loadWeights:()=>WI,moveModel:()=>MI,registerLoadRouter:()=>mI,registerSaveRouter:()=>fI,removeModel:()=>CI,weightsLoaderFactory:()=>Jx,withSaveHandler:()=>jI});var UI="model",HI=".json",GI=".weights.bin";function Qx(e){return new Promise(t=>setTimeout(t)).then(e)}var ll=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(ll.URL_SCHEME)&&(e=e.slice(ll.URL_SCHEME.length)),(e==null||e.length===0)&&(e=UI),this.modelTopologyFileName=e+HI,this.weightDataFileName=e+GI}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await Qx(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Qx(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Bu(e)}}}};ll.URL_SCHEME="downloads://";var qI=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let u=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(m=>{h.push(m),d.push(null)}),u.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(m=>{let f=new FileReader;f.onload=A=>{let y=A.target.result,g=h.indexOf(m);if(d[g]=y,d.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:u,weightData:Ff(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=A=>r(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(c[m])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>Ux(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=Ux(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},KI=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ll.URL_SCHEME)?XI(e.slice(ll.URL_SCHEME.length)):null;St.registerSaveRouter(KI);function XI(e="model"){return new ll(e)}function LI(e){return new qI(e)}function ew(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(c=>{let u=n+ ++a/e.length*(r-n);return t(u),c}),l);function i(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),M(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function tw(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(c=>n(c,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await ew(r,t.onProgress,a,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await ew(i,t.onProgress,o,l)}async function WI(e,t="",n,r){return Jx(a=>tw(a,{requestInit:r}))(e,t,n)}function Jx(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,m)=>{let f=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=Rf[y]*Nt(A.shape),x=()=>{a[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:A,groupOffset:f,sizeBytes:g})};r!=null?r.forEach((v,w)=>{v===A.name&&(x(),i[w]=!0)}):x(),o.push(A.name),f+=g})}),!i.every(p=>p)){let p=r.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. +Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,m,f)=>(m&&p.push(f),p),[]),c=[];l.forEach(p=>{t[p].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;c.push(f)})});let u=await e(c),h={},d=0;return l.forEach(p=>{let m=t[p].paths.length,f=0;for(let x=0;x{let v=A.slice(x.groupOffset,x.groupOffset+x.sizeBytes),w=Vx(v,[x.manifestEntry]);for(let b in w)h[b]=w[b]}),d+=m}),h}}var ZI="application/octet-stream",YI="application/json",Wf=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:YI}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:ZI}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:Bu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;r!=null&&([c,u]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=JI(t),a=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(a+u+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await tw(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Ff(l)]}};Wf.URL_SCHEME_REGEX=/^https?:\/\//;function JI(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Pf(e){return e.match(Wf.URL_SCHEME_REGEX)!=null}var nw=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Pf(r)):n=Pf(e),n)return Lf(e,t)}return null};St.registerSaveRouter(nw);St.registerLoadRouter(nw);function Lf(e,t){return new Wf(e,t)}function BI(e,t){return Lf(e,t)}var Bf=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},QI=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function VI(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Bf(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Bf({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Bf({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function jI(e){return new QI(e)}var rw={};Me(rw,{confusionMatrix:()=>eS});function tS(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=bt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(hs,i,o)}var Be=D({matMul_:tS});function nS(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(Os,a,s)}var ul=D({oneHot_:nS});function rS(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{M(s>=0&&s`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(ti,r,a)}var Ze=D({transpose_:rS});function aS(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),M(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),M(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=ul(Ae(r,"int32"),n),i=ul(Ae(a,"int32"),n),o=Ze(s),l=Be(o,i);return Ae(l,"int32")}var eS=D({confusionMatrix_:aS}),ui={};Me(ui,{fromPixels:()=>oS,fromPixelsAsync:()=>sS,toPixels:()=>iS});function pd(e,t,n){if(is(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=$r(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Ra(e,t,r,n)}var cl;function aw(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState element.")}if(id(sd,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(sd,d,p)}let[l,c]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:r||n?u=e.data:(s||a||o)&&(cl==null&&(cl=document.createElement("canvas").getContext("2d")),cl.canvas.width=l,cl.canvas.height=c,cl.drawImage(e,0,0,l,c),u=cl.getImageData(0,0,l,c).data);let h;if(t===4)h=new Int32Array(u);else{let d=l*c;h=new Int32Array(d*t);for(let p=0;p4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let c=0;c1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(u[0]=p*o,u[1]=p*o,u[2]=p*o):u[d]=p*o}let h=c*4;l[h+0]=Math.round(u[0]),l[h+1]=Math.round(u[1]),l[h+2]=Math.round(u[2]),l[h+3]=Math.round(u[3])}if(t!=null){t.width=a,t.height=r;let c=t.getContext("2d"),u=new ImageData(l,a,r);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var oS=D({fromPixels_:aw}),Vf={};Me(Vf,{prepareAndValidate:()=>sw});function sw(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Nt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;hh/c),1].slice(0,s);return[l,i,c,u]}var jf={};Me(jf,{calculateShapes:()=>iw,validateInput:()=>Hf,validateUpdateShape:()=>Uf});function Uf(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;hdS,computeFlatOffset:()=>fS,computeOutShape:()=>ow,getNormalizedAxes:()=>uw,isSliceContinous:()=>pS,maskToAxes:()=>fd,parseSliceParams:()=>mw,sliceInfo:()=>mS,startForAxis:()=>pw,startIndicesWithElidedDims:()=>cw,stopForAxis:()=>fw,stopIndicesWithElidedDims:()=>hw,stridesForAxis:()=>dw,stridesWithElidedDims:()=>lw});function dS(e,t,n){let r=e.shape.length;M(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),M(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function fd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function ow(e,t,n){let r=[];for(let a=0;a0){let p=t[0],m=n+1;u=cw(i,p,m,r,e),h=hw(o,p,m,a,e),d=lw(s,p,m,e)}else for(let p=0;p-1)s[o]=0;else{let l=Aw(t,n,o),c=r[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=Aw(t,n,o),c=r[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=pu(0,i,l-1),i}function fw(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=pu(0,i,l):i=pu(-1,i,l-1),i}function pS(e,t,n){let r=n.length;for(let a=0;a1){r=a;break}for(let a=r+1;a0||n[a]!==e[a])return!1;return!0}function fS(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{M(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.lengthi>=0?i:(M(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function mS(e,t,n,r,a,s,i,o,l){let c=t.slice(),u=n.slice(),h=r;r==null&&(h=new Array(c.length));let d=fd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-c.length,m=fd(o),f=e.slice();m.forEach(b=>{c[b]=0,u[b]=1,f.splice(b,0,1)});let{begin:A,end:y,strides:g}=uw(f,d,p,c,u,h,a,s,i);c=A,u=y,h=g;let x=fd(l);x.forEach(b=>{u[b]=c[b]+1,h[b]=1});let v=ow(c,u,h),w=v.filter((b,k)=>x.indexOf(k)===-1);return{nonStrided:h.every(b=>b===1),$begin:c,$end:u,$strides:h,size:v,newShape:f,outShape:w}}var re={};Me(re,{Serializable:()=>gw,SerializationMap:()=>ci,registerClass:()=>Fa});var gw=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ci=class{constructor(){this.classNameMap={}}static getMap(){return ci.instance==null&&(ci.instance=new ci),ci.instance}static register(e){ci.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Fa(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ci.register(e)}var xw={};Me(xw,{TEST_EPSILON_FLOAT16:()=>ww,encodeStrings:()=>bw,expectArrayBuffersEqual:()=>bS,expectArraysClose:()=>AS,expectArraysEqual:()=>gS,expectNumbersClose:()=>xS,expectPromiseToFail:()=>yS,expectValuesInRange:()=>wS,testEpsilon:()=>Gf});var _S=.001,ww=.1;function AS(e,t,n){return n==null&&(n=Gf()),qf(e,t,(r,a)=>Xf(r,a,n))}function Gf(){return $.backend.floatPrecision()===32?_S:ww}function qf(e,t,n){let r=!0;if((tn(e)||tn(t))&&(r=!1),tn(e)&&tn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=$r(e),o=$r(t);if(!na(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=tn(e)?e:os(e),s=tn(t)?t:os(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}. Actual: ${a}. Expected: ${s}.`);for(let i=0;it.fail(),()=>t())}function BS(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ea(e)||Ea(e[0])||Ea(t)||Ea(t[0])?am(e,n,(r,a)=>r==a):am(e,t,(r,a)=>sm(r,a,0))}function VS(e,t,n){if(n==null&&(n=rm()),!sm(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function sm(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function jS(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function US(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function jb(e){for(let t=0;tt.dispose())}function Ht(e){return $.keep(e)}function YS(e){return $.time(e)}function JS(e){return $.setBackend(e)}function QS(){return $.ready()}function eN(){return $.backendName}function tN(e){$.removeBackend(e)}function om(e){return $.findBackend(e)}function nN(e){return $.findBackendFactory(e)}function yl(e,t,n=1){return $.registerBackend(e,t,n)}function Ub(){return $.backend}function rN(e,t){J().setPlatform(e,t)}function aN(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ra,a)}var se=D({add_:aN});function sN(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ns,a)}var _d=D({floorDiv_:sN});function iN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=vt(n,r),n.dtype==="int32"&&r.dtype==="int32")return _d(n,r);let a={a:n,b:r},s={};return $.runKernel(ks,a,s)}var Ae=D({div_:iN});function oN(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ws,a)}var z=D({mul_:oN});function lN(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(ku,n)}else{let n={x:t};return $.runKernel(lo,n)}}var zt=D({abs_:lN});function uN(e){let t={x:R(e,"x","acos")};return $.runKernel(uo,t)}var lm=D({acos_:uN});function cN(e){let t={x:R(e,"x","acosh")};return $.runKernel(co,t)}var um=D({acosh_:cN});function hN(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!la(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(ps,r)}var La=D({addN_:hN});function dN(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(ho,r,a)}var vd=D({all_:dN});function pN(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(po,r,a)}var Xu=D({any_:pN});function fN(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return $.runKernel(fs,n,r)}var Ai=D({argMax_:fN});function mN(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return $.runKernel(wu,n,r)}var cm=D({argMin_:mN});function AN(e){let t={x:R(e,"x","asin")};return $.runKernel(fo,t)}var hm=D({asin_:AN});function yN(e){let t={x:R(e,"x","asinh")};return $.runKernel(mo,t)}var dm=D({asinh_:yN});function gN(e){let t={x:R(e,"x","atan")};return $.runKernel(Ao,t)}var pm=D({atan_:gN});function xN(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(go,a)}var fm=D({atan2_:xN});function bN(e){let t={x:R(e,"x","atanh")};return $.runKernel(yo,t)}var mm=D({atanh_:bN});function wN(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=Hb(a);return Ku(e,o,n,s,r,null,null,l)}function Gb(e,t,n,r,a,s,i="channelsLast"){let[o,l]=kd(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Ku(e,c,n,r,a,s,!1,i)}function _N(e,t,n,r,a,s,i="NDHWC"){let[o,l,c]=Am(t),u,h;if(i==="NDHWC")h="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return qb(e,u,n,r,a,!1,h,s)}function Ku(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,c,u,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,h]=e;else if(o==="channelsFirst")[l,h,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,m]=t,[f,A]=kd(n),[y,g]=kd(r),x=gl(d,y),v=gl(p,g),{padInfo:b,outHeight:w,outWidth:k}=vN(a,c,u,f,A,x,v,s,o),N=i?m*h:m,C;return o==="channelsFirst"?C=[l,N,w,k]:o==="channelsLast"&&(C=[l,w,k,N]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:h,outHeight:w,outWidth:k,outChannels:N,padInfo:b,strideHeight:f,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:g,inShape:e,outShape:C,filterShape:t}}function qb(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,c,u,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,h,d]=e;else if(i==="channelsFirst")[l,d,c,u,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,m,f,,A]=t,[y,g,x]=Am(n),[v,b,w]=Am(r),k=gl(p,v),N=gl(m,b),C=gl(f,w),{padInfo:F,outDepth:O,outHeight:L,outWidth:V}=kN(a,c,u,h,y,g,x,k,N,C,o),j=s?A*d:A,U;return i==="channelsFirst"?U=[l,j,O,L,V]:i==="channelsLast"&&(U=[l,O,L,V,j]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:h,inChannels:d,outDepth:O,outHeight:L,outWidth:V,outChannels:j,padInfo:F,strideDepth:y,strideHeight:g,strideWidth:x,filterDepth:p,filterHeight:m,filterWidth:f,effectiveFilterDepth:k,effectiveFilterHeight:N,effectiveFilterWidth:C,dilationDepth:v,dilationHeight:b,dilationWidth:w,inShape:e,outShape:U,filterShape:t}}function IN(e,t,n,r,a){r==null&&(r=ym(e,t,n));let s=e[0],i=e[1],o=yi((s-t+2*r)/n+1,a),l=yi((i-t+2*r)/n+1,a);return[o,l]}function SN(e,t,n,r,a,s){a==null&&(a=ym(e,t,r));let i=e[0],o=e[1],l=e[2],c=yi((i-t+2*a)/r+1,s),u=yi((o-t+2*a)/r+1,s),h=yi((l-t+2*a)/r+1,s);return[c,u,h,n]}function ym(e,t,n,r=1){let a=gl(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function kd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Am(e){return typeof e=="number"?[e,e,e]:e}function gl(e,t){return t<=1?e:e+(e-1)*(t-1)}function vN(e,t,n,r,a,s,i,o,l){let c,u,h;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=IN([t,n],s,r,e,o);u=d[0],h=d[1]}else if(e==="same"){u=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(u-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),m=Math.floor(d/2),f=d-m,A=Math.floor(p/2),y=p-A;c={top:m,bottom:f,left:A,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:p,left:m,right:f,type:d===0&&p===0&&m===0&&f===0?"VALID":"EXPLICIT"},u=yi((t-s+d+p)/r+1,o),h=yi((n-i+m+f)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:h}}function kN(e,t,n,r,a,s,i,o,l,c,u){let h,d,p,m;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=SN([t,n,r,1],o,1,a,e,u);d=f[0],p=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),m=Math.ceil(r/i);let f=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(m-1)*i+c-r,g=Math.floor(f/2),x=f-g,v=Math.floor(A/2),b=A-v,w=Math.floor(y/2),k=y-w;h={top:v,bottom:b,left:w,right:k,front:g,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),m=Math.ceil((r-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:m}}function yi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Wa(e){let[t,n,r]=kd(e);return t===1&&n===1&&r===1}function Vr(e,t){return Wa(e)||Wa(t)}function Hb(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function NN(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(Ko,n,r)}var H=D({reshape_:NN});function TN(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;M(Vr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&M(Ut(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(ms,c,u);return h=ge(h,s.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Zu=D({avgPool_:TN});function EN(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ut(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(_u,c,u);return h=ge(h,o.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var gm=D({avgPool3d_:EN});function CN(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Gu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor - with dtype ${s.dtype}. `)}),n.length===1)return Br(n[0]);let r=n,a={axis:t};return $.runKernel(xo,r,a)}var ot=D({concat_:CN});function RN(e){let t={x:R(e,"x","sigmoid")};return $.runKernel(Js,t)}var Tn=D({sigmoid_:RN});function MN(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Qo,a,s)}var Re=D({slice_:MN});function FN(e){let t={x:R(e,"x","tanh")};return $.runKernel(si,t)}var gi=D({tanh_:FN});function $N(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),c=R(r,"data","basicLSTMCell"),u=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=ot([c,h],1),p=Ve(d,o),m=se(p,l),f=m.shape[0],A=m.shape[1]/4,y=[f,A],g=Re(m,[0,0],y),x=Re(m,[0,A],y),v=Re(m,[0,A*2],y),b=Re(m,[0,A*3],y),w=se(z(Tn(g),gi(x)),z(u,Tn(se(i,v)))),k=z(gi(w),Tn(b));return[w,k]}var DN=D({basicLSTMCell_:$N});function ON(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);M(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(vu,s,i)}var Yu=D({batchToSpaceND_:ON});function zN(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function PN(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;r!=null&&(u=R(r,"offset","batchNorm")),M(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:zN(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(Ts,h,d);return H(p,i.shape)}var xi=D({batchNorm_:PN});function LN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),M(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),xi(i,o,l,u,c,s)}var Xb=D({batchNorm2d_:LN});function WN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),M(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),xi(i,o,l,u,c,s)}var Kb=D({batchNorm3d_:WN});function BN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),M(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),xi(i,o,l,u,c,s)}var Zb=D({batchNorm4d_:BN});function VN(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");M(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(Oh,s,i)}var Yb=D({bincount_:VN});function jN(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Br(n);let i={x:n},o={reps:s};return $.runKernel(Fa,i,o)}var xl=D({broadcastTo_:jN});function UN(e){let t={x:R(e,"x","ceil")};return $.runKernel(gs,t)}var xm=D({ceil_:UN});function HN(e,t,n){let r=R(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(Ma,a,s)}var En=D({clipByValue_:HN});function GN(e){return ot(e,0)}var Jb=D({concat1d_:GN});function qN(e,t){return ot(e,t)}var bl=D({concat2d_:qN});function XN(e,t){return ot(e,t)}var Qb=D({concat3d_:XN});function KN(e,t){return ot(e,t)}var ew=D({concat4d_:KN});function ZN(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&M(Ut(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?c.shape[3]:c.shape[1];M(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),M(Vr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},m=$.runKernel(xs,d,p);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var ha=D({conv2d_:ZN});function YN(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1]])),M(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&M(Ut(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Vr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),M(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(c,[c.shape[0],1,c.shape[1],c.shape[2]]),p=ha(d,h,[1,n],r,"NHWC",[1,s],i);return u?H(p,[p.shape[2],p.shape[3]]):H(p,[p.shape[0],p.shape[2],p.shape[3]])}var Id=D({conv1d_:YN});function JN(e,t,n,r,a,s="NHWC",i){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),M(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];M(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),M(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&M(Ut(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},m=$.runKernel(bs,d,p);return c?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var bm=D({conv2DBackpropInput_:JN});function QN(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return bm(n,i,o,r,a,"NHWC",s)}var Sd=D({conv2dTranspose_:QN});function eT(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),M(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),M(Vr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let u={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(Iu,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var wm=D({conv3d_:eT});function tT(e,t,n,r,a){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];M(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),M(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(Wh,u,h);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var tw=D({conv3DBackpropInput_:tT});function nT(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return tw(n,s,i,r,a)}var nw=D({conv3dTranspose_:nT});function rT(e){let t={x:R(e,"x","cos")};return $.runKernel(ws,t)}var Ju=D({cos_:rT});function aT(e){let t={x:R(e,"x","cosh")};return $.runKernel(bo,t)}var Nd=D({cosh_:aT});function sT(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(_s,a,s)}var Td=D({cumsum_:sT});function iT(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");M(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),M(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(Bh,i,o)}var rw=D({denseBincount_:iT});function oT(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying +Expected: ${s}.`)}}function yS(e,t){e().then(()=>t.fail(),()=>t())}function gS(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ka(e)||ka(e[0])||ka(t)||ka(t[0])?qf(e,n,(r,a)=>r==a):qf(e,t,(r,a)=>Xf(r,a,0))}function xS(e,t,n){if(n==null&&(n=Gf()),!Xf(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Xf(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function wS(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function bS(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function bw(e){for(let t=0;tt.dispose())}function Vt(e){return $.keep(e)}function TS(e){return $.time(e)}function ES(e){return $.setBackend(e)}function CS(){return $.ready()}function RS(){return $.backendName}function MS(e){$.removeBackend(e)}function Zf(e){return $.findBackend(e)}function FS(e){return $.findBackendFactory(e)}function hl(e,t,n=1){return $.registerBackend(e,t,n)}function _w(){return $.backend}function $S(e,t){J().setPlatform(e,t)}function DS(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=bt(n,r);let a={a:n,b:r};return $.runKernel(Sa,a)}var se=D({add_:DS});function OS(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=bt(n,r);let a={a:n,b:r};return $.runKernel(_s,a)}var Ad=D({floorDiv_:OS});function zS(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=bt(n,r),n.dtype==="int32"&&r.dtype==="int32")return Ad(n,r);let a={a:n,b:r},s={};return $.runKernel(xs,a,s)}var ge=D({div_:zS});function PS(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=bt(n,r);let a={a:n,b:r};return $.runKernel(Ds,a)}var B=D({mul_:PS});function LS(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(gu,n)}else{let n={x:t};return $.runKernel(no,n)}}var Dt=D({abs_:LS});function WS(e){let t={x:R(e,"x","acos")};return $.runKernel(ro,t)}var Yf=D({acos_:WS});function BS(e){let t={x:R(e,"x","acosh")};return $.runKernel(ao,t)}var Jf=D({acosh_:BS});function VS(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!na(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(ls,r)}var yd=D({addN_:VS});function jS(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(so,r,a)}var gd=D({all_:jS});function US(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(io,r,a)}var Vu=D({any_:US});function HS(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return $.runKernel(us,n,r)}var ju=D({argMax_:HS});function GS(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return $.runKernel(mu,n,r)}var Qf=D({argMin_:GS});function qS(e){let t={x:R(e,"x","asin")};return $.runKernel(oo,t)}var em=D({asin_:qS});function XS(e){let t={x:R(e,"x","asinh")};return $.runKernel(lo,t)}var tm=D({asinh_:XS});function KS(e){let t={x:R(e,"x","atan")};return $.runKernel(uo,t)}var nm=D({atan_:KS});function ZS(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=bt(n,r);let a={a:n,b:r};return $.runKernel(ho,a)}var rm=D({atan2_:ZS});function YS(e){let t={x:R(e,"x","atanh")};return $.runKernel(co,t)}var am=D({atanh_:YS});function JS(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=vw(a);return Uu(e,o,n,s,r,null,null,l)}function kw(e,t,n,r,a,s,i="channelsLast"){let[o,l]=xd(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Uu(e,c,n,r,a,s,!1,i)}function QS(e,t,n,r,a,s,i="NDHWC"){let[o,l,c]=sm(t),u,h;if(i==="NDHWC")h="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Iw(e,u,n,r,a,!1,h,s)}function Uu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,c,u,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,h]=e;else if(o==="channelsFirst")[l,h,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,m]=t,[f,A]=xd(n),[y,g]=xd(r),x=dl(d,y),v=dl(p,g),{padInfo:w,outHeight:b,outWidth:k}=eN(a,c,u,f,A,x,v,s,o),N=i?m*h:m,C;return o==="channelsFirst"?C=[l,N,b,k]:o==="channelsLast"&&(C=[l,b,k,N]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:h,outHeight:b,outWidth:k,outChannels:N,padInfo:w,strideHeight:f,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:g,inShape:e,outShape:C,filterShape:t}}function Iw(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,c,u,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,h,d]=e;else if(i==="channelsFirst")[l,d,c,u,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,m,f,,A]=t,[y,g,x]=sm(n),[v,w,b]=sm(r),k=dl(p,v),N=dl(m,w),C=dl(f,b),{padInfo:F,outDepth:O,outHeight:z,outWidth:V}=tN(a,c,u,h,y,g,x,k,N,C,o),j=s?A*d:A,U;return i==="channelsFirst"?U=[l,j,O,z,V]:i==="channelsLast"&&(U=[l,O,z,V,j]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:h,inChannels:d,outDepth:O,outHeight:z,outWidth:V,outChannels:j,padInfo:F,strideDepth:y,strideHeight:g,strideWidth:x,filterDepth:p,filterHeight:m,filterWidth:f,effectiveFilterDepth:k,effectiveFilterHeight:N,effectiveFilterWidth:C,dilationDepth:v,dilationHeight:w,dilationWidth:b,inShape:e,outShape:U,filterShape:t}}function nN(e,t,n,r,a){r==null&&(r=im(e,t,n));let s=e[0],i=e[1],o=hi((s-t+2*r)/n+1,a),l=hi((i-t+2*r)/n+1,a);return[o,l]}function rN(e,t,n,r,a,s){a==null&&(a=im(e,t,r));let i=e[0],o=e[1],l=e[2],c=hi((i-t+2*a)/r+1,s),u=hi((o-t+2*a)/r+1,s),h=hi((l-t+2*a)/r+1,s);return[c,u,h,n]}function im(e,t,n,r=1){let a=dl(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function xd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function sm(e){return typeof e=="number"?[e,e,e]:e}function dl(e,t){return t<=1?e:e+(e-1)*(t-1)}function eN(e,t,n,r,a,s,i,o,l){let c,u,h;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=nN([t,n],s,r,e,o);u=d[0],h=d[1]}else if(e==="same"){u=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(u-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),m=Math.floor(d/2),f=d-m,A=Math.floor(p/2),y=p-A;c={top:m,bottom:f,left:A,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:p,left:m,right:f,type:d===0&&p===0&&m===0&&f===0?"VALID":"EXPLICIT"},u=hi((t-s+d+p)/r+1,o),h=hi((n-i+m+f)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:h}}function tN(e,t,n,r,a,s,i,o,l,c,u){let h,d,p,m;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=rN([t,n,r,1],o,1,a,e,u);d=f[0],p=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),m=Math.ceil(r/i);let f=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(m-1)*i+c-r,g=Math.floor(f/2),x=f-g,v=Math.floor(A/2),w=A-v,b=Math.floor(y/2),k=y-b;h={top:v,bottom:w,left:b,right:k,front:g,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),m=Math.ceil((r-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:m}}function hi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function $a(e){let[t,n,r]=xd(e);return t===1&&n===1&&r===1}function Or(e,t){return $a(e)||$a(t)}function vw(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function aN(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(jo,n,r)}var H=D({reshape_:aN});function sN(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;M(Or(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&M(Bt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(cs,c,u);return h=Ae(h,s.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Hu=D({avgPool_:sN});function iN(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Bt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Au,c,u);return h=Ae(h,o.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var om=D({avgPool3d_:iN});function oN(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Wu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor + with dtype ${s.dtype}. `)}),n.length===1)return Dr(n[0]);let r=n,a={axis:t};return $.runKernel(po,r,a)}var ot=D({concat_:oN});function lN(e){let t={x:R(e,"x","sigmoid")};return $.runKernel(qs,t)}var kn=D({sigmoid_:lN});function uN(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(qo,a,s)}var Re=D({slice_:uN});function cN(e){let t={x:R(e,"x","tanh")};return $.runKernel(ei,t)}var di=D({tanh_:cN});function hN(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),c=R(r,"data","basicLSTMCell"),u=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=ot([c,h],1),p=Be(d,o),m=se(p,l),f=m.shape[0],A=m.shape[1]/4,y=[f,A],g=Re(m,[0,0],y),x=Re(m,[0,A],y),v=Re(m,[0,A*2],y),w=Re(m,[0,A*3],y),b=se(B(kn(g),di(x)),B(u,kn(se(i,v)))),k=B(di(b),kn(w));return[b,k]}var dN=D({basicLSTMCell_:hN});function pN(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);M(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(yu,s,i)}var Gu=D({batchToSpaceND_:pN});function fN(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function mN(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;r!=null&&(u=R(r,"offset","batchNorm")),M(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:fN(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(vs,h,d);return H(p,i.shape)}var pi=D({batchNorm_:mN});function AN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),M(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),pi(i,o,l,u,c,s)}var Sw=D({batchNorm2d_:AN});function yN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),M(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),pi(i,o,l,u,c,s)}var Nw=D({batchNorm3d_:yN});function gN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),M(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),pi(i,o,l,u,c,s)}var Tw=D({batchNorm4d_:gN});function xN(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");M(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(Ch,s,i)}var Ew=D({bincount_:xN});function wN(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Dr(n);let i={x:n},o={reps:s};return $.runKernel(Ta,i,o)}var pl=D({broadcastTo_:wN});function bN(e){let t={x:R(e,"x","ceil")};return $.runKernel(ps,t)}var lm=D({ceil_:bN});function _N(e,t,n){let r=R(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(Na,a,s)}var In=D({clipByValue_:_N});function vN(e){return ot(e,0)}var Cw=D({concat1d_:vN});function kN(e,t){return ot(e,t)}var fl=D({concat2d_:kN});function IN(e,t){return ot(e,t)}var Rw=D({concat3d_:IN});function SN(e,t){return ot(e,t)}var Mw=D({concat4d_:SN});function NN(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&M(Bt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?c.shape[3]:c.shape[1];M(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),M(Or(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},m=$.runKernel(fs,d,p);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var ia=D({conv2d_:NN});function TN(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1]])),M(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&M(Bt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Or(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),M(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(c,[c.shape[0],1,c.shape[1],c.shape[2]]),p=ia(d,h,[1,n],r,"NHWC",[1,s],i);return u?H(p,[p.shape[2],p.shape[3]]):H(p,[p.shape[0],p.shape[2],p.shape[3]])}var wd=D({conv1d_:TN});function EN(e,t,n,r,a,s="NHWC",i){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),M(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];M(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),M(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&M(Bt(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},m=$.runKernel(ms,d,p);return c?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var um=D({conv2DBackpropInput_:EN});function CN(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return um(n,i,o,r,a,"NHWC",s)}var bd=D({conv2dTranspose_:CN});function RN(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),M(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),M(Or(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let u={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(xu,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var cm=D({conv3d_:RN});function MN(e,t,n,r,a){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];M(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),M(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel($h,u,h);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Fw=D({conv3DBackpropInput_:MN});function FN(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return Fw(n,s,i,r,a)}var $w=D({conv3dTranspose_:FN});function $N(e){let t={x:R(e,"x","cos")};return $.runKernel(As,t)}var qu=D({cos_:$N});function DN(e){let t={x:R(e,"x","cosh")};return $.runKernel(fo,t)}var _d=D({cosh_:DN});function ON(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(ys,a,s)}var vd=D({cumsum_:ON});function zN(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");M(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),M(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(Dh,i,o)}var Dw=D({denseBincount_:zN});function PN(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${a} and ${t} for depthToSpace with input shape ${r.shape}`),M(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${s} and ${t} for depthToSpace with input shape - ${r.shape}`),M(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(_o,o,l)}var _m=D({depthToSpace_:oT});function lT(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&M(Ut(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:c,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(vs,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var wl=D({depthwiseConv2d_:lT});function uT(e){let t={x:R(e,"x","diag")};return $.runKernel(Uh,t)}var cT=D({diag_:uT});function hT(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");M(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),M(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),M(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(Su,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var vm=D({dilation2d_:hT});function dT(e,t){let n=e.length,r=[];for(let a=0;a1&&i===1&&r.unshift(s)}return r}function Pt(e,t){let n=[];for(let r=0;r1)&&n.unshift(s)}return n}function ft(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(M(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=H(n,[1,-1]),o=H(r,[-1,1]),l=Ve(i,o);return H(l,[])}else if(n.rank===1&&r.rank===2){let i=H(n,[1,-1]),o=H(r,[r.shape[0],r.shape[1]]),l=Ve(i,o);return H(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=H(r,[-1,1]),o=Ve(n,i);return H(o,[o.size])}else{let i=H(r,[r.shape[0],r.shape[1]]);return Ve(n,i)}}var aw=D({dot_:yT});function gT(e,...t){let n=t.map((a,s)=>R(a,`tensors${s}`,"einsum")),r={equation:e};return $.runKernel(qh,n,r)}var sw=D({einsum_:gT});function xT(e){let t={x:R(e,"x","elu")};return $.runKernel(vo,t)}var _l=D({elu_:xT});function bT(e){let t=R(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ge(t,"float32"));let n={x:t};return $.runKernel(ko,n)}var Im=D({erf_:bT});function wT(e){let t={x:R(e,"x","exp")};return $.runKernel(Is,t)}var er=D({exp_:wT});function _T(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(So,r,a)}var Qt=D({expandDims_:_T});function vT(e){let t={x:R(e,"x","expm1")};return $.runKernel(No,t)}var Sm=D({expm1_:vT});function kT(e,t){let n=R(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(Fa,r,a)}var Va=D({tile_:kT});function IT(e,t,n,r="float32"){t==null&&(t=e);let a=Be([e,t],r),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got - rank ${s.rank}.`),M(Ut(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:r,beta:a},u=$.runKernel(Cu,l,c);return o?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Em=D({localResponseNormalization_:zT});function PT(e){let t={x:R(e,"x","log")};return $.runKernel(Ms,t)}var zn=D({log_:PT});function LT(e){let t={x:R(e,"x","log1p")};return $.runKernel(zo,t)}var Rd=D({log1p_:LT});function WT(e){return M(Ca(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&ln(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Md(i),i[0]})}}function BT(e){return M(Ca(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Gu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&ln(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Md(i),i})}}function VT(e){return M(Ca(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Pe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Pe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return Md(r),{grad:r[0],value:a}}}function jT(e){return M(Ca(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(a=>a instanceof Pe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Pe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&ln(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Md(r.grads),r}}function uw(e,t){M(Ca(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(c=>c instanceof ju),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in $.registeredVariables)t.push($.registeredVariables[c])}let r=n?t.filter(c=>!c.trainable):null,a=t.length;t=t.filter(c=>c.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);M(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),r!=null&&r.forEach(c=>l[c.name]=null),{value:i,grads:l}}function jr(e){return $.customGrad(e)}function Md(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that - the f you passed encloses all operations that lead from x to y.`)}function UT(e){let t={x:R(e,"x","neg")};return $.runKernel(Wo,t)}var kt=D({neg_:UT});function HT(e){let t={x:R(e,"x","softplus")};return $.runKernel(nl,t)}var _i=D({softplus_:HT});function GT(e){let t=R(e,"x","logSigmoid");return jr(n=>({value:kt(_i(kt(n))),gradFunc:r=>z(r,Tn(kt(n)))}))(t)}var cw=D({logSigmoid_:GT});function qT(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(Fs,r,a)}var Rn=D({max_:qT});function XT(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(ri,a)}var ye=D({sub_:XT});function KT(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=ge(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(ei,a,s)}var Te=D({sum_:KT});function ZT(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return jr((r,a)=>{let s=!0,i=Rn(r,t,!0),o=ye(r,i),l=ye(ge(o,"float32"),zn(Te(er(o),t,s)));return a([l]),{value:l,gradFunc:(c,u)=>{let[h]=u,d=!0,p=er(h);return ye(c,z(Te(c,t,d),p))}}})(n)}var Fd=D({logSoftmax_:ZT});function Cm(e,t){for(let n=0;ne[s]);return[n,a]}function vi(e,t){let n=t.map(r=>1);return hw(e,n,t)}function YT(e,t,n){M(Cm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function pw(e,t){if(Cm(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function Rm(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function JT(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),M(Vr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&M(Ut(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(Ds,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var nc=D({maxPool_:aE});function sE(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ut(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Ru,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Fm=D({maxPool3d_:sE});function iE(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(nd,s,i);return{result:o[0],indexes:o[1]}}var mw=D({maxPoolWithArgmax_:iE});function oE(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ge(n,"int32"),r=ge(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel($s,a)}var Ur=D({maximum_:oE});function lE(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(Os,r,a)}var It=D({mean_:lE});function Rt(e,t="float32"){if(t==="complex64"){let r=Rt(e,"float32"),a=Rt(e,"float32");return Da(r,a)}let n=Fh(Et(e),t);return $.makeTensor(n,e,t)}function Pn(e,t="float32"){if(t==="complex64"){let r=Pn(e,"float32"),a=Rt(e,"float32");return Da(r,a)}let n=Nf(Et(e),t);return $.makeTensor(n,e,t)}function uE(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let r=R(e,"x","meshgrid",e instanceof Pe?e.dtype:"float32");if(t===void 0)return[r];let a=R(t,"y","meshgrid",t instanceof Pe?t.dtype:"float32"),s=Et(r.shape),i=Et(a.shape);return n==="xy"?(r=H(r,[1,-1]),a=H(a,[-1,1]),[Ve(Pn([i,1],r.dtype),r),Ve(a,Pn([1,s],a.dtype))]):(r=H(r,[-1,1]),a=H(a,[1,-1]),[Ve(r,Pn([1,i],r.dtype)),Ve(Pn([s,1],a.dtype),a)])}function cE(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(zs,r,a)}var kl=D({min_:cE});function hE(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ge(n,"int32"),r=ge(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Ps,a)}var Il=D({minimum_:hE});function dE(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),M(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(Ls,i,s)}var $m=D({mirrorPad_:dE});function pE(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Lo,a)}var Dm=D({mod_:pE});function fE(e){let t=R(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var it=D({square_:fE});function mE(e,t=null,n=!1){e=R(e,"x","moments");let r=hr(t,e.shape),a=It(e,r,n),s=a.shape;n||(s=vi(a.shape,r));let i=it(ye(ge(e,"float32"),H(a,s))),o=It(i,r,n);return{mean:a,variance:o}}var Dd=D({moments_:mE});function AE(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=Gu(n,"c","multiRNNCell"),i=Gu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},c=$.runKernel(rd,o,l);return i===1?H(c,[c.size]):c}var Aw=D({multinomial_:gE});function xE(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Bo,a)}var ki=D({notEqual_:xE});function bE(e){let t={x:R(e,"x","onesLike")};return $.runKernel(Ho,t)}var Ln=D({onesLike_:bE});function wE(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");M(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=H(n,[-1,1]),s=H(r,[1,-1]);return Ve(a,s)}var _E=D({outerProduct_:wE});function vE(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(Vs,s,a)}var da=D({pad_:vE});function kE(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),da(e,[t],n)}var IE=D({pad1d_:kE});function SE(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),da(e,t,n)}var NE=D({pad2d_:SE});function TE(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),da(e,t,n)}var EE=D({pad3d_:TE});function CE(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),da(e,t,n)}var RE=D({pad4d_:CE});function ME(e,t,n){let r=R(e,"x","spaceToBatchND");M(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel($u,a,s)}var rc=D({spaceToBatchND_:ME});function DE(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(Vr(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let c=Gb(o.shape,t,s,a,r),u=[c.dilationHeight,c.dilationWidth],h;r==="same"?h=$E([c.filterHeight,c.filterWidth],u):h=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[p,m]=FE([c.inHeight,c.inWidth],u,h),f=d?r:"valid",A=d?o:rc(o,u,p),y=(n==="avg"?()=>Zu(A,t,s,f):()=>nc(A,t,s,f))(),g=d?y:Yu(y,u,m);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function FE(e,t,n){let r=n.map(u=>u[0]),a=n.map(u=>u[1]),s=e.concat(r,a),i=t.map((u,h)=>(u-s[h]%u)%u),o=a.map((u,h)=>u+i[h]),l=t.map((u,h)=>[r[h],o[h]]),c=t.map((u,h)=>[0,i[h]]);return[l,c]}function $E(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var yw=D({pool_:DE});function OE(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(js,a)}var pa=D({pow_:OE});function zE(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(Us,a)}var ac=D({prelu_:zE});function PE(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=ge(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(qo,a,s)}var Od=D({prod_:PE});function LE(e,t,n){let r=Et(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},BE=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Om.alea(a.toString()),this.randn=new zm(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),athis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Om.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function jE(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new BE(t,n,r,a),i=Be(e,r);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Wn(t,0)}var QE=D({reverse1d_:JE});function eC(e,t){let n=R(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Wn(n,t)}var tC=D({reverse2d_:eC});function nC(e,t){let n=R(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Wn(n,t)}var rC=D({reverse3d_:nC});function aC(e,t){let n=R(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Wn(n,t)}var sC=D({reverse4d_:aC});function iC(e){let t={x:R(e,"x","round")};return $.runKernel(Ks,t)}var Lm=D({round_:iC});function oC(e){let t={x:R(e,"x","rsqrt")};return $.runKernel(Zs,t)}var Ld=D({rsqrt_:oC});function ve(e,t){if((rn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&rn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Oa(e,[],[],t)}function lC(e){let t={x:R(e,"x","selu")};return $.runKernel(Jo,t)}var Wd=D({selu_:lC});function uC(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),c=R(n,"pointwiseFilter","separableConv2d"),u=o,h=!1;if(o.rank===3&&(h=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),M(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],p=l.shape[3];M(c.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${c.shape[2]}.`);let m=wl(u,l,r,a,i,s),f=ha(m,c,1,"valid",i);return h?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Wm=D({separableConv2d_:uC});async function cC(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");M(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let u=0;u`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Re(r,[t],[n])}var jd=D({slice1d_:fC});function mC(e,t,n){let r=R(e,"x","slice2d");return M(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Vm=D({slice2d_:mC});function AC(e,t,n){let r=R(e,"x","slice3d");return M(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Ud=D({slice3d_:AC});function yC(e,t,n){let r=R(e,"x","slice4d");return M(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var ic=D({slice4d_:yC});function gC(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(ti,r,a)}var oc=D({softmax_:gC});function xC(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Kh,t)}var lc=D({fft_:xC});function bC(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Zh,t)}var Nl=D({ifft_:bC});function wC(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=H(e,[n,t]);r=Nl(a)}else{let a=[n,2*(t-1)],s=H(sc(e),[n,t]),i=H(Ed(e),[n,t]),o=Wn(Re(s,[0,1],[n,t-2]),1),l=z(Wn(Re(i,[0,1],[n,t-2]),1),ve(-1)),c=ot([s,o],1),u=ot([i,l],1),h=H(Da(c,u),[a[0],a[1]]);r=Nl(h)}if(r=sc(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=H(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var Hd=D({irfft_:wC});function _C(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(rl,r,a)}var Lt=D({split_:_C});function vC(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,a=Re(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,a=ot([e,Rt(m)],e.shape.length-1),n=t}else a=e;let s=He(a),i=H(Da(a,s),[r,n]),o=lc(i),l=Math.floor(n/2)+1,c=sc(o),u=Ed(o),h=Lt(c,[l,n-l],c.shape.length-1),d=Lt(u,[l,n-l],u.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,H(Da(h[0],d[0]),p)}var uc=D({rfft_:vC});function kC(e){let t={x:R(e,"x","sqrt")};return $.runKernel(Qs,t)}var en=D({sqrt_:kC});function IC(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(ni,a,s)}var Gd=D({squaredDifference_:IC});function SC(e,t){let n=R(e,"x","squeeze");return H(n,Lx(n.shape,t).newShape)}var Ua=D({squeeze_:SC});function NC(e,t=0){let n=Gu(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(Go,r,a)}var cn=D({stack_:NC});function TC(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return $.runKernel($a,n,r)}var Tl=D({step_:TC});function EC(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let c={x:R(e,"x","stridedSlice")},u={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(al,c,u)}var jm=D({stridedSlice_:EC});function CC(e){let t={x:R(e,"x","tan")};return $.runKernel(ai,t)}var Um=D({tan_:CC});function sn(e,t){hs(e);let n=Wr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Oa(e,null,n,t)}function tr(e,t,n){if(hs(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Wr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Oa(e,t,r,n)}function RC(e,t,n){if(hs(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Wr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Oa(e,t,r,n)}function MC(e,t,n){if(hs(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Wr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Oa(e,t,r,n)}function FC(e,t,n){if(hs(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Wr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Oa(e,t,r,n)}function $C(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(sl,s,i);return{values:o,indices:l}}var Hm=D({topk_:$C});function DC(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new zm(t,n,r,!0,a),i=Be(e,r);for(let o=0;o0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(cd,r,a);return{values:s,indices:i}}var Xd=D({unique_:OC});function zC(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");M(Ut(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(Ou,s,i)}var Gm=D({unsortedSegmentSum_:zC});function PC(e,t=0){let n=R(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(il,r,a)}var mr=D({unstack_:PC});function bw(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function ww(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),ln(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f"Shape mismatch in v and x");let l=ve(1),c=ye(l,o),u=z(ye(i,s),c);if(a){M(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");u=Ae(u,ye(l,pa(o,h)))}return se(s,u)}var UC=D({movingAverage_:jC});function HC(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");nm(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(Zo,s,i)}var vw=D({scatterND_:HC});function GC(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function qC(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);GC(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(ld,o,l)}var Xm=D({sparseToDense_:qC});function XC(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return $.runKernel(Co,r)}var kw=D({gatherND_:XC});function KC(e,t){if(t==null)return e.shape.slice();if(la(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Pe?a.clone():a;let s=KC(a,n),i=1-t,o=Ae(vl(se(Sl(s,0,1,"float32",r),i)),i);return z(a,o)}var Iw=D({dropout_:ZC});function Sw(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Km(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),M(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),ln(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];M(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,c]=[i.length/s,s],u=Wx("bool",l);for(let h=0;hA.value-f.value),u[h]=0;for(let f=0;fQC,depthwiseConv2d:()=>eR,matMul:()=>tR});function nR(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];M(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),M(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&M(Ut(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(Ph,h,d)}var Zm=D({conv2DBackpropFilter_:nR});function Zd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,Tl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Yd(e,t){let n=t,r=Pt(e.shape,t.shape);return r.length>0&&(n=Te(n,r)),H(n,e.shape)}function Jd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Hr(e);if(t==="elu")return _l(e);if(t==="relu6")return Pd(e);if(t==="prelu")return ac(e,n);if(t==="leakyrelu")return ec(e,r);if(t==="sigmoid")return Tn(e);throw new Error(`Unknown fused activation ${t}.`)}var Qd=(e,t)=>!(e>0)||t==="linear";function rR({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Qd($.state.gradientDepth,l)===!1){let b=ha(e,t,n,r,a,s,i);return o!=null&&(b=se(b,o)),Jd(b,l,c,u)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&M(Ut(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),M(Vr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let f=Ku(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),ft(f.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused conv2d"));let g=(b,w)=>{let[k,N,C,F]=w,O=Zd(b,C,l);M(Wa(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=bm(N.shape,O,k,n,r),V=Zm(N,O,k.shape,n,r),j=[L,V];if(F!=null){let U=Yd(F,O);j.push(U)}return j},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?jr((b,w,k)=>{let N=$.runKernel(li,x,v);return k([w,b,N]),m&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):jr((b,w,k,N)=>{let C=$.runKernel(li,x,v);return N([w,b,C,k]),m&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var QC=D({fusedConv2d_:rR});function aR(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(Vh,c,u)}var Nw=D({depthwiseConv2dNativeBackpropFilter_:aR});function sR(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(jh,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Tw=D({depthwiseConv2dNativeBackpropInput_:sR});function iR({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Qd($.state.gradientDepth,l)===!1){let b=wl(e,t,n,r,a,s,i);return o!=null&&(b=se(b,o)),Jd(b,l,c,u)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),M(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),M(Vr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&M(Ut(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let f=Ku(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),ft(f.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused depthwiseConv2d"));let g=(b,w)=>{M(Wa(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[k,N,C,F]=w,O=Zd(b,C,l),L=Tw(N.shape,O,k,n,r,s,i),V=Nw(N,O,k.shape,n,r,s,i);if(F!=null){let j=Yd(A,O);return[L,V,j]}return[L,V]},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?jr((b,w,k)=>{let N=$.runKernel(ui,x,v);return k([w,b,N]),m&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):jr((b,w,k,N)=>{let C=$.runKernel(ui,x,v);return N([w,b,C,k]),m&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var eR=D({fusedDepthwiseConv2d_:iR});function oR({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Qd($.state.gradientDepth,s)===!1){let F=Ve(e,t,n,r);return a!=null&&(F=se(F,a)),Jd(F,s,i,o)}let l=R(e,"a","fused matMul"),c=R(t,"b","fused matMul");[l,c]=vt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?c.shape[c.rank-2]:c.shape[c.rank-1],m=l.shape.slice(0,-2),f=c.shape.slice(0,-2),A=Et(m),y=Et(f);M(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),M(la(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),M(u===h,()=>`Error in fused matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),x=n?H(l,[A,u,d]):H(l,[A,d,u]),v=r?H(c,[y,p,h]):H(c,[y,h,p]),b;a!=null&&(b=R(a,"bias","fused matMul"),[b]=vt(b,l),ft(g,b.shape));let w;i!=null&&(w=R(i,"prelu weights","fused matMul"));let k=(F,O)=>{let[L,V,j,U]=O,X=Zd(H(F,j.shape),j,s),G,ee;if(!n&&!r?(G=Ve(X,V,!1,!0),ee=Ve(L,X,!0,!1)):!n&&r?(G=Ve(X,V,!1,!1),ee=Ve(X,L,!0,!1)):n&&!r?(G=Ve(V,X,!1,!0),ee=Ve(L,X,!1,!1)):(G=Ve(V,X,!0,!0),ee=Ve(X,L,!0,!0)),a!=null){let Y=Yd(U,X);return[G,ee,Y]}else return[G,ee]},N={a:x,b:v,bias:b,preluActivationWeights:w},C={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?jr((F,O,L)=>{let V=$.runKernel(oi,N,C);return L([F,O,V]),{value:H(V,g),gradFunc:k}})(x,v):jr((F,O,L,V)=>{let j=$.runKernel(oi,N,C);return V([F,O,j,L]),{value:H(j,g),gradFunc:k}})(x,v,b)}var tR=D({fusedMatMul_:oR});function lR(e){return Km(e,.54,.46)}var uR=D({hammingWindow_:lR});function cR(e){return Km(e,.5,.5)}var Ew=D({hannWindow_:cR});function hR(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(r)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),M(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),M(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),M(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),M(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let u={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(wo,u,h)}var mR=D({cropAndResize_:fR});function AR(e){let t=R(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(To,n,{})}var yR=D({flipLeftRight_:AR});function gR(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");M(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(ll,s,i)}var xR=D({rotateWithOffset_:gR});function El(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),M(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),M(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function bR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=El(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(Vo,{boxes:s,scores:i},l)}var wR=D({nonMaxSuppression_:bR});function vR(e,t,n){let r=_R(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function _R(e,t,n){return IR(e,t,n||kR)}function kR(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function Rw(e,t,n,r,a){return Ym(e,t,n,r,a,0)}function Mw(e,t,n,r,a,s){return Ym(e,t,n,r,a,0,!1,s,!0)}function Fw(e,t,n,r,a,s){return Ym(e,t,n,r,a,s,!0)}function Ym(e,t,n,r,a,s,i=!1,o=!1,l=!1){let c=[];for(let A=0;Aa&&c.push({score:t[A],boxIndex:A,suppressBeginIndex:0});c.sort($w);let u=s>0?-.5/s:0,h=[],d=[];for(;h.length0;){let A=c.pop(),{score:y,boxIndex:g,suppressBeginIndex:x}=A;if(y=x;--b){let w=SR(e,g,h[b]);if(w>=r){v=!0;break}if(A.score=A.score*NR(r,u,w),A.score<=a)break}A.suppressBeginIndex=h.length,v||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&vR(c,A,$w))}let p=h.length,m=n-p;o&&m>0&&(h.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:h};return i&&(f.selectedScores=d),l&&(f.validOutputs=p),f}function SR(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),c=Math.min(a[0],a[2]),u=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),m=(h-c)*(d-u);if(p<=0||m<=0)return 0;let f=Math.max(s,c),A=Math.max(i,u),y=Math.min(o,h),g=Math.min(l,d),x=Math.max(y-f,0)*Math.max(g-A,0);return x/(p+m-x)}function NR(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function $w(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function TR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=El(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:h}=Rw(c,u,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),sn(h,"int32")}var ER=TR;function CR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=El(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(Uo,c,u);return{selectedIndices:h[0],selectedScores:h[1]}}var RR=D({nonMaxSuppressionWithScore_:CR});async function MR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=El(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],h=c[1],{selectedIndices:d,selectedScores:p}=Fw(u,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:sn(d,"int32"),selectedScores:sn(p)}}var FR=MR;function $R(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=El(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:c,iouThreshold:u,scoreThreshold:h,padToMaxOutputSize:s},m=$.runKernel(jo,d,p);return{selectedIndices:m[0],validOutputs:m[1]}}var DR=D({nonMaxSuppressionPadded_:$R});async function OR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=El(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=Mw(d,p,c,u,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:sn(m,"int32"),validOutputs:ve(f,"int32")}}var zR=OR;function PR(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");M(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Gs,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Dw=D({resizeBilinear_:PR});function LR(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");M(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Fu,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Ow=D({resizeNearestNeighbor_:LR});function WR(e,t,n="nearest",r="constant",a=0,s){let i=R(e,"image","transform","float32"),o=R(t,"transforms","transform","float32");M(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},c={interpolation:n,fillMode:r,fillValue:a,outputShape:s};return $.runKernel(ud,l,c)}var BR=D({transform_:WR});function VR(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");M(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(zd(0,s,1,"int32"),[-1,1]),l=zd(0,i,1,"int32"),c=ye(o,l),u=fr(wi(c,ve(+t,"int32")),ja(c,ve(-n,"int32"))),h=Rt([s,i],r.dtype);return H(cn(mr(H(r,[-1,s,i])).map(d=>Cn(u,d,h))),a)}var jR=D({bandPart_:VR});function UR(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Lt(e,e.shape[0],0).map(a=>Ua(a,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a{let s=r[a];if(a>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return zw(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),r=mr(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[c,u]=zw(l,t);a.push(c),s.push(u)});let i=H(cn(a,0),e.shape),o=H(cn(s,0),e.shape);return[i,o]}}function zw(e,t=!1){return $.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Nm(n),s=Br(e),i=tr([[1]],[1,1]),o=Br(i),l=n>=r?r:n;for(let c=0;c{let p=Re(s,[c,c],[n-c,1]),m=Kd(p),f=Re(s,[c,c],[1,1]),A=Cn(pr(f,0),tr([[-1]]),tr([[1]])),y=ye(f,z(A,m)),g=Ae(p,y);g.shape[0]===1?o=Br(i):o=ot([i,Re(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let x=kt(Ae(Ve(A,y),m)),v=Re(s,[c,0],[n-c,r]),b=z(x,o),w=Je(o);if(c===0)s=ye(v,Ve(b,Ve(w,v)));else{let C=ye(v,Ve(b,Ve(w,v)));s=ot([Re(s,[0,0],[c,r]),C],0)}let k=Je(b),N=Re(a,[0,c],[n,a.shape[1]-c]);if(c===0)a=ye(N,Ve(Ve(N,o),k));else{let C=ye(N,Ve(Ve(N,o),k));a=ot([Re(a,[0,0],[n,c]),C],1)}return[o,s,a]}),we([u,h,d])}return!t&&n>r&&(a=Re(a,[0,0],[n,r]),s=Re(s,[0,0],[r,r])),[a,s]})}var qR=D({qr_:GR}),hn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(hn||(hn={}));function XR(e,t,n=hn.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:z(r,a);if(n===hn.NONE)return s;if(n===hn.SUM)return Te(s);if(n===hn.MEAN){if(a==null)return It(s);{let i=r.size/a.size,o=Ae(Te(s),Te(a));return i>1?Ae(o,ve(i)):o}}if(n===hn.SUM_BY_NONZERO_WEIGHTS){if(a==null)return Ae(Te(s),ve(r.size));{let i=z(a,Pn(r.shape)),o=ge(Te(ki(i,ve(0))),"float32");return Ae(Te(s),o)}}throw Error(`Unknown reduction: ${n}`)}var fa=D({computeWeightedLoss_:XR});function KR(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),ln(a.shape,s.shape,"Error in absoluteDifference: ");let o=zt(ye(a,s));return fa(o,i,r)}var ZR=D({absoluteDifference_:KR});function YR(e,t,n,r,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),ln(s.shape,i.shape,"Error in cosineDistance: ");let l=ve(1),c=ye(l,Te(z(s,i),n,!0));return fa(c,o,a)}var JR=D({cosineDistance_:YR});function QR(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),ln(a.shape,s.shape,"Error in hingeLoss: ");let o=ve(1);a=ye(z(ve(2),a),o);let l=Hr(ye(o,z(a,s)));return fa(l,i,r)}var eM=D({hingeLoss_:QR});function tM(e,t,n,r=1,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),ln(s.shape,i.shape,"Error in huberLoss: ");let l=ve(r),c=zt(ye(i,s)),u=Il(c,l),h=ye(c,u),d=se(z(ve(.5),it(u)),z(l,h));return fa(d,o,a)}var nM=D({huberLoss_:tM});function rM(e,t,n,r=1e-7,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),ln(s.shape,i.shape,"Error in logLoss: ");let l=ve(1),c=ve(r),u=kt(z(s,zn(se(i,c)))),h=z(ye(l,s),zn(se(ye(l,i),c))),d=ye(u,h);return fa(d,o,a)}var aM=D({logLoss_:rM});function sM(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),ln(a.shape,s.shape,"Error in meanSquaredError: ");let o=Gd(a,s);return fa(o,i,r)}var iM=D({meanSquaredError_:sM});function oM(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");ln(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Hr(r),s=z(r,n),i=Rd(er(kt(zt(r))));return se(ye(a,s),i)}function lM(e,t,n,r=0,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),ln(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let c=ve(r),u=ve(1),h=ve(.5);s=se(z(s,ye(u,c)),z(h,c))}let l=oM(s,i);return fa(l,o,a)}var uM=D({sigmoidCrossEntropy_:lM});function cM(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return jr((r,a,s)=>{let i=Mm(a,[n],!0),o=ye(ge(a,"float32"),i);s([r,o]);let l=kt(z(o,r));return{value:Te(l,[n]),gradFunc:(c,u)=>{let[h,d]=u,p=vi(c.shape,[n]);return[z(H(c,p),ye(ge(h,"float32"),er(d))),z(H(c,p),ye(er(d),ge(h,"float32")))]}}})(e,t)}function hM(e,t,n,r=0,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),ln(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let c=ve(r),u=ve(1),h=ve(s.shape[1]);s=se(z(s,ye(u,c)),Ae(c,h))}let l=cM(s,i);return fa(l,o,a)}var dM=D({softmaxCrossEntropy_:hM});function pM(e,t,n){let r=R(e,"inputIndices","sparseReshape"),a=R(t,"inputShape","sparseReshape"),s=R(n,"newShape","sparseReshape");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape - ${r.shape}`);if(a.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${a.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:r,inputShape:a,newShape:s},o=$.runKernel(od,i);return{outputIndices:o[0],outputShape:o[1]}}var fM=D({sparseReshape_:pM}),mM={fft:lc,ifft:Nl,rfft:uc,irfft:Hd},AM={hammingWindow:uR,hannWindow:Ew,frame:Cw,stft:pR},Le={flipLeftRight:yR,resizeNearestNeighbor:Ow,resizeBilinear:Dw,rotateWithOffset:xR,cropAndResize:mR,nonMaxSuppression:wR,nonMaxSuppressionAsync:ER,nonMaxSuppressionWithScore:RR,nonMaxSuppressionWithScoreAsync:FR,nonMaxSuppressionPadded:DR,nonMaxSuppressionPaddedAsync:zR,transform:BR},Pw={bandPart:jR,gramSchmidt:HR,qr:qR},yM={absoluteDifference:ZR,computeWeightedLoss:fa,cosineDistance:JR,hingeLoss:eM,huberLoss:nM,logLoss:aM,meanSquaredError:iM,sigmoidCrossEntropy:uM,softmaxCrossEntropy:dM},Lw={sparseReshape:fM},ma=class extends Wb{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return we(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return uw(e,t)}dispose(){this.iterations_!=null&&we(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ve(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ma,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var ep=class extends ma{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:P(()=>He(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:P(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;P(()=>{let l=se(z(i,this.rho),z(it(s),1-this.rho)),c=z(Ae(en(se(o,this.epsilon)),en(se(i,this.epsilon))),s),u=se(z(o,this.rho),z(it(c),1-this.rho));i.assign(l),o.assign(u);let h=se(z(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(we(this.accumulatedGrads.map(e=>e.variable)),we(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};ep.className="Adadelta";Pa(ep);var tp=class extends ma{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:P(()=>Qu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;P(()=>{let i=se(s,it(a));s.assign(i);let o=se(z(Ae(a,en(se(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&we(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};tp.className="Adagrad";Pa(tp);var np=class extends ma{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],P(()=>{this.accBeta1=ve(t).variable(),this.accBeta2=ve(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=ye(1,this.accBeta1),r=ye(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:P(()=>He(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:P(()=>He(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,h=se(z(c,this.beta1),z(l,1-this.beta1)),d=se(z(u,this.beta2),z(it(l),1-this.beta2)),p=Ae(h,n),m=Ae(d,r);c.assign(h),u.assign(d);let f=se(z(Ae(p,se(en(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&we(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&we(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),P(()=>{this.accBeta1.assign(pa(this.beta1,this.iterations_+1)),this.accBeta2.assign(pa(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};np.className="Adam";Pa(np);var rp=class extends ma{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],P(()=>{this.iteration=ve(0).variable(),this.accBeta1=ve(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=ye(1,this.accBeta1),r=Ae(-this.learningRate,se(z(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:He(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:He(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,h=se(z(c,this.beta1),z(l,1-this.beta1)),d=z(u,this.beta2),p=zt(l),m=Ur(d,p);c.assign(h),u.assign(m);let f=se(z(Ae(r,n),Ae(h,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&we(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&we(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};rp.className="Adamax";Pa(rp);var cc=class extends ma{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];P(()=>{let s=se(z(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ht(ve(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};cc.className="SGD";Pa(cc);var ap=class extends cc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ve(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:P(()=>He(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&P(()=>{let i,o=se(z(this.m,a),s);this.useNesterov?i=se(z(this.c,se(s,z(o,this.m))),r):i=se(z(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&we(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};ap.className="Momentum";Pa(ap);var sp=class extends ma{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:P(()=>He(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:P(()=>He(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:P(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;P(()=>{let l=se(z(i,this.decay),z(it(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=se(z(c,this.decay),z(s,1-this.decay)),h=Ae(z(s,this.learningRate),en(ye(l,se(it(u),this.epsilon)))),d=se(z(o,this.momentum),h);i.assign(l),c.assign(u),o.assign(d);let p=ye(r,d);r.assign(p)}else{let c=se(z(i,this.decay),z(it(s),1-this.decay)),u=se(z(o,this.momentum),Ae(z(s,this.learningRate),en(se(c,this.epsilon))));i.assign(c),o.assign(u);let h=ye(r,u);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&we(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&we(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&we(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};sp.className="RMSProp";Pa(sp);var Ii=class{static sgd(e){return new cc(e)}static momentum(e,t,n=!1){return new ap(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new sp(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new np(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new ep(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new rp(e,t,n,r,a)}static adagrad(e,t=.1){return new tp(e,t)}},Si={sgd:Ii.sgd,momentum:Ii.momentum,adadelta:Ii.adadelta,adagrad:Ii.adagrad,rmsprop:Ii.rmsprop,adamax:Ii.adamax,adam:Ii.adam},gM=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function ip(){return new Promise(e=>gM(()=>e()))}var E={};Me(E,{ERF_A1:()=>EM,ERF_A2:()=>CM,ERF_A3:()=>RM,ERF_A4:()=>MM,ERF_A5:()=>FM,ERF_P:()=>TM,PARALLELIZE_THRESHOLD:()=>Jm,SELU_SCALE:()=>Bw,SELU_SCALEALPHA:()=>Ww,applyActivation:()=>Jd,assertAndGetBroadcastShape:()=>ft,assertAxesAreInnerMostDims:()=>YT,assertParamsConsistent:()=>xM,assignToTypedArray:()=>BM,axesAreInnerMostDims:()=>Cm,calculateShapes:()=>Tb,checkEinsumDimSizes:()=>GM,combineLocations:()=>hw,complexWithEvenIndex:()=>PM,complexWithOddIndex:()=>LM,computeConv2DInfo:()=>Ku,computeConv3DInfo:()=>qb,computeDefaultPad:()=>ym,computeDilation2DInfo:()=>wN,computeOptimalWindowSize:()=>wM,computeOutAndReduceShapes:()=>dw,computeOutShape:()=>bM,computePool2DInfo:()=>Gb,computePool3DInfo:()=>_N,convertConv2DDataFormat:()=>Hb,decodeEinsumEquation:()=>UM,eitherStridesOrDilationsAreOne:()=>Vr,expandShapeToKeepDim:()=>vi,exponent:()=>jM,exponents:()=>VM,fromStringArrayToUint8:()=>YM,fromUint8ToStringArray:()=>ZM,getAxesPermutation:()=>pw,getBroadcastDims:()=>dT,getComplexWithIndex:()=>WM,getEinsumComputePath:()=>qM,getEinsumPermutation:()=>HM,getFusedBiasGradient:()=>Yd,getFusedDyActivation:()=>Zd,getImageCenter:()=>_M,getInnerMostAxes:()=>JT,getPermuted:()=>kM,getReductionAxes:()=>Pt,getReshaped:()=>vM,getReshapedPermuted:()=>IM,getSliceBeginCoords:()=>SM,getSliceSize:()=>NM,getUndoAxesPermutation:()=>Rm,isIdentityPermutation:()=>XM,log:()=>DM,mergeRealAndImagArrays:()=>OM,prepareAndValidate:()=>Nb,prepareSplitSize:()=>KM,segment_util:()=>Vw,shouldFuse:()=>Qd,slice_util:()=>un,splitRealAndImagArrays:()=>zM,tupleValuesAreOne:()=>Wa,upcastType:()=>dr,validateInput:()=>nm,validateUpdateShape:()=>tm,warn:()=>$M});function xM(e,t){let n=e[0].length;e.forEach((a,s)=>{M(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function bM(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function IM(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s/g,jw=",",Uw="...";function UM(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(JM,"").length)/Qm.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${Qm}").`);let[r,a]=e.split(Qm);M(r.indexOf(Uw)===-1,()=>`The ellipsis notation ("${Uw}") is not supported yet.`);let s=r.split(jw),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let d=0;dm.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);o.indexOf(p)===-1&&o.push(p)}for(let d=0;da!==-1),{permutationIndices:n,expandDims:r}}function GM(e,t,n){let r=new Array(e);for(let a=0;a`Expected dimension ${r[t[a][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function qM(e,t){let n=e,r=[],a=0;e.length===0&&n.push(-1),a=e.length+1;for(let i=0;it===n)}function QM(e,t){let n=[];for(let r=0;r"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);M(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}M(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var Vw={};Me(Vw,{collectGatherOpShapeInfo:()=>nF,computeOutShape:()=>tF,segOpComputeOptimalWindowSize:()=>eF});function eF(e,t){let n=!1,r;for(e<=Jm?(r=e,n=!0):r=Mh(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Mh(e,r+1);return r}function tF(e,t,n){let r=[],a=e.length;for(let s=0;sa))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) ( - ${s}).`);if(nfd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function YM(e){return e.map(t=>Lu(t))}var Gr={};Me(Gr,{nonMaxSuppressionV3Impl:()=>Rw,nonMaxSuppressionV4Impl:()=>Mw,nonMaxSuppressionV5Impl:()=>Fw,whereImpl:()=>ww});function _e(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var rF=Gr.whereImpl,op=class extends gu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Ch(this,ca())}nextDataId(){return op.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&E.warn(` + ${r.shape}`),M(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(Ao,o,l)}var hm=D({depthToSpace_:PN});function LN(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&M(Bt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:c,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(gs,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ml=D({depthwiseConv2d_:LN});function WN(e){let t={x:R(e,"x","diag")};return $.runKernel(Ph,t)}var BN=D({diag_:WN});function VN(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");M(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),M(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),M(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(wu,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var dm=D({dilation2d_:VN});function jN(e,t){let n=e.length,r=[];for(let a=0;a1&&i===1&&r.unshift(s)}return r}function Ot(e,t){let n=[];for(let r=0;r1)&&n.unshift(s)}return n}function dt(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(M(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=H(n,[1,-1]),o=H(r,[-1,1]),l=Be(i,o);return H(l,[])}else if(n.rank===1&&r.rank===2){let i=H(n,[1,-1]),o=H(r,[r.shape[0],r.shape[1]]),l=Be(i,o);return H(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=H(r,[-1,1]),o=Be(n,i);return H(o,[o.size])}else{let i=H(r,[r.shape[0],r.shape[1]]);return Be(n,i)}}var Ow=D({dot_:XN});function KN(e,...t){let n=t.map((a,s)=>R(a,`tensors${s}`,"einsum")),r={equation:e};return $.runKernel(Bh,n,r)}var zw=D({einsum_:KN});function ZN(e){let t={x:R(e,"x","elu")};return $.runKernel(yo,t)}var Al=D({elu_:ZN});function YN(e){let t=R(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=Ae(t,"float32"));let n={x:t};return $.runKernel(go,n)}var fm=D({erf_:YN});function JN(e){let t={x:R(e,"x","exp")};return $.runKernel(ws,t)}var Xn=D({exp_:JN});function QN(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(wo,r,a)}var on=D({expandDims_:QN});function eT(e){let t={x:R(e,"x","expm1")};return $.runKernel(bo,t)}var mm=D({expm1_:eT});function tT(e,t){let n=R(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(Ta,r,a)}var Oa=D({tile_:tT});function nT(e,t,n,r="float32"){t==null&&(t=e);let a=We([e,t],r),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got + rank ${s.rank}.`),M(Bt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:r,beta:a},u=$.runKernel(ku,l,c);return o?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var gm=D({localResponseNormalization_:fT});function mT(e){let t={x:R(e,"x","log")};return $.runKernel(Ns,t)}var Mn=D({log_:mT});function AT(e){let t={x:R(e,"x","log1p")};return $.runKernel(Ro,t)}var Sd=D({log1p_:AT});function yT(e){return M(Ia(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&an(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Nd(i),i[0]})}}function gT(e){return M(Ia(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Wu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&an(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Nd(i),i})}}function xT(e){return M(Ia(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Le,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Le,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return Nd(r),{grad:r[0],value:a}}}function wT(e){return M(Ia(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(a=>a instanceof Le),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Le,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&an(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Nd(r.grads),r}}function Bw(e,t){M(Ia(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(c=>c instanceof zu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in $.registeredVariables)t.push($.registeredVariables[c])}let r=n?t.filter(c=>!c.trainable):null,a=t.length;t=t.filter(c=>c.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);M(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),r!=null&&r.forEach(c=>l[c.name]=null),{value:i,grads:l}}function zr(e){return $.customGrad(e)}function Nd(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that + the f you passed encloses all operations that lead from x to y.`)}function bT(e){let t={x:R(e,"x","neg")};return $.runKernel($o,t)}var _t=D({neg_:bT});function _T(e){let t={x:R(e,"x","softplus")};return $.runKernel(Zo,t)}var Ai=D({softplus_:_T});function vT(e){let t=R(e,"x","logSigmoid");return zr(n=>({value:_t(Ai(_t(n))),gradFunc:r=>B(r,kn(_t(n)))}))(t)}var Vw=D({logSigmoid_:vT});function kT(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(Ts,r,a)}var Kn=D({max_:kT});function IT(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=bt(n,r);let a={a:n,b:r};return $.runKernel(Js,a)}var ye=D({sub_:IT});function ST(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=Ae(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(Ks,a,s)}var Ne=D({sum_:ST});function NT(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return zr((r,a)=>{let s=!0,i=Kn(r,t,!0),o=ye(r,i),l=ye(Ae(o,"float32"),Mn(Ne(Xn(o),t,s)));return a([l]),{value:l,gradFunc:(c,u)=>{let[h]=u,d=!0,p=Xn(h);return ye(c,B(Ne(c,t,d),p))}}})(n)}var Td=D({logSoftmax_:NT});function xm(e,t){for(let n=0;ne[s]);return[n,a]}function yi(e,t){let n=t.map(r=>1);return jw(e,n,t)}function TT(e,t,n){M(xm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Hw(e,t){if(xm(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function wm(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function ET(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),M(Or(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&M(Bt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(Cs,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Yu=D({maxPool_:DT});function OT(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Bt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Iu,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var _m=D({maxPool3d_:OT});function zT(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(Zh,s,i);return{result:o[0],indexes:o[1]}}var qw=D({maxPoolWithArgmax_:zT});function PT(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=bt(n,r),n.dtype==="bool"&&(n=Ae(n,"int32"),r=Ae(r,"int32")),dt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Es,a)}var Pr=D({maximum_:PT});function LT(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(Rs,r,a)}var vt=D({mean_:LT});function Et(e,t="float32"){if(t==="complex64"){let r=Et(e,"float32"),a=Et(e,"float32");return Ca(r,a)}let n=Nh(Nt(e),t);return $.makeTensor(n,e,t)}function Fn(e,t="float32"){if(t==="complex64"){let r=Fn(e,"float32"),a=Et(e,"float32");return Ca(r,a)}let n=Af(Nt(e),t);return $.makeTensor(n,e,t)}function WT(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let r=R(e,"x","meshgrid",e instanceof Le?e.dtype:"float32");if(t===void 0)return[r];let a=R(t,"y","meshgrid",t instanceof Le?t.dtype:"float32"),s=Nt(r.shape),i=Nt(a.shape);return n==="xy"?(r=H(r,[1,-1]),a=H(a,[-1,1]),[Be(Fn([i,1],r.dtype),r),Be(a,Fn([1,s],a.dtype))]):(r=H(r,[-1,1]),a=H(a,[1,-1]),[Be(r,Fn([1,i],r.dtype)),Be(Fn([s,1],a.dtype),a)])}function BT(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(Ms,r,a)}var gl=D({min_:BT});function VT(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=bt(n,r),n.dtype==="bool"&&(n=Ae(n,"int32"),r=Ae(r,"int32")),dt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Fs,a)}var xl=D({minimum_:VT});function jT(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),M(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel($s,i,s)}var vm=D({mirrorPad_:jT});function UT(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=bt(n,r);let a={a:n,b:r};return $.runKernel(Fo,a)}var km=D({mod_:UT});function HT(e){let t=R(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var st=D({square_:HT});function GT(e,t=null,n=!1){e=R(e,"x","moments");let r=sr(t,e.shape),a=vt(e,r,n),s=a.shape;n||(s=yi(a.shape,r));let i=st(ye(Ae(e,"float32"),H(a,s))),o=vt(i,r,n);return{mean:a,variance:o}}var Cd=D({moments_:GT});function qT(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=Wu(n,"c","multiRNNCell"),i=Wu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},c=$.runKernel(Yh,o,l);return i===1?H(c,[c.size]):c}var Xw=D({multinomial_:KT});function ZT(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=bt(n,r),dt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Do,a)}var gi=D({notEqual_:ZT});function YT(e){let t={x:R(e,"x","onesLike")};return $.runKernel(Lo,t)}var $n=D({onesLike_:YT});function JT(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");M(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=H(n,[-1,1]),s=H(r,[1,-1]);return Be(a,s)}var QT=D({outerProduct_:JT});function eE(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(zs,s,a)}var oa=D({pad_:eE});function tE(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),oa(e,[t],n)}var nE=D({pad1d_:tE});function rE(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),oa(e,t,n)}var aE=D({pad2d_:rE});function sE(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),oa(e,t,n)}var iE=D({pad3d_:sE});function oE(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),oa(e,t,n)}var lE=D({pad4d_:oE});function uE(e,t,n){let r=R(e,"x","spaceToBatchND");M(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel(Tu,a,s)}var Ju=D({spaceToBatchND_:uE});function dE(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(Or(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let c=kw(o.shape,t,s,a,r),u=[c.dilationHeight,c.dilationWidth],h;r==="same"?h=hE([c.filterHeight,c.filterWidth],u):h=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[p,m]=cE([c.inHeight,c.inWidth],u,h),f=d?r:"valid",A=d?o:Ju(o,u,p),y=(n==="avg"?()=>Hu(A,t,s,f):()=>Yu(A,t,s,f))(),g=d?y:Gu(y,u,m);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function cE(e,t,n){let r=n.map(u=>u[0]),a=n.map(u=>u[1]),s=e.concat(r,a),i=t.map((u,h)=>(u-s[h]%u)%u),o=a.map((u,h)=>u+i[h]),l=t.map((u,h)=>[r[h],o[h]]),c=t.map((u,h)=>[0,i[h]]);return[l,c]}function hE(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var Kw=D({pool_:dE});function pE(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=bt(n,r);let a={a:n,b:r};return $.runKernel(Ps,a)}var la=D({pow_:pE});function fE(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(Ls,a)}var Qu=D({prelu_:fE});function mE(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=Ae(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(Bo,a,s)}var Rd=D({prod_:mE});function AE(e,t,n){let r=Nt(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},gE=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Im.alea(a.toString()),this.randn=new Sm(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),athis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Im.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function wE(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new gE(t,n,r,a),i=We(e,r);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Dn(t,0)}var CE=D({reverse1d_:EE});function RE(e,t){let n=R(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Dn(n,t)}var ME=D({reverse2d_:RE});function FE(e,t){let n=R(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Dn(n,t)}var $E=D({reverse3d_:FE});function DE(e,t){let n=R(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Dn(n,t)}var OE=D({reverse4d_:DE});function zE(e){let t={x:R(e,"x","round")};return $.runKernel(Us,t)}var Tm=D({round_:zE});function PE(e){let t={x:R(e,"x","rsqrt")};return $.runKernel(Hs,t)}var $d=D({rsqrt_:PE});function ke(e,t){if((tn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&tn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Ra(e,[],[],t)}function LE(e){let t={x:R(e,"x","selu")};return $.runKernel(Go,t)}var Dd=D({selu_:LE});function WE(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),c=R(n,"pointwiseFilter","separableConv2d"),u=o,h=!1;if(o.rank===3&&(h=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),M(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],p=l.shape[3];M(c.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${c.shape[2]}.`);let m=ml(u,l,r,a,i,s),f=ia(m,c,1,"valid",i);return h?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Em=D({separableConv2d_:WE});async function BE(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");M(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let u=0;u`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Re(r,[t],[n])}var Pd=D({slice1d_:HE});function GE(e,t,n){let r=R(e,"x","slice2d");return M(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Rm=D({slice2d_:GE});function qE(e,t,n){let r=R(e,"x","slice3d");return M(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Ld=D({slice3d_:qE});function XE(e,t,n){let r=R(e,"x","slice4d");return M(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var tc=D({slice4d_:XE});function KE(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(Zs,r,a)}var nc=D({softmax_:KE});function ZE(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(jh,t)}var rc=D({fft_:ZE});function YE(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Uh,t)}var bl=D({ifft_:YE});function JE(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=H(e,[n,t]);r=bl(a)}else{let a=[n,2*(t-1)],s=H(ec(e),[n,t]),i=H(kd(e),[n,t]),o=Dn(Re(s,[0,1],[n,t-2]),1),l=B(Dn(Re(i,[0,1],[n,t-2]),1),ke(-1)),c=ot([s,o],1),u=ot([i,l],1),h=H(Ca(c,u),[a[0],a[1]]);r=bl(h)}if(r=ec(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=H(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var Wd=D({irfft_:JE});function QE(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(Yo,r,a)}var ln=D({split_:QE});function eC(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,a=Re(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,a=ot([e,Et(m)],e.shape.length-1),n=t}else a=e;let s=Ue(a),i=H(Ca(a,s),[r,n]),o=rc(i),l=Math.floor(n/2)+1,c=ec(o),u=kd(o),h=ln(c,[l,n-l],c.shape.length-1),d=ln(u,[l,n-l],u.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,H(Ca(h[0],d[0]),p)}var ac=D({rfft_:eC});function tC(e){let t={x:R(e,"x","sqrt")};return $.runKernel(Xs,t)}var Jt=D({sqrt_:tC});function nC(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=bt(n,r),dt(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(Ys,a,s)}var Bd=D({squaredDifference_:nC});function rC(e,t){let n=R(e,"x","squeeze");return H(n,yx(n.shape,t).newShape)}var Pa=D({squeeze_:rC});function aC(e,t=0){let n=Wu(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(Wo,r,a)}var On=D({stack_:aC});function sC(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return $.runKernel(Ea,n,r)}var _l=D({step_:sC});function iC(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let c={x:R(e,"x","stridedSlice")},u={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(Jo,c,u)}var Mm=D({stridedSlice_:iC});function oC(e){let t={x:R(e,"x","tan")};return $.runKernel(Qs,t)}var Fm=D({tan_:oC});function nn(e,t){is(e);let n=$r(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Ra(e,null,n,t)}function Zn(e,t,n){if(is(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=$r(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Ra(e,t,r,n)}function lC(e,t,n){if(is(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=$r(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Ra(e,t,r,n)}function uC(e,t,n){if(is(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=$r(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Ra(e,t,r,n)}function cC(e,t,n){if(is(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=$r(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Ra(e,t,r,n)}function hC(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(Qo,s,i);return{values:o,indices:l}}var $m=D({topk_:hC});function dC(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Sm(t,n,r,!0,a),i=We(e,r);for(let o=0;o0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(ad,r,a);return{values:s,indices:i}}var jd=D({unique_:pC});function fC(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");M(Bt(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(Cu,s,i)}var Dm=D({unsortedSegmentSum_:fC});function mC(e,t=0){let n=R(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(el,r,a)}var ur=D({unstack_:mC});function Jw(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function Qw(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),an(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f"Shape mismatch in v and x");let l=ke(1),c=ye(l,o),u=B(ye(i,s),c);if(a){M(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");u=ge(u,ye(l,la(o,h)))}return se(s,u)}var bC=D({movingAverage_:wC});function _C(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");Hf(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(Uo,s,i)}var tb=D({scatterND_:_C});function vC(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function kC(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);vC(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(nd,o,l)}var zm=D({sparseToDense_:kC});function IC(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return $.runKernel(ko,r)}var nb=D({gatherND_:IC});function SC(e,t){if(t==null)return e.shape.slice();if(na(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Le?a.clone():a;let s=SC(a,n),i=1-t,o=ge(yl(se(wl(s,0,1,"float32",r),i)),i);return B(a,o)}var rb=D({dropout_:NC});function ab(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Pm(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),M(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),an(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];M(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,c]=[i.length/s,s],u=gx("bool",l);for(let h=0;hA.value-f.value),u[h]=0;for(let f=0;fCC,depthwiseConv2d:()=>RC,matMul:()=>MC});function FC(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];M(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),M(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&M(Bt(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(Mh,h,d)}var Lm=D({conv2DBackpropFilter_:FC});function Hd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,_l(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Gd(e,t){let n=t,r=Ot(e.shape,t.shape);return r.length>0&&(n=Ne(n,r)),H(n,e.shape)}function qd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Lr(e);if(t==="elu")return Al(e);if(t==="relu6")return Fd(e);if(t==="prelu")return Qu(e,n);if(t==="leakyrelu")return Ku(e,r);if(t==="sigmoid")return kn(e);throw new Error(`Unknown fused activation ${t}.`)}var Xd=(e,t)=>!(e>0)||t==="linear";function $C({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Xd($.state.gradientDepth,l)===!1){let w=ia(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),qd(w,l,c,u)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&M(Bt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),M(Or(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let f=Uu(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=bt(A,h),dt(f.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused conv2d"));let g=(w,b)=>{let[k,N,C,F]=b,O=Hd(w,C,l);M($a(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let z=um(N.shape,O,k,n,r),V=Lm(N,O,k.shape,n,r),j=[z,V];if(F!=null){let U=Gd(F,O);j.push(U)}return j},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?zr((w,b,k)=>{let N=$.runKernel(ri,x,v);return k([b,w,N]),m&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):zr((w,b,k,N)=>{let C=$.runKernel(ri,x,v);return N([b,w,C,k]),m&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var CC=D({fusedConv2d_:$C});function DC(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(Oh,c,u)}var sb=D({depthwiseConv2dNativeBackpropFilter_:DC});function OC(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(zh,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var ib=D({depthwiseConv2dNativeBackpropInput_:OC});function zC({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Xd($.state.gradientDepth,l)===!1){let w=ml(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),qd(w,l,c,u)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),M(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),M(Or(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&M(Bt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let f=Uu(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=bt(A,h),dt(f.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused depthwiseConv2d"));let g=(w,b)=>{M($a(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[k,N,C,F]=b,O=Hd(w,C,l),z=ib(N.shape,O,k,n,r,s,i),V=sb(N,O,k.shape,n,r,s,i);if(F!=null){let j=Gd(A,O);return[z,V,j]}return[z,V]},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?zr((w,b,k)=>{let N=$.runKernel(ai,x,v);return k([b,w,N]),m&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):zr((w,b,k,N)=>{let C=$.runKernel(ai,x,v);return N([b,w,C,k]),m&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var RC=D({fusedDepthwiseConv2d_:zC});function PC({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Xd($.state.gradientDepth,s)===!1){let F=Be(e,t,n,r);return a!=null&&(F=se(F,a)),qd(F,s,i,o)}let l=R(e,"a","fused matMul"),c=R(t,"b","fused matMul");[l,c]=bt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?c.shape[c.rank-2]:c.shape[c.rank-1],m=l.shape.slice(0,-2),f=c.shape.slice(0,-2),A=Nt(m),y=Nt(f);M(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),M(na(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),M(u===h,()=>`Error in fused matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),x=n?H(l,[A,u,d]):H(l,[A,d,u]),v=r?H(c,[y,p,h]):H(c,[y,h,p]),w;a!=null&&(w=R(a,"bias","fused matMul"),[w]=bt(w,l),dt(g,w.shape));let b;i!=null&&(b=R(i,"prelu weights","fused matMul"));let k=(F,O)=>{let[z,V,j,U]=O,X=Hd(H(F,j.shape),j,s),G,ee;if(!n&&!r?(G=Be(X,V,!1,!0),ee=Be(z,X,!0,!1)):!n&&r?(G=Be(X,V,!1,!1),ee=Be(X,z,!0,!1)):n&&!r?(G=Be(V,X,!1,!0),ee=Be(z,X,!1,!1)):(G=Be(V,X,!0,!0),ee=Be(X,z,!0,!0)),a!=null){let Y=Gd(U,X);return[G,ee,Y]}else return[G,ee]},N={a:x,b:v,bias:w,preluActivationWeights:b},C={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?zr((F,O,z)=>{let V=$.runKernel(ni,N,C);return z([F,O,V]),{value:H(V,g),gradFunc:k}})(x,v):zr((F,O,z,V)=>{let j=$.runKernel(ni,N,C);return V([F,O,j,z]),{value:H(j,g),gradFunc:k}})(x,v,w)}var MC=D({fusedMatMul_:PC});function LC(e){return Pm(e,.54,.46)}var WC=D({hammingWindow_:LC});function BC(e){return Pm(e,.5,.5)}var ob=D({hannWindow_:BC});function VC(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(r)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),M(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),M(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),M(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),M(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let u={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(mo,u,h)}var GC=D({cropAndResize_:HC});function qC(e){let t=R(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(_o,n,{})}var XC=D({flipLeftRight_:qC});function KC(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");M(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(nl,s,i)}var ZC=D({rotateWithOffset_:KC});function vl(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),M(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),M(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function YC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=vl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(Oo,{boxes:s,scores:i},l)}var JC=D({nonMaxSuppression_:YC});function eR(e,t,n){let r=QC(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function QC(e,t,n){return nR(e,t,n||tR)}function tR(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function ub(e,t,n,r,a){return Wm(e,t,n,r,a,0)}function cb(e,t,n,r,a,s){return Wm(e,t,n,r,a,0,!1,s,!0)}function hb(e,t,n,r,a,s){return Wm(e,t,n,r,a,s,!0)}function Wm(e,t,n,r,a,s,i=!1,o=!1,l=!1){let c=[];for(let A=0;Aa&&c.push({score:t[A],boxIndex:A,suppressBeginIndex:0});c.sort(db);let u=s>0?-.5/s:0,h=[],d=[];for(;h.length0;){let A=c.pop(),{score:y,boxIndex:g,suppressBeginIndex:x}=A;if(y=x;--w){let b=rR(e,g,h[w]);if(b>=r){v=!0;break}if(A.score=A.score*aR(r,u,b),A.score<=a)break}A.suppressBeginIndex=h.length,v||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&eR(c,A,db))}let p=h.length,m=n-p;o&&m>0&&(h.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:h};return i&&(f.selectedScores=d),l&&(f.validOutputs=p),f}function rR(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),c=Math.min(a[0],a[2]),u=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),m=(h-c)*(d-u);if(p<=0||m<=0)return 0;let f=Math.max(s,c),A=Math.max(i,u),y=Math.min(o,h),g=Math.min(l,d),x=Math.max(y-f,0)*Math.max(g-A,0);return x/(p+m-x)}function aR(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function db(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function sR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=vl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:h}=ub(c,u,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),nn(h,"int32")}var iR=sR;function oR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=vl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(Po,c,u);return{selectedIndices:h[0],selectedScores:h[1]}}var lR=D({nonMaxSuppressionWithScore_:oR});async function uR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=vl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],h=c[1],{selectedIndices:d,selectedScores:p}=hb(u,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:nn(d,"int32"),selectedScores:nn(p)}}var cR=uR;function hR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=vl(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:c,iouThreshold:u,scoreThreshold:h,padToMaxOutputSize:s},m=$.runKernel(zo,d,p);return{selectedIndices:m[0],validOutputs:m[1]}}var dR=D({nonMaxSuppressionPadded_:hR});async function pR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=vl(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=cb(d,p,c,u,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:nn(m,"int32"),validOutputs:ke(f,"int32")}}var fR=pR;function mR(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");M(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Bs,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var pb=D({resizeBilinear_:mR});function AR(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");M(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Nu,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var fb=D({resizeNearestNeighbor_:AR});function yR(e,t,n="nearest",r="constant",a=0,s){let i=R(e,"image","transform","float32"),o=R(t,"transforms","transform","float32");M(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},c={interpolation:n,fillMode:r,fillValue:a,outputShape:s};return $.runKernel(rd,l,c)}var gR=D({transform_:yR});function xR(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");M(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(Md(0,s,1,"int32"),[-1,1]),l=Md(0,i,1,"int32"),c=ye(o,l),u=lr(mi(c,ke(+t,"int32")),za(c,ke(-n,"int32"))),h=Et([s,i],r.dtype);return H(On(ur(H(r,[-1,s,i])).map(d=>Sn(u,d,h))),a)}var wR=D({bandPart_:xR});function bR(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=ln(e,e.shape[0],0).map(a=>Pa(a,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a{let s=r[a];if(a>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return mb(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),r=ur(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[c,u]=mb(l,t);a.push(c),s.push(u)});let i=H(On(a,0),e.shape),o=H(On(s,0),e.shape);return[i,o]}}function mb(e,t=!1){return $.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Am(n),s=Dr(e),i=Zn([[1]],[1,1]),o=Dr(i),l=n>=r?r:n;for(let c=0;c{let p=Re(s,[c,c],[n-c,1]),m=Ud(p),f=Re(s,[c,c],[1,1]),A=Sn(or(f,0),Zn([[-1]]),Zn([[1]])),y=ye(f,B(A,m)),g=ge(p,y);g.shape[0]===1?o=Dr(i):o=ot([i,Re(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let x=_t(ge(Be(A,y),m)),v=Re(s,[c,0],[n-c,r]),w=B(x,o),b=Ze(o);if(c===0)s=ye(v,Be(w,Be(b,v)));else{let C=ye(v,Be(w,Be(b,v)));s=ot([Re(s,[0,0],[c,r]),C],0)}let k=Ze(w),N=Re(a,[0,c],[n,a.shape[1]-c]);if(c===0)a=ye(N,Be(Be(N,o),k));else{let C=ye(N,Be(Be(N,o),k));a=ot([Re(a,[0,0],[n,c]),C],1)}return[o,s,a]}),Te([u,h,d])}return!t&&n>r&&(a=Re(a,[0,0],[n,r]),s=Re(s,[0,0],[r,r])),[a,s]})}var kR=D({qr_:vR}),un;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(un||(un={}));function IR(e,t,n=un.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:B(r,a);if(n===un.NONE)return s;if(n===un.SUM)return Ne(s);if(n===un.MEAN){if(a==null)return vt(s);{let i=r.size/a.size,o=ge(Ne(s),Ne(a));return i>1?ge(o,ke(i)):o}}if(n===un.SUM_BY_NONZERO_WEIGHTS){if(a==null)return ge(Ne(s),ke(r.size));{let i=B(a,Fn(r.shape)),o=Ae(Ne(gi(i,ke(0))),"float32");return ge(Ne(s),o)}}throw Error(`Unknown reduction: ${n}`)}var ua=D({computeWeightedLoss_:IR});function SR(e,t,n,r=un.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),an(a.shape,s.shape,"Error in absoluteDifference: ");let o=Dt(ye(a,s));return ua(o,i,r)}var NR=D({absoluteDifference_:SR});function TR(e,t,n,r,a=un.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),an(s.shape,i.shape,"Error in cosineDistance: ");let l=ke(1),c=ye(l,Ne(B(s,i),n,!0));return ua(c,o,a)}var ER=D({cosineDistance_:TR});function CR(e,t,n,r=un.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),an(a.shape,s.shape,"Error in hingeLoss: ");let o=ke(1);a=ye(B(ke(2),a),o);let l=Lr(ye(o,B(a,s)));return ua(l,i,r)}var RR=D({hingeLoss_:CR});function MR(e,t,n,r=1,a=un.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),an(s.shape,i.shape,"Error in huberLoss: ");let l=ke(r),c=Dt(ye(i,s)),u=xl(c,l),h=ye(c,u),d=se(B(ke(.5),st(u)),B(l,h));return ua(d,o,a)}var FR=D({huberLoss_:MR});function $R(e,t,n,r=1e-7,a=un.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),an(s.shape,i.shape,"Error in logLoss: ");let l=ke(1),c=ke(r),u=_t(B(s,Mn(se(i,c)))),h=B(ye(l,s),Mn(se(ye(l,i),c))),d=ye(u,h);return ua(d,o,a)}var DR=D({logLoss_:$R});function OR(e,t,n,r=un.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),an(a.shape,s.shape,"Error in meanSquaredError: ");let o=Bd(a,s);return ua(o,i,r)}var zR=D({meanSquaredError_:OR});function PR(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");an(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Lr(r),s=B(r,n),i=Sd(Xn(_t(Dt(r))));return se(ye(a,s),i)}function LR(e,t,n,r=0,a=un.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),an(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let c=ke(r),u=ke(1),h=ke(.5);s=se(B(s,ye(u,c)),B(h,c))}let l=PR(s,i);return ua(l,o,a)}var WR=D({sigmoidCrossEntropy_:LR});function BR(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return zr((r,a,s)=>{let i=bm(a,[n],!0),o=ye(Ae(a,"float32"),i);s([r,o]);let l=_t(B(o,r));return{value:Ne(l,[n]),gradFunc:(c,u)=>{let[h,d]=u,p=yi(c.shape,[n]);return[B(H(c,p),ye(Ae(h,"float32"),Xn(d))),B(H(c,p),ye(Xn(d),Ae(h,"float32")))]}}})(e,t)}function VR(e,t,n,r=0,a=un.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),an(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let c=ke(r),u=ke(1),h=ke(s.shape[1]);s=se(B(s,ye(u,c)),ge(c,h))}let l=BR(s,i);return ua(l,o,a)}var jR=D({softmaxCrossEntropy_:VR});function UR(e,t,n){let r=R(e,"inputIndices","sparseReshape"),a=R(t,"inputShape","sparseReshape"),s=R(n,"newShape","sparseReshape");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape + ${r.shape}`);if(a.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${a.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:r,inputShape:a,newShape:s},o=$.runKernel(td,i);return{outputIndices:o[0],outputShape:o[1]}}var HR=D({sparseReshape_:UR}),GR={fft:rc,ifft:bl,rfft:ac,irfft:Wd},qR={hammingWindow:WC,hannWindow:ob,frame:lb,stft:UC},Ye={flipLeftRight:XC,resizeNearestNeighbor:fb,resizeBilinear:pb,rotateWithOffset:ZC,cropAndResize:GC,nonMaxSuppression:JC,nonMaxSuppressionAsync:iR,nonMaxSuppressionWithScore:lR,nonMaxSuppressionWithScoreAsync:cR,nonMaxSuppressionPadded:dR,nonMaxSuppressionPaddedAsync:fR,transform:gR},Ab={bandPart:wR,gramSchmidt:_R,qr:kR},XR={absoluteDifference:NR,computeWeightedLoss:ua,cosineDistance:ER,hingeLoss:RR,huberLoss:FR,logLoss:DR,meanSquaredError:zR,sigmoidCrossEntropy:WR,softmaxCrossEntropy:jR},yb={sparseReshape:HR},ca=class extends gw{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Te(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Bw(e,t)}dispose(){this.iterations_!=null&&Te(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ke(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ca,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Kd=class extends ca{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:L(()=>Ue(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:L(()=>Ue(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;L(()=>{let l=se(B(i,this.rho),B(st(s),1-this.rho)),c=B(ge(Jt(se(o,this.epsilon)),Jt(se(i,this.epsilon))),s),u=se(B(o,this.rho),B(st(c),1-this.rho));i.assign(l),o.assign(u);let h=se(B(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Te(this.accumulatedGrads.map(e=>e.variable)),Te(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Kd.className="Adadelta";Fa(Kd);var Zd=class extends ca{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:L(()=>Xu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;L(()=>{let i=se(s,st(a));s.assign(i);let o=se(B(ge(a,Jt(se(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Te(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Zd.className="Adagrad";Fa(Zd);var Yd=class extends ca{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],L(()=>{this.accBeta1=ke(t).variable(),this.accBeta2=ke(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);L(()=>{let n=ye(1,this.accBeta1),r=ye(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:L(()=>Ue(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:L(()=>Ue(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,h=se(B(c,this.beta1),B(l,1-this.beta1)),d=se(B(u,this.beta2),B(st(l),1-this.beta2)),p=ge(h,n),m=ge(d,r);c.assign(h),u.assign(d);let f=se(B(ge(p,se(Jt(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Te(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),L(()=>{this.accBeta1.assign(la(this.beta1,this.iterations_+1)),this.accBeta2.assign(la(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Yd.className="Adam";Fa(Yd);var Jd=class extends ca{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],L(()=>{this.iteration=ke(0).variable(),this.accBeta1=ke(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);L(()=>{let n=ye(1,this.accBeta1),r=ge(-this.learningRate,se(B(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:Ue(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:Ue(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,h=se(B(c,this.beta1),B(l,1-this.beta1)),d=B(u,this.beta2),p=Dt(l),m=Pr(d,p);c.assign(h),u.assign(m);let f=se(B(ge(r,n),ge(h,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Te(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Jd.className="Adamax";Fa(Jd);var sc=class extends ca{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];L(()=>{let s=se(B(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Vt(ke(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};sc.className="SGD";Fa(sc);var Qd=class extends sc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ke(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:L(()=>Ue(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&L(()=>{let i,o=se(B(this.m,a),s);this.useNesterov?i=se(B(this.c,se(s,B(o,this.m))),r):i=se(B(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Te(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Qd.className="Momentum";Fa(Qd);var ep=class extends ca{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:L(()=>Ue(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:L(()=>Ue(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:L(()=>Ue(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;L(()=>{let l=se(B(i,this.decay),B(st(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=se(B(c,this.decay),B(s,1-this.decay)),h=ge(B(s,this.learningRate),Jt(ye(l,se(st(u),this.epsilon)))),d=se(B(o,this.momentum),h);i.assign(l),c.assign(u),o.assign(d);let p=ye(r,d);r.assign(p)}else{let c=se(B(i,this.decay),B(st(s),1-this.decay)),u=se(B(o,this.momentum),ge(B(s,this.learningRate),Jt(se(c,this.epsilon))));i.assign(c),o.assign(u);let h=ye(r,u);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Te(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Te(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Te(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};ep.className="RMSProp";Fa(ep);var xi=class{static sgd(e){return new sc(e)}static momentum(e,t,n=!1){return new Qd(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new ep(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new Yd(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new Kd(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new Jd(e,t,n,r,a)}static adagrad(e,t=.1){return new Zd(e,t)}},wi={sgd:xi.sgd,momentum:xi.momentum,adadelta:xi.adadelta,adagrad:xi.adagrad,rmsprop:xi.rmsprop,adamax:xi.adamax,adam:xi.adam},KR=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function tp(){return new Promise(e=>KR(()=>e()))}var E={};Me(E,{ERF_A1:()=>iM,ERF_A2:()=>oM,ERF_A3:()=>lM,ERF_A4:()=>uM,ERF_A5:()=>cM,ERF_P:()=>sM,PARALLELIZE_THRESHOLD:()=>Bm,SELU_SCALE:()=>xb,SELU_SCALEALPHA:()=>gb,applyActivation:()=>qd,assertAndGetBroadcastShape:()=>dt,assertAxesAreInnerMostDims:()=>TT,assertParamsConsistent:()=>ZR,assignToTypedArray:()=>gM,axesAreInnerMostDims:()=>xm,calculateShapes:()=>iw,checkEinsumDimSizes:()=>vM,combineLocations:()=>jw,complexWithEvenIndex:()=>mM,complexWithOddIndex:()=>AM,computeConv2DInfo:()=>Uu,computeConv3DInfo:()=>Iw,computeDefaultPad:()=>im,computeDilation2DInfo:()=>JS,computeOptimalWindowSize:()=>JR,computeOutAndReduceShapes:()=>Uw,computeOutShape:()=>YR,computePool2DInfo:()=>kw,computePool3DInfo:()=>QS,convertConv2DDataFormat:()=>vw,decodeEinsumEquation:()=>bM,eitherStridesOrDilationsAreOne:()=>Or,expandShapeToKeepDim:()=>yi,exponent:()=>wM,exponents:()=>xM,fromStringArrayToUint8:()=>TM,fromUint8ToStringArray:()=>NM,getAxesPermutation:()=>Hw,getBroadcastDims:()=>jN,getComplexWithIndex:()=>yM,getEinsumComputePath:()=>kM,getEinsumPermutation:()=>_M,getFusedBiasGradient:()=>Gd,getFusedDyActivation:()=>Hd,getImageCenter:()=>QR,getInnerMostAxes:()=>ET,getPermuted:()=>tM,getReductionAxes:()=>Ot,getReshaped:()=>eM,getReshapedPermuted:()=>nM,getSliceBeginCoords:()=>rM,getSliceSize:()=>aM,getUndoAxesPermutation:()=>wm,isIdentityPermutation:()=>IM,log:()=>dM,mergeRealAndImagArrays:()=>pM,prepareAndValidate:()=>sw,prepareSplitSize:()=>SM,segment_util:()=>wb,shouldFuse:()=>Xd,slice_util:()=>sn,splitRealAndImagArrays:()=>fM,tupleValuesAreOne:()=>$a,upcastType:()=>ir,validateInput:()=>Hf,validateUpdateShape:()=>Uf,warn:()=>hM});function ZR(e,t){let n=e[0].length;e.forEach((a,s)=>{M(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function YR(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function nM(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s/g,bb=",",_b="...";function bM(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(EM,"").length)/Vm.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${Vm}").`);let[r,a]=e.split(Vm);M(r.indexOf(_b)===-1,()=>`The ellipsis notation ("${_b}") is not supported yet.`);let s=r.split(bb),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let d=0;dm.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);o.indexOf(p)===-1&&o.push(p)}for(let d=0;da!==-1),{permutationIndices:n,expandDims:r}}function vM(e,t,n){let r=new Array(e);for(let a=0;a`Expected dimension ${r[t[a][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function kM(e,t){let n=e,r=[],a=0;e.length===0&&n.push(-1),a=e.length+1;for(let i=0;it===n)}function CM(e,t){let n=[];for(let r=0;r"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);M(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}M(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var wb={};Me(wb,{collectGatherOpShapeInfo:()=>FM,computeOutShape:()=>MM,segOpComputeOptimalWindowSize:()=>RM});function RM(e,t){let n=!1,r;for(e<=Bm?(r=e,n=!0):r=Sh(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Sh(e,r+1);return r}function MM(e,t,n){let r=[],a=e.length;for(let s=0;sa))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) ( + ${s}).`);if(nld(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function TM(e){return e.map(t=>Fu(t))}var Wr={};Me(Wr,{nonMaxSuppressionV3Impl:()=>ub,nonMaxSuppressionV4Impl:()=>cb,nonMaxSuppressionV5Impl:()=>hb,whereImpl:()=>Qw});function be(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var $M=Wr.whereImpl,np=class extends du{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new kh(this,aa())}nextDataId(){return np.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&E.warn(` ============================ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. -============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return ca().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){_e([e],"where");let t=this.readSync(e.dataId);return rF(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};op.nextDataId=0;var eA={};Me(eA,{addImpl:()=>Gw,bincountImpl:()=>tA,bincountReduceImpl:()=>qw,ceilImpl:()=>Xw,concatImpl:()=>nA,expImpl:()=>Kw,expm1Impl:()=>Zw,floorImpl:()=>Yw,gatherV2Impl:()=>Jw,greaterImpl:()=>Qw,lessImpl:()=>e_,linSpaceImpl:()=>t_,logImpl:()=>n_,maxImpl:()=>r_,maximumImpl:()=>a_,minimumImpl:()=>s_,multiplyImpl:()=>rA,negImpl:()=>i_,notEqualImpl:()=>o_,prodImpl:()=>l_,rangeImpl:()=>sA,rsqrtImpl:()=>u_,simpleAbsImpl:()=>Hw,sliceImpl:()=>lp,sparseReshapeImpl:()=>c_,squaredDifferenceImpl:()=>h_,stridedSliceImpl:()=>d_,subImpl:()=>p_,tileImpl:()=>f_,topKImpl:()=>m_,transposeImpl:()=>aA,uniqueImpl:()=>A_});function Hw(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;_e(t,"abs");let r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=Hw(a),n.makeOutput(r,t.shape,"float32")},sF={kernelName:lo,backendName:"cpu",kernelFunc:aF};function Mt(e){return(t,n,r,a,s)=>{let i=E.assertAndGetBroadcastShape(t,n),o=i.length,l=_.computeStrides(i),c=_.sizeFromShape(i),u=_.getTypedArrayFromDType(s,c),h=t.length,d=n.length,p=_.computeStrides(t),m=_.computeStrides(n),f=E.getBroadcastDims(t,i),A=E.getBroadcastDims(n,i);if(f.length+A.length===0)for(let y=0;yx[k]=0);let v=_.locToIndex(x,h,p),b=g.slice(-d);A.forEach(k=>b[k]=0);let w=_.locToIndex(b,d,m);u[y]=e(r[v],a[w])}return[u,i]}}function Bn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var iF={kernelName:zh,backendName:"cpu",kernelFunc:Bn};function up(e,t,n="float32"){if(n==="complex64"){let a=up(e,t,"float32"),s=up(e,t,"float32");return Bn({inputs:{real:a,imag:s},backend:e})}let r=_.makeZerosTypedArray(_.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function qr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var oF={kernelName:Cs,backendName:"cpu",kernelFunc:qr};function Ni(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var lF={kernelName:ad,backendName:"cpu",kernelFunc:Ni};function Ga(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return qr({inputs:{x:a},backend:n});let i=up(n,a.shape,a.dtype),o=Ga({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Bn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Ni({inputs:{input:a},backend:n}),o=Ga({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=qr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=_.toTypedArray([0],a.dtype),[l,c]=Mt((u,h)=>u!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var uF={kernelName:ys,backendName:"cpu",kernelFunc:Ga};function Gt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;_e([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=Ga({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),h=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,p=l.data.get(h.dataId).values,m=l.data.get(d.dataId).values,f=Ga({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(g.dataId).values,[b,w,k]=n(i.shape,o.shape,p,m,x,v),N=l.makeTensorInfo(k,"float32",b),C=l.makeTensorInfo(k,"float32",w),F=Bn({inputs:{real:N,imag:C},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo(C),F}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}}}function iA(e){return(t,n,r,a,s,i)=>{let o=E.assertAndGetBroadcastShape(t,n),l=_.sizeFromShape(o),c=o.length,u=_.computeStrides(o),h=_.getTypedArrayFromDType("float32",l),d=_.getTypedArrayFromDType("float32",l),p=E.getBroadcastDims(t,o),m=E.getBroadcastDims(n,o),f=E.mergeRealAndImagArrays(r,a),A=E.mergeRealAndImagArrays(s,i),y=t.length,g=_.computeStrides(t),x=n.length,v=_.computeStrides(n);if(p.length+m.length===0)for(let b=0;bk[L]=0);let N=_.locToIndex(k,y,g),C=w.slice(-x);m.forEach(L=>C[L]=0);let F=_.locToIndex(C,x,v),O=e(f[N*2],f[N*2+1],A[F*2],A[F*2+1]);h[b]=O.real,d[b]=O.imag}return[h,d,o]}}var Gw=Mt((e,t)=>e+t),cF=iA((e,t,n,r)=>({real:e+n,imag:t+r})),hc=Gt(Ra,Gw,cF),hF={kernelName:Ra,backendName:"cpu",kernelFunc:hc};function tA(e,t,n,r,a){let s=_.sizeFromShape(r),i=_.makeZerosTypedArray(a,n);for(let o=0;o=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function qw(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Be([a,n],t.dtype);for(let o=0;o=n||(r?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function Cl(e){return(t,n,r)=>{let a=_.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=r;if(_e(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=_.sizeFromShape(i.shape),u=n||i.dtype,h=_.getArrayFromDType(u,c);for(let d=0;d{let{x:i}=r;if(_e(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,a);return o.makeTensorInfo(i.shape,c,u)}}var Xw=Cl(e=>Math.ceil(e)),dF=Rl(gs,Xw),pF={kernelName:gs,backendName:"cpu",kernelFunc:dF};function nA(e,t,n,r){let a=_.getArrayFromDType(n,_.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=_.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?E.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;cMath.exp(e)),y_=Rl(Is,Kw),fF={kernelName:Is,backendName:"cpu",kernelFunc:y_},Zw=Cl(e=>Math.expm1(e)),mF=Rl(No,Zw),AF={kernelName:No,backendName:"cpu",kernelFunc:mF},Yw=Cl(e=>Math.floor(e)),yF=Rl(Ss,Yw),gF={kernelName:Ss,backendName:"cpu",kernelFunc:yF};function Jw(e,t,n){let r=Be(n,e.dtype);for(let a=0;ae>t?1:0),xF=Gt(Ro,Qw,null,"bool"),bF={kernelName:Ro,backendName:"cpu",kernelFunc:xF},e_=Mt((e,t)=>eMath.log(e)),vF=Rl(Ms,n_),kF={kernelName:Ms,backendName:"cpu",kernelFunc:vF};function r_(e,t,n,r){let a=_.getTypedArrayFromDType(r,_.sizeFromShape(n));for(let s=0;so&&(o=c)}a[s]=o}return a}var a_=Mt((e,t)=>Math.max(e,t)),IF=Gt($s,a_),SF={kernelName:$s,backendName:"cpu",kernelFunc:IF},s_=Mt((e,t)=>Math.min(e,t)),NF=Gt(Ps,s_),TF={kernelName:Ps,backendName:"cpu",kernelFunc:NF},rA=Mt((e,t)=>e*t),EF=iA((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),cp=Gt(Ws,rA,EF),CF={kernelName:Ws,backendName:"cpu",kernelFunc:cp};function i_(e,t,n){let r=_.createScalarValue(-1,n);return rA([],t,r,e,n)}function RF(e){let{inputs:t,backend:n}=e,{x:r}=t;_e(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=i_(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var MF={kernelName:Wo,backendName:"cpu",kernelFunc:RF},o_=Mt((e,t)=>e!==t?1:0),FF=Gt(Bo,o_,null,"bool"),$F={kernelName:Bo,backendName:"cpu",kernelFunc:FF};function aA(e,t,n,r,a){let s=t.length,i=_.sizeFromShape(t),o=_.computeStrides(t),l=_.computeStrides(a),c=_.getTypedArrayFromDType(n,_.sizeFromShape(a));for(let u=0;un.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,m)}var zF={kernelName:qo,backendName:"cpu",kernelFunc:OF};function sA(e,t,n,r){let a=e===t,s=e1;if(a||s||i)return _.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=_.makeZerosTypedArray(o,r);t1/Math.sqrt(e)),PF=Rl(Zs,u_),LF={kernelName:Zs,backendName:"cpu",kernelFunc:PF};function lp(e,t,n,r,a){let s=un.isSliceContinous(r,t,n),i=_.sizeFromShape(n),o=_.computeStrides(r);if(s){let h=un.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?E.fromUint8ToStringArray(e):e,c=Be(r,a,l),u=Be(n,a);for(let h=0;hm+t[f]);u.set(c.get(...p),...d)}return a==="string"?E.fromStringArrayToUint8(u.values):u.values}function Ti(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;_e(a,"slice");let[o,l]=un.parseSliceParams(a,s,i);un.assertParamsValid(a,o,l);let c=n.data.get(a.dataId).values,u=lp(c,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,u)}var WF={kernelName:Qo,backendName:"cpu",kernelFunc:Ti};function c_(e,t,n,r,a){let s=_.sizeFromShape(r),i=t[0],o=a.length,l=[],c=1,u=-1;for(let A=0;A0){p[d-1]=1;for(let A=d-2;A>=0;--A)p[A]=p[A+1]*r[A+1]}let m=[];if(o>0){m[o-1]=1;for(let A=o-2;A>=0;--A)m[A]=m[A+1]*l[A+1]}let f=_.getArrayFromDType(n,i*o);for(let A=0;A{let n=e-t;return n*n}),BF=Gt(ni,h_),VF={kernelName:ni,backendName:"cpu",kernelFunc:BF};function d_(e,t,n,r){let a=Be(e,t.dtype);for(let s=0;se-t),jF=iA((e,t,n,r)=>({real:e-n,imag:t-r})),oA=Gt(ri,p_,jF),UF={kernelName:ri,backendName:"cpu",kernelFunc:oA};function f_(e,t){let n=new Array(e.rank);for(let a=0;ax.value-g.value);let f=h*r,A=l.subarray(f,f+r),y=c.subarray(f,f+r);for(let g=0;g{for(let A=0;Anew op,1);var x_=rt(vo,e=>e>=0?e:Math.exp(e)-1),HF={kernelName:vo,backendName:"cpu",kernelFunc:x_};function b_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;_e([a],"leakyRelu");let i=_.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=_.getTypedArrayFromDType("float32",i);for(let c=0;ce<0?t*e:e);function w_(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;_e([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=qF(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var XF={kernelName:Us,backendName:"cpu",kernelFunc:w_},__=rt(Hs,e=>Math.max(0,e)),KF={kernelName:Hs,backendName:"cpu",kernelFunc:__},v_=rt(qs,e=>Math.min(Math.max(0,e),6)),ZF={kernelName:qs,backendName:"cpu",kernelFunc:v_},k_=rt(Js,e=>1/(1+Math.exp(-e))),YF={kernelName:Js,backendName:"cpu",kernelFunc:k_};function lA(e,t,n,r,a){if(n==="linear")return qr({inputs:{x:t},backend:e});if(n==="relu")return __({inputs:{x:t},backend:e});if(n==="elu")return x_({inputs:{x:t},backend:e});if(n==="relu6")return v_({inputs:{x:t},backend:e});if(n==="prelu")return w_({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return b_({inputs:{x:t},backend:e,attrs:{alpha:a}});if(n==="sigmoid")return k_({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function mt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=_.sizeFromShape(a.shape),o=_.inferFromImplicitShape(s,i),l=_.sizeFromShape(o);_.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let c=n.data.get(a.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,h=c.complexTensorInfos.imag;u.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var JF={kernelName:Ko,backendName:"cpu",kernelFunc:mt};function I_(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;_e([a,s],"matMul");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=_.sizeFromShape(m),y=_.sizeFromShape(f),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],b=o?[y,p,h]:[y,h,p],w=mt({inputs:{x:a},backend:n,attrs:{shape:v}}),k=mt({inputs:{x:s},backend:n,attrs:{shape:b}}),N=i?w.shape[1]:w.shape[2],C=i?w.shape[2]:w.shape[1],F=o?k.shape[1]:k.shape[2],O=Math.max(A,y),L=n.data.get(w.dataId).values,V=n.data.get(k.dataId).values,j=_.computeStrides(w.shape),U=_.computeStrides(k.shape),[X,G,ee]=i?[j[0],1,j[1]]:[j[0],j[1],1],[Y,ae,te]=o?[1,U[1],U[0]]:[U[1],1,U[0]],ie=C*F,Q=Be([O,C,F],w.dtype),he=Q.values,oe=n.blockSize;for(let me=0;meMath.acos(e)),r$={kernelName:uo,backendName:"cpu",kernelFunc:n$},a$=rt(co,e=>Math.acosh(e)),s$={kernelName:co,backendName:"cpu",kernelFunc:a$};function i$(e){let{inputs:t,backend:n}=e,r=t;_e(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Be(r[0].shape,r[0].dtype),i=s.values;for(let o=0;og&&(g=b,x=v)}p[A]=x}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var p$={kernelName:fs,backendName:"cpu",kernelFunc:d$};function f$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;_e(a,"argMin");let i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=nr({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],E.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,h]=E.computeOutAndReduceShapes(l.shape,i),d=_.sizeFromShape(u),p=_.makeZerosTypedArray(d,"int32"),m=_.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let A=0;An.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var m$={kernelName:wu,backendName:"cpu",kernelFunc:f$},A$=rt(fo,e=>Math.asin(e)),y$={kernelName:fo,backendName:"cpu",kernelFunc:A$},g$=rt(mo,e=>Math.asinh(e)),x$={kernelName:mo,backendName:"cpu",kernelFunc:g$},b$=rt(Ao,e=>Math.atan(e)),w$={kernelName:Ao,backendName:"cpu",kernelFunc:b$},_$=Mt((e,t)=>Math.atan2(e,t)),v$=Gt(go,_$),k$={kernelName:go,backendName:"cpu",kernelFunc:v$},I$=rt(yo,e=>Math.atanh(e)),S$={kernelName:yo,backendName:"cpu",kernelFunc:I$};function uA(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,c=a.dilationWidth,u=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Be(a.outShape,n),A=f.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],x=a.outShape[3];for(let v=0;vG?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let ae=L+V*x+k;A[ae]=s==="avg"?ee/Y:G}}}return f}function S_(e,t,n,r,a=!1,s=!1){let i=Be(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,c=r.dilationHeight,u=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,m=r.padInfo.left,f=Be(t,n,e);for(let A=0;AF&&(F=X,a?O=s?((A*r.inHeight+L)*r.inWidth+j)*r.inChannels+y:(L*r.inWidth+j)*r.inChannels+y:O=V*d+U)}}i.set(O,A,g,w,y)}}return i}function N_(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,c=a.dilationDepth,u=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,m=a.effectiveFilterWidth,f=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Be(a.outShape,n),v=x.values,b=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],w=a.outShape[2]*a.outShape[3]*a.outShape[4],k=a.outShape[3]*a.outShape[4],N=a.outShape[4];for(let C=0;CIe?Ie=je:s==="avg"&&(Se+=je,Fe++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let Oe=pe+L;v[Oe]=s==="avg"?Se/Fe:Ie}}}}return x}function N$(e,t){let n=Be(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,m=t.padInfo.left;for(let f=0;f=V&&(V=te,j=X*u*h+ee*u+ae)}}}n.set(j,f,y,b,C,A)}}}return n}function T$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;_e(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=qr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),m=uA(d,a.shape,a.dtype,p,u,"avg");h=n.makeTensorInfo(u.outShape,a.dtype,m.values)}return h}var E$={kernelName:ms,backendName:"cpu",kernelFunc:T$};function C$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;_e(a,"avgPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=N_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var R$={kernelName:_u,backendName:"cpu",kernelFunc:C$};function M$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;_e([a,s],"avgPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=u.strideDepth,d=u.strideHeight,p=u.strideWidth,m=u.filterDepth,f=u.filterHeight,A=u.filterWidth,y=u.dilationDepth,g=u.dilationHeight,x=u.dilationWidth,v=u.effectiveFilterDepth,b=u.effectiveFilterHeight,w=u.effectiveFilterWidth,k=v-1-u.padInfo.front,N=w-1-u.padInfo.left,C=b-1-u.padInfo.top,F=Be(s.shape,"float32"),O=1/(m*f*A),L=n.bufferSync(a);for(let V=0;V=u.outDepth||Math.floor(Q)!==Q))for(let he=0;he=u.outHeight||Math.floor(oe)!==oe))for(let me=0;me=u.outWidth||Math.floor(pe)!==pe||(te+=L.get(V,Q,oe,pe,j))}}}F.set(te*O,V,U,X,G,j)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var F$={kernelName:Dh,backendName:"cpu",kernelFunc:M$};function $$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;_e([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=u.strideHeight,d=u.strideWidth,p=u.filterHeight,m=u.filterWidth,f=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,x=g-1-u.padInfo.left,v=y-1-u.padInfo.top,b=Be(i.shape,"float32"),w=1/(p*m),k=n.data.get(a.dataId).values,N=Be(a.shape,"float32",k);for(let C=0;C=u.outHeight||Math.floor(G)!==G))for(let ee=0;ee=u.outWidth||Math.floor(Y)!==Y||(U+=N.get(C,G,Y,F))}}b.set(U*w,C,O,L,F)}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var D$={kernelName:$h,backendName:"cpu",kernelFunc:$$};function O$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;_.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),_e([a,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=r;c==null&&(c=.001);let u=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(u.length),A=m.length,y=p.length,g=d.length,x=h.length,v=0,b=0,w=0,k=0;for(let N=0;N=A&&(v=0),b>=x&&(b=0),w>=y&&(w=0),k>=g&&(k=0);return n.makeTensorInfo(a.shape,a.dtype,f)}var z$={kernelName:Ts,backendName:"cpu",kernelFunc:O$};function P$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_e([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=mt({inputs:{x:a},backend:n,attrs:{shape:l}}),m=nr({inputs:{x:p},backend:n,attrs:{perm:c}}),f=mt({inputs:{x:m},backend:n,attrs:{shape:u}}),A=Ti({inputs:{x:f},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var L$={kernelName:vu,backendName:"cpu",kernelFunc:P$};function W$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,c=tA(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var B$={kernelName:Oh,backendName:"cpu",kernelFunc:W$},V$=rt(Ma,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;cf.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>_.sizeFromShape(f.shape)>0);if(o.length===1)return qr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(E.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>Ni({inputs:{input:v},backend:n})),A=o.map(v=>Ml({inputs:{input:v},backend:n})),y=Fl({inputs:f,backend:n,attrs:{axis:s}}),g=Fl({inputs:A,backend:n,attrs:{axis:s}}),x=Bn({inputs:{real:y,imag:g},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),A.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),x}let c=o.map(f=>{let A=_.sizeFromShape(f.shape.slice(s));return mt({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),u=c.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=E.computeOutShape(c.map(f=>f.shape),1);let h=c[0].shape[0]===1,d=nA(u,i,t[0].dtype,h),p=E.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(p,t[0].dtype,d);return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var q$={kernelName:xo,backendName:"cpu",kernelFunc:Fl};function T_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r;_e([a,s],"conv2d");let h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,x=d.dataFormat==="channelsLast",v=new Ot(d.outShape,a.dtype),b=_.computeStrides(a.shape),w=_.computeStrides(s.shape),k=b[0],N=x?b[1]:b[2],C=x?b[2]:1,F=x?1:b[1],O=v.strides[0],L=x?v.strides[1]:v.strides[2],V=x?v.strides[2]:1,j=x?1:v.strides[1],U=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=v.values;for(let ee=0;ee=d.inHeight)continue;let me=he*w[0],pe=Y+oe*N;for(let Ie=0;Ie=d.inWidth)continue;let et=me+Oe*w[1],tt=pe+$e*C,st=et;for(let Ke=0;Ke=c.inDepth)continue;let ee=X*C[0],Y=O+G*N[1];for(let ae=0;ae=c.inHeight)continue;let oe=ee+Q*C[1],me=Y+he*N[2];for(let pe=0;pe=c.inWidth)continue;let $e=oe+Fe*C[2],et=me+Oe*c.inChannels,tt=$e;for(let st=0;stMath.cos(e)),iD={kernelName:ws,backendName:"cpu",kernelFunc:sD},oD=rt(bo,e=>Math.cosh(e)),lD={kernelName:bo,backendName:"cpu",kernelFunc:oD};function uD(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,[u,h,d,p]=a.shape,m=s.shape[0],[f,A]=o,y=Be([m,f,A,p],"float32"),g=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(a.dataId).values,b=_.computeStrides(a.shape),w=_.computeStrides(y.shape);for(let k=0;k=u)continue;let j=f>1?(O-C)*(h-1)/(f-1):0,U=A>1?(L-F)*(d-1)/(A-1):0;for(let X=0;X1?C*(h-1)+X*j:.5*(C+O)*(h-1);if(G<0||G>h-1){for(let ee=0;ee1?F*(d-1)+te*U:.5*(F+L)*(d-1);if(ie<0||ie>d-1){for(let me=0;me1?F*(d-1)+ee*U:.5*(F+L)*(d-1);if(Y<0||Y>d-1){for(let ie=0;iey+m-g-1:(y,g)=>y+g;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],c=a.shape[2],u=a.shape[3],h=l*s,d=c*s,p=u/(s*s),m=n.data.get(a.dataId).values,f=new Float32Array(o*h*d*p),A=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=E.computeConv2DInfo(a.shape,s.shape,i,d,o,c,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:y,padInfo:g}=p,x=g.left,v=g.top,b=p.outChannels/p.inChannels,w=new Ot(p.outShape,a.dtype),k=n.data.get(a.dataId).values,N=n.data.get(s.dataId).values,C=w.values;for(let F=0;F=p.inHeight)continue;let ee=X*h[0],Y=O+G*u[1];for(let ae=0;ae=p.inWidth)continue;let oe=ee+Q*h[1],me=Y+he*p.inChannels,pe=te,Ie=oe;for(let Se=0;Se{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(r.dataId).values,u=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:m,inWidth:f,inChannels:A,outHeight:y,outWidth:g,padInfo:x,strideHeight:v,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:N,dilationWidth:C,outShape:F}=E.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),O=_.sizeFromShape(F),L=F.length,V=_.getArrayFromDType(r.dtype,O);for(let j=0;j=0&&Q=0&&oeae&&(ae=Ie)}}}let te=_.locToIndex([j,U,G,Y],L,_.computeStrides(F));V[te]=ae}}}return{dataId:l.write(_.toTypedArray(V,r.dtype),F,r.dtype),shape:F,dtype:r.dtype}}},ID={kernelName:Gh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:b,filterWidth:w,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${Gh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(a.shape,a.dtype);for(let L=0;L=0&&ie=0&&heee&&(ee=oe,Y=te,ae=Q)}}}O[Y][ae][G]+=F[L][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},SD={kernelName:Hh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:b,filterWidth:w,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${Hh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(r.shape,r.dtype);for(let L=0;L=0&&ie=0&&heee&&(ee=oe,Y=ie,ae=he)}}}O[L][Y][ae][G]+=F[L][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function dc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"sum");let o;a.dtype==="bool"?o=Ga({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=qr({inputs:{x:a},backend:n});let l=o.shape.length,c=_.parseAxisParam(s,o.shape),u=E.getAxesPermutation(c,l),h=c,d=o;u!=null&&(d=nr({inputs:{x:o},backend:n,attrs:{perm:u}}),h=E.getInnerMostAxes(h.length,l)),E.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,m]=E.computeOutAndReduceShapes(d.shape,h),f=E.upcastType(d.dtype,"int32"),A=up(n,p,f),y=_.sizeFromShape(m),g=n.data.get(A.dataId).values,x=n.data.get(d.dataId).values;for(let v=0;v=0&&(d=dc({inputs:{x:d},backend:n,attrs:{axis:c[f]-(i.length-p),keepDims:!1}}),m.push(d)),p--)}for(let f of m)f!==d&&n.disposeIntermediateTensorInfo(f);return d}var ED={kernelName:qh,backendName:"cpu",kernelFunc:TD};function CD(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;_e([r,a],"eluGrad");let s=new Float32Array(_.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(a.shape,"float32",s)}var RD={kernelName:Xh,backendName:"cpu",kernelFunc:CD},MD=Mt((e,t)=>e===t?1:0),C_=Gt(Io,MD,null,"bool"),FD={kernelName:Io,backendName:"cpu",kernelFunc:C_},$D=E.ERF_P,DD=E.ERF_A1,OD=E.ERF_A2,zD=E.ERF_A3,PD=E.ERF_A4,LD=E.ERF_A5,WD=rt(ko,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+$D*n);return t*(1-((((LD*r+PD)*r+zD)*r+OD)*r+DD)*r*Math.exp(-n*n))}),BD={kernelName:ko,backendName:"cpu",kernelFunc:WD};function hp(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),mt({inputs:{x:a},backend:n,attrs:{shape:o}})}var VD={kernelName:So,backendName:"cpu",kernelFunc:hp},jD=Mt((e,t)=>e/t),cA=Gt(ks,jD),hA={kernelName:ks,backendName:"cpu",kernelFunc:cA};function R_(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[a,s],u=_.sizeFromShape(c),h=_.getTypedArrayFromDType("float32",u),d=_.getTypedArrayFromDType("float32",u);for(let A=0;A{let{image:r}=e,a=n,s=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[i,o,l,c]=r.shape,u=a.data.get(r.dataId).values;for(let h=0;h=0&&xMath.floor(e/t)),QD=Gt(Ns,JD,null,"int32"),eO={kernelName:Ns,backendName:"cpu",kernelFunc:QD};function tO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=T_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=hc({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=lA(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var nO={kernelName:li,backendName:"cpu",kernelFunc:tO};function rO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=E_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=hc({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=lA(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var aO={kernelName:ui,backendName:"cpu",kernelFunc:rO};function sO(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=_.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,c,u,h]=E.prepareAndValidate(r,a);if(c===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Be([c,u],r.dtype),p=n.data.get(a.dataId).values,m=n.data.get(r.dataId).values;for(let f=0;f=s/u)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;ge>=t?1:0),cO=Gt(Es,uO,null,"bool"),hO={kernelName:Es,backendName:"cpu",kernelFunc:cO};function dO(e){let{inputs:t,backend:n}=e,{input:r}=t,a=_.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=mt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=R_(o,!0,n),c=mt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var pO={kernelName:Zh,backendName:"cpu",kernelFunc:dO},fO=rt(Mo,e=>Number.isFinite(e)?1:0,"bool"),mO={kernelName:Mo,backendName:"cpu",kernelFunc:fO},AO=rt(Fo,e=>Math.abs(e)===Infinity?1:0,"bool"),yO={kernelName:Fo,backendName:"cpu",kernelFunc:AO},gO=rt($o,e=>Number.isNaN(e)?1:0,"bool"),xO={kernelName:$o,backendName:"cpu",kernelFunc:gO},bO=Mt((e,t)=>e<=t?1:0),wO=Gt(Oo,bO,null,"bool"),_O={kernelName:Oo,backendName:"cpu",kernelFunc:wO};function vO(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=t_(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var kO={kernelName:Jh,backendName:"cpu",kernelFunc:vO},IO=rt(zo,e=>Math.log1p(e)),SO={kernelName:zo,backendName:"cpu",kernelFunc:IO},NO=Mt((e,t)=>e&&t),TO=Gt(Po,NO,null,"bool"),EO={kernelName:Po,backendName:"cpu",kernelFunc:TO},CO=rt(Tu,e=>e?0:1,"bool"),RO={kernelName:Tu,backendName:"cpu",kernelFunc:CO},MO=Mt((e,t)=>e||t),FO=Gt(Eu,MO,null,"bool"),$O={kernelName:Eu,backendName:"cpu",kernelFunc:FO};function DO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;_e(a,"LRN");let c=a.shape[3],u=c-1,h=n.data.get(a.dataId).values,d=_.sizeFromShape(a.shape),p=new Float32Array(d);function m(f){let A=f%c,y=f-A+Math.max(0,A-s),g=f-A+Math.min(A+s,u),x=0;for(;y<=g;y++){let v=h[y];x+=v*v}return x}for(let f=0;f`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=qr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),m=uA(d,a.shape,a.dtype,p,u,"max");h=n.makeTensorInfo(u.outShape,a.dtype,m.values)}return h}var BO={kernelName:Ds,backendName:"cpu",kernelFunc:WO};function VO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;_e(a,"maxPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=N_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var jO={kernelName:Ru,backendName:"cpu",kernelFunc:VO};function UO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;_e([a,s],"maxPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=n.bufferSync(s),d=N$(h,u),p=u.strideDepth,m=u.strideHeight,f=u.strideWidth,A=u.dilationDepth,y=u.dilationHeight,g=u.dilationWidth,x=u.effectiveFilterDepth,v=u.effectiveFilterHeight,b=u.effectiveFilterWidth,w=x-1-u.padInfo.front,k=b-1-u.padInfo.left,N=v-1-u.padInfo.top,C=Be(s.shape,"float32"),F=n.bufferSync(a);for(let O=0;O=u.outDepth||Math.floor(te)!==te))for(let ie=0;ie=u.outHeight||Math.floor(Q)!==Q))for(let he=0;he=u.outWidth||Math.floor(oe)!==oe)continue;let me=x*v*b-1-d.get(O,te,Q,oe,L),pe=ae*v*b+ie*b+he,Ie=me===pe?1:0;Ie!==0&&(Y+=F.get(O,te,Q,oe,L)*Ie)}}}C.set(Y,O,V,j,U,L)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var HO={kernelName:td,backendName:"cpu",kernelFunc:UO};function GO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;_e([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=E.computePool2DInfo(o.shape,l,c,1,u,h),p=n.data.get(o.dataId).values,m=Be(d.outShape,o.dtype,S_(p,o.shape,o.dtype,d).values),f=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,x=d.effectiveFilterHeight,v=d.effectiveFilterWidth,b=v-1-d.padInfo.left,w=x-1-d.padInfo.top,k=Be(o.shape,"float32"),N=n.data.get(a.dataId).values,C=Be(a.shape,"float32",N);for(let F=0;F=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y=d.outWidth||Math.floor(ae)!==ae)continue;let te=x*v-1-m.get(F,ee,ae,O),ie=G*v+Y,Q=te===ie?1:0;Q!==0&&(X+=C.get(F,ee,ae,O)*Q)}}k.set(X,F,L,V,O)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var qO={kernelName:ed,backendName:"cpu",kernelFunc:GO};function XO(e,t,n,r,a){let s=_.computeStrides(t),i=uA(e,t,n,s,a,"max"),o=S_(e,t,n,a,!0,r);return[i.values,o.values]}var KO={kernelName:nd,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_e(r,"MaxPoolWithArgmax");let c=l.data.get(r.dataId).values,u=E.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=XO(c,r.shape,r.dtype,o,u),p=l.write(h,u.outShape,r.dtype),m=l.write(d,u.outShape,r.dtype);return[{dataId:p,shape:u.outShape,dtype:r.dtype},{dataId:m,shape:u.outShape,dtype:"int32"}]}};function ZO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=_.parseAxisParam(s,a.shape),l=E.computeOutAndReduceShapes(a.shape,o)[1],c=_.sizeFromShape(l),u=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(h);let d=Ga({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});u.push(d);let p=cA({inputs:{a:d,b:h},backend:n});u.push(p);let m=dc({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var YO={kernelName:Os,backendName:"cpu",kernelFunc:ZO};function JO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"min");let o=_.parseAxisParam(s,a.shape),l=o,c=E.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=nr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,a.shape.length)),E.assertAxesAreInnerMostDims("min",l,u.shape.length);let[h,d]=E.computeOutAndReduceShapes(u.shape,l),p=_.sizeFromShape(d),m=_.makeZerosTypedArray(_.sizeFromShape(h),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;yg[0]+a.shape[x]+g[1]),l=s.map(g=>g[0]),c=s.map((g,x)=>g[0]+a.shape[x]),u=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=_.computeStrides(a.shape),m=_.sizeFromShape(o),f=o.length,A=_.computeStrides(o),y=_.getTypedArrayFromDType(a.dtype,m);for(let g=0;g=c[b]&&(x[b]=(c[b]-1)*2-x[b]+u);x=x.map((b,w)=>b-l[w]);let v=_.locToIndex(x,d,p);y[g]=h[v]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var tz={kernelName:Ls,backendName:"cpu",kernelFunc:ez},nz=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),rz=Gt(Lo,nz),az={kernelName:Lo,backendName:"cpu",kernelFunc:rz},sz=so(o5());function F_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=_.parseAxisParam([o],a.shape),c=M_({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=E.expandShapeToKeepDim(c.shape,l),h=mt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=oA({inputs:{a,b:h},backend:n}),p=y_({inputs:{x:d},backend:n}),m=dc({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),f=mt({inputs:{x:m},backend:n,attrs:{shape:u}}),A=cA({inputs:{a:p,b:f},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var iz={kernelName:ti,backendName:"cpu",kernelFunc:F_};function oz(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;_e(a,"multinomial");let l=o?a:F_({inputs:{logits:a},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],h=n.data.get(l.dataId).values,d=[c,s],p=_.makeZerosTypedArray(_.sizeFromShape(d),"int32");for(let m=0;m=0&&u[h]{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=hp({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=Fl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var _z={kernelName:Go,backendName:"cpu",kernelFunc:D_};function vz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;_e(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),c=n.data.get(a.dataId).values,u=_.sizeFromShape(a.shape),h=a.shape.length,d=_.computeStrides(a.shape),p=_.sizeFromShape(o),m=o.length,f=_.computeStrides(o),A=_.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;yv+l[b]),x=_.locToIndex(g,m,f);A[x]=c[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var O_={kernelName:Vs,backendName:"cpu",kernelFunc:vz},kz=Mt((e,t)=>Math.pow(e,t)),Iz=Gt(js,kz),Sz={kernelName:js,backendName:"cpu",kernelFunc:Iz};function Nz(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=sA(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var Tz={kernelName:Mu,backendName:"cpu",kernelFunc:Nz},Ez=rt(Xo,e=>1/e),Cz={kernelName:Xo,backendName:"cpu",kernelFunc:Ez};function Rz(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;_e(a,"resizeBilinear");let l=_.computeStrides(a.shape),[c,u]=o,[h,d,p,m]=a.shape,f=n.data.get(a.dataId).values,A=new Float32Array(_.sizeFromShape([h,c,u,m])),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=0,v=y[0]/g[0],b=y[1]/g[1];for(let w=0;w1?c-1:c,i&&p>1?u-1:u],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=f[0]/A[0],g=f[1]/A[1],x=n.data.get(s.dataId).values,v=0;for(let b=0;b1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=y[0]/g[0],v=y[1]/g[1],b=0;for(let w=0;w1?u-1:u,i&&m>1?h-1:h],g=[i&&p>1?p-1:p,i&&m>1?m-1:m],x=y[0]/g[0],v=y[1]/g[1],b=1/x,w=1/v,k=Math.ceil(b)*2+2,N=Math.ceil(w)*2+2;for(let C=0;C=p)continue;let Q=F+ie*l[1],he=ie*x,oe=Math.min(u-1,i?Math.round(he):Math.floor(he));if(O===oe)for(let me=0;me=m)continue;let Ie=Q+pe*l[2],Se=pe*v,Fe=Math.min(h-1,i?Math.round(Se):Math.floor(Se));U===Fe&&(ae+=A[Ie+Y])}}f[X+Y]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,f)}var Pz={kernelName:sd,backendName:"cpu",kernelFunc:zz};function Lz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;_e(a,"reverse");let i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return qr({inputs:{x:a},backend:n});let l=new Ot(a.shape,a.dtype),c=n.bufferSync(a);for(let u=0;ud[p]=a.shape[p]-1-d[p]),l.set(c.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var Wz={kernelName:Xs,backendName:"cpu",kernelFunc:Lz},Bz={kernelName:ll,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[c,u,h,d]=r.shape,[p,m]=E.getImageCenter(i,u,h),f=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let x=0;x=0&&V=0&&j{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),jz={kernelName:Ks,backendName:"cpu",kernelFunc:Vz};function z_(e,t,n,r,a,s,i,o,l,c){let u=[r/a,a],h=e.values,d=t.values;if(r===0)return Be(n,t.dtype);let p=Be(u,t.dtype);p.values.fill(l);for(let m=0;m=r/a)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y1||a.shape.length===1?1:_.sizeFromShape(a.shape.slice(1));for(let m=0;me>=0?Kz*e:Xz*(Math.exp(e)-1)),Yz={kernelName:Jo,backendName:"cpu",kernelFunc:Zz},Jz=rt(tl,e=>e<0?-1:e>0?1:0),Qz={kernelName:tl,backendName:"cpu",kernelFunc:Jz},eP=rt(Ys,e=>Math.sin(e)),tP={kernelName:Ys,backendName:"cpu",kernelFunc:eP},nP=rt(el,e=>Math.sinh(e)),rP={kernelName:el,backendName:"cpu",kernelFunc:nP},aP=11920928955078125e-23,P_=Math.log(aP)+2,sP=rt(nl,e=>{let t=e>-P_,n=e0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return aa().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){be([e],"where");let t=this.readSync(e.dataId);return $M(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};np.nextDataId=0;var jm={};Me(jm,{addImpl:()=>kb,bincountImpl:()=>Um,bincountReduceImpl:()=>Ib,ceilImpl:()=>Sb,concatImpl:()=>Hm,expImpl:()=>Nb,expm1Impl:()=>Tb,floorImpl:()=>Eb,gatherV2Impl:()=>Cb,greaterImpl:()=>Rb,lessImpl:()=>Mb,linSpaceImpl:()=>Fb,logImpl:()=>$b,maxImpl:()=>Db,maximumImpl:()=>Ob,minimumImpl:()=>zb,multiplyImpl:()=>Gm,negImpl:()=>Pb,notEqualImpl:()=>Lb,prodImpl:()=>Wb,rangeImpl:()=>Xm,rsqrtImpl:()=>Bb,simpleAbsImpl:()=>vb,sliceImpl:()=>rp,sparseReshapeImpl:()=>Vb,squaredDifferenceImpl:()=>jb,stridedSliceImpl:()=>Ub,subImpl:()=>Hb,tileImpl:()=>Gb,topKImpl:()=>qb,transposeImpl:()=>qm,uniqueImpl:()=>Xb});function vb(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;be(t,"abs");let r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=vb(a),n.makeOutput(r,t.shape,"float32")},OM={kernelName:no,backendName:"cpu",kernelFunc:DM};function Ct(e){return(t,n,r,a,s)=>{let i=E.assertAndGetBroadcastShape(t,n),o=i.length,l=_.computeStrides(i),c=_.sizeFromShape(i),u=_.getTypedArrayFromDType(s,c),h=t.length,d=n.length,p=_.computeStrides(t),m=_.computeStrides(n),f=E.getBroadcastDims(t,i),A=E.getBroadcastDims(n,i);if(f.length+A.length===0)for(let y=0;yx[k]=0);let v=_.locToIndex(x,h,p),w=g.slice(-d);A.forEach(k=>w[k]=0);let b=_.locToIndex(w,d,m);u[y]=e(r[v],a[b])}return[u,i]}}function zn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var zM={kernelName:Rh,backendName:"cpu",kernelFunc:zn};function ap(e,t,n="float32"){if(n==="complex64"){let a=ap(e,t,"float32"),s=ap(e,t,"float32");return zn({inputs:{real:a,imag:s},backend:e})}let r=_.makeZerosTypedArray(_.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Br(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var PM={kernelName:Is,backendName:"cpu",kernelFunc:Br};function bi(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var LM={kernelName:Jh,backendName:"cpu",kernelFunc:bi};function Wa(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Br({inputs:{x:a},backend:n});let i=ap(n,a.shape,a.dtype),o=Wa({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=zn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=bi({inputs:{input:a},backend:n}),o=Wa({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=Br({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=_.toTypedArray([0],a.dtype),[l,c]=Ct((u,h)=>u!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var WM={kernelName:ds,backendName:"cpu",kernelFunc:Wa};function jt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;be([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=Wa({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),h=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,p=l.data.get(h.dataId).values,m=l.data.get(d.dataId).values,f=Wa({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(g.dataId).values,[w,b,k]=n(i.shape,o.shape,p,m,x,v),N=l.makeTensorInfo(k,"float32",w),C=l.makeTensorInfo(k,"float32",b),F=zn({inputs:{real:N,imag:C},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo(C),F}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}}}function Km(e){return(t,n,r,a,s,i)=>{let o=E.assertAndGetBroadcastShape(t,n),l=_.sizeFromShape(o),c=o.length,u=_.computeStrides(o),h=_.getTypedArrayFromDType("float32",l),d=_.getTypedArrayFromDType("float32",l),p=E.getBroadcastDims(t,o),m=E.getBroadcastDims(n,o),f=E.mergeRealAndImagArrays(r,a),A=E.mergeRealAndImagArrays(s,i),y=t.length,g=_.computeStrides(t),x=n.length,v=_.computeStrides(n);if(p.length+m.length===0)for(let w=0;wk[z]=0);let N=_.locToIndex(k,y,g),C=b.slice(-x);m.forEach(z=>C[z]=0);let F=_.locToIndex(C,x,v),O=e(f[N*2],f[N*2+1],A[F*2],A[F*2+1]);h[w]=O.real,d[w]=O.imag}return[h,d,o]}}var kb=Ct((e,t)=>e+t),BM=Km((e,t,n,r)=>({real:e+n,imag:t+r})),ic=jt(Sa,kb,BM),VM={kernelName:Sa,backendName:"cpu",kernelFunc:ic};function Um(e,t,n,r,a){let s=_.sizeFromShape(r),i=_.makeZerosTypedArray(a,n);for(let o=0;o=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function Ib(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=We([a,n],t.dtype);for(let o=0;o=n||(r?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function kl(e){return(t,n,r)=>{let a=_.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=r;if(be(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=_.sizeFromShape(i.shape),u=n||i.dtype,h=_.getArrayFromDType(u,c);for(let d=0;d{let{x:i}=r;if(be(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,a);return o.makeTensorInfo(i.shape,c,u)}}var Sb=kl(e=>Math.ceil(e)),jM=Il(ps,Sb),UM={kernelName:ps,backendName:"cpu",kernelFunc:jM};function Hm(e,t,n,r){let a=_.getArrayFromDType(n,_.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=_.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?E.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;cMath.exp(e)),Kb=Il(ws,Nb),HM={kernelName:ws,backendName:"cpu",kernelFunc:Kb},Tb=kl(e=>Math.expm1(e)),GM=Il(bo,Tb),qM={kernelName:bo,backendName:"cpu",kernelFunc:GM},Eb=kl(e=>Math.floor(e)),XM=Il(bs,Eb),KM={kernelName:bs,backendName:"cpu",kernelFunc:XM};function Cb(e,t,n){let r=We(n,e.dtype);for(let a=0;ae>t?1:0),ZM=jt(Io,Rb,null,"bool"),YM={kernelName:Io,backendName:"cpu",kernelFunc:ZM},Mb=Ct((e,t)=>eMath.log(e)),eF=Il(Ns,$b),tF={kernelName:Ns,backendName:"cpu",kernelFunc:eF};function Db(e,t,n,r){let a=_.getTypedArrayFromDType(r,_.sizeFromShape(n));for(let s=0;so&&(o=c)}a[s]=o}return a}var Ob=Ct((e,t)=>Math.max(e,t)),nF=jt(Es,Ob),rF={kernelName:Es,backendName:"cpu",kernelFunc:nF},zb=Ct((e,t)=>Math.min(e,t)),aF=jt(Fs,zb),sF={kernelName:Fs,backendName:"cpu",kernelFunc:aF},Gm=Ct((e,t)=>e*t),iF=Km((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),sp=jt(Ds,Gm,iF),oF={kernelName:Ds,backendName:"cpu",kernelFunc:sp};function Pb(e,t,n){let r=_.createScalarValue(-1,n);return Gm([],t,r,e,n)}function lF(e){let{inputs:t,backend:n}=e,{x:r}=t;be(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=Pb(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var uF={kernelName:$o,backendName:"cpu",kernelFunc:lF},Lb=Ct((e,t)=>e!==t?1:0),cF=jt(Do,Lb,null,"bool"),hF={kernelName:Do,backendName:"cpu",kernelFunc:cF};function qm(e,t,n,r,a){let s=t.length,i=_.sizeFromShape(t),o=_.computeStrides(t),l=_.computeStrides(a),c=_.getTypedArrayFromDType(n,_.sizeFromShape(a));for(let u=0;un.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,m)}var fF={kernelName:Bo,backendName:"cpu",kernelFunc:pF};function Xm(e,t,n,r){let a=e===t,s=e1;if(a||s||i)return _.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=_.makeZerosTypedArray(o,r);t1/Math.sqrt(e)),mF=Il(Hs,Bb),AF={kernelName:Hs,backendName:"cpu",kernelFunc:mF};function rp(e,t,n,r,a){let s=sn.isSliceContinous(r,t,n),i=_.sizeFromShape(n),o=_.computeStrides(r);if(s){let h=sn.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?E.fromUint8ToStringArray(e):e,c=We(r,a,l),u=We(n,a);for(let h=0;hm+t[f]);u.set(c.get(...p),...d)}return a==="string"?E.fromStringArrayToUint8(u.values):u.values}function _i(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;be(a,"slice");let[o,l]=sn.parseSliceParams(a,s,i);sn.assertParamsValid(a,o,l);let c=n.data.get(a.dataId).values,u=rp(c,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,u)}var yF={kernelName:qo,backendName:"cpu",kernelFunc:_i};function Vb(e,t,n,r,a){let s=_.sizeFromShape(r),i=t[0],o=a.length,l=[],c=1,u=-1;for(let A=0;A0){p[d-1]=1;for(let A=d-2;A>=0;--A)p[A]=p[A+1]*r[A+1]}let m=[];if(o>0){m[o-1]=1;for(let A=o-2;A>=0;--A)m[A]=m[A+1]*l[A+1]}let f=_.getArrayFromDType(n,i*o);for(let A=0;A{let n=e-t;return n*n}),gF=jt(Ys,jb),xF={kernelName:Ys,backendName:"cpu",kernelFunc:gF};function Ub(e,t,n,r){let a=We(e,t.dtype);for(let s=0;se-t),wF=Km((e,t,n,r)=>({real:e-n,imag:t-r})),Zm=jt(Js,Hb,wF),bF={kernelName:Js,backendName:"cpu",kernelFunc:Zm};function Gb(e,t){let n=new Array(e.rank);for(let a=0;ax.value-g.value);let f=h*r,A=l.subarray(f,f+r),y=c.subarray(f,f+r);for(let g=0;g{for(let A=0;Anew np,1);var Yb=nt(yo,e=>e>=0?e:Math.exp(e)-1),_F={kernelName:yo,backendName:"cpu",kernelFunc:Yb};function Jb(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;be([a],"leakyRelu");let i=_.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=_.getTypedArrayFromDType("float32",i);for(let c=0;ce<0?t*e:e);function Qb(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;be([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=kF(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var IF={kernelName:Ls,backendName:"cpu",kernelFunc:Qb},e_=nt(Ws,e=>Math.max(0,e)),SF={kernelName:Ws,backendName:"cpu",kernelFunc:e_},t_=nt(Vs,e=>Math.min(Math.max(0,e),6)),NF={kernelName:Vs,backendName:"cpu",kernelFunc:t_},n_=nt(qs,e=>1/(1+Math.exp(-e))),TF={kernelName:qs,backendName:"cpu",kernelFunc:n_};function Ym(e,t,n,r,a){if(n==="linear")return Br({inputs:{x:t},backend:e});if(n==="relu")return e_({inputs:{x:t},backend:e});if(n==="elu")return Yb({inputs:{x:t},backend:e});if(n==="relu6")return t_({inputs:{x:t},backend:e});if(n==="prelu")return Qb({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return Jb({inputs:{x:t},backend:e,attrs:{alpha:a}});if(n==="sigmoid")return n_({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function pt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=_.sizeFromShape(a.shape),o=_.inferFromImplicitShape(s,i),l=_.sizeFromShape(o);_.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let c=n.data.get(a.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,h=c.complexTensorInfos.imag;u.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var EF={kernelName:jo,backendName:"cpu",kernelFunc:pt};function r_(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;be([a,s],"matMul");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=_.sizeFromShape(m),y=_.sizeFromShape(f),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],w=o?[y,p,h]:[y,h,p],b=pt({inputs:{x:a},backend:n,attrs:{shape:v}}),k=pt({inputs:{x:s},backend:n,attrs:{shape:w}}),N=i?b.shape[1]:b.shape[2],C=i?b.shape[2]:b.shape[1],F=o?k.shape[1]:k.shape[2],O=Math.max(A,y),z=n.data.get(b.dataId).values,V=n.data.get(k.dataId).values,j=_.computeStrides(b.shape),U=_.computeStrides(k.shape),[X,G,ee]=i?[j[0],1,j[1]]:[j[0],j[1],1],[Y,ae,te]=o?[1,U[1],U[0]]:[U[1],1,U[0]],ie=C*F,Q=We([O,C,F],b.dtype),ce=Q.values,oe=n.blockSize;for(let me=0;meMath.acos(e)),$F={kernelName:ro,backendName:"cpu",kernelFunc:FF},DF=nt(ao,e=>Math.acosh(e)),OF={kernelName:ao,backendName:"cpu",kernelFunc:DF};function zF(e){let{inputs:t,backend:n}=e,r=t;be(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=We(r[0].shape,r[0].dtype),i=s.values;for(let o=0;og&&(g=w,x=v)}p[A]=x}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var UF={kernelName:us,backendName:"cpu",kernelFunc:jF};function HF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;be(a,"argMin");let i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=Yn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],E.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,h]=E.computeOutAndReduceShapes(l.shape,i),d=_.sizeFromShape(u),p=_.makeZerosTypedArray(d,"int32"),m=_.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let A=0;An.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var GF={kernelName:mu,backendName:"cpu",kernelFunc:HF},qF=nt(oo,e=>Math.asin(e)),XF={kernelName:oo,backendName:"cpu",kernelFunc:qF},KF=nt(lo,e=>Math.asinh(e)),ZF={kernelName:lo,backendName:"cpu",kernelFunc:KF},YF=nt(uo,e=>Math.atan(e)),JF={kernelName:uo,backendName:"cpu",kernelFunc:YF},QF=Ct((e,t)=>Math.atan2(e,t)),e$=jt(ho,QF),t$={kernelName:ho,backendName:"cpu",kernelFunc:e$},n$=nt(co,e=>Math.atanh(e)),r$={kernelName:co,backendName:"cpu",kernelFunc:n$};function Jm(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,c=a.dilationWidth,u=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=We(a.outShape,n),A=f.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],x=a.outShape[3];for(let v=0;vG?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let ae=z+V*x+k;A[ae]=s==="avg"?ee/Y:G}}}return f}function a_(e,t,n,r,a=!1,s=!1){let i=We(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,c=r.dilationHeight,u=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,m=r.padInfo.left,f=We(t,n,e);for(let A=0;AF&&(F=X,a?O=s?((A*r.inHeight+z)*r.inWidth+j)*r.inChannels+y:(z*r.inWidth+j)*r.inChannels+y:O=V*d+U)}}i.set(O,A,g,b,y)}}return i}function s_(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,c=a.dilationDepth,u=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,m=a.effectiveFilterWidth,f=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=We(a.outShape,n),v=x.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],b=a.outShape[2]*a.outShape[3]*a.outShape[4],k=a.outShape[3]*a.outShape[4],N=a.outShape[4];for(let C=0;Cve?ve=Ve:s==="avg"&&(Ie+=Ve,Fe++),isNaN(ve))break}if(isNaN(ve))break}if(isNaN(ve))break}let Oe=de+z;v[Oe]=s==="avg"?Ie/Fe:ve}}}}return x}function a$(e,t){let n=We(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,m=t.padInfo.left;for(let f=0;f=V&&(V=te,j=X*u*h+ee*u+ae)}}}n.set(j,f,y,w,C,A)}}}return n}function s$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;be(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=Br({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),m=Jm(d,a.shape,a.dtype,p,u,"avg");h=n.makeTensorInfo(u.outShape,a.dtype,m.values)}return h}var i$={kernelName:cs,backendName:"cpu",kernelFunc:s$};function o$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;be(a,"avgPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=s_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var l$={kernelName:Au,backendName:"cpu",kernelFunc:o$};function u$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;be([a,s],"avgPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=u.strideDepth,d=u.strideHeight,p=u.strideWidth,m=u.filterDepth,f=u.filterHeight,A=u.filterWidth,y=u.dilationDepth,g=u.dilationHeight,x=u.dilationWidth,v=u.effectiveFilterDepth,w=u.effectiveFilterHeight,b=u.effectiveFilterWidth,k=v-1-u.padInfo.front,N=b-1-u.padInfo.left,C=w-1-u.padInfo.top,F=We(s.shape,"float32"),O=1/(m*f*A),z=n.bufferSync(a);for(let V=0;V=u.outDepth||Math.floor(Q)!==Q))for(let ce=0;ce=u.outHeight||Math.floor(oe)!==oe))for(let me=0;me=u.outWidth||Math.floor(de)!==de||(te+=z.get(V,Q,oe,de,j))}}}F.set(te*O,V,U,X,G,j)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var c$={kernelName:Eh,backendName:"cpu",kernelFunc:u$};function h$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;be([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=u.strideHeight,d=u.strideWidth,p=u.filterHeight,m=u.filterWidth,f=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,x=g-1-u.padInfo.left,v=y-1-u.padInfo.top,w=We(i.shape,"float32"),b=1/(p*m),k=n.data.get(a.dataId).values,N=We(a.shape,"float32",k);for(let C=0;C=u.outHeight||Math.floor(G)!==G))for(let ee=0;ee=u.outWidth||Math.floor(Y)!==Y||(U+=N.get(C,G,Y,F))}}w.set(U*b,C,O,z,F)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var d$={kernelName:Th,backendName:"cpu",kernelFunc:h$};function p$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;_.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),be([a,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=r;c==null&&(c=.001);let u=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(u.length),A=m.length,y=p.length,g=d.length,x=h.length,v=0,w=0,b=0,k=0;for(let N=0;N=A&&(v=0),w>=x&&(w=0),b>=y&&(b=0),k>=g&&(k=0);return n.makeTensorInfo(a.shape,a.dtype,f)}var f$={kernelName:vs,backendName:"cpu",kernelFunc:p$};function m$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;be([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=pt({inputs:{x:a},backend:n,attrs:{shape:l}}),m=Yn({inputs:{x:p},backend:n,attrs:{perm:c}}),f=pt({inputs:{x:m},backend:n,attrs:{shape:u}}),A=_i({inputs:{x:f},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var A$={kernelName:yu,backendName:"cpu",kernelFunc:m$};function y$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,c=Um(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var g$={kernelName:Ch,backendName:"cpu",kernelFunc:y$},x$=nt(Na,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;cf.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>_.sizeFromShape(f.shape)>0);if(o.length===1)return Br({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(E.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>bi({inputs:{input:v},backend:n})),A=o.map(v=>Sl({inputs:{input:v},backend:n})),y=Nl({inputs:f,backend:n,attrs:{axis:s}}),g=Nl({inputs:A,backend:n,attrs:{axis:s}}),x=zn({inputs:{real:y,imag:g},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),A.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),x}let c=o.map(f=>{let A=_.sizeFromShape(f.shape.slice(s));return pt({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),u=c.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=E.computeOutShape(c.map(f=>f.shape),1);let h=c[0].shape[0]===1,d=Hm(u,i,t[0].dtype,h),p=E.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(p,t[0].dtype,d);return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var k$={kernelName:po,backendName:"cpu",kernelFunc:Nl};function i_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r;be([a,s],"conv2d");let h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,x=d.dataFormat==="channelsLast",v=new $t(d.outShape,a.dtype),w=_.computeStrides(a.shape),b=_.computeStrides(s.shape),k=w[0],N=x?w[1]:w[2],C=x?w[2]:1,F=x?1:w[1],O=v.strides[0],z=x?v.strides[1]:v.strides[2],V=x?v.strides[2]:1,j=x?1:v.strides[1],U=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=v.values;for(let ee=0;ee=d.inHeight)continue;let me=ce*b[0],de=Y+oe*N;for(let ve=0;ve=d.inWidth)continue;let Qe=me+Oe*b[1],et=de+$e*C,at=Qe;for(let Xe=0;Xe=c.inDepth)continue;let ee=X*C[0],Y=O+G*N[1];for(let ae=0;ae=c.inHeight)continue;let oe=ee+Q*C[1],me=Y+ce*N[2];for(let de=0;de=c.inWidth)continue;let $e=oe+Fe*C[2],Qe=me+Oe*c.inChannels,et=$e;for(let at=0;atMath.cos(e)),z$={kernelName:As,backendName:"cpu",kernelFunc:O$},P$=nt(fo,e=>Math.cosh(e)),L$={kernelName:fo,backendName:"cpu",kernelFunc:P$};function W$(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,[u,h,d,p]=a.shape,m=s.shape[0],[f,A]=o,y=We([m,f,A,p],"float32"),g=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(a.dataId).values,w=_.computeStrides(a.shape),b=_.computeStrides(y.shape);for(let k=0;k=u)continue;let j=f>1?(O-C)*(h-1)/(f-1):0,U=A>1?(z-F)*(d-1)/(A-1):0;for(let X=0;X1?C*(h-1)+X*j:.5*(C+O)*(h-1);if(G<0||G>h-1){for(let ee=0;ee1?F*(d-1)+te*U:.5*(F+z)*(d-1);if(ie<0||ie>d-1){for(let me=0;me1?F*(d-1)+ee*U:.5*(F+z)*(d-1);if(Y<0||Y>d-1){for(let ie=0;iey+m-g-1:(y,g)=>y+g;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],c=a.shape[2],u=a.shape[3],h=l*s,d=c*s,p=u/(s*s),m=n.data.get(a.dataId).values,f=new Float32Array(o*h*d*p),A=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=E.computeConv2DInfo(a.shape,s.shape,i,d,o,c,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:y,padInfo:g}=p,x=g.left,v=g.top,w=p.outChannels/p.inChannels,b=new $t(p.outShape,a.dtype),k=n.data.get(a.dataId).values,N=n.data.get(s.dataId).values,C=b.values;for(let F=0;F=p.inHeight)continue;let ee=X*h[0],Y=O+G*u[1];for(let ae=0;ae=p.inWidth)continue;let oe=ee+Q*h[1],me=Y+ce*p.inChannels,de=te,ve=oe;for(let Ie=0;Ie{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(r.dataId).values,u=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:m,inWidth:f,inChannels:A,outHeight:y,outWidth:g,padInfo:x,strideHeight:v,strideWidth:w,filterHeight:b,filterWidth:k,dilationHeight:N,dilationWidth:C,outShape:F}=E.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),O=_.sizeFromShape(F),z=F.length,V=_.getArrayFromDType(r.dtype,O);for(let j=0;j=0&&Q=0&&oeae&&(ae=ve)}}}let te=_.locToIndex([j,U,G,Y],z,_.computeStrides(F));V[te]=ae}}}return{dataId:l.write(_.toTypedArray(V,r.dtype),F,r.dtype),shape:F,dtype:r.dtype}}},nD={kernelName:Wh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:w,filterWidth:b,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${Wh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(a.shape,a.dtype);for(let z=0;z=0&&ie=0&&ceee&&(ee=oe,Y=te,ae=Q)}}}O[Y][ae][G]+=F[z][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},rD={kernelName:Lh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:w,filterWidth:b,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${Lh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(r.shape,r.dtype);for(let z=0;z=0&&ie=0&&ceee&&(ee=oe,Y=ie,ae=ce)}}}O[z][Y][ae][G]+=F[z][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function oc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;be(a,"sum");let o;a.dtype==="bool"?o=Wa({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Br({inputs:{x:a},backend:n});let l=o.shape.length,c=_.parseAxisParam(s,o.shape),u=E.getAxesPermutation(c,l),h=c,d=o;u!=null&&(d=Yn({inputs:{x:o},backend:n,attrs:{perm:u}}),h=E.getInnerMostAxes(h.length,l)),E.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,m]=E.computeOutAndReduceShapes(d.shape,h),f=E.upcastType(d.dtype,"int32"),A=ap(n,p,f),y=_.sizeFromShape(m),g=n.data.get(A.dataId).values,x=n.data.get(d.dataId).values;for(let v=0;v=0&&(d=oc({inputs:{x:d},backend:n,attrs:{axis:c[f]-(i.length-p),keepDims:!1}}),m.push(d)),p--)}for(let f of m)f!==d&&n.disposeIntermediateTensorInfo(f);return d}var iD={kernelName:Bh,backendName:"cpu",kernelFunc:sD};function oD(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;be([r,a],"eluGrad");let s=new Float32Array(_.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(a.shape,"float32",s)}var lD={kernelName:Vh,backendName:"cpu",kernelFunc:oD},uD=Ct((e,t)=>e===t?1:0),l_=jt(xo,uD,null,"bool"),cD={kernelName:xo,backendName:"cpu",kernelFunc:l_},hD=E.ERF_P,dD=E.ERF_A1,pD=E.ERF_A2,fD=E.ERF_A3,mD=E.ERF_A4,AD=E.ERF_A5,yD=nt(go,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+hD*n);return t*(1-((((AD*r+mD)*r+fD)*r+pD)*r+dD)*r*Math.exp(-n*n))}),gD={kernelName:go,backendName:"cpu",kernelFunc:yD};function ip(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),pt({inputs:{x:a},backend:n,attrs:{shape:o}})}var xD={kernelName:wo,backendName:"cpu",kernelFunc:ip},wD=Ct((e,t)=>e/t),Qm=jt(xs,wD),eA={kernelName:xs,backendName:"cpu",kernelFunc:Qm};function u_(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[a,s],u=_.sizeFromShape(c),h=_.getTypedArrayFromDType("float32",u),d=_.getTypedArrayFromDType("float32",u);for(let A=0;A{let{image:r}=e,a=n,s=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[i,o,l,c]=r.shape,u=a.data.get(r.dataId).values;for(let h=0;h=0&&xMath.floor(e/t)),CD=jt(_s,ED,null,"int32"),RD={kernelName:_s,backendName:"cpu",kernelFunc:CD};function MD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=i_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=ic({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=Ym(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var FD={kernelName:ri,backendName:"cpu",kernelFunc:MD};function $D(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=o_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=ic({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=Ym(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var DD={kernelName:ai,backendName:"cpu",kernelFunc:$D};function OD(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=_.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,c,u,h]=E.prepareAndValidate(r,a);if(c===0)return n.makeTensorInfo(l,r.dtype,[]);let d=We([c,u],r.dtype),p=n.data.get(a.dataId).values,m=n.data.get(r.dataId).values;for(let f=0;f=s/u)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;ge>=t?1:0),BD=jt(ks,WD,null,"bool"),VD={kernelName:ks,backendName:"cpu",kernelFunc:BD};function jD(e){let{inputs:t,backend:n}=e,{input:r}=t,a=_.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=pt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=u_(o,!0,n),c=pt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var UD={kernelName:Uh,backendName:"cpu",kernelFunc:jD},HD=nt(So,e=>Number.isFinite(e)?1:0,"bool"),GD={kernelName:So,backendName:"cpu",kernelFunc:HD},qD=nt(No,e=>Math.abs(e)===Infinity?1:0,"bool"),XD={kernelName:No,backendName:"cpu",kernelFunc:qD},KD=nt(To,e=>Number.isNaN(e)?1:0,"bool"),ZD={kernelName:To,backendName:"cpu",kernelFunc:KD},YD=Ct((e,t)=>e<=t?1:0),JD=jt(Co,YD,null,"bool"),QD={kernelName:Co,backendName:"cpu",kernelFunc:JD};function eO(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=Fb(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var tO={kernelName:Gh,backendName:"cpu",kernelFunc:eO},nO=nt(Ro,e=>Math.log1p(e)),rO={kernelName:Ro,backendName:"cpu",kernelFunc:nO},aO=Ct((e,t)=>e&&t),sO=jt(Mo,aO,null,"bool"),iO={kernelName:Mo,backendName:"cpu",kernelFunc:sO},oO=nt(_u,e=>e?0:1,"bool"),lO={kernelName:_u,backendName:"cpu",kernelFunc:oO},uO=Ct((e,t)=>e||t),cO=jt(vu,uO,null,"bool"),hO={kernelName:vu,backendName:"cpu",kernelFunc:cO};function dO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;be(a,"LRN");let c=a.shape[3],u=c-1,h=n.data.get(a.dataId).values,d=_.sizeFromShape(a.shape),p=new Float32Array(d);function m(f){let A=f%c,y=f-A+Math.max(0,A-s),g=f-A+Math.min(A+s,u),x=0;for(;y<=g;y++){let v=h[y];x+=v*v}return x}for(let f=0;f`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=Br({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),m=Jm(d,a.shape,a.dtype,p,u,"max");h=n.makeTensorInfo(u.outShape,a.dtype,m.values)}return h}var gO={kernelName:Cs,backendName:"cpu",kernelFunc:yO};function xO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;be(a,"maxPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=s_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var wO={kernelName:Iu,backendName:"cpu",kernelFunc:xO};function bO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;be([a,s],"maxPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=n.bufferSync(s),d=a$(h,u),p=u.strideDepth,m=u.strideHeight,f=u.strideWidth,A=u.dilationDepth,y=u.dilationHeight,g=u.dilationWidth,x=u.effectiveFilterDepth,v=u.effectiveFilterHeight,w=u.effectiveFilterWidth,b=x-1-u.padInfo.front,k=w-1-u.padInfo.left,N=v-1-u.padInfo.top,C=We(s.shape,"float32"),F=n.bufferSync(a);for(let O=0;O=u.outDepth||Math.floor(te)!==te))for(let ie=0;ie=u.outHeight||Math.floor(Q)!==Q))for(let ce=0;ce=u.outWidth||Math.floor(oe)!==oe)continue;let me=x*v*w-1-d.get(O,te,Q,oe,z),de=ae*v*w+ie*w+ce,ve=me===de?1:0;ve!==0&&(Y+=F.get(O,te,Q,oe,z)*ve)}}}C.set(Y,O,V,j,U,z)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var _O={kernelName:Kh,backendName:"cpu",kernelFunc:bO};function vO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;be([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=E.computePool2DInfo(o.shape,l,c,1,u,h),p=n.data.get(o.dataId).values,m=We(d.outShape,o.dtype,a_(p,o.shape,o.dtype,d).values),f=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,x=d.effectiveFilterHeight,v=d.effectiveFilterWidth,w=v-1-d.padInfo.left,b=x-1-d.padInfo.top,k=We(o.shape,"float32"),N=n.data.get(a.dataId).values,C=We(a.shape,"float32",N);for(let F=0;F=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y=d.outWidth||Math.floor(ae)!==ae)continue;let te=x*v-1-m.get(F,ee,ae,O),ie=G*v+Y,Q=te===ie?1:0;Q!==0&&(X+=C.get(F,ee,ae,O)*Q)}}k.set(X,F,z,V,O)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var kO={kernelName:Xh,backendName:"cpu",kernelFunc:vO};function IO(e,t,n,r,a){let s=_.computeStrides(t),i=Jm(e,t,n,s,a,"max"),o=a_(e,t,n,a,!0,r);return[i.values,o.values]}var SO={kernelName:Zh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;be(r,"MaxPoolWithArgmax");let c=l.data.get(r.dataId).values,u=E.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=IO(c,r.shape,r.dtype,o,u),p=l.write(h,u.outShape,r.dtype),m=l.write(d,u.outShape,r.dtype);return[{dataId:p,shape:u.outShape,dtype:r.dtype},{dataId:m,shape:u.outShape,dtype:"int32"}]}};function NO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=_.parseAxisParam(s,a.shape),l=E.computeOutAndReduceShapes(a.shape,o)[1],c=_.sizeFromShape(l),u=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(h);let d=Wa({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});u.push(d);let p=Qm({inputs:{a:d,b:h},backend:n});u.push(p);let m=oc({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var TO={kernelName:Rs,backendName:"cpu",kernelFunc:NO};function EO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;be(a,"min");let o=_.parseAxisParam(s,a.shape),l=o,c=E.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=Yn({inputs:{x:a},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,a.shape.length)),E.assertAxesAreInnerMostDims("min",l,u.shape.length);let[h,d]=E.computeOutAndReduceShapes(u.shape,l),p=_.sizeFromShape(d),m=_.makeZerosTypedArray(_.sizeFromShape(h),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;yg[0]+a.shape[x]+g[1]),l=s.map(g=>g[0]),c=s.map((g,x)=>g[0]+a.shape[x]),u=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=_.computeStrides(a.shape),m=_.sizeFromShape(o),f=o.length,A=_.computeStrides(o),y=_.getTypedArrayFromDType(a.dtype,m);for(let g=0;g=c[w]&&(x[w]=(c[w]-1)*2-x[w]+u);x=x.map((w,b)=>w-l[b]);let v=_.locToIndex(x,d,p);y[g]=h[v]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var MO={kernelName:$s,backendName:"cpu",kernelFunc:RO},FO=Ct((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),$O=jt(Fo,FO),DO={kernelName:Fo,backendName:"cpu",kernelFunc:$O},OO=Qi(Lg());function h_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=_.parseAxisParam([o],a.shape),c=c_({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=E.expandShapeToKeepDim(c.shape,l),h=pt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=Zm({inputs:{a,b:h},backend:n}),p=Kb({inputs:{x:d},backend:n}),m=oc({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),f=pt({inputs:{x:m},backend:n,attrs:{shape:u}}),A=Qm({inputs:{a:p,b:f},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var zO={kernelName:Zs,backendName:"cpu",kernelFunc:h_};function PO(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;be(a,"multinomial");let l=o?a:h_({inputs:{logits:a},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],h=n.data.get(l.dataId).values,d=[c,s],p=_.makeZerosTypedArray(_.sizeFromShape(d),"int32");for(let m=0;m=0&&u[h]{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=ip({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=Nl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var QO={kernelName:Wo,backendName:"cpu",kernelFunc:p_};function ez(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;be(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),c=n.data.get(a.dataId).values,u=_.sizeFromShape(a.shape),h=a.shape.length,d=_.computeStrides(a.shape),p=_.sizeFromShape(o),m=o.length,f=_.computeStrides(o),A=_.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;yv+l[w]),x=_.locToIndex(g,m,f);A[x]=c[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var f_={kernelName:zs,backendName:"cpu",kernelFunc:ez},tz=Ct((e,t)=>Math.pow(e,t)),nz=jt(Ps,tz),rz={kernelName:Ps,backendName:"cpu",kernelFunc:nz};function az(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=Xm(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var sz={kernelName:Su,backendName:"cpu",kernelFunc:az},iz=nt(Vo,e=>1/e),oz={kernelName:Vo,backendName:"cpu",kernelFunc:iz};function lz(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;be(a,"resizeBilinear");let l=_.computeStrides(a.shape),[c,u]=o,[h,d,p,m]=a.shape,f=n.data.get(a.dataId).values,A=new Float32Array(_.sizeFromShape([h,c,u,m])),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=0,v=y[0]/g[0],w=y[1]/g[1];for(let b=0;b1?c-1:c,i&&p>1?u-1:u],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=f[0]/A[0],g=f[1]/A[1],x=n.data.get(s.dataId).values,v=0;for(let w=0;w1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=y[0]/g[0],v=y[1]/g[1],w=0;for(let b=0;b1?u-1:u,i&&m>1?h-1:h],g=[i&&p>1?p-1:p,i&&m>1?m-1:m],x=y[0]/g[0],v=y[1]/g[1],w=1/x,b=1/v,k=Math.ceil(w)*2+2,N=Math.ceil(b)*2+2;for(let C=0;C=p)continue;let Q=F+ie*l[1],ce=ie*x,oe=Math.min(u-1,i?Math.round(ce):Math.floor(ce));if(O===oe)for(let me=0;me=m)continue;let ve=Q+de*l[2],Ie=de*v,Fe=Math.min(h-1,i?Math.round(Ie):Math.floor(Ie));U===Fe&&(ae+=A[ve+Y])}}f[X+Y]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,f)}var mz={kernelName:Qh,backendName:"cpu",kernelFunc:fz};function Az(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;be(a,"reverse");let i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return Br({inputs:{x:a},backend:n});let l=new $t(a.shape,a.dtype),c=n.bufferSync(a);for(let u=0;ud[p]=a.shape[p]-1-d[p]),l.set(c.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var yz={kernelName:js,backendName:"cpu",kernelFunc:Az},gz={kernelName:nl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[c,u,h,d]=r.shape,[p,m]=E.getImageCenter(i,u,h),f=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let x=0;x=0&&V=0&&j{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),wz={kernelName:Us,backendName:"cpu",kernelFunc:xz};function m_(e,t,n,r,a,s,i,o,l,c){let u=[r/a,a],h=e.values,d=t.values;if(r===0)return We(n,t.dtype);let p=We(u,t.dtype);p.values.fill(l);for(let m=0;m=r/a)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y1||a.shape.length===1?1:_.sizeFromShape(a.shape.slice(1));for(let m=0;me>=0?Sz*e:Iz*(Math.exp(e)-1)),Tz={kernelName:Go,backendName:"cpu",kernelFunc:Nz},Ez=nt(Ko,e=>e<0?-1:e>0?1:0),Cz={kernelName:Ko,backendName:"cpu",kernelFunc:Ez},Rz=nt(Gs,e=>Math.sin(e)),Mz={kernelName:Gs,backendName:"cpu",kernelFunc:Rz},Fz=nt(Xo,e=>Math.sinh(e)),$z={kernelName:Xo,backendName:"cpu",kernelFunc:Fz},Dz=11920928955078125e-23,A_=Math.log(Dz)+2,Oz=nt(Zo,e=>{let t=e>-A_,n=e{let d=[...u];d[o]=h;let p=Ti({inputs:{x:a},backend:n,attrs:{begin:c,size:d}});return c[o]+=h,p})}var fP={kernelName:rl,backendName:"cpu",kernelFunc:pP},mP=rt(Qs,e=>Math.sqrt(e)),AP={kernelName:Qs,backendName:"cpu",kernelFunc:mP},yP={kernelName:Du,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;_e(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),xP={kernelName:$a,backendName:"cpu",kernelFunc:gP};function bP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r;_e(a,"stridedSlice");let{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=un.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=mt({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let w=Ti({inputs:{x},backend:n,attrs:{begin:m,size:A}});v=mt({inputs:{x:w},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(w)}else if(g.some(w=>w===0))v=n.makeTensorInfo(g,a.dtype,[]);else{let w=n.bufferSync(x),k=d_(g,w,f,m);v=n.makeTensorInfo(k.shape,k.dtype,k.values)}let b=mt({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),b}var wP={kernelName:al,backendName:"cpu",kernelFunc:bP},_P=rt(ai,e=>Math.tan(e)),vP={kernelName:ai,backendName:"cpu",kernelFunc:_P},kP=rt(si,e=>Math.tanh(e)),IP={kernelName:si,backendName:"cpu",kernelFunc:kP};function SP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;_e(a,"tile");let i=f_(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var NP={kernelName:Fa,backendName:"cpu",kernelFunc:SP};function TP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;_e(a,"topk");let o=n.data.get(a.dataId).values,[l,c]=m_(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var EP={kernelName:sl,backendName:"cpu",kernelFunc:TP};function MP(e){let{inputs:t,attrs:n,backend:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=n,[u,h,d,p]=a.shape,[m,f]=c!=null?c:[h,d],A=[u,m,f,p],y=_.computeStrides(a.shape),g=y[0],x=y[1],v=y[2],b=_.getTypedArrayFromDType(a.dtype,_.sizeFromShape(A));b.fill(l);let w=r.data.get(a.dataId).values,k=r.data.get(s.dataId).values;for(let N=0;Nt-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return _.clamp(0,n,t-1)}function DP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return _.clamp(0,n,t-1)}function OP(e,t){return e}function zP(e,t){return _.clamp(0,e,t-1)}function pc(e,t,n,r,a,s,i,o,l,c,u){let h=i*r+o*a+l*s+c;return 0<=o&&on.disposeIntermediateTensorInfo(m)),p}var jP={kernelName:Ou,backendName:"cpu",kernelFunc:VP},UP=[t$,sF,r$,s$,hF,o$,u$,h$,p$,m$,y$,x$,w$,k$,S$,E$,R$,F$,D$,QF,z$,L$,B$,uF,pF,j$,iF,H$,q$,Z$,J$,X$,nD,aD,eD,iD,lD,cD,dD,fD,AD,yD,xD,wD,vD,kD,SD,ID,hA,ED,HF,RD,FD,BD,fF,VD,AF,XD,ZD,YD,gF,eO,nO,aO,iO,lO,bF,hO,oF,pO,G$,mO,yO,xO,GF,_F,_O,kO,kF,SO,EO,RO,$O,OO,PO,SF,BO,jO,HO,qO,KO,LO,YO,QO,TF,tz,az,lz,CF,MF,hz,fz,yz,$F,xz,wz,_z,O_,Sz,XF,zF,Tz,lF,Cz,KF,ZF,JF,Mz,$z,Oz,Pz,Wz,Bz,jz,LF,Hz,qz,Yz,YF,Qz,tP,rP,WF,iz,iP,lP,cP,dP,fP,AP,yP,VF,xP,wP,UF,ND,vP,IP,NP,EP,DF,FP,LP,BP,jP,bz];for(let e of UP)ci(e);var W_={};Me(W_,{assertNotComplex:()=>$l,bindCanvasToFramebuffer:()=>qP,bindColorTextureToFramebuffer:()=>fp,bindTextureToProgramUniformSampler:()=>t3,bindTextureUnit:()=>J_,bindVertexBufferToProgramAttribute:()=>fA,callAndCheck:()=>xe,canBeRepresented:()=>B_,createFragmentShader:()=>U_,createFramebuffer:()=>Y_,createProgram:()=>H_,createStaticIndexBuffer:()=>X_,createStaticVertexBuffer:()=>q_,createTexture:()=>K_,createVertexShader:()=>j_,getBatchDim:()=>Ei,getExtensionOrThrow:()=>fc,getFramebufferErrorMessage:()=>n3,getMaxTexturesInShader:()=>s3,getNumChannels:()=>HP,getProgramUniformLocation:()=>e3,getProgramUniformLocationOrThrow:()=>Q_,getRowsCols:()=>Ci,getShapeAs3D:()=>mp,getTextureShapeFromLogicalShape:()=>r3,getWebGLDisjointQueryTimerVersion:()=>i3,getWebGLErrorMessage:()=>V_,getWebGLMaxTextureSize:()=>a3,hasExtension:()=>rr,isCapableOfRenderingToFloatTexture:()=>o3,isDownloadFloatTextureEnabled:()=>l3,isReshapeFree:()=>Ac,isWebGLFenceEnabled:()=>u3,isWebGLVersionEnabled:()=>AA,linkProgram:()=>G_,resetMaxTextureSize:()=>XP,resetMaxTexturesInShader:()=>KP,unbindColorTextureFromFramebuffer:()=>mA,unbindTextureUnit:()=>GP,validateFramebuffer:()=>mc,validateProgram:()=>pp,validateTextureSize:()=>Z_});var Ri={},yA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Ap(e,t){Ri[e]=t}function Xr(e){if(!(e in Ri)){let n=ZP(e);if(n!==null)Ri[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ri[e];return t.isContextLost()?(delete Ri[e],Xr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ri[e])}function YP(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function ZP(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=YP(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ri[e]},!1),e===1?t.getContext("webgl",yA)||t.getContext("experimental-webgl",yA):t.getContext("webgl2",yA)}var yc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(yc||(yc={}));var ar;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ar||(ar={}));var tn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(tn||(tn={}));function gc(e,t){return[t,e]}function JP(e,t){return e*t}function xc(e){let t=_.sizeFromShape(e),n=Math.ceil(t/4);return _.sizeToSquarishShape(n)}function Dl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function QP(e,t){let[n,r]=Dl(e,t);return n*r*4}function gA(e,t){let n=e,r,a,s,i,o,l,c,u,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:h,textureTypeFloat:d}}function xe(e,t){let n=t();return J().getBool("DEBUG")&&eL(e),n}function eL(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+V_(e,t))}var tL=596e-10,nL=65504;function B_(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||tLe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function j_(e,t){let n=Aa(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function U_(e,t){let n=Aa(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw rL(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var aL=/ERROR: [0-9]+:([0-9]+):/g;function rL(e,t){let n=aL.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(` + ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(a.dataId).values),o=n.data.get(r.dataId).values,l=Array.from(n.data.get(s.dataId).values),[c,u,h]=Vb(o,r.shape,r.dtype,i,l);return[n.makeTensorInfo(u,r.dtype,c),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var Bz={kernelName:td,backendName:"cpu",kernelFunc:Wz};function Vz(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=E.calculateShapes(s,a,o),p=!1,m=n.bufferSync(a),f=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=m_(m,f,o,d,u,c,l,h,A,p);return n.makeTensorInfo(o,y.dtype,y.values)}var jz={kernelName:nd,backendName:"cpu",kernelFunc:Vz};function Uz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=_.parseAxisParam(i,a.shape)[0],l=E.prepareSplitSize(a,s,o),c=new Array(a.shape.length).fill(0),u=a.shape.slice();return l.map(h=>{let d=[...u];d[o]=h;let p=_i({inputs:{x:a},backend:n,attrs:{begin:c,size:d}});return c[o]+=h,p})}var Hz={kernelName:Yo,backendName:"cpu",kernelFunc:Uz},Gz=nt(Xs,e=>Math.sqrt(e)),qz={kernelName:Xs,backendName:"cpu",kernelFunc:Gz},Xz={kernelName:Eu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;be(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),Zz={kernelName:Ea,backendName:"cpu",kernelFunc:Kz};function Yz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r;be(a,"stridedSlice");let{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=sn.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=pt({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let b=_i({inputs:{x},backend:n,attrs:{begin:m,size:A}});v=pt({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))v=n.makeTensorInfo(g,a.dtype,[]);else{let b=n.bufferSync(x),k=Ub(g,b,f,m);v=n.makeTensorInfo(k.shape,k.dtype,k.values)}let w=pt({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),w}var Jz={kernelName:Jo,backendName:"cpu",kernelFunc:Yz},Qz=nt(Qs,e=>Math.tan(e)),eP={kernelName:Qs,backendName:"cpu",kernelFunc:Qz},tP=nt(ei,e=>Math.tanh(e)),nP={kernelName:ei,backendName:"cpu",kernelFunc:tP};function rP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;be(a,"tile");let i=Gb(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var aP={kernelName:Ta,backendName:"cpu",kernelFunc:rP};function sP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;be(a,"topk");let o=n.data.get(a.dataId).values,[l,c]=qb(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var iP={kernelName:Qo,backendName:"cpu",kernelFunc:sP};function uP(e){let{inputs:t,attrs:n,backend:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=n,[u,h,d,p]=a.shape,[m,f]=c!=null?c:[h,d],A=[u,m,f,p],y=_.computeStrides(a.shape),g=y[0],x=y[1],v=y[2],w=_.getTypedArrayFromDType(a.dtype,_.sizeFromShape(A));w.fill(l);let b=r.data.get(a.dataId).values,k=r.data.get(s.dataId).values;for(let N=0;Nt-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return _.clamp(0,n,t-1)}function dP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return _.clamp(0,n,t-1)}function pP(e,t){return e}function fP(e,t){return _.clamp(0,e,t-1)}function lc(e,t,n,r,a,s,i,o,l,c,u){let h=i*r+o*a+l*s+c;return 0<=o&&on.disposeIntermediateTensorInfo(m)),p}var wP={kernelName:Cu,backendName:"cpu",kernelFunc:xP},bP=[MF,OM,$F,OF,VM,PF,WF,VF,UF,GF,XF,ZF,JF,t$,r$,i$,l$,c$,d$,CF,f$,A$,g$,WM,UM,w$,zM,_$,k$,N$,E$,I$,F$,D$,R$,z$,L$,B$,j$,H$,q$,X$,Z$,J$,eD,tD,rD,nD,eA,iD,_F,lD,cD,gD,HM,xD,qM,ID,ND,TD,KM,RD,FD,DD,zD,LD,YM,VD,PM,UD,v$,GD,XD,ZD,vF,QM,QD,tO,tF,rO,iO,lO,hO,pO,mO,rF,gO,wO,_O,kO,SO,AO,TO,CO,sF,MO,DO,LO,oF,uF,VO,HO,XO,hF,ZO,JO,QO,f_,rz,IF,fF,sz,LM,oz,SF,NF,EF,uz,hz,pz,mz,yz,gz,wz,AF,_z,kz,Tz,TF,Cz,Mz,$z,yF,zO,zz,Lz,Bz,jz,Hz,qz,Xz,xF,Zz,Jz,bF,aD,eP,nP,aP,iP,dF,cP,AP,gP,wP,YO];for(let e of bP)si(e);var g_={};Me(g_,{assertNotComplex:()=>Tl,bindCanvasToFramebuffer:()=>kP,bindColorTextureToFramebuffer:()=>up,bindTextureToProgramUniformSampler:()=>F_,bindTextureUnit:()=>C_,bindVertexBufferToProgramAttribute:()=>rA,callAndCheck:()=>xe,canBeRepresented:()=>x_,createFragmentShader:()=>__,createFramebuffer:()=>E_,createProgram:()=>v_,createStaticIndexBuffer:()=>S_,createStaticVertexBuffer:()=>I_,createTexture:()=>N_,createVertexShader:()=>b_,getBatchDim:()=>vi,getExtensionOrThrow:()=>uc,getFramebufferErrorMessage:()=>$_,getMaxTexturesInShader:()=>z_,getNumChannels:()=>_P,getProgramUniformLocation:()=>M_,getProgramUniformLocationOrThrow:()=>R_,getRowsCols:()=>ki,getShapeAs3D:()=>cp,getTextureShapeFromLogicalShape:()=>D_,getWebGLDisjointQueryTimerVersion:()=>P_,getWebGLErrorMessage:()=>w_,getWebGLMaxTextureSize:()=>O_,hasExtension:()=>Jn,isCapableOfRenderingToFloatTexture:()=>L_,isDownloadFloatTextureEnabled:()=>W_,isReshapeFree:()=>hc,isWebGLFenceEnabled:()=>B_,isWebGLVersionEnabled:()=>sA,linkProgram:()=>k_,resetMaxTextureSize:()=>IP,resetMaxTexturesInShader:()=>SP,unbindColorTextureFromFramebuffer:()=>aA,unbindTextureUnit:()=>vP,validateFramebuffer:()=>cc,validateProgram:()=>lp,validateTextureSize:()=>T_});var Ii={},iA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function hp(e,t){Ii[e]=t}function Vr(e){if(!(e in Ii)){let n=NP(e);if(n!==null)Ii[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ii[e];return t.isContextLost()?(delete Ii[e],Vr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ii[e])}function TP(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function NP(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=TP(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ii[e]},!1),e===1?t.getContext("webgl",iA)||t.getContext("experimental-webgl",iA):t.getContext("webgl2",iA)}var dc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(dc||(dc={}));var Qn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Qn||(Qn={}));var Qt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Qt||(Qt={}));function pc(e,t){return[t,e]}function EP(e,t){return e*t}function fc(e){let t=_.sizeFromShape(e),n=Math.ceil(t/4);return _.sizeToSquarishShape(n)}function El(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function CP(e,t){let[n,r]=El(e,t);return n*r*4}function oA(e,t){let n=e,r,a,s,i,o,l,c,u,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:h,textureTypeFloat:d}}function xe(e,t){let n=t();return J().getBool("DEBUG")&&RP(e),n}function RP(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+w_(e,t))}var MP=596e-10,FP=65504;function x_(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||MPe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function b_(e,t){let n=ha(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function __(e,t){let n=ha(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw $P(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var DP=/ERROR: [0-9]+:([0-9]+):/g;function $P(e,t){let n=DP.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(` `),s=a.length.toString().length+2,i=a.map((h,d)=>_.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;he.createProgram(),"Unable to create WebGLProgram.")}function G_(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function pp(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function q_(e,t){let n=Aa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function X_(e,t){let n=Aa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function HP(){return J().getNumber("WEBGL_VERSION")===2?1:4}function K_(e){return Aa(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function Z_(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function Y_(e){return Aa(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function fA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),xe(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function J_(e,t,n){c3(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function GP(e,t){c3(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Q_(e,t,n){return Aa(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function e3(e,t,n){return e.getUniformLocation(t,n)}function t3(e,t,n,r){xe(e,()=>J_(e,t,r)),xe(e,()=>e.uniform1i(n,r))}function qP(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function fp(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function mA(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function mc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+n3(e,t))}function n3(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Aa(e,t,n){let r=xe(e,()=>t());if(r==null)throw new Error(n);return r}function c3(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function Ei(e,t=2){return _.sizeFromShape(e.slice(0,e.length-t))}function Ci(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function mp(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Ei(e),...Ci(e)]),t}function r3(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?_.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=_.squeezeShape(e).newShape);let r=_.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=Ei(e),s=2,i=2;return e.length&&([s,i]=Ci(e)),r=a*(s/2)*(i/2),_.sizeToSquarishShape(r).map(o=>o*2)}return _.sizeToSquarishShape(r)}function yp(e){return e%2==0}function Ac(e,t){if(e=e.slice(-2),t=t.slice(-2),_.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||yp(n)&&yp(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&yp(e[0])&&yp(t[0])}var gp,xp;function a3(e){if(gp==null){let t=Xr(e);gp=t.getParameter(t.MAX_TEXTURE_SIZE)}return gp}function XP(){gp=null}function KP(){xp=null}function s3(e){if(xp==null){let t=Xr(e);xp=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,xp)}function i3(e){if(e===0)return 0;let t,n=Xr(e);return rr(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:rr(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function rr(e,t){return e.getExtension(t)!=null}function AA(e){try{if(Xr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function o3(e){if(e===0)return!1;let t=Xr(e);if(e===1){if(!rr(t,"OES_texture_float"))return!1}else if(!rr(t,"EXT_color_buffer_float"))return!1;return xA(t)}function l3(e){if(e===0)return!1;let t=Xr(e);if(e===1){if(!rr(t,"OES_texture_float")||!rr(t,"WEBGL_color_buffer_float"))return!1}else{if(rr(t,"EXT_color_buffer_float"))return xA(t);let n="EXT_color_buffer_half_float";if(rr(t,n)){let r=t.getExtension(n);return sL(t,r)}return!1}return xA(t)}function xA(e){let t=gA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function sL(e,t){let n=gA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function u3(e){return e!==2?!1:Xr(e).fenceSync!=null}function $l(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=J();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>AA(2)?2:AA(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>a3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>s3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:i3(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Hu.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>o3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>l3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>u3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Hu.isMobile()&&Ce.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function dn(){let e,t,n,r,a,s,i,o,l,c;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=` +`))}function v_(e){return ha(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function k_(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function lp(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function I_(e,t){let n=ha(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function S_(e,t){let n=ha(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function _P(){return J().getNumber("WEBGL_VERSION")===2?1:4}function N_(e){return ha(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function T_(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function E_(e){return ha(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function rA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),xe(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function C_(e,t,n){V_(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function vP(e,t){V_(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function R_(e,t,n){return ha(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function M_(e,t,n){return e.getUniformLocation(t,n)}function F_(e,t,n,r){xe(e,()=>C_(e,t,r)),xe(e,()=>e.uniform1i(n,r))}function kP(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function up(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function aA(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function cc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+$_(e,t))}function $_(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ha(e,t,n){let r=xe(e,()=>t());if(r==null)throw new Error(n);return r}function V_(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function vi(e,t=2){return _.sizeFromShape(e.slice(0,e.length-t))}function ki(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function cp(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[vi(e),...ki(e)]),t}function D_(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?_.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=_.squeezeShape(e).newShape);let r=_.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=vi(e),s=2,i=2;return e.length&&([s,i]=ki(e)),r=a*(s/2)*(i/2),_.sizeToSquarishShape(r).map(o=>o*2)}return _.sizeToSquarishShape(r)}function dp(e){return e%2==0}function hc(e,t){if(e=e.slice(-2),t=t.slice(-2),_.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||dp(n)&&dp(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&dp(e[0])&&dp(t[0])}var pp,fp;function O_(e){if(pp==null){let t=Vr(e);pp=t.getParameter(t.MAX_TEXTURE_SIZE)}return pp}function IP(){pp=null}function SP(){fp=null}function z_(e){if(fp==null){let t=Vr(e);fp=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,fp)}function P_(e){if(e===0)return 0;let t,n=Vr(e);return Jn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Jn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Jn(e,t){return e.getExtension(t)!=null}function sA(e){try{if(Vr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function L_(e){if(e===0)return!1;let t=Vr(e);if(e===1){if(!Jn(t,"OES_texture_float"))return!1}else if(!Jn(t,"EXT_color_buffer_float"))return!1;return lA(t)}function W_(e){if(e===0)return!1;let t=Vr(e);if(e===1){if(!Jn(t,"OES_texture_float")||!Jn(t,"WEBGL_color_buffer_float"))return!1}else{if(Jn(t,"EXT_color_buffer_float"))return lA(t);let n="EXT_color_buffer_half_float";if(Jn(t,n)){let r=t.getExtension(n);return OP(t,r)}return!1}return lA(t)}function lA(e){let t=oA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function OP(e,t){let n=oA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function B_(e){return e!==2?!1:Vr(e).fenceSync!=null}function Tl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=J();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>sA(2)?2:sA(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>O_(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>z_(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:P_(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Lu.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>L_(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>W_(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>B_(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Lu.isMobile()&&Ce.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function cn(){let e,t,n,r,a,s,i,o,l,c;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=` bool isnan_custom(float val) { return (val > 0.0 || val < 0.0) ? false : val != 0.0; } @@ -78,11 +78,11 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } - `),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function Mi(e,t,n="index"){let r=_.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function bA(e){let t=_.computeStrides(e).map(n=>n.toString());return` + `),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function Si(e,t,n="index"){let r=_.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function uA(e){let t=_.computeStrides(e).map(n=>n.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z; } -`}var h3=` +`}var j_=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; @@ -121,9 +121,9 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee return c / 255.0; } -`,iL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=yc.DENSE;let t=xc(e),n=dn();this.outputShape=e,this.userCode=` +`,zP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=dc.DENSE;let t=fc(e),n=cn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { - ${Mi(["r","c","d"],e)} + ${Si(["r","c","d"],e)} return ivec3(r, c, d); } @@ -142,9 +142,9 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${n.output} = result; } - `}},oL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=yc.DENSE;let t=xc(e),n=dn();this.outputShape=e,this.userCode=` + `}},PP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=dc.DENSE;let t=fc(e),n=cn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { - ${Mi(["r","c","d"],e)} + ${Si(["r","c","d"],e)} return ivec3(r, c, d); } @@ -163,23 +163,23 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${n.output} = result; } - `}},lL=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ar.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=` - ${h3} + `}},LP=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Qn.DOWNLOAD;let t=cn();this.outputShape=e,this.userCode=` + ${j_} void main() { float x = getAAtOutCoords(); ${t.output} = encode_float(x); } - `}},uL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ar.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=` - ${h3} + `}},WP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Qn.DOWNLOAD;let t=cn();this.outputShape=e,this.userCode=` + ${j_} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${t.output} = encode_float(x); } - `}},cL=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=dn(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=` - ${bA(e)} + `}},BP=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=cn(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=` + ${uA(e)} void main() { ivec3 coords = getOutputCoords(); @@ -208,7 +208,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${r.output} = vec4(${i}, 0., 0., 0.); } - `}},hL=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=dn(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=` + `}},VP=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=cn(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=` localCoords = coords; if(localCoords[2] + ${c} < ${e[2]}) { localCoords[2] += ${c}; @@ -237,7 +237,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee } } `}this.userCode=` - ${bA(e)} + ${uA(e)} void main() { ivec3 coords = getOutputCoords(); @@ -252,7 +252,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${r.output} = ${o}; } - `}},d3={};Me(d3,{bindVertexProgramAttributeStreams:()=>w3,createBufferFromOutputTexture:()=>k3,createFloat16MatrixTexture:()=>y3,createFloat16PackedMatrixTexture:()=>b3,createFloat32MatrixTexture:()=>A3,createIndexBuffer:()=>m3,createPackedMatrixTexture:()=>x3,createUnsignedBytesMatrixTexture:()=>g3,createVertexBuffer:()=>f3,createVertexShader:()=>p3,downloadByteEncodedFloatMatrixFromOutputTexture:()=>S3,downloadFloat32MatrixFromBuffer:()=>I3,downloadMatrixFromPackedOutputTexture:()=>T3,downloadPackedMatrixFromBuffer:()=>N3,getInternalFormatForFloat16MatrixTexture:()=>_A,getInternalFormatForFloat16PackedMatrixTexture:()=>IA,getInternalFormatForFloat32MatrixTexture:()=>wA,getInternalFormatForPackedMatrixTexture:()=>kA,getInternalFormatForUnsignedBytesMatrixTexture:()=>vA,uploadDenseMatrixToTexture:()=>_3,uploadPixelDataToTexture:()=>v3});function p3(e){let t=dn(),n=`${t.version} + `}},U_={};Me(U_,{bindVertexProgramAttributeStreams:()=>Q_,createBufferFromOutputTexture:()=>n3,createFloat16MatrixTexture:()=>K_,createFloat16PackedMatrixTexture:()=>J_,createFloat32MatrixTexture:()=>X_,createIndexBuffer:()=>q_,createPackedMatrixTexture:()=>Y_,createUnsignedBytesMatrixTexture:()=>Z_,createVertexBuffer:()=>G_,createVertexShader:()=>H_,downloadByteEncodedFloatMatrixFromOutputTexture:()=>a3,downloadFloat32MatrixFromBuffer:()=>r3,downloadMatrixFromPackedOutputTexture:()=>i3,downloadPackedMatrixFromBuffer:()=>s3,getInternalFormatForFloat16MatrixTexture:()=>hA,getInternalFormatForFloat16PackedMatrixTexture:()=>fA,getInternalFormatForFloat32MatrixTexture:()=>cA,getInternalFormatForPackedMatrixTexture:()=>pA,getInternalFormatForUnsignedBytesMatrixTexture:()=>dA,uploadDenseMatrixToTexture:()=>e3,uploadPixelDataToTexture:()=>t3});function H_(e){let t=cn(),n=`${t.version} precision highp float; ${t.attribute} vec3 clipSpacePos; ${t.attribute} vec2 uv; @@ -261,22 +261,22 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; - }`;return j_(e,n)}function f3(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return q_(e,t)}function m3(e){let t=new Uint16Array([0,1,2,2,1,3]);return X_(e,t)}function bc(e,t,n,r,a,s){Z_(t,n);let i=K_(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function wA(e){return e.internalFormatFloat}function A3(e,t,n,r){let[a,s]=gc(t,n);return bc(e,a,s,wA(r),r.textureFormatFloat,e.FLOAT)}function _A(e){return e.internalFormatHalfFloat}function y3(e,t,n,r){let[a,s]=gc(t,n);return bc(e,a,s,_A(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function vA(e){return e.downloadTextureFormat}function g3(e,t,n,r){let[a,s]=gc(t,n);return bc(e,a,s,vA(r),e.RGBA,e.UNSIGNED_BYTE)}function kA(e){return e.internalFormatPackedFloat}function x3(e,t,n,r){let[a,s]=Dl(t,n);return bc(e,a,s,kA(r),e.RGBA,e.FLOAT)}function IA(e){return e.internalFormatPackedHalfFloat}function b3(e,t,n,r){let[a,s]=Dl(t,n);return bc(e,a,s,IA(r),e.RGBA,r.textureTypeHalfFloat)}function w3(e,t,n){let r=0,a=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),fA(e,t,"clipSpacePos",n,3,s,r)&&fA(e,t,"uv",n,2,s,a)}function _3(e,t,n,r,a,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function v3(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function k3(e,t,n,r){let a=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function I3(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function S3(e,t,n,r){let[a,s]=gc(t,n),i=4,o=new Uint8Array(JP(t*n,i));return xe(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function N3(e,t,n,r,a,s,i,o){let l=e,c=new Float32Array(QP(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function T3(e,t,n){let r=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var bp=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Ap(t,e)):this.gl=Xr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=fc(this.gl,a),rr(this.gl,s))this.textureHalfFloatExtension=fc(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),rr(this.gl,r))this.colorBufferHalfFloatExtension=fc(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",rr(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(rr(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=f3(this.gl),this.indexBuffer=m3(this.gl),this.framebuffer=Y_(this.gl),this.textureConfig=gA(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),A3(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),y3(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),g3(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),v3(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),_3(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),b3(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),x3(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(mA(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>S3(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return N3(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return I3(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=k3(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>T3(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=U_(t,e),r=p3(t),a=H_(t);return xe(t,()=>t.attachShader(a,r)),xe(t,()=>t.attachShader(a,n)),G_(t,a),this.debug&&pp(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=w3(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&pp(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?Q_(this.gl,e,t):e3(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),t3(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=Dl(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&pp(this.gl,this.program),mc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=fc(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await _.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=dL(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&_.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),fp(this.gl,e,this.framebuffer),this.debug&&mc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(fp(this.gl,this.outputTexture,this.framebuffer),this.debug&&mc(this.gl)):mA(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;fp(r,e,this.framebuffer),this.debug&&mc(r),this.outputTexture=e,xe(r,()=>r.viewport(0,0,t,n)),xe(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function dL(e){let t=0;for(;t{let m=_.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${m>1?`[${m}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(` -`),i=e.map(p=>pL(p,t,r)).join(` -`),o=t.texShape,l=dn(),c=AL(l),u,h,d=xL(l);return t.isPacked?(u=fL(t.logicalShape,o),h=gL(l)):(u=mL(t.logicalShape,o),h=yL(l)),r&&(d+=bL),[d,c,h,s,u,i,n].join(` -`)}function Ol(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return _L(e);case 1:return vL(e);case 2:return kL(e);case 3:return IL(e);case 4:return SL(e);case 5:return NL(e);case 6:return TL(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function C3(e){switch(e.shapeInfo.logicalShape.length){case 0:return EL(e);case 1:return CL(e);case 2:return RL(e);case 3:return ML(e);default:return FL(e)}}function pL(e,t,n=!1){let r="";n?r+=C3(e):r+=Ol(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=$L(e,t):r+=DL(e,t)),r}function fL(e,t){switch(e.length){case 0:return R3();case 1:return OL(e,t);case 2:return LL(e,t);case 3:return zL(e,t);default:return PL(e,t)}}function mL(e,t){switch(e.length){case 0:return R3();case 1:return WL(e,t);case 2:return HL(e,t);case 3:return BL(e,t);case 4:return VL(e,t);case 5:return jL(e,t);case 6:return UL(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function AL(e){return` + }`;return b_(e,n)}function G_(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return I_(e,t)}function q_(e){let t=new Uint16Array([0,1,2,2,1,3]);return S_(e,t)}function mc(e,t,n,r,a,s){T_(t,n);let i=N_(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function cA(e){return e.internalFormatFloat}function X_(e,t,n,r){let[a,s]=pc(t,n);return mc(e,a,s,cA(r),r.textureFormatFloat,e.FLOAT)}function hA(e){return e.internalFormatHalfFloat}function K_(e,t,n,r){let[a,s]=pc(t,n);return mc(e,a,s,hA(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function dA(e){return e.downloadTextureFormat}function Z_(e,t,n,r){let[a,s]=pc(t,n);return mc(e,a,s,dA(r),e.RGBA,e.UNSIGNED_BYTE)}function pA(e){return e.internalFormatPackedFloat}function Y_(e,t,n,r){let[a,s]=El(t,n);return mc(e,a,s,pA(r),e.RGBA,e.FLOAT)}function fA(e){return e.internalFormatPackedHalfFloat}function J_(e,t,n,r){let[a,s]=El(t,n);return mc(e,a,s,fA(r),e.RGBA,r.textureTypeHalfFloat)}function Q_(e,t,n){let r=0,a=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),rA(e,t,"clipSpacePos",n,3,s,r)&&rA(e,t,"uv",n,2,s,a)}function e3(e,t,n,r,a,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function t3(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function n3(e,t,n,r){let a=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function r3(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function a3(e,t,n,r){let[a,s]=pc(t,n),i=4,o=new Uint8Array(EP(t*n,i));return xe(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function s3(e,t,n,r,a,s,i,o){let l=e,c=new Float32Array(CP(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function i3(e,t,n){let r=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var mp=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,hp(t,e)):this.gl=Vr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=uc(this.gl,a),Jn(this.gl,s))this.textureHalfFloatExtension=uc(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Jn(this.gl,r))this.colorBufferHalfFloatExtension=uc(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Jn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Jn(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=G_(this.gl),this.indexBuffer=q_(this.gl),this.framebuffer=E_(this.gl),this.textureConfig=oA(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),X_(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),K_(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),Z_(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),t3(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),e3(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),J_(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Y_(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(aA(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>a3(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return s3(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return r3(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=n3(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>i3(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=__(t,e),r=H_(t),a=v_(t);return xe(t,()=>t.attachShader(a,r)),xe(t,()=>t.attachShader(a,n)),k_(t,a),this.debug&&lp(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=Q_(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&lp(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?R_(this.gl,e,t):M_(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),F_(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=El(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&lp(this.gl,this.program),cc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=uc(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await _.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=jP(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&_.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),up(this.gl,e,this.framebuffer),this.debug&&cc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(up(this.gl,this.outputTexture,this.framebuffer),this.debug&&cc(this.gl)):aA(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;up(r,e,this.framebuffer),this.debug&&cc(r),this.outputTexture=e,xe(r,()=>r.viewport(0,0,t,n)),xe(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function jP(e){let t=0;for(;t{let m=_.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${m>1?`[${m}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(` +`),i=e.map(p=>UP(p,t,r)).join(` +`),o=t.texShape,l=cn(),c=qP(l),u,h,d=ZP(l);return t.isPacked?(u=HP(t.logicalShape,o),h=KP(l)):(u=GP(t.logicalShape,o),h=XP(l)),r&&(d+=YP),[d,c,h,s,u,i,n].join(` +`)}function Cl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return QP(e);case 1:return eL(e);case 2:return tL(e);case 3:return nL(e);case 4:return rL(e);case 5:return aL(e);case 6:return sL(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function l3(e){switch(e.shapeInfo.logicalShape.length){case 0:return iL(e);case 1:return oL(e);case 2:return lL(e);case 3:return uL(e);default:return cL(e)}}function UP(e,t,n=!1){let r="";n?r+=l3(e):r+=Cl(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=hL(e,t):r+=dL(e,t)),r}function HP(e,t){switch(e.length){case 0:return u3();case 1:return pL(e,t);case 2:return AL(e,t);case 3:return fL(e,t);default:return mL(e,t)}}function GP(e,t){switch(e.length){case 0:return u3();case 1:return yL(e,t);case 2:return _L(e,t);case 3:return gL(e,t);case 4:return xL(e,t);case 5:return wL(e,t);case 6:return bL(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function qP(e){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${e.texture2D}(textureSampler, uv).r; } - `}function yL(e){return` + `}function XP(e){return` void setOutput(float val) { ${e.output} = vec4(val, 0, 0, 0); } - `}function gL(e){return` + `}function KP(e){return` void setOutput(vec4 val) { ${e.output} = val; } - `}function xL(e){return`${e.version} + `}function ZP(e){return`${e.version} precision highp float; precision highp int; precision highp sampler2D; @@ -331,10 +331,10 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee return fract((p3.x + p3.y) * p3.z); } - ${GL} - ${qL} - ${XL} - `}var GL=` + ${vL} + ${kL} + ${IL} + `}var vL=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; @@ -346,7 +346,7 @@ vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,qL=` +`,kL=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); @@ -354,7 +354,7 @@ vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,XL=` +`,IL=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { @@ -363,7 +363,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,bL=` +`,YP=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? @@ -374,11 +374,11 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } -`;function R3(){return` +`;function u3(){return` int getOutputCoords() { return 0; } - `}function OL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?` + `}function pL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?` int getOutputCoords() { return 2 * int(resultUV.x * ${n[1]}.0); } @@ -392,7 +392,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2(${n[0]}, ${n[1]})); return 2 * (resTexRC.x * ${n[1]} + resTexRC.y); } - `}function WL(e,t){return t[0]===1?` + `}function yL(e,t){return t[0]===1?` int getOutputCoords() { return int(resultUV.x * ${t[1]}.0); } @@ -406,7 +406,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2(${t[0]}, ${t[1]})); return resTexRC.x * ${t[1]} + resTexRC.y; } - `}function zL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return` + `}function fL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]})); @@ -420,7 +420,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, return ivec3(b, r, c); } - `}function BL(e,t){let n=Mi(["r","c","d"],e);return` + `}function gL(e,t){let n=Si(["r","c","d"],e);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); @@ -428,7 +428,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ${n} return ivec3(r, c, d); } - `}function PL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l=1?u="coords = 0;":u=o.map(A=>`coords.${h[A+c]} = 0;`).join(` + `}function hL(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=o3(e.shapeInfo.logicalShape,t.logicalShape),l=lt(i),c=i-s,u,h=["x","y","z","w","u","v"];s===0?u="":i<2&&o.length>=1?u="coords = 0;":u=o.map(A=>`coords.${h[A+c]} = 0;`).join(` `);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+c]}`).join(", ");let p="return outputValue;",m=_.sizeFromShape(e.shapeInfo.logicalShape)===1,f=_.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)p=` return vec4(outputValue.xy, outputValue.xy); `;else if(m&&!f)i===1?p=` @@ -808,22 +808,22 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec4 outputValue = get${r}(${d}); ${p} } - `}function DL(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&_.arraysEqual(i,s))return` + `}function dL(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&_.arraysEqual(i,s))return` float ${a}() { return sampleTexture(${n}, resultUV); } - `;let c=lt(l),u=E3(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(f=>`coords.${p[f+h]} = 0;`).join(` + `;let c=lt(l),u=o3(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(f=>`coords.${p[f+h]} = 0;`).join(` `);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,A)=>`coords.${p[A+h]}`).join(", "),` float ${a}() { ${c} coords = getOutputCoords(); ${d} return get${r}(${m}); } - `}function lt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Pl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Ll(e,t){return t.map(n=>e[n]).join(", ")}function KL(e,t,n,r){let a=t.userCode,s=n.map((p,m)=>{let f={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(f.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=wL(s,o,a,t.packedInputs),c=e.createProgram(l),u=null,h=e.getUniformLocation(c,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let p=0;p{let a=n.logicalShape,s=t[r],i=s.shape;if(!_.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!_.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function ZL(e,t,n,r,a){M3(t.inShapeInfos,n),M3([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(_.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function YL(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:JL,bincountImpl:F3,bincountReduceImpl:QL,ceilImpl:eW,concatImpl:tW,expImpl:nW,expm1Impl:rW,floorImpl:aW,gatherV2Impl:sW,greaterImpl:iW,lessImpl:oW,linSpaceImpl:lW,logImpl:uW,maxImpl:cW,maximumImpl:hW,minimumImpl:dW,multiplyImpl:pW,negImpl:fW,prodImpl:mW,rangeImpl:AW,rsqrtImpl:yW,simpleAbsImpl:$3,sliceImpl:gW,sparseReshapeImpl:xW,stridedSliceImpl:bW,subImpl:wW,tileImpl:_W,topKImpl:vW,transposeImpl:SA,uniqueImpl:kW}=eA;function D3(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function pn(e,t){return t===1?[e]:D3(e,t)}function IW(e,t){if(e===1)return"rc";let n="";for(let r=0;re[n]).join(", ")}function SL(e,t,n,r){let a=t.userCode,s=n.map((p,m)=>{let f={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(f.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=JP(s,o,a,t.packedInputs),c=e.createProgram(l),u=null,h=e.getUniformLocation(c,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let p=0;p{let a=n.logicalShape,s=t[r],i=s.shape;if(!_.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!_.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function NL(e,t,n,r,a){c3(t.inShapeInfos,n),c3([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(_.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function TL(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:EL,bincountImpl:h3,bincountReduceImpl:CL,ceilImpl:RL,concatImpl:ML,expImpl:FL,expm1Impl:$L,floorImpl:DL,gatherV2Impl:OL,greaterImpl:zL,lessImpl:PL,linSpaceImpl:LL,logImpl:WL,maxImpl:BL,maximumImpl:VL,minimumImpl:jL,multiplyImpl:UL,negImpl:HL,prodImpl:GL,rangeImpl:qL,rsqrtImpl:XL,simpleAbsImpl:d3,sliceImpl:KL,sparseReshapeImpl:ZL,stridedSliceImpl:YL,subImpl:JL,tileImpl:QL,topKImpl:eW,transposeImpl:mA,uniqueImpl:tW}=jm;function p3(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function hn(e,t){return t===1?[e]:p3(e,t)}function nW(e,t){if(e===1)return"rc";let n="";for(let r=0;r ${t[0]}`;let r="";for(let a=e-2;a= ${t[a]}`,a ${t[0]}`;let r="";for(let a=e-2;a= ${t[a]}`,a= ${t}; bool rEdge = rp1 >= ${n}; - `}function TW(e,t){let n=e.length,r=CW(n,t);return n===1?`getA(rc), + `}function sW(e,t){let n=e.length,r=oW(n,t);return n===1?`getA(rc), rc + 1 >= ${e[0]} ? 0. : getA(rc + 1), 0, 0`:`getA(${r[0]}), cEdge ? 0. : getA(${r[1]}), rEdge ? 0. : getA(${r[2]}), - rEdge || cEdge ? 0. : getA(${r[3]})`}var O3=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=` + rEdge || cEdge ? 0. : getA(${r[3]})`}var f3=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=` ${a} ${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); @@ -860,8 +860,8 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${r>0?"}":""} `}this.userCode=` - ${RW(t)} - ${bA(e)} + ${lW(t)} + ${uA(e)} void main() { ivec3 rc = getOutputCoords(); @@ -876,12 +876,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}};function RW(e){return` + `}};function lW(e){return` ivec3 inputCoordsFromReshapedOutCoords(int index) { - ${Mi(["r","c","d"],e)} + ${Si(["r","c","d"],e)} return ivec3(r, c, d); } - `}var MW=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=P3(t,n),a=L3(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=z3(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===tn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===tn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===tn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===tn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===tn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=P3(n,r),s=L3(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=z3(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function FW(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function z3(e,t,n,r,a){let s=$W(t,r),i;if(a){let[l,c]=Dl(e[0],e[1]);i=l*c}else{let[l,c]=gc(e[0],e[1]);i=l*c}let o=FW(n,s);return i*o}function $W(e,t){switch(e){case tn.PACKED_2X2_FLOAT32:return kA(t);case tn.PACKED_2X2_FLOAT16:return IA(t);case tn.UNPACKED_FLOAT32:return wA(t);case tn.UNPACKED_FLOAT16:return _A(t);case tn.PACKED_4X1_UNSIGNED_BYTE:return vA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function DW(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?tn.PACKED_2X2_FLOAT32:tn.UNPACKED_FLOAT32:e?tn.PACKED_2X2_FLOAT16:tn.UNPACKED_FLOAT16}function P3(e,t){if(e===ar.UPLOAD)return tn.PACKED_2X2_FLOAT32;if(e===ar.RENDER||e==null)return DW(t);if(e===ar.DOWNLOAD||e===ar.PIXELS)return tn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function L3(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var qa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=` + `}var uW=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=A3(t,n),a=y3(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=m3(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===Qt.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===Qt.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===Qt.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===Qt.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===Qt.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=A3(n,r),s=y3(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=m3(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function cW(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function m3(e,t,n,r,a){let s=hW(t,r),i;if(a){let[l,c]=El(e[0],e[1]);i=l*c}else{let[l,c]=pc(e[0],e[1]);i=l*c}let o=cW(n,s);return i*o}function hW(e,t){switch(e){case Qt.PACKED_2X2_FLOAT32:return pA(t);case Qt.PACKED_2X2_FLOAT16:return fA(t);case Qt.UNPACKED_FLOAT32:return cA(t);case Qt.UNPACKED_FLOAT16:return hA(t);case Qt.PACKED_4X1_UNSIGNED_BYTE:return dA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function dW(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Qt.PACKED_2X2_FLOAT32:Qt.UNPACKED_FLOAT32:e?Qt.PACKED_2X2_FLOAT16:Qt.UNPACKED_FLOAT16}function A3(e,t){if(e===Qn.UPLOAD)return Qt.PACKED_2X2_FLOAT32;if(e===Qn.RENDER||e==null)return dW(t);if(e===Qn.DOWNLOAD||e===Qn.PIXELS)return Qt.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function y3(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Ba=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=` float unaryOperation(float x) { ${t} } @@ -892,11 +892,11 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(y); } - `}},Nr="if (isnan(x)) return x;",OW="return x;",W3="return abs(x);",zW="return (x >= 0.0) ? x : (exp(x) - 1.0);",PW=Nr+` + `}},br="if (isnan(x)) return x;",pW="return x;",g3="return abs(x);",fW="return (x >= 0.0) ? x : (exp(x) - 1.0);",mW=br+` return (x < 0.0) ? 0.0 : x; -`,LW=Nr+` +`,AW=br+` return (x < 0.0) ? 0.0 : min(6.0, x); -`,wp="return x;",WW="return 1.0 / (1.0 + exp(-1.0 * x));",BW="return x;",VW=` +`,Ap="return x;",yW="return 1.0 / (1.0 + exp(-1.0 * x));",gW="return x;",xW=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); @@ -905,7 +905,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; -`,jW=` +`,wW=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -915,7 +915,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = isNaN.a ? x.a : result.a; return result; -`,UW=` +`,bW=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -925,7 +925,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = isNaN.a ? x.a : result.a; return result; -`,HW="return 1.0 / (1.0 + exp(-1.0 * x));",Wl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` +`,_W="return 1.0 / (1.0 + exp(-1.0 * x));",$l=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` vec4 unaryOperation(vec4 x) { ${t} } @@ -936,17 +936,17 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(y); } - `}},GW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=pn("rc",t),r=lt(t),a=IW(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=` + `}},vW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=hn("rc",t),r=lt(t),a=nW(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=` void main() { ${r} rc = getOutputCoords(); vec4 packedInput = getA(${a}); setOutput(getChannel(packedInput, ${i})); } - `}},qW=Gr.whereImpl,XW=1e-7,KW=1e-4,NA={};function ZW(e){return e in NA||(NA[e]={}),NA[e]}var YW=128,JW=600;function QW(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*JW/1024/1024}var Bl=class extends gu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Xr(J().getNumber("WEBGL_VERSION"));this.binaryCache=ZW(J().getNumber("WEBGL_VERSION")),this.gpgpu=new bp(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new MW(this.gpgpu),this.numMBBeforeWarning=QW(),this.texData=new Ch(this,ca())}nextDataId(){return Bl.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:ar.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:ar.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new Wl(i,wp):h=new qa(i,wp);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,c;l&&(c=_.now());let u;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);u=E.mergeRealAndImagArrays(h,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=_.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(m=>p.push(m))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new Wl(r,wp):p=new qa(r,wp);let m=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let p=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...xc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=p[0],f=p[1];u=E.mergeRealAndImagArrays(m,f)}else if(l==null)u=this.getValuesFromTexture(e);else{let p=_.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}c!=null&&this.disposeIntermediateTensorInfo(c);let h=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ca().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=_.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=_.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=_.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:_.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=_.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=YW){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&_.sizeFromShape(n.shape)0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return ca().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new GW(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new EW(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Ei(e.shape),...Ci(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[Ei(t),...Ci(t)],s=new O3(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=mp(r),i;n?i=new oL(s):i=new iL(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===yc.DENSE){let f=xc(e.outputShape);i.texShape=f.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),_.sizeFromShape(s.shape)===0)return i.values=_.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(f.dataId);if(A.texture==null){if(!e.packedInputs&&_.sizeFromShape(f.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=f.shape)}else if(!!A.isPacked!=!!e.packedInputs)f=A.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),A=this.texData.get(f.dataId);else if(A.isPacked&&!Ac(A.shape,f.shape)){let y=f,g=f.shape;f.shape=A.shape,f=this.packedReshape(f,g),o.push(f),A=this.texData.get(f.dataId),y.shape=g}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=YL(e,l,c),h=this.getAndSaveBinary(u,()=>KL(this.gpgpu,e,l,c)),d=this.activeTimers!=null,p;d&&(p=this.startTimer()),ZL(this.gpgpu,h,l,c,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=_.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=P(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(ve(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?XW:KW}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=_.now());let u=t.texShape;if(u==null&&(u=r3(n,o),t.texShape=u),a!=null){let h=mp(n),d,p=u[1],m=u[0],f=a instanceof Uint8Array;o?([p,m]=Dl(u[0],u[1]),d=new hL(h,[m,p],f)):d=new cL(h,[m,p],f);let A=this.makeTensorInfo([m,p],r);f?this.texData.get(A.dataId).usage=ar.PIXELS:this.texData.get(A.dataId).usage=ar.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,m,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),x=this.texData.get(g.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=_.now()-c)}else{let h=this.acquireTexture(u,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=eB(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*_.bytesPerElement(t)}};Bl.nextDataId=0;function eB(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;rnew Bl,2);var tB={forceHalfFloat:V3},j3=` + `}},kW=Wr.whereImpl,IW=1e-7,SW=1e-4,AA={};function NW(e){return e in AA||(AA[e]={}),AA[e]}var TW=128,EW=600;function CW(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*EW/1024/1024}var Dl=class extends du{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Vr(J().getNumber("WEBGL_VERSION"));this.binaryCache=NW(J().getNumber("WEBGL_VERSION")),this.gpgpu=new mp(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new uW(this.gpgpu),this.numMBBeforeWarning=CW(),this.texData=new kh(this,aa())}nextDataId(){return Dl.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:Qn.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:Qn.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new $l(i,Ap):h=new Ba(i,Ap);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,c;l&&(c=_.now());let u;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);u=E.mergeRealAndImagArrays(h,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=_.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(m=>p.push(m))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new $l(r,Ap):p=new Ba(r,Ap);let m=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let p=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...fc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=p[0],f=p[1];u=E.mergeRealAndImagArrays(m,f)}else if(l==null)u=this.getValuesFromTexture(e);else{let p=_.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}c!=null&&this.disposeIntermediateTensorInfo(c);let h=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&aa().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=_.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=_.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=_.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:_.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=_.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=TW){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&_.sizeFromShape(n.shape)0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return aa().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new vW(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new iW(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[vi(e.shape),...ki(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[vi(t),...ki(t)],s=new f3(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=cp(r),i;n?i=new PP(s):i=new zP(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===dc.DENSE){let f=fc(e.outputShape);i.texShape=f.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),_.sizeFromShape(s.shape)===0)return i.values=_.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(f.dataId);if(A.texture==null){if(!e.packedInputs&&_.sizeFromShape(f.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=f.shape)}else if(!!A.isPacked!=!!e.packedInputs)f=A.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),A=this.texData.get(f.dataId);else if(A.isPacked&&!hc(A.shape,f.shape)){let y=f,g=f.shape;f.shape=A.shape,f=this.packedReshape(f,g),o.push(f),A=this.texData.get(f.dataId),y.shape=g}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=TL(e,l,c),h=this.getAndSaveBinary(u,()=>SL(this.gpgpu,e,l,c)),d=this.activeTimers!=null,p;d&&(p=this.startTimer()),NL(this.gpgpu,h,l,c,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=_.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=L(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(ke(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?IW:SW}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=_.now());let u=t.texShape;if(u==null&&(u=D_(n,o),t.texShape=u),a!=null){let h=cp(n),d,p=u[1],m=u[0],f=a instanceof Uint8Array;o?([p,m]=El(u[0],u[1]),d=new VP(h,[m,p],f)):d=new BP(h,[m,p],f);let A=this.makeTensorInfo([m,p],r);f?this.texData.get(A.dataId).usage=Qn.PIXELS:this.texData.get(A.dataId).usage=Qn.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,m,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),x=this.texData.get(g.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=_.now()-c)}else{let h=this.acquireTexture(u,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=RW(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*_.bytesPerElement(t)}};Dl.nextDataId=0;function RW(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;rnew Dl,2);var MW={forceHalfFloat:w3},b3=` if (isnan(a)) return a; if (isnan(b)) return b; -`,Vl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=` +`,Ol=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=` float binaryOperation(float a, float b) { ${e} } @@ -956,12 +956,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } - `}},_p=` + `}},yp=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; -`,wc=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||_.sizeFromShape(this.outputShape)===1)s=` +`,Ac=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||_.sizeFromShape(this.outputShape)===1)s=` result.y = 0.; result.z = 0.; result.w = 0.; @@ -971,7 +971,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y; result.z = 0.; result.w = 0.; - `;else{let i=pn("coords",a);s+=` + `;else{let i=hn("coords",a);s+=` bool nextRowOutOfBounds = (${i[a-2]} + 1) >= ${this.outputShape[a-2]}; bool nextColOutOfBounds = @@ -993,21 +993,21 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}};function Vn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var nB={kernelName:Cs,backendName:"webgl",kernelFunc:Vn};function Xa(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Vn({inputs:{x:r},backend:n}),l=Vn({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var rB={kernelName:zh,backendName:"webgl",kernelFunc:Xa},U3="return (a < 0.) ? b * a : a;",H3=` + `}};function Pn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var FW={kernelName:Is,backendName:"webgl",kernelFunc:Pn};function Va(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Pn({inputs:{x:r},backend:n}),l=Pn({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var $W={kernelName:Rh,backendName:"webgl",kernelFunc:Va},_3="return (a < 0.) ? b * a : a;",v3=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); -`;function aB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",_.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(H3,a.shape,i.shape):new Vl(U3,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var sB={kernelName:Rs,backendName:"webgl",kernelFunc:aB},G3="return (a < 0.) ? b * a : a;",q3=` +`;function DW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",_.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ac(v3,a.shape,i.shape):new Ol(_3,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var OW={kernelName:Ss,backendName:"webgl",kernelFunc:DW},k3="return (a < 0.) ? b * a : a;",I3=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); -`;function iB(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(q3,r.shape,a.shape):new Vl(G3,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var oB={kernelName:Us,backendName:"webgl",kernelFunc:iB},X3="if (isnan(x)) return x;",lB=` +`;function zW(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ac(I3,r.shape,a.shape):new Ol(k3,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var PW={kernelName:Ls,backendName:"webgl",kernelFunc:zW},S3="if (isnan(x)) return x;",LW=` if (isnan(a)) return a; if (isnan(b)) return b; -`,uB=` +`,WW=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; -`;function Xe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new Wl(i.shape,t):u=new qa(i.shape,e),o.runWebGLProgram(u,[i],l)}}function nn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(r&&l.dtype==="complex64"){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[A,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,b]=x,w={dataId:v.dataId,dtype:v.dtype,shape:l.shape},k={dataId:b.dataId,dtype:b.dtype,shape:c.shape},N=new Vl(e,l.shape,c.shape);return u.runWebGLProgram(N,[w,k],dr(v.dtype,b.dtype))}),g=Xa({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let h=s||dr(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&a!=null){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[A,y]=a(l.shape,c.shape,m.values,f.values,h),g=u.makeTensorInfo(y,h),x=u.texData.get(g.dataId);return x.values=A,g}let d=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new wc(t,l.shape,c.shape,n):p=new Vl(e,l.shape,c.shape),u.runWebGLProgram(p,[l,c],h)}}function vp(e,t=!1){if(e==="linear")return t?BW:OW;if(e==="relu")return t?jW:PW;if(e==="elu")return t?VW:zW;if(e==="relu6")return t?UW:LW;if(e==="prelu")return t?q3:G3;if(e==="leakyrelu")return t?H3:U3;if(e==="sigmoid")return t?HW:WW;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var K3=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=r?e[1]:e[2],u=Math.ceil(c/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",A="";i&&(o?f=`vec4 activation(vec4 a) { +`;function qe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new $l(i.shape,t):u=new Ba(i.shape,e),o.runWebGLProgram(u,[i],l)}}function en({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(r&&l.dtype==="complex64"){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[A,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,w]=x,b={dataId:v.dataId,dtype:v.dtype,shape:l.shape},k={dataId:w.dataId,dtype:w.dtype,shape:c.shape},N=new Ol(e,l.shape,c.shape);return u.runWebGLProgram(N,[b,k],ir(v.dtype,w.dtype))}),g=Va({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let h=s||ir(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&a!=null){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[A,y]=a(l.shape,c.shape,m.values,f.values,h),g=u.makeTensorInfo(y,h),x=u.texData.get(g.dataId);return x.values=A,g}let d=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new Ac(t,l.shape,c.shape,n):p=new Ol(e,l.shape,c.shape),u.runWebGLProgram(p,[l,c],h)}}function gp(e,t=!1){if(e==="linear")return t?gW:pW;if(e==="relu")return t?wW:mW;if(e==="elu")return t?xW:fW;if(e==="relu6")return t?bW:AW;if(e==="prelu")return t?I3:k3;if(e==="leakyrelu")return t?v3:_3;if(e==="sigmoid")return t?_W:yW;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var N3=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=r?e[1]:e[2],u=Math.ceil(c/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",A="";i&&(o?f=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${i} }`:l?f=`vec4 activation(vec4 a) { @@ -1046,7 +1046,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}},Z3={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Y3=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=` + `}},T3={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},E3=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=` float binaryOpComplex( float areal, float aimag, float breal, float bimag) { ${e} @@ -1059,7 +1059,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float bimag = getBImagAtOutCoords(); setOutput(binaryOpComplex(areal, aimag, breal, bimag)); } - `}},J3="return a * b;";function TA(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=E.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),c=new Y3(Z3.REAL,r.shape,a.shape),u=new Y3(Z3.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),m=Xa({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[c,u]=pW(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(u,s),d=n.texData.get(h.dataId);return d.values=c,h}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new wc(J3,r.shape,a.shape):i=new Vl(J3,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var cB={kernelName:Ws,backendName:"webgl",kernelFunc:TA};function hB(e,t,n){let r=[Ei(e.shape),...Ci(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[Ei(t),...Ci(t)],i=new O3(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function fe(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=_.sizeFromShape(a.shape),l=_.inferFromImplicitShape(s,o),c=_.sizeFromShape(l);_.assert(o===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(a.dataId);return u.isPacked&&!Ac(a.shape,l)&&!(u.texture!==null&&Ac(u.shape,l))?hB(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var dB={kernelName:Ko,backendName:"webgl",kernelFunc:fe},Q3=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${_.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";a%n>0&&(c=` + `}},C3="return a * b;";function yA(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=E.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),c=new E3(T3.REAL,r.shape,a.shape),u=new E3(T3.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),m=Va({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[c,u]=UL(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(u,s),d=n.texData.get(h.dataId);return d.values=c,h}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Ac(C3,r.shape,a.shape):i=new Ol(C3,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var BW={kernelName:Ds,backendName:"webgl",kernelFunc:yA};function VW(e,t,n){let r=[vi(e.shape),...ki(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[vi(t),...ki(t)],i=new f3(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function fe(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=_.sizeFromShape(a.shape),l=_.inferFromImplicitShape(s,o),c=_.sizeFromShape(l);_.assert(o===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(a.dataId);return u.isPacked&&!hc(a.shape,l)&&!(u.texture!==null&&hc(u.shape,l))?VW(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var jW={kernelName:jo,backendName:"webgl",kernelFunc:fe},R3=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${_.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";a%n>0&&(c=` if (inIdx < 0 || inIdx >= ${a}) { return 0.0; } @@ -1112,7 +1112,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, } setOutput(sumValue); } - `}},pB=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,h=` + `}},UW=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,h=` if (${t==="sum"}) { sumValue += dot(values, ones); } else if (${t==="prod"}) { @@ -1197,12 +1197,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, } setOutput(${l}); } - `}};function fB(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=E.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function $i(e,t,n,r){let a=fB(e.shape),s=e;for(let i=0;i6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=lt(this.rank),a=D3("rc",this.rank),s=new Array(this.rank);for(let c=0;c6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=lt(this.rank),a=p3("rc",this.rank),s=new Array(this.rank);for(let c=0;c=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${A}).`);let v=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,m]);_.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let b=n?[y,h,p]:[y,p,h],w=r?[g,m,d]:[g,d,m],k=fe({inputs:{x:e},backend:a,attrs:{shape:b}}),N=fe({inputs:{x:t},backend:a,attrs:{shape:w}}),C=[k,N],F=Math.max(y,g),O=n?k.shape[1]:k.shape[2],L=s!=null,V=i!=null,j=l==="leakyrelu",U=l!=null?vp(l,!0):null,X=L||V||j||U!=null,G;if((p===1||m===1)&&O>e7&&X===!1){let Y=k,ae=N;n&&(Y=fn({inputs:{x:k},backend:a,attrs:{perm:[0,2,1]}}),C.push(Y)),r&&(ae=fn({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),C.push(ae));let te=m!==1,ie=m===1,Q=Y;te&&(Q=fe({inputs:{x:Y},backend:a,attrs:{shape:[F,O,1]}}),C.push(Q));let he=m===1?2:1,oe=ae;ie&&(oe=fe({inputs:{x:ae},backend:a,attrs:{shape:[F,1,O]}}),C.push(oe));let me=TA({inputs:{a:Q,b:oe},backend:a});G=Ip({inputs:{x:me},backend:a,attrs:{axis:he,keepDims:!0}}),C.push(me)}else{let Y=dr(e.dtype,t.dtype),ae=new K3(b,w,[F,p,m],n,r,L,U,V,j),te=[k,N];if(s!=null&&te.push(s),V&&te.push(i),j){let ie=a.makeTensorInfo([],"float32",_.createScalarValue(o,"float32"));te.push(ie),C.push(ie)}G=a.runWebGLProgram(ae,te,Y)}let ee=fe({inputs:{x:G},backend:a,attrs:{shape:v}});C.push(G);for(let Y of C)a.disposeIntermediateTensorInfo(Y);return ee}function wB(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r;return Sp({a,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:u})}var _B={kernelName:oi,backendName:"webgl",kernelFunc:wB},t7="return abs(x);";function vB(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=$3(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Wl(r.shape,t7):a=new qa(r.shape,t7),n.runWebGLProgram(a,[r],r.dtype)}var kB={kernelName:lo,backendName:"webgl",kernelFunc:vB},IB=Nr+` + `}};function xp(e,t,n){let r=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new XW(e.shape,t):new qW(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function KW(e,t,n,r){let a=t,s=e.shape.length,i=_.parseAxisParam(a,e.shape),o=i,l=E.getAxesPermutation(o,s),c=l!=null,u=e;c&&(u=xp(e,l,r),o=E.getInnerMostAxes(o.length,s)),E.assertAxesAreInnerMostDims("sum",o,s);let[h,d]=E.computeOutAndReduceShapes(u.shape,o),p=h;n&&(p=E.expandShapeToKeepDim(h,i));let m=_.sizeFromShape(d),f=_.sizeFromShape(e.shape)/m,A=fe({inputs:{x:u},attrs:{shape:[f,m]},backend:r}),y=cd(e.dtype),g=Ti(A,y,"sum",r),x=fe({inputs:{x:g},attrs:{shape:p},backend:r});return r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(g),c&&r.disposeIntermediateTensorInfo(u),x}function wp(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;return KW(a,s,i,n)}var ZW={kernelName:Ks,backendName:"webgl",kernelFunc:wp};function dn(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{perm:s}=r,i=n,o=a.shape.length,l=new Array(o);for(let u=0;u=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${A}).`);let v=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,m]);_.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let w=n?[y,h,p]:[y,p,h],b=r?[g,m,d]:[g,d,m],k=fe({inputs:{x:e},backend:a,attrs:{shape:w}}),N=fe({inputs:{x:t},backend:a,attrs:{shape:b}}),C=[k,N],F=Math.max(y,g),O=n?k.shape[1]:k.shape[2],z=s!=null,V=i!=null,j=l==="leakyrelu",U=l!=null?gp(l,!0):null,X=z||V||j||U!=null,G;if((p===1||m===1)&&O>M3&&X===!1){let Y=k,ae=N;n&&(Y=dn({inputs:{x:k},backend:a,attrs:{perm:[0,2,1]}}),C.push(Y)),r&&(ae=dn({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),C.push(ae));let te=m!==1,ie=m===1,Q=Y;te&&(Q=fe({inputs:{x:Y},backend:a,attrs:{shape:[F,O,1]}}),C.push(Q));let ce=m===1?2:1,oe=ae;ie&&(oe=fe({inputs:{x:ae},backend:a,attrs:{shape:[F,1,O]}}),C.push(oe));let me=yA({inputs:{a:Q,b:oe},backend:a});G=wp({inputs:{x:me},backend:a,attrs:{axis:ce,keepDims:!0}}),C.push(me)}else{let Y=ir(e.dtype,t.dtype),ae=new N3(w,b,[F,p,m],n,r,z,U,V,j),te=[k,N];if(s!=null&&te.push(s),V&&te.push(i),j){let ie=a.makeTensorInfo([],"float32",_.createScalarValue(o,"float32"));te.push(ie),C.push(ie)}G=a.runWebGLProgram(ae,te,Y)}let ee=fe({inputs:{x:G},backend:a,attrs:{shape:v}});C.push(G);for(let Y of C)a.disposeIntermediateTensorInfo(Y);return ee}function JW(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r;return bp({a,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:u})}var QW={kernelName:ni,backendName:"webgl",kernelFunc:JW},F3="return abs(x);";function eB(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=d3(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new $l(r.shape,F3):a=new Ba(r.shape,F3),n.runWebGLProgram(a,[r],r.dtype)}var tB={kernelName:no,backendName:"webgl",kernelFunc:eB},nB=br+` if (abs(x) > 1.) { return NAN; } return acos(x); -`,SB=Xe({opSnippet:IB}),NB={kernelName:uo,backendName:"webgl",kernelFunc:SB},TB=Nr+` +`,rB=qe({opSnippet:nB}),aB={kernelName:ro,backendName:"webgl",kernelFunc:rB},sB=br+` if (x < 1.0) return NAN; -return log(x + sqrt(x * x - 1.0));`,EB=Xe({opSnippet:TB}),CB={kernelName:co,backendName:"webgl",kernelFunc:EB},n7="return a + b;",RB=nn({opSnippet:n7,packedOpSnippet:n7,supportsComplex:!0,cpuKernelImpl:JL}),MB={kernelName:Ra,backendName:"webgl",kernelFunc:RB},FB=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` +return log(x + sqrt(x * x - 1.0));`,iB=qe({opSnippet:sB}),oB={kernelName:ao,backendName:"webgl",kernelFunc:iB},$3="return a + b;",lB=en({opSnippet:$3,packedOpSnippet:$3,supportsComplex:!0,cpuKernelImpl:EL}),uB={kernelName:Sa,backendName:"webgl",kernelFunc:lB},cB=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} @@ -1234,7 +1234,7 @@ return log(x + sqrt(x * x - 1.0));`,EB=Xe({opSnippet:TB}),CB={kernelName:co,back float result = ${r}; setOutput(result); } - `}},$B=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` + `}},hB=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} @@ -1242,7 +1242,7 @@ return log(x + sqrt(x * x - 1.0));`,EB=Xe({opSnippet:TB}),CB={kernelName:co,back vec4 result = ${r}; setOutput(result); } - `}};function Np(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Vn({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=Np({inputs:r.slice(0,o),backend:n}),c=Np({inputs:r.slice(o),backend:n});return Np({inputs:[l,c],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>dr(o,l)),s=r.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new $B(r[0].shape,s):new FB(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var DB={kernelName:ps,backendName:"webgl",kernelFunc:Np};function OB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("all",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),m=_.sizeFromShape(p),f=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=$i(f,f.dtype,"all",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var zB={kernelName:ho,backendName:"webgl",kernelFunc:OB};function PB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("any",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),m=_.sizeFromShape(p),f=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=$i(f,f.dtype,"any",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var LB={kernelName:po,backendName:"webgl",kernelFunc:PB},WB=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` + `}};function _p(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Pn({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=_p({inputs:r.slice(0,o),backend:n}),c=_p({inputs:r.slice(o),backend:n});return _p({inputs:[l,c],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>ir(o,l)),s=r.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new hB(r[0].shape,s):new cB(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var dB={kernelName:ls,backendName:"webgl",kernelFunc:_p};function pB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=dn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("all",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),m=_.sizeFromShape(p),f=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=Ti(f,f.dtype,"all",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var fB={kernelName:so,backendName:"webgl",kernelFunc:pB};function mB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=dn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("any",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),m=_.sizeFromShape(p),f=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=Ti(f,f.dtype,"any",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var AB={kernelName:io,backendName:"webgl",kernelFunc:mB},yB=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; @@ -1262,7 +1262,7 @@ return log(x + sqrt(x * x - 1.0));`,EB=Xe({opSnippet:TB}),CB={kernelName:co,back } setOutput(float(bestIndex)); } - `}},BB=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,_.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=lt(o),c=pn("coords",o),u,h;if(s===1){h=o+1;let k=lt(h);u=` + `}},gB=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,_.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=lt(o),c=hn("coords",o),u,h;if(s===1){h=o+1;let k=lt(h);u=` ${k} sourceLocR = ${k}(${c.join()}, 0); ++${c[o-1]}; ${k} sourceLocG = ${k}(${c.join()}, 0); @@ -1278,15 +1278,15 @@ return log(x + sqrt(x * x - 1.0));`,EB=Xe({opSnippet:TB}),CB={kernelName:co,back ${l} sourceLocA = coords; --${c[o-1]}; ${l} sourceLocB = coords; - --${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],m=d.map(k=>"int "+k),f=pn("sourceLocR",h-1).concat("inIdx.r"),A=pn("sourceLocG",h-1).concat("inIdx.g"),y=pn("sourceLocB",h-1).concat("inIdx.b"),g=pn("sourceLocA",h-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=r?"":` + --${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],m=d.map(k=>"int "+k),f=hn("sourceLocR",h-1).concat("inIdx.r"),A=hn("sourceLocG",h-1).concat("inIdx.g"),y=hn("sourceLocB",h-1).concat("inIdx.b"),g=hn("sourceLocA",h-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=r?"":` inIdx = round(vec4(getBestIndicesAChannel(${f.join()}), getBestIndicesAChannel(${A.join()}), getBestIndicesAChannel(${y.join()}), - getBestIndicesAChannel(${g.join()})));`,b=`vec4( + getBestIndicesAChannel(${g.join()})));`,w=`vec4( getAChannel(${f.join()}), hasNextCol ? getAChannel(${A.join()}) : 0., hasNextRow ? getAChannel(${y.join()}) : 0., - hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,w=r?"":` + hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,b=r?"":` float getBestIndicesAChannel(${m.join()}) { return getChannel(getBestIndicesA(${d.join()}), vec2(${d.slice(-2).join()})); @@ -1295,7 +1295,7 @@ return log(x + sqrt(x * x - 1.0));`,EB=Xe({opSnippet:TB}),CB={kernelName:co,back return getChannel(getA(${d.join()}), vec2(${d.slice(-2).join()})); } - ${w} + ${b} void main() { ${l} coords = getOutputCoords(); bool hasNextCol = ${c[o-1]} < ${i[o-1]-1}; @@ -1305,12 +1305,12 @@ return log(x + sqrt(x * x - 1.0));`,EB=Xe({opSnippet:TB}),CB={kernelName:co,back sourceLocB${p}, sourceLocA${p}) * ${t}; ivec4 inIdx = srcIdx; vec4 bestIndex = vec4(inIdx); - vec4 bestValue = ${b}; + vec4 bestValue = ${w}; for (int i = 0; i < ${t}; i++) { inIdx = srcIdx; ${v} - vec4 candidate = ${b}; + vec4 candidate = ${w}; bvec4 nan = isnan(candidate); bvec4 replace = bvec4( vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan))); @@ -1324,23 +1324,23 @@ return log(x + sqrt(x * x - 1.0));`,EB=Xe({opSnippet:TB}),CB={kernelName:co,back } setOutput(bestIndex); } - `}};function r7(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=E.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new WB(o,n,r==null),c=[t];r!=null&&c.push(r);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let h=r7(e,t,n,u);return e.disposeIntermediateTensorInfo(u),h}function a7(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=E.computeOptimalWindowSize(s),o=new BB(a,i,n,r==null),l=r==null?[t]:[t,r],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=a7(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function s7(e,t,n,r){let a=[n];if(E.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=E.computeOutAndReduceShapes(t.shape,a),l=_.sizeFromShape(o),c=fe({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=r7(e,c,r);s.push(u);let h=fe({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return a7(e,t,r)}function VB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=s7(n,l,i[0],"max");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var jB={kernelName:fs,backendName:"webgl",kernelFunc:VB};function UB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=s7(n,l,i[0],"min");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var HB={kernelName:wu,backendName:"webgl",kernelFunc:UB},GB=Nr+` + `}};function D3(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=E.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new yB(o,n,r==null),c=[t];r!=null&&c.push(r);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let h=D3(e,t,n,u);return e.disposeIntermediateTensorInfo(u),h}function O3(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=E.computeOptimalWindowSize(s),o=new gB(a,i,n,r==null),l=r==null?[t]:[t,r],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=O3(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function z3(e,t,n,r){let a=[n];if(E.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=E.computeOutAndReduceShapes(t.shape,a),l=_.sizeFromShape(o),c=fe({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=D3(e,c,r);s.push(u);let h=fe({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return O3(e,t,r)}function xB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=dn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=z3(n,l,i[0],"max");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var wB={kernelName:us,backendName:"webgl",kernelFunc:xB};function bB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=dn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=z3(n,l,i[0],"min");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var _B={kernelName:mu,backendName:"webgl",kernelFunc:bB},vB=br+` if (abs(x) > 1.) { return NAN; } return asin(x); -`,qB=Xe({opSnippet:GB}),XB={kernelName:fo,backendName:"webgl",kernelFunc:qB},KB=Nr+"return log(x + sqrt(x * x + 1.0));",ZB=Xe({opSnippet:KB}),YB={kernelName:mo,backendName:"webgl",kernelFunc:ZB},JB=Nr+` +`,kB=qe({opSnippet:vB}),IB={kernelName:oo,backendName:"webgl",kernelFunc:kB},SB=br+"return log(x + sqrt(x * x + 1.0));",NB=qe({opSnippet:SB}),TB={kernelName:lo,backendName:"webgl",kernelFunc:NB},EB=br+` return atan(x); -`,QB=Xe({opSnippet:JB}),eV={kernelName:Ao,backendName:"webgl",kernelFunc:QB},tV=lB+` +`,CB=qe({opSnippet:EB}),RB={kernelName:uo,backendName:"webgl",kernelFunc:CB},MB=LW+` return atan(a, b); -`,nV=` +`,FB=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); - `+uB+` + `+WW+` return result; -`,rV=nn({opSnippet:tV,packedOpSnippet:nV}),aV={kernelName:go,backendName:"webgl",kernelFunc:rV},sV=Nr+` +`,$B=en({opSnippet:MB,packedOpSnippet:FB}),DB={kernelName:ho,backendName:"webgl",kernelFunc:$B},OB=br+` if ((x < -1.0) || (x > 1.0)) return NAN; -return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelName:yo,backendName:"webgl",kernelFunc:iV},_c=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let k=">=";this.userCode=` +return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,zB=qe({opSnippet:OB}),PB={kernelName:co,backendName:"webgl",kernelFunc:zB},yc=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let k=">=";this.userCode=` const ivec2 strides = ivec2(${i}, ${o}); const ivec2 pads = ivec2(${d}, ${p}); @@ -1391,7 +1391,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(float(minMaxPosition)); } - `;return}let g="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,b=s%4,w=` + `;return}let g="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,w=s%4,b=` if (${m}) { avgValue += dot(values, ones); } else { @@ -1446,11 +1446,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam getValue(batch, xR, xC + 3 * ${c}, d) ); - ${w} + ${b} } int xC = xCCorner + ${v}; - if (${b===1}) { + if (${w===1}) { vec4 values = vec4( getValue(batch, xR, xC, d), initializationValue, @@ -1458,8 +1458,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam initializationValue ); - ${w} - } else if (${b===2}) { + ${b} + } else if (${w===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), @@ -1467,8 +1467,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam initializationValue ); - ${w} - } else if (${b===3}) { + ${b} + } else if (${w===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), @@ -1476,12 +1476,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam initializationValue ); - ${w} + ${b} } } setOutput(${x}); } - `}},EA=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",x="0.0";if(g||(x="-1.0 / 1e-20"),n){let C=">=";this.userCode=` + `}},gA=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",x="0.0";if(g||(x="-1.0 / 1e-20"),n){let C=">=";this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); const ivec3 pads = ivec3(${f}, ${A}, ${y}); @@ -1543,7 +1543,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(float(minMaxPosition)); } - `;return}let v="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let w=Math.floor(s/4)*4,k=s%4,N=` + `;return}let v="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let b=Math.floor(s/4)*4,k=s%4,N=` if (${g}) { avgValue += dot(values, ones); } else { @@ -1598,7 +1598,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam continue; } - for (int wC = 0; wC < ${w}; wC += 4) { + for (int wC = 0; wC < ${b}; wC += 4) { int xC = xCCorner + wC * ${h}; vec4 values = vec4( @@ -1611,7 +1611,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam ${N} } - int xC = xCCorner + ${w}; + int xC = xCCorner + ${b}; if (${k===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), @@ -1641,10 +1641,10 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam ${N} } } - setOutput(${b}); + setOutput(${w}); } } - `}};function lV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;$l(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Vn({inputs:{x:a},backend:n});let h=new _c(u,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var uV={kernelName:ms,backendName:"webgl",kernelFunc:lV};function cV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,l,c),d=new EA(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var hV={kernelName:_u,backendName:"webgl",kernelFunc:cV},dV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,h=1/(t*n);this.userCode=` + `}};function LB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Tl(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Pn({inputs:{x:a},backend:n});let h=new yc(u,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var WB={kernelName:cs,backendName:"webgl",kernelFunc:LB};function BB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,l,c),d=new gA(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var VB={kernelName:Au,backendName:"webgl",kernelFunc:BB},jB=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,h=1/(t*n);this.userCode=` const ivec2 pads = ivec2(${c}, ${u}); const float avgMultiplier = float(${h}); @@ -1686,7 +1686,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(dotProd); } - `}},pV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=u-1-e.padInfo.front,m=h-1-e.padInfo.top,f=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=` + `}},UB=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=u-1-e.padInfo.front,m=h-1-e.padInfo.top,f=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=` const ivec3 pads = ivec3(${p}, ${m}, ${f}); const float avgMultiplier = float(${A}); @@ -1742,7 +1742,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(dotProd); } - `}};function fV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,h,c,u),p=new pV(d);return n.runWebGLProgram(p,[a],i.dtype)}var mV={kernelName:Dh,backendName:"webgl",kernelFunc:fV};function AV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;$l([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=new dV(u);return n.runWebGLProgram(h,[a],i.dtype)}var yV={kernelName:$h,backendName:"webgl",kernelFunc:AV};function gV(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return Sp({a,b:s,transposeA:i,transposeB:o,backend:n})}var xV={kernelName:As,backendName:"webgl",kernelFunc:gV},bV=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` + `}};function HB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,h,c,u),p=new UB(d);return n.runWebGLProgram(p,[a],i.dtype)}var GB={kernelName:Eh,backendName:"webgl",kernelFunc:HB};function qB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;Tl([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=new jB(u);return n.runWebGLProgram(h,[a],i.dtype)}var XB={kernelName:Th,backendName:"webgl",kernelFunc:qB};function KB(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return bp({a,b:s,transposeA:i,transposeB:o,backend:n})}var ZB={kernelName:hs,backendName:"webgl",kernelFunc:KB},YB=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); @@ -1752,7 +1752,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam float inv = scale * inversesqrt(variance + float(${s})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } - `}},wV=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` + `}},JB=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { vec4 offset = ${i}; vec4 scale = ${o}; @@ -1765,7 +1765,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam setOutput((x - mean) * inv + offset); } - `}},_V=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;_.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[r,a,s],u=null;i!=null&&(u=i.shape,c.push(i));let h=null;o!=null&&(h=o.shape,c.push(o));let d=J().getBool("WEBGL_PACK_NORMALIZATION")?new wV(r.shape,a.shape,s.shape,u,h,l):new bV(r.shape,a.shape,s.shape,u,h,l);return t.runWebGLProgram(d,c,c[0].dtype)},vV={kernelName:Ts,backendName:"webgl",kernelFunc:_V},IV=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=`uniform int start[${this.rank}];`,r=kV(this.rank),a,s=e.map((i,o)=>`sourceLoc.${CA[o]} = start[${o}] + coords.${CA[o]};`);a=` + `}},QB=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;_.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[r,a,s],u=null;i!=null&&(u=i.shape,c.push(i));let h=null;o!=null&&(h=o.shape,c.push(o));let d=J().getBool("WEBGL_PACK_NORMALIZATION")?new JB(r.shape,a.shape,s.shape,u,h,l):new YB(r.shape,a.shape,s.shape,u,h,l);return t.runWebGLProgram(d,c,c[0].dtype)},eV={kernelName:vs,backendName:"webgl",kernelFunc:QB},nV=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=`uniform int start[${this.rank}];`,r=tV(this.rank),a,s=e.map((i,o)=>`sourceLoc.${xA[o]} = start[${o}] + coords.${xA[o]};`);a=` ${t} sourceLoc; ${t} coords = getOutputCoords(); ${s.join(` @@ -1776,7 +1776,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam ${a} setOutput(getSource(${r})); } - `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},CA=["x","y","z","w","u","v"];function kV(e){if(e===1)return"sourceLoc";if(e<=6)return CA.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var SV=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=pn("coords",this.rank),r=pn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=` + `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},xA=["x","y","z","w","u","v"];function tV(e){if(e===1)return"sourceLoc";if(e<=6)return xA.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var rV=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=hn("coords",this.rank),r=hn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=` result.x = ${s}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${r[this.rank-1]}; @@ -1806,7 +1806,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam ${o} setOutput(result); } - `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function NV(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=un.computeFlatOffset(t,_.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function vc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=un.parseSliceParams(a,s,i);if(un.assertParamsValid(a,o,l),_.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=gW(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:c}=n.texData.get(a.dataId),u=un.isSliceContinous(a.shape,o,l);if(c||!u){let h=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new SV(l):new IV(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),NV(a,o,l,n)}var TV={kernelName:Qo,backendName:"webgl",kernelFunc:vc},EV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,x)=>g*x),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=[],m=fe({inputs:{x:a},backend:n,attrs:{shape:l}}),f=fn({inputs:{x:m},backend:n,attrs:{perm:c}}),A=fe({inputs:{x:f},backend:n,attrs:{shape:u}}),y=vc({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(m),p.push(f),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},CV={kernelName:vu,backendName:"webgl",kernelFunc:EV};function RV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),c=F3(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var MV={kernelName:Oh,backendName:"webgl",kernelFunc:RV},FV="return float(a != b);",i7=nn({opSnippet:FV,dtype:"bool"}),$V={kernelName:Bo,backendName:"webgl",kernelFunc:i7};function kc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Vn({inputs:{x:a.complexTensorInfos.real},backend:n})}var DV={kernelName:ad,backendName:"webgl",kernelFunc:kc},OV="return float(int(x));";function zV(e,t){let n=new qa(e.shape,OV),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function RA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Vn({inputs:{x:a},backend:n});let i=Rt(a.shape),o=RA({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Xa({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=kc({inputs:{input:a},backend:n}),o=RA({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=Vn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return zV(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",_.getTypedArrayFromDType("bool",1)),o=i7({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var PV={kernelName:ys,backendName:"webgl",kernelFunc:RA},o7="return ceil(x);",LV=Xe({opSnippet:o7,packedOpSnippet:o7,cpuKernelImpl:eW}),WV={kernelName:gs,backendName:"webgl",kernelFunc:LV},BV=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function aV(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=sn.computeFlatOffset(t,_.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function gc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=sn.parseSliceParams(a,s,i);if(sn.assertParamsValid(a,o,l),_.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=KL(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:c}=n.texData.get(a.dataId),u=sn.isSliceContinous(a.shape,o,l);if(c||!u){let h=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new rV(l):new nV(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),aV(a,o,l,n)}var sV={kernelName:qo,backendName:"webgl",kernelFunc:gc},iV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,x)=>g*x),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=[],m=fe({inputs:{x:a},backend:n,attrs:{shape:l}}),f=dn({inputs:{x:m},backend:n,attrs:{perm:c}}),A=fe({inputs:{x:f},backend:n,attrs:{shape:u}}),y=gc({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(m),p.push(f),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},oV={kernelName:yu,backendName:"webgl",kernelFunc:iV};function lV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),c=h3(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var uV={kernelName:Ch,backendName:"webgl",kernelFunc:lV},cV="return float(a != b);",P3=en({opSnippet:cV,dtype:"bool"}),hV={kernelName:Do,backendName:"webgl",kernelFunc:P3};function xc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Pn({inputs:{x:a.complexTensorInfos.real},backend:n})}var dV={kernelName:Jh,backendName:"webgl",kernelFunc:xc},pV="return float(int(x));";function fV(e,t){let n=new Ba(e.shape,pV),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function wA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Pn({inputs:{x:a},backend:n});let i=Et(a.shape),o=wA({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Va({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=xc({inputs:{input:a},backend:n}),o=wA({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=Pn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return fV(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",_.getTypedArrayFromDType("bool",1)),o=P3({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var mV={kernelName:ds,backendName:"webgl",kernelFunc:wA},L3="return ceil(x);",AV=qe({opSnippet:L3,packedOpSnippet:L3,cpuKernelImpl:RL}),yV={kernelName:ps,backendName:"webgl",kernelFunc:AV},gV=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; @@ -1819,7 +1819,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam setOutput(clamp(value, minVal, maxVal)); } - `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},VV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},xV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; @@ -1833,7 +1833,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } - `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function jV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;J().getBool("WEBGL_PACK_CLIP")?o=new VV(a.shape):o=new BV(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var UV={kernelName:Ma,backendName:"webgl",kernelFunc:jV},HV=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function wV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;J().getBool("WEBGL_PACK_CLIP")?o=new xV(a.shape):o=new gV(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var bV={kernelName:Na,backendName:"webgl",kernelFunc:wV},_V=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); @@ -1846,7 +1846,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } - `}};function l7(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function GV(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new HV(r.shape),i=[l7(r,a.complexTensorInfos.real),l7(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var qV={kernelName:ku,backendName:"webgl",kernelFunc:GV},XV=class{constructor(e){this.outputShape=[],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m= ${o[m-1]}) { return getChannel( - getT${m}(${Tp(i,l,f)}), - vec2(${Tp(c,l,f)})); + getT${m}(${vp(i,l,f)}), + vec2(${vp(c,l,f)})); }`}let d=o.length,p=o[o.length-1];h+=` return getChannel( - getT${d}(${Tp(i,l,p)}), - vec2(${Tp(c,l,p)}));`,this.userCode=` + getT${d}(${vp(i,l,p)}), + vec2(${vp(c,l,p)}));`,this.userCode=` float getValue(${i.map(m=>"int "+m)}) { ${h} } @@ -1892,7 +1892,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(result); } - `}};function Tp(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function Ep(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Vn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var ZV={kernelName:Yh,backendName:"webgl",kernelFunc:Ep};function jl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(f=>kc({inputs:{input:f},backend:n})),h=e.map(f=>Ep({inputs:{input:f},backend:n})),d=jl(u,t,n),p=jl(h,t,n),m=Xa({inputs:{real:d,imag:p},backend:n});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}let a=n.shouldExecuteOnCPU(e);if(r==="string"&&(a=!0),a){let u=e.map(y=>{let g=_.sizeFromShape(y.shape.slice(t));return fe({inputs:{x:y},backend:n,attrs:{shape:[-1,g]}})}),h=u.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),d=E.computeOutShape(u.map(y=>y.shape),1),p=u[0].shape[0]===1,m=tW(h,d,r,p),f=E.computeOutShape(e.map(y=>y.shape),t),A=n.makeTensorInfo(f,r,m);return u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),h=jl(e.slice(0,u),t,n),d=jl(e.slice(u),t,n),p=jl([h,d],t,n);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new KV(e.map(h=>h.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:s,outShape:i}=YV(e,t,n),o=new XV(s.map(u=>u.shape)),l=n.runWebGLProgram(o,s,r);s.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=fe({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),c}function YV(e,t,n){let r=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>fe({inputs:{x:a},attrs:{shape:[-1,_.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function u7(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=_.parseAxisParam(a,t[0].shape)[0],i=E.computeOutShape(t.map(c=>c.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>_.sizeFromShape(c.shape)>0);if(o.length===1)return Vn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return E.assertParamsConsistent(l,s),jl(o,s,n)}var JV={kernelName:xo,backendName:"webgl",kernelFunc:u7},c7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",A=f?1:2,y=f?2:3,g=f?3:1,x="",v="";n&&(r?x=`float activation(float a) { + `}};function vp(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function kp(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Pn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var NV={kernelName:Hh,backendName:"webgl",kernelFunc:kp};function zl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(f=>xc({inputs:{input:f},backend:n})),h=e.map(f=>kp({inputs:{input:f},backend:n})),d=zl(u,t,n),p=zl(h,t,n),m=Va({inputs:{real:d,imag:p},backend:n});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}let a=n.shouldExecuteOnCPU(e);if(r==="string"&&(a=!0),a){let u=e.map(y=>{let g=_.sizeFromShape(y.shape.slice(t));return fe({inputs:{x:y},backend:n,attrs:{shape:[-1,g]}})}),h=u.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),d=E.computeOutShape(u.map(y=>y.shape),1),p=u[0].shape[0]===1,m=ML(h,d,r,p),f=E.computeOutShape(e.map(y=>y.shape),t),A=n.makeTensorInfo(f,r,m);return u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),h=zl(e.slice(0,u),t,n),d=zl(e.slice(u),t,n),p=zl([h,d],t,n);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new SV(e.map(h=>h.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:s,outShape:i}=TV(e,t,n),o=new IV(s.map(u=>u.shape)),l=n.runWebGLProgram(o,s,r);s.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=fe({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),c}function TV(e,t,n){let r=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>fe({inputs:{x:a},attrs:{shape:[-1,_.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function B3(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=_.parseAxisParam(a,t[0].shape)[0],i=E.computeOutShape(t.map(c=>c.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>_.sizeFromShape(c.shape)>0);if(o.length===1)return Pn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return E.assertParamsConsistent(l,s),zl(o,s,n)}var EV={kernelName:po,backendName:"webgl",kernelFunc:B3},V3=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",A=f?1:2,y=f?2:3,g=f?3:1,x="",v="";n&&(r?x=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:a?x=`float activation(float a) { @@ -1902,7 +1902,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam float activation(float x) { ${n} } - `,v="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=` + `,v="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${x} const ivec2 strides = ivec2(${o}, ${l}); @@ -2022,11 +2022,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } float result = dotProd; - ${b} + ${w} ${v} setOutput(result); } - `}},QV=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=` + `}},CV=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${a}, ${s}, ${i}); const ivec3 pads = ivec3(${t}, ${n}, ${r}); @@ -2114,8 +2114,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(dotProd); } - `}},ej=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:h}=n,{left:d,top:p}=o,m=a*r,f=dn(),A=h==="channelsLast",y=A?0:1,g=A?1:2,x="";for(let v=0;v<=1;v++)for(let b=0;b<=1;b++)x+=` - blockIndex = rc.y + ${b}; + `}},RV=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:h}=n,{left:d,top:p}=o,m=a*r,f=cn(),A=h==="channelsLast",y=A?0:1,g=A?1:2,x="";for(let v=0;v<=1;v++)for(let w=0;w<=1;w++)x+=` + blockIndex = rc.y + ${w}; pos = rc.x + ${v}; if(blockIndex < ${e[1]} && pos < ${e[0]}) { @@ -2133,12 +2133,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam if (${A}) { innerDims = vec2(d1, ch); - result[${v*2+b}] = getChannel( + result[${v*2+w}] = getChannel( getA(d0, int(innerDims.x), int(innerDims.y)), innerDims); } else { innerDims = vec2(d0, d1); - result[${v*2+b}] = getChannel( + result[${v*2+w}] = getChannel( getA(ch, int(innerDims.x), int(innerDims.y)), innerDims); } @@ -2158,7 +2158,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam ${f.output} = result; } - `}};function h7({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=r.texData.get(e.dataId),u=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",m=!1,f=!1,A,y=[],g=(h===1||d===1)&&u>e7,x=l[2]%2!=0&&!!c.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],b=fe({inputs:{x:e},backend:r,attrs:{shape:[1,v,n.inChannels]}}),w=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),k=Sp({a:b,b:w,transposeA:m,transposeB:f,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=fe({inputs:{x:k},backend:r,attrs:{shape:n.outShape}}),y.push(b),y.push(w),y.push(k)}else{let v=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),b={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},w=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,_.assert(Ac(c.shape,b.shape),()=>`packed reshape ${c.shape} to ${b.shape} isn't free`);let k=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(k);let N=Sp({a:b,b:k,backend:r,transposeA:m,transposeB:f,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=r.texData.get(N.dataId);_.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=w,C.shape=n.outShape,A=Vn({inputs:{x:N},backend:r}),A.shape=n.outShape,y.push(N)}for(let v of y)r.disposeIntermediateTensorInfo(v);return A}function d7({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:h,outHeight:d,dataFormat:p}=n,m=p==="channelsLast",f=l*c*u,A=d*h,y=[f,A],g=!0,x=!1,v=[],b=fe({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),w=fe({inputs:{x:t},backend:r,attrs:{shape:[1,f,_.sizeFromShape(t.shape)/f]}});v.push(b),v.push(w);let k=new ej(y,b.shape,n),N=r.runWebGLProgram(k,[b],"float32"),C=fe({inputs:{x:N},backend:r,attrs:{shape:[1,y[0],y[1]]}});v.push(N),v.push(C);let F=a!=null,O=s!=null,L=o==="leakyrelu",V=o?vp(o,!0):null,j=new K3(C.shape,w.shape,[1,A,n.outChannels],g,x,F,V,O,L),U=[C,w];if(a&&U.push(a),O&&U.push(s),L){let Y=r.makeTensorInfo([],"float32",_.createScalarValue(i,"float32"));U.push(Y),v.push(Y)}let X=r.runWebGLProgram(j,U,"float32"),G=m?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=fe({inputs:{x:X},backend:r,attrs:{shape:G}});v.push(X);for(let Y of v)r.disposeIntermediateTensorInfo(Y);return ee}function tj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=h7({x:a,filter:s,convInfo:d,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=d7({x:a,filter:s,convInfo:d,backend:n});else{let f=new c7(d);p=n.runWebGLProgram(f,[a,s],"float32")}let m=fe({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),m}var nj={kernelName:xs,backendName:"webgl",kernelFunc:tj},rj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=` + `}};function j3({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=r.texData.get(e.dataId),u=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",m=!1,f=!1,A,y=[],g=(h===1||d===1)&&u>M3,x=l[2]%2!=0&&!!c.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=fe({inputs:{x:e},backend:r,attrs:{shape:[1,v,n.inChannels]}}),b=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),k=bp({a:w,b,transposeA:m,transposeB:f,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=fe({inputs:{x:k},backend:r,attrs:{shape:n.outShape}}),y.push(w),y.push(b),y.push(k)}else{let v=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),w={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},b=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,_.assert(hc(c.shape,w.shape),()=>`packed reshape ${c.shape} to ${w.shape} isn't free`);let k=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(k);let N=bp({a:w,b:k,backend:r,transposeA:m,transposeB:f,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=r.texData.get(N.dataId);_.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=b,C.shape=n.outShape,A=Pn({inputs:{x:N},backend:r}),A.shape=n.outShape,y.push(N)}for(let v of y)r.disposeIntermediateTensorInfo(v);return A}function U3({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:h,outHeight:d,dataFormat:p}=n,m=p==="channelsLast",f=l*c*u,A=d*h,y=[f,A],g=!0,x=!1,v=[],w=fe({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),b=fe({inputs:{x:t},backend:r,attrs:{shape:[1,f,_.sizeFromShape(t.shape)/f]}});v.push(w),v.push(b);let k=new RV(y,w.shape,n),N=r.runWebGLProgram(k,[w],"float32"),C=fe({inputs:{x:N},backend:r,attrs:{shape:[1,y[0],y[1]]}});v.push(N),v.push(C);let F=a!=null,O=s!=null,z=o==="leakyrelu",V=o?gp(o,!0):null,j=new N3(C.shape,b.shape,[1,A,n.outChannels],g,x,F,V,O,z),U=[C,b];if(a&&U.push(a),O&&U.push(s),z){let Y=r.makeTensorInfo([],"float32",_.createScalarValue(i,"float32"));U.push(Y),v.push(Y)}let X=r.runWebGLProgram(j,U,"float32"),G=m?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=fe({inputs:{x:X},backend:r,attrs:{shape:G}});v.push(X);for(let Y of v)r.disposeIntermediateTensorInfo(Y);return ee}function MV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=j3({x:a,filter:s,convInfo:d,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=U3({x:a,filter:s,convInfo:d,backend:n});else{let f=new V3(d);p=n.runWebGLProgram(f,[a,s],"float32")}let m=fe({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),m}var FV={kernelName:fs,backendName:"webgl",kernelFunc:MV},$V=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; @@ -2200,7 +2200,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(dotProd); } - `}},aj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=` + `}},DV=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { @@ -2253,7 +2253,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(dotProd); } - `}},sj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=` + `}},OV=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; @@ -2295,7 +2295,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(dotProd); } - `}},ij=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=r-1-e.padInfo.left;this.userCode=` + `}},zV=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=r-1-e.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${o}, ${l}, ${c}); void main() { @@ -2352,12 +2352,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(dotProd); } - `}};function oj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),p=new rj(d);return n.runWebGLProgram(p,[a,s],"float32")}var lj={kernelName:Ph,backendName:"webgl",kernelFunc:oj};function uj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(c),d=E.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),p=new aj(d);return n.runWebGLProgram(p,[a,s],"float32")}var cj={kernelName:bs,backendName:"webgl",kernelFunc:uj};function hj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeConv3DInfo(a.shape,s.shape,i,l,o),u=new QV(c);return n.runWebGLProgram(u,[a,s],"float32")}var dj={kernelName:Iu,backendName:"webgl",kernelFunc:hj};function pj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,c=E.computeConv3DInfo(a.shape,l,i,1,o),u=new sj(c);return n.runWebGLProgram(u,[a,s],"float32")}var fj={kernelName:Lh,backendName:"webgl",kernelFunc:pj};function mj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,c=E.computeConv3DInfo(l,s.shape,o,1,i),u=new ij(c);return n.runWebGLProgram(u,[a,s],"float32")}var Aj={kernelName:Wh,backendName:"webgl",kernelFunc:mj},yj=X3+` + `}};function PV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),p=new $V(d);return n.runWebGLProgram(p,[a,s],"float32")}var LV={kernelName:Mh,backendName:"webgl",kernelFunc:PV};function WV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(c),d=E.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),p=new DV(d);return n.runWebGLProgram(p,[a,s],"float32")}var BV={kernelName:ms,backendName:"webgl",kernelFunc:WV};function VV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeConv3DInfo(a.shape,s.shape,i,l,o),u=new CV(c);return n.runWebGLProgram(u,[a,s],"float32")}var jV={kernelName:xu,backendName:"webgl",kernelFunc:VV};function UV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,c=E.computeConv3DInfo(a.shape,l,i,1,o),u=new OV(c);return n.runWebGLProgram(u,[a,s],"float32")}var HV={kernelName:Fh,backendName:"webgl",kernelFunc:UV};function GV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,c=E.computeConv3DInfo(l,s.shape,o,1,i),u=new zV(c);return n.runWebGLProgram(u,[a,s],"float32")}var qV={kernelName:$h,backendName:"webgl",kernelFunc:GV},XV=S3+` return cos(x); -`,gj=Xe({opSnippet:yj}),xj={kernelName:ws,backendName:"webgl",kernelFunc:gj},bj=` +`,KV=qe({opSnippet:XV}),ZV={kernelName:As,backendName:"webgl",kernelFunc:KV},YV=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; -`,wj=Xe({opSnippet:bj}),_j={kernelName:bo,backendName:"webgl",kernelFunc:wj},vj=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,h]=n;this.outputShape=[c,u,h,l];let d=r==="bilinear"?1:0,[p,m]=[`${i-1}.0`,`${o-1}.0`],[f,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,x,v]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=` +`,JV=qe({opSnippet:YV}),QV={kernelName:fo,backendName:"webgl",kernelFunc:JV},ej=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,h]=n;this.outputShape=[c,u,h,l];let d=r==="bilinear"?1:0,[p,m]=[`${i-1}.0`,`${o-1}.0`],[f,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,x,v]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=` const float height_ratio = float(${f}); const float width_ratio = float(${g}); void main() { @@ -2418,21 +2418,21 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam setOutput(newValue); } } - `}},kj=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,u=new vj(a.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[a,s,i],"float32")},Ij={kernelName:wo,backendName:"webgl",kernelFunc:kj},m7=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${p7(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=` + `}},tj=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,u=new ej(a.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[a,s,i],"float32")},nj={kernelName:mo,backendName:"webgl",kernelFunc:tj},q3=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${H3(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=` uniform float index; void main() { ${lt(r)} coords = getOutputCoords(); - int end = ${f7(r,"coords")}; + int end = ${G3(r,"coords")}; float val = ${a}; int pow2 = int(pow(2.0, index)); if (${i}) { int idx = ${o}; - ${f7(r,"coords")} = idx; - val += getX(${p7(r,"coords")}); + ${G3(r,"coords")} = idx; + val += getX(${H3(r,"coords")}); } setOutput(val); } - `}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function p7(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function f7(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Sj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,c=E.getAxesPermutation([s],l),u=a;c!=null&&(u=fn({inputs:{x:a},backend:n,attrs:{perm:c}}));let h=E.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=u.shape[h],p=Vn({inputs:{x:u},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new m7(u.shape,!1,o),A=f.getCustomSetupFunc(m),y=p;p=n.runWebGLProgram(f,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let m=new m7(u.shape,i,o),f=p;p=n.runWebGLProgram(m,[p],p.dtype),n.disposeIntermediateTensorInfo(f)}if(c!=null){let m=E.getUndoAxesPermutation(c),f=fn({inputs:{x:p},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(u),f}return p}var Nj={kernelName:_s,backendName:"webgl",kernelFunc:Sj};function Tj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),c=n.readSync(s.dataId),u=F3(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=QL(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var Ej={kernelName:Bh,backendName:"webgl",kernelFunc:Tj},Cj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` + `}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function H3(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function G3(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function rj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,c=E.getAxesPermutation([s],l),u=a;c!=null&&(u=dn({inputs:{x:a},backend:n,attrs:{perm:c}}));let h=E.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=u.shape[h],p=Pn({inputs:{x:u},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new q3(u.shape,!1,o),A=f.getCustomSetupFunc(m),y=p;p=n.runWebGLProgram(f,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let m=new q3(u.shape,i,o),f=p;p=n.runWebGLProgram(m,[p],p.dtype),n.disposeIntermediateTensorInfo(f)}if(c!=null){let m=E.getUndoAxesPermutation(c),f=dn({inputs:{x:p},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(u),f}return p}var aj={kernelName:ys,backendName:"webgl",kernelFunc:rj};function sj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),c=n.readSync(s.dataId),u=h3(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=CL(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var ij={kernelName:Dh,backendName:"webgl",kernelFunc:sj},oj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -2451,7 +2451,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam float result = ${this.getInputSamplingString()}; setOutput(result); } - `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Rj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=new Cj(m,s,i);return n.runWebGLProgram(f,[a],a.dtype)}var Mj={kernelName:_o,backendName:"webgl",kernelFunc:Rj},A7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) { + `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function lj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=new oj(m,s,i);return n.runWebGLProgram(f,[a],a.dtype)}var uj={kernelName:Ao,backendName:"webgl",kernelFunc:lj},X3=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:a?A=`float activation(float a) { @@ -2507,16 +2507,16 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam ${y} setOutput(result); } - `}},y7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,c=e.padInfo.left,u=e.strideHeight,h=e.strideWidth,d=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,A=f,y=` + `}},K3=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,c=e.padInfo.left,u=e.strideHeight,h=e.strideWidth,d=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,A=f,y=` int xR; int xC; int xCOffset; - vec4 wTexel; vec4 previous; vec4 final;`;for(let b=0;b=0 && xR < ${i}) { - `;for(let w=0;w`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let h=E.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!0),d;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new y7(h):d=new A7(h),n.runWebGLProgram(d,[a,s],"float32")}var $j={kernelName:vs,backendName:"webgl",kernelFunc:Fj},Dj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=` + `}};function cj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=r,u=l;u==null&&(u=[1,1]),_.assert(E.eitherStridesOrDilationsAreOne(i,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let h=E.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!0),d;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new K3(h):d=new X3(h),n.runWebGLProgram(d,[a,s],"float32")}var hj={kernelName:gs,backendName:"webgl",kernelFunc:cj},dj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; @@ -2714,7 +2714,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(dotProd); } - `}},Oj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=` + `}},pj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=` const ivec2 pads = ivec2(${s}, ${i}); void main() { @@ -2759,13 +2759,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(dotProd); } - `}};function zj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r,h=E.computeConv2DInfo(a.shape,u,i,o,l,c,!0),d=new Dj(h);return n.runWebGLProgram(d,[a,s],"float32")}var Pj={kernelName:Vh,backendName:"webgl",kernelFunc:zj};function Lj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r,h=E.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new Oj(h);return n.runWebGLProgram(d,[a,s],"float32")}var Wj={kernelName:jh,backendName:"webgl",kernelFunc:Lj},Bj=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` + `}};function fj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r,h=E.computeConv2DInfo(a.shape,u,i,o,l,c,!0),d=new dj(h);return n.runWebGLProgram(d,[a,s],"float32")}var mj={kernelName:Oh,backendName:"webgl",kernelFunc:fj};function Aj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r,h=E.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new pj(h);return n.runWebGLProgram(d,[a,s],"float32")}var yj={kernelName:zh,backendName:"webgl",kernelFunc:Aj},gj=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } - `}};function Vj(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=_.sizeFromShape(r.shape),i=fe({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new Bj(s),l=n.runWebGLProgram(o,[i],i.dtype),c=fe({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var jj={kernelName:Uh,backendName:"webgl",kernelFunc:Vj},Uj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:h}=r;this.userCode=` + `}};function xj(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=_.sizeFromShape(r.shape),i=fe({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new gj(s),l=n.runWebGLProgram(o,[i],i.dtype),c=fe({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var wj={kernelName:Ph,backendName:"webgl",kernelFunc:xj},bj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:h}=r;this.userCode=` const ivec2 strides = ivec2(${a}, ${s}); const ivec2 pads = ivec2(${u}, ${h}); const float neg_infinity = -3.4e38; @@ -2803,7 +2803,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam float result = curVal; setOutput(result); } - `}};function Hj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),u,h=new Uj(c);u=n.runWebGLProgram(h,[a,s],"float32");let d=fe({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var Gj={kernelName:Su,backendName:"webgl",kernelFunc:Hj};function qj(e){let{inputs:t,backend:n,attrs:r}=e,{equation:a}=r,s=t,{allDims:i,summedDims:o,idDims:l}=E.decodeEinsumEquation(a,s.length);E.checkEinsumDimSizes(i.length,l,s);let{path:c,steps:u}=E.getEinsumComputePath(o,l),h=u.length,d=null,p=i.length,m=[];for(let f=0;f=0&&(d=Ip({inputs:{x:d},backend:n,attrs:{axis:c[f]-(i.length-p),keepDims:!1}}),m.push(d)),p--)}for(let f of m)f!==d&&n.disposeIntermediateTensorInfo(f);return d}var Xj={kernelName:qh,backendName:"webgl",kernelFunc:qj},Kj="return (x >= 0.0) ? x : (exp(x) - 1.0);",Zj=` + `}};function _j(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),u,h=new bj(c);u=n.runWebGLProgram(h,[a,s],"float32");let d=fe({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var vj={kernelName:wu,backendName:"webgl",kernelFunc:_j};function kj(e){let{inputs:t,backend:n,attrs:r}=e,{equation:a}=r,s=t,{allDims:i,summedDims:o,idDims:l}=E.decodeEinsumEquation(a,s.length);E.checkEinsumDimSizes(i.length,l,s);let{path:c,steps:u}=E.getEinsumComputePath(o,l),h=u.length,d=null,p=i.length,m=[];for(let f=0;f=0&&(d=wp({inputs:{x:d},backend:n,attrs:{axis:c[f]-(i.length-p),keepDims:!1}}),m.push(d)),p--)}for(let f of m)f!==d&&n.disposeIntermediateTensorInfo(f);return d}var Ij={kernelName:Bh,backendName:"webgl",kernelFunc:kj},Sj="return (x >= 0.0) ? x : (exp(x) - 1.0);",Nj=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); @@ -2812,12 +2812,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; -`,Yj=Xe({opSnippet:Kj,packedOpSnippet:Zj}),Jj={kernelName:vo,backendName:"webgl",kernelFunc:Yj},Qj="return (b >= 1.0) ? a : a * (b + 1.0);",eU=` +`,Tj=qe({opSnippet:Sj,packedOpSnippet:Nj}),Ej={kernelName:yo,backendName:"webgl",kernelFunc:Tj},Cj="return (b >= 1.0) ? a : a * (b + 1.0);",Rj=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); -`,tU=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(eU,r.shape,a.shape):new Vl(Qj,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},nU={kernelName:Xh,backendName:"webgl",kernelFunc:tU},rU=` +`,Mj=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ac(Rj,r.shape,a.shape):new Ol(Cj,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},Fj={kernelName:Vh,backendName:"webgl",kernelFunc:Mj},$j=` return vec4(equal(a, b)); -`,aU="return float(a == b);",sU=nn({opSnippet:aU,packedOpSnippet:rU,dtype:"bool"}),iU={kernelName:Io,backendName:"webgl",kernelFunc:sU},oU=` +`,Dj="return float(a == b);",Oj=en({opSnippet:Dj,packedOpSnippet:$j,dtype:"bool"}),zj={kernelName:xo,backendName:"webgl",kernelFunc:Oj},Pj=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. @@ -2832,7 +2832,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); -`,lU=Xe({opSnippet:oU}),uU={kernelName:ko,backendName:"webgl",kernelFunc:lU},g7="return exp(x);",x7=Xe({opSnippet:g7,packedOpSnippet:g7,cpuKernelImpl:nW}),cU={kernelName:Is,backendName:"webgl",kernelFunc:x7};function MA(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(_.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),fe({inputs:{x:s},backend:r,attrs:{shape:o}})}var hU={kernelName:So,backendName:"webgl",kernelFunc:MA},b7="return exp(x) - 1.0;",dU=Xe({opSnippet:b7,packedOpSnippet:b7,cpuKernelImpl:rW}),pU={kernelName:No,backendName:"webgl",kernelFunc:dU},w7=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` +`,Lj=qe({opSnippet:Pj}),Wj={kernelName:go,backendName:"webgl",kernelFunc:Lj},Z3="return exp(x);",Y3=qe({opSnippet:Z3,packedOpSnippet:Z3,cpuKernelImpl:FL}),Bj={kernelName:ws,backendName:"webgl",kernelFunc:Y3};function bA(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(_.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),fe({inputs:{x:s},backend:r,attrs:{shape:o}})}var Vj={kernelName:wo,backendName:"webgl",kernelFunc:bA},J3="return exp(x) - 1.0;",jj=qe({opSnippet:J3,packedOpSnippet:J3,cpuKernelImpl:$L}),Uj={kernelName:bo,backendName:"webgl",kernelFunc:jj},Q3=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` const float exponentMultiplier = ${a}; float unaryOpComplex(float real, float expR, float imag, float expI) { @@ -2865,13 +2865,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } - `}};function _7(e,t,n){let r=n.texData.get(e.dataId),a=_.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=fe({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new w7("real",l,t),u=new w7("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),m=Xa({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let f=fe({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function fU(e){let{inputs:t,backend:n}=e,{input:r}=t;return _7(r,!1,n)}var mU={kernelName:Kh,backendName:"webgl",kernelFunc:fU},AU=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=` + `}};function e7(e,t,n){let r=n.texData.get(e.dataId),a=_.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=fe({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new Q3("real",l,t),u=new Q3("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),m=Va({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let f=fe({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function Hj(e){let{inputs:t,backend:n}=e,{input:r}=t;return e7(r,!1,n)}var Gj={kernelName:jh,backendName:"webgl",kernelFunc:Hj},qj=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=` uniform float value; void main() { // Input can be obtained from uniform value. setOutput(value); } - `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function FA(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||_.inferDtype(a),s==="string"){let i=_.getArrayFromDType(s,_.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new AU(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var yU={kernelName:Nu,backendName:"webgl",kernelFunc:FA},gU=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function _A(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||_.inferDtype(a),s==="string"){let i=_.getArrayFromDType(s,_.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new qj(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var Xj={kernelName:bu,backendName:"webgl",kernelFunc:_A},Kj=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; @@ -2885,7 +2885,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(outputValue); } - `}},xU={kernelName:To,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new gU(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},v7="return floor(x);",bU=Xe({opSnippet:v7,packedOpSnippet:v7,cpuKernelImpl:aW}),wU={kernelName:Ss,backendName:"webgl",kernelFunc:bU},_U=` + `}},Zj={kernelName:_o,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new Kj(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},t7="return floor(x);",Yj=qe({opSnippet:t7,packedOpSnippet:t7,cpuKernelImpl:DL}),Jj={kernelName:bs,backendName:"webgl",kernelFunc:Yj},Qj=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); @@ -2895,7 +2895,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } else { return NAN; } -`,vU=` +`,eU=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); @@ -2916,7 +2916,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); -`,kU=nn({opSnippet:_U,packedOpSnippet:vU,dtype:"int32"}),IU={kernelName:Ns,backendName:"webgl",kernelFunc:kU},SU=class{constructor(e){this.variableNames=["A"];let t=dn(),[n,r]=e;this.outputShape=e,this.userCode=` +`,tU=en({opSnippet:Qj,packedOpSnippet:eU,dtype:"int32"}),nU={kernelName:_s,backendName:"webgl",kernelFunc:tU},rU=class{constructor(e){this.variableNames=["A"];let t=cn(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; @@ -2938,7 +2938,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam setOutput(floor(value * 255.0 + 0.5)); } - `}},NU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=dn(),[n,r]=e;this.outputShape=e,this.userCode=` + `}},aU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=cn(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; @@ -2972,7 +2972,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam ${t.output} = result; } - `}},EU={kernelName:hd,backendName:"webgl",kernelFunc:TU},Ul;function TU(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,c]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],u=[c,l],h=[c,l,s];(o||i)&&(Ul==null&&(Ul=document.createElement("canvas").getContext("2d")),Ul.canvas.width=l,Ul.canvas.height=c,Ul.drawImage(a,0,0,l,c),a=Ul.canvas);let d=n.makeTensorInfo(u,"int32");n.texData.get(d.dataId).usage=ar.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),a);let p=J().getBool("WEBGL_PACK")?new NU(h):new SU(h),m=n.runWebGLProgram(p,[d],"int32");return n.disposeData(d.dataId),m}function CU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=E.convertConv2DDataFormat(u),A=E.computeConv2DInfo(a.shape,s.shape,l,h,c,d,!1,f),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=h7({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=d7({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,b=o!=null,w=p==="leakyrelu",k=p?vp(p,!1):null,N=new c7(A,v,k,b,w),C=[a,s];if(i&&C.push(i),o&&C.push(o),w){let F=n.makeTensorInfo([],"float32",_.createScalarValue(m,"float32"));C.push(F),g.push(F)}y=n.runWebGLProgram(N,C,"float32")}let x=fe({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var RU={kernelName:li,backendName:"webgl",kernelFunc:CU};function MU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,m=[],f=u;f==null&&(f=[1,1]),_.assert(E.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let A=E.computeConv2DInfo(a.shape,s.shape,l,f,c,h,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?vp(d,y):null,x=[a,s],v=i!=null,b=o!=null,w=d==="leakyrelu";if(v&&x.push(i),b&&x.push(o),w){let C=n.makeTensorInfo([],"float32",_.createScalarValue(p,"float32"));x.push(C),m.push(C)}let k;y?k=new y7(A,v,g,b,w):k=new A7(A,v,g,b,w);let N=n.runWebGLProgram(k,x,"float32");return m.forEach(C=>n.disposeIntermediateTensorInfo(C)),N}var FU={kernelName:ui,backendName:"webgl",kernelFunc:MU},$U=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=lt(t.length),a=lt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=` + `}},iU={kernelName:sd,backendName:"webgl",kernelFunc:sU},Pl;function sU(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,c]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],u=[c,l],h=[c,l,s];(o||i)&&(Pl==null&&(Pl=document.createElement("canvas").getContext("2d")),Pl.canvas.width=l,Pl.canvas.height=c,Pl.drawImage(a,0,0,l,c),a=Pl.canvas);let d=n.makeTensorInfo(u,"int32");n.texData.get(d.dataId).usage=Qn.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),a);let p=J().getBool("WEBGL_PACK")?new aU(h):new rU(h),m=n.runWebGLProgram(p,[d],"int32");return n.disposeData(d.dataId),m}function oU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=E.convertConv2DDataFormat(u),A=E.computeConv2DInfo(a.shape,s.shape,l,h,c,d,!1,f),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=j3({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=U3({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,w=o!=null,b=p==="leakyrelu",k=p?gp(p,!1):null,N=new V3(A,v,k,w,b),C=[a,s];if(i&&C.push(i),o&&C.push(o),b){let F=n.makeTensorInfo([],"float32",_.createScalarValue(m,"float32"));C.push(F),g.push(F)}y=n.runWebGLProgram(N,C,"float32")}let x=fe({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var lU={kernelName:ri,backendName:"webgl",kernelFunc:oU};function uU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,m=[],f=u;f==null&&(f=[1,1]),_.assert(E.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let A=E.computeConv2DInfo(a.shape,s.shape,l,f,c,h,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?gp(d,y):null,x=[a,s],v=i!=null,w=o!=null,b=d==="leakyrelu";if(v&&x.push(i),w&&x.push(o),b){let C=n.makeTensorInfo([],"float32",_.createScalarValue(p,"float32"));x.push(C),m.push(C)}let k;y?k=new K3(A,v,g,w,b):k=new X3(A,v,g,w,b);let N=n.runWebGLProgram(k,x,"float32");return m.forEach(C=>n.disposeIntermediateTensorInfo(C)),N}var cU={kernelName:ai,backendName:"webgl",kernelFunc:uU},hU=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=lt(t.length),a=lt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=` ${r} strides = ${r}(${this.strides}); void main() { ${a} coords = getOutputCoords(); @@ -2983,21 +2983,21 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(getX(flattenIndex, coords[1])); } - `}};function DU(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,c,u]=E.prepareAndValidate(r,a),h=fe({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=fe({inputs:{x:r},backend:n,attrs:{shape:[_.sizeFromShape(r.shape)/c,c]}}),p=new $U(i,u,[l,c]),m=n.runWebGLProgram(p,[d,h],d.dtype),f=fe({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var OU={kernelName:Co,backendName:"webgl",kernelFunc:DU},PU=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=lt(this.rank),r=zU(e,2);this.userCode=` + `}};function dU(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,c,u]=E.prepareAndValidate(r,a),h=fe({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=fe({inputs:{x:r},backend:n,attrs:{shape:[_.sizeFromShape(r.shape)/c,c]}}),p=new hU(i,u,[l,c]),m=n.runWebGLProgram(p,[d,h],d.dtype),f=fe({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var pU={kernelName:ko,backendName:"webgl",kernelFunc:dU},mU=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=lt(this.rank),r=fU(e,2);this.userCode=` void main() { ${n} resRC = getOutputCoords(); setOutput(getA(${r})); } - `}};function zU(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;an.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(c.outputShape,v.dtype,v.values)}let f=new PU(d.shape,m),A=n.runWebGLProgram(f,[d,p],d.dtype);h.push(A);let y=fe({inputs:{x:A},backend:n,attrs:{shape:c.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var WU={kernelName:Eo,backendName:"webgl",kernelFunc:LU},BU="return float(a > b);",VU=` + `}};function fU(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;an.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(c.outputShape,v.dtype,v.values)}let f=new mU(d.shape,m),A=n.runWebGLProgram(f,[d,p],d.dtype);h.push(A);let y=fe({inputs:{x:A},backend:n,attrs:{shape:c.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var yU={kernelName:vo,backendName:"webgl",kernelFunc:AU},gU="return float(a > b);",xU=` return vec4(greaterThan(a, b)); -`,jU=nn({opSnippet:BU,packedOpSnippet:VU,cpuKernelImpl:iW,dtype:"bool"}),UU={kernelName:Ro,backendName:"webgl",kernelFunc:jU},HU="return float(a >= b);",GU=` +`,wU=en({opSnippet:gU,packedOpSnippet:xU,cpuKernelImpl:zL,dtype:"bool"}),bU={kernelName:Io,backendName:"webgl",kernelFunc:wU},_U="return float(a >= b);",vU=` return vec4(greaterThanEqual(a, b)); -`,qU=nn({opSnippet:HU,packedOpSnippet:GU,dtype:"bool"}),XU={kernelName:Es,backendName:"webgl",kernelFunc:qU};function KU(e){let{inputs:t,backend:n}=e,{input:r}=t;return _7(r,!0,n)}var ZU={kernelName:Zh,backendName:"webgl",kernelFunc:KU},YU="return float(!isnan(x) && !isinf(x));",JU=Xe({opSnippet:YU,dtype:"bool"}),QU={kernelName:Mo,backendName:"webgl",kernelFunc:JU},eH="return float(isinf(x));",tH=Xe({opSnippet:eH,dtype:"bool"}),nH={kernelName:Fo,backendName:"webgl",kernelFunc:tH},rH="return float(isnan(x));",aH=Xe({opSnippet:rH,dtype:"bool"}),sH={kernelName:$o,backendName:"webgl",kernelFunc:aH},iH="return float(a < b);",oH=` +`,kU=en({opSnippet:_U,packedOpSnippet:vU,dtype:"bool"}),IU={kernelName:ks,backendName:"webgl",kernelFunc:kU};function SU(e){let{inputs:t,backend:n}=e,{input:r}=t;return e7(r,!0,n)}var NU={kernelName:Uh,backendName:"webgl",kernelFunc:SU},TU="return float(!isnan(x) && !isinf(x));",EU=qe({opSnippet:TU,dtype:"bool"}),CU={kernelName:So,backendName:"webgl",kernelFunc:EU},RU="return float(isinf(x));",MU=qe({opSnippet:RU,dtype:"bool"}),FU={kernelName:No,backendName:"webgl",kernelFunc:MU},$U="return float(isnan(x));",DU=qe({opSnippet:$U,dtype:"bool"}),OU={kernelName:To,backendName:"webgl",kernelFunc:DU},zU="return float(a < b);",PU=` return vec4(lessThan(a, b)); -`,lH=nn({opSnippet:iH,packedOpSnippet:oH,cpuKernelImpl:oW,dtype:"bool"}),uH={kernelName:Do,backendName:"webgl",kernelFunc:lH},cH="return float(a <= b);",hH=` +`,LU=en({opSnippet:zU,packedOpSnippet:PU,cpuKernelImpl:PL,dtype:"bool"}),WU={kernelName:Eo,backendName:"webgl",kernelFunc:LU},BU="return float(a <= b);",VU=` return vec4(lessThanEqual(a, b)); -`,dH=nn({opSnippet:cH,packedOpSnippet:hH,dtype:"bool"}),pH={kernelName:Oo,backendName:"webgl",kernelFunc:dH};function fH(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=lW(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var mH={kernelName:Jh,backendName:"webgl",kernelFunc:fH},AH=`if (x < 0.0) return NAN; - return log(x);`,yH=` +`,jU=en({opSnippet:BU,packedOpSnippet:VU,dtype:"bool"}),UU={kernelName:Co,backendName:"webgl",kernelFunc:jU};function HU(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=LL(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var GU={kernelName:Gh,backendName:"webgl",kernelFunc:HU},qU=`if (x < 0.0) return NAN; + return log(x);`,XU=` vec4 result = log(x); vec4 isNaN = vec4(lessThan(x, vec4(0.0))); result.r = isNaN.r == 1.0 ? NAN : result.r; @@ -3006,16 +3006,16 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam result.a = isNaN.a == 1.0 ? NAN : result.a; return result; -`,gH=Xe({opSnippet:AH,packedOpSnippet:yH,cpuKernelImpl:uW}),xH={kernelName:Ms,backendName:"webgl",kernelFunc:gH},bH="return log(1.0 + x);",wH=Xe({opSnippet:bH}),_H={kernelName:zo,backendName:"webgl",kernelFunc:wH},vH="return float(a >= 1.0 && b >= 1.0);",kH=` +`,KU=qe({opSnippet:qU,packedOpSnippet:XU,cpuKernelImpl:WL}),ZU={kernelName:Ns,backendName:"webgl",kernelFunc:KU},YU="return log(1.0 + x);",JU=qe({opSnippet:YU}),QU={kernelName:Ro,backendName:"webgl",kernelFunc:JU},eH="return float(a >= 1.0 && b >= 1.0);",tH=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); -`,IH=nn({opSnippet:vH,packedOpSnippet:kH,dtype:"bool"}),SH={kernelName:Po,backendName:"webgl",kernelFunc:IH},NH="return float(!(x >= 1.0));",TH=Xe({opSnippet:NH}),EH={kernelName:Tu,backendName:"webgl",kernelFunc:TH},CH="return float(a >= 1.0 || b >= 1.0);",RH=` +`,nH=en({opSnippet:eH,packedOpSnippet:tH,dtype:"bool"}),rH={kernelName:Mo,backendName:"webgl",kernelFunc:nH},aH="return float(!(x >= 1.0));",sH=qe({opSnippet:aH}),iH={kernelName:_u,backendName:"webgl",kernelFunc:sH},oH="return float(a >= 1.0 || b >= 1.0);",lH=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); -`,MH=nn({opSnippet:CH,packedOpSnippet:RH,dtype:"bool"}),FH={kernelName:Eu,backendName:"webgl",kernelFunc:MH},$H=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` +`,uH=en({opSnippet:oH,packedOpSnippet:lH,dtype:"bool"}),cH={kernelName:vu,backendName:"webgl",kernelFunc:uH},hH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3034,7 +3034,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam float val = x * ${o}; setOutput(val); } - `}},DH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` + `}},dH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; @@ -3096,7 +3096,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam vec4 result = xAtOutputCoords * ${o}; setOutput(result); } - `}},OH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,c=J().getBool("WEBGL_PACK_NORMALIZATION")?new DH(a.shape,s,i,o,l):new $H(a.shape,s,i,o,l);return n.runWebGLProgram(c,[a],a.dtype)},zH={kernelName:Cu,backendName:"webgl",kernelFunc:OH},PH=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=` + `}},pH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,c=J().getBool("WEBGL_PACK_NORMALIZATION")?new dH(a.shape,s,i,o,l):new hH(a.shape,s,i,o,l);return n.runWebGLProgram(c,[a],a.dtype)},fH={kernelName:ku,backendName:"webgl",kernelFunc:pH},mH=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3151,14 +3151,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(result); } - `}},LH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r,h=new PH(a.shape,o,l,c,u);return n.runWebGLProgram(h,[a,s,i],a.dtype)},WH={kernelName:Qh,backendName:"webgl",kernelFunc:LH};function BH(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=$i(i,e.dtype,"max",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function k7(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,x=new Array(o);for(let w=0;w{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r,h=new mH(a.shape,o,l,c,u);return n.runWebGLProgram(h,[a,s,i],a.dtype)},yH={kernelName:qh,backendName:"webgl",kernelFunc:AH};function gH(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=Ti(i,e.dtype,"max",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function n7(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,x=new Array(o);for(let b=0;b`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Vn({inputs:{x:a},backend:n});let h=new _c(u,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var XH={kernelName:Ds,backendName:"webgl",kernelFunc:qH};function KH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,c,l),d=new EA(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var ZH={kernelName:Ru,backendName:"webgl",kernelFunc:KH},YH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=` +`,_H=en({opSnippet:wH,packedOpSnippet:bH,cpuKernelImpl:VL}),vH={kernelName:Es,backendName:"webgl",kernelFunc:_H};function kH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Tl(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Pn({inputs:{x:a},backend:n});let h=new yc(u,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var IH={kernelName:Cs,backendName:"webgl",kernelFunc:kH};function SH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,c,l),d=new gA(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var NH={kernelName:Iu,backendName:"webgl",kernelFunc:SH},TH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { @@ -3204,7 +3204,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(dotProd); } - `}},JH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=c-1-e.padInfo.left,p=o*l*c-1;this.userCode=` + `}},EH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=c-1-e.padInfo.left,p=o*l*c-1;this.userCode=` const ivec3 pads = ivec3(${u}, ${h}, ${d}); void main() { @@ -3268,14 +3268,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam } setOutput(dotProd); } - `}};function QH(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,h,c,u),p=new EA(d,"max",!0),m=n.runWebGLProgram(p,[i],i.dtype),f=new JH(d),A=n.runWebGLProgram(f,[a,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var eG={kernelName:td,backendName:"webgl",kernelFunc:QH};function tG(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;$l([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=E.computePool2DInfo(o.shape,l,c,1,u,h),p=!0,m=new _c(d,"max",p),f=n.runWebGLProgram(m,[o],o.dtype),A=new YH(d),y=n.runWebGLProgram(A,[a,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var nG={kernelName:ed,backendName:"webgl",kernelFunc:tG};function rG(e,t,n,r){let a=new _c(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new _c(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var aG={kernelName:nd,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let c=[1,1];_.assert(E.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,s,c,i),[h,d]=rG(r,o,u,l);return[h,d]}};function sG(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=$i(i,"float32","mean",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var iG={kernelName:Os,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=_.parseAxisParam(s,r.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=i.shouldExecuteOnCPU([r]),p=[],m=r;if(h){if(d){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let k=0;k{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let c=[1,1];_.assert(E.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,s,c,i),[h,d]=$H(r,o,u,l);return[h,d]}};function OH(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=Ti(i,"float32","mean",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var zH={kernelName:Rs,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=_.parseAxisParam(s,r.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=i.shouldExecuteOnCPU([r]),p=[],m=r;if(h){if(d){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let k=0;kc[0]+e[u]+c[1]);let r=e.length,a=lt(r),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=` +`,VH=en({opSnippet:WH,packedOpSnippet:BH,cpuKernelImpl:jL}),jH={kernelName:Fs,backendName:"webgl",kernelFunc:VH},UH=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let r=e.length,a=lt(r),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=` int start = ${s}; int end = ${i}; @@ -3304,7 +3304,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam ${a} coords = outC - start; setOutput(getX(${o})); } - `}},fG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,m)=>p[0]+e[m]+p[1]);let r=e.length,a=lt(r),s=t.map(p=>p[0]).join(","),i=t.map((p,m)=>p[0]+e[m]).join(","),o=pn("rc",r),l=pn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=` + `}},HH=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,m)=>p[0]+e[m]+p[1]);let r=e.length,a=lt(r),s=t.map(p=>p[0]).join(","),i=t.map((p,m)=>p[0]+e[m]).join(","),o=hn("rc",r),l=hn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=` ${a} source = rc; if (source < start) { source = start * 2 - source - ${h}; @@ -3360,13 +3360,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam ${d} setOutput(result); } - `}},mG=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fG(r.shape,a,s):new pG(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},AG={kernelName:Ls,backendName:"webgl",kernelFunc:mG},yG=`if (b == 0.0) return NAN; - return mod(a, b);`,gG=` + `}},GH=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new HH(r.shape,a,s):new UH(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},qH={kernelName:$s,backendName:"webgl",kernelFunc:GH},XH=`if (b == 0.0) return NAN; + return mod(a, b);`,KH=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); - `+_p+` + `+yp+` return result; -`,xG=nn({opSnippet:yG,packedOpSnippet:gG}),bG={kernelName:Lo,backendName:"webgl",kernelFunc:xG},wG=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=` +`,ZH=en({opSnippet:XH,packedOpSnippet:KH}),YH={kernelName:Fo,backendName:"webgl",kernelFunc:ZH},JH=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=` uniform float seed; void main() { @@ -3388,11 +3388,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelNam // If no other event happened, last event happened. setOutput(float(${t-1})); } - `}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},_G=` + `}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},QH=` if (a == b) { return 1.0; }; -return a / b;`,vG=` +return a / b;`,eG=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; @@ -3410,14 +3410,14 @@ return a / b;`,vG=` } return result; -`,I7=nn({opSnippet:_G,packedOpSnippet:vG,checkOutOfBounds:!0}),kG={kernelName:ks,backendName:"webgl",kernelFunc:I7},S7="return a - b;",N7=nn({opSnippet:S7,packedOpSnippet:S7,supportsComplex:!0,cpuKernelImpl:wW}),IG={kernelName:ri,backendName:"webgl",kernelFunc:N7};function T7(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=_.parseAxisParam([s],a.shape),o=k7({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=E.expandShapeToKeepDim(o.shape,i),c=fe({inputs:{x:o},backend:n,attrs:{shape:l}}),u=N7({inputs:{a,b:c},backend:n}),h=x7({inputs:{x:u},backend:n}),d=Ip({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=fe({inputs:{x:d},backend:n,attrs:{shape:l}}),m=I7({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}var SG={kernelName:ti,backendName:"webgl",kernelFunc:T7};function NG(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:T7({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),c=l.shape[0],u=l.shape[1],h=new wG(c,u,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var TG={kernelName:rd,backendName:"webgl",kernelFunc:NG},E7="return -x;";function EG(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=fW(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Wl(r.shape,E7):a=new qa(r.shape,E7),n.runWebGLProgram(a,[r],r.dtype)}var CG={kernelName:Wo,backendName:"webgl",kernelFunc:EG},RG=Gr.nonMaxSuppressionV3Impl;function MG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,c=n.readSync(a.dataId),u=n.readSync(s.dataId),{selectedIndices:h}=RG(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var FG={kernelName:Vo,backendName:"webgl",kernelFunc:MG},$G=Gr.nonMaxSuppressionV4Impl;function DG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=$G(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var OG={kernelName:jo,backendName:"webgl",kernelFunc:DG},zG=Gr.nonMaxSuppressionV5Impl;function PG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,m=l,f=c,{selectedIndices:A,selectedScores:y}=zG(u,h,d,p,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var LG={kernelName:Uo,backendName:"webgl",kernelFunc:PG},WG=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` +`,r7=en({opSnippet:QH,packedOpSnippet:eG,checkOutOfBounds:!0}),tG={kernelName:xs,backendName:"webgl",kernelFunc:r7},a7="return a - b;",s7=en({opSnippet:a7,packedOpSnippet:a7,supportsComplex:!0,cpuKernelImpl:JL}),nG={kernelName:Js,backendName:"webgl",kernelFunc:s7};function i7(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=_.parseAxisParam([s],a.shape),o=n7({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=E.expandShapeToKeepDim(o.shape,i),c=fe({inputs:{x:o},backend:n,attrs:{shape:l}}),u=s7({inputs:{a,b:c},backend:n}),h=Y3({inputs:{x:u},backend:n}),d=wp({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=fe({inputs:{x:d},backend:n,attrs:{shape:l}}),m=r7({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}var rG={kernelName:Zs,backendName:"webgl",kernelFunc:i7};function aG(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:i7({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),c=l.shape[0],u=l.shape[1],h=new JH(c,u,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var sG={kernelName:Yh,backendName:"webgl",kernelFunc:aG},o7="return -x;";function iG(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=HL(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new $l(r.shape,o7):a=new Ba(r.shape,o7),n.runWebGLProgram(a,[r],r.dtype)}var oG={kernelName:$o,backendName:"webgl",kernelFunc:iG},lG=Wr.nonMaxSuppressionV3Impl;function uG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,c=n.readSync(a.dataId),u=n.readSync(s.dataId),{selectedIndices:h}=lG(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var cG={kernelName:Oo,backendName:"webgl",kernelFunc:uG},hG=Wr.nonMaxSuppressionV4Impl;function dG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=hG(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var pG={kernelName:zo,backendName:"webgl",kernelFunc:dG},fG=Wr.nonMaxSuppressionV5Impl;function mG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,m=l,f=c,{selectedIndices:A,selectedScores:y}=fG(u,h,d,p,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var AG={kernelName:Po,backendName:"webgl",kernelFunc:mG},yG=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${r}), float(${n}), float(index == coords.y))); } - `}},BG=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=_.sizeFromShape(a.shape),c=new WG(l,s,i,o),u=fe({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(c,[u],a.dtype);n.disposeIntermediateTensorInfo(u);let d=[...a.shape,s],p=fe({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},VG={kernelName:Bs,backendName:"webgl",kernelFunc:BG};function Cp(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=kc({inputs:{input:r},backend:n}),s=Cp({inputs:{x:a},backend:n}),i=Ep({inputs:{input:r},backend:n}),o=Cp({inputs:{x:i},backend:n}),l=Xa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return FA({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var jG={kernelName:ol,backendName:"webgl",kernelFunc:Cp};function C7(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=kc({inputs:{input:r},backend:n}),s=C7({inputs:{x:a},backend:n}),i=Ep({inputs:{input:r},backend:n}),o=Cp({inputs:{x:i},backend:n}),l=Xa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return FA({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var UG={kernelName:Ho,backendName:"webgl",kernelFunc:C7};function HG(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return MA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=MA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=u7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var GG={kernelName:Go,backendName:"webgl",kernelFunc:HG},qG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let r=e.length,a=lt(r),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=` + `}},gG=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=_.sizeFromShape(a.shape),c=new yG(l,s,i,o),u=fe({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(c,[u],a.dtype);n.disposeIntermediateTensorInfo(u);let d=[...a.shape,s],p=fe({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},xG={kernelName:Os,backendName:"webgl",kernelFunc:gG};function Ip(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=xc({inputs:{input:r},backend:n}),s=Ip({inputs:{x:a},backend:n}),i=kp({inputs:{input:r},backend:n}),o=Ip({inputs:{x:i},backend:n}),l=Va({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return _A({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var wG={kernelName:tl,backendName:"webgl",kernelFunc:Ip};function l7(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=xc({inputs:{input:r},backend:n}),s=l7({inputs:{x:a},backend:n}),i=kp({inputs:{input:r},backend:n}),o=Ip({inputs:{x:i},backend:n}),l=Va({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return _A({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var bG={kernelName:Lo,backendName:"webgl",kernelFunc:l7};function _G(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return bA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=bA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=B3({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var vG={kernelName:Wo,backendName:"webgl",kernelFunc:_G},kG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let r=e.length,a=lt(r),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=` int start = ${s}; int end = ${i}; uniform float value; @@ -3444,7 +3444,7 @@ return a / b;`,vG=` setOutput(getX(${o})); } } - `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},XG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let r=e.length,a=lt(r),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=pn("rc",r),l=pn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1; + `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},IG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let r=e.length,a=lt(r),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=hn("rc",r),l=hn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1; if(${c}) { `,r===1?"":`} rc = outputLoc; @@ -3469,7 +3469,7 @@ return a / b;`,vG=` ${p} setOutput(result); } - `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},R7=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new XG(a.shape,s,i):new qG(a.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[a],a.dtype,l)},KG={kernelName:Vs,backendName:"webgl",kernelFunc:R7},ZG=` + `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},u7=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new IG(a.shape,s,i):new kG(a.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[a],a.dtype,l)},SG={kernelName:zs,backendName:"webgl",kernelFunc:u7},NG=` if(a < 0.0 && floor(b) < b){ return NAN; } @@ -3478,7 +3478,7 @@ return a / b;`,vG=` } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); -`,YG=` +`,TG=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); @@ -3492,11 +3492,11 @@ return a / b;`,vG=` result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); - `+_p+` + `+yp+` return result; -`,JG=nn({opSnippet:ZG,packedOpSnippet:YG}),QG={kernelName:js,backendName:"webgl",kernelFunc:JG};function eq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],c=_.parseAxisParam(s,a.shape),u=c,h=E.getAxesPermutation(u,o),d=a;h!=null&&(d=fn({inputs:{x:a},backend:n,attrs:{perm:h}}),u=E.getInnerMostAxes(u.length,o),l.push(d)),E.assertAxesAreInnerMostDims("prod",u,o);let p;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:A,outDtype:y}=mW(d.shape,d.dtype,m,u);p=n.makeTensorInfo(A,y,f)}else{let[m,f]=E.computeOutAndReduceShapes(d.shape,u),A=_.sizeFromShape(f),y=fe({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=Ad(a.dtype),x=$i(y,g,"prod",n);p=fe({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(p);let m=E.expandShapeToKeepDim(p.shape,c);p=fe({inputs:{x:p},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),p}var tq={kernelName:qo,backendName:"webgl",kernelFunc:eq},M7=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=AW(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},nq={kernelName:Mu,backendName:"webgl",kernelFunc:M7},rq="return 1.0 / x;",aq=Xe({opSnippet:rq}),sq={kernelName:Xo,backendName:"webgl",kernelFunc:aq},iq=Nr+` +`,EG=en({opSnippet:NG,packedOpSnippet:TG}),CG={kernelName:Ps,backendName:"webgl",kernelFunc:EG};function RG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],c=_.parseAxisParam(s,a.shape),u=c,h=E.getAxesPermutation(u,o),d=a;h!=null&&(d=dn({inputs:{x:a},backend:n,attrs:{perm:h}}),u=E.getInnerMostAxes(u.length,o),l.push(d)),E.assertAxesAreInnerMostDims("prod",u,o);let p;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:A,outDtype:y}=GL(d.shape,d.dtype,m,u);p=n.makeTensorInfo(A,y,f)}else{let[m,f]=E.computeOutAndReduceShapes(d.shape,u),A=_.sizeFromShape(f),y=fe({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=cd(a.dtype),x=Ti(y,g,"prod",n);p=fe({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(p);let m=E.expandShapeToKeepDim(p.shape,c);p=fe({inputs:{x:p},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),p}var MG={kernelName:Bo,backendName:"webgl",kernelFunc:RG},c7=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=qL(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},FG={kernelName:Su,backendName:"webgl",kernelFunc:c7},$G="return 1.0 / x;",DG=qe({opSnippet:$G}),OG={kernelName:Vo,backendName:"webgl",kernelFunc:DG},zG=br+` return (x < 0.0) ? 0.0 : x; -`,oq=` +`,PG=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -3506,9 +3506,9 @@ return a / b;`,vG=` result.a = isNaN.a ? x.a : result.a; return result; -`,lq=Xe({opSnippet:iq,packedOpSnippet:oq}),uq={kernelName:Hs,backendName:"webgl",kernelFunc:lq},cq=Nr+` +`,LG=qe({opSnippet:zG,packedOpSnippet:PG}),WG={kernelName:Ws,backendName:"webgl",kernelFunc:LG},BG=br+` return (x < 0.0) ? 0.0 : min(6.0, x); -`,hq=` +`,VG=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -3518,7 +3518,7 @@ return a / b;`,vG=` result.a = isNaN.a ? x.a : result.a; return result; -`,dq=Xe({opSnippet:cq,packedOpSnippet:hq}),pq={kernelName:qs,backendName:"webgl",kernelFunc:dq},fq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` +`,jG=qe({opSnippet:BG,packedOpSnippet:VG}),UG={kernelName:Vs,backendName:"webgl",kernelFunc:jG},HG=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); @@ -3551,7 +3551,7 @@ return a / b;`,vG=` setOutput(newValue); } - `}},mq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}},GG=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${c[0]/u[0]}, ${c[1]/u[1]}, @@ -3628,7 +3628,7 @@ return a / b;`,vG=` setOutput(newValue); } - `}};function Aq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new mq(a.shape,l,c,s,i):new fq(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],"float32")}var yq={kernelName:Gs,backendName:"webgl",kernelFunc:Aq},gq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=` + `}};function qG(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new GG(a.shape,l,c,s,i):new HG(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],"float32")}var XG={kernelName:Bs,backendName:"webgl",kernelFunc:qG},KG=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3709,7 +3709,7 @@ return a / b;`,vG=` setOutput(accumulator); } - `}};function xq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new gq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var bq={kernelName:id,backendName:"webgl",kernelFunc:xq},wq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}};function ZG(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new KG(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var YG={kernelName:ed,backendName:"webgl",kernelFunc:ZG},JG=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); @@ -3731,7 +3731,7 @@ return a / b;`,vG=` setOutput(newValue); } - `}};function _q(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=new wq(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],a.dtype)}var vq={kernelName:Fu,backendName:"webgl",kernelFunc:_q},kq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=` + `}};function QG(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=new JG(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],a.dtype)}var eq={kernelName:Nu,backendName:"webgl",kernelFunc:QG},tq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3801,7 +3801,7 @@ return a / b;`,vG=` setOutput(accumulator); } - `}};function Iq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new kq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Sq={kernelName:sd,backendName:"webgl",kernelFunc:Iq},Nq=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` + `}};function nq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new tq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var rq={kernelName:Qh,backendName:"webgl",kernelFunc:nq},aq=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${e[0]} - coord - 1)); @@ -3811,7 +3811,7 @@ return a / b;`,vG=` ${s} coords = getOutputCoords(); setOutput(getX(${a})); } - `}},Tq=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=pn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=lt(n);n===1?this.userCode=` + `}},sq=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=hn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=lt(n);n===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); @@ -3839,7 +3839,7 @@ return a / b;`,vG=` } setOutput(result); } - `;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function c(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function u(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let m=e.map((y,g)=>d(g,p)),f=m.join(","),A=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${A}))`}function d(p,m){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${m[p]} - 1`:`${m[p]}`}}};function Eq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return Vn({inputs:{x:a},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Tq(a.shape,o):new Nq(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var Cq={kernelName:Xs,backendName:"webgl",kernelFunc:Eq},Rq=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],r=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=` + `;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function c(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function u(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let m=e.map((y,g)=>d(g,p)),f=m.join(","),A=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${A}))`}function d(p,m){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${m[p]} - 1`:`${m[p]}`}}};function iq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return Pn({inputs:{x:a},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new sq(a.shape,o):new aq(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var oq={kernelName:js,backendName:"webgl",kernelFunc:iq},lq=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],r=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=` vec3 fill = vec3(${t.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` uniform vec4 params; @@ -3859,7 +3859,7 @@ return a / b;`,vG=` } setOutput(outputValue); } - `}getCustomSetupFunc(e,t,n,r){return(a,s)=>{this.paramsLoc==null&&(this.paramsLoc=a.getUniformLocationNoThrow(s,"params")),a.gl.uniform4f(this.paramsLoc,e,t,n,r)}}},Mq={kernelName:ll,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new Rq(r.shape,s),[c,u]=E.getImageCenter(i,r.shape[1],r.shape[2]),h=l.getCustomSetupFunc(c,u,Math.sin(a),Math.cos(a));return o.runWebGLProgram(l,[r],r.dtype,h)}},Fq=` + `}getCustomSetupFunc(e,t,n,r){return(a,s)=>{this.paramsLoc==null&&(this.paramsLoc=a.getUniformLocationNoThrow(s,"params")),a.gl.uniform4f(this.paramsLoc,e,t,n,r)}}},uq={kernelName:nl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new lq(r.shape,s),[c,u]=E.getImageCenter(i,r.shape[1],r.shape[2]),h=l.getCustomSetupFunc(c,u,Math.sin(a),Math.cos(a));return o.runWebGLProgram(l,[r],r.dtype,h)}},cq=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); @@ -3874,7 +3874,7 @@ return a / b;`,vG=` return base + 1.0; } } -`,$q=Xe({opSnippet:Fq}),Dq={kernelName:Ks,backendName:"webgl",kernelFunc:$q},Oq="return inversesqrt(x);",zq=Xe({opSnippet:Oq,cpuKernelImpl:yW}),Pq={kernelName:Zs,backendName:"webgl",kernelFunc:zq},F7=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=lt(a.length),l=lt(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=` +`,hq=qe({opSnippet:cq}),dq={kernelName:Us,backendName:"webgl",kernelFunc:hq},pq="return inversesqrt(x);",fq=qe({opSnippet:pq,cpuKernelImpl:XL}),mq={kernelName:Hs,backendName:"webgl",kernelFunc:fq},h7=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=lt(a.length),l=lt(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=` ${o} strides = ${o}(${a}); void main() { @@ -3894,7 +3894,7 @@ return a / b;`,vG=` } setOutput(mix(getDefaultValue(), sum, float(found))); } - `}};function Lq(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:h}=E.calculateShapes(s,a,i),d=[h/c,c];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=fe({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),m=fe({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new F7(l,o,p.shape.length,m.shape.length,u,d),y=n.runWebGLProgram(A,[m,p,f],m.dtype),g=fe({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),g}var Wq={kernelName:Zo,backendName:"webgl",kernelFunc:Lq},Bq=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); -`,Hq=Xe({opSnippet:Uq}),Gq={kernelName:Jo,backendName:"webgl",kernelFunc:Hq},qq="return 1.0 / (1.0 + exp(-1.0 * x));",Xq=Xe({opSnippet:qq}),Kq={kernelName:Js,backendName:"webgl",kernelFunc:Xq},Zq=` +`,_q=qe({opSnippet:bq}),vq={kernelName:Go,backendName:"webgl",kernelFunc:_q},kq="return 1.0 / (1.0 + exp(-1.0 * x));",Iq=qe({opSnippet:kq}),Sq={kernelName:qs,backendName:"webgl",kernelFunc:Iq},Nq=` if (isnan(x)) { return 0.0; } return sign(x); -`,Yq=Xe({opSnippet:Zq}),Jq={kernelName:tl,backendName:"webgl",kernelFunc:Yq},Qq=X3+` +`,Tq=qe({opSnippet:Nq}),Eq={kernelName:Ko,backendName:"webgl",kernelFunc:Tq},Cq=S3+` return sin(x); -`,eX=Xe({opSnippet:Qq}),tX={kernelName:Ys,backendName:"webgl",kernelFunc:eX},nX=` +`,Rq=qe({opSnippet:Cq}),Mq={kernelName:Gs,backendName:"webgl",kernelFunc:Rq},Fq=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; -`,rX=Xe({opSnippet:nX}),aX={kernelName:el,backendName:"webgl",kernelFunc:rX},sX=` +`,$q=qe({opSnippet:Fq}),Dq={kernelName:Xo,backendName:"webgl",kernelFunc:$q},Oq=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; @@ -3938,9 +3938,9 @@ return a / b;`,vG=` result = log(exp_x + 1.0); } return result; -`,iX=Xe({opSnippet:sX}),oX={kernelName:nl,backendName:"webgl",kernelFunc:iX},lX=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;_.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;yn.disposeIntermediateTensorInfo(y)),A},uX={kernelName:$u,backendName:"webgl",kernelFunc:lX};function cX(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:a,newShape:s}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(a.dataId)),o=n.readSync(r.dataId),l=Array.from(n.readSync(s.dataId)),[c,u,h]=xW(o,r.shape,r.dtype,i,l);return[n.makeTensorInfo(u,r.dtype,c),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var hX={kernelName:od,backendName:"webgl",kernelFunc:cX};function dX(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,strides:u,outputSize:h}=E.calculateShapes(s,a,o),d=!1,p=new F7(c,l,a.shape.length,s.shape.length,u,[h,1],d),m=n.runWebGLProgram(p,[s,a,i],s.dtype),f=fe({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var pX={kernelName:ld,backendName:"webgl",kernelFunc:dX};function fX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=_.parseAxisParam(i,a.shape)[0],l=E.prepareSplitSize(a,s,o),c=a.shape.length,u=new Array(c).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let m=vc({inputs:{x:a},backend:n,attrs:{begin:u,size:p}});return u[o]+=d,m})}var mX={kernelName:rl,backendName:"webgl",kernelFunc:fX},AX="return sqrt(x);",yX=Xe({opSnippet:AX}),gX={kernelName:Qs,backendName:"webgl",kernelFunc:yX},xX="return x * x;",bX=Xe({opSnippet:xX}),wX={kernelName:Du,backendName:"webgl",kernelFunc:bX},$7="return (a - b) * (a - b);",_X=nn({opSnippet:$7,packedOpSnippet:$7}),vX={kernelName:ni,backendName:"webgl",kernelFunc:_X};function kX({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=Nr+` +`,zq=qe({opSnippet:Oq}),Pq={kernelName:Zo,backendName:"webgl",kernelFunc:zq},Lq=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;_.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;yn.disposeIntermediateTensorInfo(y)),A},Wq={kernelName:Tu,backendName:"webgl",kernelFunc:Lq};function Bq(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:a,newShape:s}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(a.dataId)),o=n.readSync(r.dataId),l=Array.from(n.readSync(s.dataId)),[c,u,h]=ZL(o,r.shape,r.dtype,i,l);return[n.makeTensorInfo(u,r.dtype,c),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var Vq={kernelName:td,backendName:"webgl",kernelFunc:Bq};function jq(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,strides:u,outputSize:h}=E.calculateShapes(s,a,o),d=!1,p=new h7(c,l,a.shape.length,s.shape.length,u,[h,1],d),m=n.runWebGLProgram(p,[s,a,i],s.dtype),f=fe({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var Uq={kernelName:nd,backendName:"webgl",kernelFunc:jq};function Hq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=_.parseAxisParam(i,a.shape)[0],l=E.prepareSplitSize(a,s,o),c=a.shape.length,u=new Array(c).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let m=gc({inputs:{x:a},backend:n,attrs:{begin:u,size:p}});return u[o]+=d,m})}var Gq={kernelName:Yo,backendName:"webgl",kernelFunc:Hq},qq="return sqrt(x);",Xq=qe({opSnippet:qq}),Kq={kernelName:Xs,backendName:"webgl",kernelFunc:Xq},Zq="return x * x;",Yq=qe({opSnippet:Zq}),Jq={kernelName:Eu,backendName:"webgl",kernelFunc:Yq},d7="return (a - b) * (a - b);",Qq=en({opSnippet:d7,packedOpSnippet:d7}),eX={kernelName:Ys,backendName:"webgl",kernelFunc:Qq};function tX({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=br+` return x > 0.0 ? 1.0 : float(${t.alpha}); - `,s=new qa(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var IX={kernelName:$a,backendName:"webgl",kernelFunc:kX},SX=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=lt(n.length),s=lt(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=` + `,s=new Ba(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var nX={kernelName:Ea,backendName:"webgl",kernelFunc:tX},rX=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=lt(n.length),s=lt(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=` ${a} begin = ${a}(${e}); ${a} strides = ${a}(${t}); @@ -3948,15 +3948,15 @@ return a / b;`,vG=` ${s} coords = getOutputCoords(); setOutput(getX(${i})); } - `}};function NX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=un.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=fe({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let w=vc({inputs:{x},backend:n,attrs:{begin:m,size:A}});v=fe({inputs:{x:w},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(w)}else if(g.some(w=>w===0))v=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let w=n.texData.get(x.dataId).values,k=Be(x.shape,x.dtype,w),N=bW(g,k,f,m);v=n.makeTensorInfo(g,x.dtype,N.values)}else{let w=new SX(m,f,g);v=n.runWebGLProgram(w,[x],x.dtype)}let b=fe({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),b}var TX={kernelName:al,backendName:"webgl",kernelFunc:NX},EX="return tan(x);",CX=Xe({opSnippet:EX}),RX={kernelName:ai,backendName:"webgl",kernelFunc:CX},MX=` + `}};function aX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=sn.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=fe({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let b=gc({inputs:{x},backend:n,attrs:{begin:m,size:A}});v=fe({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))v=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let b=n.texData.get(x.dataId).values,k=We(x.shape,x.dtype,b),N=YL(g,k,f,m);v=n.makeTensorInfo(g,x.dtype,N.values)}else{let b=new rX(m,f,g);v=n.runWebGLProgram(b,[x],x.dtype)}let w=fe({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),w}var sX={kernelName:Jo,backendName:"webgl",kernelFunc:aX},iX="return tan(x);",oX=qe({opSnippet:iX}),lX={kernelName:Qs,backendName:"webgl",kernelFunc:oX},uX=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); -`,FX=Xe({opSnippet:MX}),$X={kernelName:si,backendName:"webgl",kernelFunc:FX},OX=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a5){let o=n.readSync(a.dataId).map(u=>_.decodeString(u)),l=Be(a.shape,a.dtype,o),c=_W(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new OX(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var zX={kernelName:Fa,backendName:"webgl",kernelFunc:D7};function PX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,c]=vW(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var LX={kernelName:sl,backendName:"webgl",kernelFunc:PX},WX=class{constructor(e,t,n,r,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(r){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=` + `}};function dX(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a5){let o=n.readSync(a.dataId).map(u=>_.decodeString(u)),l=We(a.shape,a.dtype,o),c=QL(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new pX(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var fX={kernelName:Ta,backendName:"webgl",kernelFunc:p7};function mX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,c]=eW(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var AX={kernelName:Qo,backendName:"webgl",kernelFunc:mX},yX=class{constructor(e,t,n,r,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(r){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=` float mapCoord(float outCoord, float len) { float inCoord = outCoord; if(${o} == 2) { @@ -4068,7 +4068,7 @@ return a / b;`,vG=` } setOutput(outputValue); } - `}};function BX(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=r,[u,h,d,p]=a.shape,[m,f]=c!=null?c:[h,d],A=[u,m,f,p],y=new WX(h,d,i,o,l,A);return n.runWebGLProgram(y,[a,s],"float32")}var VX={kernelName:ud,backendName:"webgl",kernelFunc:BX};function jX(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;$l(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=kW(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var UX={kernelName:cd,backendName:"webgl",kernelFunc:jX};function HX(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],c=new Array(o-1),u=0;for(let f=0;fn.disposeIntermediateTensorInfo(f)),m}var GX={kernelName:il,backendName:"webgl",kernelFunc:HX},qX=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,h=` + `}};function gX(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=r,[u,h,d,p]=a.shape,[m,f]=c!=null?c:[h,d],A=[u,m,f,p],y=new yX(h,d,i,o,l,A);return n.runWebGLProgram(y,[a,s],"float32")}var xX={kernelName:rd,backendName:"webgl",kernelFunc:gX};function wX(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;Tl(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=tW(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var bX={kernelName:ad,backendName:"webgl",kernelFunc:wX};function _X(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],c=new Array(o-1),u=0;for(let f=0;fn.disposeIntermediateTensorInfo(f)),m}var vX={kernelName:el,backendName:"webgl",kernelFunc:_X},kX=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,h=` sumValue += dot(values, segFilter); `,d="";a%n>0&&(d=` if (inIdx < 0 || inIdx >= ${a}) { @@ -4174,26 +4174,26 @@ return a / b;`,vG=` } setOutput(${l}); } - `}};function XX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],c=0,u=E.getAxesPermutation([c],o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),l.push(h),c=E.getInnerMostAxes(1,o)[0]);let d=E.segment_util.computeOutShape(h.shape,c,i),p=_.sizeFromShape([h.shape[c]]),m=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(m);let f=Ad(a.dtype),A=(v,b,w,k,N)=>{let C=v.shape[0],F=v.shape[1],O=E.segment_util.segOpComputeOptimalWindowSize(F,N),L={windowSize:O,inSize:F,batchSize:C,numSegments:N},V=new qX(L,b),j=n.compileAndRun(V,[v,w],k);if(l.push(j),j.shape[1]===N)return j;let U=M7({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),X=D7({inputs:{x:U},backend:n,attrs:{reps:[F/O]}});return l.push(U),l.push(X),A(j,b,X,k,N)},y=A(m,"unsortedSegmentSum",s,f,i),g=fe({inputs:{x:y},backend:n,attrs:{shape:d}}),x=g;if(u!=null){l.push(g);let v=E.getUndoAxesPermutation(u);x=fn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var KX={kernelName:Ou,backendName:"webgl",kernelFunc:XX},ZX=[zH,WH,_B,kB,NB,CB,MB,DB,zB,LB,jB,HB,XB,YB,aV,eV,oV,hV,uV,mV,yV,xV,vV,CV,MV,PV,WV,UV,qV,rB,JV,lj,cj,nj,fj,Aj,dj,xj,_j,Ij,Nj,Ej,Mj,Pj,Wj,$j,jj,Gj,Xj,Jj,nU,iU,uU,cU,hU,pU,mU,yU,xU,wU,IU,EU,RU,FU,OU,WU,UU,XU,nB,ZU,ZV,QU,nH,sH,sB,uH,pH,mH,_H,xH,SH,EH,FH,VH,ZH,XH,eG,nG,aG,GH,iG,lG,dG,AG,bG,TG,cB,CG,FG,OG,LG,$V,VG,UG,GG,KG,QG,oB,tq,nq,DV,kG,sq,pq,uq,dB,yq,bq,vq,Sq,Cq,Mq,Dq,Pq,Wq,jq,Gq,Kq,Jq,tX,aX,TV,SG,oX,uX,hX,pX,mX,gX,wX,vX,IX,TX,IG,xB,RX,$X,zX,LX,VX,bB,UX,GX,KX,jG];for(let e of ZX)ci(e);var Mn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Mn||(Mn={}));var Ic;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(Ic||(Ic={}));var O7;function YX(e){O7=e.wasm.cwrap(oi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function JX(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let N=n.dataIdMap.get(i.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);m=N.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,A=Ic[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=c?s.shape[1]:s.shape[2],x=a.shape[0],v=n.makeOutput([x,y,g],a.dtype),b=n.dataIdMap.get(v.dataId).id,w=new Uint8Array(new Int32Array(a.shape).buffer),k=new Uint8Array(new Int32Array(s.shape).buffer);return O7(d,w,a.shape.length,p,k,s.shape.length,l,c,A,m,f,h||0,b),v}var QX={kernelName:oi,backendName:"wasm",setupFunc:YX,kernelFunc:JX};function mn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return _.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var eK=mn(lo);function An(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,h=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,p=n!=null?n:c.dtype,m=E.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,p);if(_.sizeFromShape(m)===0)return f;let A=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(f.dataId).id,x=()=>r(h,A,c.shape.length,d,y,u.shape.length,Mn[c.dtype],g);if(t&&c.dtype==="float32")return x(),f;let v=E.getBroadcastDims(c.shape,m),b=E.getBroadcastDims(u.shape,m),w=v.every((N,C)=>N===C),k=b.every((N,C)=>N===C);if(w&&k)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var tK=!0,nK=An(Ra,tK),z7;function rK(e){z7=e.wasm.cwrap(ps,null,["array","number","number","number"])}function aK(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(_.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return z7(s,a.length,Mn[r.dtype],i),r}var sK={kernelName:ps,backendName:"wasm",setupFunc:rK,kernelFunc:aK};function Rp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var iK={kernelName:Cs,backendName:"wasm",kernelFunc:Rp},P7;function oK(e){P7=e.wasm.cwrap(ii,null,["number","array","number","number","number","array","number"])}function Mp(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=uK(t.x.shape,r.perm),i=!0;for(let m=0;m=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var cK={kernelName:ii,backendName:"wasm",kernelFunc:Mp,setupFunc:oK};function Ka(e,t,n){let r=e.shape,a=e.shape.length,s=_.parseAxisParam(t,r),i=s,o=E.getAxesPermutation(i,a),l=null,c=!1;if(o!=null){let u=new Array(a);for(let d=0;d`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var vK={kernelName:Ko,backendName:"wasm",kernelFunc:Tr},j7;function kK(e){j7=e.wasm.cwrap(As,null,["number","array","number","number","array","number","number","number","number"])}function IK(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=_.sizeFromShape(m),y=_.sizeFromShape(f),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],b=o?[y,p,h]:[y,h,p],w=Tr({inputs:{x:a},backend:n,attrs:{shape:v}}),k=Tr({inputs:{x:s},backend:n,attrs:{shape:b}}),N=n.dataIdMap.get(w.dataId).id,C=n.dataIdMap.get(k.dataId).id,F=i?w.shape[2]:w.shape[1],O=o?k.shape[1]:k.shape[2],L=Math.max(A,y),V=n.makeOutput([L,F,O],w.dtype),j=n.dataIdMap.get(V.dataId).id,U=new Uint8Array(new Int32Array(w.shape).buffer),X=new Uint8Array(new Int32Array(k.shape).buffer);return j7(N,U,w.shape.length,C,X,k.shape.length,i,o,j),n.disposeData(w.dataId),n.disposeData(k.dataId),V.shape=x,V}var SK={kernelName:As,backendName:"wasm",setupFunc:kK,kernelFunc:IK};function Fp(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var NK={kernelName:ys,backendName:"wasm",kernelFunc:Fp},TK=mn(gs),U7;function EK(e){U7=e.wasm.cwrap(Ma,null,["number","number","number","number"])}function CK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(l.dataId).id;return U7(o,s,i,c),l}var RK={kernelName:Ma,backendName:"wasm",setupFunc:EK,kernelFunc:CK};function H7(e){let{inputs:t,backend:n}=e,r=_.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=E.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>_.sizeFromShape(p.shape)>0);if(s.length===1)return Rp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(_.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(E.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(x=>{let v=_.sizeFromShape(x.shape.slice(r));return Tr({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));a=E.computeOutShape(p.map(x=>x.shape),1);let f=p[0].shape[0]===1,A=nA(m,a,t[0].dtype,f),y=E.computeOutShape(s.map(x=>x.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=E.fromStringArrayToUint8(A),p.forEach(x=>n.disposeData(x.dataId)),i}let l=_.sizeFromShape(s[0].shape.slice(0,r)),c=0,u=s.map(p=>{let m=_.sizeFromShape(p.shape.slice(r));return c+=m,m}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p`cumsum does not support ${a.dtype} tensors in the WASM backend`);let c=E.getAxesPermutation([s],l),u=a;c!==null&&(u=Mp({inputs:{x:a},attrs:{perm:c},backend:n}));let h=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(u.shape,u.dtype),p=u.shape[h],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;K7(m,i?1:0,o?1:0,p,f,Mn[a.dtype]);let A=d;if(c!==null){let y=E.getUndoAxesPermutation(c);A=Mp({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return A}var HK={kernelName:_s,backendName:"wasm",setupFunc:jK,kernelFunc:UK},Z7;function GK(e){Z7=e.wasm.cwrap(_o,null,["number","number","number","array","number","array","array","number","number"])}function qK(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=t.makeOutput(m,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(_.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(_.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return Z7(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,x,m.length,v),f}var XK={kernelName:_o,backendName:"wasm",setupFunc:GK,kernelFunc:qK},Y7;function KK(e){Y7=e.wasm.cwrap(vs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ZK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h}=n,d=c==null?[1,1]:c,p=E.computeConv2DInfo(a.shape,s.shape,l,d,u,h,!0),m=p.filterHeight,f=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,x=p.padInfo.left,v=p.dilationHeight,b=p.dilationWidth,w=p.strideHeight,k=p.strideWidth,N=p.inChannels,C=p.outChannels,F=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let O=r.makeOutput(p.outShape,"float32"),L=r.dataIdMap.get(O.dataId).id;return Y7(i,a.shape[0],a.shape[1],a.shape[2],o,m,f,A,y,g,x,F,v,b,w,k,N,C,L),O}var YK={kernelName:vs,backendName:"wasm",setupFunc:KK,kernelFunc:ZK},JK=!1,QK=An(Io,JK,"bool"),eZ=mn(Is);function DA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Tr({inputs:{x:a},backend:r,attrs:{shape:o}})}var tZ={kernelName:So,backendName:"wasm",kernelFunc:DA};function nZ(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var rZ={kernelName:Nu,backendName:"wasm",kernelFunc:nZ},J7;function aZ(e){J7=e.wasm.cwrap(To,null,["number","number","number","number","number","number"])}function sZ(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,c,u]=r.shape;return J7(s,o,l,c,u,i),a}var iZ={kernelName:To,backendName:"wasm",kernelFunc:sZ,setupFunc:aZ},oZ=mn(Ss),lZ=!1,uZ=An(Ns,lZ),Q7;function cZ(e){Q7=e.wasm.cwrap(Ts,null,["number","number","number","number","number","number","number"])}function hZ(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(_.sizeFromShape(s.shape)===0)return f;let A=t.dataIdMap.get(f.dataId).id;return Q7(u,h,d,p,m,a,A),f}var dZ={kernelName:Ts,backendName:"wasm",setupFunc:cZ,kernelFunc:hZ},ev;function pZ(e){ev=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d),A=Ic[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let b=f.filterHeight,w=f.filterWidth,k=f.padInfo.top,N=f.padInfo.right,C=f.padInfo.bottom,F=f.padInfo.left,O=f.dilationHeight,L=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return ev(y,G,ee,Y,g,b,w,v,k,N,C,F,X,O,L,V,j,U,x,A,ie,m||0,te),ae}var mZ={kernelName:li,backendName:"wasm",setupFunc:pZ,kernelFunc:fZ},tv;function AZ(e){tv=e.wasm.cwrap(ui,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function yZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d,!0),A=Ic[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let b=f.filterHeight,w=f.filterWidth,k=f.padInfo.top,N=f.padInfo.right,C=f.padInfo.bottom,F=f.padInfo.left,O=f.dilationHeight,L=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return tv(y,G,ee,Y,g,b,w,v,k,N,C,F,X,O,L,V,j,U,x,A,ie,m||0,te),ae}var gZ={kernelName:ui,backendName:"wasm",setupFunc:AZ,kernelFunc:yZ},nv;function xZ(e){nv=e.wasm.cwrap(Co,null,["number","number","number","number","number","number","array","number"])}function bZ(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=Qf.prepareAndValidate(r,a),c=t.makeOutput(s,r.dtype);if(i===0)return c;let u=a.shape,h=u[u.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return nv(d,Mn[r.dtype],p,i,h,o,m,f),c}var wZ={kernelName:Co,backendName:"wasm",setupFunc:xZ,kernelFunc:bZ},rv;function _Z(e){rv=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function vZ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=_.parseAxisParam(i,a.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=Tr({inputs:{x:a},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=_.sizeFromShape(s.shape),d=Tr({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),p=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],m=t.makeOutput(p,a.dtype);if(_.sizeFromShape(a.shape)===0)return m;let f=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(_.computeStrides(u.shape)).buffer),v=new Uint8Array(new Int32Array(_.computeStrides(p)).buffer);return rv(A,Mn[a.dtype],x,f,y,c.batchSize,v,g),t.disposeData(u.dataId),t.disposeData(d.dataId),m.shape=c.outputShape,m}var kZ={kernelName:Eo,backendName:"wasm",setupFunc:_Z,kernelFunc:vZ},IZ=!1,SZ=An(Ro,IZ,"bool"),NZ=!1,TZ=An(Es,NZ,"bool"),av;function EZ(e){av=e.wasm.cwrap(Rs,null,["number","number","number"])}function CZ(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(_.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;av(a,n,i)}return s}var RZ={kernelName:Rs,backendName:"wasm",setupFunc:EZ,kernelFunc:CZ},MZ=!1,FZ=An(Do,MZ,"bool"),$Z=!1,DZ=An(Oo,$Z,"bool"),OZ=mn(Ms),zZ=!1,PZ=An(Po,zZ,"bool"),sv;function LZ(e){sv=e.wasm.cwrap(Fs,null,["number, number, number"])}function WZ(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:d}=Ka(i,a,t);if(d){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let p=l.shape.length;E.assertAxesAreInnerMostDims("max",u,p);let[m,f]=E.computeOutAndReduceShapes(l.shape,u),A=_.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(_.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;sv(o,A,g)}if(d&&t.disposeData(c.dataId),s){let g=E.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var BZ={kernelName:Fs,backendName:"wasm",setupFunc:LZ,kernelFunc:WZ},VZ=!1,jZ=An($s,VZ),iv;function UZ(e){iv=e.wasm.cwrap(Ds,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function HZ(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,x=u.strideHeight,v=u.strideWidth,b=u.inChannels,w=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let k=r.makeOutput(u.outShape,"float32"),N=r.dataIdMap.get(k.dataId).id;return iv(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,m,f,A,y,g,x,v,b,w,N),k}var GZ={kernelName:Ds,backendName:"wasm",setupFunc:UZ,kernelFunc:HZ},ov;function qZ(e){ov=e.wasm.cwrap(Os,null,["number, number, number"])}function XZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t),m=h;if(p){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=c;c.dtype!=="float32"&&(g=Fp({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let x=t.makeOutput(f,"float32");if(_.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;ov(l,y,v)}if(p&&t.disposeData(u.dataId),s){let v=E.expandShapeToKeepDim(x.shape,d);x.shape=v}return c.dtype!=="float32"&&t.disposeData(g.dataId),x}var KZ={kernelName:Os,backendName:"wasm",setupFunc:qZ,kernelFunc:XZ},lv;function ZZ(e){lv=e.wasm.cwrap(zs,null,["number, number, number"])}function YZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t);if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x)}let m=c.shape.length;E.assertAxesAreInnerMostDims("min",h,m);let[f,A]=E.computeOutAndReduceShapes(c.shape,h),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;lv(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var JZ={kernelName:zs,backendName:"wasm",setupFunc:ZZ,kernelFunc:YZ},QZ=!1,eY=An(Ps,QZ),OA;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(OA||(OA={}));var uv;function tY(e){uv=e.wasm.cwrap(Ls,null,["number","array","number","number","array","array","number","number"])}function nY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,mode:a}}=e,s=r.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(m=>m[0]),h=r.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return uv(i,c,t.shape.length,Mn[t.dtype],d,p,OA[a],l),o}var rY={kernelName:Ls,backendName:"wasm",kernelFunc:nY,setupFunc:tY},aY=!0,sY=An(Ws,aY),iY=mn(Wo);function zA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var cv;function oY(e){cv=e.wasm.cwrap(Vo,"number",["number","number","number","number","number"])}function lY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,h=cv(c,u,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:m,pValidOutputs:f}=zA(t,h);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([p],"int32",d)}var uY={kernelName:Vo,backendName:"wasm",setupFunc:oY,kernelFunc:lY},hv;function cY(e){hv=e.wasm.cwrap(jo,"number",["number","number","number","number","number","bool"])}function hY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=hv(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=zA(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var dY={kernelName:jo,backendName:"wasm",setupFunc:cY,kernelFunc:hY},dv;function pY(e){dv=e.wasm.cwrap(Uo,"number",["number","number","number","number","number","number"])}function fY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=dv(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=zA(t,d);t.wasm._free(A);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([m],"float32",f);return[y,g]}var mY={kernelName:Uo,backendName:"wasm",setupFunc:pY,kernelFunc:fY},AY=!1,yY=An(Bo,AY,"bool"),pv;function gY(e){pv=e.wasm.cwrap(Bs,null,["number","number","number","number","number"])}function xY(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(a.dataId).id;return pv(u,s,i,o,c),l}var bY={kernelName:Bs,backendName:"wasm",setupFunc:gY,kernelFunc:xY};function wY(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var _Y={kernelName:Ho,backendName:"wasm",kernelFunc:wY};function vY(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return DA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=DA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=H7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeData(u.dataId)),c}var kY={kernelName:Go,backendName:"wasm",kernelFunc:vY},fv;function IY(e){fv=e.wasm.cwrap(Vs,null,["number","array","number","number","array","array","number","number"])}function SY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(m=>m[0]),h=r.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return fv(i,c,t.shape.length,Mn[t.dtype],d,p,a,l),o}var NY={kernelName:Vs,backendName:"wasm",kernelFunc:SY,setupFunc:IY},TY=!1,EY=An(js,TY),mv;function CY(e){mv=e.wasm.cwrap(Us,null,["number","number","number"])}function RY(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return mv(s,i,l),o}var MY={kernelName:Us,backendName:"wasm",setupFunc:CY,kernelFunc:RY},Av;function FY(e){Av=e.wasm.cwrap(qo,null,["number","number","number","number"])}function $Y(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t),m=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;Av(l,y,Mn[g.dtype],x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var DY={kernelName:qo,backendName:"wasm",setupFunc:FY,kernelFunc:$Y},OY=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=sA(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},zY={kernelName:Mu,backendName:"wasm",kernelFunc:OY},PY=!0,LY=An(ks,PY),WY=mn(Hs),BY=mn(qs),yv;function VY(e){yv=e.wasm.cwrap(Gs,null,["number","number","number","number","number","number","number","number","number","number"])}function jY(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,[u,h,d,p]=a.shape,m=[u,l,c,p],f=t.dataIdMap.get(a.dataId),A;f.dtype!=="float32"&&(A=Fp({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(A.dataId));let y=f.id,g=t.makeOutput(m,"float32");if(_.sizeFromShape(a.shape)===0)return g;let x=t.dataIdMap.get(g.dataId).id;return yv(y,u,h,d,p,l,c,s?1:0,i?1:0,x),A!=null&&t.disposeData(A.dataId),g}var UY={kernelName:Gs,backendName:"wasm",setupFunc:VY,kernelFunc:jY},gv;function HY(e){gv=e.wasm.cwrap(Xs,null,["number","array","number","array","number","number"])}function GY(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=_.parseAxisParam(s,a.shape);if(a.shape.length===0)return Rp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);gv(l,u,i.length,h,a.shape.length,c);let d=Tr({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var qY={kernelName:Xs,backendName:"wasm",kernelFunc:GY,setupFunc:HY},xv;function XY(e){xv=e.wasm.cwrap(ll,null,["number","number","number","number","number","number","number","number","array","number","number"])}function KY(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(l.dataId).id,[h,d,p,m]=a.shape,[f,A]=E.getImageCenter(o,d,p),y=i===0,g=255,x=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],v=new Uint8Array(new Int32Array(x).buffer);return xv(c,h,d,p,m,s,f,A,v,x.length,u),l}var ZY={kernelName:ll,backendName:"wasm",kernelFunc:KY,setupFunc:XY},YY=mn(Ks),JY=mn(Zs),bv;function QY(e){bv=e.wasm.cwrap(Zo,null,["number","number","number","number","number","number","array","number","number"])}function eJ(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(_.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=em.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return bv(p,m,Mn[s.dtype],l,c,u,f,d,A),o}var tJ={kernelName:Zo,backendName:"wasm",setupFunc:QY,kernelFunc:eJ},wv;function nJ(e){wv=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function rJ(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(c.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:_.sizeFromShape(a.shape.slice(1));return wv(i,o,l,p,u),c}var aJ={kernelName:Yo,backendName:"wasm",kernelFunc:rJ,setupFunc:nJ},_v;function sJ(e){_v=e.wasm.cwrap(Js,null,["number","number"])}function iJ(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return _.sizeFromShape(a.shape)===0||_v(r,s),a}var oJ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:sJ,kernelFunc:iJ},lJ=mn(Ys);function $p(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=un.parseSliceParams(t,n,r),o=un.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),c=a.makeOutput(i,t.dtype),u=_.computeStrides(t.shape),h=a.dataIdMap.get(c.dataId);if(o){let m=un.computeFlatOffset(s,u);return t.dtype==="string"?h.stringBytes=l.slice(m,m+_.sizeFromShape(i)):a.typedArrayFromHeap(c).set(l.subarray(m,m+_.sizeFromShape(i))),c}if(t.dtype==="string"){let m=lp(l,s,i,t.shape,t.dtype);return h.stringBytes=m,c}let d=a.typedArrayFromHeap(c),p=t.shape.length;if(p===2)uJ(l,u[0],d,s,i);else if(p===3)cJ(l,u[0],u[1],d,s,i);else if(p===4)hJ(l,u[0],u[1],u[2],d,s,i);else{let m=lp(l,s,i,t.shape,t.dtype);d.set(m)}return c}function uJ(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let c=i;c{let d=[...u];d[o]=h;let p=$p({inputs:{x:a},attrs:{begin:c,size:d},backend:r});return c[o]+=h,p})}var yJ={kernelName:rl,backendName:"wasm",kernelFunc:AJ},gJ=mn(Qs),xJ=mn(Du),bJ=!0,wJ=An(ni,bJ),kv;function _J(e){kv=e.wasm.cwrap($a,null,["number","number","number"])}function vJ(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return kv(i,a,l),o}var kJ={kernelName:$a,backendName:"wasm",setupFunc:_J,kernelFunc:vJ},Iv;function IJ(e){Iv=e.wasm.cwrap(al,null,["number","array","number","array","array","array","array","array","number","number"])}function SJ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,p=E.slice_util.maskToAxes(u);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=a.shape.length-s.length,f=E.slice_util.maskToAxes(h),A=a.shape.slice();f.forEach(F=>{s[F]=0,i[F]=1,A.splice(F,0,1)});let y=Tr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:x,strides:v}=E.slice_util.getNormalizedAxes(y.shape,p,m,s,i,o,l,c,u);s=g,i=x,o=v;let b=E.slice_util.maskToAxes(d);b.forEach(F=>{i[F]=s[F]+1,o[F]=1});let w=E.slice_util.computeOutShape(s,i,o),k=w.filter((F,O)=>b.indexOf(O)===-1);if(o.every(F=>F===1)){let F=$p({inputs:{x:y},attrs:{begin:s,size:w},backend:t});t.disposeData(y.dataId);let O=Tr({inputs:{x:F},attrs:{shape:k},backend:t});return t.disposeData(F.dataId),O}let N=t.makeOutput(k,"float32");if(!k.some(F=>F===0)){let F=t.dataIdMap.get(y.dataId).id,O=new Uint8Array(new Int32Array(_.computeStrides(y.shape)).buffer),L=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(k).buffer),X=new Uint8Array(new Int32Array(_.computeStrides(k)).buffer),G=t.dataIdMap.get(N.dataId).id;Iv(F,O,y.shape.length,L,V,j,U,X,k.length,G)}t.disposeData(y.dataId);let C=Tr({inputs:{x:N},attrs:{shape:k},backend:t});return t.disposeData(N.dataId),C}var NJ={kernelName:al,backendName:"wasm",setupFunc:IJ,kernelFunc:SJ},TJ=!0,EJ=An(ri,TJ),Sv;function CJ(e){Sv=e.wasm.cwrap(ei,null,["number, number, number"])}function RJ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t),m=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;Sv(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var MJ={kernelName:ei,backendName:"wasm",setupFunc:CJ,kernelFunc:RJ},FJ=mn(ai),$J=mn(si),Nv;function DJ(e){Nv=e.wasm.cwrap(Fa,null,["number","array","number","array","number","number"])}function OJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let c=t.makeOutput(l,r.dtype),u=t.dataIdMap.get(c.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return Tv(i,o,r.shape.length,Mn[r.dtype],a,s,u,d),[c,h]},WJ={kernelName:sl,backendName:"wasm",setupFunc:PJ,kernelFunc:LJ};function BJ(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),c=0;for(let p=0;p({dataId:p,dtype:m,shape:l}))}var VJ={kernelName:il,backendName:"wasm",kernelFunc:BJ};function jJ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var UJ={kernelName:ol,backendName:"wasm",kernelFunc:jJ},HJ=[eK,nK,sK,pK,AK,xK,_K,SK,NK,TK,RK,MK,DK,PK,LK,VK,HK,XK,YK,QK,eZ,tZ,rZ,iZ,oZ,uZ,QX,dZ,mZ,gZ,wZ,kZ,SZ,TZ,iK,RZ,FZ,DZ,OZ,PZ,BZ,jZ,GZ,KZ,JZ,eY,rY,sY,iY,uY,dY,mY,yY,bY,_Y,kY,NY,EY,MY,DY,zY,LY,WY,BY,vK,UY,qY,ZY,JY,YY,tJ,aJ,oJ,lJ,dJ,mJ,yJ,gJ,xJ,wJ,kJ,NJ,EJ,MJ,FJ,$J,zJ,WJ,cK,VJ,UJ];for(let e of HJ)ci(e);var PA=J();PA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));PA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(PA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Ev=so(b9()),GJ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',qJ=so(w9()),Cv=class extends gu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Ch(this,ca())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let c=t;this.dataIdMap.set(e,{id:s,stringBytes:c,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=_.sizeFromShape(n),o=i*_.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+_.sizeFromShape(r)*_.bytesPerElement(n));return XJ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=_.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=_.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function KJ(e){return(t,n)=>(_.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance,s.module)})})}),{})}function Rv(e,t,n){if(Dp!=null)return Dp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),Sc!=null&&Sc[r]!=null?Sc[r]:n+r}async function ZJ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let c=GJ,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return o.endsWith(".wasm")?Rv(e,t,Nc!=null?Nc:l):l+o},LA&&(a.instantiateWasm=KJ(Rv(e,t,Nc!=null?Nc:"")));let s=!1;a.onAbort=()=>{s||Tc||(Tc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Dp==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Ev.default.toString()],{type:"text/javascript"}),i=(0,Ev.default)(a)):i=(0,qJ.default)(a),i.then(o=>{s=!0,Tc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function XJ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var YJ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Dp=null,Nc=null,Sc={},Tc=!1,LA=!1;function JJ(e,t=!1){if(im("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Tc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Dp=e,LA=t}function QJ(e,t=!1){if(Tc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Nc=e;else{Sc=e;let n=YJ.filter(r=>Sc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}LA=t}var Mv="3.5.0",eQ=2;yl("wasm",async()=>{let{wasm:e}=await ZJ();return new Cv(e)},eQ);Z().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),lm(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),um(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),vd(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Xu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),Ai(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),cm(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),H(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),H(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),hm(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),dm(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),pm(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),fm(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),mm(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Zu(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Yu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),xi(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),xl(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),xm(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),En(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Pe&&(e=[e]),ot([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Id(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),Sd(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ha(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),Ju(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),Nd(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Td(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),_m(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),wl(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),vm(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),km(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),Ae(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),aw(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),_l(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Ba(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),Im(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),er(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),Qt(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),Sm(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),lc(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),vl(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),_d(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),bi(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ja(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),pr(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),Nl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),Hd(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),iw(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),ow(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),Tm(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),ec(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),wi(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Cd(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Em(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),cw(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Fd(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Mm(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),zn(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),Rd(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),fr(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),tc(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),$d(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),fw(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ve(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),nc(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Rn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Ur(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),It(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),kl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),Il(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),$m(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),Dm(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),kt(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Kd(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),ki(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),ml(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Ln(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),da(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),yw(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),pa(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),ac(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),Od(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),Pm(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),Hr(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),Pd(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Dw(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Ow(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Wn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),uc(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Lm(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),Ld(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Wd(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Wm(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),Tn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),Bm(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Bd(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),Vd(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Re(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),oc(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),_i(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),rc(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),Lt(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),en(this)};Z().prototype.square=function(){return this.throwIfDisposed(),it(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Gd(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),Ua(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Pe?[this,e]:[this,...e];return cn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Tl(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),jm(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Te(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),Um(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),gi(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Va(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),ge(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),ge(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),ge(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),Hm(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),Je(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),Xd(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Gm(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),mr(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),Cn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),He(this)};var Fv={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Tl(ge(n,"float32"),-1))}}},tQ={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=it(ge(n,"float32")),a=en(ye(ve(1),r));return kt(Ae(e,a))}}}},nQ={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=en(ye(it(ge(n,"float32")),1));return Ae(e,r)}}}},rQ={kernelName:Ra,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Te(s,i)),H(s,r.shape)}}}},aQ={kernelName:ps,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},sQ={kernelName:fs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},iQ={kernelName:wu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},oQ={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,en(ye(ve(1),it(ge(n,"float32")))))}}},lQ={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=en(se(ve(1),it(ge(n,"float32"))));return Ae(e,r)}}}},uQ={kernelName:go,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=se(it(n),it(r)),i=z(e,Ae(r,s)),o=Pt(n.shape,a);return o.length>0&&(i=Te(i,o)),H(i,n.shape)},b:()=>{let s=se(it(n),it(r)),i=kt(z(e,Ae(n,s))),o=Pt(r.shape,a);return o.length>0&&(i=Te(i,o)),H(i,r.shape)}}}},cQ={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,se(it(ge(n,"float32")),1))}}},hQ={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ye(ve(1),it(ge(n,"float32"))))}}};function dQ(e,t,n,r,a,s){let i=R(e,"dy","avgPool3dGrad"),o=R(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&M(Ut(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:c},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=$.runKernel(Dh,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var pQ=D({avgPool3dGrad_:dQ}),fQ={kernelName:_u,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>pQ(e,r,a,s,i,o)}}};function mQ(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");M(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel($h,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var AQ=D({avgPoolGrad_:mQ}),yQ={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>AQ(e,r,a,s,i)}}},gQ={kernelName:As,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ve(e,a,!1,!0),b:()=>Ve(r,e,!0,!1)}:!s&&i?{a:()=>Ve(e,a,!1,!1),b:()=>Ve(e,r,!0,!1)}:s&&!i?{a:()=>Ve(a,e,!1,!0),b:()=>Ve(r,e,!1,!1)}:{a:()=>Ve(a,e,!0,!0),b:()=>Ve(e,r,!0,!0)}}},xQ={kernelName:vu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>rc(e,r,a)}}},bQ={kernelName:Yx,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l1&&o.push(l);return{x:()=>Te(e,o,!0)}}},wQ={kernelName:ys,gradFunc:e=>({x:()=>e.clone()})},_Q={kernelName:gs,gradFunc:e=>({x:()=>He(e)})},vQ={kernelName:Ma,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>Cn(fr(ja(r,a),wi(r,s)),e,He(e))}}},kQ={kernelName:ku,inputsToSave:["x"],gradFunc:Fv.gradFunc},IQ={kernelName:xo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=hr(a,t[0].shape)[0],i=r.map(o=>o[s]);return Lt(e,i,s).map(o=>()=>o)}},SQ={kernelName:xs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return M(Wa(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>bm(r.shape,e,a,i,o,l),filter:()=>Zm(r,e,a.shape,i,o,l)}}},NQ={kernelName:bs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>ha(e,a,s,i,o,1,l),filter:()=>Zm(e,r,a.shape,s,i,o,l)}}};function TQ(e,t,n,r,a){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),M(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),M(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(Lh,o,l)}var EQ=D({conv3DBackpropFilter_:TQ}),CQ={kernelName:Iu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;M(Wa(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>tw(i.shape,e,o,a,s),filter:()=>EQ(i,e,o.shape,a,s)}}},RQ={kernelName:ws,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(kt(Bd(ge(n,"float32"))),e)}}},MQ={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Vd(ge(n,"float32")),e)}}},FQ={kernelName:_s,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=pw([a],r.rank),l=Td(e,a,s,!i);return o!=null&&(l=Je(l,o)),l}}}},$Q={kernelName:vs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;M(Wa(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),M(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),M(Vr(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&M(Ut(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Tw(l.shape,e,c,a,s,r,i),filter:()=>Nw(l,e,c.shape,a,s,r,i)}}},DQ={kernelName:Su,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(Hh,s,n),filter:()=>$.runKernel(Gh,i,n)}}},OQ={kernelName:vo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(Xh,r)}}},zQ={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=z(er(kt(it(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,r)}}},PQ={kernelName:Is,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},LQ={kernelName:So,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},WQ={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,er(n))}}},BQ={kernelName:Ss,gradFunc:e=>({x:()=>He(e)})},VQ={kernelName:Ns,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Ae(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=z(e,ge(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=H(Te(s,i),r.shape));let o=it(r);return kt(Ae(s,ge(o,"float32")))}}}},jQ={kernelName:Ts,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?ve(1):o,c=Pt(s.shape,a.shape),u=[];if(s.rank===1){for(let f=0;fs.rank===1?H(z(z(e,Va(H(p,[1,1,1,s.shape[0]]),u)),l),a.shape):H(z(z(e,p),l),a.shape),mean:()=>{let f=z(z(p,ve(-1)),d);return s.rank===1&&(f=Te(f,c)),H(f,s.shape)},variance:()=>{let f=z(z(m,h),d);return s.rank===1&&(f=Te(f,c)),H(f,s.shape)},scale:()=>{let f=z(h,p),A=z(e,f);return s.rank===1&&(A=Te(A,c)),H(A,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Te(f,c)),H(f,s.shape)}}}},UQ={kernelName:Eo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=hr(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,c=o.slice(0,i),u=c.length,h=o.slice(s,o.length).slice(1),d=h.length,p=$v(0,u),m=$v(u+1,u+1+d),f=Dv([c,[l],h]),A=H(e,f),y=H(a,[l]),g=Dv([[u],p,m]),x=Je(A,g),v=Gm(x,y,r.shape[i]),b=Rm(g);return v=Je(v,b),v},indices:()=>a}}};function $v(e,t){let n=[];for(let r=e;r{let[n,r]=t;return{a:()=>He(n),b:()=>He(r)}}},GQ={kernelName:Cs,gradFunc:e=>({x:()=>ge(e,"float32")})},qQ={kernelName:Mo,gradFunc:e=>({x:()=>He(e)})},XQ={kernelName:Fo,gradFunc:e=>({x:()=>He(e)})},KQ={kernelName:$o,gradFunc:e=>({x:()=>He(e)})},ZQ={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=pr(r,0);return{x:()=>Cn(s,e,z(e,a))}}},YQ={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,se(n,1))}}},JQ={kernelName:Ms,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ge(n,"float32"))}}},QQ={kernelName:Jx,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=er(r);return ye(e,z(Te(e,a,s),i))}}}};function eee(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(Qh,o,l)}var tee=D({localResponseNormalizationBackprop_:eee}),nee={kernelName:Cu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>tee(r,a,e,s,i,o,l)}}};function Ov(e,t,n,r){return t.rankz(e,ge(Ba(n,t),e.dtype))}}var zv={kernelName:Fs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=hr(a,s.shape),l=Ov(e,i,s,o);return{x:()=>l.x()}}},ree={kernelName:$s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>z(e,ge(ja(n,r),"float32")),b:()=>z(e,ge(Cd(n,r),"float32"))}}};function aee(e,t,n,r,a,s,i){let o=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),c=R(n,"output","maxPool3dGrad"),u=o,h=l,d=c,p=!1;l.rank===4&&(p=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=H(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),M(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),M(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&M(Ut(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:u,input:h,output:d},f={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=$.runKernel(td,m,f);return p?H(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var see=D({maxPool3dGrad_:aee}),iee={kernelName:Ru,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>see(e,r,a,s,i,o,l)}}};function oee(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),c=R(n,"output","maxPoolGrad");M(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),M(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&M(Ut(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(ed,u,h)}var lee=D({maxPoolGrad_:oee}),uee={kernelName:Ds,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>lee(e,r,a,s,i,o)}}},cee={kernelName:Os,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=hr(a,r.shape),i=dw(r.shape,s)[1],o=Et(i);return{x:()=>{let l=r.shape.slice();s.forEach(u=>{l[u]=1});let c=H(e,l);return Ae(z(c,Pn(r.shape,"float32")),o)}}}},hee={kernelName:zs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=hr(a,s.shape),l=Ov(e,i,s,o);return{x:()=>l.x()}}},dee={kernelName:Ps,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>z(e,ge(wi(n,r),"float32")),b:()=>z(e,ge(pr(n,r),"float32"))}}},pee={kernelName:Ls,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},fee={kernelName:Lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Pt(n.shape,a);return s.length>0?H(Te(e,s),n.shape):e},b:()=>{let s=z(e,kt(vl(Ae(n,r)))),i=Pt(r.shape,a);return i.length>0?H(Te(s,i),r.shape):s}}}},mee={kernelName:Ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=z(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=z(e,ge(n,"float32")),i=Pt(r.shape,a);return i.length>0?H(Te(s,i),r.shape):s}}}},Aee={kernelName:Wo,gradFunc:e=>({x:()=>kt(e)})},yee={kernelName:Bs,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Rt(n.shape,"float32")}}},gee={kernelName:Ho,gradFunc:e=>({x:()=>He(e)})},xee={kernelName:Go,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return mr(e,r).map(a=>()=>a)}},Pv={kernelName:Vs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},bee={kernelName:js,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=ft(s.shape,i.shape);return{a:()=>{let l=ge(i,"float32"),c=z(e,z(l,pa(s,ye(l,ve(1))))),u=Pt(s.shape,o);return u.length>0&&(c=Te(c,u)),H(c,s.shape)},b:()=>{let l=pr(s,0),c=Cn(l,zn(s),He(s)),u=z(e,z(a,c)),h=Pt(i.shape,o);return h.length>0&&(u=Te(u,h)),H(u,i.shape)}}}},wee={kernelName:Us,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=pr(n,0);return{x:()=>Cn(a,e,z(e,r)),alpha:()=>{let s=Cn(a,He(e),z(e,n)),i=Pt(r.shape,e.shape);return i.length>0&&(s=Te(s,i)),H(s,r.shape)}}}},_ee={kernelName:ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Ae(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=z(e,ge(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=H(Te(s,i),r.shape));let o=it(r);return kt(Ae(s,ge(o,"float32")))}}}},vee={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,kt(it(n)))}}},kee={kernelName:qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=z(wi(n,6),Tl(n));return{x:()=>z(e,ge(r,"float32"))}}},Iee={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ge(Tl(n),"float32"))}}},See={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},Nee={kernelName:Gs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(id,a,n)}}},Tee={kernelName:Fu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(sd,a,n)}}},Eee={kernelName:Xs,gradFunc:(e,t,n)=>{let{dims:r}=n,a=hr(r,e.shape);return{x:()=>Wn(e,a)}}},Cee={kernelName:Ks,gradFunc:e=>({x:()=>He(e)})},Ree={kernelName:Zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>kt(Ae(e,z(pa(n,1.5),2)))}}},Mee={kernelName:Yo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ge(He(n),"float32"),t:()=>z(e,ge(n,e.dtype)),e:()=>z(e,ge(tc(n),e.dtype))}}},Fee={kernelName:Jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=pr(n,ve(0)),a=ve(Ww),s=ve(Bw),i=z(e,s),o=z(z(e,a),er(ge(n,"float32")));return Cn(r,i,o)}}}},$ee={kernelName:Js,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,ye(ve(1),n)))}}},Dee={kernelName:tl,gradFunc:e=>({x:()=>He(e)})},Oee={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Ju(ge(n,"float32")),e)}}},zee={kernelName:el,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Nd(ge(n,"float32")),e)}}},Pee={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=zb(r,a,s),c=[];for(let u=0;uda(e,c)}}},Lee={kernelName:ti,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=z(e,r);return{logits:()=>ye(i,z(Te(i,[a],s),r))}}},Wee={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Tn(n))}}},Lv={kernelName:$u,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Yu(e,r,a)}}},Wv={kernelName:rl,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>ot(e,r)}}},Bee={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,z(en(ge(n,"float32")),2))}}},Vee={kernelName:Du,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ge(n,"float32"),2))}}},jee={kernelName:ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ve(2);return{a:()=>z(e,z(a,ye(n,r))),b:()=>z(e,z(a,ye(r,n)))}}},Uee={kernelName:$a,gradFunc:e=>({x:()=>He(e)})},Hee={kernelName:ri,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Te(s,i)),H(kt(s),r.shape)}}}},Gee={kernelName:ei,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;hr(s,r.shape).forEach(l=>{a[l]=1});let i=H(e,a),o=z(i,Pn(r.shape,"float32"));return{x:()=>o}}},qee={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,it(Ju(n)))}}},Xee={kernelName:si,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(ye(ve(1),it(n)),e)}}},Kee={kernelName:Fa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=He(r);if(r.rank===1)for(let i=0;i{let r=n,{perm:a}=r,s=Rm(a);return{x:()=>Je(e,s)}}},Yee={kernelName:il,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>cn(e,a)}}},Qee={kernelName:Ou,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Jee(e,n)}}};function Jee(e,t){let n=Ur(t,He(t)),r=bi(e,n),a=ja(t,ve(0,"int32")),s=r.rank-a.rank;for(let o=0;o({x:()=>He(e)})},tte=[Fv,tQ,nQ,rQ,aQ,sQ,iQ,oQ,lQ,uQ,cQ,hQ,fQ,yQ,gQ,xQ,bQ,wQ,_Q,vQ,kQ,IQ,NQ,SQ,CQ,RQ,MQ,FQ,$Q,DQ,_ee,OQ,zQ,PQ,LQ,WQ,VQ,BQ,jQ,UQ,HQ,GQ,qQ,XQ,KQ,ZQ,YQ,JQ,QQ,nee,zv,zv,ree,iee,uee,cee,hee,dee,pee,fee,mee,Aee,yee,gee,xee,Pv,Pv,bee,wee,vee,kee,Iee,See,Nee,Tee,Eee,Cee,Ree,Mee,Fee,$ee,Dee,Oee,zee,Pee,Lee,Wee,Lv,Lv,Wv,Wv,Bee,jee,Vee,Uee,Hee,Gee,qee,Xee,Kee,Zee,Yee,Qee,ete];for(let e of tte)Qx(e);var Bv={};Me(Bv,{maxNorm:()=>nte,minMaxNorm:()=>ste,nonNeg:()=>ate,unitNorm:()=>rte});var WA;function Wt(){return WA==null&&(WA=Ub().epsilon()),WA}function Er(){return"channelsLast"}var ya=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ya.prototype)}},Cr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Cr.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},De=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,De.prototype)}},Vv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Vv.prototype)}};function Di(e,t){if(Array.isArray(e)){let n=[];for(let r=0;rn.toUpperCase())}var Ar={};function BA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function VA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>VA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:VA(r))}}}function Ec(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in Ar)i=Ar[s];else if(i=t[s],i==null)throw new B(`Unknown ${r}: ${e}. This may be due to one of the following reasons: + `}};function IX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],c=0,u=E.getAxesPermutation([c],o),h=a;u!=null&&(h=dn({inputs:{x:a},backend:n,attrs:{perm:u}}),l.push(h),c=E.getInnerMostAxes(1,o)[0]);let d=E.segment_util.computeOutShape(h.shape,c,i),p=_.sizeFromShape([h.shape[c]]),m=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(m);let f=cd(a.dtype),A=(v,w,b,k,N)=>{let C=v.shape[0],F=v.shape[1],O=E.segment_util.segOpComputeOptimalWindowSize(F,N),z={windowSize:O,inSize:F,batchSize:C,numSegments:N},V=new kX(z,w),j=n.compileAndRun(V,[v,b],k);if(l.push(j),j.shape[1]===N)return j;let U=c7({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),X=p7({inputs:{x:U},backend:n,attrs:{reps:[F/O]}});return l.push(U),l.push(X),A(j,w,X,k,N)},y=A(m,"unsortedSegmentSum",s,f,i),g=fe({inputs:{x:y},backend:n,attrs:{shape:d}}),x=g;if(u!=null){l.push(g);let v=E.getUndoAxesPermutation(u);x=dn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var SX={kernelName:Cu,backendName:"webgl",kernelFunc:IX},NX=[fH,yH,QW,tB,aB,oB,uB,dB,fB,AB,wB,_B,IB,TB,DB,RB,PB,VB,WB,GB,XB,ZB,eV,oV,uV,mV,yV,bV,kV,$W,EV,LV,BV,FV,HV,qV,jV,ZV,QV,nj,aj,ij,uj,mj,yj,hj,wj,vj,Ij,Ej,Fj,zj,Wj,Bj,Vj,Uj,Gj,Xj,Zj,Jj,nU,iU,lU,cU,pU,yU,bU,IU,FW,NU,NV,CU,FU,OU,OW,WU,UU,GU,QU,ZU,rH,iH,cH,xH,NH,IH,RH,FH,DH,vH,zH,LH,jH,qH,YH,sG,BW,oG,cG,pG,AG,hV,xG,bG,vG,SG,CG,PW,MG,FG,dV,tG,OG,UG,WG,jW,XG,YG,eq,rq,oq,uq,dq,mq,yq,wq,vq,Sq,Eq,Mq,Dq,sV,rG,Pq,Wq,Vq,Uq,Gq,Kq,Jq,eX,nX,sX,nG,ZW,lX,hX,fX,AX,xX,YW,bX,vX,SX,wG];for(let e of NX)si(e);var Nn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Nn||(Nn={}));var wc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(wc||(wc={}));var f7;function TX(e){f7=e.wasm.cwrap(ni,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function EX(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let N=n.dataIdMap.get(i.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);m=N.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,A=wc[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=c?s.shape[1]:s.shape[2],x=a.shape[0],v=n.makeOutput([x,y,g],a.dtype),w=n.dataIdMap.get(v.dataId).id,b=new Uint8Array(new Int32Array(a.shape).buffer),k=new Uint8Array(new Int32Array(s.shape).buffer);return f7(d,b,a.shape.length,p,k,s.shape.length,l,c,A,m,f,h||0,w),v}var CX={kernelName:ni,backendName:"wasm",setupFunc:TX,kernelFunc:EX};function pn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return _.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var RX=pn(no);function fn(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,h=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,p=n!=null?n:c.dtype,m=E.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,p);if(_.sizeFromShape(m)===0)return f;let A=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(f.dataId).id,x=()=>r(h,A,c.shape.length,d,y,u.shape.length,Nn[c.dtype],g);if(t&&c.dtype==="float32")return x(),f;let v=E.getBroadcastDims(c.shape,m),w=E.getBroadcastDims(u.shape,m),b=v.every((N,C)=>N===C),k=w.every((N,C)=>N===C);if(b&&k)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var MX=!0,FX=fn(Sa,MX),m7;function $X(e){m7=e.wasm.cwrap(ls,null,["array","number","number","number"])}function DX(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(_.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return m7(s,a.length,Nn[r.dtype],i),r}var OX={kernelName:ls,backendName:"wasm",setupFunc:$X,kernelFunc:DX};function Sp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var zX={kernelName:Is,backendName:"wasm",kernelFunc:Sp},A7;function PX(e){A7=e.wasm.cwrap(ti,null,["number","array","number","number","number","array","number"])}function Np(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=WX(t.x.shape,r.perm),i=!0;for(let m=0;m=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var BX={kernelName:ti,backendName:"wasm",kernelFunc:Np,setupFunc:PX};function ja(e,t,n){let r=e.shape,a=e.shape.length,s=_.parseAxisParam(t,r),i=s,o=E.getAxesPermutation(i,a),l=null,c=!1;if(o!=null){let u=new Array(a);for(let d=0;d`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var eK={kernelName:jo,backendName:"wasm",kernelFunc:_r},b7;function tK(e){b7=e.wasm.cwrap(hs,null,["number","array","number","number","array","number","number","number","number"])}function nK(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=_.sizeFromShape(m),y=_.sizeFromShape(f),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],w=o?[y,p,h]:[y,h,p],b=_r({inputs:{x:a},backend:n,attrs:{shape:v}}),k=_r({inputs:{x:s},backend:n,attrs:{shape:w}}),N=n.dataIdMap.get(b.dataId).id,C=n.dataIdMap.get(k.dataId).id,F=i?b.shape[2]:b.shape[1],O=o?k.shape[1]:k.shape[2],z=Math.max(A,y),V=n.makeOutput([z,F,O],b.dtype),j=n.dataIdMap.get(V.dataId).id,U=new Uint8Array(new Int32Array(b.shape).buffer),X=new Uint8Array(new Int32Array(k.shape).buffer);return b7(N,U,b.shape.length,C,X,k.shape.length,i,o,j),n.disposeData(b.dataId),n.disposeData(k.dataId),V.shape=x,V}var rK={kernelName:hs,backendName:"wasm",setupFunc:tK,kernelFunc:nK};function Tp(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var aK={kernelName:ds,backendName:"wasm",kernelFunc:Tp},sK=pn(ps),_7;function iK(e){_7=e.wasm.cwrap(Na,null,["number","number","number","number"])}function oK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(l.dataId).id;return _7(o,s,i,c),l}var lK={kernelName:Na,backendName:"wasm",setupFunc:iK,kernelFunc:oK};function v7(e){let{inputs:t,backend:n}=e,r=_.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=E.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>_.sizeFromShape(p.shape)>0);if(s.length===1)return Sp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(_.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(E.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(x=>{let v=_.sizeFromShape(x.shape.slice(r));return _r({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));a=E.computeOutShape(p.map(x=>x.shape),1);let f=p[0].shape[0]===1,A=Hm(m,a,t[0].dtype,f),y=E.computeOutShape(s.map(x=>x.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=E.fromStringArrayToUint8(A),p.forEach(x=>n.disposeData(x.dataId)),i}let l=_.sizeFromShape(s[0].shape.slice(0,r)),c=0,u=s.map(p=>{let m=_.sizeFromShape(p.shape.slice(r));return c+=m,m}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p`cumsum does not support ${a.dtype} tensors in the WASM backend`);let c=E.getAxesPermutation([s],l),u=a;c!==null&&(u=Np({inputs:{x:a},attrs:{perm:c},backend:n}));let h=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(u.shape,u.dtype),p=u.shape[h],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;N7(m,i?1:0,o?1:0,p,f,Nn[a.dtype]);let A=d;if(c!==null){let y=E.getUndoAxesPermutation(c);A=Np({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return A}var _K={kernelName:ys,backendName:"wasm",setupFunc:wK,kernelFunc:bK},T7;function vK(e){T7=e.wasm.cwrap(Ao,null,["number","number","number","array","number","array","array","number","number"])}function kK(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=t.makeOutput(m,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(_.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(_.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return T7(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,x,m.length,v),f}var IK={kernelName:Ao,backendName:"wasm",setupFunc:vK,kernelFunc:kK},E7;function SK(e){E7=e.wasm.cwrap(gs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function NK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h}=n,d=c==null?[1,1]:c,p=E.computeConv2DInfo(a.shape,s.shape,l,d,u,h,!0),m=p.filterHeight,f=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,x=p.padInfo.left,v=p.dilationHeight,w=p.dilationWidth,b=p.strideHeight,k=p.strideWidth,N=p.inChannels,C=p.outChannels,F=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let O=r.makeOutput(p.outShape,"float32"),z=r.dataIdMap.get(O.dataId).id;return E7(i,a.shape[0],a.shape[1],a.shape[2],o,m,f,A,y,g,x,F,v,w,b,k,N,C,z),O}var TK={kernelName:gs,backendName:"wasm",setupFunc:SK,kernelFunc:NK},EK=!1,CK=fn(xo,EK,"bool"),RK=pn(ws);function kA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),_r({inputs:{x:a},backend:r,attrs:{shape:o}})}var MK={kernelName:wo,backendName:"wasm",kernelFunc:kA};function FK(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var $K={kernelName:bu,backendName:"wasm",kernelFunc:FK},C7;function DK(e){C7=e.wasm.cwrap(_o,null,["number","number","number","number","number","number"])}function OK(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,c,u]=r.shape;return C7(s,o,l,c,u,i),a}var zK={kernelName:_o,backendName:"wasm",kernelFunc:OK,setupFunc:DK},PK=pn(bs),LK=!1,WK=fn(_s,LK),R7;function BK(e){R7=e.wasm.cwrap(vs,null,["number","number","number","number","number","number","number"])}function VK(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(_.sizeFromShape(s.shape)===0)return f;let A=t.dataIdMap.get(f.dataId).id;return R7(u,h,d,p,m,a,A),f}var jK={kernelName:vs,backendName:"wasm",setupFunc:BK,kernelFunc:VK},M7;function UK(e){M7=e.wasm.cwrap(ri,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function HK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d),A=wc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let w=f.filterHeight,b=f.filterWidth,k=f.padInfo.top,N=f.padInfo.right,C=f.padInfo.bottom,F=f.padInfo.left,O=f.dilationHeight,z=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return M7(y,G,ee,Y,g,w,b,v,k,N,C,F,X,O,z,V,j,U,x,A,ie,m||0,te),ae}var GK={kernelName:ri,backendName:"wasm",setupFunc:UK,kernelFunc:HK},F7;function qK(e){F7=e.wasm.cwrap(ai,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function XK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d,!0),A=wc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let w=f.filterHeight,b=f.filterWidth,k=f.padInfo.top,N=f.padInfo.right,C=f.padInfo.bottom,F=f.padInfo.left,O=f.dilationHeight,z=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return F7(y,G,ee,Y,g,w,b,v,k,N,C,F,X,O,z,V,j,U,x,A,ie,m||0,te),ae}var KK={kernelName:ai,backendName:"wasm",setupFunc:qK,kernelFunc:XK},$7;function ZK(e){$7=e.wasm.cwrap(ko,null,["number","number","number","number","number","number","array","number"])}function YK(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=Vf.prepareAndValidate(r,a),c=t.makeOutput(s,r.dtype);if(i===0)return c;let u=a.shape,h=u[u.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return $7(d,Nn[r.dtype],p,i,h,o,m,f),c}var JK={kernelName:ko,backendName:"wasm",setupFunc:ZK,kernelFunc:YK},D7;function QK(e){D7=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function eZ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=_.parseAxisParam(i,a.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=_r({inputs:{x:a},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=_.sizeFromShape(s.shape),d=_r({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),p=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],m=t.makeOutput(p,a.dtype);if(_.sizeFromShape(a.shape)===0)return m;let f=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(_.computeStrides(u.shape)).buffer),v=new Uint8Array(new Int32Array(_.computeStrides(p)).buffer);return D7(A,Nn[a.dtype],x,f,y,c.batchSize,v,g),t.disposeData(u.dataId),t.disposeData(d.dataId),m.shape=c.outputShape,m}var tZ={kernelName:vo,backendName:"wasm",setupFunc:QK,kernelFunc:eZ},nZ=!1,rZ=fn(Io,nZ,"bool"),aZ=!1,sZ=fn(ks,aZ,"bool"),O7;function iZ(e){O7=e.wasm.cwrap(Ss,null,["number","number","number"])}function oZ(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(_.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;O7(a,n,i)}return s}var lZ={kernelName:Ss,backendName:"wasm",setupFunc:iZ,kernelFunc:oZ},uZ=!1,cZ=fn(Eo,uZ,"bool"),hZ=!1,dZ=fn(Co,hZ,"bool"),pZ=pn(Ns),fZ=!1,mZ=fn(Mo,fZ,"bool"),z7;function AZ(e){z7=e.wasm.cwrap(Ts,null,["number, number, number"])}function yZ(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:d}=ja(i,a,t);if(d){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let p=l.shape.length;E.assertAxesAreInnerMostDims("max",u,p);let[m,f]=E.computeOutAndReduceShapes(l.shape,u),A=_.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(_.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;z7(o,A,g)}if(d&&t.disposeData(c.dataId),s){let g=E.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var gZ={kernelName:Ts,backendName:"wasm",setupFunc:AZ,kernelFunc:yZ},xZ=!1,wZ=fn(Es,xZ),P7;function bZ(e){P7=e.wasm.cwrap(Cs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _Z(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,x=u.strideHeight,v=u.strideWidth,w=u.inChannels,b=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let k=r.makeOutput(u.outShape,"float32"),N=r.dataIdMap.get(k.dataId).id;return P7(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,m,f,A,y,g,x,v,w,b,N),k}var vZ={kernelName:Cs,backendName:"wasm",setupFunc:bZ,kernelFunc:_Z},L7;function kZ(e){L7=e.wasm.cwrap(Rs,null,["number, number, number"])}function IZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=ja(i,a,t),m=h;if(p){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=c;c.dtype!=="float32"&&(g=Tp({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let x=t.makeOutput(f,"float32");if(_.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;L7(l,y,v)}if(p&&t.disposeData(u.dataId),s){let v=E.expandShapeToKeepDim(x.shape,d);x.shape=v}return c.dtype!=="float32"&&t.disposeData(g.dataId),x}var SZ={kernelName:Rs,backendName:"wasm",setupFunc:kZ,kernelFunc:IZ},W7;function NZ(e){W7=e.wasm.cwrap(Ms,null,["number, number, number"])}function TZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=ja(i,a,t);if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x)}let m=c.shape.length;E.assertAxesAreInnerMostDims("min",h,m);let[f,A]=E.computeOutAndReduceShapes(c.shape,h),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;W7(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var EZ={kernelName:Ms,backendName:"wasm",setupFunc:NZ,kernelFunc:TZ},CZ=!1,RZ=fn(Fs,CZ),IA;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(IA||(IA={}));var B7;function MZ(e){B7=e.wasm.cwrap($s,null,["number","array","number","number","array","array","number","number"])}function FZ(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,mode:a}}=e,s=r.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(m=>m[0]),h=r.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return B7(i,c,t.shape.length,Nn[t.dtype],d,p,IA[a],l),o}var $Z={kernelName:$s,backendName:"wasm",kernelFunc:FZ,setupFunc:MZ},DZ=!0,OZ=fn(Ds,DZ),zZ=pn($o);function SA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var V7;function PZ(e){V7=e.wasm.cwrap(Oo,"number",["number","number","number","number","number"])}function LZ(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,h=V7(c,u,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:m,pValidOutputs:f}=SA(t,h);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([p],"int32",d)}var WZ={kernelName:Oo,backendName:"wasm",setupFunc:PZ,kernelFunc:LZ},j7;function BZ(e){j7=e.wasm.cwrap(zo,"number",["number","number","number","number","number","bool"])}function VZ(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=j7(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=SA(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var jZ={kernelName:zo,backendName:"wasm",setupFunc:BZ,kernelFunc:VZ},U7;function UZ(e){U7=e.wasm.cwrap(Po,"number",["number","number","number","number","number","number"])}function HZ(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=U7(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=SA(t,d);t.wasm._free(A);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([m],"float32",f);return[y,g]}var GZ={kernelName:Po,backendName:"wasm",setupFunc:UZ,kernelFunc:HZ},qZ=!1,XZ=fn(Do,qZ,"bool"),H7;function KZ(e){H7=e.wasm.cwrap(Os,null,["number","number","number","number","number"])}function ZZ(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(a.dataId).id;return H7(u,s,i,o,c),l}var YZ={kernelName:Os,backendName:"wasm",setupFunc:KZ,kernelFunc:ZZ};function JZ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var QZ={kernelName:Lo,backendName:"wasm",kernelFunc:JZ};function eY(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return kA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=kA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=v7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeData(u.dataId)),c}var tY={kernelName:Wo,backendName:"wasm",kernelFunc:eY},G7;function nY(e){G7=e.wasm.cwrap(zs,null,["number","array","number","number","array","array","number","number"])}function rY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(m=>m[0]),h=r.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return G7(i,c,t.shape.length,Nn[t.dtype],d,p,a,l),o}var aY={kernelName:zs,backendName:"wasm",kernelFunc:rY,setupFunc:nY},sY=!1,iY=fn(Ps,sY),q7;function oY(e){q7=e.wasm.cwrap(Ls,null,["number","number","number"])}function lY(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return q7(s,i,l),o}var uY={kernelName:Ls,backendName:"wasm",setupFunc:oY,kernelFunc:lY},X7;function cY(e){X7=e.wasm.cwrap(Bo,null,["number","number","number","number"])}function hY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=ja(i,a,t),m=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;X7(l,y,Nn[g.dtype],x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var dY={kernelName:Bo,backendName:"wasm",setupFunc:cY,kernelFunc:hY},pY=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=Xm(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},fY={kernelName:Su,backendName:"wasm",kernelFunc:pY},mY=!0,AY=fn(xs,mY),yY=pn(Ws),gY=pn(Vs),K7;function xY(e){K7=e.wasm.cwrap(Bs,null,["number","number","number","number","number","number","number","number","number","number"])}function wY(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,[u,h,d,p]=a.shape,m=[u,l,c,p],f=t.dataIdMap.get(a.dataId),A;f.dtype!=="float32"&&(A=Tp({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(A.dataId));let y=f.id,g=t.makeOutput(m,"float32");if(_.sizeFromShape(a.shape)===0)return g;let x=t.dataIdMap.get(g.dataId).id;return K7(y,u,h,d,p,l,c,s?1:0,i?1:0,x),A!=null&&t.disposeData(A.dataId),g}var bY={kernelName:Bs,backendName:"wasm",setupFunc:xY,kernelFunc:wY},Z7;function _Y(e){Z7=e.wasm.cwrap(js,null,["number","array","number","array","number","number"])}function vY(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=_.parseAxisParam(s,a.shape);if(a.shape.length===0)return Sp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);Z7(l,u,i.length,h,a.shape.length,c);let d=_r({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var kY={kernelName:js,backendName:"wasm",kernelFunc:vY,setupFunc:_Y},Y7;function IY(e){Y7=e.wasm.cwrap(nl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function SY(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(l.dataId).id,[h,d,p,m]=a.shape,[f,A]=E.getImageCenter(o,d,p),y=i===0,g=255,x=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],v=new Uint8Array(new Int32Array(x).buffer);return Y7(c,h,d,p,m,s,f,A,v,x.length,u),l}var NY={kernelName:nl,backendName:"wasm",kernelFunc:SY,setupFunc:IY},TY=pn(Us),EY=pn(Hs),J7;function CY(e){J7=e.wasm.cwrap(Uo,null,["number","number","number","number","number","number","array","number","number"])}function RY(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(_.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=jf.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return J7(p,m,Nn[s.dtype],l,c,u,f,d,A),o}var MY={kernelName:Uo,backendName:"wasm",setupFunc:CY,kernelFunc:RY},Q7;function FY(e){Q7=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function $Y(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(c.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:_.sizeFromShape(a.shape.slice(1));return Q7(i,o,l,p,u),c}var DY={kernelName:Ho,backendName:"wasm",kernelFunc:$Y,setupFunc:FY},ev;function OY(e){ev=e.wasm.cwrap(qs,null,["number","number"])}function zY(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return _.sizeFromShape(a.shape)===0||ev(r,s),a}var PY={kernelName:"Sigmoid",backendName:"wasm",setupFunc:OY,kernelFunc:zY},LY=pn(Gs);function Ep(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=sn.parseSliceParams(t,n,r),o=sn.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),c=a.makeOutput(i,t.dtype),u=_.computeStrides(t.shape),h=a.dataIdMap.get(c.dataId);if(o){let m=sn.computeFlatOffset(s,u);return t.dtype==="string"?h.stringBytes=l.slice(m,m+_.sizeFromShape(i)):a.typedArrayFromHeap(c).set(l.subarray(m,m+_.sizeFromShape(i))),c}if(t.dtype==="string"){let m=rp(l,s,i,t.shape,t.dtype);return h.stringBytes=m,c}let d=a.typedArrayFromHeap(c),p=t.shape.length;if(p===2)WY(l,u[0],d,s,i);else if(p===3)BY(l,u[0],u[1],d,s,i);else if(p===4)VY(l,u[0],u[1],u[2],d,s,i);else{let m=rp(l,s,i,t.shape,t.dtype);d.set(m)}return c}function WY(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let c=i;c{let d=[...u];d[o]=h;let p=Ep({inputs:{x:a},attrs:{begin:c,size:d},backend:r});return c[o]+=h,p})}var XY={kernelName:Yo,backendName:"wasm",kernelFunc:qY},KY=pn(Xs),ZY=pn(Eu),YY=!0,JY=fn(Ys,YY),nv;function QY(e){nv=e.wasm.cwrap(Ea,null,["number","number","number"])}function eJ(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return nv(i,a,l),o}var tJ={kernelName:Ea,backendName:"wasm",setupFunc:QY,kernelFunc:eJ},rv;function nJ(e){rv=e.wasm.cwrap(Jo,null,["number","array","number","array","array","array","array","array","number","number"])}function rJ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,p=E.slice_util.maskToAxes(u);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=a.shape.length-s.length,f=E.slice_util.maskToAxes(h),A=a.shape.slice();f.forEach(F=>{s[F]=0,i[F]=1,A.splice(F,0,1)});let y=_r({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:x,strides:v}=E.slice_util.getNormalizedAxes(y.shape,p,m,s,i,o,l,c,u);s=g,i=x,o=v;let w=E.slice_util.maskToAxes(d);w.forEach(F=>{i[F]=s[F]+1,o[F]=1});let b=E.slice_util.computeOutShape(s,i,o),k=b.filter((F,O)=>w.indexOf(O)===-1);if(o.every(F=>F===1)){let F=Ep({inputs:{x:y},attrs:{begin:s,size:b},backend:t});t.disposeData(y.dataId);let O=_r({inputs:{x:F},attrs:{shape:k},backend:t});return t.disposeData(F.dataId),O}let N=t.makeOutput(k,"float32");if(!k.some(F=>F===0)){let F=t.dataIdMap.get(y.dataId).id,O=new Uint8Array(new Int32Array(_.computeStrides(y.shape)).buffer),z=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(k).buffer),X=new Uint8Array(new Int32Array(_.computeStrides(k)).buffer),G=t.dataIdMap.get(N.dataId).id;rv(F,O,y.shape.length,z,V,j,U,X,k.length,G)}t.disposeData(y.dataId);let C=_r({inputs:{x:N},attrs:{shape:k},backend:t});return t.disposeData(N.dataId),C}var aJ={kernelName:Jo,backendName:"wasm",setupFunc:nJ,kernelFunc:rJ},sJ=!0,iJ=fn(Js,sJ),av;function oJ(e){av=e.wasm.cwrap(Ks,null,["number, number, number"])}function lJ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=ja(i,a,t),m=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;av(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var uJ={kernelName:Ks,backendName:"wasm",setupFunc:oJ,kernelFunc:lJ},cJ=pn(Qs),hJ=pn(ei),sv;function dJ(e){sv=e.wasm.cwrap(Ta,null,["number","array","number","array","number","number"])}function pJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let c=t.makeOutput(l,r.dtype),u=t.dataIdMap.get(c.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return iv(i,o,r.shape.length,Nn[r.dtype],a,s,u,d),[c,h]},yJ={kernelName:Qo,backendName:"wasm",setupFunc:mJ,kernelFunc:AJ};function gJ(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),c=0;for(let p=0;p({dataId:p,dtype:m,shape:l}))}var xJ={kernelName:el,backendName:"wasm",kernelFunc:gJ};function wJ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var bJ={kernelName:tl,backendName:"wasm",kernelFunc:wJ},_J=[RX,FX,OX,UX,qX,ZX,QX,rK,aK,sK,lK,uK,dK,mK,AK,xK,_K,IK,TK,CK,RK,MK,$K,zK,PK,WK,CX,jK,GK,KK,JK,tZ,rZ,sZ,zX,lZ,cZ,dZ,pZ,mZ,gZ,wZ,vZ,SZ,EZ,RZ,$Z,OZ,zZ,WZ,jZ,GZ,XZ,YZ,QZ,tY,aY,iY,uY,dY,fY,AY,yY,gY,eK,bY,kY,NY,EY,TY,MY,DY,PY,LY,jY,GY,XY,KY,ZY,JY,tJ,aJ,iJ,uJ,cJ,hJ,fJ,yJ,BX,xJ,bJ];for(let e of _J)si(e);var NA=J();NA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));NA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(NA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var ov=Qi(Yk()),vJ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',kJ=Qi(Jk()),lv=class extends du{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new kh(this,aa())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let c=t;this.dataIdMap.set(e,{id:s,stringBytes:c,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=_.sizeFromShape(n),o=i*_.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+_.sizeFromShape(r)*_.bytesPerElement(n));return IJ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=_.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=_.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function SJ(e){return(t,n)=>(_.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance,s.module)})})}),{})}function uv(e,t,n){if(Cp!=null)return Cp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),bc!=null&&bc[r]!=null?bc[r]:n+r}async function NJ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let c=vJ,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return o.endsWith(".wasm")?uv(e,t,_c!=null?_c:l):l+o},TA&&(a.instantiateWasm=SJ(uv(e,t,_c!=null?_c:"")));let s=!1;a.onAbort=()=>{s||vc||(vc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Cp==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+ov.default.toString()],{type:"text/javascript"}),i=(0,ov.default)(a)):i=(0,kJ.default)(a),i.then(o=>{s=!0,vc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function IJ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var TJ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Cp=null,_c=null,bc={},vc=!1,TA=!1;function EJ(e,t=!1){if(Kf("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),vc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Cp=e,TA=t}function CJ(e,t=!1){if(vc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")_c=e;else{bc=e;let n=TJ.filter(r=>bc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}TA=t}var cv="3.5.0",RJ=2;hl("wasm",async()=>{let{wasm:e}=await NJ();return new lv(e)},RJ);Z().prototype.abs=function(){return this.throwIfDisposed(),Dt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),Yf(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),Jf(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),gd(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Vu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),ju(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),Qf(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),Ae(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),H(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),H(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),em(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),tm(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),nm(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),rm(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),am(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Hu(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Gu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),pi(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),pl(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),Ae(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),lm(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),In(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Le&&(e=[e]),ot([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),wd(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),bd(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ia(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),qu(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),_d(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),vd(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),hm(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ml(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),dm(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),pm(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),Ow(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),Al(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Da(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),fm(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),Xn(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),on(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),mm(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),rc(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),yl(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),Ad(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),fi(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),za(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),or(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),bl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),Wd(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),Pw(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),Lw(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),ym(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Ku(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),mi(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Id(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),gm(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),Vw(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Td(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),bm(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),Mn(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),Sd(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),lr(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),Zu(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),Ed(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),Gw(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Be(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),Yu(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Kn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Pr(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),vt(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),gl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),xl(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),vm(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),km(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),B(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),_t(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Ud(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),gi(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),ul(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),$n(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),oa(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),Kw(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),la(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),Qu(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),Rd(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),Nm(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),Lr(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),Fd(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),pb(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),fb(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Dn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),ac(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Tm(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),$d(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Dd(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Em(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),kn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),Cm(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Od(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),zd(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Re(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),nc(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),Ai(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Ju(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),ln(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),Jt(this)};Z().prototype.square=function(){return this.throwIfDisposed(),st(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Bd(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),Pa(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Le?[this,e]:[this,...e];return On(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),_l(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),Mm(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Ne(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),Fm(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),di(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Oa(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),Ae(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),Ae(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),Ae(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),$m(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),Ze(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),jd(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Dm(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),ur(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),Sn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),Ue(this)};var hv={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,_l(Ae(n,"float32"),-1))}}},MJ={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=st(Ae(n,"float32")),a=Jt(ye(ke(1),r));return _t(ge(e,a))}}}},FJ={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Jt(ye(st(Ae(n,"float32")),1));return ge(e,r)}}}},$J={kernelName:Sa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=dt(n.shape,r.shape);return{a:()=>{let s=e,i=Ot(n.shape,a);return i.length>0&&(s=Ne(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Ot(r.shape,a);return i.length>0&&(s=Ne(s,i)),H(s,r.shape)}}}},DJ={kernelName:ls,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},OJ={kernelName:us,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},zJ={kernelName:mu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},PJ={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,Jt(ye(ke(1),st(Ae(n,"float32")))))}}},LJ={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Jt(se(ke(1),st(Ae(n,"float32"))));return ge(e,r)}}}},WJ={kernelName:ho,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=dt(n.shape,r.shape);return{a:()=>{let s=se(st(n),st(r)),i=B(e,ge(r,s)),o=Ot(n.shape,a);return o.length>0&&(i=Ne(i,o)),H(i,n.shape)},b:()=>{let s=se(st(n),st(r)),i=_t(B(e,ge(n,s))),o=Ot(r.shape,a);return o.length>0&&(i=Ne(i,o)),H(i,r.shape)}}}},BJ={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,se(st(Ae(n,"float32")),1))}}},VJ={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,ye(ke(1),st(Ae(n,"float32"))))}}};function jJ(e,t,n,r,a,s){let i=R(e,"dy","avgPool3dGrad"),o=R(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&M(Bt(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:c},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=$.runKernel(Eh,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var UJ=D({avgPool3dGrad_:jJ}),HJ={kernelName:Au,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>UJ(e,r,a,s,i,o)}}};function GJ(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");M(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel(Th,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var qJ=D({avgPoolGrad_:GJ}),XJ={kernelName:cs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>qJ(e,r,a,s,i)}}},KJ={kernelName:hs,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Be(e,a,!1,!0),b:()=>Be(r,e,!0,!1)}:!s&&i?{a:()=>Be(e,a,!1,!1),b:()=>Be(e,r,!0,!1)}:s&&!i?{a:()=>Be(a,e,!1,!0),b:()=>Be(r,e,!1,!1)}:{a:()=>Be(a,e,!0,!0),b:()=>Be(e,r,!0,!0)}}},ZJ={kernelName:yu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>Ju(e,r,a)}}},YJ={kernelName:Ex,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l1&&o.push(l);return{x:()=>Ne(e,o,!0)}}},JJ={kernelName:ds,gradFunc:e=>({x:()=>e.clone()})},QJ={kernelName:ps,gradFunc:e=>({x:()=>Ue(e)})},eQ={kernelName:Na,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>Sn(lr(za(r,a),mi(r,s)),e,Ue(e))}}},tQ={kernelName:gu,inputsToSave:["x"],gradFunc:hv.gradFunc},nQ={kernelName:po,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=sr(a,t[0].shape)[0],i=r.map(o=>o[s]);return ln(e,i,s).map(o=>()=>o)}},rQ={kernelName:fs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return M($a(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>um(r.shape,e,a,i,o,l),filter:()=>Lm(r,e,a.shape,i,o,l)}}},aQ={kernelName:ms,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>ia(e,a,s,i,o,1,l),filter:()=>Lm(e,r,a.shape,s,i,o,l)}}};function sQ(e,t,n,r,a){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),M(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),M(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(Fh,o,l)}var iQ=D({conv3DBackpropFilter_:sQ}),oQ={kernelName:xu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;M($a(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>Fw(i.shape,e,o,a,s),filter:()=>iQ(i,e,o.shape,a,s)}}},lQ={kernelName:As,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(_t(Od(Ae(n,"float32"))),e)}}},uQ={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(zd(Ae(n,"float32")),e)}}},cQ={kernelName:ys,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=Hw([a],r.rank),l=vd(e,a,s,!i);return o!=null&&(l=Ze(l,o)),l}}}},hQ={kernelName:gs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;M($a(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),M(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),M(Or(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&M(Bt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>ib(l.shape,e,c,a,s,r,i),filter:()=>sb(l,e,c.shape,a,s,r,i)}}},dQ={kernelName:wu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(Lh,s,n),filter:()=>$.runKernel(Wh,i,n)}}},pQ={kernelName:yo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(Vh,r)}}},fQ={kernelName:go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=B(Xn(_t(st(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,r)}}},mQ={kernelName:ws,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},AQ={kernelName:wo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},yQ={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Xn(n))}}},gQ={kernelName:bs,gradFunc:e=>({x:()=>Ue(e)})},xQ={kernelName:_s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=dt(n.shape,r.shape);return{a:()=>{let s=ge(e,Ae(r,"float32")),i=Ot(n.shape,a);return i.length>0?H(Ne(s,i),n.shape):s},b:()=>{let s=B(e,Ae(n,"float32")),i=Ot(r.shape,a);i.length>0&&(s=H(Ne(s,i),r.shape));let o=st(r);return _t(ge(s,Ae(o,"float32")))}}}},wQ={kernelName:vs,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?ke(1):o,c=Ot(s.shape,a.shape),u=[];if(s.rank===1){for(let f=0;fs.rank===1?H(B(B(e,Oa(H(p,[1,1,1,s.shape[0]]),u)),l),a.shape):H(B(B(e,p),l),a.shape),mean:()=>{let f=B(B(p,ke(-1)),d);return s.rank===1&&(f=Ne(f,c)),H(f,s.shape)},variance:()=>{let f=B(B(m,h),d);return s.rank===1&&(f=Ne(f,c)),H(f,s.shape)},scale:()=>{let f=B(h,p),A=B(e,f);return s.rank===1&&(A=Ne(A,c)),H(A,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Ne(f,c)),H(f,s.shape)}}}},bQ={kernelName:vo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=sr(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,c=o.slice(0,i),u=c.length,h=o.slice(s,o.length).slice(1),d=h.length,p=dv(0,u),m=dv(u+1,u+1+d),f=pv([c,[l],h]),A=H(e,f),y=H(a,[l]),g=pv([[u],p,m]),x=Ze(A,g),v=Dm(x,y,r.shape[i]),w=wm(g);return v=Ze(v,w),v},indices:()=>a}}};function dv(e,t){let n=[];for(let r=e;r{let[n,r]=t;return{a:()=>Ue(n),b:()=>Ue(r)}}},vQ={kernelName:Is,gradFunc:e=>({x:()=>Ae(e,"float32")})},kQ={kernelName:So,gradFunc:e=>({x:()=>Ue(e)})},IQ={kernelName:No,gradFunc:e=>({x:()=>Ue(e)})},SQ={kernelName:To,gradFunc:e=>({x:()=>Ue(e)})},NQ={kernelName:Ss,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=or(r,0);return{x:()=>Sn(s,e,B(e,a))}}},TQ={kernelName:Ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,se(n,1))}}},EQ={kernelName:Ns,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,Ae(n,"float32"))}}},CQ={kernelName:Cx,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=Xn(r);return ye(e,B(Ne(e,a,s),i))}}}};function RQ(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(qh,o,l)}var MQ=D({localResponseNormalizationBackprop_:RQ}),FQ={kernelName:ku,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>MQ(r,a,e,s,i,o,l)}}};function fv(e,t,n,r){return t.rankB(e,Ae(Da(n,t),e.dtype))}}var mv={kernelName:Ts,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=sr(a,s.shape),l=fv(e,i,s,o);return{x:()=>l.x()}}},$Q={kernelName:Es,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>B(e,Ae(za(n,r),"float32")),b:()=>B(e,Ae(Id(n,r),"float32"))}}};function DQ(e,t,n,r,a,s,i){let o=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),c=R(n,"output","maxPool3dGrad"),u=o,h=l,d=c,p=!1;l.rank===4&&(p=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=H(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),M(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),M(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&M(Bt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:u,input:h,output:d},f={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=$.runKernel(Kh,m,f);return p?H(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var OQ=D({maxPool3dGrad_:DQ}),zQ={kernelName:Iu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>OQ(e,r,a,s,i,o,l)}}};function PQ(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),c=R(n,"output","maxPoolGrad");M(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),M(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&M(Bt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(Xh,u,h)}var LQ=D({maxPoolGrad_:PQ}),WQ={kernelName:Cs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>LQ(e,r,a,s,i,o)}}},BQ={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=sr(a,r.shape),i=Uw(r.shape,s)[1],o=Nt(i);return{x:()=>{let l=r.shape.slice();s.forEach(u=>{l[u]=1});let c=H(e,l);return ge(B(c,Fn(r.shape,"float32")),o)}}}},VQ={kernelName:Ms,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=sr(a,s.shape),l=fv(e,i,s,o);return{x:()=>l.x()}}},jQ={kernelName:Fs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>B(e,Ae(mi(n,r),"float32")),b:()=>B(e,Ae(or(n,r),"float32"))}}},UQ={kernelName:$s,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},HQ={kernelName:Fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=dt(n.shape,r.shape);return{a:()=>{let s=Ot(n.shape,a);return s.length>0?H(Ne(e,s),n.shape):e},b:()=>{let s=B(e,_t(yl(ge(n,r)))),i=Ot(r.shape,a);return i.length>0?H(Ne(s,i),r.shape):s}}}},GQ={kernelName:Ds,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=dt(n.shape,r.shape);return{a:()=>{let s=B(e,Ae(r,"float32")),i=Ot(n.shape,a);return i.length>0?H(Ne(s,i),n.shape):s},b:()=>{let s=B(e,Ae(n,"float32")),i=Ot(r.shape,a);return i.length>0?H(Ne(s,i),r.shape):s}}}},qQ={kernelName:$o,gradFunc:e=>({x:()=>_t(e)})},XQ={kernelName:Os,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Et(n.shape,"float32")}}},KQ={kernelName:Lo,gradFunc:e=>({x:()=>Ue(e)})},ZQ={kernelName:Wo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return ur(e,r).map(a=>()=>a)}},Av={kernelName:zs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},YQ={kernelName:Ps,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=dt(s.shape,i.shape);return{a:()=>{let l=Ae(i,"float32"),c=B(e,B(l,la(s,ye(l,ke(1))))),u=Ot(s.shape,o);return u.length>0&&(c=Ne(c,u)),H(c,s.shape)},b:()=>{let l=or(s,0),c=Sn(l,Mn(s),Ue(s)),u=B(e,B(a,c)),h=Ot(i.shape,o);return h.length>0&&(u=Ne(u,h)),H(u,i.shape)}}}},JQ={kernelName:Ls,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=or(n,0);return{x:()=>Sn(a,e,B(e,r)),alpha:()=>{let s=Sn(a,Ue(e),B(e,n)),i=Ot(r.shape,e.shape);return i.length>0&&(s=Ne(s,i)),H(s,r.shape)}}}},QQ={kernelName:xs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=dt(n.shape,r.shape);return{a:()=>{let s=ge(e,Ae(r,"float32")),i=Ot(n.shape,a);return i.length>0?H(Ne(s,i),n.shape):s},b:()=>{let s=B(e,Ae(n,"float32")),i=Ot(r.shape,a);i.length>0&&(s=H(Ne(s,i),r.shape));let o=st(r);return _t(ge(s,Ae(o,"float32")))}}}},eee={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,_t(st(n)))}}},tee={kernelName:Vs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=B(mi(n,6),_l(n));return{x:()=>B(e,Ae(r,"float32"))}}},nee={kernelName:Ws,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Ae(_l(n),"float32"))}}},ree={kernelName:jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},aee={kernelName:Bs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(ed,a,n)}}},see={kernelName:Nu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(Qh,a,n)}}},iee={kernelName:js,gradFunc:(e,t,n)=>{let{dims:r}=n,a=sr(r,e.shape);return{x:()=>Dn(e,a)}}},oee={kernelName:Us,gradFunc:e=>({x:()=>Ue(e)})},lee={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_t(ge(e,B(la(n,1.5),2)))}}},uee={kernelName:Ho,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>Ae(Ue(n),"float32"),t:()=>B(e,Ae(n,e.dtype)),e:()=>B(e,Ae(Zu(n),e.dtype))}}},cee={kernelName:Go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=or(n,ke(0)),a=ke(gb),s=ke(xb),i=B(e,s),o=B(B(e,a),Xn(Ae(n,"float32")));return Sn(r,i,o)}}}},hee={kernelName:qs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,ye(ke(1),n)))}}},dee={kernelName:Ko,gradFunc:e=>({x:()=>Ue(e)})},pee={kernelName:Gs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(qu(Ae(n,"float32")),e)}}},fee={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(_d(Ae(n,"float32")),e)}}},mee={kernelName:qo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=mw(r,a,s),c=[];for(let u=0;uoa(e,c)}}},Aee={kernelName:Zs,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=B(e,r);return{logits:()=>ye(i,B(Ne(i,[a],s),r))}}},yee={kernelName:Zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,kn(n))}}},yv={kernelName:Tu,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Gu(e,r,a)}}},gv={kernelName:Yo,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>ot(e,r)}}},gee={kernelName:Xs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,B(Jt(Ae(n,"float32")),2))}}},xee={kernelName:Eu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(Ae(n,"float32"),2))}}},wee={kernelName:Ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ke(2);return{a:()=>B(e,B(a,ye(n,r))),b:()=>B(e,B(a,ye(r,n)))}}},bee={kernelName:Ea,gradFunc:e=>({x:()=>Ue(e)})},_ee={kernelName:Js,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=dt(n.shape,r.shape);return{a:()=>{let s=e,i=Ot(n.shape,a);return i.length>0&&(s=Ne(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Ot(r.shape,a);return i.length>0&&(s=Ne(s,i)),H(_t(s),r.shape)}}}},vee={kernelName:Ks,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;sr(s,r.shape).forEach(l=>{a[l]=1});let i=H(e,a),o=B(i,Fn(r.shape,"float32"));return{x:()=>o}}},kee={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,st(qu(n)))}}},Iee={kernelName:ei,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(ye(ke(1),st(n)),e)}}},See={kernelName:Ta,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=Ue(r);if(r.rank===1)for(let i=0;i{let r=n,{perm:a}=r,s=wm(a);return{x:()=>Ze(e,s)}}},Tee={kernelName:el,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>On(e,a)}}},Cee={kernelName:Cu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Eee(e,n)}}};function Eee(e,t){let n=Pr(t,Ue(t)),r=fi(e,n),a=za(t,ke(0,"int32")),s=r.rank-a.rank;for(let o=0;o({x:()=>Ue(e)})},Mee=[hv,MJ,FJ,$J,DJ,OJ,zJ,PJ,LJ,WJ,BJ,VJ,HJ,XJ,KJ,ZJ,YJ,JJ,QJ,eQ,tQ,nQ,aQ,rQ,oQ,lQ,uQ,cQ,hQ,dQ,QQ,pQ,fQ,mQ,AQ,yQ,xQ,gQ,wQ,bQ,_Q,vQ,kQ,IQ,SQ,NQ,TQ,EQ,CQ,FQ,mv,mv,$Q,zQ,WQ,BQ,VQ,jQ,UQ,HQ,GQ,qQ,XQ,KQ,ZQ,Av,Av,YQ,JQ,eee,tee,nee,ree,aee,see,iee,oee,lee,uee,cee,hee,dee,pee,fee,mee,Aee,yee,yv,yv,gv,gv,gee,wee,xee,bee,_ee,vee,kee,Iee,See,Nee,Tee,Cee,Ree];for(let e of Mee)Rx(e);var xv={};Me(xv,{maxNorm:()=>Fee,minMaxNorm:()=>Oee,nonNeg:()=>Dee,unitNorm:()=>$ee});var EA;function zt(){return EA==null&&(EA=_w().epsilon()),EA}function vr(){return"channelsLast"}var da=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,da.prototype)}},kr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,kr.prototype)}},W=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,W.prototype)}},De=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,De.prototype)}},wv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,wv.prototype)}};function Ei(e,t){if(Array.isArray(e)){let n=[];for(let r=0;rn.toUpperCase())}var cr={};function CA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function RA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>RA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:RA(r))}}}function kc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in cr)i=cr[s];else if(i=t[s],i==null)throw new W(`Unknown ${r}: ${e}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. -2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new B(`${r}: Improper config format: ${JSON.stringify(s)}. -'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in Ar?[o,l]=Ar.className:i in t&&([o,l]=t[i]),o==null)throw new B(`Unknown ${r}: ${i}. This may be due to one of the following reasons: +2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new W(`${r}: Improper config format: ${JSON.stringify(s)}. +'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in cr?[o,l]=cr.className:i in t&&([o,l]=t[i]),o==null)throw new W(`Unknown ${r}: ${i}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. -2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let p of Object.keys(Ar))c[p]=Ar[p];for(let p of Object.keys(n))c[p]=n[p];let u=s.config;u.customObjects=c;let h=Object.assign({},Ar);for(let p of Object.keys(n))Ar[p]=n[p];VA(s.config);let d=l(o,s.config,n,a);return Ar=Object.assign({},h),d}else{let c=Object.assign({},Ar);for(let h of Object.keys(n))Ar[h]=n[h];let u=new o(s.config);return Ar=Object.assign({},c),u}}}function ite(e,t){return et?1:0}function Op(e,t){return-1*ite(e,t)}function Za(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function ote(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function zi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function jA(e,t,n=0,r=Infinity){return Kr(n>=0),Kr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function qt(e,t){Array.isArray(e)?(_.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>qt(n,`element ${r+1} of ${t}`))):_.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Uv(e)}.`)}function Uv(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Uv(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function lte(e,t){let n=_.now(),r;return(...a)=>{let s=_.now();return s-nen(Te(z(e,e),t,!0)))}var Cc=class extends re.Serializable{getConfig(){return{}}},HA=class extends Cc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=UA(e,this.axis),n=En(t,0,this.maxValue);return z(e,Ae(n,se(Wt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};HA.className="MaxNorm";re.registerClass(HA);var GA=class extends Cc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>Ae(e,se(Wt(),UA(e,this.axis))))}getConfig(){return{axis:this.axis}}};GA.className="UnitNorm";re.registerClass(GA);var qA=class extends Cc{apply(e){return Hr(e)}};qA.className="NonNeg";re.registerClass(qA);var XA=class extends Cc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=UA(e,this.axis),n=se(z(this.rate,En(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,Ae(n,se(Wt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};XA.className="MinMaxNorm";re.registerClass(XA);var Gv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Bt(e){return BA(e)}function qv(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Vt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Gv?Gv[e]:e,config:{}};return qv(t)}else return e instanceof Cc?e:qv(e)}function nte(e){return new HA(e)}function rte(e){return new GA(e)}function ate(){return new qA}function ste(e){return new XA(e)}var Xv={};Me(Xv,{constant:()=>hte,glorotNormal:()=>gte,glorotUniform:()=>yte,heNormal:()=>xte,heUniform:()=>bte,identity:()=>mte,leCunNormal:()=>wte,leCunUniform:()=>_te,ones:()=>cte,orthogonal:()=>vte,randomNormal:()=>pte,randomUniform:()=>dte,truncatedNormal:()=>fte,varianceScaling:()=>Ate,zeros:()=>ute});var kte=["channelsFirst","channelsLast"],Ite=["nearest","bilinear"],Ste=["valid","same","causal"],Nte=["max","avg"],Tte=["sum","mul","concat","ave"],Hl=new Map;function Ct(e){zi(kte,"DataFormat",e)}function Ete(e){zi(Ite,"InterpolationFormat",e)}function sr(e){zi(Ste,"PaddingMode",e)}function Kv(e){zi(Nte,"PoolMode",e)}var Rc=[],Zv="/";function Pi(e,t){Rc.push(e);try{let n=t();return Rc.pop(),n}catch(n){throw Rc.pop(),n}}function Cte(){return Rc.length===0?"":Rc.join(Zv)+Zv}function Jv(e){if(!Yv(e))throw new Error("Not a valid tensor name: '"+e+"'");return Cte()+e}function Qv(e){if(!Yv(e))throw new Error("Not a valid tensor name: '"+e+"'");Hl.has(e)||Hl.set(e,0);let t=Hl.get(e);if(Hl.set(e,Hl.get(e)+1),t>0){let n=`${e}_${t}`;return Hl.set(n,1),n}else return e}var Rte=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Yv(e){return!!e.match(Rte)}function Mte(e){return e===parseInt(e.toString(),10)}function Ya(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Fc(e,1);return KA(n,[1,t,1])})}function $te(e){let t=[Ya(e.shape)];return e.reshape(t)}function Dte(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ya(e.shape,1)];return e.reshape(t)}function Li(e,t,n){return P(()=>{switch(e.rank){case 1:return jd(e,t,n);case 2:return Vm(e,[t,0],[n,e.shape[1]]);case 3:return Ud(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return ic(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function ZA(e,t,n){return P(()=>{switch(e.rank){case 1:return jd(e,t,n);case 2:return Vm(e,[0,t],[e.shape[0],n]);case 3:return Ud(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return ic(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function zp(e,t,n,r){return P(()=>{switch(e.rank){case 1:return jd(e,t,n);case 2:switch(r){case 1:return Li(e,t,n);case 2:return ZA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return Li(e,t,n);case 2:return Ud(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return ZA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return Li(e,t,n);case 2:return ic(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return ic(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return ZA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function YA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ot(e,t)}function t6(e,t){switch(e.rank){case 1:return Jb([e,t]);case 2:return bl([e,t],0);case 3:return Qb([e,t],0);case 4:return ew([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function KA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Va(e,t)}function Pp(e,t=0,n=1,r,a){return gw(e,t,n,r,a)}function Zr(e,t,n,r){if(e.rank<2||t.rank<2)throw new De(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new De(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return Ha.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?JA(e.rank,r,Er()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(u).reshape([l,-1]);let h=[...a,...c],d=!1,p=!1;return Ha.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?JA(e.rank,r,Er()):null,activation:n}).reshape(h)}}function n6(e,t,n){return P(()=>(Array.isArray(t)?t=sn(t,"int32"):t=t.toInt(),bi(e,t,n)))}function $c(e){return z(e,e)}function JA(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function Mr(e,t,n){return P(()=>(n==null&&(n=Er()),Ct(n),e.add(JA(e.rank,t,n))))}function Ote(e,t=1){if(t!==1)throw new De(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return _l(e)}function zte(e){return P(()=>Ae(e,zt(e).add(1)))}function r6(e,t,n,r){return P(()=>Iw(e,t,n,r))}function Pte(e){return P(()=>{let t=se(.5,z(.2,e));return En(t,0,1)})}function Dc(e,t,n=!1){return n?e():t()}var Lte=["fanIn","fanOut","fanAvg"],Wte=["normal","uniform","truncatedNormal"];function Bte(e){zi(Lte,"FanMode",e)}function Vte(e){zi(Wte,"Distribution",e)}var yr=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},QA=class extends yr{apply(e,t){return Rt(e,t)}};QA.className="Zeros";re.registerClass(QA);var Lp=class extends yr{apply(e,t){return Pn(e,t)}};Lp.className="Ones";re.registerClass(Lp);var ey=class extends yr{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return P(()=>z(ve(this.value),Pn(e,t)))}getConfig(){return{value:this.value}}};ey.className="Constant";re.registerClass(ey);var ty=class extends yr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Sl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};ty.className="RandomUniform";re.registerClass(ty);var ny=class extends yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`randomNormal does not support dType ${t}.`);return Pp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ny.className="RandomNormal";re.registerClass(ny);var ry=class extends yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`truncatedNormal does not support dType ${t}.`);return qd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ry.className="TruncatedNormal";re.registerClass(ry);var ay=class extends yr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return P(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,Nm(e[0]))})}getConfig(){return{gain:this.gain}}};ay.className="Identity";re.registerClass(ay);function jte(e,t="channelsLast"){let n,r;if(Ct(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Ya(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Ya(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Ya(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var $n=class extends yr{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Bte(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Vte(this.distribution),this.seed=e.seed}apply(e,t){let n=jte(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`${this.getClassName()} does not support dType ${t}.`);return qd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Sl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};$n.className="VarianceScaling";re.registerClass($n);var Wp=class extends $n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Wp.className="GlorotUniform";re.registerClass(Wp);var Bp=class extends $n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Bp.className="GlorotNormal";re.registerClass(Bp);var Vp=class extends $n{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Vp.className="HeNormal";re.registerClass(Vp);var jp=class extends $n{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};jp.className="HeUniform";re.registerClass(jp);var Up=class extends $n{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Up.className="LeCunNormal";re.registerClass(Up);var Hp=class extends $n{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Hp.className="LeCunNormal";re.registerClass(Hp);var sy=class extends yr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new De("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return P(()=>{if(e.length<2)throw new De("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Pp(n,0,1,"float32"),a=Pw.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),z(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};sy.className="Orthogonal";re.registerClass(sy);var a6={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function s6(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function St(e){return BA(e)}function gt(e){if(typeof e=="string"){let t=e in a6?a6[e]:e;if(t==="GlorotNormal")return new Bp;if(t==="GlorotUniform")return new Wp;if(t==="HeNormal")return new Vp;if(t==="HeUniform")return new jp;if(t==="LeCunNormal")return new Up;if(t==="LeCunUniform")return new Hp;{let n={};return n.className=t,n.config={},s6(n)}}else return e instanceof yr?e:s6(e)}function ute(){return new QA}function cte(){return new Lp}function hte(e){return new ey(e)}function dte(e){return new ty(e)}function pte(e){return new ny(e)}function fte(e){return new ry(e)}function mte(e){return new ay(e)}function Ate(e){return new $n(e)}function yte(e){return new Wp(e)}function gte(e){return new Bp(e)}function xte(e){return new Vp(e)}function bte(e){return new jp(e)}function wte(e){return new Up(e)}function _te(e){return new Hp(e)}function vte(e){return new sy(e)}var i6={};Me(i6,{Layer:()=>qe,RNN:()=>Yr,RNNCell:()=>Oc,activation:()=>ine,add:()=>mne,alphaDropout:()=>Jne,average:()=>Ane,averagePooling1d:()=>iy,averagePooling2d:()=>oy,averagePooling3d:()=>ly,avgPool1d:()=>Ine,avgPool2d:()=>Nne,avgPool3d:()=>Ene,avgPooling1d:()=>Sne,avgPooling2d:()=>Tne,avgPooling3d:()=>Cne,batchNormalization:()=>_ne,bidirectional:()=>Une,concatenate:()=>yne,conv1d:()=>Yte,conv2d:()=>Jte,conv2dTranspose:()=>Qte,conv3d:()=>ene,conv3dTranspose:()=>tne,convLstm2d:()=>Wne,convLstm2dCell:()=>Bne,cropping2D:()=>rne,dense:()=>one,depthwiseConv2d:()=>sne,dot:()=>wne,dropout:()=>lne,elu:()=>Hte,embedding:()=>fne,flatten:()=>cne,gaussianDropout:()=>Yne,gaussianNoise:()=>Zne,globalAveragePooling1d:()=>Rne,globalAveragePooling2d:()=>Mne,globalMaxPool1d:()=>Gne,globalMaxPool2d:()=>qne,globalMaxPooling1d:()=>l6,globalMaxPooling2d:()=>u6,gru:()=>$ne,gruCell:()=>Dne,input:()=>o6,inputLayer:()=>Ute,layerNormalization:()=>vne,leakyReLU:()=>qte,lstm:()=>One,lstmCell:()=>zne,masking:()=>Qne,maxPool1d:()=>Xne,maxPool2d:()=>Kne,maxPooling1d:()=>c6,maxPooling2d:()=>h6,maxPooling3d:()=>Fne,maximum:()=>gne,minimum:()=>xne,multiply:()=>bne,permute:()=>pne,prelu:()=>Xte,reLU:()=>Gte,repeatVector:()=>hne,reshape:()=>dne,rnn:()=>Vne,separableConv2d:()=>nne,simpleRNN:()=>Pne,simpleRNNCell:()=>Lne,softmax:()=>Kte,spatialDropout1d:()=>une,stackedRNNCells:()=>jne,thresholdedReLU:()=>Zte,timeDistributed:()=>Hne,upSampling2d:()=>ane,zeroPadding2d:()=>kne});var ere=0;function d6(){return ere++}var Gp={};function qp(e=""){return e in Gp||(Gp[e]=0),Gp[e]+=1,e+Gp[e].toString()}function uy(e){return Array.isArray(e)&&Array.isArray(e[0])}function Xp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function at(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Kp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var p6="Variable",f6=class{constructor(e,t="float32",n=p6,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=d6(),n=n==null?p6:n,this.originalName=Jv(n),this.name=Qv(this.originalName),this.trainable_=r,this.constraint=a,this.val=bw(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),tre(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function tre(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function cy(e){return e.map(t=>t.read())}function hy(e){e.forEach(t=>{t[0].write(t[1])})}var Ft=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Fr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=d6(),s!=null&&(this.originalName=Jv(s),this.name=Qv(this.originalName)),this.rank=t.length}},nre=0,Zp=class{constructor(e,t){this.callArgs=t,this.id=nre++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},rre=0,qe=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=rre++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ga(n)+"_"+qp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Cr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Fn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Fn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ya(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ya(`Layer ${this.name} is not connected, no input to return.`);return Fn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ya(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ya(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Fn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=At(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=At(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;na.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of At(e))s.push(i.shape);this.build(Fn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=At(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Fn(o),this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=are(e),i=this.computeOutputShape(s),o,l=sre(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new Fr(l,c,this,At(e),t,this.name,u)):o=new Fr(l,i,this,At(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ya(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ya(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Cr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Kp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return cy(e?this.trainableWeights:this.weights)}setWeights(e){P(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=cy(t);for(let a=0;aa.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=At(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=At(e);t=At(t),n=At(n),r=At(r),a=Xp(a),s=Xp(s);let l=[],c=[],u=[];for(let h of o)l.push(h.sourceLayer),c.push(h.nodeIndex),u.push(h.tensorIndex);new Zp({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;he.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function are(e){e=At(e);let t=[];for(let n of e)t.push(n.shape);return Fn(t)}function sre(e){return"float32"}function m6(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s0){let a=await Promise.all(t);for(let s=0;sse(this.totals[r],z(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:P(()=>{let r=z(Ae(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Ht(t[n])}))}},b6=class extends Xl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;inew w6(n,t))}var gr=class{constructor(){}static registerCallbackConstructor(e,t){_.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),gr.checkForDuplicate(t),gr.constructors[e]==null&&(gr.constructors[e]=[]),gr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in gr.constructors)gr.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){gr.constructors={}}static createCallbacks(e){let t=[];for(let n in gr.constructors){let r=+n;e>=r&&t.push(...gr.constructors[r])}return t.map(n=>new n)}};gr.constructors={};function v6(e,t,n,r,a,s,i,o,l){let c=new b6,u=[new ore,...gr.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let h=new x6(u);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:c}}function $r(e,t={},n=!1){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Yp(e,t){return P(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Te($c(e),t,!0),r=Qu(n.shape,Wt()),a=en(Ur(n,r));return Ae(e,a)})}function Wi(e,t){return P(()=>It($c(ye(t,e)),-1))}function Jp(e,t){return P(()=>It(zt(ye(t,e)),-1))}function Kl(e,t){return P(()=>{let n=ye(e,t),r=En(zt(e),Wt(),Number.MAX_VALUE),a=zt(Ae(n,r));return z(100,It(a,-1))})}function lre(e,t){return P(()=>{let n=En(t,Wt(),Number.MAX_VALUE),r=zn(se(1,n)),a=En(e,Wt(),Number.MAX_VALUE),s=zn(se(1,a));return It($c(ye(r,s)),-1)})}function ure(e,t){return P(()=>{let n=Ur(0,ye(1,z(e,t)));return It($c(n),-1)})}function cre(e,t){return P(()=>{let n=Ur(0,ye(1,z(e,t)));return It(n,-1)})}function hre(e,t){return P(()=>{let n=Te(z(e,t),-1),r=Rn(z(ye(1,e),t),-1);return Ur(0,se(1,ye(r,n)))})}function dre(e,t){return P(()=>{let n=Math.log(2),r=ye(t,e),a=ye(se(r,_i(z(-2,r))),n);return It(a,-1)})}function zc(e,t,n=!1){return P(()=>{if(n)t=oc(t);else{let r=Te(t,t.shape.length-1,!0);t=Ae(t,r)}return t=En(t,Wt(),1-Wt()),kt(Te(z(e.toFloat(),zn(t)),t.shape.length-1))})}function Qp(e,t,n=!1){return P(()=>{let r=vl($te(e)).toInt();t=En(t,Wt(),1-Wt());let a=t.shape,s=ml(r,a[a.length-1]).reshape(a);return zc(s,t,n)})}function pre(e,t){if(!_.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return P(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function e0(e,t){return P(()=>{let n;return n=En(t,Wt(),1-Wt()),n=zn(Ae(n,ye(1,n))),It(pre(e,n),-1)})}function fre(e,t){return P(()=>{let n=En(e,Wt(),1),r=En(t,Wt(),1);return Te(z(e,zn(Ae(n,r))),-1)})}function mre(e,t){return P(()=>{let n=zn(se(Wt(),t));return It(ye(t,z(e,n)),-1)})}function dy(e,t){return P(()=>{let n=Yp(e,-1),r=Yp(t,-1),a=z(n,r);return kt(Te(a,-1))})}var t0={meanSquaredError:Wi,meanAbsoluteError:Jp,meanAbsolutePercentageError:Kl,meanSquaredLogarithmicError:lre,squaredHinge:ure,hinge:cre,categoricalHinge:hre,logcosh:dre,categoricalCrossentropy:zc,sparseCategoricalCrossentropy:Qp,binaryCrossentropy:e0,kullbackLeiblerDivergence:fre,poisson:mre,cosineProximity:dy};function py(e){if(typeof e=="string"){if(e in t0)return t0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function fy(e,t){return P(()=>{let n=z(.5,Ln(t)),r=Mc(pr(t,n),e.dtype);return It(Ba(e,r),-1)})}function my(e,t){return P(()=>Mc(Ba(Ai(e,-1),Ai(t,-1)),"float32"))}function k6(e,t){return P(()=>fr(e.equal(1),t.equal(1)).sum().cast("float32"))}function Are(e,t){return P(()=>fr(e.equal(1),t.equal(0)).sum().cast("float32"))}function yre(e,t){return P(()=>fr(e.equal(0),t.equal(1)).sum().cast("float32"))}function I6(e,t){return P(()=>{let n=k6(e,t),r=yre(e,t),a=n.add(r);return Cn(pr(a,0),n.div(a),0).cast("float32")})}function gre(e,t){return P(()=>{let n=k6(e,t),r=Are(e,t),a=n.add(r);return Cn(pr(a,0),n.div(a),0).cast("float32")})}function S6(e,t){return e0(e,t)}function N6(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Ba(e,t).asType("float32")}var xre=Wi,bre=Wi,wre=Jp,_re=Jp,vre=Kl,kre=Kl,Ay=zc,Ire=dy,T6=Qp,n0={binaryAccuracy:fy,categoricalAccuracy:my,precision:I6,categoricalCrossentropy:Ay,sparseCategoricalCrossentropy:T6,mse:xre,MSE:bre,mae:wre,MAE:_re,mape:vre,MAPE:kre,cosine:Ire};function Sre(e){if(typeof e=="string"&&e in n0)return n0[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function r0(e){if(Kr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(t0))if(t0[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(n0))if(n0[n]===e){t=n;break}return t!==void 0?t:e.name}}function Nre(e){let t={Adagrad:()=>Si.adagrad(.01),Adadelta:()=>Si.adadelta(1,.95,Wt()),Adam:()=>Si.adam(.001,.9,.999,Wt()),Adamax:()=>Si.adamax(.002,.9,.999,Wt(),0),RMSProp:()=>Si.rmsprop(.001,.9,0,Wt()),SGD:()=>Si.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var E6=1*1024*1024;function C6(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!yy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>E6&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${E6}.`)}}function yy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!yy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!yy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Mre(e,t,n,r=console.log){let a=Ere(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!a){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}r("_".repeat(t)),a0(s,n,r),r("=".repeat(t));let o=e.layers;for(let u=0;u1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function a0(e,t,n=console.log){let r="";for(let a=0;a0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function Cre(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];a0(i,t,n)}function Rre(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(u){a="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let h=0;hm.name),l=[],c=t.names();for(let m of o)c.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),h,d;if(by[u]==null){let m=$re(i,t);h=m.sorted,d=m.recipientCounts,by[u]=h,M6[u]=d}h=by[u],d={},a||Object.assign(d,M6[u]);let p=new Bi(t);for(let m=0;mr.maxNumTensors&&(r.maxNumTensors=C),C0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=F6(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=F6(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(c=>r[l].add(c))}}return{sorted:n,recipientCounts:Ore(r)}}function Ore(e){let t={};for(let n in e)t[n]=e[n].size;return t}function F6(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)a[c.name]==null&&(a[c.name]=new Set),a[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:r,recipientMap:a}}function Dre(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;ry.name)}`);Za(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;Kr(x===0,"input layer has >1 nodes"),Kr(v===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,x,v,b,w)=>{(v==null||b==null||w==null)&&(v=y.sourceLayer,b=y.nodeIndex,w=y.tensorIndex);let k=v.inboundNodes[b];if(x.indexOf(k)!==-1)throw new Cr(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(g.indexOf(k)!==-1)return;this.containerNodes.add(Jr.nodeKey(v,b)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(k)===-1&&x.push(k);let N=k.inboundLayers.length;for(let C=0;C=0;)x.splice(x.indexOf(k),1);i.push(k)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],x=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,x),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let v=0;vparseInt(y,10)).sort(Op);this.layers=[];for(let y of p){let g=d[y];g.sort((x,v)=>{let b=s[x.id],w=s[v.id];return bw?1:0});for(let x of g)x instanceof Jr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(Op);let m=this.inputs.slice(),f=[];for(let y of p)for(let g of h[y]){let x=g.outboundLayer;if(x!=null){for(let v of g.inputTensors)if(m.indexOf(v)===-1)throw new Cr(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of g.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(x=>x===y).length;if(g!==1)throw new Cr(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Zp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${r} weights are not set: ${s}`)}hy(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${xy}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=gy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return P(()=>{e=At(e);let n=new Bi;for(let r=0;r{e=At(e);let n;return t==null?n=Di(null,e.length):n=At(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Xp(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;iparseInt(i,10)).sort(Op);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(c.id)!==-1)continue;let u=[];for(let m=0;mparseInt(o,10)).sort(Op);for(let o of r){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,h=c.inputTensors,d=c.outputTensors,p=new Array;for(let m of h)m.id in n&&p.push(n[m.id]);if(p.length===h.length){let m={},f,A,y,g;if(c.callArgs!=null&&(m=c.callArgs),p.length===1){let[x,v]=p[0];m.mask==null&&(m.mask=v),y=At(u.call(x,m)),g=At(u.computeMask(x,v)),f=[x],A=[v]}else f=p.map(x=>x[0]),A=p.map(x=>x[1]),m.mask==null&&(m.mask=A),y=At(u.call(f,m)),g=At(u.computeMask(f,A));if(u.activityRegularizer)throw new De("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x{let e=[];for(let t of this.layers)for(let n=0;n0){let m=[];for(let f=0;f0&&f.apply(Fn(y),g)}function l(f){let A=f.name,y=$r(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,f.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let c=t.name,u=t.layers;for(let f of u)l(f);for(;!ote(s);)for(let f of u){let A=a[f.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let f of p){let A=f[0],y=f[1],g=f[2];Kr(A in a);let x=a[A].inboundNodes[y].outputTensors;h.push(x[g])}let m=t.outputLayers;for(let f of m){let A=f[0],y=f[1],g=f[2];Kr(A in a);let x=a[A].inboundNodes[y].outputTensors;d.push(x[g])}return new e({inputs:h,outputs:d,name:c})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){P(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function zre(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function $6(e,t){return zre(e,t,"classWeight")}async function D6(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=P(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());we(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),sn(i,"float32")}else return null}function Pre(e,t){return z(e,t)}var Lre=32;function z6(e,t){let n,r,a=t;n=a.xs,r=a.ys,_.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=O6("input",e.inputNames,n),i=O6("output",e.outputNames,r),o=s[0].shape[0];_.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),_.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function O6(e,t,n){if(n instanceof Pe)return[n];if(Array.isArray(n))return _.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function Wre(e){if(e.length===3)throw new De("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Vre(e,t,n){let r=n.batchesPerEpoch!=null;if(_.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),_.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),_.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),_.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),_.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(P6(n.validationData))_.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Wre(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;a?c=l.slice().concat(l.map(A=>"val_"+A)):c=l.slice();let u=_6(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=v6(u,h,n.epochs,null,null,Bre(t,n),null,a,c);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m=n.batchesPerEpoch:x.done){if(a){let v;P6(n.validationData)?v=At(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=At(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Lre:n.validationBatchSize,verbose:0}));for(let b=0;b0)throw new De("Verbose mode is not implemented yet.");_.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=jre(t)?t:await t.iterator(),o=0,l=0;for(;r?l{if(c.value){let{xs:u,ys:h}=z6(e,c.value),d=u.concat(h),p=P(()=>a(d));if(we(d),l===0)for(let f=0;fse(s[f],z(m,A))),l>0&&we(y)}we(p),o+=m,++l}return s}),c.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Wc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>Li(r,t,n-t)):Li(e,t,n-t)}function _y(e,t){return P(()=>e==null?null:Array.isArray(e)?e.map(n=>_y(n,t)):n6(e,t.dtype==="int32"?t:t.toInt()))}function vy(e,t){let n=[],r=0,a=null;for(;r=e&&(a=e),n.push([r,a]),r=a;return n}async function Hre(e,t,n,r,a,s,i,o,l,c,u,h,d,p,m){a==null&&(a=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let f=!1;if(l!=null&&c!=null&&(f=!0),m!=null&&(f=!0,p==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=Rr(0,A)),i==null&&(i=1);let{callbackList:g,history:x}=v6(o,i,s,d,A,p,a,f,h);g.setModel(e),e.history=x,await g.onTrainBegin(),e.stopTraining_=!1;for(let v=d;v{let F=k[N][0],O=k[N][1],L=Li(w,F,O-F);C.batch=N,C.size=O-F;let V=_y(n,L),j=t(V);for(let U=0;U0){if(m=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new De("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let w=!0,k=await e.standardizeUserData(i,o,null,null,w,h);l=k[0],c=k[1],f=l.concat(c)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){m=!0;let w=Math.floor(a[0].shape[0]*(1-r.validationSplit)),k=a[0].shape[0];l=Wc(a,w,k),a=Wc(a,0,w),c=Wc(s,w,k),s=Wc(s,0,w),f=l.concat(c)}else r.validationSteps!=null&&(m=!0);let A=a.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),x,v;m?(e.makeTestFunction(),x=e.testFunction,v=g.slice().concat(g.map(w=>"val_"+w))):(x=null,f=[],v=g.slice());let b=_6(r.callbacks,r.yieldEvery);return await Hre(e,y,A,g,h,r.epochs,r.verbose,b,x,f,r.shuffle,v,r.initialEpoch,null,null)}finally{e.isTraining=!1,Vi(a,t),Vi(s,n),Vi(l,i),Vi(c,o),u!=null&&we(u)}}function L6(e){let t=[];e instanceof Pe&&(e=[e]);for(let n=0;nn.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof Pe)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function qre(e){return e instanceof Pe}function ky(e){return Array.isArray(e)}function W6(e){return!qre(e)&&!ky(e)}function B6(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(ky(e)&&e.length>0)i=!0;else if(W6(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(W6(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(ky(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=L6(s),n!=null)for(let i=0;i=0&&c!==u)throw new B(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function Xre(e,t,n){let r=Za(e.map(s=>s.shape[0]));r.sort();let a=Za(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!_.arraysEqual(r,a))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function Kre(e,t,n){let r=[Wi,e0,zc];for(let a=0;a1)throw new B(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var Yre="layers-model",xa=class extends Jr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Mre(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Nre(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ma))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(py(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>py(s))}else{let s=py(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s{for(let s=0;s1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=Zre(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Pi("metric",()=>{for(let s=0;s{let l="",c,u,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===e0?["accuracy","acc"].indexOf(d)!==-1?u=fy:["crossentropy","ce"].indexOf(d)!==-1&&(u=S6):this.lossFunctions[s]===Qp?["accuracy","acc"].indexOf(d)!==-1?u=N6:["crossentropy","ce"].indexOf(d)!==-1&&(u=T6):["accuracy","acc"].indexOf(d)!==-1?u=my:["crossentropy","ce"].indexOf(d)!==-1&&(u=Ay);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),h=u,c=l+f}else h=Sre(d),c=l+r0(d);let p;Pi(c,()=>{p=h}),a(s,c,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;wy(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return Fn(l)}finally{Vi(s[0],e),Vi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Ure(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new B(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new Bi;if(e instanceof Pe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;oi.name);for(let i=0;i0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return P(()=>{let r=this.checkNumSamples(e);if(n)throw new De("Verbose predictLoop() is not implemented yet.");let a=vy(r,t),s=this.outputs.map(i=>[]);for(let i=0;i{let o=a[i][0],l=a[i][1],c=Wc(e,o,l),u=[];if(Array.isArray(c))for(let d=0;ds[l].push(o));return Fn(s.map(i=>ot(i,0)))})}predict(e,t={}){let n=L6(e);V6(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return wy(r),this.predictLoop(n,r)}finally{Vi(n,e)}}predictOnBatch(e){V6(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new Cr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s0&&e[0].shape[0]%r!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let c=$6(r,this.outputNames);l=[];for(let u=0;u{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new De("Verbose mode is not implemented yet.");if(a!=null)throw new De("steps mode in testLoop() is not implemented yet");{let o=vy(s,n),l=sn(Rr(0,s));for(let c=0;c1&&(a+=`_${jv(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let p=0;p1&&p{d=se(d,p)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>P(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;lga(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=ga(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ga(r0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ga(r0(e)));{let e={};for(let t in this.metrics)e[t]=ga(r0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Pc(e.optimizer_config),n=$r(t),r;if(typeof e.loss=="string")r=Oi(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>Oi(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=Oi(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>Oi(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=Oi(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Nn.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Nn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:Yre,generatedBy:`TensorFlow.js tfjs-layers v${xy}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Nn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Nn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;C6(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){C6(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};xa.className="Model";re.registerClass(xa);var j6=class extends xa{};j6.className="Functional";re.registerClass(j6);async function Jre(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Pc(n),a=$r(r,t);if(e.weightsManifest!=null){let s=await Nn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),we(s)}return a}async function eae(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Nn.getLoadHandlers(e,t);if(n.length===0)n.push(Nn.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Qre(e,void 0,t)}async function Qre(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=$r(Pc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=tae(r.weightData,r.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),we(c),we(u.map(h=>h.tensor))}return o}function tae(e,t){let n=Nn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Zl=class extends xa{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:qp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Zl||e instanceof xa,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=A6({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=m6(this.outputs[0])}this.inboundNodes=[],new Zp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Di(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(at(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new xa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");a=t}else _.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Zl))throw new De(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=$r(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Zl.className="Sequential";re.registerClass(Zl);function nae(e){return new xa(e)}function rae(e){return new Zl(e)}function aae(e,t){return t==null&&(t={}),eae(e,t)}function o6(e){return A6(e)}function sae(e,t){gr.registerCallbackConstructor(e,t)}var Dn=class extends re.Serializable{getConfig(){return{}}},U6=class extends Dn{apply(e,t=1){return Ote(e,t)}};U6.className="elu";re.registerClass(U6);var H6=class extends Dn{apply(e){return Wd(e)}};H6.className="selu";re.registerClass(H6);var G6=class extends Dn{apply(e){return Hr(e)}};G6.className="relu";re.registerClass(G6);var q6=class extends Dn{apply(e){return P(()=>Il(6,Hr(e)))}};q6.className="relu6";re.registerClass(q6);var X6=class extends Dn{apply(e){return e}};X6.className="linear";re.registerClass(X6);var K6=class extends Dn{apply(e){return Tn(e)}};K6.className="sigmoid";re.registerClass(K6);var Z6=class extends Dn{apply(e){return Pte(e)}};Z6.className="hardSigmoid";re.registerClass(Z6);var Y6=class extends Dn{apply(e){return _i(e)}};Y6.className="softplus";re.registerClass(Y6);var J6=class extends Dn{apply(e){return zte(e)}};J6.className="softsign";re.registerClass(J6);var Q6=class extends Dn{apply(e){return gi(e)}};Q6.className="tanh";re.registerClass(Q6);var Iy=class extends Dn{apply(e,t=-1){return oc(e,t)}};Iy.className="softmax";re.registerClass(Iy);var e4=class extends Dn{apply(e,t=-1){return Fd(e,t)}};e4.className="logSoftmax";re.registerClass(e4);var t4=class extends Dn{apply(e,t=1){return P(()=>Tn(e.mul(t)).mul(e))}};t4.className="swish";re.registerClass(t4);var n4=class extends Dn{apply(e){return P(()=>z(e,gi(_i(e))))}};n4.className="mish";re.registerClass(n4);function es(e){return e.getClassName()}function Sy(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function ts(e){if(e==null){let t={};return t.className="linear",t.config={},Sy(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Sy(t)}else return e instanceof Dn?e:Sy(e)}function Ny(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var r4=class extends re.Serializable{},Bc=class extends r4{constructor(e){super();Ny(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return P(()=>{let t=Rt([1]);return this.hasL1&&(t=se(t,Te(z(this.l1,zt(e))))),this.hasL2&&(t=se(t,Te(z(this.l2,$c(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Bc.className="L1L2";re.registerClass(Bc);function iae(e){return Ny(e),new Bc({l1:e!=null?e.l1:null,l2:0})}function oae(e){return Ny(e),new Bc({l2:e!=null?e.l2:null,l1:0})}var a4={l1l2:"L1L2"};function ut(e){return BA(e)}function s4(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in a4?a4[e]:e,config:{}};return s4(t)}else return e instanceof r4?e:s4(e)}var Ty=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Hr(e);return this.maxValue!=null&&(n=En(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Ty.className="ReLU";re.registerClass(Ty);var Ey=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return ec(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Ey.className="LeakyReLU";re.registerClass(Ey);var Cy=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=gt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=xt(e.alphaRegularizer),this.alphaConstraint=Vt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=at(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r(Ct(t),t==="channelsFirst"?Je(e,[0,2,3,1]):e))}function i4(e,t){return P(()=>(Ct(t),t==="channelsFirst"?Je(e,[0,2,3,4,1]):e))}function lae(e,t,n,r=1,a="valid",s,i=1){return P(()=>{if(s==null&&(s=Er()),Ct(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Je(e,[0,2,1])),a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Id(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Mr(o,n)),o})}function o4(e,t,n,r=[1,1],a="valid",s,i,o=null){return P(()=>{if(s==null&&(s=Er()),Ct(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=$y(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ha.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Je(l,[0,3,1,2])),l})}function uae(e,t,n,r=[1,1,1],a="valid",s,i){return P(()=>{if(s==null&&(s=Er()),Ct(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=i4(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=wm(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Mr(o,n)),s==="channelsFirst"&&(o=Je(o,[0,4,1,2,3])),o})}var Dy=class extends qe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Dy.verifyArgs(t),this.rank=e,qt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new De(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Yl(t.kernelSize,e,"kernelSize"),this.strides=Yl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,sr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ct(this.dataFormat),this.activation=ts(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=gt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Vt(t.biasConstraint),this.biasRegularizer=xt(t.biasRegularizer),this.activityRegularizer=xt(t.activityRegularizer),this.dilationRate=Yl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Kr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!jA(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:es(this.activation),useBias:this.useBias,biasInitializer:St(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Vc=class extends Dy{constructor(e,t){super(e,t);this.kernel=null,Vc.verifyArgs(t),this.filters=t.filters,qt(this.filters,"filters"),this.kernelInitializer=gt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Vt(t.kernelConstraint),this.kernelRegularizer=xt(t.kernelRegularizer)}build(e){e=at(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return P(()=>{e=ze(e);let n,r=this.bias==null?null:this.bias.read(),a=Hv(this.activation.getClassName());if(a!=null&&this.rank===2)n=o4(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=lae(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=o4(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=uae(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new De("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=at(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a 0 but got ${JSON.stringify(e.filters)}`)}},jc=class extends Vc{constructor(e){super(2,e);jc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!jA(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};jc.className="Conv2D";re.registerClass(jc);var Uc=class extends Vc{constructor(e){super(3,e);Uc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Uc.className="Conv3D";re.registerClass(Uc);var Oy=class extends jc{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=ze(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],c=this.kernelSize[0],u=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=Qr(o,h,c,this.padding),m=Qr(l,d,u,this.padding),f=[a,p,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Je(n,[0,2,3,1]));let A=Sd(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=Je(A,[0,3,1,2])),this.bias!=null&&(A=Mr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=at(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Qr(t[r],o,s,this.padding),t[a]=Qr(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Oy.className="Conv2DTranspose";re.registerClass(Oy);var zy=class extends Uc{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==5)throw new B("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=ze(e);if(n.shape.length!==5)throw new B(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=r[o],c=r[s],u=r[i],h=this.kernelSize[0],d=this.kernelSize[1],p=this.kernelSize[2],m=this.strides[0],f=this.strides[1],A=this.strides[2],y=Qr(l,m,h,this.padding),g=Qr(c,f,d,this.padding),x=Qr(u,A,p,this.padding),v=[a,y,g,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Je(n,[0,2,3,4,1]));let b=nw(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(b=Je(b,[0,4,1,2,3])),this.bias!==null&&(b=Mr(b,this.bias.read(),this.dataFormat)),this.activation!==null&&(b=this.activation.apply(b)),b})}computeOutputShape(e){e=at(e);let t=e.slice(),n,r,a,s;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3,s=4):(n=4,r=1,a=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],h=this.strides[2];return t[n]=this.filters,t[r]=Qr(t[r],c,i,this.padding),t[a]=Qr(t[a],u,o,this.padding),t[s]=Qr(t[s],h,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};zy.className="Conv3DTranspose";re.registerClass(zy);var l4=class extends Vc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=xt(t.depthwiseRegularizer),this.depthwiseConstraint=Vt(t.depthwiseConstraint),this.pointwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=xt(t.pointwiseRegularizer),this.pointwiseConstraint=Vt(t.pointwiseConstraint)}build(e){if(e=at(e),e.length{e=ze(e);let n;if(this.rank===1)throw new De("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Je(e,[0,2,3,1])),n=Wm(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Mr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Je(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=St(this.depthwiseInitializer),e.pointwiseInitializer=St(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseConstraint),e.pointwiseConstraint=Bt(this.pointwiseConstraint),e}};l4.className="SeparableConv";var Py=class extends l4{constructor(e){super(2,e)}};Py.className="SeparableConv2D";re.registerClass(Py);var s0=class extends Vc{constructor(e){super(1,e);s0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!jA(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};s0.className="Conv1D";re.registerClass(s0);var Ly=class extends qe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return P(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=zp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return zp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=zp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return zp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ly.className="Cropping2D";re.registerClass(Ly);var Wy=class extends qe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Ete(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return P(()=>{let n=ze(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=Je(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return Je(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Wy.className="UpSampling2D";re.registerClass(Wy);function cae(e,t,n=[1,1],r="valid",a,s){return P(()=>{a==null&&(a=Er()),Ct(a);let i=$y(e,a);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=wl(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=Je(i,[0,3,1,2])),i})}var By=class extends Dy{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=gt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Vt(e.depthwiseConstraint),this.depthwiseRegularizer=xt(e.depthwiseRegularizer)}build(e){if(e=at(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{e=ze(e);let n=cae(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Mr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=Dr(t,this.kernelSize[0],this.padding,this.strides[0]),s=Dr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=St(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseRegularizer),e}};By.className="DepthwiseConv2D";re.registerClass(By);function u4(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function c4(e,t,n,r=!1,a,s,i=!1,o=!1){return P(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(Rr(2,l));if(t=Je(t,c),s!=null)throw new De("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=Qt(a,-1)),a=Je(a,c)),r&&(t=Wn(t,0),a!=null&&(a=Wn(a,0)));let u=[],h,d=n,p=t.shape[0],m=mr(t),f;a!=null&&(f=mr(a));for(let y=0;ye(g,d));if(a==null)h=x[0],d=x[1];else{let v=P(()=>{let b=f[y],w=Ln(b).sub(b),k=x[0].mul(b).add(d[0].mul(w)),N=d.map((C,F)=>x[1][F].mul(b).add(C.mul(w)));return{output:k,newStates:N}});h=v.output,d=v.newStates}o&&u.push(h)}let A;return o&&(A=cn(u,1)),[h,A,d]})}var Yr=class extends qe{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new i0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ft({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Rr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){uy(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return P(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;ni.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Ft({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new ya("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_=[Rt([n,this.cell.stateSize])];else if(e==null)we(this.states_),this.keptStates!=null&&(we(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_[0]=Rt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):we(this.states_);for(let r=0;rHt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=u4(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Ft({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof Fr){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=ze(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=c4((d,p)=>{let m=this.cell.call([d].concat(p),i);return[m[0],m.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,r);let h=this.returnSequences?c:l;return this.returnState?[h].concat(u):h})}getInitialState(e){return P(()=>{let t=Rt(e.shape);return t=Te(t,[1,2]),t=Fc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?KA(t,[1,n]):t):this.cell.stateSize>1?[KA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Yr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=$r(r,n);return new e(Object.assign(t,{cell:a}))}};Yr.className="RNN";re.registerClass(Yr);var Oc=class extends qe{},o0=class extends Oc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ja([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ja([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0Ln(e),rate:this.dropout,training:r})),0Ln(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Zr(z(e,s),this.kernel.read()):a=Zr(e,this.kernel.read()),this.bias!=null&&(a=Mr(a,this.bias.read())),i!=null&&(n=z(n,i));let o=se(a,Zr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:es(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),recurrentInitializer:St(this.recurrentInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};o0.className="SimpleRNNCell";re.registerClass(o0);var Vy=class extends Yr{constructor(e){e.cell=new o0(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};Vy.className="SimpleRNN";re.registerClass(Vy);var l0=class extends Oc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ts(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ja([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ja([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0Ln(e),rate:this.dropout,training:n,count:3})),0Ln(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0{this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};jy.className="GRU";re.registerClass(jy);var Hc=class extends Oc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ts(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ja([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ja([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=at(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends yr{apply(i,o){let l=a.apply([s]),c=new Lp().apply([s]),u=a.apply([s*2]);return t6(t6(l,c),u)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0Ln(e),rate:this.dropout,training:n,count:4})),0Ln(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0{this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Uy.className="LSTM";re.registerClass(Uy);var i0=class extends Oc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return P(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i{Pi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push($r(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return cy(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;sr6(t(),n),i=()=>Dc(s,t,r);return!a||a<=1?Ht(i().clone()):Array(a).fill(void 0).map(i).map(o=>Ht(o.clone()))}var hae=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a{if(this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return P(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Rt(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new ya("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_=[Rt(a)];else if(e==null)we(this.states_),this.keptStates!=null&&(we(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_[0]=Rt(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):we(this.states_);for(let s=0;sHt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=Dr(l,r[0],a,s[0],i[0]),h=Dr(c,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,h]:[u,h,n]]}};h4.className="ConvRNN2D";var u0=class extends Hc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,qt(this.filters,"filters"),this.kernelSize=Yl(n,2,"kernelSize"),this.kernelSize.forEach(o=>qt(o,"kernelSize")),this.strides=Yl(r||1,2,"strides"),this.strides.forEach(o=>qt(o,"strides")),this.padding=a||"valid",sr(this.padding),this.dataFormat=s||"channelsLast",Ct(this.dataFormat),this.dilationRate=Yl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>qt(o,"dilationRate"))}build(e){var t;e=at(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends yr{apply(u,h){let d=l.apply([c]),p=Pn([c]),m=l.apply([c*2]);return YA([d,p,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return P(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0Ln(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,ae,te)=>!ae||!ae[te]?Y:z(ae[te],Y),c=l(r,o,0),u=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0Ln(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,m=l(a,p,0),f=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[x,v,b,w]=Lt(this.kernel.read(),i,g),[k,N,C,F]=this.useBias?Lt(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,x,k,this.padding),u=this.inputConv(u,v,N,this.padding),h=this.inputConv(h,b,C,this.padding),d=this.inputConv(d,w,F,this.padding);let[O,L,V,j]=Lt(this.recurrentKernel.read(),i,g);m=this.recurrentConv(m,O),f=this.recurrentConv(f,L),A=this.recurrentConv(A,V),y=this.recurrentConv(y,j);let U=this.recurrentActivation.apply(se(c,m)),X=this.recurrentActivation.apply(se(u,f)),G=se(z(X,s),z(U,this.activation.apply(se(h,A)))),ee=z(this.recurrentActivation.apply(se(d,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=hae(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=ha(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Mr(a,n,this.dataFormat):a}recurrentConv(e,t){return ha(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};u0.className="ConvLSTM2DCell";re.registerClass(u0);var Hy=class extends h4{constructor(e){let t=new u0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Hy.className="ConvLSTM2D";re.registerClass(Hy);var c0=class extends qe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);if(0r6(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};c0.className="Dropout";re.registerClass(c0);var Gy=class extends c0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Gy.className="SpatialDropout1D";re.registerClass(Gy);var qy=class extends qe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Vt(e.kernelConstraint),this.biasConstraint=Vt(e.biasConstraint),this.kernelRegularizer=xt(e.kernelRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=at(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=at(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e),r=Hv(this.activation.getClassName()),a;return r!=null?a=Zr(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Zr(n,this.kernel.read()),this.bias!=null&&(a=Mr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:es(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};qy.className="Dense";re.registerClass(qy);var Xy=class extends qe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=at(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ya(e,1)]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:es(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Ky.className="Activation";re.registerClass(Ky);var Zy=class extends qe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return P(()=>(e=ze(e),Fte(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Zy.className="RepeatVector";re.registerClass(Zy);var Yy=class extends qe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=ze(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Yy.className="Reshape";re.registerClass(Yy);var Jy=class extends qe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Rr(1,e.dims.length+1);if(!_.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ft({ndim:this.dims.length+1})]}computeOutputShape(e){e=at(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return Je(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Jy.className="Permute";re.registerClass(Jy);var Qy=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),r=-1;return Xu(ki(n,this.maskValue),r)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e),r=-1,a=!0,s=Xu(ki(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};Qy.className="Masking";re.registerClass(Qy);var e2=class extends qe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(At(e.inputLength))}this.inputDim=e.inputDim,qt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,qt(this.outputDim,"outputDim"),this.embeddingsInitializer=gt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=xt(e.embeddingsRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.embeddingsConstraint=Vt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return P(()=>this.maskZero?(e=ze(e),ki(e,He(e))):null)}computeOutputShape(e){if(e=at(e),this.inputLength==null)return[...e,this.outputDim];let t=At(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);return n.dtype!=="int32"&&(n=Mc(n,"int32")),n6(this.embeddings.read(),n.as1D()).reshape(at(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:St(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Bt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};e2.className="Embedding";re.registerClass(e2);var ji=class extends qe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new De}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;aa.length);e.indexOf(null)===-1&&Za(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return P(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Ja(r);for(let s of e){let i=s.rank;for(let o=0;o1){let c=Rr(1,l).concat([0]);n.push(Je(o,c)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=Je(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(Rr(0,i-1));s=Je(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Qt(r,0));let n=t[0];for(let r=1;r{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return P(()=>YA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return P(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s3||t.shape.length>3)throw new De("batchDot is not implemented for tensors of 4D or higher rank yet");if(_.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),_.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new De("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return P(()=>{let i;if(r>a){i=r-a;let l=[];for(let c=0;cr){i=a-r;let l=[];for(let c=0;c0){let l;r>a?l=r+a-3:l=r-1;let c=[];for(let u=l;u"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new B(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>Gc(a,e[s].shape.length)):r=[Gc(this.axes,t.shape.length),Gc(this.axes,n.shape.length)],this.normalize&&(t=Yp(t,r[0]),n=Yp(n,r[1])),dae(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Gc(this.axes,e.length),Gc(this.axes,t.length)],n}computeOutputShape(e){_.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};o2.className="Dot";re.registerClass(o2);var l2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e);return Dc(()=>Pp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};l2.className="GaussianNoise";re.registerClass(l2);var u2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?Dc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(Pp(n.shape,1,r))},()=>n,t.training||!1):n})}};u2.className="GaussianDropout";re.registerClass(u2);var c2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Dc(()=>{let r=ze(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=ja(Sl(n),this.rate);o=Mc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>ze(e),t.training||!1)}return e})}};c2.className="AlphaDropout";re.registerClass(c2);function qc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=Xb(e,t,n,r,a,s);else if(e.rank===3)i=Kb(e,t,n,r,a,s);else if(e.rank===4)i=Zb(e,t,n,r,a,s);else throw new De(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function pae(e,t,n,r,a=.001){return P(()=>{let s=Dd(e,r),i=s.mean,o=s.variance;return[qc(e,i,o,n,t,a),i,o]})}function fae(e,t,n,r,a=.001){return P(()=>{let s=Dd(e,r),i=s.mean,o=s.variance,l=[];for(let p of Rr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let c=i.reshape(l),u=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[qc(e,c,u,d,h,a),i,o]})}function mae(e,t,n,r,a=.001){return _.arraysEqual(r.slice().sort(),Rr(0,e.rank-1))?pae(e,t,n,r,a):fae(e,t,n,r,a)}var h2=class extends qe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.movingMeanInitializer=gt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=gt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Vt(e.betaConstraint),this.gammaConstraint=Vt(e.gammaConstraint),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer)}build(e){e=at(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ft({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training,r=ze(e),a=r.shape,s=a.length,i=Rr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Di(1,s);l[o]=a[o];let c=i.slice();c.sort();let u=!_.arraysEqual(c,Rr(0,s).slice(0,s-1)),h=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return qc(r,A,y,g,x,this.epsilon)}else return qc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,m]=mae(r,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(A,y,g)=>{P(()=>{let x=1-g,v=A.read(),b=v.sub(y).mul(x);A.write(v.sub(b))})};return(()=>{f(this.movingMean,p,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:St(this.betaInitializer),gammaInitializer:St(this.gammaInitializer),movingMeanInitializer:St(this.movingMeanInitializer),movingVarianceInitializer:St(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Bt(this.betaConstraint),gammaConstraint:Bt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};h2.className="BatchNormalization";re.registerClass(h2);var d2=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=at(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Za(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=ze(e),r=n.shape,a=r.length;return P(()=>{let s=!0,{mean:i,variance:o}=Dd(n,this.axis,s),l=Di(1,a);for(let m of this.axis)l[m]=r[m];let c=m=>m!=null&&m.shape.length!==a&&this.axis!==[a-1]?m.reshape(l):m,u=c(this.gamma.read()),h=c(this.beta.read()),d=[],p=[];for(let m=0;m{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Er()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],da(e,r)})}var p2=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Er():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=at(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return P(()=>Aae(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};p2.className="ZeroPadding2D";re.registerClass(p2);function h0(e,t,n,r,a,s){return P(()=>{Ct(a),Kv(s),sr(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=Er()),s==null&&(s="max"),e=$y(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=nc(e,t,n,o):i=Zu(e,t,n,o),a==="channelsFirst"&&(i=Je(i,[0,3,1,2])),i})}function d4(e,t,n,r,a,s){return P(()=>{Ct(a),Kv(s),sr(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=Er()),s==null&&(s="max"),e=i4(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Fm(e,t,n,o):i=gm(e,t,n,o),a==="channelsFirst"&&(i=Je(i,[0,4,1,2,3])),i})}var p4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(qt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,sr(this.padding),this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){e=at(e);let t=Dr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return P(()=>{this.invokeCallHook(e,t),e=Fc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Ua(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},f2=class extends p4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),h0(e,t,n,r,a,"max")}};f2.className="MaxPooling1D";re.registerClass(f2);var m2=class extends p4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),h0(e,t,n,r,a,"avg")}};m2.className="AveragePooling1D";re.registerClass(m2);var f4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),sr(this.padding),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Dr(t,this.poolSize[0],this.padding,this.strides[0]),n=Dr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},A2=class extends f4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),h0(e,t,n,r,a,"max")}};A2.className="MaxPooling2D";re.registerClass(A2);var y2=class extends f4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),h0(e,t,n,r,a,"avg")}};y2.className="AveragePooling2D";re.registerClass(y2);var m4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),sr(this.padding),this.inputSpec=[new Ft({ndim:5})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Dr(t,this.poolSize[0],this.padding,this.strides[0]),n=Dr(n,this.poolSize[1],this.padding,this.strides[1]),r=Dr(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},g2=class extends m4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),d4(e,t,n,r,a,"max")}};g2.className="MaxPooling3D";re.registerClass(g2);var x2=class extends m4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),d4(e,t,n,r,a,"avg")}};x2.className="AveragePooling3D";re.registerClass(x2);var A4=class extends qe{constructor(e){super(e);this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new De}},b2=class extends A4{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=ze(e);return It(n,1)})}};b2.className="GlobalAveragePooling1D";re.registerClass(b2);var w2=class extends A4{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=ze(e);return Rn(n,1)})}};w2.className="GlobalMaxPooling1D";re.registerClass(w2);var y4=class extends qe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new De}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},_2=class extends y4{call(e,t){return P(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?It(n,[1,2]):It(n,[2,3])})}};_2.className="GlobalAveragePooling2D";re.registerClass(_2);var v2=class extends y4{call(e,t){return P(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Rn(n,[1,2]):Rn(n,[2,3])})}};v2.className="GlobalMaxPooling2D";re.registerClass(v2);var g4=class extends qe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=$r(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},k2=class extends g4{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=at(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=at(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return P(()=>(e=ze(e),c4((n,r)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};k2.className="TimeDistributed";re.registerClass(k2);function yae(e){zi(Tte,"BidirectionalMergeMode",e)}var gae="concat",I2=class extends g4{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=$r(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=$r(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?gae:e.mergeMode,yae(this.mergeMode),e.weights)throw new De("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):Fn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=u4(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Ft({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(r!=null)throw new De("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Fr;for(let l of s)if(l instanceof Fr!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let h=super.apply(l,t);return this.inputSpec=u,h}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Wn(a,1));let i;return this.mergeMode==="concat"?i=YA([r,a]):this.mergeMode==="sum"?i=se(r,a):this.mergeMode==="ave"?i=z(.5,se(r,a)):this.mergeMode==="mul"?i=z(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Pi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Pi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=$r(t.layer);if(delete t.layer,t.numConstants!=null)throw new De("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};I2.className="Bidirectional";re.registerClass(I2);function Ute(e){return new ql(e)}function Hte(e){return new Ry(e)}function Gte(e){return new Ty(e)}function qte(e){return new Ey(e)}function Xte(e){return new Cy(e)}function Kte(e){return new Fy(e)}function Zte(e){return new My(e)}function Yte(e){return new s0(e)}function Jte(e){return new jc(e)}function Qte(e){return new Oy(e)}function ene(e){return new Uc(e)}function tne(e){return new zy(e)}function nne(e){return new Py(e)}function rne(e){return new Ly(e)}function ane(e){return new Wy(e)}function sne(e){return new By(e)}function ine(e){return new Ky(e)}function one(e){return new qy(e)}function lne(e){return new c0(e)}function une(e){return new Gy(e)}function cne(e){return new Xy(e)}function hne(e){return new Zy(e)}function dne(e){return new Yy(e)}function pne(e){return new Jy(e)}function fne(e){return new e2(e)}function mne(e){return new t2(e)}function Ane(e){return new r2(e)}function yne(e){return new i2(e)}function gne(e){return new a2(e)}function xne(e){return new s2(e)}function bne(e){return new n2(e)}function wne(e){return new o2(e)}function _ne(e){return new h2(e)}function vne(e){return new d2(e)}function kne(e){return new p2(e)}function iy(e){return new m2(e)}function Ine(e){return iy(e)}function Sne(e){return iy(e)}function oy(e){return new y2(e)}function Nne(e){return oy(e)}function Tne(e){return oy(e)}function ly(e){return new x2(e)}function Ene(e){return ly(e)}function Cne(e){return ly(e)}function Rne(e){return new b2(e)}function Mne(e){return new _2(e)}function l6(e){return new w2(e)}function u6(e){return new v2(e)}function c6(e){return new f2(e)}function h6(e){return new A2(e)}function Fne(e){return new g2(e)}function $ne(e){return new jy(e)}function Dne(e){return new l0(e)}function One(e){return new Uy(e)}function zne(e){return new Hc(e)}function Pne(e){return new Vy(e)}function Lne(e){return new o0(e)}function Wne(e){return new Hy(e)}function Bne(e){return new u0(e)}function Vne(e){return new Yr(e)}function jne(e){return new i0(e)}function Une(e){return new I2(e)}function Hne(e){return new k2(e)}var Gne=l6,qne=u6,Xne=c6,Kne=h6;function Zne(e){return new l2(e)}function Yne(e){return new u2(e)}function Jne(e){return new c2(e)}function Qne(e){return new Qy(e)}var x4={};Me(x4,{MAPE:()=>Eae,MSE:()=>Mae,binaryAccuracy:()=>xae,binaryCrossentropy:()=>bae,categoricalAccuracy:()=>_ae,categoricalCrossentropy:()=>vae,cosineProximity:()=>Sae,mape:()=>Cae,meanAbsoluteError:()=>Nae,meanAbsolutePercentageError:()=>Tae,meanSquaredError:()=>Rae,mse:()=>Fae,precision:()=>kae,recall:()=>Iae,sparseCategoricalAccuracy:()=>wae});function xae(e,t){return fy(e,t)}function bae(e,t){return S6(e,t)}function wae(e,t){return N6(e,t)}function _ae(e,t){return my(e,t)}function vae(e,t){return Ay(e,t)}function kae(e,t){return I6(e,t)}function Iae(e,t){return gre(e,t)}function Sae(e,t){return dy(e,t)}function Nae(e,t){return Jp(e,t)}function Tae(e,t){return Kl(e,t)}function Eae(e,t){return Kl(e,t)}function Cae(e,t){return Kl(e,t)}function Rae(e,t){return Wi(e,t)}function Mae(e,t){return Wi(e,t)}function Fae(e,t){return Wi(e,t)}var b4={};Me(b4,{modelFromJSON:()=>Jre});var w4={};Me(w4,{l1:()=>Dae,l1l2:()=>$ae,l2:()=>Oae});function $ae(e){return new Bc(e)}function Dae(e){return iae(e)}function Oae(e){return oae(e)}var _4=class extends Xl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof xa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function d0(e,t){return et}var k4=class extends _4{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new De("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=d0:this.mode==="max"?this.monitorFunc=v4:this.monitor.indexOf("acc")!==-1?this.monitorFunc=v4:this.monitorFunc=d0,this.monitorFunc===d0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===d0?Infinity:-Infinity}async onEpochEnd(e,t){await Qa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function zae(e){return new k4(e)}var Pae={earlyStopping:zae},Or;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Or||(Or={}));var I4;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(I4||(I4={}));var S2={};function Lae(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};S2[e]=n}function S4(e){return S2[e]}function Wae(e){delete S2[e]}function I(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return yn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>yn(h,n,r,a));let c=yn(t.inputNames.slice(o)[0],n,r,a),u=c.dataSync();return s.type==="number"?u[0]:_.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function yn(e,t,n,r){let[a,s]=jn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[p0(a,o)]);return i!==void 0?t[p0(a,i)][s]:void 0}function Bae(e,t,n){return t[p0(e,n.currentContextId)]}function ba(e,t){let[n,r]=jn(e);return[p0(n,t&&t.currentContextId),r]}function p0(e,t){return t?`${e}-${t}`:e}function jn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function f0(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function wa(e){return e.kept?e:Br(e)}var N4={};Me(N4,{json:()=>Vae});var Vae=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],T4={};Me(T4,{json:()=>jae});var jae=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],E4={};Me(E4,{json:()=>Uae});var Uae=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],C4={};Me(C4,{json:()=>Hae});var Hae=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],R4={};Me(R4,{json:()=>Gae});var Gae=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],M4={};Me(M4,{json:()=>qae});var qae=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],F4={};Me(F4,{json:()=>Xae});var Xae=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],$4={};Me($4,{json:()=>Kae});var Kae=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],D4={};Me(D4,{json:()=>Zae});var Zae=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],O4={};Me(O4,{json:()=>Yae});var Yae=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],z4={};Me(z4,{json:()=>Jae});var Jae=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],P4={};Me(P4,{json:()=>Qae});var Qae=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],L4={};Me(L4,{json:()=>ese});var ese=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],W4={};Me(W4,{json:()=>tse});var tse=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],B4={};Me(B4,{json:()=>nse});var nse=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],V4={};Me(V4,{json:()=>rse});var rse=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],j4={};Me(j4,{json:()=>ase});var ase=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],H4=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[N4,T4,E4,C4,R4,M4,F4,z4,O4,$4,P4,L4,W4,B4,V4,j4,D4],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?r.push(m[f.name]):f.op==="Const"?a.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(m=>{let f=i[m];f.inputNames.forEach(A=>{let[y]=ba(A);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(u).length===0?h.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(u).forEach(m=>{let[f]=ba(m),A=i[f];A!=null&&(A.signatureKey=u[m],l.push(A))}),Object.keys(c).length>0?Object.keys(c).forEach(m=>{let[f]=ba(m),A=i[f];A&&(A.signatureKey=c[m],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=S4(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=N2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=N2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=D2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=D2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=E2(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=E2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=$2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=$2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=T2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=T2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=z2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=z2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=F2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=F2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=O2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=O2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=R2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=R2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=M2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=M2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=U4(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=U4(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&r.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=ba(c.name),h={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:C2(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,s.push(h),a[u]=h}),Object.keys(a).forEach(c=>{let u=a[c];u.inputNames.forEach(h=>{let[d]=ba(h);u.inputs.push(a[d]),a[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,h]=ba(o[c.name]),d=a[u];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function sse(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function G4(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):sse(e);return t?n:n.toLowerCase()}function N2(e,t,n,r=!1){let a=e[t];return a!=null?G4(a.s,r):n}function T2(e,t,n){let r=e[t];return r?r.b:n}function E2(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function C2(e){switch(typeof e=="string"&&(e=Or[e]),e){case Or.DT_FLOAT:return"float32";case Or.DT_INT32:case Or.DT_INT64:case Or.DT_INT8:case Or.DT_UINT8:return"int32";case Or.DT_BOOL:return"bool";case Or.DT_DOUBLE:return"float32";case Or.DT_STRING:return"string";default:return null}}function U4(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function R2(e,t,n){let r=e[t];return r&&r.type?C2(r.type):n}function M2(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>C2(a)):n}function q4(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function F2(e,t,n){let r=e[t];return r&&r.shape?q4(r.shape):n}function $2(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function D2(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>G4(s,r)):n}function O2(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>q4(a)):n}function z2(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var ise=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return yn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return yn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return E2(this.node.rawAttrs,e,t);if(n.s!=null)return N2(this.node.rawAttrs,e,t);if(n.b!=null)return T2(this.node.rawAttrs,e,t);if(n.shape!=null)return F2(this.node.rawAttrs,e,t);if(n.type!=null)return R2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return $2(this.node.rawAttrs,e,t);if(n.list.s!=null)return D2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return O2(this.node.rawAttrs,e,t);if(n.list.b!=null)return z2(this.node.rawAttrs,e,t);if(n.list.type!=null)return M2(this.node.rawAttrs,e,t)}return t}},ose=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[La(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Dm(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[z(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[Ae(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[km(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[_d(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ye(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Il(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Ur(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[pa(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Gd(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},lse=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[lm(I("x",e,t,n))];case"Acosh":return[um(I("x",e,t,n))];case"Asin":return[hm(I("x",e,t,n))];case"Asinh":return[dm(I("x",e,t,n))];case"Atan":return[pm(I("x",e,t,n))];case"Atan2":return[fm(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[mm(I("x",e,t,n))];case"Ceil":return[xm(I("x",e,t,n))];case"Complex":return[Da(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Ju(I("x",e,t,n))];case"Cosh":return[Nd(I("x",e,t,n))];case"Elu":return[_l(I("x",e,t,n))];case"Erf":return[Im(I("x",e,t,n))];case"Exp":return[er(I("x",e,t,n))];case"Expm1":return[Sm(I("x",e,t,n))];case"Floor":return[vl(I("x",e,t,n))];case"Log":return[zn(I("x",e,t,n))];case"Log1p":return[Rd(I("x",e,t,n))];case"Imag":return[Ed(I("x",e,t,n))];case"Neg":return[kt(I("x",e,t,n))];case"Reciprocal":return[Pm(I("x",e,t,n))];case"Real":return[sc(I("x",e,t,n))];case"Relu":return[Hr(I("x",e,t,n))];case"Round":return[Lm(I("x",e,t,n))];case"Selu":return[Wd(I("x",e,t,n))];case"Sigmoid":return[Tn(I("x",e,t,n))];case"Sin":return[Bd(I("x",e,t,n))];case"Sign":return[Bm(I("x",e,t,n))];case"Sinh":return[Vd(I("x",e,t,n))];case"Softplus":return[_i(I("x",e,t,n))];case"Sqrt":return[en(I("x",e,t,n))];case"Square":return[it(I("x",e,t,n))];case"Tanh":return[gi(I("x",e,t,n))];case"Tan":return[Um(I("x",e,t,n))];case"ClipByValue":return[En(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Pd(I("x",e,t,n))];case"Rsqrt":return[Ld(yn(e.inputNames[0],t,n))];case"Prod":return[Od(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[ec(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[ac(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[Tm(yn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function xr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){_.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;rn+` Shapes ${e} and ${t} must match`)}}}function X4(e){return!(typeof e=="number"||e.some(t=>t<0))}function Xc(e,t,n){let r=P2(e,n),a=!X4(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=P2(s.shape,r)}),!X4(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function P2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var use=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ve(0),Ht(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, - because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),xr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ht(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,mr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to +2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let p of Object.keys(cr))c[p]=cr[p];for(let p of Object.keys(n))c[p]=n[p];let u=s.config;u.customObjects=c;let h=Object.assign({},cr);for(let p of Object.keys(n))cr[p]=n[p];RA(s.config);let d=l(o,s.config,n,a);return cr=Object.assign({},h),d}else{let c=Object.assign({},cr);for(let h of Object.keys(n))cr[h]=n[h];let u=new o(s.config);return cr=Object.assign({},c),u}}}function zee(e,t){return et?1:0}function Rp(e,t){return-1*zee(e,t)}function Ua(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function Pee(e){if(e==null)throw new W(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Ri(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new W(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function MA(e,t,n=0,r=Infinity){return jr(n>=0),jr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function Ut(e,t){Array.isArray(e)?(_.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>Ut(n,`element ${r+1} of ${t}`))):_.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${_v(e)}.`)}function _v(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>_v(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function Lee(e,t){let n=_.now(),r;return(...a)=>{let s=_.now();return s-nJt(Ne(B(e,e),t,!0)))}var Ic=class extends re.Serializable{getConfig(){return{}}},$A=class extends Ic{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return L(()=>{let t=FA(e,this.axis),n=In(t,0,this.maxValue);return B(e,ge(n,se(zt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};$A.className="MaxNorm";re.registerClass($A);var DA=class extends Ic{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return L(()=>ge(e,se(zt(),FA(e,this.axis))))}getConfig(){return{axis:this.axis}}};DA.className="UnitNorm";re.registerClass(DA);var OA=class extends Ic{apply(e){return Lr(e)}};OA.className="NonNeg";re.registerClass(OA);var zA=class extends Ic{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return L(()=>{let t=FA(e,this.axis),n=se(B(this.rate,In(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,ge(n,se(zt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};zA.className="MinMaxNorm";re.registerClass(zA);var kv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Pt(e){return CA(e)}function Iv(e,t={}){return kc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Lt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in kv?kv[e]:e,config:{}};return Iv(t)}else return e instanceof Ic?e:Iv(e)}function Fee(e){return new $A(e)}function $ee(e){return new DA(e)}function Dee(){return new OA}function Oee(e){return new zA(e)}var Sv={};Me(Sv,{constant:()=>Vee,glorotNormal:()=>Kee,glorotUniform:()=>Xee,heNormal:()=>Zee,heUniform:()=>Yee,identity:()=>Gee,leCunNormal:()=>Jee,leCunUniform:()=>Qee,ones:()=>Bee,orthogonal:()=>ete,randomNormal:()=>Uee,randomUniform:()=>jee,truncatedNormal:()=>Hee,varianceScaling:()=>qee,zeros:()=>Wee});var tte=["channelsFirst","channelsLast"],nte=["nearest","bilinear"],rte=["valid","same","causal"],ate=["max","avg"],ste=["sum","mul","concat","ave"],Ll=new Map;function Tt(e){Ri(tte,"DataFormat",e)}function ite(e){Ri(nte,"InterpolationFormat",e)}function er(e){Ri(rte,"PaddingMode",e)}function Nv(e){Ri(ate,"PoolMode",e)}var Sc=[],Tv="/";function Mi(e,t){Sc.push(e);try{let n=t();return Sc.pop(),n}catch(n){throw Sc.pop(),n}}function ote(){return Sc.length===0?"":Sc.join(Tv)+Tv}function Cv(e){if(!Ev(e))throw new Error("Not a valid tensor name: '"+e+"'");return ote()+e}function Rv(e){if(!Ev(e))throw new Error("Not a valid tensor name: '"+e+"'");Ll.has(e)||Ll.set(e,0);let t=Ll.get(e);if(Ll.set(e,Ll.get(e)+1),t>0){let n=`${e}_${t}`;return Ll.set(n,1),n}else return e}var lte=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Ev(e){return!!e.match(lte)}function ute(e){return e===parseInt(e.toString(),10)}function Ha(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a{if(e.shape.length!==2)throw new W(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Tc(e,1);return PA(n,[1,t,1])})}function hte(e){let t=[Ha(e.shape)];return e.reshape(t)}function dte(e){if(e.rank<=1)throw new W(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ha(e.shape,1)];return e.reshape(t)}function Fi(e,t,n){return L(()=>{switch(e.rank){case 1:return Pd(e,t,n);case 2:return Rm(e,[t,0],[n,e.shape[1]]);case 3:return Ld(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return tc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new W(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function LA(e,t,n){return L(()=>{switch(e.rank){case 1:return Pd(e,t,n);case 2:return Rm(e,[0,t],[e.shape[0],n]);case 3:return Ld(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return tc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new W(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Mp(e,t,n,r){return L(()=>{switch(e.rank){case 1:return Pd(e,t,n);case 2:switch(r){case 1:return Fi(e,t,n);case 2:return LA(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return Fi(e,t,n);case 2:return Ld(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return LA(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return Fi(e,t,n);case 2:return tc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return tc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return LA(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${r}`)}default:throw new W(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function WA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ot(e,t)}function Fv(e,t){switch(e.rank){case 1:return Cw([e,t]);case 2:return fl([e,t],0);case 3:return Rw([e,t],0);case 4:return Mw([e,t],0);default:throw new W(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function PA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new W(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Oa(e,t)}function Fp(e,t=0,n=1,r,a){return Zw(e,t,n,r,a)}function Ur(e,t,n,r){if(e.rank<2||t.rank<2)throw new De(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new De(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return La.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?BA(e.rank,r,vr()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(u).reshape([l,-1]);let h=[...a,...c],d=!1,p=!1;return La.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?BA(e.rank,r,vr()):null,activation:n}).reshape(h)}}function $v(e,t,n){return L(()=>(Array.isArray(t)?t=nn(t,"int32"):t=t.toInt(),fi(e,t,n)))}function Ec(e){return B(e,e)}function BA(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new W(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new W(`Unsupported input rank by biasAdd: ${t.rank}`)}function Sr(e,t,n){return L(()=>(n==null&&(n=vr()),Tt(n),e.add(BA(e.rank,t,n))))}function pte(e,t=1){if(t!==1)throw new De(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Al(e)}function fte(e){return L(()=>ge(e,Dt(e).add(1)))}function Dv(e,t,n,r){return L(()=>rb(e,t,n,r))}function mte(e){return L(()=>{let t=se(.5,B(.2,e));return In(t,0,1)})}function Cc(e,t,n=!1){return n?e():t()}var Ate=["fanIn","fanOut","fanAvg"],yte=["normal","uniform","truncatedNormal"];function gte(e){Ri(Ate,"FanMode",e)}function xte(e){Ri(yte,"Distribution",e)}var hr=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},VA=class extends hr{apply(e,t){return Et(e,t)}};VA.className="Zeros";re.registerClass(VA);var $p=class extends hr{apply(e,t){return Fn(e,t)}};$p.className="Ones";re.registerClass($p);var jA=class extends hr{constructor(e){super();if(typeof e!="object")throw new W(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new W(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return L(()=>B(ke(this.value),Fn(e,t)))}getConfig(){return{value:this.value}}};jA.className="Constant";re.registerClass(jA);var UA=class extends hr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return wl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};UA.className="RandomUniform";re.registerClass(UA);var HA=class extends hr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`randomNormal does not support dType ${t}.`);return Fp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};HA.className="RandomNormal";re.registerClass(HA);var GA=class extends hr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`truncatedNormal does not support dType ${t}.`);return Vd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};GA.className="TruncatedNormal";re.registerClass(GA);var qA=class extends hr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return L(()=>{if(e.length!==2||e[0]!==e[1])throw new W("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,Am(e[0]))})}getConfig(){return{gain:this.gain}}};qA.className="Identity";re.registerClass(qA);function wte(e,t="channelsLast"){let n,r;if(Tt(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Ha(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Ha(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Ha(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var En=class extends hr{constructor(e){super();if(e.scale<0)throw new W(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,gte(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,xte(this.distribution),this.seed=e.seed}apply(e,t){let n=wte(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`${this.getClassName()} does not support dType ${t}.`);return Vd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return wl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};En.className="VarianceScaling";re.registerClass(En);var Dp=class extends En{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return En.className}};Dp.className="GlorotUniform";re.registerClass(Dp);var Op=class extends En{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return En.className}};Op.className="GlorotNormal";re.registerClass(Op);var zp=class extends En{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return En.className}};zp.className="HeNormal";re.registerClass(zp);var Pp=class extends En{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return En.className}};Pp.className="HeUniform";re.registerClass(Pp);var Lp=class extends En{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return En.className}};Lp.className="LeCunNormal";re.registerClass(Lp);var Wp=class extends En{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return En.className}};Wp.className="LeCunNormal";re.registerClass(Wp);var XA=class extends hr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new De("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return L(()=>{if(e.length<2)throw new De("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Fp(n,0,1,"float32"),a=Ab.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),B(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};XA.className="Orthogonal";re.registerClass(XA);var Ov={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function zv(e,t={}){return kc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function kt(e){return CA(e)}function At(e){if(typeof e=="string"){let t=e in Ov?Ov[e]:e;if(t==="GlorotNormal")return new Op;if(t==="GlorotUniform")return new Dp;if(t==="HeNormal")return new zp;if(t==="HeUniform")return new Pp;if(t==="LeCunNormal")return new Lp;if(t==="LeCunUniform")return new Wp;{let n={};return n.className=t,n.config={},zv(n)}}else return e instanceof hr?e:zv(e)}function Wee(){return new VA}function Bee(){return new $p}function Vee(e){return new jA(e)}function jee(e){return new UA(e)}function Uee(e){return new HA(e)}function Hee(e){return new GA(e)}function Gee(e){return new qA(e)}function qee(e){return new En(e)}function Xee(e){return new Dp(e)}function Kee(e){return new Op(e)}function Zee(e){return new zp(e)}function Yee(e){return new Pp(e)}function Jee(e){return new Lp(e)}function Qee(e){return new Wp(e)}function ete(e){return new XA(e)}var Pv={};Me(Pv,{Layer:()=>Ge,RNN:()=>Hr,RNNCell:()=>Rc,activation:()=>zte,add:()=>Gte,alphaDropout:()=>Ene,average:()=>qte,averagePooling1d:()=>KA,averagePooling2d:()=>ZA,averagePooling3d:()=>YA,avgPool1d:()=>nne,avgPool2d:()=>ane,avgPool3d:()=>ine,avgPooling1d:()=>rne,avgPooling2d:()=>sne,avgPooling3d:()=>one,batchNormalization:()=>Qte,bidirectional:()=>bne,concatenate:()=>Xte,conv1d:()=>Tte,conv2d:()=>Ete,conv2dTranspose:()=>Cte,conv3d:()=>Rte,conv3dTranspose:()=>Mte,convLstm2d:()=>yne,convLstm2dCell:()=>gne,cropping2D:()=>$te,dense:()=>Pte,depthwiseConv2d:()=>Ote,dot:()=>Jte,dropout:()=>Lte,elu:()=>_te,embedding:()=>Hte,flatten:()=>Bte,gaussianDropout:()=>Tne,gaussianNoise:()=>Nne,globalAveragePooling1d:()=>lne,globalAveragePooling2d:()=>une,globalMaxPool1d:()=>vne,globalMaxPool2d:()=>kne,globalMaxPooling1d:()=>Wv,globalMaxPooling2d:()=>Bv,gru:()=>hne,gruCell:()=>dne,input:()=>Lv,inputLayer:()=>bte,layerNormalization:()=>ene,leakyReLU:()=>kte,lstm:()=>pne,lstmCell:()=>fne,masking:()=>Cne,maxPool1d:()=>Ine,maxPool2d:()=>Sne,maxPooling1d:()=>Vv,maxPooling2d:()=>jv,maxPooling3d:()=>cne,maximum:()=>Kte,minimum:()=>Zte,multiply:()=>Yte,permute:()=>Ute,prelu:()=>Ite,reLU:()=>vte,repeatVector:()=>Vte,reshape:()=>jte,rnn:()=>xne,separableConv2d:()=>Fte,simpleRNN:()=>mne,simpleRNNCell:()=>Ane,softmax:()=>Ste,spatialDropout1d:()=>Wte,stackedRNNCells:()=>wne,thresholdedReLU:()=>Nte,timeDistributed:()=>_ne,upSampling2d:()=>Dte,zeroPadding2d:()=>tne});var Rne=0;function Uv(){return Rne++}var Bp={};function Vp(e=""){return e in Bp||(Bp[e]=0),Bp[e]+=1,e+Bp[e].toString()}function JA(e){return Array.isArray(e)&&Array.isArray(e[0])}function jp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new W(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function rt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new W(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Up(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var Hv="Variable",Gv=class{constructor(e,t="float32",n=Hv,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Uv(),n=n==null?Hv:n,this.originalName=Cv(n),this.name=Rv(this.originalName),this.trainable_=r,this.constraint=a,this.val=Jw(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),Mne(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function Mne(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function QA(e){return e.map(t=>t.read())}function ey(e){e.forEach(t=>{t[0].write(t[1])})}var Rt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Nr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=Uv(),s!=null&&(this.originalName=Cv(s),this.name=Rv(this.originalName)),this.rank=t.length}},Fne=0,Hp=class{constructor(e,t){this.callArgs=t,this.id=Fne++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},$ne=0,Ge=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=$ne++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=pa(n)+"_"+Vp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new kr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new W(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Tn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Tn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new da(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new da(`Layer ${this.name} is not connected, no input to return.`);return Tn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new da(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new da(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Tn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=ft(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=ft(this.inputSpec);if(e.length!==t.length)throw new W(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;na.maxNDim)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of ft(e))s.push(i.shape);this.build(Tn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=ft(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Tn(o),this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=Dne(e),i=this.computeOutputShape(s),o,l=One(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new Nr(l,c,this,ft(e),t,this.name,u)):o=new Nr(l,i,this,ft(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new da(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new da(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new kr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Up(this.weights)}build(e){this.built=!0}getWeights(e=!1){return QA(e?this.trainableWeights:this.weights)}setWeights(e){L(()=>{let t=this.weights;if(t.length!==e.length)throw new W(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=QA(t);for(let a=0;aa.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=ft(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=ft(e);t=ft(t),n=ft(n),r=ft(r),a=jp(a),s=jp(s);let l=[],c=[],u=[];for(let h of o)l.push(h.sourceLayer),c.push(h.nodeIndex),u.push(h.tensorIndex);new Hp({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;he.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function Dne(e){e=ft(e);let t=[];for(let n of e)t.push(n.shape);return Tn(t)}function One(e){return"float32"}function qv(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s0){let a=await Promise.all(t);for(let s=0;sse(this.totals[r],B(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:L(()=>{let r=B(ge(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Vt(t[n])}))}},Jv=class extends Vl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;inew Qv(n,t))}var dr=class{constructor(){}static registerCallbackConstructor(e,t){_.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),dr.checkForDuplicate(t),dr.constructors[e]==null&&(dr.constructors[e]=[]),dr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in dr.constructors)dr.constructors[+t].forEach(n=>{if(n===e)throw new W("Duplicate callback constructor.")})}static clear(){dr.constructors={}}static createCallbacks(e){let t=[];for(let n in dr.constructors){let r=+n;e>=r&&t.push(...dr.constructors[r])}return t.map(n=>new n)}};dr.constructors={};function t6(e,t,n,r,a,s,i,o,l){let c=new Jv,u=[new Pne,...dr.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let h=new Yv(u);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:c}}function Tr(e,t={},n=!1){return kc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Gp(e,t){return L(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Ne(Ec(e),t,!0),r=Xu(n.shape,zt()),a=Jt(Pr(n,r));return ge(e,a)})}function $i(e,t){return L(()=>vt(Ec(ye(t,e)),-1))}function qp(e,t){return L(()=>vt(Dt(ye(t,e)),-1))}function jl(e,t){return L(()=>{let n=ye(e,t),r=In(Dt(e),zt(),Number.MAX_VALUE),a=Dt(ge(n,r));return B(100,vt(a,-1))})}function Lne(e,t){return L(()=>{let n=In(t,zt(),Number.MAX_VALUE),r=Mn(se(1,n)),a=In(e,zt(),Number.MAX_VALUE),s=Mn(se(1,a));return vt(Ec(ye(r,s)),-1)})}function Wne(e,t){return L(()=>{let n=Pr(0,ye(1,B(e,t)));return vt(Ec(n),-1)})}function Bne(e,t){return L(()=>{let n=Pr(0,ye(1,B(e,t)));return vt(n,-1)})}function Vne(e,t){return L(()=>{let n=Ne(B(e,t),-1),r=Kn(B(ye(1,e),t),-1);return Pr(0,se(1,ye(r,n)))})}function jne(e,t){return L(()=>{let n=Math.log(2),r=ye(t,e),a=ye(se(r,Ai(B(-2,r))),n);return vt(a,-1)})}function Mc(e,t,n=!1){return L(()=>{if(n)t=nc(t);else{let r=Ne(t,t.shape.length-1,!0);t=ge(t,r)}return t=In(t,zt(),1-zt()),_t(Ne(B(e.toFloat(),Mn(t)),t.shape.length-1))})}function Xp(e,t,n=!1){return L(()=>{let r=yl(hte(e)).toInt();t=In(t,zt(),1-zt());let a=t.shape,s=ul(r,a[a.length-1]).reshape(a);return Mc(s,t,n)})}function Une(e,t){if(!_.arraysEqual(e.shape,t.shape))throw new W(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return L(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function Kp(e,t){return L(()=>{let n;return n=In(t,zt(),1-zt()),n=Mn(ge(n,ye(1,n))),vt(Une(e,n),-1)})}function Hne(e,t){return L(()=>{let n=In(e,zt(),1),r=In(t,zt(),1);return Ne(B(e,Mn(ge(n,r))),-1)})}function Gne(e,t){return L(()=>{let n=Mn(se(zt(),t));return vt(ye(t,B(e,n)),-1)})}function ty(e,t){return L(()=>{let n=Gp(e,-1),r=Gp(t,-1),a=B(n,r);return _t(Ne(a,-1))})}var Zp={meanSquaredError:$i,meanAbsoluteError:qp,meanAbsolutePercentageError:jl,meanSquaredLogarithmicError:Lne,squaredHinge:Wne,hinge:Bne,categoricalHinge:Vne,logcosh:jne,categoricalCrossentropy:Mc,sparseCategoricalCrossentropy:Xp,binaryCrossentropy:Kp,kullbackLeiblerDivergence:Hne,poisson:Gne,cosineProximity:ty};function ny(e){if(typeof e=="string"){if(e in Zp)return Zp[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new W(t)}else return e}function ry(e,t){return L(()=>{let n=B(.5,$n(t)),r=Nc(or(t,n),e.dtype);return vt(Da(e,r),-1)})}function ay(e,t){return L(()=>Nc(Da(ju(e,-1),ju(t,-1)),"float32"))}function n6(e,t){return L(()=>lr(e.equal(1),t.equal(1)).sum().cast("float32"))}function qne(e,t){return L(()=>lr(e.equal(1),t.equal(0)).sum().cast("float32"))}function Xne(e,t){return L(()=>lr(e.equal(0),t.equal(1)).sum().cast("float32"))}function r6(e,t){return L(()=>{let n=n6(e,t),r=Xne(e,t),a=n.add(r);return Sn(or(a,0),n.div(a),0).cast("float32")})}function Kne(e,t){return L(()=>{let n=n6(e,t),r=qne(e,t),a=n.add(r);return Sn(or(a,0),n.div(a),0).cast("float32")})}function a6(e,t){return Kp(e,t)}function s6(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Da(e,t).asType("float32")}var Zne=$i,Yne=$i,Jne=qp,Qne=qp,ere=jl,tre=jl,sy=Mc,nre=ty,i6=Xp,Yp={binaryAccuracy:ry,categoricalAccuracy:ay,precision:r6,categoricalCrossentropy:sy,sparseCategoricalCrossentropy:i6,mse:Zne,MSE:Yne,mae:Jne,MAE:Qne,mape:ere,MAPE:tre,cosine:nre};function rre(e){if(typeof e=="string"&&e in Yp)return Yp[e];if(typeof e!="string"&&e!=null)return e;throw new W(`Unknown metric ${e}`)}function Jp(e){if(jr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Zp))if(Zp[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Yp))if(Yp[n]===e){t=n;break}return t!==void 0?t:e.name}}function are(e){let t={Adagrad:()=>wi.adagrad(.01),Adadelta:()=>wi.adadelta(1,.95,zt()),Adam:()=>wi.adam(.001,.9,.999,zt()),Adamax:()=>wi.adamax(.002,.9,.999,zt(),0),RMSProp:()=>wi.rmsprop(.001,.9,0,zt()),SGD:()=>wi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new W(`Unknown Optimizer ${e}`)}var o6=1*1024*1024;function l6(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!iy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>o6&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${o6}.`)}}function iy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!iy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!iy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function ure(e,t,n,r=console.log){let a=ire(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!a){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}r("_".repeat(t)),Qp(s,n,r),r("=".repeat(t));let o=e.layers;for(let u=0;u1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Qp(e,t,n=console.log){let r="";for(let a=0;a0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function ore(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];Qp(i,t,n)}function lre(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(u){a="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let h=0;hm.name),l=[],c=t.names();for(let m of o)c.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),h,d;if(uy[u]==null){let m=hre(i,t);h=m.sorted,d=m.recipientCounts,uy[u]=h,c6[u]=d}h=uy[u],d={},a||Object.assign(d,c6[u]);let p=new Di(t);for(let m=0;mr.maxNumTensors&&(r.maxNumTensors=C),C0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=h6(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=h6(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(c=>r[l].add(c))}}return{sorted:n,recipientCounts:pre(r)}}function pre(e){let t={};for(let n in e)t[n]=e[n].size;return t}function h6(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)a[c.name]==null&&(a[c.name]=new Set),a[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:r,recipientMap:a}}function dre(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;ry.name)}`);Ua(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;jr(x===0,"input layer has >1 nodes"),jr(v===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,x,v,w,b)=>{(v==null||w==null||b==null)&&(v=y.sourceLayer,w=y.nodeIndex,b=y.tensorIndex);let k=v.inboundNodes[w];if(x.indexOf(k)!==-1)throw new kr(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(g.indexOf(k)!==-1)return;this.containerNodes.add(Gr.nodeKey(v,w)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(k)===-1&&x.push(k);let N=k.inboundLayers.length;for(let C=0;C=0;)x.splice(x.indexOf(k),1);i.push(k)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],x=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,x),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let v=0;vparseInt(y,10)).sort(Rp);this.layers=[];for(let y of p){let g=d[y];g.sort((x,v)=>{let w=s[x.id],b=s[v.id];return wb?1:0});for(let x of g)x instanceof Gr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(Rp);let m=this.inputs.slice(),f=[];for(let y of p)for(let g of h[y]){let x=g.outboundLayer;if(x!=null){for(let v of g.inputTensors)if(m.indexOf(v)===-1)throw new kr(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of g.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(x=>x===y).length;if(g!==1)throw new kr(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Hp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new W("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new W(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new W(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new W(`${s.length} of ${r} weights are not set: ${s}`)}ey(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${ly}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=oy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return L(()=>{e=ft(e);let n=new Di;for(let r=0;r{e=ft(e);let n;return t==null?n=Ei(null,e.length):n=ft(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=jp(e);if(t.length!==this.inputLayers.length)throw new W(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;iparseInt(i,10)).sort(Rp);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(c.id)!==-1)continue;let u=[];for(let m=0;mparseInt(o,10)).sort(Rp);for(let o of r){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,h=c.inputTensors,d=c.outputTensors,p=new Array;for(let m of h)m.id in n&&p.push(n[m.id]);if(p.length===h.length){let m={},f,A,y,g;if(c.callArgs!=null&&(m=c.callArgs),p.length===1){let[x,v]=p[0];m.mask==null&&(m.mask=v),y=ft(u.call(x,m)),g=ft(u.computeMask(x,v)),f=[x],A=[v]}else f=p.map(x=>x[0]),A=p.map(x=>x[1]),m.mask==null&&(m.mask=A),y=ft(u.call(f,m)),g=ft(u.computeMask(f,A));if(u.activityRegularizer)throw new De("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x{let e=[];for(let t of this.layers)for(let n=0;n0){let m=[];for(let f=0;f0&&f.apply(Tn(y),g)}function l(f){let A=f.name,y=Tr(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,f.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new W(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let c=t.name,u=t.layers;for(let f of u)l(f);for(;!Pee(s);)for(let f of u){let A=a[f.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let f of p){let A=f[0],y=f[1],g=f[2];jr(A in a);let x=a[A].inboundNodes[y].outputTensors;h.push(x[g])}let m=t.outputLayers;for(let f of m){let A=f[0],y=f[1],g=f[2];jr(A in a);let x=a[A].inboundNodes[y].outputTensors;d.push(x[g])}return new e({inputs:h,outputs:d,name:c})}get stateful(){if(this._stateful)throw new W("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){L(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function fre(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function d6(e,t){return fre(e,t,"classWeight")}async function p6(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=L(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());Te(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),nn(i,"float32")}else return null}function mre(e,t){return B(e,t)}var Are=32;function m6(e,t){let n,r,a=t;n=a.xs,r=a.ys,_.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=f6("input",e.inputNames,n),i=f6("output",e.outputNames,r),o=s[0].shape[0];_.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),_.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function f6(e,t,n){if(n instanceof Le)return[n];if(Array.isArray(n))return _.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new W(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function yre(e){if(e.length===3)throw new De("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function xre(e,t,n){let r=n.batchesPerEpoch!=null;if(_.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),_.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),_.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),_.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),_.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(A6(n.validationData))_.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=yre(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;a?c=l.slice().concat(l.map(A=>"val_"+A)):c=l.slice();let u=e6(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=t6(u,h,n.epochs,null,null,gre(t,n),null,a,c);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m=n.batchesPerEpoch:x.done){if(a){let v;A6(n.validationData)?v=ft(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=ft(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Are:n.validationBatchSize,verbose:0}));for(let w=0;w0)throw new De("Verbose mode is not implemented yet.");_.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=wre(t)?t:await t.iterator(),o=0,l=0;for(;r?l{if(c.value){let{xs:u,ys:h}=m6(e,c.value),d=u.concat(h),p=L(()=>a(d));if(Te(d),l===0)for(let f=0;fse(s[f],B(m,A))),l>0&&Te(y)}Te(p),o+=m,++l}return s}),c.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Dc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>Fi(r,t,n-t)):Fi(e,t,n-t)}function hy(e,t){return L(()=>e==null?null:Array.isArray(e)?e.map(n=>hy(n,t)):$v(e,t.dtype==="int32"?t:t.toInt()))}function dy(e,t){let n=[],r=0,a=null;for(;r=e&&(a=e),n.push([r,a]),r=a;return n}async function _re(e,t,n,r,a,s,i,o,l,c,u,h,d,p,m){a==null&&(a=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let f=!1;if(l!=null&&c!=null&&(f=!0),m!=null&&(f=!0,p==null))throw new W("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=Ir(0,A)),i==null&&(i=1);let{callbackList:g,history:x}=t6(o,i,s,d,A,p,a,f,h);g.setModel(e),e.history=x,await g.onTrainBegin(),e.stopTraining_=!1;for(let v=d;v{let F=k[N][0],O=k[N][1],z=Fi(b,F,O-F);C.batch=N,C.size=O-F;let V=hy(n,z),j=t(V);for(let U=0;U0){if(m=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new De("validationData including sample weights is not supported yet."):new W(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let b=!0,k=await e.standardizeUserData(i,o,null,null,b,h);l=k[0],c=k[1],f=l.concat(c)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){m=!0;let b=Math.floor(a[0].shape[0]*(1-r.validationSplit)),k=a[0].shape[0];l=Dc(a,b,k),a=Dc(a,0,b),c=Dc(s,b,k),s=Dc(s,0,b),f=l.concat(c)}else r.validationSteps!=null&&(m=!0);let A=a.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),x,v;m?(e.makeTestFunction(),x=e.testFunction,v=g.slice().concat(g.map(b=>"val_"+b))):(x=null,f=[],v=g.slice());let w=e6(r.callbacks,r.yieldEvery);return await _re(e,y,A,g,h,r.epochs,r.verbose,w,x,f,r.shuffle,v,r.initialEpoch,null,null)}finally{e.isTraining=!1,Oi(a,t),Oi(s,n),Oi(l,i),Oi(c,o),u!=null&&Te(u)}}function y6(e){let t=[];e instanceof Le&&(e=[e]);for(let n=0;nn.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof Le)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function kre(e){return e instanceof Le}function py(e){return Array.isArray(e)}function g6(e){return!kre(e)&&!py(e)}function x6(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(py(e)&&e.length>0)i=!0;else if(g6(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new W(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(g6(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new W(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(py(e)){if(e=e,e.length!==t.length)throw new W(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new W(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=y6(s),n!=null)for(let i=0;i=0&&c!==u)throw new W(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function Ire(e,t,n){let r=Ua(e.map(s=>s.shape[0]));r.sort();let a=Ua(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new W(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new W(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!_.arraysEqual(r,a))throw new W(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function Sre(e,t,n){let r=[$i,Kp,Mc];for(let a=0;a1)throw new W(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var Tre="layers-model",fa=class extends Gr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new W("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");ure(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=are(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ca))throw new W("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new W(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(ny(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new W(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>ny(s))}else{let s=ny(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s{for(let s=0;s1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=Nre(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Mi("metric",()=>{for(let s=0;s{let l="",c,u,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Kp?["accuracy","acc"].indexOf(d)!==-1?u=ry:["crossentropy","ce"].indexOf(d)!==-1&&(u=a6):this.lossFunctions[s]===Xp?["accuracy","acc"].indexOf(d)!==-1?u=s6:["crossentropy","ce"].indexOf(d)!==-1&&(u=i6):["accuracy","acc"].indexOf(d)!==-1?u=ay:["crossentropy","ce"].indexOf(d)!==-1&&(u=sy);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),h=u,c=l+f}else h=rre(d),c=l+Jp(d);let p;Mi(c,()=>{p=h}),a(s,c,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;cy(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return Tn(l)}finally{Oi(s[0],e),Oi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),bre(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new W(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new W(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new W("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new Di;if(e instanceof Le&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new W(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;oi.name);for(let i=0;i0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new W(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return L(()=>{let r=this.checkNumSamples(e);if(n)throw new De("Verbose predictLoop() is not implemented yet.");let a=dy(r,t),s=this.outputs.map(i=>[]);for(let i=0;i{let o=a[i][0],l=a[i][1],c=Dc(e,o,l),u=[];if(Array.isArray(c))for(let d=0;ds[l].push(o));return Tn(s.map(i=>ot(i,0)))})}predict(e,t={}){let n=y6(e);w6(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return cy(r),this.predictLoop(n,r)}finally{Oi(n,e)}}predictOnBatch(e){w6(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new kr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s0&&e[0].shape[0]%r!=0)throw new W(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let c=d6(r,this.outputNames);l=[];for(let u=0;u{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new De("Verbose mode is not implemented yet.");if(a!=null)throw new De("steps mode in testLoop() is not implemented yet");{let o=dy(s,n),l=nn(Ir(0,s));for(let c=0;c1&&(a+=`_${bv(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let p=0;p1&&p{d=se(d,p)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>L(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;lpa(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=pa(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[pa(Jp(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>pa(Jp(e)));{let e={};for(let t in this.metrics)e[t]=pa(Jp(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Fc(e.optimizer_config),n=Tr(t),r;if(typeof e.loss=="string")r=Ci(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>Ci(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=Ci(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>Ci(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=Ci(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=vn.getSaveHandlers(e);if(i.length===0)throw new W(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new W(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new W("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await vn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:Tre,generatedBy:`TensorFlow.js tfjs-layers v${ly}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await vn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=vn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;l6(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){l6(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};fa.className="Model";re.registerClass(fa);var b6=class extends fa{};b6.className="Functional";re.registerClass(b6);async function Ere(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Fc(n),a=Tr(r,t);if(e.weightsManifest!=null){let s=await vn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),Te(s)}return a}async function Rre(e,t){if(t==null&&(t={}),typeof e=="string"){let n=vn.getLoadHandlers(e,t);if(n.length===0)n.push(vn.browserHTTPRequest(e,t));else if(n.length>1)throw new W(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Cre(e,void 0,t)}async function Cre(e,t,n){if(n==null&&(n={}),e.load==null)throw new W("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=Tr(Fc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new W("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=Mre(r.weightData,r.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),Te(c),Te(u.map(h=>h.tensor))}return o}function Mre(e,t){let n=vn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Ul=class extends fa{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Vp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new W(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Ul||e instanceof fa,n;if(t){if(n=e,n.outputs.length!==1)throw new W("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new W("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new W("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=Xv({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new W(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new W("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=qv(this.outputs[0])}this.inboundNodes=[],new Hp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Ei(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(rt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new fa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new kr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new kr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new kr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new kr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new W("Legacy serialization format not supported yet.");a=t}else _.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Ul))throw new De(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=Tr(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new W("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new W("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Ul.className="Sequential";re.registerClass(Ul);function Fre(e){return new fa(e)}function $re(e){return new Ul(e)}function Dre(e,t){return t==null&&(t={}),Rre(e,t)}function Lv(e){return Xv(e)}function Ore(e,t){dr.registerCallbackConstructor(e,t)}var Cn=class extends re.Serializable{getConfig(){return{}}},_6=class extends Cn{apply(e,t=1){return pte(e,t)}};_6.className="elu";re.registerClass(_6);var v6=class extends Cn{apply(e){return Dd(e)}};v6.className="selu";re.registerClass(v6);var k6=class extends Cn{apply(e){return Lr(e)}};k6.className="relu";re.registerClass(k6);var I6=class extends Cn{apply(e){return L(()=>xl(6,Lr(e)))}};I6.className="relu6";re.registerClass(I6);var S6=class extends Cn{apply(e){return e}};S6.className="linear";re.registerClass(S6);var N6=class extends Cn{apply(e){return kn(e)}};N6.className="sigmoid";re.registerClass(N6);var T6=class extends Cn{apply(e){return mte(e)}};T6.className="hardSigmoid";re.registerClass(T6);var E6=class extends Cn{apply(e){return Ai(e)}};E6.className="softplus";re.registerClass(E6);var C6=class extends Cn{apply(e){return fte(e)}};C6.className="softsign";re.registerClass(C6);var R6=class extends Cn{apply(e){return di(e)}};R6.className="tanh";re.registerClass(R6);var fy=class extends Cn{apply(e,t=-1){return nc(e,t)}};fy.className="softmax";re.registerClass(fy);var M6=class extends Cn{apply(e,t=-1){return Td(e,t)}};M6.className="logSoftmax";re.registerClass(M6);var F6=class extends Cn{apply(e,t=1){return L(()=>kn(e.mul(t)).mul(e))}};F6.className="swish";re.registerClass(F6);var $6=class extends Cn{apply(e){return L(()=>B(e,di(Ai(e))))}};$6.className="mish";re.registerClass($6);function Xa(e){return e.getClassName()}function my(e,t={}){return kc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function Ka(e){if(e==null){let t={};return t.className="linear",t.config={},my(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},my(t)}else return e instanceof Cn?e:my(e)}function Ay(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var D6=class extends re.Serializable{},Oc=class extends D6{constructor(e){super();Ay(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return L(()=>{let t=Et([1]);return this.hasL1&&(t=se(t,Ne(B(this.l1,Dt(e))))),this.hasL2&&(t=se(t,Ne(B(this.l2,Ec(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Oc.className="L1L2";re.registerClass(Oc);function zre(e){return Ay(e),new Oc({l1:e!=null?e.l1:null,l2:0})}function Pre(e){return Ay(e),new Oc({l2:e!=null?e.l2:null,l1:0})}var O6={l1l2:"L1L2"};function ut(e){return CA(e)}function z6(e,t={}){return kc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function yt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in O6?O6[e]:e,config:{}};return z6(t)}else return e instanceof D6?e:z6(e)}var yy=class extends Ge{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Lr(e);return this.maxValue!=null&&(n=In(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};yy.className="ReLU";re.registerClass(yy);var gy=class extends Ge{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return Ku(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};gy.className="LeakyReLU";re.registerClass(gy);var xy=class extends Ge{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=At(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=yt(e.alphaRegularizer),this.alphaConstraint=Lt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new W(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=rt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r(Tt(t),t==="channelsFirst"?Ze(e,[0,2,3,1]):e))}function P6(e,t){return L(()=>(Tt(t),t==="channelsFirst"?Ze(e,[0,2,3,4,1]):e))}function Lre(e,t,n,r=1,a="valid",s,i=1){return L(()=>{if(s==null&&(s=vr()),Tt(s),e.shape.length!==3)throw new W(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new W(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new W(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ze(e,[0,2,1])),a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=wd(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Sr(o,n)),o})}function L6(e,t,n,r=[1,1],a="valid",s,i,o=null){return L(()=>{if(s==null&&(s=vr()),Tt(s),e.rank!==3&&e.rank!==4)throw new W(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new W(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=vy(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=La.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ze(l,[0,3,1,2])),l})}function Wre(e,t,n,r=[1,1,1],a="valid",s,i){return L(()=>{if(s==null&&(s=vr()),Tt(s),e.rank!==4&&e.rank!==5)throw new W(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new W(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=P6(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=cm(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Sr(o,n)),s==="channelsFirst"&&(o=Ze(o,[0,4,1,2,3])),o})}var ky=class extends Ge{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",ky.verifyArgs(t),this.rank=e,Ut(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new De(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Hl(t.kernelSize,e,"kernelSize"),this.strides=Hl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,er(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Tt(this.dataFormat),this.activation=Ka(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=At(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Lt(t.biasConstraint),this.biasRegularizer=yt(t.biasRegularizer),this.activityRegularizer=yt(t.activityRegularizer),this.dilationRate=Hl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new W(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new W(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new W(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(jr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!MA(e.kernelSize,"number",1,3))throw new W(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Xa(this.activation),useBias:this.useBias,biasInitializer:kt(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},zc=class extends ky{constructor(e,t){super(e,t);this.kernel=null,zc.verifyArgs(t),this.filters=t.filters,Ut(this.filters,"filters"),this.kernelInitializer=At(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Lt(t.kernelConstraint),this.kernelRegularizer=yt(t.kernelRegularizer)}build(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new W(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return L(()=>{e=ze(e);let n,r=this.bias==null?null:this.bias.read(),a=vv(this.activation.getClassName());if(a!=null&&this.rank===2)n=L6(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=Lre(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=L6(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=Wre(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new De("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=rt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a 0 but got ${JSON.stringify(e.filters)}`)}},Pc=class extends zc{constructor(e){super(2,e);Pc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!MA(e.kernelSize,"number",1,2))throw new W(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Pc.className="Conv2D";re.registerClass(Pc);var Lc=class extends zc{constructor(e){super(3,e);Lc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new W(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Lc.className="Conv3D";re.registerClass(Lc);var Iy=class extends Pc{constructor(e){super(e);if(this.inputSpec=[new Rt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new W(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=rt(e),e.length!==4)throw new W("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new W("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Rt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return L(()=>{let n=ze(e);if(n.shape.length!==4)throw new W(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],c=this.kernelSize[0],u=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=qr(o,h,c,this.padding),m=qr(l,d,u,this.padding),f=[a,p,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ze(n,[0,2,3,1]));let A=bd(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=Ze(A,[0,3,1,2])),this.bias!=null&&(A=Sr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=rt(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=qr(t[r],o,s,this.padding),t[a]=qr(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Iy.className="Conv2DTranspose";re.registerClass(Iy);var Sy=class extends Lc{constructor(e){super(e);if(this.inputSpec=[new Rt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new W(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=rt(e),e.length!==5)throw new W("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new W("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Rt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return L(()=>{let n=ze(e);if(n.shape.length!==5)throw new W(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=r[o],c=r[s],u=r[i],h=this.kernelSize[0],d=this.kernelSize[1],p=this.kernelSize[2],m=this.strides[0],f=this.strides[1],A=this.strides[2],y=qr(l,m,h,this.padding),g=qr(c,f,d,this.padding),x=qr(u,A,p,this.padding),v=[a,y,g,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ze(n,[0,2,3,4,1]));let w=$w(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=Ze(w,[0,4,1,2,3])),this.bias!==null&&(w=Sr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=rt(e);let t=e.slice(),n,r,a,s;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3,s=4):(n=4,r=1,a=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],h=this.strides[2];return t[n]=this.filters,t[r]=qr(t[r],c,i,this.padding),t[a]=qr(t[a],u,o,this.padding),t[s]=qr(t[s],h,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Sy.className="Conv3DTranspose";re.registerClass(Sy);var W6=class extends zc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new W("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new W("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new W(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=At(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=yt(t.depthwiseRegularizer),this.depthwiseConstraint=Lt(t.depthwiseConstraint),this.pointwiseInitializer=At(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=yt(t.pointwiseRegularizer),this.pointwiseConstraint=Lt(t.pointwiseConstraint)}build(e){if(e=rt(e),e.length{e=ze(e);let n;if(this.rank===1)throw new De("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ze(e,[0,2,3,1])),n=Em(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Sr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ze(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.pointwiseInitializer=kt(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseConstraint),e.pointwiseConstraint=Pt(this.pointwiseConstraint),e}};W6.className="SeparableConv";var Ny=class extends W6{constructor(e){super(2,e)}};Ny.className="SeparableConv2D";re.registerClass(Ny);var e0=class extends zc{constructor(e){super(1,e);e0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!MA(e.kernelSize,"number",1,1))throw new W(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};e0.className="Conv1D";re.registerClass(e0);var Ty=class extends Ge{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return L(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=Mp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Mp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Mp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Mp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ty.className="Cropping2D";re.registerClass(Ty);var Ey=class extends Ge{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,ite(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return L(()=>{let n=ze(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=Ze(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return Ze(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ey.className="UpSampling2D";re.registerClass(Ey);function Bre(e,t,n=[1,1],r="valid",a,s){return L(()=>{a==null&&(a=vr()),Tt(a);let i=vy(e,a);if(e.rank!==4)throw new W(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new W(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=ml(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=Ze(i,[0,3,1,2])),i})}var Cy=class extends ky{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=At(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Lt(e.depthwiseConstraint),this.depthwiseRegularizer=yt(e.depthwiseRegularizer)}build(e){if(e=rt(e),e.length<4)throw new W(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new W(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return L(()=>{e=ze(e);let n=Bre(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Sr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=Er(t,this.kernelSize[0],this.padding,this.strides[0]),s=Er(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseRegularizer),e}};Cy.className="DepthwiseConv2D";re.registerClass(Cy);function B6(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new W("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function V6(e,t,n,r=!1,a,s,i=!1,o=!1){return L(()=>{let l=t.shape.length;if(l<3)throw new W(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(Ir(2,l));if(t=Ze(t,c),s!=null)throw new De("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=on(a,-1)),a=Ze(a,c)),r&&(t=Dn(t,0),a!=null&&(a=Dn(a,0)));let u=[],h,d=n,p=t.shape[0],m=ur(t),f;a!=null&&(f=ur(a));for(let y=0;ye(g,d));if(a==null)h=x[0],d=x[1];else{let v=L(()=>{let w=f[y],b=$n(w).sub(w),k=x[0].mul(w).add(d[0].mul(b)),N=d.map((C,F)=>x[1][F].mul(w).add(C.mul(b)));return{output:k,newStates:N}});h=v.output,d=v.newStates}o&&u.push(h)}let A;return o&&(A=On(u,1)),[h,A,d]})}var Hr=class extends Ge{constructor(e){super(e);let t;if(e.cell==null)throw new W("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new t0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new W("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Rt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Ir(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){JA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return L(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;ni.shape[i.shape.length-1]),s))throw new W(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Rt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){L(()=>{if(!this.stateful)throw new da("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new W("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Et([n,r])):this.states_=[Et([n,this.cell.stateSize])];else if(e==null)Te(this.states_),this.keptStates!=null&&(Te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Et([n,r])):this.states_[0]=Et([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new W(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Te(this.states_);for(let r=0;rVt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=B6(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Rt({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof Nr){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return L(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=ze(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new W(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=V6((d,p)=>{let m=this.cell.call([d].concat(p),i);return[m[0],m.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,r);let h=this.returnSequences?c:l;return this.returnState?[h].concat(u):h})}getInitialState(e){return L(()=>{let t=Et(e.shape);return t=Ne(t,[1,2]),t=Tc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?PA(t,[1,n]):t):this.cell.stateSize>1?[PA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Hr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=Tr(r,n);return new e(Object.assign(t,{cell:a}))}};Hr.className="RNN";re.registerClass(Hr);var Rc=class extends Ge{},n0=class extends Rc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ut(this.units,"units"),this.activation=Ka(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=At(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=yt(e.kernelRegularizer),this.recurrentRegularizer=yt(e.recurrentRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Wl([1,Ga([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Wl([1,Ga([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=rt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return L(()=>{if(e=e,e.length!==2)throw new W(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0$n(e),rate:this.dropout,training:r})),0$n(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Ur(B(e,s),this.kernel.read()):a=Ur(e,this.kernel.read()),this.bias!=null&&(a=Sr(a,this.bias.read())),i!=null&&(n=B(n,i));let o=se(a,Ur(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Xa(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};n0.className="SimpleRNNCell";re.registerClass(n0);var Ry=class extends Hr{constructor(e){e.cell=new n0(e),super(e)}call(e,t){return L(()=>{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};Ry.className="SimpleRNN";re.registerClass(Ry);var r0=class extends Rc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new W("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Ut(this.units,"units"),this.activation=Ka(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ka(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=At(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=yt(e.kernelRegularizer),this.recurrentRegularizer=yt(e.recurrentRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Wl([1,Ga([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Wl([1,Ga([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=rt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return L(()=>{if(e=e,e.length!==2)throw new W(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0$n(e),rate:this.dropout,training:n,count:3})),0$n(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};My.className="GRU";re.registerClass(My);var Wc=class extends Rc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ut(this.units,"units"),this.activation=Ka(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ka(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=At(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=yt(e.kernelRegularizer),this.recurrentRegularizer=yt(e.recurrentRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Wl([1,Ga([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Wl([1,Ga([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=rt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends hr{apply(i,o){let l=a.apply([s]),c=new $p().apply([s]),u=a.apply([s*2]);return Fv(Fv(l,c),u)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return L(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new W(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0$n(e),rate:this.dropout,training:n,count:4})),0$n(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Fy.className="LSTM";re.registerClass(Fy);var t0=class extends Rc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return L(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i{Mi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(Tr(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return QA(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;sDv(t(),n),i=()=>Cc(s,t,r);return!a||a<=1?Vt(i().clone()):Array(a).fill(void 0).map(i).map(o=>Vt(o.clone()))}var Vre=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a{if(this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new W("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return L(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Et(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){L(()=>{if(!this.stateful)throw new da("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new W("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Et(a)):this.states_=[Et(a)];else if(e==null)Te(this.states_),this.keptStates!=null&&(Te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Et(a)):this.states_[0]=Et(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new W(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Te(this.states_);for(let s=0;sVt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=Er(l,r[0],a,s[0],i[0]),h=Er(c,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,h]:[u,h,n]]}};j6.className="ConvRNN2D";var a0=class extends Wc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Ut(this.filters,"filters"),this.kernelSize=Hl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Ut(o,"kernelSize")),this.strides=Hl(r||1,2,"strides"),this.strides.forEach(o=>Ut(o,"strides")),this.padding=a||"valid",er(this.padding),this.dataFormat=s||"channelsLast",Tt(this.dataFormat),this.dilationRate=Hl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Ut(o,"dilationRate"))}build(e){var t;e=rt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new W(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends hr{apply(u,h){let d=l.apply([c]),p=Fn([c]),m=l.apply([c*2]);return WA([d,p,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return L(()=>{if(e.length!==3)throw new W(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0$n(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,ae,te)=>!ae||!ae[te]?Y:B(ae[te],Y),c=l(r,o,0),u=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0$n(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,m=l(a,p,0),f=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[x,v,w,b]=ln(this.kernel.read(),i,g),[k,N,C,F]=this.useBias?ln(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,x,k,this.padding),u=this.inputConv(u,v,N,this.padding),h=this.inputConv(h,w,C,this.padding),d=this.inputConv(d,b,F,this.padding);let[O,z,V,j]=ln(this.recurrentKernel.read(),i,g);m=this.recurrentConv(m,O),f=this.recurrentConv(f,z),A=this.recurrentConv(A,V),y=this.recurrentConv(y,j);let U=this.recurrentActivation.apply(se(c,m)),X=this.recurrentActivation.apply(se(u,f)),G=se(B(X,s),B(U,this.activation.apply(se(h,A)))),ee=B(this.recurrentActivation.apply(se(d,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=Vre(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=ia(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Sr(a,n,this.dataFormat):a}recurrentConv(e,t){return ia(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};a0.className="ConvLSTM2DCell";re.registerClass(a0);var $y=class extends j6{constructor(e){let t=new a0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};$y.className="ConvLSTM2D";re.registerClass($y);var s0=class extends Ge{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);if(0Dv(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};s0.className="Dropout";re.registerClass(s0);var Dy=class extends s0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Dy.className="SpatialDropout1D";re.registerClass(Dy);var Oy=class extends Ge{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Ut(this.units,"units"),this.activation=Ka(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Lt(e.kernelConstraint),this.biasConstraint=Lt(e.biasConstraint),this.kernelRegularizer=yt(e.kernelRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.activityRegularizer=yt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=rt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=rt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=ze(e),r=vv(this.activation.getClassName()),a;return r!=null?a=Ur(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Ur(n,this.kernel.read()),this.bias!=null&&(a=Sr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Xa(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Oy.className="Dense";re.registerClass(Oy);var zy=class extends Ge{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=rt(e);for(let t of e.slice(1))if(t==null)throw new W(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ha(e,1)]}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:Xa(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Py.className="Activation";re.registerClass(Py);var Ly=class extends Ge{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return L(()=>(e=ze(e),cte(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Ly.className="RepeatVector";re.registerClass(Ly);var Wy=class extends Ge{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=ze(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Wy.className="Reshape";re.registerClass(Wy);var By=class extends Ge{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Ir(1,e.dims.length+1);if(!_.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Rt({ndim:this.dims.length+1})]}computeOutputShape(e){e=rt(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return Ze(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};By.className="Permute";re.registerClass(By);var Vy=class extends Ge{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),r=-1;return Vu(gi(n,this.maskValue),r)}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=ze(e),r=-1,a=!0,s=Vu(gi(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};Vy.className="Masking";re.registerClass(Vy);var jy=class extends Ge{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(ft(e.inputLength))}this.inputDim=e.inputDim,Ut(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Ut(this.outputDim,"outputDim"),this.embeddingsInitializer=At(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=yt(e.embeddingsRegularizer),this.activityRegularizer=yt(e.activityRegularizer),this.embeddingsConstraint=Lt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return L(()=>this.maskZero?(e=ze(e),gi(e,Ue(e))):null)}computeOutputShape(e){if(e=rt(e),this.inputLength==null)return[...e,this.outputDim];let t=ft(this.inputLength);if(t.length!==e.length-1)throw new W(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);return n.dtype!=="int32"&&(n=Nc(n,"int32")),$v(this.embeddings.read(),n.as1D()).reshape(rt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:kt(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Pt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};jy.className="Embedding";re.registerClass(jy);var zi=class extends Ge{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new De}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new W(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;aa.length);e.indexOf(null)===-1&&Ua(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return L(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Ga(r);for(let s of e){let i=s.rank;for(let o=0;o1){let c=Ir(1,l).concat([0]);n.push(Ze(o,c)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=Ze(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(Ir(0,i-1));s=Ze(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r{if(t==null)return null;if(!Array.isArray(t))throw new W("`mask` should be an Array");if(!Array.isArray(e))throw new W("`inputs` should be an Array");if(t.length!==e.length)throw new W(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:on(r,0));let n=t[0];for(let r=1;r{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new W("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return L(()=>WA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new W("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new W("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new W("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new W(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return L(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s3||t.shape.length>3)throw new De("batchDot is not implemented for tensors of 4D or higher rank yet");if(_.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),_.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new De("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return L(()=>{let i;if(r>a){i=r-a;let l=[];for(let c=0;cr){i=a-r;let l=[];for(let c=0;c0){let l;r>a?l=r+a-3:l=r-1;let c=[];for(let u=l;u"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new W(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new W(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>Bc(a,e[s].shape.length)):r=[Bc(this.axes,t.shape.length),Bc(this.axes,n.shape.length)],this.normalize&&(t=Gp(t,r[0]),n=Gp(n,r[1])),jre(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Bc(this.axes,e.length),Bc(this.axes,t.length)],n}computeOutputShape(e){_.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Zy.className="Dot";re.registerClass(Zy);var Yy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=ze(e);return Cc(()=>Fp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Yy.className="GaussianNoise";re.registerClass(Yy);var Jy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?Cc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(Fp(n.shape,1,r))},()=>n,t.training||!1):n})}};Jy.className="GaussianDropout";re.registerClass(Jy);var Qy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return L(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Cc(()=>{let r=ze(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=za(wl(n),this.rate);o=Nc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>ze(e),t.training||!1)}return e})}};Qy.className="AlphaDropout";re.registerClass(Qy);function Vc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=Sw(e,t,n,r,a,s);else if(e.rank===3)i=Nw(e,t,n,r,a,s);else if(e.rank===4)i=Tw(e,t,n,r,a,s);else throw new De(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function Ure(e,t,n,r,a=.001){return L(()=>{let s=Cd(e,r),i=s.mean,o=s.variance;return[Vc(e,i,o,n,t,a),i,o]})}function Hre(e,t,n,r,a=.001){return L(()=>{let s=Cd(e,r),i=s.mean,o=s.variance,l=[];for(let p of Ir(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let c=i.reshape(l),u=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[Vc(e,c,u,d,h,a),i,o]})}function Gre(e,t,n,r,a=.001){return _.arraysEqual(r.slice().sort(),Ir(0,e.rank-1))?Ure(e,t,n,r,a):Hre(e,t,n,r,a)}var e2=class extends Ge{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=At(e.betaInitializer||"zeros"),this.gammaInitializer=At(e.gammaInitializer||"ones"),this.movingMeanInitializer=At(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=At(e.movingVarianceInitializer||"ones"),this.betaConstraint=Lt(e.betaConstraint),this.gammaConstraint=Lt(e.gammaConstraint),this.betaRegularizer=yt(e.betaRegularizer),this.gammaRegularizer=yt(e.gammaRegularizer)}build(e){e=rt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new W(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Rt({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return L(()=>{let n=t.training==null?!1:t.training,r=ze(e),a=r.shape,s=a.length,i=Ir(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Ei(1,s);l[o]=a[o];let c=i.slice();c.sort();let u=!_.arraysEqual(c,Ir(0,s).slice(0,s-1)),h=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return Vc(r,A,y,g,x,this.epsilon)}else return Vc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,m]=Gre(r,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(A,y,g)=>{L(()=>{let x=1-g,v=A.read(),w=v.sub(y).mul(x);A.write(v.sub(w))})};return(()=>{f(this.movingMean,p,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),movingMeanInitializer:kt(this.movingMeanInitializer),movingVarianceInitializer:kt(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Pt(this.betaConstraint),gammaConstraint:Pt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};e2.className="BatchNormalization";re.registerClass(e2);var t2=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=At(e.betaInitializer||"zeros"),this.gammaInitializer=At(e.gammaInitializer||"ones"),this.betaRegularizer=yt(e.betaRegularizer),this.gammaRegularizer=yt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=rt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Ua(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=ze(e),r=n.shape,a=r.length;return L(()=>{let s=!0,{mean:i,variance:o}=Cd(n,this.axis,s),l=Ei(1,a);for(let m of this.axis)l[m]=r[m];let c=m=>m!=null&&m.shape.length!==a&&this.axis!==[a-1]?m.reshape(l):m,u=c(this.gamma.read()),h=c(this.beta.read()),d=[],p=[];for(let m=0;m{if(e.rank!==4)throw new W(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new W("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=vr()),n!=="channelsLast"&&n!=="channelsFirst")throw new W(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],oa(e,r)})}var n2=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?vr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new W(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new W(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new W(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Rt({ndim:4})]}computeOutputShape(e){e=rt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return L(()=>qre(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};n2.className="ZeroPadding2D";re.registerClass(n2);function i0(e,t,n,r,a,s){return L(()=>{Tt(a),Nv(s),er(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=vr()),s==null&&(s="max"),e=vy(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Yu(e,t,n,o):i=Hu(e,t,n,o),a==="channelsFirst"&&(i=Ze(i,[0,3,1,2])),i})}function U6(e,t,n,r,a,s){return L(()=>{Tt(a),Nv(s),er(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=vr()),s==null&&(s="max"),e=P6(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=_m(e,t,n,o):i=om(e,t,n,o),a==="channelsFirst"&&(i=Ze(i,[0,4,1,2,3])),i})}var H6=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new W(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Ut(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new W(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,er(this.padding),this.inputSpec=[new Rt({ndim:3})]}computeOutputShape(e){e=rt(e);let t=Er(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return L(()=>{this.invokeCallHook(e,t),e=Tc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Pa(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},r2=class extends H6{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),er(r),i0(e,t,n,r,a,"max")}};r2.className="MaxPooling1D";re.registerClass(r2);var a2=class extends H6{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),er(r),i0(e,t,n,r,a,"avg")}};a2.className="AveragePooling1D";re.registerClass(a2);var G6=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new W(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Ut(this.poolSize,"poolSize"),Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),er(this.padding),this.inputSpec=[new Rt({ndim:4})]}computeOutputShape(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Er(t,this.poolSize[0],this.padding,this.strides[0]),n=Er(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return L(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},s2=class extends G6{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),er(r),i0(e,t,n,r,a,"max")}};s2.className="MaxPooling2D";re.registerClass(s2);var i2=class extends G6{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),er(r),i0(e,t,n,r,a,"avg")}};i2.className="AveragePooling2D";re.registerClass(i2);var q6=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new W(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Ut(this.poolSize,"poolSize"),Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),er(this.padding),this.inputSpec=[new Rt({ndim:5})]}computeOutputShape(e){e=rt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Er(t,this.poolSize[0],this.padding,this.strides[0]),n=Er(n,this.poolSize[1],this.padding,this.strides[1]),r=Er(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return L(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},o2=class extends q6{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),er(r),U6(e,t,n,r,a,"max")}};o2.className="MaxPooling3D";re.registerClass(o2);var l2=class extends q6{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),er(r),U6(e,t,n,r,a,"avg")}};l2.className="AveragePooling3D";re.registerClass(l2);var X6=class extends Ge{constructor(e){super(e);this.inputSpec=[new Rt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new De}},u2=class extends X6{constructor(e){super(e||{})}call(e,t){return L(()=>{let n=ze(e);return vt(n,1)})}};u2.className="GlobalAveragePooling1D";re.registerClass(u2);var c2=class extends X6{constructor(e){super(e||{})}call(e,t){return L(()=>{let n=ze(e);return Kn(n,1)})}};c2.className="GlobalMaxPooling1D";re.registerClass(c2);var K6=class extends Ge{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),this.inputSpec=[new Rt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new De}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},h2=class extends K6{call(e,t){return L(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?vt(n,[1,2]):vt(n,[2,3])})}};h2.className="GlobalAveragePooling2D";re.registerClass(h2);var d2=class extends K6{call(e,t){return L(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Kn(n,[1,2]):Kn(n,[2,3])})}};d2.className="GlobalMaxPooling2D";re.registerClass(d2);var Z6=class extends Ge{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=Tr(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},p2=class extends Z6{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=rt(e),e.length<3)throw new W(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=rt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return L(()=>(e=ze(e),V6((n,r)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};p2.className="TimeDistributed";re.registerClass(p2);function Xre(e){Ri(ste,"BidirectionalMergeMode",e)}var Kre="concat",f2=class extends Z6{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Tr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=Tr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Kre:e.mergeMode,Xre(this.mergeMode),e.weights)throw new De("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):Tn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=B6(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new W("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Rt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(r!=null)throw new De("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Nr;for(let l of s)if(l instanceof Nr!==o)throw new W("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let h=super.apply(l,t);return this.inputSpec=u,h}else return super.apply(e,t)}call(e,t){return L(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Dn(a,1));let i;return this.mergeMode==="concat"?i=WA([r,a]):this.mergeMode==="sum"?i=se(r,a):this.mergeMode==="ave"?i=B(.5,se(r,a)):this.mergeMode==="mul"?i=B(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Mi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Mi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Tr(t.layer);if(delete t.layer,t.numConstants!=null)throw new De("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};f2.className="Bidirectional";re.registerClass(f2);function bte(e){return new Bl(e)}function _te(e){return new wy(e)}function vte(e){return new yy(e)}function kte(e){return new gy(e)}function Ite(e){return new xy(e)}function Ste(e){return new _y(e)}function Nte(e){return new by(e)}function Tte(e){return new e0(e)}function Ete(e){return new Pc(e)}function Cte(e){return new Iy(e)}function Rte(e){return new Lc(e)}function Mte(e){return new Sy(e)}function Fte(e){return new Ny(e)}function $te(e){return new Ty(e)}function Dte(e){return new Ey(e)}function Ote(e){return new Cy(e)}function zte(e){return new Py(e)}function Pte(e){return new Oy(e)}function Lte(e){return new s0(e)}function Wte(e){return new Dy(e)}function Bte(e){return new zy(e)}function Vte(e){return new Ly(e)}function jte(e){return new Wy(e)}function Ute(e){return new By(e)}function Hte(e){return new jy(e)}function Gte(e){return new Uy(e)}function qte(e){return new Gy(e)}function Xte(e){return new Ky(e)}function Kte(e){return new qy(e)}function Zte(e){return new Xy(e)}function Yte(e){return new Hy(e)}function Jte(e){return new Zy(e)}function Qte(e){return new e2(e)}function ene(e){return new t2(e)}function tne(e){return new n2(e)}function KA(e){return new a2(e)}function nne(e){return KA(e)}function rne(e){return KA(e)}function ZA(e){return new i2(e)}function ane(e){return ZA(e)}function sne(e){return ZA(e)}function YA(e){return new l2(e)}function ine(e){return YA(e)}function one(e){return YA(e)}function lne(e){return new u2(e)}function une(e){return new h2(e)}function Wv(e){return new c2(e)}function Bv(e){return new d2(e)}function Vv(e){return new r2(e)}function jv(e){return new s2(e)}function cne(e){return new o2(e)}function hne(e){return new My(e)}function dne(e){return new r0(e)}function pne(e){return new Fy(e)}function fne(e){return new Wc(e)}function mne(e){return new Ry(e)}function Ane(e){return new n0(e)}function yne(e){return new $y(e)}function gne(e){return new a0(e)}function xne(e){return new Hr(e)}function wne(e){return new t0(e)}function bne(e){return new f2(e)}function _ne(e){return new p2(e)}var vne=Wv,kne=Bv,Ine=Vv,Sne=jv;function Nne(e){return new Yy(e)}function Tne(e){return new Jy(e)}function Ene(e){return new Qy(e)}function Cne(e){return new Vy(e)}var Y6={};Me(Y6,{MAPE:()=>iae,MSE:()=>uae,binaryAccuracy:()=>Zre,binaryCrossentropy:()=>Yre,categoricalAccuracy:()=>Qre,categoricalCrossentropy:()=>eae,cosineProximity:()=>rae,mape:()=>oae,meanAbsoluteError:()=>aae,meanAbsolutePercentageError:()=>sae,meanSquaredError:()=>lae,mse:()=>cae,precision:()=>tae,recall:()=>nae,sparseCategoricalAccuracy:()=>Jre});function Zre(e,t){return ry(e,t)}function Yre(e,t){return a6(e,t)}function Jre(e,t){return s6(e,t)}function Qre(e,t){return ay(e,t)}function eae(e,t){return sy(e,t)}function tae(e,t){return r6(e,t)}function nae(e,t){return Kne(e,t)}function rae(e,t){return ty(e,t)}function aae(e,t){return qp(e,t)}function sae(e,t){return jl(e,t)}function iae(e,t){return jl(e,t)}function oae(e,t){return jl(e,t)}function lae(e,t){return $i(e,t)}function uae(e,t){return $i(e,t)}function cae(e,t){return $i(e,t)}var J6={};Me(J6,{modelFromJSON:()=>Ere});var Q6={};Me(Q6,{l1:()=>dae,l1l2:()=>hae,l2:()=>pae});function hae(e){return new Oc(e)}function dae(e){return zre(e)}function pae(e){return Pre(e)}var e4=class extends Vl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof fa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function o0(e,t){return et}var n4=class extends e4{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new De("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=o0:this.mode==="max"?this.monitorFunc=t4:this.monitor.indexOf("acc")!==-1?this.monitorFunc=t4:this.monitorFunc=o0,this.monitorFunc===o0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===o0?Infinity:-Infinity}async onEpochEnd(e,t){await qa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function fae(e){return new n4(e)}var mae={earlyStopping:fae},Cr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Cr||(Cr={}));var r4;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(r4||(r4={}));var m2={};function Aae(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};m2[e]=n}function a4(e){return m2[e]}function yae(e){delete m2[e]}function I(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return mn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>mn(h,n,r,a));let c=mn(t.inputNames.slice(o)[0],n,r,a),u=c.dataSync();return s.type==="number"?u[0]:_.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function mn(e,t,n,r){let[a,s]=Ln(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[l0(a,o)]);return i!==void 0?t[l0(a,i)][s]:void 0}function gae(e,t,n){return t[l0(e,n.currentContextId)]}function ma(e,t){let[n,r]=Ln(e);return[l0(n,t&&t.currentContextId),r]}function l0(e,t){return t?`${e}-${t}`:e}function Ln(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function u0(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function Aa(e){return e.kept?e:Dr(e)}var s4={};Me(s4,{json:()=>xae});var xae=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],i4={};Me(i4,{json:()=>wae});var wae=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],o4={};Me(o4,{json:()=>bae});var bae=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],l4={};Me(l4,{json:()=>_ae});var _ae=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],u4={};Me(u4,{json:()=>vae});var vae=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],c4={};Me(c4,{json:()=>kae});var kae=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],h4={};Me(h4,{json:()=>Iae});var Iae=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],d4={};Me(d4,{json:()=>Sae});var Sae=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],p4={};Me(p4,{json:()=>Nae});var Nae=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],f4={};Me(f4,{json:()=>Tae});var Tae=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],m4={};Me(m4,{json:()=>Eae});var Eae=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],A4={};Me(A4,{json:()=>Cae});var Cae=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],y4={};Me(y4,{json:()=>Rae});var Rae=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],g4={};Me(g4,{json:()=>Mae});var Mae=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],x4={};Me(x4,{json:()=>Fae});var Fae=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],w4={};Me(w4,{json:()=>$ae});var $ae=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],b4={};Me(b4,{json:()=>Dae});var Dae=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],v4=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[s4,i4,o4,l4,u4,c4,h4,m4,f4,d4,A4,y4,g4,x4,w4,b4,p4],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?r.push(m[f.name]):f.op==="Const"?a.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(m=>{let f=i[m];f.inputNames.forEach(A=>{let[y]=ma(A);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(u).length===0?h.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(u).forEach(m=>{let[f]=ma(m),A=i[f];A!=null&&(A.signatureKey=u[m],l.push(A))}),Object.keys(c).length>0?Object.keys(c).forEach(m=>{let[f]=ma(m),A=i[f];A&&(A.signatureKey=c[m],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=a4(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=A2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=A2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=k2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=k2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=g2(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=g2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=v2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=v2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=y2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=y2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=S2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=S2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=_2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=_2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=I2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=I2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=w2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=w2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=b2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=b2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=_4(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=_4(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&r.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=ma(c.name),h={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:x2(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,s.push(h),a[u]=h}),Object.keys(a).forEach(c=>{let u=a[c];u.inputNames.forEach(h=>{let[d]=ma(h);u.inputs.push(a[d]),a[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,h]=ma(o[c.name]),d=a[u];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Oae(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function k4(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):Oae(e);return t?n:n.toLowerCase()}function A2(e,t,n,r=!1){let a=e[t];return a!=null?k4(a.s,r):n}function y2(e,t,n){let r=e[t];return r?r.b:n}function g2(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function x2(e){switch(typeof e=="string"&&(e=Cr[e]),e){case Cr.DT_FLOAT:return"float32";case Cr.DT_INT32:case Cr.DT_INT64:case Cr.DT_INT8:case Cr.DT_UINT8:return"int32";case Cr.DT_BOOL:return"bool";case Cr.DT_DOUBLE:return"float32";case Cr.DT_STRING:return"string";default:return null}}function _4(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function w2(e,t,n){let r=e[t];return r&&r.type?x2(r.type):n}function b2(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>x2(a)):n}function I4(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function _2(e,t,n){let r=e[t];return r&&r.shape?I4(r.shape):n}function v2(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function k2(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>k4(s,r)):n}function I2(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>I4(a)):n}function S2(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var zae=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return mn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return mn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return g2(this.node.rawAttrs,e,t);if(n.s!=null)return A2(this.node.rawAttrs,e,t);if(n.b!=null)return y2(this.node.rawAttrs,e,t);if(n.shape!=null)return _2(this.node.rawAttrs,e,t);if(n.type!=null)return w2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return v2(this.node.rawAttrs,e,t);if(n.list.s!=null)return k2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return I2(this.node.rawAttrs,e,t);if(n.list.b!=null)return S2(this.node.rawAttrs,e,t);if(n.list.type!=null)return b2(this.node.rawAttrs,e,t)}return t}},Pae=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[yd(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[km(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[B(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[ge(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[pm(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Ad(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ye(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[xl(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Pr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[la(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Bd(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Lae=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Dt(I("x",e,t,n))];case"Acos":return[Yf(I("x",e,t,n))];case"Acosh":return[Jf(I("x",e,t,n))];case"Asin":return[em(I("x",e,t,n))];case"Asinh":return[tm(I("x",e,t,n))];case"Atan":return[nm(I("x",e,t,n))];case"Atan2":return[rm(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[am(I("x",e,t,n))];case"Ceil":return[lm(I("x",e,t,n))];case"Complex":return[Ca(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[qu(I("x",e,t,n))];case"Cosh":return[_d(I("x",e,t,n))];case"Elu":return[Al(I("x",e,t,n))];case"Erf":return[fm(I("x",e,t,n))];case"Exp":return[Xn(I("x",e,t,n))];case"Expm1":return[mm(I("x",e,t,n))];case"Floor":return[yl(I("x",e,t,n))];case"Log":return[Mn(I("x",e,t,n))];case"Log1p":return[Sd(I("x",e,t,n))];case"Imag":return[kd(I("x",e,t,n))];case"Neg":return[_t(I("x",e,t,n))];case"Reciprocal":return[Nm(I("x",e,t,n))];case"Real":return[ec(I("x",e,t,n))];case"Relu":return[Lr(I("x",e,t,n))];case"Round":return[Tm(I("x",e,t,n))];case"Selu":return[Dd(I("x",e,t,n))];case"Sigmoid":return[kn(I("x",e,t,n))];case"Sin":return[Od(I("x",e,t,n))];case"Sign":return[Cm(I("x",e,t,n))];case"Sinh":return[zd(I("x",e,t,n))];case"Softplus":return[Ai(I("x",e,t,n))];case"Sqrt":return[Jt(I("x",e,t,n))];case"Square":return[st(I("x",e,t,n))];case"Tanh":return[di(I("x",e,t,n))];case"Tan":return[Fm(I("x",e,t,n))];case"ClipByValue":return[In(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Fd(I("x",e,t,n))];case"Rsqrt":return[$d(mn(e.inputNames[0],t,n))];case"Prod":return[Rd(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Ku(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Qu(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[ym(mn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function pr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){_.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;rn+` Shapes ${e} and ${t} must match`)}}}function S4(e){return!(typeof e=="number"||e.some(t=>t<0))}function jc(e,t,n){let r=N2(e,n),a=!S4(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=N2(s.shape,r)}),!S4(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function N2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var Wae=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ke(0),Vt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, + because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),pr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Vt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ur(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is - ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];P(()=>{t=H(t,[1,n,a]);for(let o=0;o{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);xr(t,a.shape,"TensorList shape mismatch: "),Ht(a)}),this.idTensor=ve(0),this.maxNumElements=r,Ht(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Kc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);xr(e,this.elementShape,"TensorList shape mismatch: ");let r=Xc(this.elementShape,this.tensors,e);return P(()=>{let a=this.tensors.map(s=>H(s,r));return cn(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Xc(this.elementShape,this.tensors,e),r=this.tensors.pop();return xr(r.shape,e,"TensorList shape mismatch: "),H(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(xr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ht(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);xr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Xc(this.elementShape,this.tensors,t);return H(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);xr(this.elementShape,t.shape,"TensorList shape mismatch: "),Ht(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);xr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Xc(this.elementShape,this.tensors,n);return e.length===0?Sr([],[0].concat(r)):P(()=>{let a=e.map(s=>H(this.tensors[s],r));return cn(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);xr(this.elementShape,t,"TensorList shape mismatch: ");let n=Xc(this.elementShape,this.tensors,t);return this.size()===0?Sr([],[0].concat(n)):P(()=>{let r=this.tensors.map(a=>H(a,n));return ot(r,0)})}};function cse(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);xr(a,t,"TensorList shape mismatch: ");let s=mr(e);return new Kc(s,t,r)}function hse(e,t,n){return new Kc([],e,t,n)}function dse(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Kc([],n,e.dtype,r),i=mr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function pse(e,t,n){let r=0,a=t.map(u=>(r+=u,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to + ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];L(()=>{t=H(t,[1,n,a]);for(let o=0;o{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);pr(t,a.shape,"TensorList shape mismatch: "),Vt(a)}),this.idTensor=ke(0),this.maxNumElements=r,Vt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Uc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);pr(e,this.elementShape,"TensorList shape mismatch: ");let r=jc(this.elementShape,this.tensors,e);return L(()=>{let a=this.tensors.map(s=>H(s,r));return On(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=jc(this.elementShape,this.tensors,e),r=this.tensors.pop();return pr(r.shape,e,"TensorList shape mismatch: "),H(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(pr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Vt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);pr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=jc(this.elementShape,this.tensors,t);return H(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);pr(this.elementShape,t.shape,"TensorList shape mismatch: "),Vt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);pr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=jc(this.elementShape,this.tensors,n);return e.length===0?wr([],[0].concat(r)):L(()=>{let a=e.map(s=>H(this.tensors[s],r));return On(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);pr(this.elementShape,t,"TensorList shape mismatch: ");let n=jc(this.elementShape,this.tensors,t);return this.size()===0?wr([],[0].concat(n)):L(()=>{let r=this.tensors.map(a=>H(a,n));return ot(r,0)})}};function Bae(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);pr(a,t,"TensorList shape mismatch: ");let s=ur(e);return new Uc(s,t,r)}function Vae(e,t,n){return new Uc([],e,t,n)}function jae(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Uc([],n,e.dtype,r),i=ur(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Uae(e,t,n){let r=0,a=t.map(u=>(r+=u,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is - ${r}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=P2(s,n),o=r===0?0:e.size/r,l=P(()=>{let u=[];e=H(e,[1,r,o]);for(let h=0;h{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),a=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),a=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let h=c.map(p=>p.id);u.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return c}case"LoopCond":{let r=I("pred",e,t,n);return[wa(r)]}case"Switch":{let r=I("pred",e,t,n),a=I("data",e,t,n);return a.kept||(a=wa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>yn(a,t,n)!==void 0);if(r){let a=yn(r,t,n);return[wa(a)]}return}case"Enter":{let r=I("frameName",e,t,n),a=I("tensor",e,t,n);return n.enterFrame(r),[wa(a)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[wa(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[wa(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),a=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new use(c,a,r,s,l,i,o);return n.addTensorArray(u),[u.idTensor,ve(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=I("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),a=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[ve(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),a=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=dse(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=hse(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),a=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=cse(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),a=n.getTensorList(r.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),a=I("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=pse(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function K4(e,t,n){let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),u=f0(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[p,m]=I("args",e,t,n),f=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:h,dilations:d,biasArg:p,preluArg:m,activationFunc:a,leakyreluAlpha:f}}var mse=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Id(I("x",e,t,n),I("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=f0(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[ha(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=K4(e,t,n);return[Ha.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=K4(e,t,n);return[Ha.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),s=f0(e,t,n);return[Sd(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=f0(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[wl(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[wm(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Zu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[nc(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=mw(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[gm(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Fm(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dilations",e,t,n),i=r[1],o=r[2],l=s[1],c=s[2];return[vm(I("x",e,t,n),I("filter",e,t,n),[i,o],a,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ase=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),s=I("value",e,t,n);return[Qu(r,s,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("num",e,t,n);return[lw(r,a,s)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),s=I("seed",e,t,n);return[Aw(r,a,s)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[ml(r,a,s,i)]}case"Ones":return[Pn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Ln(I("x",e,t,n))];case"RandomUniform":return[Sl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("step",e,t,n);return[zd(r,a,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[qd(r,a,s,I("dtype",e,t,n),i)]}case"Zeros":return[Rt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[He(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function L2(e,t,n){let r=I("boxes",e,t,n),a=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var yse=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=L2(e,t,n),c=await Le.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=L2(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Le.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=L2(e,t,n);return[await Le.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=ge(I("condition",e,t,n),"bool"),a=[await qm(r)];return r.dispose(),a}case"ListDiff":return xw(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},gse=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),s=I("sorted",e,t,n),i=Hm(r,a,s);return[i.values,i.indices]}case"Unique":{let r=I("x",e,t,n),a=Xd(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),s=Xd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},xse=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[yn(e.name,t,n)||r];case"Placeholder":return[yn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[wa(c)]}case"IdentityN":return I("x",e,t,n).map(c=>wa(c));case"Snapshot":let a=I("x",e,t,n);return[wa(a)];case"Shape":return[sn(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>sn(c.shape));case"Size":return[ve(I("x",e,t,n).size,"int32")];case"Rank":return[ve(I("x",e,t,n).rank,"int32")];case"NoOp":return[ve(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;ce.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ve(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),P(()=>{let r=mr(t),a=n.length,s=r.length;_.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i{let r=[];for(let a=0;a{switch(e.op){case"HashTable":case"HashTableV2":{let a=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new bse(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=I("tableHandle",e,t,n,r);return[r.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_se=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Le.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Le.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Le.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},vse=(e,t,n)=>{switch(e.op){case"Equal":return[Ba(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[ki(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[pr(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[ja(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Cd(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[wi(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[fr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[tc(I("a",e,t,n))];case"LogicalOr":return[$d(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Cn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kse=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[sw(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Je(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[Ha.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ise=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[xi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[xi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Em(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[oc(I("x",e,t,n))];case"LogSoftmax":return[Fd(I("x",e,t,n))];case"SparseToDense":return[Xm(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Sse=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Rn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[It(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[kl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Te(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[vd(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Xu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[Ai(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[cm(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Od(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Td(I("x",e,t,n),i,o,l)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),s=I("size",e,t,n);return[Yb(r,a,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[rw(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nse=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,r),[ot(s,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[bi(r,ge(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[bi(s,ge(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i{let r=I("axis",e,t,n),a=I("tensors",e,t,n),s=a[0].shape,i=Ua(a[0]).shape,o=a.map(l=>{let c=_.arraysEqual(l.shape,s);if(!c&&!_.arraysEqual(Ua(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:H(l,s)});return[cn(o,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return mr(a,r)}case"Tile":{let r=I("reps",e,t,n);return[Va(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return Lt(s,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),s=I("shape",e,t,n);return[vw(r,a,s)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[kw(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Xm(r,s,a,s.dtype===i.dtype?i:ge(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tse=(e,t,n)=>{switch(e.op){case"SparseReshape":{let{outputIndices:r,outputShape:a}=Lw.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,a]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ese=(e,t,n)=>{switch(e.op){case"FFT":return[lc(I("x",e,t,n))];case"IFFT":return[Nl(I("x",e,t,n))];case"RFFT":return[uc(I("x",e,t,n))];case"IRFFT":return[Hd(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Cse=(e,t,n)=>{switch(e.op){case"Cast":return[ge(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[Qt(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[Ua(I("x",e,t,n),r)]}case"Reshape":return[H(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[$m(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[da(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[rc(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[Yu(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[_m(I("x",e,t,n),r,a)]}case"BroadcastTo":return[xl(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Z4(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return P(()=>ose(s,i,o));case"basic_math":return P(()=>lse(s,i,o));case"control":return fse(s,i,o);case"convolution":return P(()=>mse(s,i,o));case"creation":return P(()=>Ase(s,i,o));case"dynamic":return yse(s,i,o);case"evaluation":return P(()=>gse(s,i,o));case"image":return P(()=>_se(s,i,o));case"graph":return P(()=>xse(s,i,o));case"logical":return P(()=>vse(s,i,o));case"matrices":return P(()=>kse(s,i,o));case"normalization":return P(()=>Ise(s,i,o));case"reduction":return P(()=>Sse(s,i,o));case"slice_join":return P(()=>Nse(s,i,o));case"sparse":return P(()=>Tse(s,i,o));case"spectral":return P(()=>Ese(s,i,o));case"transformation":return P(()=>Cse(s,i,o));case"hash_table":return wse(s,i,o,r);case"custom":let l=S4(s.op);if(l&&l.customExecutor)return l.customExecutor(new ise(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return _.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var Y4=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Q4(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>jn(d)[0]),u=[];r!=null&&(u=r.map(d=>jn(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((J4(d)||Rse(d)||Mse(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Fse(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(u=>jn(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{r.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{r.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return c}var $se=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Dse=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Ose=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function J4(e){return $se.indexOf(e.op)>=0}function Rse(e){return Dse.indexOf(e.op)>=0}function Mse(e){return Ose.indexOf(e.op)>=0}var W2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new W2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=Q4(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Fse(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[jn(u)[0]]),a=t.map(u=>jn(u)[0]),s=a.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return P(()=>{let u=new Y4(this.weightMap,l,c,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,A]=jn(m),y=[];y[A]=e[m],h[f]=y});let d=this.getFrozenTensorIds(h),p={};for(let m=0;myn(m,h,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Bae(o.name,n,r);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!a.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new Y4(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>yn(h,i,s)),l=o.map(h=>h.id),c=Object.keys(e).map(h=>e[h].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.kept&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[jn(g)[0]]),i=n.map(g=>jn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:h}=Q4(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[x,v]=jn(g),b=[];b[v]=e[g],p[x]=b});let m={},f=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,f,i,m,l);await Promise.all(g)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!J4(g)&&!yn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${c}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let h="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([h]=ba(u.node.name,n)),r[u.node.name]==null){let d=Z4(u.node,r,n,this._resourceManager);h||([h]=ba(u.node.name,n));let p=n.currentContext;_.isPromise(d)?c.push(d.then(m=>(r[h]=m,n.currentContext=p,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l),m))):(r[h]=d,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l))}else this.processChildNodes(u.node,t,n,r,a,l)}return c}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=ba(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=jn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);_.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&_.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=jn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=jn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},zse=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Pse="?tfjs-format=file",Lse="model.json",e8=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new zse}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Nn.browserHTTPRequest(e,this.loadOptions);else{let t=Nn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Nn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=Nn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new W2(H4.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=H4.Instance.transformGraph(e.modelInitializer);this.initializer=new W2(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Nn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Pe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function ct(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Lse}${Pse}`);let n=new e8(e,t);return await n.load(),n}var Wse="3.5.0",t8={};Me(t8,{CSVDataset:()=>r8,Dataset:()=>Jl,FileDataSource:()=>a8,TextLineDataset:()=>n8,URLDataSource:()=>s8,array:()=>Bse,csv:()=>jse,func:()=>Use,generator:()=>Hse,microphone:()=>qse,version_data:()=>Xse,webcam:()=>Gse,zip:()=>Vse});var Kse=so(l5()),Zse=so(l5());function Yse(e,t){return m0(e,t)}function m0(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Ql(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=m0(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function Jse(e,t=o8){return i8(e,t)}function i8(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Ql(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(c=>c[i]),l=i8(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function o8(e){return e===null?null:Ql(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function l8(e,t){let n=new Map;m0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(_.isPromise(a)){let s=await a;n.set(r,s)}}return m0(e,t,n)}function Ql(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Pe))}function eie(e){return e==null||Qse(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Pe||_.isTypedArray(e)}function Qse(e){return e===null||typeof e!="object"&&typeof e!="function"}function nie(e){return Yse(e,tie)}function tie(e){return e instanceof Pe?{value:e.clone(),recurse:!1}:Ql(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var u8=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},B2=class extends u8{constructor(){super(B2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;rt===!0)}rowMajorBatch(e,t=!0){return new hie(this,e,t)}columnMajorBatch(e,t=!0,n=o8){return this.rowMajorBatch(e,t).map(r=>Jse(r,n))}concatenate(e,t){return new h8(c8([this,e]),t)}take(e){return e<0||e==null?this:new cie(this,e)}skip(e){return e<0||e==null?this:new uie(this,e)}prefetch(e){return new p8(this,e)}shuffle(e,t){return new Aie(this,e,t)}serial(){return new lie(this)}},rie=class extends Xt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:nie(e),done:!1}}},aie=class extends Xt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},lie=class extends Xt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},uie=class extends Xt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},hie=class extends Xt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},die=class extends Xt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;we(e.value)}}},pie=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=kr.getTensorsInContainer(e.value),n=this.transform(e.value),r=kr.getTensorsInContainer(n);for(let a of t)kr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},fie=class extends Xt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},d8=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=kr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=kr.getTensorsInContainer(n);for(let a of t)kr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},j2=class extends Xt{constructor(){super();this.outputQueue=new B2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},mie=class extends j2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=kr.getTensorsInContainer(e.value),n=this.transform(e.value),r=kr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)kr.isTensorInList(a,r)||a.dispose();return!0}},h8=class extends Xt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},rs;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(rs||(rs={}));var iie=class extends Xt{constructor(e,t=rs.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof Xt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await l8(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case rs.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case rs.SHORTEST:return{value:null,done:!0};case rs.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},p8=class extends Xt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new u8(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Aie=class extends p8{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Zse.alea(n||_.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Jl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;_.assert(e>0,()=>`batchSize needs to be positive, but it is - ${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Un(async()=>(await n.iterator()).columnMajorBatch(e,t,yie),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Un(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Un(async()=>(await t.iterator()).filter(r=>P(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Un(async()=>(await t.iterator()).map(n=>P(()=>e(n))),this.size)}mapAsync(e){let t=this;return Un(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Un(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Un(async()=>{let r=V2(async()=>({value:await t.iterator(),done:!1}));return sie(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=Kse.alea(t||_.now().toString());return Un(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Un(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Jl.MAX_BUFFER_SIZE=1e4;function Un(e,t=null){return new class extends Jl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Bse(e){return Un(async()=>c8(e),e.length)}function Vse(e){if(!Ql(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await l8(e,r=>{if(r instanceof Jl)return{value:r.iterator(),recurse:!1};if(Ql(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return oie(n,rs.SHORTEST)},t)}function yie(e){if(e===null)return null;let t=e[0];return eie(t)?{value:gie(e),recurse:!1}:{value:null,recurse:!0}}function gie(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Pe?cn(e):Sr(e)}var n8=class extends Jl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` -`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},A0='"',Zc=Symbol("out"),f8=Symbol("field"),y0=Symbol("quote"),U2=Symbol("quoteafterquote"),m8=Symbol("quoteinquote"),r8=class extends Jl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new n8(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(_.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&_.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(_.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new A8(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(_.sizeFromShape(t));return n.set(e,n.length-e.length),Sr(n,t)}},y8=class extends Xt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=sn([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=tr([s,a,o,i],[1,4])}else this.cropBox=tr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new y8(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&_.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=fi.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return P(()=>{let t=Qt(ge(e,"float32"),0),n;n=Le.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return H(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},g8=class{},x8=class extends Xt{split(e){return new xie(this,e)}},xie=class extends x8{constructor(e,t){super();this.upstream=e,this.impl=new bie(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},bie=class extends j2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},_ie=class extends Xt{decodeUTF8(){return new wie(this)}},wie=class extends x8{constructor(e){super();this.upstream=e,this.impl=new vie(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},vie=class extends j2{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=E9();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},b8=class extends _ie{constructor(e,t={}){super();this.file=e,this.options=t,_.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function Iie(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=kie(e));let a=await _.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new b8(s,t)}else throw new Error(a.statusText)}var kie=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function w8(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var a8=class extends g8{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(w8(this.input)&&J().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new b8(this.input,this.options)}},s8=class extends g8{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return w8(this.url)?new a8(this.url,this.fileOptions).iterator():Iie(this.url,this.fileOptions)}};function jse(e,t={}){return new r8(new s8(e),t)}function Use(e){let t=V2(e);return Un(async()=>t)}function Hse(e){return Un(async()=>{let t=await e();return V2(()=>t.next())})}async function Gse(e,t){return y8.create(e,t)}async function qse(e){return A8.create(e)}var Xse="3.5.0",Sie={tfjs:(wf==null?void 0:wf.version)||void 0,"tfjs-core":(_f==null?void 0:_f.version)||void 0,"tfjs-data":(vf==null?void 0:vf.version)||void 0,"tfjs-layers":(kf==null?void 0:kf.version)||void 0,"tfjs-converter":(If==null?void 0:If.version)||void 0,"tfjs-backend-cpu":g_||void 0,"tfjs-backend-webgl":B3||void 0,"tfjs-backend-wasm":Mv||void 0};var Hn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function _8(){if(!om(Hn.name)){le("backend registration:",Hn.name);try{Hn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Hn.width,Hn.height):document.createElement("canvas")}catch(e){le("error: cannot create canvas:",e);return}try{Hn.gl=Hn.canvas.getContext("webgl2",Hn.webGLattr)}catch(e){le("error: cannot get WebGL2 context:",e);return}try{Ap(2,Hn.gl)}catch(e){le("error: cannot set WebGL2 context:",e);return}try{let e=new bp(Hn.gl);yl(Hn.name,()=>new Bl(e),Hn.priority)}catch(e){le("error: cannot register WebGL backend:",e);return}try{cl("webgl").forEach(t=>{let n={...t,backendName:Hn.name};ci(n)})}catch(e){le("error: cannot update WebGL backend registration:",e);return}try{vr.set("WEBGL_VERSION",2)}catch(e){le("error: cannot set WebGL backend flags:",e);return}le("backend registered:",Hn.name)}}var H2={};Yn(H2,{load:()=>G2,predict:()=>w0});var g0={};function gn(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(i=>i.kernelTimeMs>0).reduce((i,o)=>i+=o.kernelTimeMs,0),a=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.kernelTimeMs>0).sort((i,o)=>o.kernelTimeMs-i.kernelTimeMs),s=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.totalBytesSnapshot>0).sort((i,o)=>o.totalBytesSnapshot-i.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n),g0[e]={model:e,newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s},le("profiler",e,g0[e])}var br,x0={age:0},b0=Number.MAX_SAFE_INTEGER;async function G2(e){return br?e.debug&&le("cached model:",br.modelUrl):(br=await ct(pt(e.modelBasePath,e.face.age.modelPath)),!br||!br.modelUrl?le("load model failed:",e.face.age.modelPath):e.debug&&le("load model:",br.modelUrl)),br}async function w0(e,t){return br?b00?(b0++,x0):(t.videoOptimized?b0=0:b0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Le.resizeBilinear(e,[br.inputs[0].shape[2],br.inputs[0].shape[1]],!1),a=z(r,[255]);we(r);let s,i={age:0};if(!t.profile)t.face.age.enabled&&(s=await br.predict(a));else{let o=t.face.age.enabled?await an(()=>br.predict(a)):{};s=o.result.clone(),o.result.dispose(),gn("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),x0=i,n(i)})):null}var q2={};Yn(q2,{load:()=>Y2,predict:()=>v0});var ir,X2={gender:""},_0=Number.MAX_SAFE_INTEGER,K2=!1,Z2=[.2989,.587,.114];async function Y2(e){return ir?e.debug&&le("cached model:",ir.modelUrl):(ir=await ct(pt(e.modelBasePath,e.face.gender.modelPath)),K2=ir.inputs[0].shape[3]===1,!ir||!ir.modelUrl?le("load model failed:",e.face.gender.modelPath):e.debug&&le("load model:",ir.modelUrl)),ir}async function v0(e,t){return ir?_0{let r=Le.resizeBilinear(e,[ir.inputs[0].shape[2],ir.inputs[0].shape[1]],!1),a;K2?a=P(()=>{let[o,l,c]=Lt(r,3,3),u=z(o,Z2[0]),h=z(l,Z2[1]),d=z(c,Z2[2]);return La([u,h,d]).sub(.5).mul(2)}):a=z(r,[255]),we(r);let s,i={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(s=await ir.predict(a));else{let o=t.face.gender.enabled?await an(()=>ir.predict(a)):{};s=o.result.clone(),o.result.dispose(),gn("gender",o)}if(a.dispose(),s)if(Array.isArray(s)){let o=s[0].dataSync(),l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l)),s.forEach(c=>we(c))}else{let o=s.dataSync();if(K2)(o[0]>t.face.gender.minConfidence||o[1]>t.face.gender.minConfidence)&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=o[0]>o[1]?Math.trunc(100*o[0])/100:Math.trunc(100*o[1])/100);else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}s.dispose()}X2=i,n(i)})):null}var J2={};Yn(J2,{load:()=>tg,predict:()=>I0});var Nie=["angry","disgust","fear","happy","sad","surprise","neutral"],wr,Q2=[],k0=Number.MAX_SAFE_INTEGER,eg=[.2989,.587,.114];async function tg(e){return wr?e.debug&&le("cached model:",wr.modelUrl):(wr=await ct(pt(e.modelBasePath,e.face.emotion.modelPath)),!wr||!wr.modelUrl?le("load model failed:",e.face.emotion.modelPath):e.debug&&le("load model:",wr.modelUrl)),wr}async function I0(e,t){return wr?k00?(k0++,Q2):(t.videoOptimized?k0=0:k0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Le.resizeBilinear(e,[wr.inputs[0].shape[2],wr.inputs[0].shape[1]],!1),[a,s,i]=Lt(r,3,3);r.dispose();let o=z(a,eg[0]),l=z(s,eg[1]),c=z(i,eg[2]);a.dispose(),s.dispose(),i.dispose();let u=La([o,l,c]);o.dispose(),l.dispose(),c.dispose();let h=P(()=>u.sub(.5).mul(2));u.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let m=await an(()=>wr.predict(h));p=m.result.dataSync(),m.result.dispose(),gn("emotion",m)}else{let m=await wr.predict(h);p=m.dataSync(),we(m)}for(let m=0;mt.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*p[m])/100),emotion:Nie[m]});d.sort((m,f)=>f.score-m.score)}h.dispose(),Q2=d,n(d)})):null}var Gn;async function ng(e){return Gn?e.debug&&le("cached model:",Gn.modelUrl):(Gn=await ct(pt(e.modelBasePath,e.face.embedding.modelPath)),!Gn||!Gn.modelUrl?le("load model failed:",e.face.embedding.modelPath):e.debug&&le("load model:",Gn.modelUrl)),Gn}function v8(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(Math.trunc(1e3*(1-r))/1e3,0)}function Tie(e){return P(()=>{let n=[[.05,.15,.85,.85]],r=e.image||e.tensor;if(!(r instanceof Pe))return null;let a=r.shape.length===3?Le.cropAndResize(Qt(r,0),n,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]):Le.cropAndResize(r,n,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]),s=[.2989,.587,.114],[i,o,l]=Lt(a,3,3),c=z(i,s[0]),u=z(o,s[1]),h=z(l,s[2]),d=La([c,u,h]),p=cn([d,d,d],3).squeeze(4),m=p.sub(p.min());return m.div(m.max())})}async function rg(e,t){return Gn?new Promise(async n=>{let r=[];if(t.face.embedding.enabled){let a=Tie(e);if(!t.profile)r=P(()=>[...Gn.predict(a).reshape([128,2]).logSumExp(1).dataSync()]);else{let s=await an(()=>Gn.predict({img_inputs:a}));r=[...s.result.dataSync()],s.result.dispose(),gn("emotion",s)}we(a)}n(r)}):[]}var ag={};Yn(ag,{enhance:()=>og,load:()=>sg,match:()=>k8,predict:()=>T0,similarity:()=>ig});var qn,S0={age:0},N0=Number.MAX_SAFE_INTEGER;async function sg(e){return qn?e.debug&&le("cached model:",qn.modelUrl):(qn=await ct(pt(e.modelBasePath,e.face.description.modelPath)),!qn||!qn.modelUrl?le("load model failed:",e.face.description.modelPath):e.debug&&le("load model:",qn.modelUrl)),qn}function ig(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-r)/100}function k8(e,t,n=0){let r={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return r;for(let a of t)if(a.embedding&&a.name){let s=ig(e,a.embedding);s>n&&s>r.similarity&&(r={...a,similarity:s})}return r}function og(e){return P(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Pe))return null;let r=[[.05,.15,.85,.85]];return(n.shape.length===3?Le.cropAndResize(Qt(n,0),r,[0],[qn.inputs[0].shape[2],qn.inputs[0].shape[1]]):Le.cropAndResize(n,r,[0],[qn.inputs[0].shape[2],qn.inputs[0].shape[1]])).mul(255)})}async function T0(e,t){return qn?N00?(N0++,S0):(t.videoOptimized?N0=0:N0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=og(e),a,s={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};if(!t.profile)t.face.description.enabled&&(a=await qn.predict(r));else{let i=t.face.description.enabled?await an(()=>qn.predict(r)):{};a=i.result,gn("faceres",i)}we(r),a&&(P(()=>{let i=a.find(h=>h.shape[1]===1).dataSync(),o=Math.trunc(200*Math.abs(i[0]-.5))/100;o>t.face.gender.minConfidence&&(s.gender=i[0]<=.5?"female":"male",s.genderConfidence=Math.min(.99,o));let l=a.find(h=>h.shape[1]===100).argMax(1).dataSync()[0],c=a.find(h=>h.shape[1]===100).dataSync();s.age=Math.round(c[l-1]>c[l+1]?10*l-100*c[l-1]:10*l+100*c[l+1])/10;let u=a.find(h=>h.shape[1]===1024);s.descriptor=[...u.dataSync()]}),a.forEach(i=>we(i))),S0=s,n(s)})):null}var Eie=(e,t)=>{let n=A=>A*180/Math.PI,r=A=>{let y=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=y,A[1]/=y,A[2]/=y,A},a=(A,y)=>{let g=A[0]-y[0],x=A[1]-y[1],v=A[2]-y[2];return[g,x,v]},s=(A,y)=>{let g=A[1]*y[2]-A[2]*y[1],x=A[2]*y[0]-A[0]*y[2],v=A[0]*y[1]-A[1]*y[0];return[g,x,v]},i=A=>{let[y,g,x,v,b,w,k,N,C]=A,F,O,L;return v<1?v>-1?(L=Math.asin(v),O=Math.atan2(-k,y),F=Math.atan2(-w,b)):(L=-Math.PI/2,O=-Math.atan2(N,C),F=0):(L=Math.PI/2,O=Math.atan2(N,C),F=0),{pitch:2*-F,yaw:2*-O,roll:2*-L}},o=A=>{let y=(x,v,b,w)=>Math.atan2(w-v,b-x);return{pitch:y(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:y(A[33][0],A[33][2],A[263][0],A[263][2]),roll:y(A[33][0],A[33][1],A[263][0],A[263][1])}},l=e.meshRaw;if(!l||l.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let c=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[l[10],l[152],l[234],l[454]].map(A=>[A[0]*t[0]/c,A[1]*t[1]/c,A[2]]),h=r(a(u[1],u[0])),d=r(a(u[3],u[2])),p=r(s(d,h));d=s(h,p);let m=[d[0],d[1],d[2],h[0],h[1],h[2],p[0],p[1],p[2]];return{angle:i(m),matrix:m}},lg=async(e,t)=>{var u,h,d,p,m,f,A;let n,r,a,s,i,o,l=[];e.state="run:face",n=Ye();let c=await((u=e.models.face)==null?void 0:u.estimateFaces(t,e.config));if(e.perf.face=Math.trunc(Ye()-n),!c)return[];for(let y of c){if(e.analyze("Get Face"),!y.image||y.image.isDisposedInternal){le("Face object is disposed:",y.image);continue}let g=Eie(y,[t.shape[2],t.shape[1]]);e.analyze("Start Age:"),e.config.async?r=e.config.face.age.enabled?w0(y.image,e.config):{}:(e.state="run:age",n=Ye(),r=e.config.face.age.enabled?await w0(y.image,e.config):{},e.perf.age=Math.trunc(Ye()-n)),e.analyze("Start Gender:"),e.config.async?a=e.config.face.gender.enabled?v0(y.image,e.config):{}:(e.state="run:gender",n=Ye(),a=e.config.face.gender.enabled?await v0(y.image,e.config):{},e.perf.gender=Math.trunc(Ye()-n)),e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?I0(y.image,e.config):{}:(e.state="run:emotion",n=Ye(),s=e.config.face.emotion.enabled?await I0(y.image,e.config):{},e.perf.emotion=Math.trunc(Ye()-n)),e.analyze("End Emotion:"),e.analyze("Start Embedding:"),e.config.async?i=e.config.face.embedding.enabled?rg(y,e.config):[]:(e.state="run:embedding",n=Ye(),i=e.config.face.embedding.enabled?await rg(y,e.config):[],e.perf.embedding=Math.trunc(Ye()-n)),e.analyze("End Embedding:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?T0(y,e.config):[]:(e.state="run:description",n=Ye(),o=e.config.face.description.enabled?await T0(y.image,e.config):[],e.perf.embedding=Math.trunc(Ye()-n)),e.analyze("End Description:"),e.config.async&&([r,a,s,i,o]=await Promise.all([r,a,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=y==null?void 0:y.annotations)==null?void 0:h.leftEyeIris)&&((d=y==null?void 0:y.annotations)==null?void 0:d.rightEyeIris)&&(delete y.annotations.leftEyeIris,delete y.annotations.rightEyeIris);let x=((p=y.annotations)==null?void 0:p.leftEyeIris)&&((m=y.annotations)==null?void 0:m.rightEyeIris)?11.7*Math.max(Math.abs(y.annotations.leftEyeIris[3][0]-y.annotations.leftEyeIris[1][0]),Math.abs(y.annotations.rightEyeIris[4][1]-y.annotations.rightEyeIris[2][1])):0;l.push({...y,age:o.age||r.age,gender:o.gender||a.gender,genderConfidence:o.genderConfidence||a.confidence,embedding:o.descriptor||i,emotion:s,iris:x!==0?Math.trunc(x)/100:0,rotation:g,tensor:e.config.face.detector.return?(f=y.image)==null?void 0:f.squeeze():null}),(A=y.image)==null||A.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),l};var fg={};Yn(fg,{MediaPipeFaceMesh:()=>mg,load:()=>Ag,triangulation:()=>$8,uvmap:()=>D8});var I8=6;function Cie(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r({startEndTensor:e,startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});function Mie(e,t,n){let r=Re(e,[0,1],[-1,2]),a=se(r,t),s=Re(e,[0,3],[-1,2]),i=Ae(s,n),o=Ae(a,n),l=Ae(i,2),c=ye(o,l),u=se(o,l),h=z(c,n),d=z(u,n);return bl([h,d],1)}var S8=class{constructor(t,n){this.model=t,this.anchorsData=Cie(t.inputs[0].shape[1]),this.anchors=tr(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=P(()=>{let d=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),p=this.model.predict(d),m;if(Array.isArray(p)){let g=p.sort((w,k)=>w.size-k.size),x=ot([g[0],g[2]],2),v=ot([g[1],g[3]],2);m=ot([v,x],1).squeeze(0)}else m=p.squeeze();let f=Mie(m,this.anchors,[this.inputSize,this.inputSize]),A=Re(m,[0,0],[-1,1]),y=Tn(A).squeeze();return[m,f,y]}),s=await Le.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>Re(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),c=a.dataSync(),u=[];for(let h=0;hthis.config.face.detector.minConfidence){let m=Rie(l[h]),f=this.anchorsData[d],A=P(()=>Re(n,[d,I8-1],[1,-1]).squeeze().reshape([I8,-1]));u.push({box:m,landmarks:A,anchor:f,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),{boxes:u,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function N8(e){let t=await ct(pt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new S8(t,e);return!t||!t.modelUrl?le("load model failed:",e.face.detector.modelPath):e.debug&&le("load model:",t.modelUrl),n}function T8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function Yc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function eu(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function tu(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Le.cropAndResize(t,s,[0],n)}function E0(e,t=1.5){let n=eu(e),r=Yc(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function C0(e){let t=eu(e),n=Yc(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}var R0=[[1,0,0],[0,1,0],[0,0,1]];function Fie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function ug(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Fie(n)}function E8(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function as(e,t){let n=0;for(let r=0;rJc[e]),joe=Oie.map(e=>Jc[e]),Uoe=zie.map(e=>Jc[e]);var hg=ea.leftEyeLower0,dg=ea.rightEyeLower0,nu={leftBounds:[hg[0],hg[hg.length-1]],rightBounds:[dg[0],dg[dg.length-1]]},F0={count:468,mouth:13,symmetryLine:[13,ea.midwayBetweenEyes[0]]},F8={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},ru={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function $0(e,t,n,r){for(let a=0;a[s[0]/this.meshSize*(h[0]-this.meshSize/2),s[1]/this.meshSize*(h[1]-this.meshSize/2),h[2]]),o=r!==0?M0(r,[0,0]):R0,l=r!==0?i.map(h=>[...M8(h,o),h[2]]):i,c=r!==0?R8(a):R0,u=[...eu({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(h=>[h[0]+as(u,c[0]),h[1]+as(u,c[1]),h[2]])}getLeftToRightEyeDepthDifference(t){let n=t[nu.leftBounds[0]][2],r=t[nu.rightBounds[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=C0(E0(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Yc(i),l=Le.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&vr.flags.IS_BROWSER&&(l=Le.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i{let c=i;return l===2?c=a:l===4&&(c=s),[o[0],o[1],c]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,!n.videoOptimized||a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=P(()=>this.storedBoxes.map((i,o)=>{let l=i.confidence,c,u=0,h;if(n.face.detector.rotation&&n.face.mesh.enabled&&vr.flags.IS_BROWSER){let[b,w]=i.landmarks.length>=F0.count?F0.symmetryLine:F8.symmetryLine;u=ug(i.landmarks[b],i.landmarks[w]);let k=eu({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Le.rotateWithOffset(t,u,0,N);h=M0(-u,k),n.face.mesh.enabled?c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255):c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.boxSize,this.boxSize]).div(255)}else{h=R0;let b=t.clone();n.face.mesh.enabled?c=tu({startPoint:i.startPoint,endPoint:i.endPoint},b,[this.meshSize,this.meshSize]).div(255):c=tu({startPoint:i.startPoint,endPoint:i.endPoint},b,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,boxConfidence:l,confidence:i.confidence,image:c};let[,d,p]=this.meshDetector.predict(c),m=d.dataSync()[0];if(m=F0.count?F0.symmetryLine:F8.symmetryLine;u=ug(i.landmarks[b],i.landmarks[w]);let k=eu({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Le.rotateWithOffset(t.toFloat(),u,0,N);h=M0(-u,k),c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255)}let x={coords:g,box:i,faceConfidence:m,boxConfidence:l,image:c,rawCoords:A},v=C0(i);return this.storedBoxes[o]={...v,landmarks:y,confidence:i.confidence,faceConfidence:m},x}));return s=s.filter(i=>i!==null),n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.faceConfidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};var mg=class{constructor(t,n,r,a){this.facePipeline=new pg(t,n,r),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():[],o=i.map(h=>[h[0]/t.shape[2],h[1]/t.shape[1],h[2]/this.facePipeline.meshSize]),l={};if(i&&i.length>0)for(let h of Object.keys(ea))l[h]=ea[h].map(d=>i[d]);let c=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[2],s.box.endPoint[0])-Math.max(0,s.box.startPoint[0]),Math.min(t.shape[1],s.box.endPoint[1])-Math.max(0,s.box.startPoint[1])]:0,u=s.box?[s.box.startPoint[0]/t.shape[2],s.box.startPoint[1]/t.shape[1],(s.box.endPoint[0]-s.box.startPoint[0])/t.shape[2],(s.box.endPoint[1]-s.box.startPoint[1])/t.shape[1]]:[];a.push({confidence:Math.round(100*s.faceConfidence||100*s.boxConfidence||0)/100,boxConfidence:Math.round(100*s.boxConfidence)/100,faceConfidence:Math.round(100*s.faceConfidence)/100,box:c,boxRaw:u,mesh:i,meshRaw:o,annotations:l,image:s.image?s.image.clone():null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},Kt=[null,null,null];async function Ag(e){return!Kt[0]&&e.face.enabled||!Kt[1]&&e.face.mesh.enabled||!Kt[2]&&e.face.iris.enabled?(Kt=await Promise.all([!Kt[0]&&e.face.enabled?N8(e):null,!Kt[1]&&e.face.mesh.enabled?ct(pt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Kt[2]&&e.face.iris.enabled?ct(pt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Kt[1]||!Kt[1].modelUrl?le("load model failed:",e.face.mesh.modelPath):e.debug&&le("load model:",Kt[1].modelUrl)),e.face.iris.enabled&&(!Kt[2]||!Kt[1].modelUrl?le("load model failed:",e.face.iris.modelPath):e.debug&&le("load model:",Kt[2].modelUrl))):e.debug&&(le("cached model:",Kt[0].model.modelUrl),le("cached model:",Kt[1].modelUrl),le("cached model:",Kt[2].modelUrl)),new mg(Kt[0],Kt[1],Kt[2],e)}var $8=Ui,D8=Jc;var _g={};Yn(_g,{load:()=>kg,predict:()=>vg});var Qc=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],O8=Qc.length,eh=Qc.reduce((e,t,n)=>(e[t]=n,e),{}),Pie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Lie=Pie.map(([e,t])=>[eh[e],eh[t]]),z8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function P8(e){let t=e.reduce(({maxX:n,maxY:r,minX:a,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(r,o),minX:Math.min(a,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function L8(e,[t,n],[r,a]){let s=(o,l,c)=>({score:o.score,box:[Math.trunc(o.box[0]*c),Math.trunc(o.box[1]*l),Math.trunc(o.box[2]*c),Math.trunc(o.box[3]*l)],keypoints:o.keypoints.map(({score:u,part:h,position:d})=>({score:u,part:h,position:{x:Math.trunc(d.x*c),y:Math.trunc(d.y*l)}}))});return e.map(o=>s(o,t/r,n/a))}var yg=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nn?n:e}function W8(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function wg(e,t){return{x:e.x+t.x,y:e.y+t.y}}var D0=1,B8=16;function V8(e,t,n,r,a,s,i,o=2){let l=g=>({y:i.get(g.y,g.x,e),x:i.get(g.y,g.x,i.shape[2]/2+e)}),c=(g,x,v)=>({y:bg(Math.round(g.y/s),0,x-1),x:bg(Math.round(g.x/s),0,v-1)}),[u,h]=r.shape,d=c(t.position,u,h),p=l(d),f=wg(t.position,p);for(let g=0;g[eh[f],eh[A]]),o=i.map(([,f])=>f),l=i.map(([f])=>f),c=t.shape[2],u=o.length,h=new Array(c),{part:d,score:p}=e,m=xg(d,r,n);h[d.id]={score:p,part:Qc[d.id],position:m};for(let f=u-1;f>=0;--f){let A=o[f],y=l[f];h[A]&&!h[y]&&(h[y]=V8(f,h[A],y,t,n,r,s))}for(let f=0;ft){o=!1;break}if(!o)break}return o}function Vie(e,t){let[n,r,a]=t.shape,s=new yg(n*r*a,({score:i})=>i);for(let i=0;i{let i=s[a].position;return W8(r,n,i.y,i.x)<=t})}function jie(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(j8(e,t,s,o)||(a+=i),a),0)/n.length}function U8(e,t,n,r,a,s,i){let o=[],l=Vie(i,t),c=a**2;for(;o.lengthA.score>i),m=jie(o,c,p),f=P8(p);m>i&&o.push({keypoints:p,box:f,score:Math.round(100*m)/100})}return o}var _r,Uie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function vg(e,t){let n=P(()=>{let o=e.resizeBilinear([_r.inputs[0].shape[2],_r.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),c=_r.execute(o,Uie).map(u=>u.squeeze([0]));return c[1]=c[1].sigmoid(),c}),r=await Promise.all(n.map(i=>i.buffer()));for(let i of n)i.dispose();let a=await U8(r[0],r[1],r[2],r[3],t.body.nmsRadius,t.body.maxDetections,t.body.scoreThreshold);return L8(a,[e.shape[1],e.shape[2]],[_r.inputs[0].shape[2],_r.inputs[0].shape[1]])}async function kg(e){return _r?e.debug&&le("cached model:",_r.modelUrl):(_r=await ct(pt(e.modelBasePath,e.body.modelPath)),!_r||!_r.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",_r.modelUrl)),_r}var Eg={};Yn(Eg,{HandPose:()=>Rg,load:()=>Mg});function O0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function th(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function H8(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Le.cropAndResize(t,s,[0],n)}function G8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function z0(e,t=1.5){let n=th(e),r=O0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function P0(e){let t=th(e),n=O0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var Ig=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=tr(this.anchors),this.inputSize=n,this.inputSizeTensor=sn([n,n]),this.doubleInputSizeTensor=sn([n*2,n*2])}normalizeBoxes(t){return P(()=>{let n=Re(t,[0,0],[-1,2]),r=Re(t,[0,2],[-1,2]),a=se(Ae(n,this.inputSizeTensor),this.anchorsTensor),s=Ae(r,this.doubleInputSizeTensor),i=z(ye(a,s),this.inputSizeTensor),o=z(se(a,s),this.inputSizeTensor);return bl([i,o],1)})}normalizeLandmarks(t,n){return P(()=>{let r=se(Ae(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return z(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=P(()=>Tn(Re(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Re(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let c=await Le.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),u=c.arraySync();s.dispose(),c.dispose();let h=[];for(let d of u)if(i[d]>=n.hand.minConfidence){let p=Re(l,[d,0],[1,-1]),m=Re(a,[d,5],[1,14]),f=P(()=>this.normalizeLandmarks(m,d).reshape([-1,2]));m.dispose(),h.push({box:p,palmLandmarks:f,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=P(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let c=l.box.dataSync(),u=c.slice(0,2),h=c.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(G8({startPoint:u,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/this.inputSize,r/this.inputSize]))}return o}};function Hie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function q8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Hie(n)}var X8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ss(e,t){let n=0;for(let r=0;rNg([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return z0(P0(a),qie)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=z0(P0(n),Y8);r.palmLandmarks=[];for(let a=0;a[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=Sg(r,[0,0]),c=o.map(p=>[...Ng(p,l),p[2]]),u=Z8(a),h=[...th(n),1],d=[ss(h,u[0]),ss(h,u[1])];return c.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i=n.hand.minConfidence){let x=H(y,[-1,3]),v=x.arraySync();y.dispose(),x.dispose();let b=this.transformRawCoords(v,p,l,d),w=this.getBoxForHandLandmarks(b);this.storedBoxes[i]=w;let k={landmarks:b,confidence:g,box:{topLeft:w.startPoint,bottomRight:w.endPoint}};s.push(k)}else this.storedBoxes[i]=null;y.dispose()}else{let l=z0(P0(o),Y8),c={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(c)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};var Q8=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var Cg={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},Rg=class{constructor(t){this.handPipeline=t}static getAnnotations(){return Cg}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let c of Object.keys(Cg))i[c]=Cg[c].map(u=>s.landmarks[u]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-Math.max(0,s.box.topLeft[0]),Math.min(t.shape[1],s.box.bottomRight[1])-Math.max(0,s.box.topLeft[1])]:[],l=[s.box.topLeft[0]/t.shape[2],s.box.topLeft[1]/t.shape[1],(s.box.bottomRight[0]-s.box.topLeft[0])/t.shape[2],(s.box.bottomRight[1]-s.box.topLeft[1])/t.shape[1]];a.push({confidence:Math.round(100*s.confidence)/100,box:o,boxRaw:l,landmarks:s.landmarks,annotations:i})}return a}},ta,na;async function Mg(e){!ta||!na?([ta,na]=await Promise.all([e.hand.enabled?ct(pt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?ct(pt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ta||!ta.modelUrl?le("load model failed:",e.hand.detector.modelPath):e.debug&&le("load model:",ta.modelUrl),!na||!na.modelUrl?le("load model failed:",e.hand.skeleton.modelPath):e.debug&&le("load model:",na.modelUrl))):(e.debug&&le("cached model:",ta.modelUrl),e.debug&&le("cached model:",na.modelUrl));let t=new Ig(ta,ta==null?void 0:ta.inputs[0].shape[2],Q8),n=new Tg(t,na,na==null?void 0:na.inputs[0].shape[2]);return new Rg(n)}var Fg={};Yn(Fg,{load:()=>$g,predict:()=>Dg});var ek=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],tk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var xn;async function $g(e){return xn?e.debug&&le("cached model:",xn.modelUrl):(xn=await ct(pt(e.modelBasePath,e.body.modelPath)),xn.width=parseInt(xn.signature.inputs["input_1:0"].tensorShape.dim[2].size),xn.height=parseInt(xn.signature.inputs["input_1:0"].tensorShape.dim[1].size),!xn||!xn.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",xn.modelUrl)),xn}async function Dg(e,t){if(!xn||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},r=Le.resizeBilinear(e,[xn.width,xn.height],!1),a=Ae(r,[255]);r.dispose();let s;if(t.profile){let u=await an(()=>xn.predict(a));s=u.result.find(h=>h.size===195||h.size===155).dataSync(),u.result.forEach(h=>h.dispose()),gn("blazepose",u)}else{let u=await xn.predict(a);s=u.find(h=>h.size===195||h.size===155).dataSync(),u.forEach(h=>h.dispose())}a.dispose();let i=[],o=s.length===195?ek:tk,l=5;for(let u=0;uh.score>u?h.score:u,0),keypoints:i}]}var bn,nh=[],L0=Number.MAX_SAFE_INTEGER,Zie=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function Og(e){return bn?e.debug&&le("cached model:",bn.modelUrl):(bn=await ct(pt(e.modelBasePath,e.body.modelPath)),!bn||!bn.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",bn.modelUrl)),bn}function Yie(e,t){let[n,r]=e.shape;return P(()=>{let a=(o,l)=>ye(o,z(Ae(o,ve(l,"int32")),ve(l,"int32"))),s=H(e,[r*n]),i=Rn(s,0).dataSync()[0];if(i>t){let o=Ai(s,0),l=a(o,n).dataSync()[0],c=Ae(o,ve(n,"int32")).dataSync()[0];return[l,c,i]}return[0,0,i]})}async function zg(e,t){return bn?L00?(L0++,nh):(t.videoOptimized?L0=0:L0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=P(()=>{let i=Le.resizeBilinear(e,[bn.inputs[0].shape[2],bn.inputs[0].shape[1]],!1);return z(i,2).sub(1)}),a;if(!t.profile)t.body.enabled&&(a=await bn.predict(r));else{let i=t.body.enabled?await an(()=>bn.predict(r)):{};a=i.result.clone(),i.result.dispose(),gn("body",i)}if(r.dispose(),a){let i=[],o=a.squeeze();we(a);let l=o.unstack(2);we(o);for(let c=0;ct.body.scoreThreshold&&i.push({id:c,score:Math.round(100*d)/100,part:Zie[c],positionRaw:{xRaw:u/bn.inputs[0].shape[2],yRaw:h/bn.inputs[0].shape[1]},position:{x:Math.round(e.shape[2]*u/bn.inputs[0].shape[2]),y:Math.round(e.shape[1]*h/bn.inputs[0].shape[1])}})}l.forEach(c=>we(c)),nh=i}let s=nh.reduce((i,o)=>o.score>i?o.score:i,0);n([{score:s,keypoints:nh}])})):null}var Pg={};Yn(Pg,{load:()=>Wg,predict:()=>Bg});var W0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var wn,Lg=[],B0=Number.MAX_SAFE_INTEGER,V0=2.5;async function Wg(e){if(wn)e.debug&&le("cached model:",wn.modelUrl);else{wn=await ct(pt(e.modelBasePath,e.object.modelPath));let t=Object.values(wn.modelSignature.inputs);if(wn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!wn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!wn||!wn.modelUrl?le("load model failed:",e.object.modelPath):e.debug&&le("load model:",wn.modelUrl)}return wn}async function Jie(e,t,n,r){let a=0,s=[];for(let c of[1,2,4])P(()=>{var A,y;let u=c*13,h=(A=e.find(g=>g.shape[1]===u**2&&g.shape[2]===W0.length))==null?void 0:A.squeeze(),d=(y=e.find(g=>g.shape[1]===u**2&&g.shape[2]r.object.minConfidence&&x!==61){let b=(.5+Math.trunc(g%u))/u,w=(.5+Math.trunc(g/u))/u,k=m[g].map(U=>U*(u/c/t)),[N,C]=[b-V0/c*k[0],w-V0/c*k[1]],[F,O]=[b+V0/c*k[2]-N,w+V0/c*k[3]-C],L=[N,C,F,O];L=L.map(U=>Math.max(0,Math.min(U,1)));let V=[L[0]*n[0],L[1]*n[1],L[2]*n[0],L[3]*n[1]],j={id:a++,strideSize:c,score:Math.round(100*v)/100,class:x+1,label:W0[x].label,center:[Math.trunc(n[0]*b),Math.trunc(n[1]*w)],centerRaw:[b,w],box:V.map(U=>Math.trunc(U)),boxRaw:L};s.push(j)}}});e.forEach(c=>we(c));let i=s.map(c=>c.boxRaw),o=s.map(c=>c.score),l=[];if(i&&i.length>0){let c=await Le.nonMaxSuppressionAsync(i,o,r.object.maxResults,r.object.iouThreshold,r.object.minConfidence);l=c.dataSync(),we(c)}return s=s.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),s}async function Bg(e,t){return wn?B00?(B0++,Lg):(t.videoOptimized?B0=0:B0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=[e.shape[2],e.shape[1]],a=Le.resizeBilinear(e,[wn.inputSize,wn.inputSize],!1),s=a.div(255),i=s.transpose([0,3,1,2]);s.dispose(),a.dispose();let o;if(!t.profile)t.object.enabled&&(o=await wn.predict(i));else{let c=t.object.enabled?await an(()=>wn.predict(i)):{};o=c.result,gn("object",c)}i.dispose();let l=await Jie(o,wn.inputSize,r,t);Lg=l,n(l)})):null}var nk=e=>{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.yl.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},rk=e=>{if(!e)return[];let t=[];for(let n=0;n0){let r=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${r<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},ak=e=>{if(!e)return[];let t=[];for(let n=0;n.033||h>.033)&&(c=!1),d>.033&&t.push({iris:n,gesture:"looking right"}),h>.033&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].annotations.rightEyeIris[0][1],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].annotations.leftEyeIris[0][1];(m<.015||p<.015||m>.03||p>.03)&&(c=!1),(m<.015||p<.015)&&t.push({iris:n,gesture:"looking down"}),(m>.03||p>.03)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},sk=e=>{if(!e)return[];let t=[];for(let n=0;n0){let a=r.reduce((i,o)=>i.position[2]i.position[1]jg});function Qie(e,t,n){let r=function(o,l,c){let u=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(u,(h,d)=>(c[d]=0,h))},a=function(o,l){let c=e.createShader(l);if(e.shaderSource(c,o),e.compileShader(c),!e.getShaderParameter(c,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(c));return c};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function ik(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,c=null,u=null,h={},d=e.canvas||document.createElement("canvas"),p={},m={INTERMEDIATE:1},f=d.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let w=Array.prototype.slice.call(arguments,1),k=h[b];i.push({func:k,args:w})},this.reset=function(){i=[]};let A=function(b,w){if(!(b===o&&w===l)){if(d.width=b,o=b,d.height=w,l=w,!c){let k=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);c=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,c),f.bufferData(f.ARRAY_BUFFER,k,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},y=function(b,w){let k=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,k);let N=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,N);let C=f.createTexture();return f.bindTexture(f.TEXTURE_2D,C),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,b,w,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,C,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:k,texture:C}},g=function(b){return s[b]=s[b]||y(o,l),s[b]},x=function(b=null){var C,F;let w=null,k=null,N=!1;t===0?w=n:w=(C=g(a))==null?void 0:C.texture,t++,r&&!(b&m.INTERMEDIATE)?(k=null,N=t%2==0):(a=(a+1)%2,k=(F=g(a))==null?void 0:F.fbo),f.bindTexture(f.TEXTURE_2D,w),f.bindFramebuffer(f.FRAMEBUFFER,k),f.uniform1f(u.uniform.flipY,N?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(b){if(A(b.width,b.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,b),i.length===0)return x(),d;for(let w=0;w{let u=[];e=H(e,[1,r,o]);for(let h=0;h{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),a=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),a=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let h=c.map(p=>p.id);u.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return c}case"LoopCond":{let r=I("pred",e,t,n);return[Aa(r)]}case"Switch":{let r=I("pred",e,t,n),a=I("data",e,t,n);return a.kept||(a=Aa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>mn(a,t,n)!==void 0);if(r){let a=mn(r,t,n);return[Aa(a)]}return}case"Enter":{let r=I("frameName",e,t,n),a=I("tensor",e,t,n);return n.enterFrame(r),[Aa(a)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[Aa(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[Aa(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),a=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new Wae(c,a,r,s,l,i,o);return n.addTensorArray(u),[u.idTensor,ke(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=I("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),a=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[ke(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),a=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=jae(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=Vae(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),a=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=Bae(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),a=n.getTensorList(r.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),a=I("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=Uae(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function N4(e,t,n){let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),u=u0(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[p,m]=I("args",e,t,n),f=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:h,dilations:d,biasArg:p,preluArg:m,activationFunc:a,leakyreluAlpha:f}}var Gae=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[wd(I("x",e,t,n),I("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=u0(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[ia(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=N4(e,t,n);return[La.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=N4(e,t,n);return[La.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),s=u0(e,t,n);return[bd(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=u0(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[ml(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[cm(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Hu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Yu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=qw(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[om(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[_m(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dilations",e,t,n),i=r[1],o=r[2],l=s[1],c=s[2];return[dm(I("x",e,t,n),I("filter",e,t,n),[i,o],a,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},qae=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),s=I("value",e,t,n);return[Xu(r,s,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("num",e,t,n);return[Ww(r,a,s)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),s=I("seed",e,t,n);return[Xw(r,a,s)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[ul(r,a,s,i)]}case"Ones":return[Fn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[$n(I("x",e,t,n))];case"RandomUniform":return[wl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("step",e,t,n);return[Md(r,a,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Vd(r,a,s,I("dtype",e,t,n),i)]}case"Zeros":return[Et(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ue(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function T2(e,t,n){let r=I("boxes",e,t,n),a=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Xae=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=T2(e,t,n),c=await Ye.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=T2(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Ye.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=T2(e,t,n);return[await Ye.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=Ae(I("condition",e,t,n),"bool"),a=[await Om(r)];return r.dispose(),a}case"ListDiff":return Yw(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Kae=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),s=I("sorted",e,t,n),i=$m(r,a,s);return[i.values,i.indices]}case"Unique":{let r=I("x",e,t,n),a=jd(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),s=jd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Zae=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[mn(e.name,t,n)||r];case"Placeholder":return[mn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[Aa(c)]}case"IdentityN":return I("x",e,t,n).map(c=>Aa(c));case"Snapshot":let a=I("x",e,t,n);return[Aa(a)];case"Shape":return[nn(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>nn(c.shape));case"Size":return[ke(I("x",e,t,n).size,"int32")];case"Rank":return[ke(I("x",e,t,n).rank,"int32")];case"NoOp":return[ke(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;ce.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ke(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),L(()=>{let r=ur(t),a=n.length,s=r.length;_.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i{let r=[];for(let a=0;a{switch(e.op){case"HashTable":case"HashTableV2":{let a=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new Yae(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=I("tableHandle",e,t,n,r);return[r.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Qae=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ye.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ye.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Ye.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},ese=(e,t,n)=>{switch(e.op){case"Equal":return[Da(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[gi(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[or(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[za(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Id(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[mi(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[lr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Zu(I("a",e,t,n))];case"LogicalOr":return[Ed(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Sn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},tse=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Be(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[zw(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Ze(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[La.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},nse=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[pi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[pi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[gm(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[nc(I("x",e,t,n))];case"LogSoftmax":return[Td(I("x",e,t,n))];case"SparseToDense":return[zm(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},rse=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Kn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[vt(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[gl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ne(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[gd(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Vu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[ju(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[Qf(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Rd(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[vd(I("x",e,t,n),i,o,l)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),s=I("size",e,t,n);return[Ew(r,a,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[Dw(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},ase=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,r),[ot(s,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[fi(r,Ae(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[fi(s,Ae(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i{let r=I("axis",e,t,n),a=I("tensors",e,t,n),s=a[0].shape,i=Pa(a[0]).shape,o=a.map(l=>{let c=_.arraysEqual(l.shape,s);if(!c&&!_.arraysEqual(Pa(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:H(l,s)});return[On(o,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return ur(a,r)}case"Tile":{let r=I("reps",e,t,n);return[Oa(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return ln(s,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),s=I("shape",e,t,n);return[tb(r,a,s)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[nb(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[zm(r,s,a,s.dtype===i.dtype?i:Ae(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},sse=(e,t,n)=>{switch(e.op){case"SparseReshape":{let{outputIndices:r,outputShape:a}=yb.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,a]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},ise=(e,t,n)=>{switch(e.op){case"FFT":return[rc(I("x",e,t,n))];case"IFFT":return[bl(I("x",e,t,n))];case"RFFT":return[ac(I("x",e,t,n))];case"IRFFT":return[Wd(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ose=(e,t,n)=>{switch(e.op){case"Cast":return[Ae(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[on(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[Pa(I("x",e,t,n),r)]}case"Reshape":return[H(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[vm(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[oa(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[Ju(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[Gu(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[hm(I("x",e,t,n),r,a)]}case"BroadcastTo":return[pl(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function T4(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return L(()=>Pae(s,i,o));case"basic_math":return L(()=>Lae(s,i,o));case"control":return Hae(s,i,o);case"convolution":return L(()=>Gae(s,i,o));case"creation":return L(()=>qae(s,i,o));case"dynamic":return Xae(s,i,o);case"evaluation":return L(()=>Kae(s,i,o));case"image":return L(()=>Qae(s,i,o));case"graph":return L(()=>Zae(s,i,o));case"logical":return L(()=>ese(s,i,o));case"matrices":return L(()=>tse(s,i,o));case"normalization":return L(()=>nse(s,i,o));case"reduction":return L(()=>rse(s,i,o));case"slice_join":return L(()=>ase(s,i,o));case"sparse":return L(()=>sse(s,i,o));case"spectral":return L(()=>ise(s,i,o));case"transformation":return L(()=>ose(s,i,o));case"hash_table":return Jae(s,i,o,r);case"custom":let l=a4(s.op);if(l&&l.customExecutor)return l.customExecutor(new zae(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return _.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var E4=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function R4(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>Ln(d)[0]),u=[];r!=null&&(u=r.map(d=>Ln(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((C4(d)||lse(d)||use(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function cse(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(u=>Ln(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{r.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{r.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return c}var hse=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],dse=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],pse=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function C4(e){return hse.indexOf(e.op)>=0}function lse(e){return dse.indexOf(e.op)>=0}function use(e){return pse.indexOf(e.op)>=0}var E2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new E2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=R4(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return cse(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[Ln(u)[0]]),a=t.map(u=>Ln(u)[0]),s=a.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return L(()=>{let u=new E4(this.weightMap,l,c,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,A]=Ln(m),y=[];y[A]=e[m],h[f]=y});let d=this.getFrozenTensorIds(h),p={};for(let m=0;mmn(m,h,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=gae(o.name,n,r);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!a.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new E4(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>mn(h,i,s)),l=o.map(h=>h.id),c=Object.keys(e).map(h=>e[h].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.kept&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[Ln(g)[0]]),i=n.map(g=>Ln(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:h}=R4(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[x,v]=Ln(g),w=[];w[v]=e[g],p[x]=w});let m={},f=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,f,i,m,l);await Promise.all(g)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!C4(g)&&!mn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${c}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let h="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([h]=ma(u.node.name,n)),r[u.node.name]==null){let d=T4(u.node,r,n,this._resourceManager);h||([h]=ma(u.node.name,n));let p=n.currentContext;_.isPromise(d)?c.push(d.then(m=>(r[h]=m,n.currentContext=p,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l),m))):(r[h]=d,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l))}else this.processChildNodes(u.node,t,n,r,a,l)}return c}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=ma(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!mn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!mn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=Ln(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);_.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&_.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=Ln(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Ln(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},fse=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},mse="?tfjs-format=file",Ase="model.json",M4=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new fse}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=vn.browserHTTPRequest(e,this.loadOptions);else{let t=vn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(vn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=vn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new E2(v4.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=v4.Instance.transformGraph(e.modelInitializer);this.initializer=new E2(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=vn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Le)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Ht(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Ase}${mse}`);let n=new M4(e,t);return await n.load(),n}var yse="3.5.0",F4={};Me(F4,{CSVDataset:()=>D4,Dataset:()=>Gl,FileDataSource:()=>O4,TextLineDataset:()=>$4,URLDataSource:()=>z4,array:()=>gse,csv:()=>wse,func:()=>bse,generator:()=>_se,microphone:()=>kse,version_data:()=>Ise,webcam:()=>vse,zip:()=>xse});var Sse=Qi(Wg()),Nse=Qi(Wg());function Tse(e,t){return c0(e,t)}function c0(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(ql(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=c0(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function Ese(e,t=L4){return P4(e,t)}function P4(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(ql(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(c=>c[i]),l=P4(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function L4(e){return e===null?null:ql(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function W4(e,t){let n=new Map;c0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(_.isPromise(a)){let s=await a;n.set(r,s)}}return c0(e,t,n)}function ql(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Le))}function Rse(e){return e==null||Cse(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Le||_.isTypedArray(e)}function Cse(e){return e===null||typeof e!="object"&&typeof e!="function"}function Fse(e){return Tse(e,Mse)}function Mse(e){return e instanceof Le?{value:e.clone(),recurse:!1}:ql(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var B4=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},C2=class extends B4{constructor(){super(C2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;rt===!0)}rowMajorBatch(e,t=!0){return new Vse(this,e,t)}columnMajorBatch(e,t=!0,n=L4){return this.rowMajorBatch(e,t).map(r=>Ese(r,n))}concatenate(e,t){return new j4(V4([this,e]),t)}take(e){return e<0||e==null?this:new Bse(this,e)}skip(e){return e<0||e==null?this:new Wse(this,e)}prefetch(e){return new H4(this,e)}shuffle(e,t){return new qse(this,e,t)}serial(){return new Lse(this)}},$se=class extends Gt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Fse(e),done:!1}}},Dse=class extends Gt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Lse=class extends Gt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Wse=class extends Gt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Vse=class extends Gt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},jse=class extends Gt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Te(e.value)}}},Use=class extends Gt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=gr.getTensorsInContainer(e.value),n=this.transform(e.value),r=gr.getTensorsInContainer(n);for(let a of t)gr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Hse=class extends Gt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},U4=class extends Gt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=gr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=gr.getTensorsInContainer(n);for(let a of t)gr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},M2=class extends Gt{constructor(){super();this.outputQueue=new C2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Gse=class extends M2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=gr.getTensorsInContainer(e.value),n=this.transform(e.value),r=gr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)gr.isTensorInList(a,r)||a.dispose();return!0}},j4=class extends Gt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Ya;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Ya||(Ya={}));var zse=class extends Gt{constructor(e,t=Ya.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof Gt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await W4(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Ya.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Ya.SHORTEST:return{value:null,done:!0};case Ya.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},H4=class extends Gt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new B4(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},qse=class extends H4{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Nse.alea(n||_.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Gl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;_.assert(e>0,()=>`batchSize needs to be positive, but it is + ${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Wn(async()=>(await n.iterator()).columnMajorBatch(e,t,Xse),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Wn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Wn(async()=>(await t.iterator()).filter(r=>L(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Wn(async()=>(await t.iterator()).map(n=>L(()=>e(n))),this.size)}mapAsync(e){let t=this;return Wn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Wn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Wn(async()=>{let r=R2(async()=>({value:await t.iterator(),done:!1}));return Ose(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=Sse.alea(t||_.now().toString());return Wn(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Wn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Gl.MAX_BUFFER_SIZE=1e4;function Wn(e,t=null){return new class extends Gl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function gse(e){return Wn(async()=>V4(e),e.length)}function xse(e){if(!ql(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await W4(e,r=>{if(r instanceof Gl)return{value:r.iterator(),recurse:!1};if(ql(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Pse(n,Ya.SHORTEST)},t)}function Xse(e){if(e===null)return null;let t=e[0];return Rse(t)?{value:Kse(e),recurse:!1}:{value:null,recurse:!0}}function Kse(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Le?On(e):wr(e)}var $4=class extends Gl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` +`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},h0='"',Hc=Symbol("out"),G4=Symbol("field"),d0=Symbol("quote"),F2=Symbol("quoteafterquote"),q4=Symbol("quoteinquote"),D4=class extends Gl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new $4(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(_.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&_.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(_.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new X4(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(_.sizeFromShape(t));return n.set(e,n.length-e.length),wr(n,t)}},K4=class extends Gt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=nn([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=Zn([s,a,o,i],[1,4])}else this.cropBox=Zn([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new K4(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&_.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=ui.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return L(()=>{let t=on(Ae(e,"float32"),0),n;n=Ye.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return H(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},Z4=class{},Y4=class extends Gt{split(e){return new Zse(this,e)}},Zse=class extends Y4{constructor(e,t){super();this.upstream=e,this.impl=new Yse(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Yse=class extends M2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Qse=class extends Gt{decodeUTF8(){return new Jse(this)}},Jse=class extends Y4{constructor(e){super();this.upstream=e,this.impl=new eie(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},eie=class extends M2{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=i9();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},J4=class extends Qse{constructor(e,t={}){super();this.file=e,this.options=t,_.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function nie(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=tie(e));let a=await _.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new J4(s,t)}else throw new Error(a.statusText)}var tie=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function Q4(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var O4=class extends Z4{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Q4(this.input)&&J().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new J4(this.input,this.options)}},z4=class extends Z4{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Q4(this.url)?new O4(this.url,this.fileOptions).iterator():nie(this.url,this.fileOptions)}};function wse(e,t={}){return new D4(new z4(e),t)}function bse(e){let t=R2(e);return Wn(async()=>t)}function _se(e){return Wn(async()=>{let t=await e();return R2(()=>t.next())})}async function vse(e,t){return K4.create(e,t)}async function kse(e){return X4.create(e)}var Ise="3.5.0",rie={tfjs:(cf==null?void 0:cf.version)||void 0,"tfjs-core":(hf==null?void 0:hf.version)||void 0,"tfjs-data":(df==null?void 0:df.version)||void 0,"tfjs-layers":(pf==null?void 0:pf.version)||void 0,"tfjs-converter":(ff==null?void 0:ff.version)||void 0,"tfjs-backend-cpu":Zb||void 0,"tfjs-backend-webgl":x3||void 0,"tfjs-backend-wasm":cv||void 0};var Bn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function e8(){if(!Zf(Bn.name)){pe("backend registration:",Bn.name);try{Bn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Bn.width,Bn.height):document.createElement("canvas")}catch(e){pe("error: cannot create canvas:",e);return}try{Bn.gl=Bn.canvas.getContext("webgl2",Bn.webGLattr)}catch(e){pe("error: cannot get WebGL2 context:",e);return}try{hp(2,Bn.gl)}catch(e){pe("error: cannot set WebGL2 context:",e);return}try{let e=new mp(Bn.gl);hl(Bn.name,()=>new Dl(e),Bn.priority)}catch(e){pe("error: cannot register WebGL backend:",e);return}try{al("webgl").forEach(t=>{let n={...t,backendName:Bn.name};si(n)})}catch(e){pe("error: cannot update WebGL backend registration:",e);return}try{yr.set("WEBGL_VERSION",2)}catch(e){pe("error: cannot set WebGL backend flags:",e);return}pe("backend registered:",Bn.name)}}var $2={};Ar($2,{load:()=>z2,predict:()=>m0});var p0={};function Ja(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(i=>i.kernelTimeMs>0).reduce((i,o)=>i+=o.kernelTimeMs,0),a=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.kernelTimeMs>0).sort((i,o)=>o.kernelTimeMs-i.kernelTimeMs),s=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.totalBytesSnapshot>0).sort((i,o)=>o.totalBytesSnapshot-i.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n),p0[e]={model:e,newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s},pe("profiler",e,p0[e])}var aie=["angry","disgust","fear","happy","sad","surprise","neutral"],fr,D2=[],f0=Number.MAX_SAFE_INTEGER,O2=[.2989,.587,.114];async function z2(e){return fr?e.debug&&pe("cached model:",fr.modelUrl):(fr=await Ht(Yt(e.modelBasePath,e.face.emotion.modelPath)),!fr||!fr.modelUrl?pe("load model failed:",e.face.emotion.modelPath):e.debug&&pe("load model:",fr.modelUrl)),fr}async function m0(e,t){return fr?f00?(f0++,D2):(t.videoOptimized?f0=0:f0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ye.resizeBilinear(e,[fr.inputs[0].shape[2],fr.inputs[0].shape[1]],!1),[a,s,i]=ln(r,3,3);r.dispose();let o=B(a,O2[0]),l=B(s,O2[1]),c=B(i,O2[2]);a.dispose(),s.dispose(),i.dispose();let u=yd([o,l,c]);o.dispose(),l.dispose(),c.dispose();let h=L(()=>u.sub(.5).mul(2));u.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let m=await sa(()=>fr.predict(h));p=m.result.dataSync(),m.result.dispose(),Ja("emotion",m)}else{let m=await fr.predict(h);p=m.dataSync(),Te(m)}for(let m=0;mt.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*p[m])/100),emotion:aie[m]});d.sort((m,f)=>f.score-m.score)}h.dispose(),D2=d,n(d)})):null}var P2={};Ar(P2,{enhance:()=>B2,load:()=>L2,match:()=>t8,predict:()=>g0,similarity:()=>W2});var Vn,A0={age:0},y0=Number.MAX_SAFE_INTEGER;async function L2(e){return Vn?e.debug&&pe("cached model:",Vn.modelUrl):(Vn=await Ht(Yt(e.modelBasePath,e.face.description.modelPath)),!Vn||!Vn.modelUrl?pe("load model failed:",e.face.description.modelPath):e.debug&&pe("load model:",Vn.modelUrl)),Vn}function W2(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-r)/100}function t8(e,t,n=0){let r={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return r;for(let a of t)if(a.embedding&&a.name){let s=W2(e,a.embedding);s>n&&s>r.similarity&&(r={...a,similarity:s})}return r}function B2(e){return L(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Le))return null;let r=[[.05,.15,.85,.85]];return(n.shape.length===3?Ye.cropAndResize(on(n,0),r,[0],[Vn.inputs[0].shape[2],Vn.inputs[0].shape[1]]):Ye.cropAndResize(n,r,[0],[Vn.inputs[0].shape[2],Vn.inputs[0].shape[1]])).mul(255)})}async function g0(e,t){return Vn?y00?(y0++,A0):(t.videoOptimized?y0=0:y0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=B2(e),a,s={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};if(!t.profile)t.face.description.enabled&&(a=await Vn.predict(r));else{let i=t.face.description.enabled?await sa(()=>Vn.predict(r)):{};a=i.result,Ja("faceres",i)}Te(r),a&&(L(()=>{let i=a.find(h=>h.shape[1]===1).dataSync(),o=Math.trunc(200*Math.abs(i[0]-.5))/100;o>t.face.description.minConfidence&&(s.gender=i[0]<=.5?"female":"male",s.genderConfidence=Math.min(.99,o));let l=a.find(h=>h.shape[1]===100).argMax(1).dataSync()[0],c=a.find(h=>h.shape[1]===100).dataSync();s.age=Math.round(c[l-1]>c[l+1]?10*l-100*c[l-1]:10*l+100*c[l+1])/10;let u=a.find(h=>h.shape[1]===1024);s.descriptor=[...u.dataSync()]}),a.forEach(i=>Te(i))),A0=s,n(s)})):null}var sie=(e,t)=>{let n=A=>A*180/Math.PI,r=A=>{let y=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=y,A[1]/=y,A[2]/=y,A},a=(A,y)=>{let g=A[0]-y[0],x=A[1]-y[1],v=A[2]-y[2];return[g,x,v]},s=(A,y)=>{let g=A[1]*y[2]-A[2]*y[1],x=A[2]*y[0]-A[0]*y[2],v=A[0]*y[1]-A[1]*y[0];return[g,x,v]},i=A=>{let[y,g,x,v,w,b,k,N,C]=A,F,O,z;return v<1?v>-1?(z=Math.asin(v),O=Math.atan2(-k,y),F=Math.atan2(-b,w)):(z=-Math.PI/2,O=-Math.atan2(N,C),F=0):(z=Math.PI/2,O=Math.atan2(N,C),F=0),{pitch:2*-F,yaw:2*-O,roll:2*-z}},o=A=>{let y=(x,v,w,b)=>Math.atan2(b-v,w-x);return{pitch:y(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:y(A[33][0],A[33][2],A[263][0],A[263][2]),roll:y(A[33][0],A[33][1],A[263][0],A[263][1])}},l=e.meshRaw;if(!l||l.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let c=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[l[10],l[152],l[234],l[454]].map(A=>[A[0]*t[0]/c,A[1]*t[1]/c,A[2]]),h=r(a(u[1],u[0])),d=r(a(u[3],u[2])),p=r(s(d,h));d=s(h,p);let m=[d[0],d[1],d[2],h[0],h[1],h[2],p[0],p[1],p[2]];return{angle:i(m),matrix:m}},V2=async(e,t)=>{var u,h,d,p,m,f,A;let n,r,a,s,i,o,l=[];e.state="run:face",n=it();let c=await((u=e.models.face)==null?void 0:u.estimateFaces(t,e.config));if(e.perf.face=Math.trunc(it()-n),!c)return[];for(let y of c){if(e.analyze("Get Face"),!y.image||y.image.isDisposedInternal){pe("Face object is disposed:",y.image);continue}let g=sie(y,[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?m0(y.image,e.config):{}:(e.state="run:emotion",n=it(),s=e.config.face.emotion.enabled?await m0(y.image,e.config):{},e.perf.emotion=Math.trunc(it()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?g0(y,e.config):[]:(e.state="run:description",n=it(),o=e.config.face.description.enabled?await g0(y.image,e.config):[],e.perf.embedding=Math.trunc(it()-n)),e.analyze("End Description:"),e.config.async&&([r,a,s,i,o]=await Promise.all([r,a,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=y==null?void 0:y.annotations)==null?void 0:h.leftEyeIris)&&((d=y==null?void 0:y.annotations)==null?void 0:d.rightEyeIris)&&(delete y.annotations.leftEyeIris,delete y.annotations.rightEyeIris);let x=((p=y.annotations)==null?void 0:p.leftEyeIris)&&((m=y.annotations)==null?void 0:m.rightEyeIris)?11.7*Math.max(Math.abs(y.annotations.leftEyeIris[3][0]-y.annotations.leftEyeIris[1][0]),Math.abs(y.annotations.rightEyeIris[4][1]-y.annotations.rightEyeIris[2][1])):0;l.push({...y,age:o.age,gender:o.gender,genderConfidence:o.genderConfidence,embedding:o.descriptor,emotion:s,iris:x!==0?Math.trunc(x)/100:0,rotation:g,tensor:e.config.face.detector.return?(f=y.image)==null?void 0:f.squeeze():null}),(A=y.image)==null||A.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),l};var X2={};Ar(X2,{MediaPipeFaceMesh:()=>K2,load:()=>Z2,triangulation:()=>h8,uvmap:()=>d8});var n8=6;function iie(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r({startEndTensor:e,startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});function lie(e,t,n){let r=Re(e,[0,1],[-1,2]),a=se(r,t),s=Re(e,[0,3],[-1,2]),i=ge(s,n),o=ge(a,n),l=ge(i,2),c=ye(o,l),u=se(o,l),h=B(c,n),d=B(u,n);return fl([h,d],1)}var r8=class{constructor(t,n){this.model=t,this.anchorsData=iie(t.inputs[0].shape[1]),this.anchors=Zn(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=L(()=>{let d=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),p=this.model.predict(d),m;if(Array.isArray(p)){let g=p.sort((b,k)=>b.size-k.size),x=ot([g[0],g[2]],2),v=ot([g[1],g[3]],2);m=ot([v,x],1).squeeze(0)}else m=p.squeeze();let f=lie(m,this.anchors,[this.inputSize,this.inputSize]),A=Re(m,[0,0],[-1,1]),y=kn(A).squeeze();return[m,f,y]}),s=await Ye.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>Re(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),c=a.dataSync(),u=[];for(let h=0;hthis.config.face.detector.minConfidence){let m=oie(l[h]),f=this.anchorsData[d],A=L(()=>Re(n,[d,n8-1],[1,-1]).squeeze().reshape([n8,-1]));u.push({box:m,landmarks:A,anchor:f,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),{boxes:u,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function a8(e){let t=await Ht(Yt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new r8(t,e);return!t||!t.modelUrl?pe("load model failed:",e.face.detector.modelPath):e.debug&&pe("load model:",t.modelUrl),n}function s8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function Gc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Xl(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Kl(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Ye.cropAndResize(t,s,[0],n)}function x0(e,t=1.5){let n=Xl(e),r=Gc(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function w0(e){let t=Xl(e),n=Gc(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}var b0=[[1,0,0],[0,1,0],[0,0,1]];function uie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function j2(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return uie(n)}function i8(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function Qa(e,t){let n=0;for(let r=0;rqc[e]),aoe=die.map(e=>qc[e]),soe=pie.map(e=>qc[e]);var H2=Xr.leftEyeLower0,G2=Xr.rightEyeLower0,Zl={leftBounds:[H2[0],H2[H2.length-1]],rightBounds:[G2[0],G2[G2.length-1]]},v0={count:468,mouth:13,symmetryLine:[13,Xr.midwayBetweenEyes[0]]},c8={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Yl={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function k0(e,t,n,r){for(let a=0;a[s[0]/this.meshSize*(h[0]-this.meshSize/2),s[1]/this.meshSize*(h[1]-this.meshSize/2),h[2]]),o=r!==0?_0(r,[0,0]):b0,l=r!==0?i.map(h=>[...u8(h,o),h[2]]):i,c=r!==0?l8(a):b0,u=[...Xl({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(h=>[h[0]+Qa(u,c[0]),h[1]+Qa(u,c[1]),h[2]])}getLeftToRightEyeDepthDifference(t){let n=t[Zl.leftBounds[0]][2],r=t[Zl.rightBounds[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=w0(x0(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Gc(i),l=Ye.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&yr.flags.IS_BROWSER&&(l=Ye.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i{let c=i;return l===2?c=a:l===4&&(c=s),[o[0],o[1],c]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,!n.videoOptimized||a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=L(()=>this.storedBoxes.map((i,o)=>{let l=i.confidence,c,u=0,h;if(n.face.detector.rotation&&n.face.mesh.enabled&&yr.flags.IS_BROWSER){let[w,b]=i.landmarks.length>=v0.count?v0.symmetryLine:c8.symmetryLine;u=j2(i.landmarks[w],i.landmarks[b]);let k=Xl({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Ye.rotateWithOffset(t,u,0,N);h=_0(-u,k),n.face.mesh.enabled?c=Kl({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255):c=Kl({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.boxSize,this.boxSize]).div(255)}else{h=b0;let w=t.clone();n.face.mesh.enabled?c=Kl({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.meshSize,this.meshSize]).div(255):c=Kl({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,boxConfidence:l,confidence:i.confidence,image:c};let[,d,p]=this.meshDetector.predict(c),m=d.dataSync()[0];if(m=v0.count?v0.symmetryLine:c8.symmetryLine;u=j2(i.landmarks[w],i.landmarks[b]);let k=Xl({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Ye.rotateWithOffset(t.toFloat(),u,0,N);h=_0(-u,k),c=Kl({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255)}let x={coords:g,box:i,faceConfidence:m,boxConfidence:l,image:c,rawCoords:A},v=w0(i);return this.storedBoxes[o]={...v,landmarks:y,confidence:i.confidence,faceConfidence:m},x}));return s=s.filter(i=>i!==null),n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.faceConfidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};var K2=class{constructor(t,n,r,a){this.facePipeline=new q2(t,n,r),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():[],o=i.map(h=>[h[0]/t.shape[2],h[1]/t.shape[1],h[2]/this.facePipeline.meshSize]),l={};if(i&&i.length>0)for(let h of Object.keys(Xr))l[h]=Xr[h].map(d=>i[d]);let c=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[2],s.box.endPoint[0])-Math.max(0,s.box.startPoint[0]),Math.min(t.shape[1],s.box.endPoint[1])-Math.max(0,s.box.startPoint[1])]:0,u=s.box?[s.box.startPoint[0]/t.shape[2],s.box.startPoint[1]/t.shape[1],(s.box.endPoint[0]-s.box.startPoint[0])/t.shape[2],(s.box.endPoint[1]-s.box.startPoint[1])/t.shape[1]]:[];a.push({confidence:Math.round(100*s.faceConfidence||100*s.boxConfidence||0)/100,boxConfidence:Math.round(100*s.boxConfidence)/100,faceConfidence:Math.round(100*s.faceConfidence)/100,box:c,boxRaw:u,mesh:i,meshRaw:o,annotations:l,image:s.image?s.image.clone():null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},qt=[null,null,null];async function Z2(e){return!qt[0]&&e.face.enabled||!qt[1]&&e.face.mesh.enabled||!qt[2]&&e.face.iris.enabled?(qt=await Promise.all([!qt[0]&&e.face.enabled?a8(e):null,!qt[1]&&e.face.mesh.enabled?Ht(Yt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!qt[2]&&e.face.iris.enabled?Ht(Yt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!qt[1]||!qt[1].modelUrl?pe("load model failed:",e.face.mesh.modelPath):e.debug&&pe("load model:",qt[1].modelUrl)),e.face.iris.enabled&&(!qt[2]||!qt[1].modelUrl?pe("load model failed:",e.face.iris.modelPath):e.debug&&pe("load model:",qt[2].modelUrl))):e.debug&&(pe("cached model:",qt[0].model.modelUrl),pe("cached model:",qt[1].modelUrl),pe("cached model:",qt[2].modelUrl)),new K2(qt[0],qt[1],qt[2],e)}var h8=Pi,d8=qc;var ng={};Ar(ng,{load:()=>ag,predict:()=>rg});var Xc=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],p8=Xc.length,Kc=Xc.reduce((e,t,n)=>(e[t]=n,e),{}),fie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],mie=fie.map(([e,t])=>[Kc[e],Kc[t]]),f8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function m8(e){let t=e.reduce(({maxX:n,maxY:r,minX:a,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(r,o),minX:Math.min(a,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function A8(e,[t,n],[r,a]){let s=(o,l,c)=>({score:o.score,box:[Math.trunc(o.box[0]*c),Math.trunc(o.box[1]*l),Math.trunc(o.box[2]*c),Math.trunc(o.box[3]*l)],keypoints:o.keypoints.map(({score:u,part:h,position:d})=>({score:u,part:h,position:{x:Math.trunc(d.x*c),y:Math.trunc(d.y*l)}}))});return e.map(o=>s(o,t/r,n/a))}var Y2=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nn?n:e}function y8(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function tg(e,t){return{x:e.x+t.x,y:e.y+t.y}}var I0=1,g8=16;function x8(e,t,n,r,a,s,i,o=2){let l=g=>({y:i.get(g.y,g.x,e),x:i.get(g.y,g.x,i.shape[2]/2+e)}),c=(g,x,v)=>({y:eg(Math.round(g.y/s),0,x-1),x:eg(Math.round(g.x/s),0,v-1)}),[u,h]=r.shape,d=c(t.position,u,h),p=l(d),f=tg(t.position,p);for(let g=0;g[Kc[f],Kc[A]]),o=i.map(([,f])=>f),l=i.map(([f])=>f),c=t.shape[2],u=o.length,h=new Array(c),{part:d,score:p}=e,m=Q2(d,r,n);h[d.id]={score:p,part:Xc[d.id],position:m};for(let f=u-1;f>=0;--f){let A=o[f],y=l[f];h[A]&&!h[y]&&(h[y]=x8(f,h[A],y,t,n,r,s))}for(let f=0;ft){o=!1;break}if(!o)break}return o}function gie(e,t){let[n,r,a]=t.shape,s=new Y2(n*r*a,({score:i})=>i);for(let i=0;i{let i=s[a].position;return y8(r,n,i.y,i.x)<=t})}function xie(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(w8(e,t,s,o)||(a+=i),a),0)/n.length}function b8(e,t,n,r,a,s,i){let o=[],l=gie(i,t),c=a**2;for(;o.lengthA.score>i),m=xie(o,c,p),f=m8(p);m>i&&o.push({keypoints:p,box:f,score:Math.round(100*m)/100})}return o}var mr,wie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function rg(e,t){let n=L(()=>{let o=e.resizeBilinear([mr.inputs[0].shape[2],mr.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),c=mr.execute(o,wie).map(u=>u.squeeze([0]));return c[1]=c[1].sigmoid(),c}),r=await Promise.all(n.map(i=>i.buffer()));for(let i of n)i.dispose();let a=await b8(r[0],r[1],r[2],r[3],t.body.nmsRadius,t.body.maxDetections,t.body.scoreThreshold);return A8(a,[e.shape[1],e.shape[2]],[mr.inputs[0].shape[2],mr.inputs[0].shape[1]])}async function ag(e){return mr?e.debug&&pe("cached model:",mr.modelUrl):(mr=await Ht(Yt(e.modelBasePath,e.body.modelPath)),!mr||!mr.modelUrl?pe("load model failed:",e.body.modelPath):e.debug&&pe("load model:",mr.modelUrl)),mr}var ug={};Ar(ug,{HandPose:()=>hg,load:()=>dg});function S0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Zc(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function _8(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Ye.cropAndResize(t,s,[0],n)}function v8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function N0(e,t=1.5){let n=Zc(e),r=S0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function T0(e){let t=Zc(e),n=S0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var sg=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=Zn(this.anchors),this.inputSize=n,this.inputSizeTensor=nn([n,n]),this.doubleInputSizeTensor=nn([n*2,n*2])}normalizeBoxes(t){return L(()=>{let n=Re(t,[0,0],[-1,2]),r=Re(t,[0,2],[-1,2]),a=se(ge(n,this.inputSizeTensor),this.anchorsTensor),s=ge(r,this.doubleInputSizeTensor),i=B(ye(a,s),this.inputSizeTensor),o=B(se(a,s),this.inputSizeTensor);return fl([i,o],1)})}normalizeLandmarks(t,n){return L(()=>{let r=se(ge(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return B(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=L(()=>kn(Re(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Re(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let c=await Ye.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),u=c.arraySync();s.dispose(),c.dispose();let h=[];for(let d of u)if(i[d]>=n.hand.minConfidence){let p=Re(l,[d,0],[1,-1]),m=Re(a,[d,5],[1,14]),f=L(()=>this.normalizeLandmarks(m,d).reshape([-1,2]));m.dispose(),h.push({box:p,palmLandmarks:f,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=L(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let c=l.box.dataSync(),u=c.slice(0,2),h=c.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(v8({startPoint:u,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/this.inputSize,r/this.inputSize]))}return o}};function bie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function k8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return bie(n)}var I8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function es(e,t){let n=0;for(let r=0;rog([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return N0(T0(a),vie)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=N0(T0(n),T8);r.palmLandmarks=[];for(let a=0;a[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=ig(r,[0,0]),c=o.map(p=>[...og(p,l),p[2]]),u=N8(a),h=[...Zc(n),1],d=[es(h,u[0]),es(h,u[1])];return c.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i=n.hand.minConfidence){let x=H(y,[-1,3]),v=x.arraySync();y.dispose(),x.dispose();let w=this.transformRawCoords(v,p,l,d),b=this.getBoxForHandLandmarks(w);this.storedBoxes[i]=b;let k={landmarks:w,confidence:g,box:{topLeft:b.startPoint,bottomRight:b.endPoint}};s.push(k)}else this.storedBoxes[i]=null;y.dispose()}else{let l=N0(T0(o),T8),c={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(c)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};var C8=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var cg={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},hg=class{constructor(t){this.handPipeline=t}static getAnnotations(){return cg}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let c of Object.keys(cg))i[c]=cg[c].map(u=>s.landmarks[u]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-Math.max(0,s.box.topLeft[0]),Math.min(t.shape[1],s.box.bottomRight[1])-Math.max(0,s.box.topLeft[1])]:[],l=[s.box.topLeft[0]/t.shape[2],s.box.topLeft[1]/t.shape[1],(s.box.bottomRight[0]-s.box.topLeft[0])/t.shape[2],(s.box.bottomRight[1]-s.box.topLeft[1])/t.shape[1]];a.push({confidence:Math.round(100*s.confidence)/100,box:o,boxRaw:l,landmarks:s.landmarks,annotations:i})}return a}},Kr,Zr;async function dg(e){!Kr||!Zr?([Kr,Zr]=await Promise.all([e.hand.enabled?Ht(Yt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Ht(Yt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!Kr||!Kr.modelUrl?pe("load model failed:",e.hand.detector.modelPath):e.debug&&pe("load model:",Kr.modelUrl),!Zr||!Zr.modelUrl?pe("load model failed:",e.hand.skeleton.modelPath):e.debug&&pe("load model:",Zr.modelUrl))):(e.debug&&pe("cached model:",Kr.modelUrl),e.debug&&pe("cached model:",Zr.modelUrl));let t=new sg(Kr,Kr==null?void 0:Kr.inputs[0].shape[2],C8),n=new lg(t,Zr,Zr==null?void 0:Zr.inputs[0].shape[2]);return new hg(n)}var pg={};Ar(pg,{load:()=>fg,predict:()=>mg});var R8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],M8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var An;async function fg(e){return An?e.debug&&pe("cached model:",An.modelUrl):(An=await Ht(Yt(e.modelBasePath,e.body.modelPath)),An.width=parseInt(An.signature.inputs["input_1:0"].tensorShape.dim[2].size),An.height=parseInt(An.signature.inputs["input_1:0"].tensorShape.dim[1].size),!An||!An.modelUrl?pe("load model failed:",e.body.modelPath):e.debug&&pe("load model:",An.modelUrl)),An}async function mg(e,t){if(!An||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},r=Ye.resizeBilinear(e,[An.width,An.height],!1),a=ge(r,[255]);r.dispose();let s;if(t.profile){let u=await sa(()=>An.predict(a));s=u.result.find(h=>h.size===195||h.size===155).dataSync(),u.result.forEach(h=>h.dispose()),Ja("blazepose",u)}else{let u=await An.predict(a);s=u.find(h=>h.size===195||h.size===155).dataSync(),u.forEach(h=>h.dispose())}a.dispose();let i=[],o=s.length===195?R8:M8,l=5;for(let u=0;uh.score>u?h.score:u,0),keypoints:i}]}var Ag={};Ar(Ag,{load:()=>gg,predict:()=>xg});var E0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var yn,yg=[],C0=Number.MAX_SAFE_INTEGER,R0=2.5;async function gg(e){if(yn)e.debug&&pe("cached model:",yn.modelUrl);else{yn=await Ht(Yt(e.modelBasePath,e.object.modelPath));let t=Object.values(yn.modelSignature.inputs);if(yn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!yn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!yn||!yn.modelUrl?pe("load model failed:",e.object.modelPath):e.debug&&pe("load model:",yn.modelUrl)}return yn}async function Sie(e,t,n,r){let a=0,s=[];for(let c of[1,2,4])L(()=>{var A,y;let u=c*13,h=(A=e.find(g=>g.shape[1]===u**2&&g.shape[2]===E0.length))==null?void 0:A.squeeze(),d=(y=e.find(g=>g.shape[1]===u**2&&g.shape[2]r.object.minConfidence&&x!==61){let w=(.5+Math.trunc(g%u))/u,b=(.5+Math.trunc(g/u))/u,k=m[g].map(U=>U*(u/c/t)),[N,C]=[w-R0/c*k[0],b-R0/c*k[1]],[F,O]=[w+R0/c*k[2]-N,b+R0/c*k[3]-C],z=[N,C,F,O];z=z.map(U=>Math.max(0,Math.min(U,1)));let V=[z[0]*n[0],z[1]*n[1],z[2]*n[0],z[3]*n[1]],j={id:a++,strideSize:c,score:Math.round(100*v)/100,class:x+1,label:E0[x].label,center:[Math.trunc(n[0]*w),Math.trunc(n[1]*b)],centerRaw:[w,b],box:V.map(U=>Math.trunc(U)),boxRaw:z};s.push(j)}}});e.forEach(c=>Te(c));let i=s.map(c=>c.boxRaw),o=s.map(c=>c.score),l=[];if(i&&i.length>0){let c=await Ye.nonMaxSuppressionAsync(i,o,r.object.maxResults,r.object.iouThreshold,r.object.minConfidence);l=c.dataSync(),Te(c)}return s=s.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),s}async function xg(e,t){return yn?C00?(C0++,yg):(t.videoOptimized?C0=0:C0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=[e.shape[2],e.shape[1]],a=Ye.resizeBilinear(e,[yn.inputSize,yn.inputSize],!1),s=a.div(255),i=s.transpose([0,3,1,2]);s.dispose(),a.dispose();let o;if(!t.profile)t.object.enabled&&(o=await yn.predict(i));else{let c=t.object.enabled?await sa(()=>yn.predict(i)):{};o=c.result,Ja("object",c)}i.dispose();let l=await Sie(o,yn.inputSize,r,t);yg=l,n(l)})):null}var F8=e=>{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.yl.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},$8=e=>{if(!e)return[];let t=[];for(let n=0;n0){let r=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${r<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},D8=e=>{if(!e)return[];let t=[];for(let n=0;n.033||h>.033)&&(c=!1),d>.033&&t.push({iris:n,gesture:"looking right"}),h>.033&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].annotations.rightEyeIris[0][1],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].annotations.leftEyeIris[0][1];(m<.015||p<.015||m>.03||p>.03)&&(c=!1),(m<.015||p<.015)&&t.push({iris:n,gesture:"looking down"}),(m>.03||p>.03)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},O8=e=>{if(!e)return[];let t=[];for(let n=0;n0){let a=r.reduce((i,o)=>i.position[2]i.position[1]bg});function Nie(e,t,n){let r=function(o,l,c){let u=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(u,(h,d)=>(c[d]=0,h))},a=function(o,l){let c=e.createShader(l);if(e.shaderSource(c,o),e.compileShader(c),!e.getShaderParameter(c,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(c));return c};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function z8(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,c=null,u=null,h={},d=e.canvas||document.createElement("canvas"),p={},m={INTERMEDIATE:1},f=d.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(w){let b=Array.prototype.slice.call(arguments,1),k=h[w];i.push({func:k,args:b})},this.reset=function(){i=[]};let A=function(w,b){if(!(w===o&&b===l)){if(d.width=w,o=w,d.height=b,l=b,!c){let k=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);c=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,c),f.bufferData(f.ARRAY_BUFFER,k,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},y=function(w,b){let k=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,k);let N=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,N);let C=f.createTexture();return f.bindTexture(f.TEXTURE_2D,C),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,w,b,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,C,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:k,texture:C}},g=function(w){return s[w]=s[w]||y(o,l),s[w]},x=function(w=null){var C,F;let b=null,k=null,N=!1;t===0?b=n:b=(C=g(a))==null?void 0:C.texture,t++,r&&!(w&m.INTERMEDIATE)?(k=null,N=t%2==0):(a=(a+1)%2,k=(F=g(a))==null?void 0:F.fbo),f.bindTexture(f.TEXTURE_2D,b),f.bindFramebuffer(f.FRAMEBUFFER,k),f.uniform1f(u.uniform.flipY,N?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(w){if(A(w.width,w.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,w),i.length===0)return x(),d;for(let b=0;b0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=a,o=s;if(i>j0&&(i=j0,o=i*s/a),o>j0&&(o=j0,i=o*a/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=a*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/a)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==i||(Ee==null?void 0:Ee.height)!==o)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==i&&(Ee.width=i),(Ee==null?void 0:Ee.height)!==o&&(Ee.height=o));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(a,0),l.scale(-1,1),l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!$t||!bt||Ee.width!==bt.width||(Ee==null?void 0:Ee.height)!==(bt==null?void 0:bt.height))&&(bt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(bt==null?void 0:bt.width)!==(Ee==null?void 0:Ee.width)&&(bt.width=Ee==null?void 0:Ee.width),(bt==null?void 0:bt.height)!==(Ee==null?void 0:Ee.height)&&(bt.height=Ee==null?void 0:Ee.height),$t=vr.flags.IS_BROWSER?new ik({canvas:bt}):null),!$t)return{tensor:null,canvas:Ee};$t.reset(),$t.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&$t.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&$t.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&$t.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&$t.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&$t.addFilter("hue",t.filter.hue),t.filter.negative&&$t.addFilter("negative"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.vintage&&$t.addFilter("brownie"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.kodachrome&&$t.addFilter("kodachrome"),t.filter.technicolor&&$t.addFilter("technicolor"),t.filter.polaroid&&$t.addFilter("polaroid"),t.filter.pixelate!==0&&$t.addFilter("pixelate",t.filter.pixelate),$t.apply(Ee)}else bt=Ee,$t&&($t=null);let c;if(bt.data){let h=[bt.height,bt.width,3];c=xd(bt.data,h,"int32")}else if(bt instanceof ImageData)c=fi.fromPixels(bt);else if(t.backend==="webgl"||t.backend==="humangl"){let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(bt,0,0),c=fi.fromPixels(h)}else{let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(bt,0,0);let p=d==null?void 0:d.getImageData(0,0,i,o);c=fi.fromPixels(p)}let u=c.toFloat();n=u.expandDims(0),c.dispose(),u.dispose()}let r=t.filter.return?bt:null;return{tensor:n,canvas:r}}var Ug={};Yn(Ug,{all:()=>toe,body:()=>uk,canvas:()=>eoe,face:()=>lk,gesture:()=>ok,hand:()=>ck,object:()=>hk,options:()=>Hi});var ht={backend:"webgl",modelBasePath:"../models/",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface-back.json",rotation:!1,maxFaces:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,scoreThreshold:.2,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"},age:{enabled:!1,modelPath:"age.json",skipFrames:33},gender:{enabled:!1,minConfidence:.1,modelPath:"gender.json",skipFrames:34},embedding:{enabled:!1,modelPath:"mobileface.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetections:1,scoreThreshold:.2,nmsRadius:20},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxResults:10,skipFrames:41}};var Hi={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function U0(e,t,n,r=0,a){e.fillStyle=a.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:a.color,e.beginPath(),e.arc(t,n,a.pointSize,0,2*Math.PI),e.fill()}function Gi(e,t,n,r,a,s){if(e.beginPath(),s.useCurves){let i=(t+t+r)/2,o=(n+n+a)/2;e.ellipse(i,o,r/2,a/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+r-s.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+s.roundRect),e.lineTo(t+r,n+a-s.roundRect),e.quadraticCurveTo(t+r,n+a,t+r-s.roundRect,n+a),e.lineTo(t+s.roundRect,n+a),e.quadraticCurveTo(t,n+a,t,n+a-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function Hg(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let r of t)e.strokeStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.lineTo(r[0],parseInt(r[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function rh(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Hg(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let r=0;r1&&l[1].length>0){let c=o[1]>0?`#${o[1]}`:"",u=`${o[0]} ${c}: ${l[1]}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(u,8,2+s*r.lineHeight)),a.fillStyle=r.labelColor,a.fillText(u,6,0+s*r.lineHeight),s+=1}}}async function lk(e,t,n){let r=Jn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a)for(let s of t){a.font=r.font,a.strokeStyle=r.color,a.fillStyle=r.color,r.drawBoxes&&(r.useRawBoxes?Gi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Gi(a,s.box[0],s.box[1],s.box[2],s.box[3],r));let i=[];if(i.push(`face confidence: ${Math.trunc(100*s.confidence)}%`),s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}s.rotation&&s.rotation.angle&&s.rotation.angle.roll&&i.push(`roll: ${Math.trunc(100*s.rotation.angle.roll)/100} yaw:${Math.trunc(100*s.rotation.angle.yaw)/100} pitch:${Math.trunc(100*s.rotation.angle.pitch)/100}`),i.length===0&&i.push("face"),a.fillStyle=r.color;for(let o=i.length-1;o>=0;o--){let l=Math.max(s.box[0],0),c=o*r.lineHeight+s.box[1];r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i[o],l+5,c+16)),a.fillStyle=r.labelColor,a.fillText(i[o],l+4,c+15)}if(a.lineWidth=1,s.mesh&&s.mesh.length>0){if(r.drawPoints)for(let o of s.mesh)U0(a,o[0],o[1],o[2],r);if(r.drawPolygons){a.lineWidth=1;for(let o=0;os.mesh[c]);Hg(a,l,r)}if(s.annotations&&s.annotations.leftEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;a.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}if(s.annotations&&s.annotations.rightEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;a.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}}}}}var is=[];async function uk(e,t,n){let r=Jn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round";for(let s=0;sl.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),o.length===4&&Hg(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftKnee"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftAnkle"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHeel"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftFoot"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightKnee"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightAnkle"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHeel"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightFoot"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftElbow"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftWrist"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftPalm"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightElbow"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightWrist"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightPalm"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r)}}}}async function ck(e,t,n){let r=Jn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t){if(r.drawBoxes){a.strokeStyle=r.color,a.fillStyle=r.color;let i;if(!r.calculateHandBox)i=r.useRawBoxes?s.boxRaw:s.box;else if(i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],s.landmarks&&s.landmarks.length>0){for(let o of s.landmarks)o[0]i[2]&&(i[2]=o[0]),o[1]>i[3]&&(i[3]=o[1]);i[2]-=i[0],i[3]-=i[1]}r.useRawBoxes?Gi(a,e.width*i[0],e.height*i[1],e.width*i[2],e.height*i[3],r):Gi(a,i[0],i[1],i[2],i[3],r),r.drawLabels&&(r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText("hand",i[0]+3,1+i[1]+r.lineHeight,i[2])),a.fillStyle=r.labelColor,a.fillText("hand",i[0]+2,0+i[1]+r.lineHeight,i[2])),a.stroke()}if(r.drawPoints&&s.landmarks&&s.landmarks.length>0)for(let i of s.landmarks)a.fillStyle=r.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:r.color,U0(a,i[0],i[1],0,r);if(r.drawPolygons){let i=o=>{if(!!o)for(let l=0;l0?l-1:0][0],o[l>0?l-1:0][1]),a.lineTo(o[l][0],o[l][1]),a.stroke()};i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function hk(e,t,n){let r=Jn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t)if(r.drawBoxes){if(a.strokeStyle=r.color,a.fillStyle=r.color,r.useRawBoxes?Gi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Gi(a,s.box[0],s.box[1],s.box[2],s.box[3],r),r.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i,s.box[0]+3,1+s.box[1]+r.lineHeight,s.box[2])),a.fillStyle=r.labelColor,a.fillText(i,s.box[0]+2,0+s.box[1]+r.lineHeight,s.box[2])}a.stroke()}}}async function eoe(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function toe(e,t,n){let r=Jn(Hi,n);!t||!e||e instanceof HTMLCanvasElement&&(lk(e,t.face,r),uk(e,t.body,r),ck(e,t.hand,r),ok(e,t.gesture,r),hk(e,t.object,r))}var H0=` +`),h.brightness=function(w){let b=(w||0)+1;h.colorMatrix([b,0,0,0,0,0,b,0,0,0,0,0,b,0,0,0,0,0,1,0])},h.saturation=function(w){let b=(w||0)*2/3+1,k=(b-1)*-.5;h.colorMatrix([b,k,k,0,0,k,b,k,0,0,k,k,b,0,0,0,0,0,1,0])},h.desaturate=function(){h.saturation(-1)},h.contrast=function(w){let b=(w||0)+1,k=-128*(b-1);h.colorMatrix([b,0,0,0,k,0,b,0,0,k,0,0,b,0,k,0,0,0,1,0])},h.negative=function(){h.contrast(-2)},h.hue=function(w){w=(w||0)/180*Math.PI;let b=Math.cos(w),k=Math.sin(w),N=.213,C=.715,F=.072;h.colorMatrix([N+b*(1-N)+k*-N,C+b*-C+k*-C,F+b*-F+k*(1-F),0,0,N+b*-N+k*.143,C+b*(1-C)+k*.14,F+b*-F+k*-.283,0,0,N+b*-N+k*-(1-N),C+b*-C+k*C,F+b*(1-F)+k*F,0,0,0,0,0,1,0])},h.desaturateLuminance=function(){h.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},h.sepia=function(){h.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},h.brownie=function(){h.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},h.vintagePinhole=function(){h.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},h.kodachrome=function(){h.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},h.technicolor=function(){h.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},h.polaroid=function(){h.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},h.shiftToBGR=function(){h.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},h.convolution=function(w){let b=new Float32Array(w),k=1/o,N=1/l,C=v(h.convolution.SHADER);f.uniform1fv(C.uniform.m,b),f.uniform2f(C.uniform.px,k,N),x()},h.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(` +`),h.detectEdges=function(){h.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},h.sobelX=function(){h.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},h.sobelY=function(){h.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},h.sharpen=function(w){let b=w||1;h.convolution.call(this,[0,-1*b,0,-1*b,1+4*b,-1*b,0,-1*b,0])},h.emboss=function(w){let b=w||1;h.convolution.call(this,[-2*b,-1*b,0,-1*b,1,1*b,0,1*b,2*b])},h.blur=function(w){let b=w/7/o,k=w/7/l,N=v(h.blur.SHADER);f.uniform2f(N.uniform.px,0,k),x(m.INTERMEDIATE),f.uniform2f(N.uniform.px,b,0),x()},h.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(` +`),h.pixelate=function(w){let b=w/o,k=w/l,N=v(h.pixelate.SHADER);f.uniform2f(N.uniform.size,b,k),x()},h.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(` +`)}var M0=2048,Ee,gt,Mt;function bg(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Le)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Le)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Dr(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let a=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=a,o=s;if(i>M0&&(i=M0,o=i*s/a),o>M0&&(o=M0,i=o*a/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=a*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/a)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==i||(Ee==null?void 0:Ee.height)!==o)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==i&&(Ee.width=i),(Ee==null?void 0:Ee.height)!==o&&(Ee.height=o));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(a,0),l.scale(-1,1),l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!Mt||!gt||Ee.width!==gt.width||(Ee==null?void 0:Ee.height)!==(gt==null?void 0:gt.height))&&(gt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(gt==null?void 0:gt.width)!==(Ee==null?void 0:Ee.width)&&(gt.width=Ee==null?void 0:Ee.width),(gt==null?void 0:gt.height)!==(Ee==null?void 0:Ee.height)&&(gt.height=Ee==null?void 0:Ee.height),Mt=yr.flags.IS_BROWSER?new z8({canvas:gt}):null),!Mt)return{tensor:null,canvas:Ee};Mt.reset(),Mt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Mt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Mt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Mt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Mt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Mt.addFilter("hue",t.filter.hue),t.filter.negative&&Mt.addFilter("negative"),t.filter.sepia&&Mt.addFilter("sepia"),t.filter.vintage&&Mt.addFilter("brownie"),t.filter.sepia&&Mt.addFilter("sepia"),t.filter.kodachrome&&Mt.addFilter("kodachrome"),t.filter.technicolor&&Mt.addFilter("technicolor"),t.filter.polaroid&&Mt.addFilter("polaroid"),t.filter.pixelate!==0&&Mt.addFilter("pixelate",t.filter.pixelate),Mt.apply(Ee)}else gt=Ee,Mt&&(Mt=null);let c;if(gt.data){let h=[gt.height,gt.width,3];c=pd(gt.data,h,"int32")}else if(gt instanceof ImageData)c=ui.fromPixels(gt);else if(t.backend==="webgl"||t.backend==="humangl"){let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(gt,0,0),c=ui.fromPixels(h)}else{let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(gt,0,0);let p=d==null?void 0:d.getImageData(0,0,i,o);c=ui.fromPixels(p)}let u=c.toFloat();n=u.expandDims(0),c.dispose(),u.dispose()}let r=t.filter.return?gt:null;return{tensor:n,canvas:r}}var _g={};Ar(_g,{all:()=>Eie,body:()=>W8,canvas:()=>Tie,face:()=>L8,gesture:()=>P8,hand:()=>B8,object:()=>V8,options:()=>Li});var ct={backend:"webgl",modelBasePath:"../models/",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface-back.json",rotation:!1,maxFaces:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,scoreThreshold:.2,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetections:1,scoreThreshold:.2,nmsRadius:20},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxResults:10,skipFrames:41}};var Li={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function F0(e,t,n,r=0,a){e.fillStyle=a.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:a.color,e.beginPath(),e.arc(t,n,a.pointSize,0,2*Math.PI),e.fill()}function Wi(e,t,n,r,a,s){if(e.beginPath(),s.useCurves){let i=(t+t+r)/2,o=(n+n+a)/2;e.ellipse(i,o,r/2,a/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+r-s.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+s.roundRect),e.lineTo(t+r,n+a-s.roundRect),e.quadraticCurveTo(t+r,n+a,t+r-s.roundRect,n+a),e.lineTo(t+s.roundRect,n+a),e.quadraticCurveTo(t,n+a,t,n+a-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function vg(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let r of t)e.strokeStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.lineTo(r[0],parseInt(r[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Yc(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){vg(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let r=0;r1&&l[1].length>0){let c=o[1]>0?`#${o[1]}`:"",u=`${o[0]} ${c}: ${l[1]}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(u,8,2+s*r.lineHeight)),a.fillStyle=r.labelColor,a.fillText(u,6,0+s*r.lineHeight),s+=1}}}async function L8(e,t,n){let r=Gn(Li,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a)for(let s of t){a.font=r.font,a.strokeStyle=r.color,a.fillStyle=r.color,r.drawBoxes&&(r.useRawBoxes?Wi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Wi(a,s.box[0],s.box[1],s.box[2],s.box[3],r));let i=[];if(i.push(`face confidence: ${Math.trunc(100*s.confidence)}%`),s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}s.rotation&&s.rotation.angle&&s.rotation.angle.roll&&i.push(`roll: ${Math.trunc(100*s.rotation.angle.roll)/100} yaw:${Math.trunc(100*s.rotation.angle.yaw)/100} pitch:${Math.trunc(100*s.rotation.angle.pitch)/100}`),i.length===0&&i.push("face"),a.fillStyle=r.color;for(let o=i.length-1;o>=0;o--){let l=Math.max(s.box[0],0),c=o*r.lineHeight+s.box[1];r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i[o],l+5,c+16)),a.fillStyle=r.labelColor,a.fillText(i[o],l+4,c+15)}if(a.lineWidth=1,s.mesh&&s.mesh.length>0){if(r.drawPoints)for(let o of s.mesh)F0(a,o[0],o[1],o[2],r);if(r.drawPolygons){a.lineWidth=1;for(let o=0;os.mesh[c]);vg(a,l,r)}if(s.annotations&&s.annotations.leftEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;a.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}if(s.annotations&&s.annotations.rightEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;a.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}}}}}var ts=[];async function W8(e,t,n){let r=Gn(Li,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round";for(let s=0;sl.part==="leftShoulder"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),Yc(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),o.length===4&&vg(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftKnee"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftAnkle"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHeel"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftFoot"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),Yc(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightKnee"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightAnkle"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHeel"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightFoot"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),Yc(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftElbow"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftWrist"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftPalm"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),Yc(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightElbow"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightWrist"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightPalm"),i&&i.score>ct.body.scoreThreshold&&o.push([i.position.x,i.position.y]),Yc(a,o,r)}}}}async function B8(e,t,n){let r=Gn(Li,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t){if(r.drawBoxes){a.strokeStyle=r.color,a.fillStyle=r.color;let i;if(!r.calculateHandBox)i=r.useRawBoxes?s.boxRaw:s.box;else if(i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],s.landmarks&&s.landmarks.length>0){for(let o of s.landmarks)o[0]i[2]&&(i[2]=o[0]),o[1]>i[3]&&(i[3]=o[1]);i[2]-=i[0],i[3]-=i[1]}r.useRawBoxes?Wi(a,e.width*i[0],e.height*i[1],e.width*i[2],e.height*i[3],r):Wi(a,i[0],i[1],i[2],i[3],r),r.drawLabels&&(r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText("hand",i[0]+3,1+i[1]+r.lineHeight,i[2])),a.fillStyle=r.labelColor,a.fillText("hand",i[0]+2,0+i[1]+r.lineHeight,i[2])),a.stroke()}if(r.drawPoints&&s.landmarks&&s.landmarks.length>0)for(let i of s.landmarks)a.fillStyle=r.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:r.color,F0(a,i[0],i[1],0,r);if(r.drawPolygons){let i=o=>{if(!!o)for(let l=0;l0?l-1:0][0],o[l>0?l-1:0][1]),a.lineTo(o[l][0],o[l][1]),a.stroke()};i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function V8(e,t,n){let r=Gn(Li,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t)if(r.drawBoxes){if(a.strokeStyle=r.color,a.fillStyle=r.color,r.useRawBoxes?Wi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Wi(a,s.box[0],s.box[1],s.box[2],s.box[3],r),r.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i,s.box[0]+3,1+s.box[1]+r.lineHeight,s.box[2])),a.fillStyle=r.labelColor,a.fillText(i,s.box[0]+2,0+s.box[1]+r.lineHeight,s.box[2])}a.stroke()}}}async function Tie(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function Eie(e,t,n){let r=Gn(Li,n);!t||!e||e instanceof HTMLCanvasElement&&(L8(e,t.face,r),W8(e,t.body,r),B8(e,t.hand,r),P8(e,t.gesture,r),V8(e,t.object,r))}var $0=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob @@ -4344,7 +4344,7 @@ PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1 8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3 ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY -euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,G0=` +euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,D0=` /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA @@ -4912,7 +4912,7 @@ AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ -2Q==`;var dk="1.6.1";var au,ah,sh,qi,q0,ih,X0,K0,Z0,pk=class{constructor(t={}){au.set(this,void 0);ah.set(this,void 0);sh.set(this,void 0);qi.set(this,void 0);this.analyze=(...t)=>{if(!ur(this,ah))return;let n=this.tf.engine().state.numTensors,r=ur(this,au);cs(this,au,n);let a=n-r;a!==0&&le(...t,a)};q0.set(this,t=>{if(!ur(this,sh))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Pe))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});ih.set(this,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let r=Ye();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&le("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&le("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let a=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&le(`wasm execution: ${a?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!a&&le("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&_8();try{await this.tf.setBackend(this.config.backend)}catch(a){le("error: cannot set backend:",this.config.backend,a)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),this.config.deallocate&&(le("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let a=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&le(`gl version:${a.getParameter(a.VERSION)} renderer:${a.getParameter(a.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(Ye()-r)}});X0.set(this,async()=>{let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t(H0);break;case"full":n=await t(G0);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,this.config),a.close()}return r});K0.set(this,async()=>new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+H0;break;case"full":case"body":r=1200,n="data:image/jpeg;base64,"+G0;break;default:n=null}let a=new Image;a.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=a.naturalWidth,s.height=a.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(a,0,0);let o=await this.detect(s,this.config);t(o)},n?a.src=n:t(null)}));Z0.set(this,async()=>{let t=a=>Buffer.from(a,"base64"),n;if(this.config.warmup==="face"&&(n=t(H0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(G0)),!n)return null;let r;if(typeof void 0!="undefined"){let a=(void 0).decodeJpeg(n),s=a.expandDims(0);this.tf.dispose(a),r=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&le("Warmup tfjs-node not loaded");return r});this.tf=Au,this.draw=Ug,this.version=dk,this.config=Jn(ht,t),this.state="idle",cs(this,au,0),cs(this,ah,!1),cs(this,sh,!1),cs(this,qi,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=n=>jg(n,this.config),this.classes={facemesh:fg,age:H2,gender:q2,emotion:J2,faceres:ag,body:this.config.body.modelPath.includes("posenet")?_g:Fg,hand:Eg,nanodet:Pg},this.faceTriangulation=$8,this.faceUVMap=D8,this.sysinfo=s5()}profileData(){return this.config.profile?g0:{}}similarity(t,n){return this.config.face.description.enabled?ig(t,n):this.config.face.embedding.enabled?v8(t,n):0}enhance(t){return og(t)}match(t,n,r=0){return k8(t,n,r)}async load(t={}){this.state="load";let n=Ye();t&&(this.config=Jn(this.config,t)),ur(this,qi)&&(this.config.debug&&le(`version: ${this.version}`),this.config.debug&&le(`tfjs version: ${this.tf.version_core}`),this.config.debug&&le("platform:",this.sysinfo.platform),this.config.debug&&le("agent:",this.sysinfo.agent),await ur(this,ih).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&le("configuration:",this.config),this.config.debug&&le("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.efficientpose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?Ag(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?G2(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?Y2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?tg(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?ng(this.config):null),this.models.handpose||(this.config.hand.enabled?Mg(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?kg(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?$g(this.config):null),this.models.efficientpose||(this.config.body.enabled&&this.config.body.modelPath.includes("efficientpose")?Og(this.config):null),this.models.nanodet||(this.config.object.enabled?Wg(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?sg(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await Ag(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await G2(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await Y2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await tg(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await ng(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await Mg(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await kg(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await $g(this.config)),this.config.body.enabled&&!this.models.efficientpose&&this.config.body.modelPath.includes("efficientpose")&&(this.models.efficientpose=await Og(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await Wg(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await sg(this.config))),ur(this,qi)&&(this.config.debug&&le("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),cs(this,qi,!1));let r=Math.trunc(Ye()-n);r>(this.perf.load||0)&&(this.perf.load=r)}async detect(t,n={}){return new Promise(async r=>{var A,y;this.state="config";let a;this.config=Jn(this.config,n),this.state="check";let s=ur(this,q0).call(this,t);s&&(le(s,t),r({error:s}));let i=Ye();await ur(this,ih).call(this),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:");let o;t&&this.config.videoOptimized&&(typeof HTMLImageElement!="undefined"&&t instanceof HTMLImageElement||typeof Image!="undefined"&&t instanceof Image||typeof ImageData!="undefined"&&t instanceof ImageData||typeof ImageBitmap!="undefined"&&Vg instanceof ImageBitmap)&&(le("disabling video optimization"),o=this.config.videoOptimized,this.config.videoOptimized=!1),a=Ye();let l=jg(t,this.config);if(!l||!l.tensor){le("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(Ye()-a),this.analyze("Get Image:");let c,u,h,d,p;this.config.async?(h=this.config.face.enabled?lg(this,l.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",a=Ye(),h=this.config.face.enabled?await lg(this,l.tensor):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.face=p)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?vg(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?Dg(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(c=this.config.body.enabled?zg(l.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",a=Ye(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await vg(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await Dg(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(c=this.config.body.enabled?await zg(l.tensor,this.config):[]),p=Math.trunc(Ye()-a),p>0&&(this.perf.body=p)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?(A=this.models.handpose)==null?void 0:A.estimateHands(l.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",a=Ye(),u=this.config.hand.enabled?await((y=this.models.handpose)==null?void 0:y.estimateHands(l.tensor,this.config)):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.hand=p)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(d=this.config.object.enabled?Bg(l.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",a=Ye(),d=this.config.object.enabled?await Bg(l.tensor,this.config):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.object=p)),this.analyze("End Object:"),this.config.async&&([h,c,u,d]=await Promise.all([h,c,u,d])),we(l.tensor),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let m=[];this.config.gesture.enabled&&(a=Ye(),m=[...rk(h),...nk(c),...sk(u),...ak(h)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(Ye()-a)),o&&(this.config.videoOptimized=o),this.perf.total=Math.trunc(Ye()-i),this.state="idle";let f={face:h,body:c,hand:u,gesture:m,object:d,performance:this.perf,canvas:l.canvas};r(f)})}async warmup(t={}){let n=Ye();if(t&&(this.config=Jn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await ur(this,X0).call(this):typeof Image!="undefined"?a=await ur(this,K0).call(this):a=await ur(this,Z0).call(this),this.config.videoOptimized=r;let s=Ye();return this.config.debug&&le("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};au=new WeakMap,ah=new WeakMap,sh=new WeakMap,qi=new WeakMap,q0=new WeakMap,ih=new WeakMap,X0=new WeakMap,K0=new WeakMap,Z0=new WeakMap;return roe;})(); +2Q==`;var j8="1.7.0";var Jl,Jc,Qc,Bi,O0,eh,z0,P0,L0,U8=class{constructor(t={}){Jl.set(this,void 0);Jc.set(this,void 0);Qc.set(this,void 0);Bi.set(this,void 0);this.analyze=(...t)=>{if(!rr(this,Jc))return;let n=this.tf.engine().state.numTensors,r=rr(this,Jl);ss(this,Jl,n);let a=n-r;a!==0&&pe(...t,a)};O0.set(this,t=>{if(!rr(this,Qc))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Le))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});eh.set(this,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let r=it();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&pe("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&pe("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let a=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&pe(`wasm execution: ${a?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!a&&pe("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&e8();try{await this.tf.setBackend(this.config.backend)}catch(a){pe("error: cannot set backend:",this.config.backend,a)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),this.config.deallocate&&(pe("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let a=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&pe(`gl version:${a.getParameter(a.VERSION)} renderer:${a.getParameter(a.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(it()-r)}});z0.set(this,async()=>{let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t($0);break;case"full":n=await t(D0);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,this.config),a.close()}return r});P0.set(this,async()=>new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+$0;break;case"full":case"body":r=1200,n="data:image/jpeg;base64,"+D0;break;default:n=null}let a=new Image;a.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=a.naturalWidth,s.height=a.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(a,0,0);let o=await this.detect(s,this.config);t(o)},n?a.src=n:t(null)}));L0.set(this,async()=>{let t=a=>Buffer.from(a,"base64"),n;if(this.config.warmup==="face"&&(n=t($0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(D0)),!n)return null;let r;if(typeof void 0!="undefined"){let a=(void 0).decodeJpeg(n),s=a.expandDims(0);this.tf.dispose(a),r=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&pe("Warmup tfjs-node not loaded");return r});this.tf=cu,this.draw=_g,this.version=j8,this.config=Gn(ct,t),this.state="idle",ss(this,Jl,0),ss(this,Jc,!1),ss(this,Qc,!1),ss(this,Bi,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=n=>bg(n,this.config),this.classes={facemesh:X2,emotion:$2,faceres:P2,body:this.config.body.modelPath.includes("posenet")?ng:pg,hand:ug,nanodet:Ag},this.faceTriangulation=h8,this.faceUVMap=d8,this.sysinfo=zg()}profileData(){return this.config.profile?p0:{}}similarity(t,n){return W2(t,n)}enhance(t){return B2(t)}match(t,n,r=0){return t8(t,n,r)}async load(t={}){this.state="load";let n=it();t&&(this.config=Gn(this.config,t)),rr(this,Bi)&&(this.config.debug&&pe(`version: ${this.version}`),this.config.debug&&pe(`tfjs version: ${this.tf.version_core}`),this.config.debug&&pe("platform:",this.sysinfo.platform),this.config.debug&&pe("agent:",this.sysinfo.agent),await rr(this,eh).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&pe("configuration:",this.config),this.config.debug&&pe("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.emotion,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?Z2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?z2(this.config):null),this.models.handpose||(this.config.hand.enabled?dg(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?ag(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?fg(this.config):null),this.models.nanodet||(this.config.object.enabled?gg(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?L2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await Z2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await z2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await dg(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await ag(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await fg(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await gg(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await L2(this.config))),rr(this,Bi)&&(this.config.debug&&pe("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),ss(this,Bi,!1));let r=Math.trunc(it()-n);r>(this.perf.load||0)&&(this.perf.load=r)}async detect(t,n={}){return new Promise(async r=>{var A,y;this.state="config";let a;this.config=Gn(this.config,n),this.state="check";let s=rr(this,O0).call(this,t);s&&(pe(s,t),r({error:s}));let i=it();await rr(this,eh).call(this),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:");let o;t&&this.config.videoOptimized&&(typeof HTMLImageElement!="undefined"&&t instanceof HTMLImageElement||typeof Image!="undefined"&&t instanceof Image||typeof ImageData!="undefined"&&t instanceof ImageData||typeof ImageBitmap!="undefined"&&wg instanceof ImageBitmap)&&(pe("disabling video optimization"),o=this.config.videoOptimized,this.config.videoOptimized=!1),a=it();let l=bg(t,this.config);if(!l||!l.tensor){pe("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(it()-a),this.analyze("Get Image:");let c,u,h,d,p;this.config.async?(h=this.config.face.enabled?V2(this,l.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",a=it(),h=this.config.face.enabled?await V2(this,l.tensor):[],p=Math.trunc(it()-a),p>0&&(this.perf.face=p)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?rg(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")&&(c=this.config.body.enabled?mg(l.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",a=it(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await rg(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")&&(c=this.config.body.enabled?await mg(l.tensor,this.config):[]),p=Math.trunc(it()-a),p>0&&(this.perf.body=p)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?(A=this.models.handpose)==null?void 0:A.estimateHands(l.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",a=it(),u=this.config.hand.enabled?await((y=this.models.handpose)==null?void 0:y.estimateHands(l.tensor,this.config)):[],p=Math.trunc(it()-a),p>0&&(this.perf.hand=p)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(d=this.config.object.enabled?xg(l.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",a=it(),d=this.config.object.enabled?await xg(l.tensor,this.config):[],p=Math.trunc(it()-a),p>0&&(this.perf.object=p)),this.analyze("End Object:"),this.config.async&&([h,c,u,d]=await Promise.all([h,c,u,d])),Te(l.tensor),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let m=[];this.config.gesture.enabled&&(a=it(),m=[...$8(h),...F8(c),...O8(u),...D8(h)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(it()-a)),o&&(this.config.videoOptimized=o),this.perf.total=Math.trunc(it()-i),this.state="idle";let f={face:h,body:c,hand:u,gesture:m,object:d,performance:this.perf,canvas:l.canvas};r(f)})}async warmup(t={}){let n=it();if(t&&(this.config=Gn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await rr(this,z0).call(this):typeof Image!="undefined"?a=await rr(this,P0).call(this):a=await rr(this,L0).call(this),this.config.videoOptimized=r;let s=it();return this.config.debug&&pe("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};Jl=new WeakMap,Jc=new WeakMap,Qc=new WeakMap,Bi=new WeakMap,O0=new WeakMap,eh=new WeakMap,z0=new WeakMap,P0=new WeakMap,L0=new WeakMap;return Rie;})(); /** * @license * Copyright 2017 Google LLC. All Rights Reserved. diff --git a/dist/human.js.map b/dist/human.js.map index cb564d56..204dde72 100644 --- a/dist/human.js.map +++ b/dist/human.js.map @@ -1,7 +1,7 @@ { "version": 3, - "sources": ["../src/human.ts", "../src/helpers.ts", "../src/sysinfo.ts", "../node_modules/.pnpm/node-fetch@2.6.1/node_modules/node-fetch/browser.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js", "(disabled):crypto", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js", "(disabled):path", "(disabled):worker_threads", "(disabled):perf_hooks", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js", "../node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/backend.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/util_base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/environment.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/global_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/kernel_names.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/kernel_registry.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/profiler.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor_format.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/engine.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/device_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/flags.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor_util_env.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/operation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/io_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/router_registry.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/indexed_db.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/local_storage.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/model_management.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/platforms/platform_browser.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/platforms/platform_node.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/clone.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/print.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/base_side_effects.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/io.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/browser_files.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/progress.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/weights_loader.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/http.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/passthrough.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/one_hot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/confusion_matrix.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/browser.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/gather_nd_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/scatter_nd_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/serialization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/test_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/globals.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/floorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/div.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/add_n.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/all.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/arg_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/arg_min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/basic_lstm_cell.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batch_to_space_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/broadcast_to.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/clip_by_value.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dense_bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depth_to_space.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dilation2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/broadcast_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/where.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/zeros_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/div_no_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/expand_dims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/eye.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/gather.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/greater_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/is_finite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/is_inf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/is_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/leaky_relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/less_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linspace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/local_response_normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log_sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log_softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/axis_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log_sum_exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_and.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_not.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_or.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_xor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_with_argmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/zeros.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ones.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/meshgrid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mirror_pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/moments.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/multi_rnn_cell.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/not_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ones_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/outer_product.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/space_to_batch_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rand.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rand_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/random_gamma.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/random_normal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/random_uniform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/scalar.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/separable_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/setdiff1d_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/fft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/ifft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/irfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/split.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/rfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/squared_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/squeeze.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/stack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/strided_slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor5d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor6d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/topk.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/truncated_normal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/unsorted_segment_sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/unstack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/variable.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/where_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/where_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/boolean_mask.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/norm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/moving_average.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/scatter_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse_to_dense_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse_to_dense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/gather_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dropout_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dropout.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/in_top_k.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused_ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d_native_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d_native_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/hamming_window.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/hann_window.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/frame.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/stft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/crop_and_resize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/flip_left_right.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/rotate_with_offset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/nonmax_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/non_max_suppression_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/non_max_suppression_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_with_score.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_with_score_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_padded.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_padded_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/resize_bilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/resize_nearest_neighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/band_part.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/gram_schmidt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/qr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/loss_ops_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/compute_weighted_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/absolute_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/cosine_distance.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/hinge_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/huber_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/log_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/mean_squared_error.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/sigmoid_cross_entropy.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/softmax_cross_entropy.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adadelta_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adagrad_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adam_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adamax_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/sgd_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/momentum_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/rmsprop_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/optimizer_constructors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/train.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/browser_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/backend_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reduce_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rotate_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/array_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/selu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/erf_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/complex_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/einsum_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/split_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/segment_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/kernel_impls.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/cpu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/backend_cpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/binary_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/zeros_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/binary_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Bincount_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/unary_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/unary_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Concat_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherV2_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LinSpace_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Max_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transpose_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Range_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseReshape_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StridedSlice_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tile_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/TopK_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unique_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/fused_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ArgMin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/pool_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchToSpaceND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Clip.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ComplexAbs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3DBackpropFilterV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3DBackpropInputV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DenseBincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNativeBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNativeBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/EluGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/fft_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IFFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsFinite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsInf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsNaN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LinSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalNot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalOr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LRN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LRNGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolWithArgmax_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolWithArgmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeBilinearGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeNearestNeighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeNearestNeighborGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Scatter_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SpaceToBatchND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseReshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseToDense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/UnsortedSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/webgl_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/canvas_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/tex_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/flags_webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/glsl_version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/shader_compiler_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/decode_matrix_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/decode_matrix_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_float_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_float_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_matrix_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_matrix_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_context.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/shader_compiler.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/packing_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pack_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reshape_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/texture_manager.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unaryop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unaryop_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unpack_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/backend_webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/kernel_funcs_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mulmat_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_complex_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mean_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reduce_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/reduce.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transpose_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transpose_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transpose_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sum_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchMatMul_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/addn_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/addn_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/argminmax_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/argminmax_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/arg_min_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ArgMin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pool_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/avg_pool_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/batchnorm_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/batchnorm_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/slice_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/slice_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchToSpaceND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/int.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/clip_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/clip_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ClipByValue.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/complex_abs_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ComplexAbs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/concat_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/concat_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Concat_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/im2col_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2D_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3DBackpropFilterV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3DBackpropInputV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/crop_and_resize_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/cumsum_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DenseBincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/depth_to_space_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_packed_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_backprop_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNativeBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNativeBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/diag_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/dilation_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Dilation2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/EluGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/fft_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FFT_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/fill_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/flip_left_right_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels_utils/from_pixels_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels_utils/from_pixels_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gather_nd_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gather_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IFFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsFinite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsInf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsNaN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LinSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalNot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalOr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LRN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_grad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LRNGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Max_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/max_pool_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolWithArgmax_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolWithArgmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mean_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mirror_pad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mirror_pad_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/multinomial_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/onehot_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pad_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeBilinearGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_nearest_neighbor_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeNearestNeighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_nearest_neighbor_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeNearestNeighborGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reverse_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reverse_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/rotate_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/scatter_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/select_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SpaceToBatchND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseReshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseToDense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/strided_slice_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/tile_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transform_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/segment_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/UnsortedSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/unary_kernel.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/binary_kernel.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/kernel_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ClipByValue.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernel_utils/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedBatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppression_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/flags_wasm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/backend_wasm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/all.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/arg_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/arg_min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as_scalar.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as_type.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as5d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/avg_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/batch_to_space_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/batchnorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/broadcast_to.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/clip_by_value.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/conv1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/conv2d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/depth_to_space.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/dilation2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/div_no_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/div.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/dot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/expand_dims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/fft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/flatten.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/floorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/gather.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/greater_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/ifft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/irfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/is_finite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/is_inf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/is_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/leaky_relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/less_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/local_response_normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log_sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log_softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log_sum_exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_and.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_not.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_or.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_xor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/max_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mirror_pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/norm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/not_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/one_hot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/ones_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reshape_as.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/resize_bilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/resize_nearest_neighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/rfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/separable_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/space_to_batch_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/split.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/squared_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/squeeze.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/stack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/strided_slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/to_bool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/to_float.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/to_int.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/topk.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/unsorted_segment_sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/unstack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/where.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/zeros_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/register_all_chained_ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Abs_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Acos_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Acosh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Add_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/AddN_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ArgMax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ArgMin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Asin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Asinh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atan2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atanh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_3d_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/AvgPool3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/AvgPool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/BatchMatMul_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/BatchToSpaceND_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/BroadcastTo_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cast_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Ceil_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ClipByValue_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ComplexAbs_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Concat_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv2D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv2DBackpropInput_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cos_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cosh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cumsum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/DepthwiseConv2dNative_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Dilation2D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Elu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Erf_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Exp_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ExpandDims_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Expm1_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Floor_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/FloorDiv_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/FusedBatchNorm_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/GatherV2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/GreaterEqual_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Identity_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsFinite_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsInf_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsNan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/LeakyRelu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Log1p_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Log_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/LogSoftmax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/local_response_normalization_backprop.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/LRN_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/min_max_grad_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Max_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Maximum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_3d_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/MaxPool3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/MaxPool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Mean_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Min_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Minimum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/MirrorPad_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Mod_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Multiply_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Neg_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/OneHot_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/OnesLike_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Pack_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/PadV2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Pow_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Prelu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/RealDiv_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reciprocal_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Relu6_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Relu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reshape_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ResizeBilinear_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ResizeNearestNeighbor_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reverse_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Round_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Rsqrt_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Select_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Selu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sigmoid_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sign_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sinh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Slice_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Softmax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Softplus_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/SpaceToBatchND_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/SplitV_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sqrt_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Square_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/SquaredDifference_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Step_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sub_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tanh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tile_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Transpose_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Unpack_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/UnsortedSegmentSum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ZerosLike_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/register_all_gradients.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_constraints.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/backend/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/errors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/generic_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/constraints.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_initializers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/keras_format/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/math_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/backend/tfjs_backend.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/keras_format/initializer_config.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/initializers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_layers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/backend/state.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/types_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/variable_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/variables.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/topology.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/input_layer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/logs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/base_callbacks.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/serialization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/losses.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/metrics.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/optimizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/user_defined_metadata.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/layer_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/serialization_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/container.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_tensors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/models.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/activations.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/regularizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/advanced_activations.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/conv_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/recurrent.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional_recurrent.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/core.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/embeddings.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/merge.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/noise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/padding.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/pooling.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/wrappers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_metrics.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_models.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_regularizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/callbacks.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/data/compiled_api.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/custom_op/register.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/arithmetic.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/basic_math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/control.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/convolution.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/creation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/dynamic.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/evaluation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/graph.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/hash_table.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/image.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/logical.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/matrices.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/reduction.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/slice_join.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/spectral.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/transformation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/operation_mapper.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/custom_op/node_value_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/arithmetic_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/basic_math_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_array.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_list.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/control_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/convolution_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/creation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/dynamic_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/evaluation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/graph_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/hash_table.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/hash_table_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/image_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/logical_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/matrices_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/normalization_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/reduction_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/slice_join_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/sparse_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/spectral_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/transformation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/operation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/execution_context.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/model_analysis.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/graph_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/resource_manager.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/graph_model.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/lazy_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/deep_map.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/deep_clone.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/ring_buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/growing_ring_buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/datasets/text_line_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/datasets/csv_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/microphone_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/webcam_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/datasource.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/string_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/byte_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/file_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/url_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/source_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/sources/file_data_source.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/sources/url_data_source.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/readers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/version.ts", "../src/tfjs/tf-browser.ts", "../src/tfjs/backend.ts", "../src/age/age.ts", "../src/profile.ts", "../src/gender/gender.ts", "../src/emotion/emotion.ts", "../src/embedding/embedding.ts", "../src/faceres/faceres.ts", "../src/faceall.ts", "../src/blazeface/facemesh.ts", "../src/blazeface/blazeface.ts", "../src/blazeface/box.ts", "../src/blazeface/util.ts", "../src/blazeface/coords.ts", "../src/blazeface/facepipeline.ts", "../src/posenet/posenet.ts", "../src/posenet/keypoints.ts", "../src/posenet/utils.ts", "../src/posenet/poses.ts", "../src/handpose/handpose.ts", "../src/handpose/box.ts", "../src/handpose/handdetector.ts", "../src/handpose/util.ts", "../src/handpose/handpipeline.ts", "../src/handpose/anchors.ts", "../src/blazepose/blazepose.ts", "../src/blazepose/annotations.ts", "../src/efficientpose/efficientpose.ts", "../src/nanodet/nanodet.ts", "../src/nanodet/labels.ts", "../src/gesture/gesture.ts", "../src/image/image.ts", "../src/image/imagefx.js", "../src/draw/draw.ts", "../src/config.ts", "../src/sample.ts"], - "sourcesContent": ["import { log, now, mergeDeep } from './helpers';\nimport * as sysinfo from './sysinfo';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as backend from './tfjs/backend';\nimport * as faceall from './faceall';\nimport * as facemesh from './blazeface/facemesh';\nimport * as age from './age/age';\nimport * as gender from './gender/gender';\nimport * as faceres from './faceres/faceres';\nimport * as emotion from './emotion/emotion';\nimport * as embedding from './embedding/embedding';\nimport * as posenet from './posenet/posenet';\nimport * as handpose from './handpose/handpose';\nimport * as blazepose from './blazepose/blazepose';\nimport * as efficientpose from './efficientpose/efficientpose';\nimport * as nanodet from './nanodet/nanodet';\nimport * as gesture from './gesture/gesture';\nimport * as image from './image/image';\nimport * as draw from './draw/draw';\nimport * as profile from './profile';\nimport { Config, defaults } from './config';\nimport { Result } from './result';\nimport * as sample from './sample';\nimport * as app from '../package.json';\n\n/** Generic Tensor object type */\nexport type Tensor = typeof tf.Tensor;\n\nexport type { Config } from './config';\nexport type { Result } from './result';\nexport type { DrawOptions } from './draw/draw';\n\n/** Defines all possible input types for **Human** detection */\nexport type Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\n/** Error message */\nexport type Error = { error: string };\n\n/** Instance of TensorFlow/JS */\nexport type TensorFlow = typeof tf;\n\n/** Generic Model object type, holds instance of individual models */\ntype Model = Object;\n\n/**\n * **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n */\nexport class Human {\n /** Current version of Human library in semver format */\n version: string;\n /** Current configuration\n * - Details: {@link Config}\n */\n config: Config;\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n */\n state: string;\n /** Internal: Instance of current image being processed */\n image: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement | null };\n /** Internal: Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n */\n tf: TensorFlow;\n /** Draw helper classes that can draw detected objects on canvas using specified draw styles\n * - options: global settings for all draw operations, can be overriden for each draw method, for details see {@link DrawOptions}\n * - face: draw detected faces\n * - body: draw detected people and body parts\n * - hand: draw detected hands and hand parts\n * - canvas: draw processed canvas which is a processed copy of the input\n * - all: meta-function that performs: canvas, face, body, hand\n */\n draw: {\n options: draw.DrawOptions,\n gesture: typeof draw.gesture,\n face: typeof draw.face,\n body: typeof draw.body,\n hand: typeof draw.hand,\n canvas: typeof draw.canvas,\n all: typeof draw.all,\n };\n /** Internal: Currently loaded models */\n models: {\n face: facemesh.MediaPipeFaceMesh | Model | null,\n posenet: Model | null,\n blazepose: Model | null,\n efficientpose: Model | null,\n handpose: handpose.HandPose | null,\n iris: Model | null,\n age: Model | null,\n gender: Model | null,\n emotion: Model | null,\n embedding: Model | null,\n nanodet: Model | null,\n faceres: Model | null,\n };\n /** Internal: Currently loaded classes */\n classes: {\n facemesh: typeof facemesh;\n age: typeof age;\n gender: typeof gender;\n emotion: typeof emotion;\n body: typeof posenet | typeof blazepose;\n hand: typeof handpose;\n nanodet: typeof nanodet;\n faceres: typeof faceres;\n };\n /** Face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: typeof facemesh.triangulation;\n /** UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: typeof facemesh.uvmap;\n /** Platform and agent information detected by Human */\n sysinfo: { platform: string, agent: string };\n /** Performance object that contains values for all recently performed operations */\n perf: any;\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n #firstRun: boolean;\n\n // definition end\n\n /**\n * Creates instance of Human library that is futher used for all operations\n * - @param userConfig: {@link Config}\n */\n constructor(userConfig: Config | Object = {}) {\n this.tf = tf;\n this.draw = draw;\n this.version = app.version;\n this.config = mergeDeep(defaults, userConfig);\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.#firstRun = true;\n this.perf = {};\n // object that contains all initialized models\n this.models = {\n face: null,\n posenet: null,\n blazepose: null,\n efficientpose: null,\n handpose: null,\n iris: null,\n age: null,\n gender: null,\n emotion: null,\n embedding: null,\n nanodet: null,\n faceres: null,\n };\n // export access to image processing\n // @ts-ignore eslint-typescript cannot correctly infer type in anonymous function\n this.image = (input: Input) => image.process(input, this.config);\n // export raw access to underlying models\n this.classes = {\n facemesh,\n age,\n gender,\n emotion,\n faceres,\n body: this.config.body.modelPath.includes('posenet') ? posenet : blazepose,\n hand: handpose,\n nanodet,\n };\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // include platform info\n this.sysinfo = sysinfo.info();\n }\n\n /** Internal: ProfileData method returns last known profiling information\n * - Requires human.config.profile set to true\n */\n profileData(): { newBytes, newTensors, peakBytes, numKernelOps, timeKernelOps, slowestKernelOps, largestKernelOps } | {} {\n if (this.config.profile) return profile.data;\n return {};\n }\n\n // helper function: measure tensor leak\n /** @hidden */\n analyze = (...msg) => {\n if (!this.#analyzeMemoryLeaks) return;\n const current = this.tf.engine().state.numTensors;\n const previous = this.#numTensors;\n this.#numTensors = current;\n const leaked = current - previous;\n if (leaked !== 0) log(...msg, leaked);\n }\n\n // quick sanity check on inputs\n /** @hidden */\n #sanity = (input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.tf.ENV.flags.IS_NODE && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n }\n\n /** Simmilarity method calculates simmilarity between two provided face descriptors (face embeddings)\n * - Calculation is based on normalized Minkowski distance between\n */\n similarity(embedding1: Array, embedding2: Array): number {\n if (this.config.face.description.enabled) return faceres.similarity(embedding1, embedding2);\n if (this.config.face.embedding.enabled) return embedding.similarity(embedding1, embedding2);\n return 0;\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n * @param input Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n // eslint-disable-next-line class-methods-use-this\n enhance(input: Tensor): Tensor | null {\n return faceres.enhance(input);\n }\n\n /**\n * Math method find best match between provided face descriptor and predefined database of known descriptors\n * @param faceEmbedding: face descriptor previsouly calculated on any face\n * @param db: array of mapping of face descriptors to known values\n * @param threshold: minimum score for matching to be considered in the result\n * @returns best match\n */\n // eslint-disable-next-line class-methods-use-this\n match(faceEmbedding: Array, db: Array<{ name: string, source: string, embedding: number[] }>, threshold = 0): { name: string, source: string, similarity: number, embedding: number[] } {\n return faceres.match(faceEmbedding, db, threshold);\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n */\n async load(userConfig: Config | Object = {}) {\n this.state = 'load';\n const timeStamp = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n\n if (this.#firstRun) {\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version_core}`);\n if (this.config.debug) log('platform:', this.sysinfo.platform);\n if (this.config.debug) log('agent:', this.sysinfo.agent);\n\n await this.#checkBackend(true);\n if (this.tf.ENV.flags.IS_BROWSER) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('tf flags:', this.tf.ENV.flags);\n }\n }\n if (this.config.async) {\n [\n this.models.face,\n this.models.age,\n this.models.gender,\n this.models.emotion,\n this.models.embedding,\n this.models.handpose,\n this.models.posenet,\n this.models.blazepose,\n this.models.efficientpose,\n this.models.nanodet,\n this.models.faceres,\n ] = await Promise.all([\n this.models.face || (this.config.face.enabled ? facemesh.load(this.config) : null),\n this.models.age || ((this.config.face.enabled && this.config.face.age.enabled) ? age.load(this.config) : null),\n this.models.gender || ((this.config.face.enabled && this.config.face.gender.enabled) ? gender.load(this.config) : null),\n this.models.emotion || ((this.config.face.enabled && this.config.face.emotion.enabled) ? emotion.load(this.config) : null),\n this.models.embedding || ((this.config.face.enabled && this.config.face.embedding.enabled) ? embedding.load(this.config) : null),\n this.models.handpose || (this.config.hand.enabled ? handpose.load(this.config) : null),\n this.models.posenet || (this.config.body.enabled && this.config.body.modelPath.includes('posenet') ? posenet.load(this.config) : null),\n this.models.blazepose || (this.config.body.enabled && this.config.body.modelPath.includes('blazepose') ? blazepose.load(this.config) : null),\n this.models.efficientpose || (this.config.body.enabled && this.config.body.modelPath.includes('efficientpose') ? efficientpose.load(this.config) : null),\n this.models.nanodet || (this.config.object.enabled ? nanodet.load(this.config) : null),\n this.models.faceres || ((this.config.face.enabled && this.config.face.description.enabled) ? faceres.load(this.config) : null),\n ]);\n } else {\n if (this.config.face.enabled && !this.models.face) this.models.face = await facemesh.load(this.config);\n if (this.config.face.enabled && this.config.face.age.enabled && !this.models.age) this.models.age = await age.load(this.config);\n if (this.config.face.enabled && this.config.face.gender.enabled && !this.models.gender) this.models.gender = await gender.load(this.config);\n if (this.config.face.enabled && this.config.face.emotion.enabled && !this.models.emotion) this.models.emotion = await emotion.load(this.config);\n if (this.config.face.enabled && this.config.face.embedding.enabled && !this.models.embedding) this.models.embedding = await embedding.load(this.config);\n if (this.config.hand.enabled && !this.models.handpose) this.models.handpose = await handpose.load(this.config);\n if (this.config.body.enabled && !this.models.posenet && this.config.body.modelPath.includes('posenet')) this.models.posenet = await posenet.load(this.config);\n if (this.config.body.enabled && !this.models.blazepose && this.config.body.modelPath.includes('blazepose')) this.models.blazepose = await blazepose.load(this.config);\n if (this.config.body.enabled && !this.models.efficientpose && this.config.body.modelPath.includes('efficientpose')) this.models.efficientpose = await efficientpose.load(this.config);\n if (this.config.object.enabled && !this.models.nanodet) this.models.nanodet = await nanodet.load(this.config);\n if (this.config.face.enabled && this.config.face.description.enabled && !this.models.faceres) this.models.faceres = await faceres.load(this.config);\n }\n\n if (this.#firstRun) {\n if (this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors');\n this.#firstRun = false;\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.perf.load || 0)) this.perf.load = current;\n }\n\n // check if backend needs initialization if it changed\n /** @hidden */\n #checkBackend = async (force = false) => {\n if (this.config.backend && (this.config.backend.length > 0) && force || (this.tf.getBackend() !== this.config.backend)) {\n const timeStamp = now();\n this.state = 'backend';\n /* force backend reload\n if (this.config.backend in tf.engine().registry) {\n const backendFactory = tf.findBackendFactory(this.config.backend);\n tf.removeBackend(this.config.backend);\n tf.registerBackend(this.config.backend, backendFactory);\n } else {\n log('Backend not registred:', this.config.backend);\n }\n */\n\n if (this.config.backend && this.config.backend.length > 0) {\n // force browser vs node backend\n if (this.tf.ENV.flags.IS_BROWSER && this.config.backend === 'tensorflow') this.config.backend = 'webgl';\n if (this.tf.ENV.flags.IS_NODE && (this.config.backend === 'webgl' || this.config.backend === 'humangl')) this.config.backend = 'tensorflow';\n\n if (this.config.debug) log('setting backend:', this.config.backend);\n\n if (this.config.backend === 'wasm') {\n if (this.config.debug) log('wasm path:', this.config.wasmPath);\n if (typeof this.tf?.setWasmPaths !== 'undefined') this.tf.setWasmPaths(this.config.wasmPath);\n else throw new Error('Human: WASM backend is not loaded');\n const simd = await this.tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n const mt = await this.tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n if (this.config.debug) log(`wasm execution: ${simd ? 'SIMD' : 'no SIMD'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (this.config.debug && !simd) log('warning: wasm simd support is not enabled');\n }\n\n if (this.config.backend === 'humangl') backend.register();\n try {\n await this.tf.setBackend(this.config.backend);\n } catch (err) {\n log('error: cannot set backend:', this.config.backend, err);\n }\n }\n this.tf.enableProdMode();\n // this.tf.enableDebugMode();\n if (this.tf.getBackend() === 'webgl' || this.tf.getBackend() === 'humangl') {\n this.tf.ENV.set('CHECK_COMPUTATION_FOR_ERRORS', false);\n this.tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', true);\n if (this.config.deallocate) {\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', this.config.deallocate);\n this.tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', this.config.deallocate ? 0 : -1);\n }\n const gl = await this.tf.backend().getGPGPUContext().gl;\n if (this.config.debug) log(`gl version:${gl.getParameter(gl.VERSION)} renderer:${gl.getParameter(gl.RENDERER)}`);\n }\n await this.tf.ready();\n this.perf.backend = Math.trunc(now() - timeStamp);\n }\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n */\n async detect(input: Input, userConfig: Config | Object = {}): Promise {\n // detection happens inside a promise\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig);\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n resolve({ error });\n }\n\n const timeStart = now();\n\n // configure backend\n await this.#checkBackend();\n\n // load models if enabled\n await this.load();\n\n if (this.config.scoped) this.tf.engine().startScope();\n this.analyze('Start Scope:');\n\n // disable video optimization for inputs of type image\n let previousVideoOptimized;\n if (input && this.config.videoOptimized && (\n (typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n || (typeof Image !== 'undefined' && input instanceof Image)\n || (typeof ImageData !== 'undefined' && input instanceof ImageData)\n || (typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap))\n ) {\n log('disabling video optimization');\n previousVideoOptimized = this.config.videoOptimized;\n this.config.videoOptimized = false;\n }\n\n timeStamp = now();\n const process = image.process(input, this.config);\n if (!process || !process.tensor) {\n log('could not convert input to tensor');\n resolve({ error: 'could not convert input to tensor' });\n return;\n }\n this.perf.image = Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n // prepare where to store model results\n let bodyRes;\n let handRes;\n let faceRes;\n let objectRes;\n let current;\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n if (this.config.async) {\n faceRes = this.config.face.enabled ? faceall.detectFace(this, process.tensor) : [];\n if (this.perf.face) delete this.perf.face;\n } else {\n this.state = 'run:face';\n timeStamp = now();\n faceRes = this.config.face.enabled ? await faceall.detectFace(this, process.tensor) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.face = current;\n }\n\n // run body: can be posenet or blazepose\n this.analyze('Start Body:');\n if (this.config.async) {\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(process.tensor, this.config) : [];\n if (this.perf.body) delete this.perf.body;\n } else {\n this.state = 'run:body';\n timeStamp = now();\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.body = current;\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n if (this.config.async) {\n handRes = this.config.hand.enabled ? this.models.handpose?.estimateHands(process.tensor, this.config) : [];\n if (this.perf.hand) delete this.perf.hand;\n } else {\n this.state = 'run:hand';\n timeStamp = now();\n handRes = this.config.hand.enabled ? await this.models.handpose?.estimateHands(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.hand = current;\n }\n this.analyze('End Hand:');\n\n // run nanodet\n this.analyze('Start Object:');\n if (this.config.async) {\n objectRes = this.config.object.enabled ? nanodet.predict(process.tensor, this.config) : [];\n if (this.perf.object) delete this.perf.object;\n } else {\n this.state = 'run:object';\n timeStamp = now();\n objectRes = this.config.object.enabled ? await nanodet.predict(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.object = current;\n }\n this.analyze('End Object:');\n\n // if async wait for results\n if (this.config.async) {\n [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n }\n tf.dispose(process.tensor);\n\n if (this.config.scoped) this.tf.engine().endScope();\n this.analyze('End Scope:');\n\n // run gesture analysis last\n let gestureRes: any[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes), ...gesture.body(bodyRes), ...gesture.hand(handRes), ...gesture.iris(faceRes)];\n if (!this.config.async) this.perf.gesture = Math.trunc(now() - timeStamp);\n else if (this.perf.gesture) delete this.perf.gesture;\n }\n\n // restore video optimizations if previously disabled\n if (previousVideoOptimized) this.config.videoOptimized = previousVideoOptimized;\n\n this.perf.total = Math.trunc(now() - timeStart);\n this.state = 'idle';\n const result = {\n face: faceRes,\n body: bodyRes,\n hand: handRes,\n gesture: gestureRes,\n object: objectRes,\n performance: this.perf,\n canvas: process.canvas,\n };\n // log('Result:', result);\n resolve(result);\n });\n }\n\n /** @hidden */\n #warmupBitmap = async () => {\n const b64toBlob = (base64, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob;\n let res;\n switch (this.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await this.detect(bitmap, this.config);\n bitmap.close();\n }\n return res;\n }\n\n /** @hidden */\n #warmupCanvas = async () => new Promise((resolve) => {\n let src;\n let size = 0;\n switch (this.config.warmup) {\n case 'face':\n size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = null;\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n const img = new Image();\n img.onload = async () => {\n const canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(size, size) : document.createElement('canvas');\n canvas.width = img.naturalWidth;\n canvas.height = img.naturalHeight;\n const ctx = canvas.getContext('2d');\n ctx?.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const res = await this.detect(canvas, this.config);\n resolve(res);\n };\n if (src) img.src = src;\n else resolve(null);\n });\n\n /** @hidden */\n #warmupNode = async () => {\n const atob = (str) => Buffer.from(str, 'base64');\n let img;\n if (this.config.warmup === 'face') img = atob(sample.face);\n if (this.config.warmup === 'body' || this.config.warmup === 'full') img = atob(sample.body);\n if (!img) return null;\n let res;\n if (typeof tf['node'] !== 'undefined') {\n const data = tf['node'].decodeJpeg(img);\n const expanded = data.expandDims(0);\n this.tf.dispose(data);\n // log('Input:', expanded);\n res = await this.detect(expanded, this.config);\n this.tf.dispose(expanded);\n } else {\n if (this.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await this.detect(input, this.config);\n */\n }\n return res;\n }\n\n /** Warmup metho pre-initializes all models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n async warmup(userConfig: Config | Object = {}): Promise {\n const t0 = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n if (!this.config.warmup || this.config.warmup === 'none') return { error: 'null' };\n const save = this.config.videoOptimized;\n this.config.videoOptimized = false;\n let res;\n if (typeof createImageBitmap === 'function') res = await this.#warmupBitmap();\n else if (typeof Image !== 'undefined') res = await this.#warmupCanvas();\n else res = await this.#warmupNode();\n this.config.videoOptimized = save;\n const t1 = now();\n if (this.config.debug) log('Warmup', this.config.warmup, Math.round(t1 - t0), 'ms', res);\n return res;\n }\n}\n\n/**\n * Class Human is also available as default export\n */\nexport { Human as default };\n", "// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`Human: ModelPath Error: ${path} Expecting JSON file`);\n return path;\n}\n\n// helper function: wrapper around console output\nexport function log(...msg) {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n", "export function info(): { platform: string, agent: string } {\n let platform;\n let agent;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n platform = platformMatch ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n agent = navigator.userAgent.replace(raw[0], '');\n if (platform[1]) agent = agent.replace(raw[1], '');\n agent = agent.replace(/ /g, ' ');\n }\n } else if (typeof process !== 'undefined') {\n platform = `${process.platform} ${process.arch}`;\n agent = `NodeJS ${process.version}`;\n }\n return { platform, agent };\n}\n", "", "// A port of an algorithm by Johannes Baag\u00F8e , 2010\n// http://baagoe.com/en/RandomMusings/javascript/\n// https://github.com/nquinlan/better-random-numbers-for-javascript-mirror\n// Original work is under MIT license -\n\n// Copyright (C) 2010 by Johannes Baag\u00F8e \n//\n// Permission is hereby granted, free of charge, to any person obtaining a copy\n// of this software and associated documentation files (the \"Software\"), to deal\n// in the Software without restriction, including without limitation the rights\n// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n// copies of the Software, and to permit persons to whom the Software is\n// furnished to do so, subject to the following conditions:\n// \n// The above copyright notice and this permission notice shall be included in\n// all copies or substantial portions of the Software.\n// \n// THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\n// THE SOFTWARE.\n\n\n\n(function(global, module, define) {\n\nfunction Alea(seed) {\n var me = this, mash = Mash();\n\n me.next = function() {\n var t = 2091639 * me.s0 + me.c * 2.3283064365386963e-10; // 2^-32\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t - (me.c = t | 0);\n };\n\n // Apply the seeding algorithm from Baagoe.\n me.c = 1;\n me.s0 = mash(' ');\n me.s1 = mash(' ');\n me.s2 = mash(' ');\n me.s0 -= mash(seed);\n if (me.s0 < 0) { me.s0 += 1; }\n me.s1 -= mash(seed);\n if (me.s1 < 0) { me.s1 += 1; }\n me.s2 -= mash(seed);\n if (me.s2 < 0) { me.s2 += 1; }\n mash = null;\n}\n\nfunction copy(f, t) {\n t.c = f.c;\n t.s0 = f.s0;\n t.s1 = f.s1;\n t.s2 = f.s2;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new Alea(seed),\n state = opts && opts.state,\n prng = xg.next;\n prng.int32 = function() { return (xg.next() * 0x100000000) | 0; }\n prng.double = function() {\n return prng() + (prng() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53\n };\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nfunction Mash() {\n var n = 0xefc8249d;\n\n var mash = function(data) {\n data = data.toString();\n for (var i = 0; i < data.length; i++) {\n n += data.charCodeAt(i);\n var h = 0.02519603282416938 * n;\n n = h >>> 0;\n h -= n;\n h *= n;\n n = h >>> 0;\n h -= n;\n n += h * 0x100000000; // 2^32\n }\n return (n >>> 0) * 2.3283064365386963e-10; // 2^-32\n };\n\n return mash;\n}\n\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.alea = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xor128\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n\n // Set up generator function.\n me.next = function() {\n var t = me.x ^ (me.x << 11);\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= (me.w >>> 19) ^ t ^ (t >>> 8);\n };\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor128 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorwow\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var t = (me.x ^ (me.x >>> 2));\n me.x = me.y; me.y = me.z; me.z = me.w; me.w = me.v;\n return (me.d = (me.d + 362437 | 0)) +\n (me.v = (me.v ^ (me.v << 4)) ^ (t ^ (t << 1))) | 0;\n };\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n t.v = f.v;\n t.d = f.d;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorwow = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorshift7\" algorithm by\n// Fran\u00E7ois Panneton and Pierre L'ecuyer:\n// \"On the Xorgshift Random Number Generators\"\n// http://saluc.engr.uconn.edu/refs/crypto/rng/panneton05onthexorshift.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n // Update xor generator.\n var X = me.x, i = me.i, t, v, w;\n t = X[i]; t ^= (t >>> 7); v = t ^ (t << 24);\n t = X[(i + 1) & 7]; v ^= t ^ (t >>> 10);\n t = X[(i + 3) & 7]; v ^= t ^ (t >>> 3);\n t = X[(i + 4) & 7]; v ^= t ^ (t << 7);\n t = X[(i + 7) & 7]; t = t ^ (t << 13); v ^= t ^ (t << 9);\n X[i] = v;\n me.i = (i + 1) & 7;\n return v;\n };\n\n function init(me, seed) {\n var j, w, X = [];\n\n if (seed === (seed | 0)) {\n // Seed state array using a 32-bit integer.\n w = X[0] = seed;\n } else {\n // Seed state using a string.\n seed = '' + seed;\n for (j = 0; j < seed.length; ++j) {\n X[j & 7] = (X[j & 7] << 15) ^\n (seed.charCodeAt(j) + X[(j + 1) & 7] << 13);\n }\n }\n // Enforce an array length of 8, not all zeroes.\n while (X.length < 8) X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j);\n if (j == 8) w = X[7] = -1; else w = X[j];\n\n me.x = X;\n me.i = 0;\n\n // Discard an initial 256 values.\n for (j = 256; j > 0; --j) {\n me.next();\n }\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.x = f.x.slice();\n t.i = f.i;\n return t;\n}\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorshift7 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n", "// A Javascript implementaion of Richard Brent's Xorgens xor4096 algorithm.\n//\n// This fast non-cryptographic random number generator is designed for\n// use in Monte-Carlo algorithms. It combines a long-period xorshift\n// generator with a Weyl generator, and it passes all common batteries\n// of stasticial tests for randomness while consuming only a few nanoseconds\n// for each prng generated. For background on the generator, see Brent's\n// paper: \"Some long-period random number generators using shifts and xors.\"\n// http://arxiv.org/pdf/1004.3115v1.pdf\n//\n// Usage:\n//\n// var xor4096 = require('xor4096');\n// random = xor4096(1); // Seed with int32 or string.\n// assert.equal(random(), 0.1520436450538547); // (0, 1) range, 53 bits.\n// assert.equal(random.int32(), 1806534897); // signed int32, 32 bits.\n//\n// For nonzero numeric keys, this impelementation provides a sequence\n// identical to that by Brent's xorgens 3 implementaion in C. This\n// implementation also provides for initalizing the generator with\n// string seeds, or for saving and restoring the state of the generator.\n//\n// On Chrome, this prng benchmarks about 2.1 times slower than\n// Javascript's built-in Math.random().\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n var w = me.w,\n X = me.X, i = me.i, t, v;\n // Update Weyl generator.\n me.w = w = (w + 0x61c88647) | 0;\n // Update xor generator.\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n // Update Xor generator array state.\n v = X[i] = v ^ t;\n me.i = i;\n // Result is the combination.\n return (v + (w ^ (w >>> 16))) | 0;\n };\n\n function init(me, seed) {\n var t, v, i, j, w, X = [], limit = 128;\n if (seed === (seed | 0)) {\n // Numeric seeds initialize v, which is used to generates X.\n v = seed;\n seed = null;\n } else {\n // String seeds are mixed into v and X one character at a time.\n seed = seed + '\\0';\n v = 0;\n limit = Math.max(limit, seed.length);\n }\n // Initialize circular array and weyl value.\n for (i = 0, j = -32; j < limit; ++j) {\n // Put the unicode characters into the array, and shuffle them.\n if (seed) v ^= seed.charCodeAt((j + 32) % seed.length);\n // After 32 shuffles, take v as the starting w value.\n if (j === 0) w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = (w + 0x61c88647) | 0; // Weyl.\n t = (X[j & 127] ^= (v + w)); // Combine xor and weyl to init array.\n i = (0 == t) ? i + 1 : 0; // Count zeroes.\n }\n }\n // We have detected all zeroes; make the key nonzero.\n if (i >= 128) {\n X[(seed && seed.length || 0) & 127] = -1;\n }\n // Run the generator 512 times to further mix the state before using it.\n // Factoring this as a function slows the main generator, so it is just\n // unrolled here. The weyl generator is not advanced while warming up.\n i = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n X[i] = v ^ t;\n }\n // Storing state as object members is faster than using closure variables.\n me.w = w;\n me.X = X;\n me.i = i;\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.i = f.i;\n t.w = f.w;\n t.X = f.X.slice();\n return t;\n};\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor4096 = impl;\n}\n\n})(\n this, // window object or global\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n", "// A Javascript implementaion of the \"Tyche-i\" prng algorithm by\n// Samuel Neves and Filipe Araujo.\n// See https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a = me.a;\n b = (b << 25) ^ (b >>> 7) ^ c;\n c = (c - d) | 0;\n d = (d << 24) ^ (d >>> 8) ^ a;\n a = (a - b) | 0;\n me.b = b = (b << 20) ^ (b >>> 12) ^ c;\n me.c = c = (c - d) | 0;\n me.d = (d << 16) ^ (c >>> 16) ^ a;\n return me.a = (a - b) | 0;\n };\n\n /* The following is non-inverted tyche, which has better internal\n * bit diffusion, but which is about 25% slower than tyche-i in JS.\n me.next = function() {\n var a = me.a, b = me.b, c = me.c, d = me.d;\n a = (me.a + me.b | 0) >>> 0;\n d = me.d ^ a; d = d << 16 ^ d >>> 16;\n c = me.c + d | 0;\n b = me.b ^ c; b = b << 12 ^ d >>> 20;\n me.a = a = a + b | 0;\n d = d ^ a; me.d = d = d << 8 ^ d >>> 24;\n me.c = c = c + d | 0;\n b = b ^ c;\n return me.b = (b << 7 ^ b >>> 25);\n }\n */\n\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n\n if (seed === Math.floor(seed)) {\n // Integer seed.\n me.a = (seed / 0x100000000) | 0;\n me.b = seed | 0;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.a = f.a;\n t.b = f.b;\n t.c = f.c;\n t.d = f.d;\n return t;\n};\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.tychei = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "", "/*\nCopyright 2014 David Bau.\n\nPermission is hereby granted, free of charge, to any person obtaining\na copy of this software and associated documentation files (the\n\"Software\"), to deal in the Software without restriction, including\nwithout limitation the rights to use, copy, modify, merge, publish,\ndistribute, sublicense, and/or sell copies of the Software, and to\npermit persons to whom the Software is furnished to do so, subject to\nthe following conditions:\n\nThe above copyright notice and this permission notice shall be\nincluded in all copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\nEXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\nMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.\nIN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY\nCLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,\nTORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE\nSOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n\n*/\n\n(function (pool, math) {\n//\n// The following constants are related to IEEE 754 limits.\n//\nvar global = this,\n width = 256, // each RC4 output is 0 <= x < 256\n chunks = 6, // at least six RC4 outputs for each double\n digits = 52, // there are 52 significant digits in a double\n rngname = 'random', // rngname: name for Math.random and Math.seedrandom\n startdenom = math.pow(width, chunks),\n significance = math.pow(2, digits),\n overflow = significance * 2,\n mask = width - 1,\n nodecrypto; // node.js crypto module, initialized at the bottom.\n\n//\n// seedrandom()\n// This is the seedrandom function described above.\n//\nfunction seedrandom(seed, options, callback) {\n var key = [];\n options = (options == true) ? { entropy: true } : (options || {});\n\n // Flatten the seed string or build one from local entropy if needed.\n var shortseed = mixkey(flatten(\n options.entropy ? [seed, tostring(pool)] :\n (seed == null) ? autoseed() : seed, 3), key);\n\n // Use the seed to initialize an ARC4 generator.\n var arc4 = new ARC4(key);\n\n // This function returns a random double in [0, 1) that contains\n // randomness in every bit of the mantissa of the IEEE 754 value.\n var prng = function() {\n var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48\n d = startdenom, // and denominator d = 2 ^ 48.\n x = 0; // and no 'extra last byte'.\n while (n < significance) { // Fill up all significant digits by\n n = (n + x) * width; // shifting numerator and\n d *= width; // denominator and generating a\n x = arc4.g(1); // new least-significant-byte.\n }\n while (n >= overflow) { // To avoid rounding up, before adding\n n /= 2; // last byte, shift everything\n d /= 2; // right using integer math until\n x >>>= 1; // we have exactly the desired bits.\n }\n return (n + x) / d; // Form the number within [0, 1).\n };\n\n prng.int32 = function() { return arc4.g(4) | 0; }\n prng.quick = function() { return arc4.g(4) / 0x100000000; }\n prng.double = prng;\n\n // Mix the randomness into accumulated entropy.\n mixkey(tostring(arc4.S), pool);\n\n // Calling convention: what to return as a function of prng, seed, is_math.\n return (options.pass || callback ||\n function(prng, seed, is_math_call, state) {\n if (state) {\n // Load the arc4 state from the given state if it has an S array.\n if (state.S) { copy(state, arc4); }\n // Only provide the .state method if requested via options.state.\n prng.state = function() { return copy(arc4, {}); }\n }\n\n // If called as a method of Math (Math.seedrandom()), mutate\n // Math.random because that is how seedrandom.js has worked since v1.0.\n if (is_math_call) { math[rngname] = prng; return seed; }\n\n // Otherwise, it is a newer calling convention, so return the\n // prng directly.\n else return prng;\n })(\n prng,\n shortseed,\n 'global' in options ? options.global : (this == math),\n options.state);\n}\nmath['seed' + rngname] = seedrandom;\n\n//\n// ARC4\n//\n// An ARC4 implementation. The constructor takes a key in the form of\n// an array of at most (width) integers that should be 0 <= x < (width).\n//\n// The g(count) method returns a pseudorandom integer that concatenates\n// the next (count) outputs from ARC4. Its return value is a number x\n// that is in the range 0 <= x < (width ^ count).\n//\nfunction ARC4(key) {\n var t, keylen = key.length,\n me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];\n\n // The empty key [] is treated as [0].\n if (!keylen) { key = [keylen++]; }\n\n // Set up S using the standard key scheduling algorithm.\n while (i < width) {\n s[i] = i++;\n }\n for (i = 0; i < width; i++) {\n s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];\n s[j] = t;\n }\n\n // The \"g\" method returns the next (count) outputs as one number.\n (me.g = function(count) {\n // Using instance members instead of closure state nearly doubles speed.\n var t, r = 0,\n i = me.i, j = me.j, s = me.S;\n while (count--) {\n t = s[i = mask & (i + 1)];\n r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];\n }\n me.i = i; me.j = j;\n return r;\n // For robust unpredictability, the function call below automatically\n // discards an initial batch of values. This is called RC4-drop[256].\n // See http://google.com/search?q=rsa+fluhrer+response&btnI\n })(width);\n}\n\n//\n// copy()\n// Copies internal state of ARC4 to or from a plain object.\n//\nfunction copy(f, t) {\n t.i = f.i;\n t.j = f.j;\n t.S = f.S.slice();\n return t;\n};\n\n//\n// flatten()\n// Converts an object tree to nested arrays of strings.\n//\nfunction flatten(obj, depth) {\n var result = [], typ = (typeof obj), prop;\n if (depth && typ == 'object') {\n for (prop in obj) {\n try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}\n }\n }\n return (result.length ? result : typ == 'string' ? obj : obj + '\\0');\n}\n\n//\n// mixkey()\n// Mixes a string seed into a key that is an array of integers, and\n// returns a shortened string seed that is equivalent to the result key.\n//\nfunction mixkey(seed, key) {\n var stringseed = seed + '', smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] =\n mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));\n }\n return tostring(key);\n}\n\n//\n// autoseed()\n// Returns an object for autoseeding, using window.crypto and Node crypto\n// module if available.\n//\nfunction autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n // The use of 'out' to remember randomBytes makes tight minified code.\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global.crypto || global.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e) {\n var browser = global.navigator,\n plugins = browser && browser.plugins;\n return [+new Date, global, plugins, global.screen, tostring(pool)];\n }\n}\n\n//\n// tostring()\n// Converts an array of charcodes to a string\n//\nfunction tostring(a) {\n return String.fromCharCode.apply(0, a);\n}\n\n//\n// When seedrandom.js is loaded, we immediately mix a few bits\n// from the built-in RNG into the entropy pool. Because we do\n// not want to interfere with deterministic PRNG state later,\n// seedrandom will not call math.random on its own again after\n// initialization.\n//\nmixkey(math.random(), pool);\n\n//\n// Nodejs and AMD support: export the implementation as a module using\n// either convention.\n//\nif ((typeof module) == 'object' && module.exports) {\n module.exports = seedrandom;\n // When in node.js, try using crypto package for autoseeding.\n try {\n nodecrypto = require('crypto');\n } catch (ex) {}\n} else if ((typeof define) == 'function' && define.amd) {\n define(function() { return seedrandom; });\n}\n\n// End anonymous scope, and pass initial values.\n})(\n [], // pool: entropy pool starts empty\n Math // math: package containing random, pow, and seedrandom\n);\n", "// A library of seedable RNGs implemented in Javascript.\n//\n// Usage:\n//\n// var seedrandom = require('seedrandom');\n// var random = seedrandom(1); // or any seed.\n// var x = random(); // 0 <= x < 1. Every bit is random.\n// var x = random.quick(); // 0 <= x < 1. 32 bits of randomness.\n\n// alea, a 53-bit multiply-with-carry generator by Johannes Baag\u00F8e.\n// Period: ~2^116\n// Reported to pass all BigCrush tests.\nvar alea = require('./lib/alea');\n\n// xor128, a pure xor-shift generator by George Marsaglia.\n// Period: 2^128-1.\n// Reported to fail: MatrixRank and LinearComp.\nvar xor128 = require('./lib/xor128');\n\n// xorwow, George Marsaglia's 160-bit xor-shift combined plus weyl.\n// Period: 2^192-2^32\n// Reported to fail: CollisionOver, SimpPoker, and LinearComp.\nvar xorwow = require('./lib/xorwow');\n\n// xorshift7, by Fran\u00E7ois Panneton and Pierre L'ecuyer, takes\n// a different approach: it adds robustness by allowing more shifts\n// than Marsaglia's original three. It is a 7-shift generator\n// with 256 bits, that passes BigCrush with no systmatic failures.\n// Period 2^256-1.\n// No systematic BigCrush failures reported.\nvar xorshift7 = require('./lib/xorshift7');\n\n// xor4096, by Richard Brent, is a 4096-bit xor-shift with a\n// very long period that also adds a Weyl generator. It also passes\n// BigCrush with no systematic failures. Its long period may\n// be useful if you have many generators and need to avoid\n// collisions.\n// Period: 2^4128-2^32.\n// No systematic BigCrush failures reported.\nvar xor4096 = require('./lib/xor4096');\n\n// Tyche-i, by Samuel Neves and Filipe Araujo, is a bit-shifting random\n// number generator derived from ChaCha, a modern stream cipher.\n// https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n// Period: ~2^127\n// No systematic BigCrush failures reported.\nvar tychei = require('./lib/tychei');\n\n// The original ARC4-based prng included in this library.\n// Period: ~2^1600\nvar sr = require('./seedrandom');\n\nsr.alea = alea;\nsr.xor128 = xor128;\nsr.xorwow = xorwow;\nsr.xorshift7 = xorshift7;\nsr.xor4096 = xor4096;\nsr.tychei = tychei;\n\nmodule.exports = sr;\n", "", "", "", "\nvar WasmBackendModuleThreadedSimd = (function() {\n var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined;\n if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename;\n return (\nfunction(WasmBackendModuleThreadedSimd) {\n WasmBackendModuleThreadedSimd = WasmBackendModuleThreadedSimd || {};\n\nfunction GROWABLE_HEAP_I8(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAP8}function GROWABLE_HEAP_U8(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPU8}function GROWABLE_HEAP_I32(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAP32}function GROWABLE_HEAP_U32(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPU32}function GROWABLE_HEAP_F64(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPF64}var Module=typeof WasmBackendModuleThreadedSimd!==\"undefined\"?WasmBackendModuleThreadedSimd:{};var readyPromiseResolve,readyPromiseReject;Module[\"ready\"]=new Promise(function(resolve,reject){readyPromiseResolve=resolve;readyPromiseReject=reject});var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var arguments_=[];var thisProgram=\"./this.program\";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window===\"object\";ENVIRONMENT_IS_WORKER=typeof importScripts===\"function\";ENVIRONMENT_IS_NODE=typeof process===\"object\"&&typeof process.versions===\"object\"&&typeof process.versions.node===\"string\";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var ENVIRONMENT_IS_PTHREAD=Module[\"ENVIRONMENT_IS_PTHREAD\"]||false;if(ENVIRONMENT_IS_PTHREAD){buffer=Module[\"buffer\"]}var scriptDirectory=\"\";function locateFile(path){if(Module[\"locateFile\"]){return Module[\"locateFile\"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=require(\"path\").dirname(scriptDirectory)+\"/\"}else{scriptDirectory=__dirname+\"/\"}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process[\"argv\"].length>1){thisProgram=process[\"argv\"][1].replace(/\\\\/g,\"/\")}arguments_=process[\"argv\"].slice(2);process[\"on\"](\"uncaughtException\",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process[\"on\"](\"unhandledRejection\",abort);quit_=function(status){process[\"exit\"](status)};Module[\"inspect\"]=function(){return\"[Emscripten Module object]\"};var nodeWorkerThreads;try{nodeWorkerThreads=require(\"worker_threads\")}catch(e){console.error('The \"worker_threads\" module is not supported in this node.js build - perhaps a newer version is needed?');throw e}global.Worker=nodeWorkerThreads.Worker}else if(ENVIRONMENT_IS_SHELL){if(typeof read!=\"undefined\"){read_=function shell_read(f){return read(f)}}readBinary=function readBinary(f){var data;if(typeof readbuffer===\"function\"){return new Uint8Array(readbuffer(f))}data=read(f,\"binary\");assert(typeof data===\"object\");return data};if(typeof scriptArgs!=\"undefined\"){arguments_=scriptArgs}else if(typeof arguments!=\"undefined\"){arguments_=arguments}if(typeof quit===\"function\"){quit_=function(status){quit(status)}}if(typeof print!==\"undefined\"){if(typeof console===\"undefined\")console={};console.log=print;console.warn=console.error=typeof printErr!==\"undefined\"?printErr:print}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(typeof document!==\"undefined\"&&document.currentScript){scriptDirectory=document.currentScript.src}if(typeof _scriptDir !== \"undefined\" && _scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf(\"blob:\")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf(\"/\")+1)}else{scriptDirectory=\"\"}if(ENVIRONMENT_IS_NODE){read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret}}else{read_=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.responseType=\"arraybuffer\";xhr.send(null);return new Uint8Array(xhr.response)}}readAsync=function(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,true);xhr.responseType=\"arraybuffer\";xhr.onload=function(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=function(title){document.title=title}}else{}if(ENVIRONMENT_IS_NODE){if(typeof performance===\"undefined\"){global.performance=require(\"perf_hooks\").performance}}var out=Module[\"print\"]||console.log.bind(console);var err=Module[\"printErr\"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=null;if(Module[\"arguments\"])arguments_=Module[\"arguments\"];if(Module[\"thisProgram\"])thisProgram=Module[\"thisProgram\"];if(Module[\"quit\"])quit_=Module[\"quit\"];var Atomics_load=Atomics.load;var Atomics_store=Atomics.store;var Atomics_compareExchange=Atomics.compareExchange;var wasmBinary;if(Module[\"wasmBinary\"])wasmBinary=Module[\"wasmBinary\"];var noExitRuntime=Module[\"noExitRuntime\"]||true;if(typeof WebAssembly!==\"object\"){abort(\"no native wasm support detected\")}var wasmMemory;var wasmModule;var ABORT=false;var EXITSTATUS;function assert(condition,text){if(!condition){abort(\"Assertion failed: \"+text)}}function getCFunc(ident){var func=Module[\"_\"+ident];assert(func,\"Cannot call unknown function \"+ident+\", make sure it is exported\");return func}function ccall(ident,returnType,argTypes,args,opts){var toC={\"string\":function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){var len=(str.length<<2)+1;ret=stackAlloc(len);stringToUTF8(str,ret,len)}return ret},\"array\":function(arr){var ret=stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}};function convertReturnValue(ret){if(returnType===\"string\")return UTF8ToString(ret);if(returnType===\"boolean\")return Boolean(ret);return ret}var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i=endIdx)){var u0=heap[idx++];if(!u0)return str;if(!(u0&128)){str+=String.fromCharCode(u0);continue}var u1=heap[idx++]&63;if((u0&224)==192){str+=String.fromCharCode((u0&31)<<6|u1);continue}var u2=heap[idx++]&63;if((u0&240)==224){u0=(u0&15)<<12|u1<<6|u2}else{u0=(u0&7)<<18|u1<<12|u2<<6|heap[idx++]&63}if(u0<65536){str+=String.fromCharCode(u0)}else{var ch=u0-65536;str+=String.fromCharCode(55296|ch>>10,56320|ch&1023)}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(GROWABLE_HEAP_U8(),ptr,maxBytesToRead):\"\"}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,GROWABLE_HEAP_U8(),outPtr,maxBytesToWrite)}function lengthBytesUTF8(str){var len=0;for(var i=0;i=55296&&u<=57343)u=65536+((u&1023)<<10)|str.charCodeAt(++i)&1023;if(u<=127)++len;else if(u<=2047)len+=2;else if(u<=65535)len+=3;else len+=4}return len}function writeArrayToMemory(array,buffer){GROWABLE_HEAP_I8().set(array,buffer)}function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var buffer,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer=buf;Module[\"HEAP8\"]=HEAP8=new Int8Array(buf);Module[\"HEAP16\"]=HEAP16=new Int16Array(buf);Module[\"HEAP32\"]=HEAP32=new Int32Array(buf);Module[\"HEAPU8\"]=HEAPU8=new Uint8Array(buf);Module[\"HEAPU16\"]=HEAPU16=new Uint16Array(buf);Module[\"HEAPU32\"]=HEAPU32=new Uint32Array(buf);Module[\"HEAPF32\"]=HEAPF32=new Float32Array(buf);Module[\"HEAPF64\"]=HEAPF64=new Float64Array(buf)}var INITIAL_MEMORY=Module[\"INITIAL_MEMORY\"]||16777216;if(ENVIRONMENT_IS_PTHREAD){wasmMemory=Module[\"wasmMemory\"];buffer=Module[\"buffer\"]}else{if(Module[\"wasmMemory\"]){wasmMemory=Module[\"wasmMemory\"]}else{wasmMemory=new WebAssembly.Memory({\"initial\":INITIAL_MEMORY/65536,\"maximum\":2147483648/65536,\"shared\":true});if(!(wasmMemory.buffer instanceof SharedArrayBuffer)){err(\"requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag\");if(ENVIRONMENT_IS_NODE){console.log(\"(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)\")}throw Error(\"bad memory\")}}}if(wasmMemory){buffer=wasmMemory.buffer}INITIAL_MEMORY=buffer.byteLength;updateGlobalBufferAndViews(buffer);var wasmTable;var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATEXIT__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;var runtimeExited=false;if(!ENVIRONMENT_IS_PTHREAD)__ATINIT__.push({func:function(){___wasm_call_ctors()}});function preRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module[\"preRun\"]){if(typeof Module[\"preRun\"]==\"function\")Module[\"preRun\"]=[Module[\"preRun\"]];while(Module[\"preRun\"].length){addOnPreRun(Module[\"preRun\"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;if(ENVIRONMENT_IS_PTHREAD)return;callRuntimeCallbacks(__ATINIT__)}function preMain(){if(ENVIRONMENT_IS_PTHREAD)return;callRuntimeCallbacks(__ATMAIN__)}function exitRuntime(){if(ENVIRONMENT_IS_PTHREAD)return;runtimeExited=true}function postRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module[\"postRun\"]){if(typeof Module[\"postRun\"]==\"function\")Module[\"postRun\"]=[Module[\"postRun\"]];while(Module[\"postRun\"].length){addOnPostRun(Module[\"postRun\"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){assert(!ENVIRONMENT_IS_PTHREAD,\"addRunDependency cannot be used in a pthread worker\");runDependencies++;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module[\"preloadedImages\"]={};Module[\"preloadedAudios\"]={};function abort(what){if(Module[\"onAbort\"]){Module[\"onAbort\"](what)}if(ENVIRONMENT_IS_PTHREAD)console.error(\"Pthread aborting at \"+(new Error).stack);what+=\"\";err(what);ABORT=true;EXITSTATUS=1;what=\"abort(\"+what+\"). Build with -s ASSERTIONS=1 for more info.\";var e=new WebAssembly.RuntimeError(what);readyPromiseReject(e);throw e}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix=\"data:application/octet-stream;base64,\";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix=\"file://\";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile=\"tfjs-backend-wasm-threaded-simd.wasm\";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(file){try{if(file==wasmBinaryFile&&wasmBinary){return new Uint8Array(wasmBinary)}if(readBinary){return readBinary(file)}else{throw\"both async and sync fetching of the wasm failed\"}}catch(err){abort(err)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)){if(typeof fetch===\"function\"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){if(!response[\"ok\"]){throw\"failed to load wasm binary file at '\"+wasmBinaryFile+\"'\"}return response[\"arrayBuffer\"]()}).catch(function(){return getBinary(wasmBinaryFile)})}else{if(readAsync){return new Promise(function(resolve,reject){readAsync(wasmBinaryFile,function(response){resolve(new Uint8Array(response))},reject)})}}}return Promise.resolve().then(function(){return getBinary(wasmBinaryFile)})}function createWasm(){var info={\"a\":asmLibraryArg};function receiveInstance(instance,module){var exports=instance.exports;Module[\"asm\"]=exports;wasmTable=Module[\"asm\"][\"F\"];wasmModule=module;if(!ENVIRONMENT_IS_PTHREAD){var numWorkersToLoad=PThread.unusedWorkers.length;PThread.unusedWorkers.forEach(function(w){PThread.loadWasmModuleToWorker(w,function(){if(!--numWorkersToLoad)removeRunDependency(\"wasm-instantiate\")})})}}if(!ENVIRONMENT_IS_PTHREAD){addRunDependency(\"wasm-instantiate\")}function receiveInstantiatedSource(output){receiveInstance(output[\"instance\"],output[\"module\"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err(\"failed to asynchronously prepare wasm: \"+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming===\"function\"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch===\"function\"){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err(\"wasm streaming compile failed: \"+reason);err(\"falling back to ArrayBuffer instantiation\");return instantiateArrayBuffer(receiveInstantiatedSource)})})}else{return instantiateArrayBuffer(receiveInstantiatedSource)}}if(Module[\"instantiateWasm\"]){try{var exports=Module[\"instantiateWasm\"](info,receiveInstance);return exports}catch(e){err(\"Module.instantiateWasm callback failed with error: \"+e);return false}}instantiateAsync().catch(readyPromiseReject);return{}}var ASM_CONSTS={9816:function(){throw\"Canceled!\"},9834:function($0,$1){setTimeout(function(){__emscripten_do_dispatch_to_thread($0,$1)},0)}};function initPthreadsJS(){PThread.initRuntime()}function callRuntimeCallbacks(callbacks){while(callbacks.length>0){var callback=callbacks.shift();if(typeof callback==\"function\"){callback(Module);continue}var func=callback.func;if(typeof func===\"number\"){if(callback.arg===undefined){wasmTable.get(func)()}else{wasmTable.get(func)(callback.arg)}}else{func(callback.arg===undefined?null:callback.arg)}}}function _emscripten_futex_wake(addr,count){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&3!=0||count<0)return-28;if(count==0)return 0;if(count>=2147483647)count=Infinity;var mainThreadWaitAddress=Atomics.load(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2);var mainThreadWoken=0;if(mainThreadWaitAddress==addr){var loadedAddr=Atomics.compareExchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,mainThreadWaitAddress,0);if(loadedAddr==mainThreadWaitAddress){--count;mainThreadWoken=1;if(count<=0)return 1}}var ret=Atomics.notify(GROWABLE_HEAP_I32(),addr>>2,count);if(ret>=0)return ret+mainThreadWoken;throw\"Atomics.notify returned an unexpected value \"+ret}Module[\"_emscripten_futex_wake\"]=_emscripten_futex_wake;function killThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! killThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in killThread!\";GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var pthread=PThread.pthreads[pthread_ptr];pthread.worker.terminate();PThread.freeThreadData(pthread);PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(pthread.worker),1);pthread.worker.pthread=undefined}function cancelThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! cancelThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in cancelThread!\";var pthread=PThread.pthreads[pthread_ptr];pthread.worker.postMessage({\"cmd\":\"cancel\"})}function cleanupThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! cleanupThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in cleanupThread!\";var pthread=PThread.pthreads[pthread_ptr];if(pthread){GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var worker=pthread.worker;PThread.returnWorkerToPool(worker)}}var PThread={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){var pthreadPoolSize=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2));for(var i=0;i>2]=tb;var headPtr=tb+152;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;var tlsMemory=_malloc(512);for(var i=0;i<128;++i)GROWABLE_HEAP_U32()[tlsMemory/4+i]=0;Atomics.store(GROWABLE_HEAP_U32(),tb+100>>2,tlsMemory);Atomics.store(GROWABLE_HEAP_U32(),tb+40>>2,tb);__emscripten_thread_init(tb,!ENVIRONMENT_IS_WORKER,1);_emscripten_register_main_browser_thread_id(tb)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){while(PThread.threadExitHandlers.length>0){PThread.threadExitHandlers.pop()()}if(ENVIRONMENT_IS_PTHREAD&&_pthread_self())___pthread_tsd_run_dtors()},runExitHandlersAndDeinitThread:function(tb,exitCode){Atomics.store(GROWABLE_HEAP_U32(),tb+56>>2,1);Atomics.store(GROWABLE_HEAP_U32(),tb+60>>2,0);PThread.runExitHandlers();Atomics.store(GROWABLE_HEAP_U32(),tb+4>>2,exitCode);Atomics.store(GROWABLE_HEAP_U32(),tb+0>>2,1);_emscripten_futex_wake(tb+0,2147483647);__emscripten_thread_init(0,0,0)},threadExit:function(exitCode){var tb=_pthread_self();if(tb){PThread.runExitHandlersAndDeinitThread(tb,exitCode);if(ENVIRONMENT_IS_PTHREAD){postMessage({\"cmd\":\"exit\"})}}},threadCancel:function(){PThread.runExitHandlersAndDeinitThread(_pthread_self(),-1);postMessage({\"cmd\":\"cancelDone\"})},terminateAllThreads:function(){for(var t in PThread.pthreads){var pthread=PThread.pthreads[t];if(pthread&&pthread.worker){PThread.returnWorkerToPool(pthread.worker)}}PThread.pthreads={};for(var i=0;i>2];GROWABLE_HEAP_I32()[pthread.threadInfoStruct+100>>2]=0;_free(tlsMemory);_free(pthread.threadInfoStruct)}pthread.threadInfoStruct=0;if(pthread.allocatedOwnStack&&pthread.stackBase)_free(pthread.stackBase);pthread.stackBase=0;if(pthread.worker)pthread.worker.pthread=null},returnWorkerToPool:function(worker){PThread.runWithoutMainThreadQueuedCalls(function(){delete PThread.pthreads[worker.pthread.threadInfoStruct];PThread.unusedWorkers.push(worker);PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(worker),1);PThread.freeThreadData(worker.pthread);worker.pthread=undefined})},runWithoutMainThreadQueuedCalls:function(func){GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls>>2]=0;try{func()}finally{GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls>>2]=1}},receiveObjectTransfer:function(data){},loadWasmModuleToWorker:function(worker,onFinishedLoading){worker.onmessage=function(e){var d=e[\"data\"];var cmd=d[\"cmd\"];if(worker.pthread)PThread.currentProxiedOperationCallerThread=worker.pthread.threadInfoStruct;if(d[\"targetThread\"]&&d[\"targetThread\"]!=_pthread_self()){var thread=PThread.pthreads[d.targetThread];if(thread){thread.worker.postMessage(e.data,d[\"transferList\"])}else{console.error('Internal error! Worker sent a message \"'+cmd+'\" to target pthread '+d[\"targetThread\"]+\", but that thread no longer exists!\")}PThread.currentProxiedOperationCallerThread=undefined;return}if(cmd===\"processQueuedMainThreadWork\"){_emscripten_main_thread_process_queued_calls()}else if(cmd===\"spawnThread\"){spawnThread(e.data)}else if(cmd===\"cleanupThread\"){cleanupThread(d[\"thread\"])}else if(cmd===\"killThread\"){killThread(d[\"thread\"])}else if(cmd===\"cancelThread\"){cancelThread(d[\"thread\"])}else if(cmd===\"loaded\"){worker.loaded=true;if(onFinishedLoading)onFinishedLoading(worker);if(worker.runPthread){worker.runPthread();delete worker.runPthread}}else if(cmd===\"print\"){out(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"printErr\"){err(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"alert\"){alert(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"exit\"){var detached=worker.pthread&&Atomics.load(GROWABLE_HEAP_U32(),worker.pthread.threadInfoStruct+64>>2);if(detached){PThread.returnWorkerToPool(worker)}}else if(cmd===\"exitProcess\"){try{exit(d[\"returnCode\"])}catch(e){if(e instanceof ExitStatus)return;throw e}}else if(cmd===\"cancelDone\"){PThread.returnWorkerToPool(worker)}else if(cmd===\"objectTransfer\"){PThread.receiveObjectTransfer(e.data)}else if(e.data.target===\"setimmediate\"){worker.postMessage(e.data)}else{err(\"worker sent an unknown command \"+cmd)}PThread.currentProxiedOperationCallerThread=undefined};worker.onerror=function(e){err(\"pthread sent an error! \"+e.filename+\":\"+e.lineno+\": \"+e.message)};if(ENVIRONMENT_IS_NODE){worker.on(\"message\",function(data){worker.onmessage({data:data})});worker.on(\"error\",function(data){worker.onerror(data)});worker.on(\"exit\",function(data){})}worker.postMessage({\"cmd\":\"load\",\"urlOrBlob\":Module[\"mainScriptUrlOrBlob\"]||_scriptDir,\"wasmMemory\":wasmMemory,\"wasmModule\":wasmModule})},allocateUnusedWorker:function(){var pthreadMainJs=locateFile(\"tfjs-backend-wasm-threaded-simd.worker.js\");PThread.unusedWorkers.push(new Worker(pthreadMainJs))},getNewWorker:function(){if(PThread.unusedWorkers.length==0){PThread.allocateUnusedWorker();PThread.loadWasmModuleToWorker(PThread.unusedWorkers[0])}if(PThread.unusedWorkers.length>0)return PThread.unusedWorkers.pop();else return null},busySpinWait:function(msecs){var t=performance.now()+msecs;while(performance.now()>2]=value;return value}function _atexit(func,arg){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(1,1,func,arg)}function __emscripten_notify_thread_queue(targetThreadId,mainThreadId){if(targetThreadId==mainThreadId){postMessage({\"cmd\":\"processQueuedMainThreadWork\"})}else if(ENVIRONMENT_IS_PTHREAD){postMessage({\"targetThread\":targetThreadId,\"cmd\":\"processThreadQueue\"})}else{var pthread=PThread.pthreads[targetThreadId];var worker=pthread&&pthread.worker;if(!worker){return}worker.postMessage({\"cmd\":\"processThreadQueue\"})}return 1}function _abort(){abort()}function _emscripten_asm_const_int(code,sigPtr,argbuf){var args=readAsmConstArgs(sigPtr,argbuf);return ASM_CONSTS[code].apply(null,args)}function _emscripten_conditional_set_current_thread_status(expectedStatus,newStatus){}function _emscripten_futex_wait(addr,val,timeout){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&3!=0)return-28;if(!ENVIRONMENT_IS_WEB){var ret=Atomics.wait(GROWABLE_HEAP_I32(),addr>>2,val,timeout);if(ret===\"timed-out\")return-73;if(ret===\"not-equal\")return-6;if(ret===\"ok\")return 0;throw\"Atomics.wait returned an unexpected value \"+ret}else{if(Atomics.load(GROWABLE_HEAP_I32(),addr>>2)!=val){return-6}var tNow=performance.now();var tEnd=tNow+timeout;var lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,addr);while(1){tNow=performance.now();if(tNow>tEnd){lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,0);return-73}lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,0);if(lastAddr==0){break}_emscripten_main_thread_process_queued_calls();if(Atomics.load(GROWABLE_HEAP_I32(),addr>>2)!=val){return-6}lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,addr)}return 0}}function _emscripten_memcpy_big(dest,src,num){GROWABLE_HEAP_U8().copyWithin(dest,src,src+num)}function _emscripten_num_logical_cores(){if(ENVIRONMENT_IS_NODE)return require(\"os\").cpus().length;return navigator[\"hardwareConcurrency\"]}function _emscripten_proxy_to_main_thread_js(index,sync){var numCallArgs=arguments.length-2;var stack=stackSave();var serializedNumCallArgs=numCallArgs;var args=stackAlloc(serializedNumCallArgs*8);var b=args>>3;for(var i=0;i>=2;while(ch=GROWABLE_HEAP_U8()[sigPtr++]){var double=ch<105;if(double&&buf&1)buf++;readAsmConstArgsArray.push(double?GROWABLE_HEAP_F64()[buf++>>1]:GROWABLE_HEAP_I32()[buf]);++buf}return readAsmConstArgsArray}function _emscripten_receive_on_main_thread_js(index,numCallArgs,args){_emscripten_receive_on_main_thread_js_callArgs.length=numCallArgs;var b=args>>3;for(var i=0;i>>16);updateGlobalBufferAndViews(wasmMemory.buffer);return 1}catch(e){}}function _emscripten_resize_heap(requestedSize){var oldSize=_emscripten_get_heap_size();if(requestedSize<=oldSize){return false}var maxHeapSize=2147483648;if(requestedSize>maxHeapSize){return false}for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(requestedSize,overGrownHeapSize),65536));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}var JSEvents={inEventHandler:0,removeAllEventListeners:function(){for(var i=JSEvents.eventHandlers.length-1;i>=0;--i){JSEvents._removeHandler(i)}JSEvents.eventHandlers=[];JSEvents.deferredCalls=[]},registerRemoveEventListeners:function(){if(!JSEvents.removeEventListenersRegistered){__ATEXIT__.push(JSEvents.removeAllEventListeners);JSEvents.removeEventListenersRegistered=true}},deferredCalls:[],deferCall:function(targetFunction,precedence,argsList){function arraysHaveEqualContent(arrA,arrB){if(arrA.length!=arrB.length)return false;for(var i in arrA){if(arrA[i]!=arrB[i])return false}return true}for(var i in JSEvents.deferredCalls){var call=JSEvents.deferredCalls[i];if(call.targetFunction==targetFunction&&arraysHaveEqualContent(call.argsList,argsList)){return}}JSEvents.deferredCalls.push({targetFunction:targetFunction,precedence:precedence,argsList:argsList});JSEvents.deferredCalls.sort(function(x,y){return x.precedence>2]=eventTypeId;GROWABLE_HEAP_I32()[varargs+4>>2]=eventData;GROWABLE_HEAP_I32()[varargs+8>>2]=userData;__emscripten_call_on_thread(0,targetThread,637534208,eventHandlerFunc,eventData,varargs);stackRestore(stackTop)},getTargetThreadForEventCallback:function(targetThread){switch(targetThread){case 1:return 0;case 2:return PThread.currentProxiedOperationCallerThread;default:return targetThread}},getNodeNameForTarget:function(target){if(!target)return\"\";if(target==window)return\"#window\";if(target==screen)return\"#screen\";return target&&target.nodeName?target.nodeName:\"\"},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function stringToNewUTF8(jsString){var length=lengthBytesUTF8(jsString)+1;var cString=_malloc(length);stringToUTF8(jsString,cString,length);return cString}function _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height){var stackTop=stackSave();var varargs=stackAlloc(12);var targetCanvasPtr=0;if(targetCanvas){targetCanvasPtr=stringToNewUTF8(targetCanvas)}GROWABLE_HEAP_I32()[varargs>>2]=targetCanvasPtr;GROWABLE_HEAP_I32()[varargs+4>>2]=width;GROWABLE_HEAP_I32()[varargs+8>>2]=height;__emscripten_call_on_thread(0,targetThread,657457152,0,targetCanvasPtr,varargs);stackRestore(stackTop)}function _emscripten_set_offscreencanvas_size_on_target_thread(targetThread,targetCanvas,width,height){targetCanvas=targetCanvas?UTF8ToString(targetCanvas):\"\";_emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height)}function maybeCStringToJsString(cString){return cString>2?UTF8ToString(cString):cString}var specialHTMLTargets=[0,typeof document!==\"undefined\"?document:0,typeof window!==\"undefined\"?window:0];function findEventTarget(target){target=maybeCStringToJsString(target);var domElement=specialHTMLTargets[target]||(typeof document!==\"undefined\"?document.querySelector(target):undefined);return domElement}function findCanvasEventTarget(target){return findEventTarget(target)}function _emscripten_set_canvas_element_size_calling_thread(target,width,height){var canvas=findCanvasEventTarget(target);if(!canvas)return-4;if(canvas.canvasSharedPtr){GROWABLE_HEAP_I32()[canvas.canvasSharedPtr>>2]=width;GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+4>>2]=height}if(canvas.offscreenCanvas||!canvas.controlTransferredOffscreen){if(canvas.offscreenCanvas)canvas=canvas.offscreenCanvas;var autoResizeViewport=false;if(canvas.GLctxObject&&canvas.GLctxObject.GLctx){var prevViewport=canvas.GLctxObject.GLctx.getParameter(2978);autoResizeViewport=prevViewport[0]===0&&prevViewport[1]===0&&prevViewport[2]===canvas.width&&prevViewport[3]===canvas.height}canvas.width=width;canvas.height=height;if(autoResizeViewport){canvas.GLctxObject.GLctx.viewport(0,0,width,height)}}else if(canvas.canvasSharedPtr){var targetThread=GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+8>>2];_emscripten_set_offscreencanvas_size_on_target_thread(targetThread,target,width,height);return 1}else{return-4}return 0}function _emscripten_set_canvas_element_size_main_thread(target,width,height){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(2,1,target,width,height);return _emscripten_set_canvas_element_size_calling_thread(target,width,height)}function _emscripten_set_canvas_element_size(target,width,height){var canvas=findCanvasEventTarget(target);if(canvas){return _emscripten_set_canvas_element_size_calling_thread(target,width,height)}else{return _emscripten_set_canvas_element_size_main_thread(target,width,height)}}function _emscripten_set_current_thread_status(newStatus){}function _emscripten_set_thread_name(threadId,name){}function __webgl_enable_ANGLE_instanced_arrays(ctx){var ext=ctx.getExtension(\"ANGLE_instanced_arrays\");if(ext){ctx[\"vertexAttribDivisor\"]=function(index,divisor){ext[\"vertexAttribDivisorANGLE\"](index,divisor)};ctx[\"drawArraysInstanced\"]=function(mode,first,count,primcount){ext[\"drawArraysInstancedANGLE\"](mode,first,count,primcount)};ctx[\"drawElementsInstanced\"]=function(mode,count,type,indices,primcount){ext[\"drawElementsInstancedANGLE\"](mode,count,type,indices,primcount)};return 1}}function __webgl_enable_OES_vertex_array_object(ctx){var ext=ctx.getExtension(\"OES_vertex_array_object\");if(ext){ctx[\"createVertexArray\"]=function(){return ext[\"createVertexArrayOES\"]()};ctx[\"deleteVertexArray\"]=function(vao){ext[\"deleteVertexArrayOES\"](vao)};ctx[\"bindVertexArray\"]=function(vao){ext[\"bindVertexArrayOES\"](vao)};ctx[\"isVertexArray\"]=function(vao){return ext[\"isVertexArrayOES\"](vao)};return 1}}function __webgl_enable_WEBGL_draw_buffers(ctx){var ext=ctx.getExtension(\"WEBGL_draw_buffers\");if(ext){ctx[\"drawBuffers\"]=function(n,bufs){ext[\"drawBuffersWEBGL\"](n,bufs)};return 1}}function __webgl_enable_WEBGL_multi_draw(ctx){return!!(ctx.multiDrawWebgl=ctx.getExtension(\"WEBGL_multi_draw\"))}var GL={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function recordError(errorCode){if(!GL.lastError){GL.lastError=errorCode}},getNewId:function(table){var ret=GL.counter++;for(var i=table.length;i>2]:-1;source+=UTF8ToString(GROWABLE_HEAP_I32()[string+i*4>>2],len<0?undefined:len)}return source},createContext:function(canvas,webGLContextAttributes){var ctx=canvas.getContext(\"webgl\",webGLContextAttributes);if(!ctx)return 0;var handle=GL.registerContext(ctx,webGLContextAttributes);return handle},registerContext:function(ctx,webGLContextAttributes){var handle=_malloc(8);GROWABLE_HEAP_I32()[handle+4>>2]=_pthread_self();var context={handle:handle,attributes:webGLContextAttributes,version:webGLContextAttributes.majorVersion,GLctx:ctx};if(ctx.canvas)ctx.canvas.GLctxObject=context;GL.contexts[handle]=context;if(typeof webGLContextAttributes.enableExtensionsByDefault===\"undefined\"||webGLContextAttributes.enableExtensionsByDefault){GL.initExtensions(context)}return handle},makeContextCurrent:function(contextHandle){GL.currentContext=GL.contexts[contextHandle];Module.ctx=GLctx=GL.currentContext&&GL.currentContext.GLctx;return!(contextHandle&&!GLctx)},getContext:function(contextHandle){return GL.contexts[contextHandle]},deleteContext:function(contextHandle){if(GL.currentContext===GL.contexts[contextHandle])GL.currentContext=null;if(typeof JSEvents===\"object\")JSEvents.removeAllHandlersOnTarget(GL.contexts[contextHandle].GLctx.canvas);if(GL.contexts[contextHandle]&&GL.contexts[contextHandle].GLctx.canvas)GL.contexts[contextHandle].GLctx.canvas.GLctxObject=undefined;_free(GL.contexts[contextHandle].handle);GL.contexts[contextHandle]=null},initExtensions:function(context){if(!context)context=GL.currentContext;if(context.initExtensionsDone)return;context.initExtensionsDone=true;var GLctx=context.GLctx;__webgl_enable_ANGLE_instanced_arrays(GLctx);__webgl_enable_OES_vertex_array_object(GLctx);__webgl_enable_WEBGL_draw_buffers(GLctx);GLctx.disjointTimerQueryExt=GLctx.getExtension(\"EXT_disjoint_timer_query\");__webgl_enable_WEBGL_multi_draw(GLctx);var exts=GLctx.getSupportedExtensions()||[];exts.forEach(function(ext){if(ext.indexOf(\"lose_context\")<0&&ext.indexOf(\"debug\")<0){GLctx.getExtension(ext)}})},populateUniformTable:function(program){var p=GL.programs[program];var ptable=GL.programInfos[program]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1};var utable=ptable.uniforms;var numUniforms=GLctx.getProgramParameter(p,35718);for(var i=0;i>2;var powerPreference=GROWABLE_HEAP_I32()[a+(24>>2)];var contextAttributes={\"alpha\":!!GROWABLE_HEAP_I32()[a+(0>>2)],\"depth\":!!GROWABLE_HEAP_I32()[a+(4>>2)],\"stencil\":!!GROWABLE_HEAP_I32()[a+(8>>2)],\"antialias\":!!GROWABLE_HEAP_I32()[a+(12>>2)],\"premultipliedAlpha\":!!GROWABLE_HEAP_I32()[a+(16>>2)],\"preserveDrawingBuffer\":!!GROWABLE_HEAP_I32()[a+(20>>2)],\"powerPreference\":__emscripten_webgl_power_preferences[powerPreference],\"failIfMajorPerformanceCaveat\":!!GROWABLE_HEAP_I32()[a+(28>>2)],majorVersion:GROWABLE_HEAP_I32()[a+(32>>2)],minorVersion:GROWABLE_HEAP_I32()[a+(36>>2)],enableExtensionsByDefault:GROWABLE_HEAP_I32()[a+(40>>2)],explicitSwapControl:GROWABLE_HEAP_I32()[a+(44>>2)],proxyContextToMainThread:GROWABLE_HEAP_I32()[a+(48>>2)],renderViaOffscreenBackBuffer:GROWABLE_HEAP_I32()[a+(52>>2)]};var canvas=findCanvasEventTarget(target);if(!canvas){return 0}if(contextAttributes.explicitSwapControl){return 0}var contextHandle=GL.createContext(canvas,contextAttributes);return contextHandle}function _emscripten_webgl_create_context(a0,a1){return _emscripten_webgl_do_create_context(a0,a1)}var SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer=SYSCALLS.buffers[stream];if(curr===0||curr===10){(stream===1?out:err)(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}},varargs:undefined,get:function(){SYSCALLS.varargs+=4;var ret=GROWABLE_HEAP_I32()[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(3,1,fd);return 0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(4,1,fd,offset_low,offset_high,whence,newOffset)}function _fd_write(fd,iov,iovcnt,pnum){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(5,1,fd,iov,iovcnt,pnum);var num=0;for(var i=0;i>2];var len=GROWABLE_HEAP_I32()[iov+(i*8+4)>>2];for(var j=0;j>2]=num;return 0}function _pthread_cleanup_pop(execute){var routine=PThread.threadExitHandlers.pop();if(execute)routine()}function _pthread_cleanup_push(routine,arg){PThread.threadExitHandlers.push(function(){wasmTable.get(routine)(arg)})}function spawnThread(threadParams){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! spawnThread() can only ever be called from main application thread!\";var worker=PThread.getNewWorker();if(worker.pthread!==undefined)throw\"Internal error!\";if(!threadParams.pthread_ptr)throw\"Internal error, no pthread ptr!\";PThread.runningWorkers.push(worker);var tlsMemory=_malloc(128*4);for(var i=0;i<128;++i){GROWABLE_HEAP_I32()[tlsMemory+i*4>>2]=0}var stackHigh=threadParams.stackBase+threadParams.stackSize;var pthread=PThread.pthreads[threadParams.pthread_ptr]={worker:worker,stackBase:threadParams.stackBase,stackSize:threadParams.stackSize,allocatedOwnStack:threadParams.allocatedOwnStack,threadInfoStruct:threadParams.pthread_ptr};var tis=pthread.threadInfoStruct>>2;Atomics.store(GROWABLE_HEAP_U32(),tis+(64>>2),threadParams.detached);Atomics.store(GROWABLE_HEAP_U32(),tis+(100>>2),tlsMemory);Atomics.store(GROWABLE_HEAP_U32(),tis+(40>>2),pthread.threadInfoStruct);Atomics.store(GROWABLE_HEAP_U32(),tis+(80>>2),threadParams.stackSize);Atomics.store(GROWABLE_HEAP_U32(),tis+(76>>2),stackHigh);Atomics.store(GROWABLE_HEAP_U32(),tis+(104>>2),threadParams.stackSize);Atomics.store(GROWABLE_HEAP_U32(),tis+(104+8>>2),stackHigh);Atomics.store(GROWABLE_HEAP_U32(),tis+(104+12>>2),threadParams.detached);var global_libc=_emscripten_get_global_libc();var global_locale=global_libc+40;Atomics.store(GROWABLE_HEAP_U32(),tis+(172>>2),global_locale);worker.pthread=pthread;var msg={\"cmd\":\"run\",\"start_routine\":threadParams.startRoutine,\"arg\":threadParams.arg,\"threadInfoStruct\":threadParams.pthread_ptr,\"stackBase\":threadParams.stackBase,\"stackSize\":threadParams.stackSize};worker.runPthread=function(){msg.time=performance.now();worker.postMessage(msg,threadParams.transferList)};if(worker.loaded){worker.runPthread();delete worker.runPthread}}function _pthread_create(pthread_ptr,attr,start_routine,arg){if(typeof SharedArrayBuffer===\"undefined\"){err(\"Current environment does not support SharedArrayBuffer, pthreads are not available!\");return 6}if(!pthread_ptr){err(\"pthread_create called with a null thread pointer!\");return 28}var transferList=[];var error=0;if(ENVIRONMENT_IS_PTHREAD&&(transferList.length===0||error)){return _emscripten_sync_run_in_main_thread_4(687865856,pthread_ptr,attr,start_routine,arg)}if(error)return error;var stackSize=0;var stackBase=0;var detached=0;if(attr&&attr!=-1){stackSize=GROWABLE_HEAP_I32()[attr>>2];stackSize+=81920;stackBase=GROWABLE_HEAP_I32()[attr+8>>2];detached=GROWABLE_HEAP_I32()[attr+12>>2]!==0}else{stackSize=2097152}var allocatedOwnStack=stackBase==0;if(allocatedOwnStack){stackBase=_memalign(16,stackSize)}else{stackBase-=stackSize;assert(stackBase>0)}var threadInfoStruct=_malloc(228);for(var i=0;i<228>>2;++i)GROWABLE_HEAP_U32()[(threadInfoStruct>>2)+i]=0;GROWABLE_HEAP_I32()[pthread_ptr>>2]=threadInfoStruct;GROWABLE_HEAP_I32()[threadInfoStruct+12>>2]=threadInfoStruct;var headPtr=threadInfoStruct+152;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;var threadParams={stackBase:stackBase,stackSize:stackSize,allocatedOwnStack:allocatedOwnStack,detached:detached,startRoutine:start_routine,pthread_ptr:threadInfoStruct,arg:arg,transferList:transferList};if(ENVIRONMENT_IS_PTHREAD){threadParams.cmd=\"spawnThread\";postMessage(threadParams,transferList)}else{spawnThread(threadParams)}return 0}function _sysconf(name){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(6,1,name);switch(name){case 30:return 16384;case 85:var maxHeapSize=2147483648;return maxHeapSize/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:{if(typeof navigator===\"object\")return navigator[\"hardwareConcurrency\"]||1;return 1}}setErrNo(28);return-1}if(!ENVIRONMENT_IS_PTHREAD)PThread.initMainThreadBlock();var GLctx;var proxiedFunctionTable=[null,_atexit,_emscripten_set_canvas_element_size_main_thread,_fd_close,_fd_seek,_fd_write,_sysconf];var asmLibraryArg={\"e\":___assert_fail,\"r\":___call_main,\"x\":__emscripten_notify_thread_queue,\"b\":_abort,\"y\":_emscripten_asm_const_int,\"j\":_emscripten_conditional_set_current_thread_status,\"c\":_emscripten_futex_wait,\"d\":_emscripten_futex_wake,\"f\":_emscripten_get_now,\"p\":_emscripten_memcpy_big,\"z\":_emscripten_num_logical_cores,\"u\":_emscripten_receive_on_main_thread_js,\"q\":_emscripten_resize_heap,\"v\":_emscripten_set_canvas_element_size,\"i\":_emscripten_set_current_thread_status,\"t\":_emscripten_set_thread_name,\"w\":_emscripten_webgl_create_context,\"m\":_fd_close,\"n\":_fd_seek,\"g\":_fd_write,\"o\":initPthreadsJS,\"a\":wasmMemory||Module[\"wasmMemory\"],\"k\":_pthread_cleanup_pop,\"l\":_pthread_cleanup_push,\"h\":_pthread_create,\"s\":_sysconf};var asm=createWasm();var ___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=function(){return(___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=Module[\"asm\"][\"A\"]).apply(null,arguments)};var _init=Module[\"_init\"]=function(){return(_init=Module[\"_init\"]=Module[\"asm\"][\"B\"]).apply(null,arguments)};var _register_tensor=Module[\"_register_tensor\"]=function(){return(_register_tensor=Module[\"_register_tensor\"]=Module[\"asm\"][\"C\"]).apply(null,arguments)};var _dispose_data=Module[\"_dispose_data\"]=function(){return(_dispose_data=Module[\"_dispose_data\"]=Module[\"asm\"][\"D\"]).apply(null,arguments)};var _dispose=Module[\"_dispose\"]=function(){return(_dispose=Module[\"_dispose\"]=Module[\"asm\"][\"E\"]).apply(null,arguments)};var _Abs=Module[\"_Abs\"]=function(){return(_Abs=Module[\"_Abs\"]=Module[\"asm\"][\"G\"]).apply(null,arguments)};var _Add=Module[\"_Add\"]=function(){return(_Add=Module[\"_Add\"]=Module[\"asm\"][\"H\"]).apply(null,arguments)};var _AddN=Module[\"_AddN\"]=function(){return(_AddN=Module[\"_AddN\"]=Module[\"asm\"][\"I\"]).apply(null,arguments)};var _All=Module[\"_All\"]=function(){return(_All=Module[\"_All\"]=Module[\"asm\"][\"J\"]).apply(null,arguments)};var _Any=Module[\"_Any\"]=function(){return(_Any=Module[\"_Any\"]=Module[\"asm\"][\"K\"]).apply(null,arguments)};var _ArgMax=Module[\"_ArgMax\"]=function(){return(_ArgMax=Module[\"_ArgMax\"]=Module[\"asm\"][\"L\"]).apply(null,arguments)};var _AvgPool=Module[\"_AvgPool\"]=function(){return(_AvgPool=Module[\"_AvgPool\"]=Module[\"asm\"][\"M\"]).apply(null,arguments)};var _BatchMatMul=Module[\"_BatchMatMul\"]=function(){return(_BatchMatMul=Module[\"_BatchMatMul\"]=Module[\"asm\"][\"N\"]).apply(null,arguments)};var _Ceil=Module[\"_Ceil\"]=function(){return(_Ceil=Module[\"_Ceil\"]=Module[\"asm\"][\"O\"]).apply(null,arguments)};var _ClipByValue=Module[\"_ClipByValue\"]=function(){return(_ClipByValue=Module[\"_ClipByValue\"]=Module[\"asm\"][\"P\"]).apply(null,arguments)};var _Conv2D=Module[\"_Conv2D\"]=function(){return(_Conv2D=Module[\"_Conv2D\"]=Module[\"asm\"][\"Q\"]).apply(null,arguments)};var _Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=function(){return(_Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=Module[\"asm\"][\"R\"]).apply(null,arguments)};var _Cos=Module[\"_Cos\"]=function(){return(_Cos=Module[\"_Cos\"]=Module[\"asm\"][\"S\"]).apply(null,arguments)};var _CropAndResize=Module[\"_CropAndResize\"]=function(){return(_CropAndResize=Module[\"_CropAndResize\"]=Module[\"asm\"][\"T\"]).apply(null,arguments)};var _Cumsum=Module[\"_Cumsum\"]=function(){return(_Cumsum=Module[\"_Cumsum\"]=Module[\"asm\"][\"U\"]).apply(null,arguments)};var _DepthToSpace=Module[\"_DepthToSpace\"]=function(){return(_DepthToSpace=Module[\"_DepthToSpace\"]=Module[\"asm\"][\"V\"]).apply(null,arguments)};var _DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=function(){return(_DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=Module[\"asm\"][\"W\"]).apply(null,arguments)};var _Equal=Module[\"_Equal\"]=function(){return(_Equal=Module[\"_Equal\"]=Module[\"asm\"][\"X\"]).apply(null,arguments)};var _Exp=Module[\"_Exp\"]=function(){return(_Exp=Module[\"_Exp\"]=Module[\"asm\"][\"Y\"]).apply(null,arguments)};var _FlipLeftRight=Module[\"_FlipLeftRight\"]=function(){return(_FlipLeftRight=Module[\"_FlipLeftRight\"]=Module[\"asm\"][\"Z\"]).apply(null,arguments)};var _Floor=Module[\"_Floor\"]=function(){return(_Floor=Module[\"_Floor\"]=Module[\"asm\"][\"_\"]).apply(null,arguments)};var _FloorDiv=Module[\"_FloorDiv\"]=function(){return(_FloorDiv=Module[\"_FloorDiv\"]=Module[\"asm\"][\"$\"]).apply(null,arguments)};var _FusedBatchNorm=Module[\"_FusedBatchNorm\"]=function(){return(_FusedBatchNorm=Module[\"_FusedBatchNorm\"]=Module[\"asm\"][\"aa\"]).apply(null,arguments)};var _FusedConv2D=Module[\"_FusedConv2D\"]=function(){return(_FusedConv2D=Module[\"_FusedConv2D\"]=Module[\"asm\"][\"ba\"]).apply(null,arguments)};var _FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=function(){return(_FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=Module[\"asm\"][\"ca\"]).apply(null,arguments)};var _Gather=Module[\"_Gather\"]=function(){return(_Gather=Module[\"_Gather\"]=Module[\"asm\"][\"da\"]).apply(null,arguments)};var _GatherNd=Module[\"_GatherNd\"]=function(){return(_GatherNd=Module[\"_GatherNd\"]=Module[\"asm\"][\"ea\"]).apply(null,arguments)};var _Greater=Module[\"_Greater\"]=function(){return(_Greater=Module[\"_Greater\"]=Module[\"asm\"][\"fa\"]).apply(null,arguments)};var _GreaterEqual=Module[\"_GreaterEqual\"]=function(){return(_GreaterEqual=Module[\"_GreaterEqual\"]=Module[\"asm\"][\"ga\"]).apply(null,arguments)};var _LeakyRelu=Module[\"_LeakyRelu\"]=function(){return(_LeakyRelu=Module[\"_LeakyRelu\"]=Module[\"asm\"][\"ha\"]).apply(null,arguments)};var _Less=Module[\"_Less\"]=function(){return(_Less=Module[\"_Less\"]=Module[\"asm\"][\"ia\"]).apply(null,arguments)};var _LessEqual=Module[\"_LessEqual\"]=function(){return(_LessEqual=Module[\"_LessEqual\"]=Module[\"asm\"][\"ja\"]).apply(null,arguments)};var _Log=Module[\"_Log\"]=function(){return(_Log=Module[\"_Log\"]=Module[\"asm\"][\"ka\"]).apply(null,arguments)};var _LogicalAnd=Module[\"_LogicalAnd\"]=function(){return(_LogicalAnd=Module[\"_LogicalAnd\"]=Module[\"asm\"][\"la\"]).apply(null,arguments)};var _Max=Module[\"_Max\"]=function(){return(_Max=Module[\"_Max\"]=Module[\"asm\"][\"ma\"]).apply(null,arguments)};var _MaxPool=Module[\"_MaxPool\"]=function(){return(_MaxPool=Module[\"_MaxPool\"]=Module[\"asm\"][\"na\"]).apply(null,arguments)};var _Maximum=Module[\"_Maximum\"]=function(){return(_Maximum=Module[\"_Maximum\"]=Module[\"asm\"][\"oa\"]).apply(null,arguments)};var _Mean=Module[\"_Mean\"]=function(){return(_Mean=Module[\"_Mean\"]=Module[\"asm\"][\"pa\"]).apply(null,arguments)};var _Min=Module[\"_Min\"]=function(){return(_Min=Module[\"_Min\"]=Module[\"asm\"][\"qa\"]).apply(null,arguments)};var _Minimum=Module[\"_Minimum\"]=function(){return(_Minimum=Module[\"_Minimum\"]=Module[\"asm\"][\"ra\"]).apply(null,arguments)};var _MirrorPad=Module[\"_MirrorPad\"]=function(){return(_MirrorPad=Module[\"_MirrorPad\"]=Module[\"asm\"][\"sa\"]).apply(null,arguments)};var _Multiply=Module[\"_Multiply\"]=function(){return(_Multiply=Module[\"_Multiply\"]=Module[\"asm\"][\"ta\"]).apply(null,arguments)};var _Neg=Module[\"_Neg\"]=function(){return(_Neg=Module[\"_Neg\"]=Module[\"asm\"][\"ua\"]).apply(null,arguments)};var _NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=function(){return(_NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=Module[\"asm\"][\"va\"]).apply(null,arguments)};var _NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=function(){return(_NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=Module[\"asm\"][\"wa\"]).apply(null,arguments)};var _NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=function(){return(_NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=Module[\"asm\"][\"xa\"]).apply(null,arguments)};var _NotEqual=Module[\"_NotEqual\"]=function(){return(_NotEqual=Module[\"_NotEqual\"]=Module[\"asm\"][\"ya\"]).apply(null,arguments)};var _OneHot=Module[\"_OneHot\"]=function(){return(_OneHot=Module[\"_OneHot\"]=Module[\"asm\"][\"za\"]).apply(null,arguments)};var _PadV2=Module[\"_PadV2\"]=function(){return(_PadV2=Module[\"_PadV2\"]=Module[\"asm\"][\"Aa\"]).apply(null,arguments)};var _Pow=Module[\"_Pow\"]=function(){return(_Pow=Module[\"_Pow\"]=Module[\"asm\"][\"Ba\"]).apply(null,arguments)};var _Prelu=Module[\"_Prelu\"]=function(){return(_Prelu=Module[\"_Prelu\"]=Module[\"asm\"][\"Ca\"]).apply(null,arguments)};var _Prod=Module[\"_Prod\"]=function(){return(_Prod=Module[\"_Prod\"]=Module[\"asm\"][\"Da\"]).apply(null,arguments)};var _RealDiv=Module[\"_RealDiv\"]=function(){return(_RealDiv=Module[\"_RealDiv\"]=Module[\"asm\"][\"Ea\"]).apply(null,arguments)};var _Relu=Module[\"_Relu\"]=function(){return(_Relu=Module[\"_Relu\"]=Module[\"asm\"][\"Fa\"]).apply(null,arguments)};var _Relu6=Module[\"_Relu6\"]=function(){return(_Relu6=Module[\"_Relu6\"]=Module[\"asm\"][\"Ga\"]).apply(null,arguments)};var _ResizeBilinear=Module[\"_ResizeBilinear\"]=function(){return(_ResizeBilinear=Module[\"_ResizeBilinear\"]=Module[\"asm\"][\"Ha\"]).apply(null,arguments)};var _Reverse=Module[\"_Reverse\"]=function(){return(_Reverse=Module[\"_Reverse\"]=Module[\"asm\"][\"Ia\"]).apply(null,arguments)};var _RotateWithOffset=Module[\"_RotateWithOffset\"]=function(){return(_RotateWithOffset=Module[\"_RotateWithOffset\"]=Module[\"asm\"][\"Ja\"]).apply(null,arguments)};var _Round=Module[\"_Round\"]=function(){return(_Round=Module[\"_Round\"]=Module[\"asm\"][\"Ka\"]).apply(null,arguments)};var _Rsqrt=Module[\"_Rsqrt\"]=function(){return(_Rsqrt=Module[\"_Rsqrt\"]=Module[\"asm\"][\"La\"]).apply(null,arguments)};var _ScatterNd=Module[\"_ScatterNd\"]=function(){return(_ScatterNd=Module[\"_ScatterNd\"]=Module[\"asm\"][\"Ma\"]).apply(null,arguments)};var _SelectV2=Module[\"_SelectV2\"]=function(){return(_SelectV2=Module[\"_SelectV2\"]=Module[\"asm\"][\"Na\"]).apply(null,arguments)};var _Sigmoid=Module[\"_Sigmoid\"]=function(){return(_Sigmoid=Module[\"_Sigmoid\"]=Module[\"asm\"][\"Oa\"]).apply(null,arguments)};var _Sin=Module[\"_Sin\"]=function(){return(_Sin=Module[\"_Sin\"]=Module[\"asm\"][\"Pa\"]).apply(null,arguments)};var _Softmax=Module[\"_Softmax\"]=function(){return(_Softmax=Module[\"_Softmax\"]=Module[\"asm\"][\"Qa\"]).apply(null,arguments)};var _Sqrt=Module[\"_Sqrt\"]=function(){return(_Sqrt=Module[\"_Sqrt\"]=Module[\"asm\"][\"Ra\"]).apply(null,arguments)};var _Square=Module[\"_Square\"]=function(){return(_Square=Module[\"_Square\"]=Module[\"asm\"][\"Sa\"]).apply(null,arguments)};var _SquaredDifference=Module[\"_SquaredDifference\"]=function(){return(_SquaredDifference=Module[\"_SquaredDifference\"]=Module[\"asm\"][\"Ta\"]).apply(null,arguments)};var _Step=Module[\"_Step\"]=function(){return(_Step=Module[\"_Step\"]=Module[\"asm\"][\"Ua\"]).apply(null,arguments)};var _StridedSlice=Module[\"_StridedSlice\"]=function(){return(_StridedSlice=Module[\"_StridedSlice\"]=Module[\"asm\"][\"Va\"]).apply(null,arguments)};var _Sub=Module[\"_Sub\"]=function(){return(_Sub=Module[\"_Sub\"]=Module[\"asm\"][\"Wa\"]).apply(null,arguments)};var _Sum=Module[\"_Sum\"]=function(){return(_Sum=Module[\"_Sum\"]=Module[\"asm\"][\"Xa\"]).apply(null,arguments)};var _Tan=Module[\"_Tan\"]=function(){return(_Tan=Module[\"_Tan\"]=Module[\"asm\"][\"Ya\"]).apply(null,arguments)};var _Tanh=Module[\"_Tanh\"]=function(){return(_Tanh=Module[\"_Tanh\"]=Module[\"asm\"][\"Za\"]).apply(null,arguments)};var _Tile=Module[\"_Tile\"]=function(){return(_Tile=Module[\"_Tile\"]=Module[\"asm\"][\"_a\"]).apply(null,arguments)};var _TopK=Module[\"_TopK\"]=function(){return(_TopK=Module[\"_TopK\"]=Module[\"asm\"][\"$a\"]).apply(null,arguments)};var _Transpose=Module[\"_Transpose\"]=function(){return(_Transpose=Module[\"_Transpose\"]=Module[\"asm\"][\"ab\"]).apply(null,arguments)};var __FusedMatMul=Module[\"__FusedMatMul\"]=function(){return(__FusedMatMul=Module[\"__FusedMatMul\"]=Module[\"asm\"][\"bb\"]).apply(null,arguments)};var _malloc=Module[\"_malloc\"]=function(){return(_malloc=Module[\"_malloc\"]=Module[\"asm\"][\"cb\"]).apply(null,arguments)};var _free=Module[\"_free\"]=function(){return(_free=Module[\"_free\"]=Module[\"asm\"][\"db\"]).apply(null,arguments)};var ___errno_location=Module[\"___errno_location\"]=function(){return(___errno_location=Module[\"___errno_location\"]=Module[\"asm\"][\"eb\"]).apply(null,arguments)};var _emscripten_get_global_libc=Module[\"_emscripten_get_global_libc\"]=function(){return(_emscripten_get_global_libc=Module[\"_emscripten_get_global_libc\"]=Module[\"asm\"][\"fb\"]).apply(null,arguments)};var _pthread_self=Module[\"_pthread_self\"]=function(){return(_pthread_self=Module[\"_pthread_self\"]=Module[\"asm\"][\"gb\"]).apply(null,arguments)};var ___pthread_tsd_run_dtors=Module[\"___pthread_tsd_run_dtors\"]=function(){return(___pthread_tsd_run_dtors=Module[\"___pthread_tsd_run_dtors\"]=Module[\"asm\"][\"hb\"]).apply(null,arguments)};var _emscripten_main_thread_process_queued_calls=Module[\"_emscripten_main_thread_process_queued_calls\"]=function(){return(_emscripten_main_thread_process_queued_calls=Module[\"_emscripten_main_thread_process_queued_calls\"]=Module[\"asm\"][\"ib\"]).apply(null,arguments)};var _emscripten_current_thread_process_queued_calls=Module[\"_emscripten_current_thread_process_queued_calls\"]=function(){return(_emscripten_current_thread_process_queued_calls=Module[\"_emscripten_current_thread_process_queued_calls\"]=Module[\"asm\"][\"jb\"]).apply(null,arguments)};var _emscripten_register_main_browser_thread_id=Module[\"_emscripten_register_main_browser_thread_id\"]=function(){return(_emscripten_register_main_browser_thread_id=Module[\"_emscripten_register_main_browser_thread_id\"]=Module[\"asm\"][\"kb\"]).apply(null,arguments)};var __emscripten_do_dispatch_to_thread=Module[\"__emscripten_do_dispatch_to_thread\"]=function(){return(__emscripten_do_dispatch_to_thread=Module[\"__emscripten_do_dispatch_to_thread\"]=Module[\"asm\"][\"lb\"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread_4=Module[\"_emscripten_sync_run_in_main_thread_4\"]=function(){return(_emscripten_sync_run_in_main_thread_4=Module[\"_emscripten_sync_run_in_main_thread_4\"]=Module[\"asm\"][\"mb\"]).apply(null,arguments)};var _emscripten_run_in_main_runtime_thread_js=Module[\"_emscripten_run_in_main_runtime_thread_js\"]=function(){return(_emscripten_run_in_main_runtime_thread_js=Module[\"_emscripten_run_in_main_runtime_thread_js\"]=Module[\"asm\"][\"nb\"]).apply(null,arguments)};var __emscripten_call_on_thread=Module[\"__emscripten_call_on_thread\"]=function(){return(__emscripten_call_on_thread=Module[\"__emscripten_call_on_thread\"]=Module[\"asm\"][\"ob\"]).apply(null,arguments)};var _emscripten_tls_init=Module[\"_emscripten_tls_init\"]=function(){return(_emscripten_tls_init=Module[\"_emscripten_tls_init\"]=Module[\"asm\"][\"pb\"]).apply(null,arguments)};var __emscripten_thread_init=Module[\"__emscripten_thread_init\"]=function(){return(__emscripten_thread_init=Module[\"__emscripten_thread_init\"]=Module[\"asm\"][\"qb\"]).apply(null,arguments)};var stackSave=Module[\"stackSave\"]=function(){return(stackSave=Module[\"stackSave\"]=Module[\"asm\"][\"rb\"]).apply(null,arguments)};var stackRestore=Module[\"stackRestore\"]=function(){return(stackRestore=Module[\"stackRestore\"]=Module[\"asm\"][\"sb\"]).apply(null,arguments)};var stackAlloc=Module[\"stackAlloc\"]=function(){return(stackAlloc=Module[\"stackAlloc\"]=Module[\"asm\"][\"tb\"]).apply(null,arguments)};var _emscripten_stack_set_limits=Module[\"_emscripten_stack_set_limits\"]=function(){return(_emscripten_stack_set_limits=Module[\"_emscripten_stack_set_limits\"]=Module[\"asm\"][\"ub\"]).apply(null,arguments)};var _memalign=Module[\"_memalign\"]=function(){return(_memalign=Module[\"_memalign\"]=Module[\"asm\"][\"vb\"]).apply(null,arguments)};var __emscripten_allow_main_runtime_queued_calls=Module[\"__emscripten_allow_main_runtime_queued_calls\"]=9808;var __emscripten_main_thread_futex=Module[\"__emscripten_main_thread_futex\"]=11432;Module[\"cwrap\"]=cwrap;Module[\"PThread\"]=PThread;Module[\"PThread\"]=PThread;Module[\"wasmMemory\"]=wasmMemory;Module[\"ExitStatus\"]=ExitStatus;var calledRun;function ExitStatus(status){this.name=\"ExitStatus\";this.message=\"Program terminated with exit(\"+status+\")\";this.status=status}dependenciesFulfilled=function runCaller(){if(!calledRun)run();if(!calledRun)dependenciesFulfilled=runCaller};function run(args){args=args||arguments_;if(runDependencies>0){return}if(ENVIRONMENT_IS_PTHREAD){readyPromiseResolve(Module);initRuntime();postMessage({\"cmd\":\"loaded\"});return}preRun();if(runDependencies>0){return}function doRun(){if(calledRun)return;calledRun=true;Module[\"calledRun\"]=true;if(ABORT)return;initRuntime();preMain();readyPromiseResolve(Module);if(Module[\"onRuntimeInitialized\"])Module[\"onRuntimeInitialized\"]();postRun()}if(Module[\"setStatus\"]){Module[\"setStatus\"](\"Running...\");setTimeout(function(){setTimeout(function(){Module[\"setStatus\"](\"\")},1);doRun()},1)}else{doRun()}}Module[\"run\"]=run;function exit(status,implicit){if(implicit&&noExitRuntime&&status===0){return}if(!implicit){if(ENVIRONMENT_IS_PTHREAD){postMessage({\"cmd\":\"exitProcess\",\"returnCode\":status});throw new ExitStatus(status)}else{}}if(noExitRuntime){}else{PThread.terminateAllThreads();EXITSTATUS=status;exitRuntime();if(Module[\"onExit\"])Module[\"onExit\"](status);ABORT=true}quit_(status,new ExitStatus(status))}if(Module[\"preInit\"]){if(typeof Module[\"preInit\"]==\"function\")Module[\"preInit\"]=[Module[\"preInit\"]];while(Module[\"preInit\"].length>0){Module[\"preInit\"].pop()()}}if(ENVIRONMENT_IS_PTHREAD){noExitRuntime=false;PThread.initWorker()}run();\n\n\n return WasmBackendModuleThreadedSimd.ready\n}\n);\n})();\nif (typeof exports === 'object' && typeof module === 'object')\n module.exports = WasmBackendModuleThreadedSimd;\nelse if (typeof define === 'function' && define['amd'])\n define([], function() { return WasmBackendModuleThreadedSimd; });\nelse if (typeof exports === 'object')\n exports[\"WasmBackendModuleThreadedSimd\"] = WasmBackendModuleThreadedSimd;\n", "\nvar WasmBackendModule = (function() {\n var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined;\n if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename;\n return (\nfunction(WasmBackendModule) {\n WasmBackendModule = WasmBackendModule || {};\n\nvar Module=typeof WasmBackendModule!==\"undefined\"?WasmBackendModule:{};var readyPromiseResolve,readyPromiseReject;Module[\"ready\"]=new Promise(function(resolve,reject){readyPromiseResolve=resolve;readyPromiseReject=reject});var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var arguments_=[];var thisProgram=\"./this.program\";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window===\"object\";ENVIRONMENT_IS_WORKER=typeof importScripts===\"function\";ENVIRONMENT_IS_NODE=typeof process===\"object\"&&typeof process.versions===\"object\"&&typeof process.versions.node===\"string\";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var scriptDirectory=\"\";function locateFile(path){if(Module[\"locateFile\"]){return Module[\"locateFile\"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=require(\"path\").dirname(scriptDirectory)+\"/\"}else{scriptDirectory=__dirname+\"/\"}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process[\"argv\"].length>1){thisProgram=process[\"argv\"][1].replace(/\\\\/g,\"/\")}arguments_=process[\"argv\"].slice(2);process[\"on\"](\"uncaughtException\",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process[\"on\"](\"unhandledRejection\",abort);quit_=function(status){process[\"exit\"](status)};Module[\"inspect\"]=function(){return\"[Emscripten Module object]\"}}else if(ENVIRONMENT_IS_SHELL){if(typeof read!=\"undefined\"){read_=function shell_read(f){return read(f)}}readBinary=function readBinary(f){var data;if(typeof readbuffer===\"function\"){return new Uint8Array(readbuffer(f))}data=read(f,\"binary\");assert(typeof data===\"object\");return data};if(typeof scriptArgs!=\"undefined\"){arguments_=scriptArgs}else if(typeof arguments!=\"undefined\"){arguments_=arguments}if(typeof quit===\"function\"){quit_=function(status){quit(status)}}if(typeof print!==\"undefined\"){if(typeof console===\"undefined\")console={};console.log=print;console.warn=console.error=typeof printErr!==\"undefined\"?printErr:print}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(typeof document!==\"undefined\"&&document.currentScript){scriptDirectory=document.currentScript.src}if(_scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf(\"blob:\")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf(\"/\")+1)}else{scriptDirectory=\"\"}{read_=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.responseType=\"arraybuffer\";xhr.send(null);return new Uint8Array(xhr.response)}}readAsync=function(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,true);xhr.responseType=\"arraybuffer\";xhr.onload=function(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=function(title){document.title=title}}else{}var out=Module[\"print\"]||console.log.bind(console);var err=Module[\"printErr\"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=null;if(Module[\"arguments\"])arguments_=Module[\"arguments\"];if(Module[\"thisProgram\"])thisProgram=Module[\"thisProgram\"];if(Module[\"quit\"])quit_=Module[\"quit\"];var wasmBinary;if(Module[\"wasmBinary\"])wasmBinary=Module[\"wasmBinary\"];var noExitRuntime=Module[\"noExitRuntime\"]||true;if(typeof WebAssembly!==\"object\"){abort(\"no native wasm support detected\")}var wasmMemory;var ABORT=false;var EXITSTATUS;function assert(condition,text){if(!condition){abort(\"Assertion failed: \"+text)}}function getCFunc(ident){var func=Module[\"_\"+ident];assert(func,\"Cannot call unknown function \"+ident+\", make sure it is exported\");return func}function ccall(ident,returnType,argTypes,args,opts){var toC={\"string\":function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){var len=(str.length<<2)+1;ret=stackAlloc(len);stringToUTF8(str,ret,len)}return ret},\"array\":function(arr){var ret=stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}};function convertReturnValue(ret){if(returnType===\"string\")return UTF8ToString(ret);if(returnType===\"boolean\")return Boolean(ret);return ret}var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i=endIdx))++endPtr;if(endPtr-idx>16&&heap.subarray&&UTF8Decoder){return UTF8Decoder.decode(heap.subarray(idx,endPtr))}else{var str=\"\";while(idx>10,56320|ch&1023)}}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(HEAPU8,ptr,maxBytesToRead):\"\"}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,HEAPU8,outPtr,maxBytesToWrite)}function writeArrayToMemory(array,buffer){HEAP8.set(array,buffer)}function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var buffer,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer=buf;Module[\"HEAP8\"]=HEAP8=new Int8Array(buf);Module[\"HEAP16\"]=HEAP16=new Int16Array(buf);Module[\"HEAP32\"]=HEAP32=new Int32Array(buf);Module[\"HEAPU8\"]=HEAPU8=new Uint8Array(buf);Module[\"HEAPU16\"]=HEAPU16=new Uint16Array(buf);Module[\"HEAPU32\"]=HEAPU32=new Uint32Array(buf);Module[\"HEAPF32\"]=HEAPF32=new Float32Array(buf);Module[\"HEAPF64\"]=HEAPF64=new Float64Array(buf)}var INITIAL_MEMORY=Module[\"INITIAL_MEMORY\"]||16777216;var wasmTable;var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;__ATINIT__.push({func:function(){___wasm_call_ctors()}});function preRun(){if(Module[\"preRun\"]){if(typeof Module[\"preRun\"]==\"function\")Module[\"preRun\"]=[Module[\"preRun\"]];while(Module[\"preRun\"].length){addOnPreRun(Module[\"preRun\"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;callRuntimeCallbacks(__ATINIT__)}function preMain(){callRuntimeCallbacks(__ATMAIN__)}function postRun(){if(Module[\"postRun\"]){if(typeof Module[\"postRun\"]==\"function\")Module[\"postRun\"]=[Module[\"postRun\"]];while(Module[\"postRun\"].length){addOnPostRun(Module[\"postRun\"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){runDependencies++;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module[\"preloadedImages\"]={};Module[\"preloadedAudios\"]={};function abort(what){if(Module[\"onAbort\"]){Module[\"onAbort\"](what)}what+=\"\";err(what);ABORT=true;EXITSTATUS=1;what=\"abort(\"+what+\"). Build with -s ASSERTIONS=1 for more info.\";var e=new WebAssembly.RuntimeError(what);readyPromiseReject(e);throw e}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix=\"data:application/octet-stream;base64,\";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix=\"file://\";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile=\"tfjs-backend-wasm.wasm\";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(file){try{if(file==wasmBinaryFile&&wasmBinary){return new Uint8Array(wasmBinary)}if(readBinary){return readBinary(file)}else{throw\"both async and sync fetching of the wasm failed\"}}catch(err){abort(err)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)){if(typeof fetch===\"function\"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){if(!response[\"ok\"]){throw\"failed to load wasm binary file at '\"+wasmBinaryFile+\"'\"}return response[\"arrayBuffer\"]()}).catch(function(){return getBinary(wasmBinaryFile)})}else{if(readAsync){return new Promise(function(resolve,reject){readAsync(wasmBinaryFile,function(response){resolve(new Uint8Array(response))},reject)})}}}return Promise.resolve().then(function(){return getBinary(wasmBinaryFile)})}function createWasm(){var info={\"a\":asmLibraryArg};function receiveInstance(instance,module){var exports=instance.exports;Module[\"asm\"]=exports;wasmMemory=Module[\"asm\"][\"i\"];updateGlobalBufferAndViews(wasmMemory.buffer);wasmTable=Module[\"asm\"][\"o\"];removeRunDependency(\"wasm-instantiate\")}addRunDependency(\"wasm-instantiate\");function receiveInstantiatedSource(output){receiveInstance(output[\"instance\"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err(\"failed to asynchronously prepare wasm: \"+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming===\"function\"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch===\"function\"){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err(\"wasm streaming compile failed: \"+reason);err(\"falling back to ArrayBuffer instantiation\");return instantiateArrayBuffer(receiveInstantiatedSource)})})}else{return instantiateArrayBuffer(receiveInstantiatedSource)}}if(Module[\"instantiateWasm\"]){try{var exports=Module[\"instantiateWasm\"](info,receiveInstance);return exports}catch(e){err(\"Module.instantiateWasm callback failed with error: \"+e);return false}}instantiateAsync().catch(readyPromiseReject);return{}}function callRuntimeCallbacks(callbacks){while(callbacks.length>0){var callback=callbacks.shift();if(typeof callback==\"function\"){callback(Module);continue}var func=callback.func;if(typeof func===\"number\"){if(callback.arg===undefined){wasmTable.get(func)()}else{wasmTable.get(func)(callback.arg)}}else{func(callback.arg===undefined?null:callback.arg)}}}function _abort(){abort()}function _emscripten_memcpy_big(dest,src,num){HEAPU8.copyWithin(dest,src,src+num)}function _emscripten_get_heap_size(){return HEAPU8.length}function emscripten_realloc_buffer(size){try{wasmMemory.grow(size-buffer.byteLength+65535>>>16);updateGlobalBufferAndViews(wasmMemory.buffer);return 1}catch(e){}}function _emscripten_resize_heap(requestedSize){var oldSize=_emscripten_get_heap_size();var maxHeapSize=2147483648;if(requestedSize>maxHeapSize){return false}for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(requestedSize,overGrownHeapSize),65536));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}var SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer=SYSCALLS.buffers[stream];if(curr===0||curr===10){(stream===1?out:err)(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}},varargs:undefined,get:function(){SYSCALLS.varargs+=4;var ret=HEAP32[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){return 0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){}function _fd_write(fd,iov,iovcnt,pnum){var num=0;for(var i=0;i>2];var len=HEAP32[iov+(i*8+4)>>2];for(var j=0;j>2]=num;return 0}function _pthread_create(){return 6}function setErrNo(value){HEAP32[___errno_location()>>2]=value;return value}function _sysconf(name){switch(name){case 30:return 16384;case 85:var maxHeapSize=2147483648;return maxHeapSize/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:{if(typeof navigator===\"object\")return navigator[\"hardwareConcurrency\"]||1;return 1}}setErrNo(28);return-1}var asmLibraryArg={\"a\":_abort,\"d\":_emscripten_memcpy_big,\"e\":_emscripten_resize_heap,\"f\":_fd_close,\"c\":_fd_seek,\"b\":_fd_write,\"g\":_pthread_create,\"h\":_sysconf};var asm=createWasm();var ___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=function(){return(___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=Module[\"asm\"][\"j\"]).apply(null,arguments)};var _init=Module[\"_init\"]=function(){return(_init=Module[\"_init\"]=Module[\"asm\"][\"k\"]).apply(null,arguments)};var _register_tensor=Module[\"_register_tensor\"]=function(){return(_register_tensor=Module[\"_register_tensor\"]=Module[\"asm\"][\"l\"]).apply(null,arguments)};var _dispose_data=Module[\"_dispose_data\"]=function(){return(_dispose_data=Module[\"_dispose_data\"]=Module[\"asm\"][\"m\"]).apply(null,arguments)};var _dispose=Module[\"_dispose\"]=function(){return(_dispose=Module[\"_dispose\"]=Module[\"asm\"][\"n\"]).apply(null,arguments)};var _Abs=Module[\"_Abs\"]=function(){return(_Abs=Module[\"_Abs\"]=Module[\"asm\"][\"p\"]).apply(null,arguments)};var _Add=Module[\"_Add\"]=function(){return(_Add=Module[\"_Add\"]=Module[\"asm\"][\"q\"]).apply(null,arguments)};var _AddN=Module[\"_AddN\"]=function(){return(_AddN=Module[\"_AddN\"]=Module[\"asm\"][\"r\"]).apply(null,arguments)};var _All=Module[\"_All\"]=function(){return(_All=Module[\"_All\"]=Module[\"asm\"][\"s\"]).apply(null,arguments)};var _Any=Module[\"_Any\"]=function(){return(_Any=Module[\"_Any\"]=Module[\"asm\"][\"t\"]).apply(null,arguments)};var _ArgMax=Module[\"_ArgMax\"]=function(){return(_ArgMax=Module[\"_ArgMax\"]=Module[\"asm\"][\"u\"]).apply(null,arguments)};var _AvgPool=Module[\"_AvgPool\"]=function(){return(_AvgPool=Module[\"_AvgPool\"]=Module[\"asm\"][\"v\"]).apply(null,arguments)};var _BatchMatMul=Module[\"_BatchMatMul\"]=function(){return(_BatchMatMul=Module[\"_BatchMatMul\"]=Module[\"asm\"][\"w\"]).apply(null,arguments)};var _Ceil=Module[\"_Ceil\"]=function(){return(_Ceil=Module[\"_Ceil\"]=Module[\"asm\"][\"x\"]).apply(null,arguments)};var _ClipByValue=Module[\"_ClipByValue\"]=function(){return(_ClipByValue=Module[\"_ClipByValue\"]=Module[\"asm\"][\"y\"]).apply(null,arguments)};var _Conv2D=Module[\"_Conv2D\"]=function(){return(_Conv2D=Module[\"_Conv2D\"]=Module[\"asm\"][\"z\"]).apply(null,arguments)};var _Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=function(){return(_Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=Module[\"asm\"][\"A\"]).apply(null,arguments)};var _Cos=Module[\"_Cos\"]=function(){return(_Cos=Module[\"_Cos\"]=Module[\"asm\"][\"B\"]).apply(null,arguments)};var _CropAndResize=Module[\"_CropAndResize\"]=function(){return(_CropAndResize=Module[\"_CropAndResize\"]=Module[\"asm\"][\"C\"]).apply(null,arguments)};var _Cumsum=Module[\"_Cumsum\"]=function(){return(_Cumsum=Module[\"_Cumsum\"]=Module[\"asm\"][\"D\"]).apply(null,arguments)};var _DepthToSpace=Module[\"_DepthToSpace\"]=function(){return(_DepthToSpace=Module[\"_DepthToSpace\"]=Module[\"asm\"][\"E\"]).apply(null,arguments)};var _DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=function(){return(_DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=Module[\"asm\"][\"F\"]).apply(null,arguments)};var _Equal=Module[\"_Equal\"]=function(){return(_Equal=Module[\"_Equal\"]=Module[\"asm\"][\"G\"]).apply(null,arguments)};var _Exp=Module[\"_Exp\"]=function(){return(_Exp=Module[\"_Exp\"]=Module[\"asm\"][\"H\"]).apply(null,arguments)};var _FlipLeftRight=Module[\"_FlipLeftRight\"]=function(){return(_FlipLeftRight=Module[\"_FlipLeftRight\"]=Module[\"asm\"][\"I\"]).apply(null,arguments)};var _Floor=Module[\"_Floor\"]=function(){return(_Floor=Module[\"_Floor\"]=Module[\"asm\"][\"J\"]).apply(null,arguments)};var _FloorDiv=Module[\"_FloorDiv\"]=function(){return(_FloorDiv=Module[\"_FloorDiv\"]=Module[\"asm\"][\"K\"]).apply(null,arguments)};var _FusedBatchNorm=Module[\"_FusedBatchNorm\"]=function(){return(_FusedBatchNorm=Module[\"_FusedBatchNorm\"]=Module[\"asm\"][\"L\"]).apply(null,arguments)};var _FusedConv2D=Module[\"_FusedConv2D\"]=function(){return(_FusedConv2D=Module[\"_FusedConv2D\"]=Module[\"asm\"][\"M\"]).apply(null,arguments)};var _FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=function(){return(_FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=Module[\"asm\"][\"N\"]).apply(null,arguments)};var _Gather=Module[\"_Gather\"]=function(){return(_Gather=Module[\"_Gather\"]=Module[\"asm\"][\"O\"]).apply(null,arguments)};var _GatherNd=Module[\"_GatherNd\"]=function(){return(_GatherNd=Module[\"_GatherNd\"]=Module[\"asm\"][\"P\"]).apply(null,arguments)};var _Greater=Module[\"_Greater\"]=function(){return(_Greater=Module[\"_Greater\"]=Module[\"asm\"][\"Q\"]).apply(null,arguments)};var _GreaterEqual=Module[\"_GreaterEqual\"]=function(){return(_GreaterEqual=Module[\"_GreaterEqual\"]=Module[\"asm\"][\"R\"]).apply(null,arguments)};var _LeakyRelu=Module[\"_LeakyRelu\"]=function(){return(_LeakyRelu=Module[\"_LeakyRelu\"]=Module[\"asm\"][\"S\"]).apply(null,arguments)};var _Less=Module[\"_Less\"]=function(){return(_Less=Module[\"_Less\"]=Module[\"asm\"][\"T\"]).apply(null,arguments)};var _LessEqual=Module[\"_LessEqual\"]=function(){return(_LessEqual=Module[\"_LessEqual\"]=Module[\"asm\"][\"U\"]).apply(null,arguments)};var _Log=Module[\"_Log\"]=function(){return(_Log=Module[\"_Log\"]=Module[\"asm\"][\"V\"]).apply(null,arguments)};var _LogicalAnd=Module[\"_LogicalAnd\"]=function(){return(_LogicalAnd=Module[\"_LogicalAnd\"]=Module[\"asm\"][\"W\"]).apply(null,arguments)};var _Max=Module[\"_Max\"]=function(){return(_Max=Module[\"_Max\"]=Module[\"asm\"][\"X\"]).apply(null,arguments)};var _MaxPool=Module[\"_MaxPool\"]=function(){return(_MaxPool=Module[\"_MaxPool\"]=Module[\"asm\"][\"Y\"]).apply(null,arguments)};var _Maximum=Module[\"_Maximum\"]=function(){return(_Maximum=Module[\"_Maximum\"]=Module[\"asm\"][\"Z\"]).apply(null,arguments)};var _Mean=Module[\"_Mean\"]=function(){return(_Mean=Module[\"_Mean\"]=Module[\"asm\"][\"_\"]).apply(null,arguments)};var _Min=Module[\"_Min\"]=function(){return(_Min=Module[\"_Min\"]=Module[\"asm\"][\"$\"]).apply(null,arguments)};var _Minimum=Module[\"_Minimum\"]=function(){return(_Minimum=Module[\"_Minimum\"]=Module[\"asm\"][\"aa\"]).apply(null,arguments)};var _MirrorPad=Module[\"_MirrorPad\"]=function(){return(_MirrorPad=Module[\"_MirrorPad\"]=Module[\"asm\"][\"ba\"]).apply(null,arguments)};var _Multiply=Module[\"_Multiply\"]=function(){return(_Multiply=Module[\"_Multiply\"]=Module[\"asm\"][\"ca\"]).apply(null,arguments)};var _Neg=Module[\"_Neg\"]=function(){return(_Neg=Module[\"_Neg\"]=Module[\"asm\"][\"da\"]).apply(null,arguments)};var _NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=function(){return(_NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=Module[\"asm\"][\"ea\"]).apply(null,arguments)};var _NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=function(){return(_NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=Module[\"asm\"][\"fa\"]).apply(null,arguments)};var _NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=function(){return(_NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=Module[\"asm\"][\"ga\"]).apply(null,arguments)};var _NotEqual=Module[\"_NotEqual\"]=function(){return(_NotEqual=Module[\"_NotEqual\"]=Module[\"asm\"][\"ha\"]).apply(null,arguments)};var _OneHot=Module[\"_OneHot\"]=function(){return(_OneHot=Module[\"_OneHot\"]=Module[\"asm\"][\"ia\"]).apply(null,arguments)};var _PadV2=Module[\"_PadV2\"]=function(){return(_PadV2=Module[\"_PadV2\"]=Module[\"asm\"][\"ja\"]).apply(null,arguments)};var _Pow=Module[\"_Pow\"]=function(){return(_Pow=Module[\"_Pow\"]=Module[\"asm\"][\"ka\"]).apply(null,arguments)};var _Prelu=Module[\"_Prelu\"]=function(){return(_Prelu=Module[\"_Prelu\"]=Module[\"asm\"][\"la\"]).apply(null,arguments)};var _Prod=Module[\"_Prod\"]=function(){return(_Prod=Module[\"_Prod\"]=Module[\"asm\"][\"ma\"]).apply(null,arguments)};var _RealDiv=Module[\"_RealDiv\"]=function(){return(_RealDiv=Module[\"_RealDiv\"]=Module[\"asm\"][\"na\"]).apply(null,arguments)};var _Relu=Module[\"_Relu\"]=function(){return(_Relu=Module[\"_Relu\"]=Module[\"asm\"][\"oa\"]).apply(null,arguments)};var _Relu6=Module[\"_Relu6\"]=function(){return(_Relu6=Module[\"_Relu6\"]=Module[\"asm\"][\"pa\"]).apply(null,arguments)};var _ResizeBilinear=Module[\"_ResizeBilinear\"]=function(){return(_ResizeBilinear=Module[\"_ResizeBilinear\"]=Module[\"asm\"][\"qa\"]).apply(null,arguments)};var _Reverse=Module[\"_Reverse\"]=function(){return(_Reverse=Module[\"_Reverse\"]=Module[\"asm\"][\"ra\"]).apply(null,arguments)};var _RotateWithOffset=Module[\"_RotateWithOffset\"]=function(){return(_RotateWithOffset=Module[\"_RotateWithOffset\"]=Module[\"asm\"][\"sa\"]).apply(null,arguments)};var _Round=Module[\"_Round\"]=function(){return(_Round=Module[\"_Round\"]=Module[\"asm\"][\"ta\"]).apply(null,arguments)};var _Rsqrt=Module[\"_Rsqrt\"]=function(){return(_Rsqrt=Module[\"_Rsqrt\"]=Module[\"asm\"][\"ua\"]).apply(null,arguments)};var _ScatterNd=Module[\"_ScatterNd\"]=function(){return(_ScatterNd=Module[\"_ScatterNd\"]=Module[\"asm\"][\"va\"]).apply(null,arguments)};var _SelectV2=Module[\"_SelectV2\"]=function(){return(_SelectV2=Module[\"_SelectV2\"]=Module[\"asm\"][\"wa\"]).apply(null,arguments)};var _Sigmoid=Module[\"_Sigmoid\"]=function(){return(_Sigmoid=Module[\"_Sigmoid\"]=Module[\"asm\"][\"xa\"]).apply(null,arguments)};var _Sin=Module[\"_Sin\"]=function(){return(_Sin=Module[\"_Sin\"]=Module[\"asm\"][\"ya\"]).apply(null,arguments)};var _Softmax=Module[\"_Softmax\"]=function(){return(_Softmax=Module[\"_Softmax\"]=Module[\"asm\"][\"za\"]).apply(null,arguments)};var _Sqrt=Module[\"_Sqrt\"]=function(){return(_Sqrt=Module[\"_Sqrt\"]=Module[\"asm\"][\"Aa\"]).apply(null,arguments)};var _Square=Module[\"_Square\"]=function(){return(_Square=Module[\"_Square\"]=Module[\"asm\"][\"Ba\"]).apply(null,arguments)};var _SquaredDifference=Module[\"_SquaredDifference\"]=function(){return(_SquaredDifference=Module[\"_SquaredDifference\"]=Module[\"asm\"][\"Ca\"]).apply(null,arguments)};var _Step=Module[\"_Step\"]=function(){return(_Step=Module[\"_Step\"]=Module[\"asm\"][\"Da\"]).apply(null,arguments)};var _StridedSlice=Module[\"_StridedSlice\"]=function(){return(_StridedSlice=Module[\"_StridedSlice\"]=Module[\"asm\"][\"Ea\"]).apply(null,arguments)};var _Sub=Module[\"_Sub\"]=function(){return(_Sub=Module[\"_Sub\"]=Module[\"asm\"][\"Fa\"]).apply(null,arguments)};var _Sum=Module[\"_Sum\"]=function(){return(_Sum=Module[\"_Sum\"]=Module[\"asm\"][\"Ga\"]).apply(null,arguments)};var _Tan=Module[\"_Tan\"]=function(){return(_Tan=Module[\"_Tan\"]=Module[\"asm\"][\"Ha\"]).apply(null,arguments)};var _Tanh=Module[\"_Tanh\"]=function(){return(_Tanh=Module[\"_Tanh\"]=Module[\"asm\"][\"Ia\"]).apply(null,arguments)};var _Tile=Module[\"_Tile\"]=function(){return(_Tile=Module[\"_Tile\"]=Module[\"asm\"][\"Ja\"]).apply(null,arguments)};var _TopK=Module[\"_TopK\"]=function(){return(_TopK=Module[\"_TopK\"]=Module[\"asm\"][\"Ka\"]).apply(null,arguments)};var _Transpose=Module[\"_Transpose\"]=function(){return(_Transpose=Module[\"_Transpose\"]=Module[\"asm\"][\"La\"]).apply(null,arguments)};var __FusedMatMul=Module[\"__FusedMatMul\"]=function(){return(__FusedMatMul=Module[\"__FusedMatMul\"]=Module[\"asm\"][\"Ma\"]).apply(null,arguments)};var _malloc=Module[\"_malloc\"]=function(){return(_malloc=Module[\"_malloc\"]=Module[\"asm\"][\"Na\"]).apply(null,arguments)};var _free=Module[\"_free\"]=function(){return(_free=Module[\"_free\"]=Module[\"asm\"][\"Oa\"]).apply(null,arguments)};var ___errno_location=Module[\"___errno_location\"]=function(){return(___errno_location=Module[\"___errno_location\"]=Module[\"asm\"][\"Pa\"]).apply(null,arguments)};var stackSave=Module[\"stackSave\"]=function(){return(stackSave=Module[\"stackSave\"]=Module[\"asm\"][\"Qa\"]).apply(null,arguments)};var stackRestore=Module[\"stackRestore\"]=function(){return(stackRestore=Module[\"stackRestore\"]=Module[\"asm\"][\"Ra\"]).apply(null,arguments)};var stackAlloc=Module[\"stackAlloc\"]=function(){return(stackAlloc=Module[\"stackAlloc\"]=Module[\"asm\"][\"Sa\"]).apply(null,arguments)};Module[\"cwrap\"]=cwrap;var calledRun;function ExitStatus(status){this.name=\"ExitStatus\";this.message=\"Program terminated with exit(\"+status+\")\";this.status=status}dependenciesFulfilled=function runCaller(){if(!calledRun)run();if(!calledRun)dependenciesFulfilled=runCaller};function run(args){args=args||arguments_;if(runDependencies>0){return}preRun();if(runDependencies>0){return}function doRun(){if(calledRun)return;calledRun=true;Module[\"calledRun\"]=true;if(ABORT)return;initRuntime();preMain();readyPromiseResolve(Module);if(Module[\"onRuntimeInitialized\"])Module[\"onRuntimeInitialized\"]();postRun()}if(Module[\"setStatus\"]){Module[\"setStatus\"](\"Running...\");setTimeout(function(){setTimeout(function(){Module[\"setStatus\"](\"\")},1);doRun()},1)}else{doRun()}}Module[\"run\"]=run;if(Module[\"preInit\"]){if(typeof Module[\"preInit\"]==\"function\")Module[\"preInit\"]=[Module[\"preInit\"]];while(Module[\"preInit\"].length>0){Module[\"preInit\"].pop()()}}run();\n\n\n return WasmBackendModule.ready\n}\n);\n})();\nif (typeof exports === 'object' && typeof module === 'object')\n module.exports = WasmBackendModule;\nelse if (typeof define === 'function' && define['amd'])\n define([], function() { return WasmBackendModule; });\nelse if (typeof exports === 'object')\n exports[\"WasmBackendModule\"] = WasmBackendModule;\n", "// A port of an algorithm by Johannes Baag\u00F8e , 2010\n// http://baagoe.com/en/RandomMusings/javascript/\n// https://github.com/nquinlan/better-random-numbers-for-javascript-mirror\n// Original work is under MIT license -\n\n// Copyright (C) 2010 by Johannes Baag\u00F8e \n//\n// Permission is hereby granted, free of charge, to any person obtaining a copy\n// of this software and associated documentation files (the \"Software\"), to deal\n// in the Software without restriction, including without limitation the rights\n// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n// copies of the Software, and to permit persons to whom the Software is\n// furnished to do so, subject to the following conditions:\n//\n// The above copyright notice and this permission notice shall be included in\n// all copies or substantial portions of the Software.\n//\n// THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\n// THE SOFTWARE.\n\n\n\n(function(global, module, define) {\n\nfunction Alea(seed) {\n var me = this, mash = Mash();\n\n me.next = function() {\n var t = 2091639 * me.s0 + me.c * 2.3283064365386963e-10; // 2^-32\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t - (me.c = t | 0);\n };\n\n // Apply the seeding algorithm from Baagoe.\n me.c = 1;\n me.s0 = mash(' ');\n me.s1 = mash(' ');\n me.s2 = mash(' ');\n me.s0 -= mash(seed);\n if (me.s0 < 0) { me.s0 += 1; }\n me.s1 -= mash(seed);\n if (me.s1 < 0) { me.s1 += 1; }\n me.s2 -= mash(seed);\n if (me.s2 < 0) { me.s2 += 1; }\n mash = null;\n}\n\nfunction copy(f, t) {\n t.c = f.c;\n t.s0 = f.s0;\n t.s1 = f.s1;\n t.s2 = f.s2;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new Alea(seed),\n state = opts && opts.state,\n prng = xg.next;\n prng.int32 = function() { return (xg.next() * 0x100000000) | 0; }\n prng.double = function() {\n return prng() + (prng() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53\n };\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nfunction Mash() {\n var n = 0xefc8249d;\n\n var mash = function(data) {\n data = String(data);\n for (var i = 0; i < data.length; i++) {\n n += data.charCodeAt(i);\n var h = 0.02519603282416938 * n;\n n = h >>> 0;\n h -= n;\n h *= n;\n n = h >>> 0;\n h -= n;\n n += h * 0x100000000; // 2^32\n }\n return (n >>> 0) * 2.3283064365386963e-10; // 2^-32\n };\n\n return mash;\n}\n\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.alea = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xor128\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n\n // Set up generator function.\n me.next = function() {\n var t = me.x ^ (me.x << 11);\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= (me.w >>> 19) ^ t ^ (t >>> 8);\n };\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor128 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorwow\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var t = (me.x ^ (me.x >>> 2));\n me.x = me.y; me.y = me.z; me.z = me.w; me.w = me.v;\n return (me.d = (me.d + 362437 | 0)) +\n (me.v = (me.v ^ (me.v << 4)) ^ (t ^ (t << 1))) | 0;\n };\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n t.v = f.v;\n t.d = f.d;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorwow = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorshift7\" algorithm by\n// Fran\u00E7ois Panneton and Pierre L'ecuyer:\n// \"On the Xorgshift Random Number Generators\"\n// http://saluc.engr.uconn.edu/refs/crypto/rng/panneton05onthexorshift.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n // Update xor generator.\n var X = me.x, i = me.i, t, v, w;\n t = X[i]; t ^= (t >>> 7); v = t ^ (t << 24);\n t = X[(i + 1) & 7]; v ^= t ^ (t >>> 10);\n t = X[(i + 3) & 7]; v ^= t ^ (t >>> 3);\n t = X[(i + 4) & 7]; v ^= t ^ (t << 7);\n t = X[(i + 7) & 7]; t = t ^ (t << 13); v ^= t ^ (t << 9);\n X[i] = v;\n me.i = (i + 1) & 7;\n return v;\n };\n\n function init(me, seed) {\n var j, w, X = [];\n\n if (seed === (seed | 0)) {\n // Seed state array using a 32-bit integer.\n w = X[0] = seed;\n } else {\n // Seed state using a string.\n seed = '' + seed;\n for (j = 0; j < seed.length; ++j) {\n X[j & 7] = (X[j & 7] << 15) ^\n (seed.charCodeAt(j) + X[(j + 1) & 7] << 13);\n }\n }\n // Enforce an array length of 8, not all zeroes.\n while (X.length < 8) X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j);\n if (j == 8) w = X[7] = -1; else w = X[j];\n\n me.x = X;\n me.i = 0;\n\n // Discard an initial 256 values.\n for (j = 256; j > 0; --j) {\n me.next();\n }\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.x = f.x.slice();\n t.i = f.i;\n return t;\n}\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorshift7 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n", "// A Javascript implementaion of Richard Brent's Xorgens xor4096 algorithm.\n//\n// This fast non-cryptographic random number generator is designed for\n// use in Monte-Carlo algorithms. It combines a long-period xorshift\n// generator with a Weyl generator, and it passes all common batteries\n// of stasticial tests for randomness while consuming only a few nanoseconds\n// for each prng generated. For background on the generator, see Brent's\n// paper: \"Some long-period random number generators using shifts and xors.\"\n// http://arxiv.org/pdf/1004.3115v1.pdf\n//\n// Usage:\n//\n// var xor4096 = require('xor4096');\n// random = xor4096(1); // Seed with int32 or string.\n// assert.equal(random(), 0.1520436450538547); // (0, 1) range, 53 bits.\n// assert.equal(random.int32(), 1806534897); // signed int32, 32 bits.\n//\n// For nonzero numeric keys, this impelementation provides a sequence\n// identical to that by Brent's xorgens 3 implementaion in C. This\n// implementation also provides for initalizing the generator with\n// string seeds, or for saving and restoring the state of the generator.\n//\n// On Chrome, this prng benchmarks about 2.1 times slower than\n// Javascript's built-in Math.random().\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n var w = me.w,\n X = me.X, i = me.i, t, v;\n // Update Weyl generator.\n me.w = w = (w + 0x61c88647) | 0;\n // Update xor generator.\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n // Update Xor generator array state.\n v = X[i] = v ^ t;\n me.i = i;\n // Result is the combination.\n return (v + (w ^ (w >>> 16))) | 0;\n };\n\n function init(me, seed) {\n var t, v, i, j, w, X = [], limit = 128;\n if (seed === (seed | 0)) {\n // Numeric seeds initialize v, which is used to generates X.\n v = seed;\n seed = null;\n } else {\n // String seeds are mixed into v and X one character at a time.\n seed = seed + '\\0';\n v = 0;\n limit = Math.max(limit, seed.length);\n }\n // Initialize circular array and weyl value.\n for (i = 0, j = -32; j < limit; ++j) {\n // Put the unicode characters into the array, and shuffle them.\n if (seed) v ^= seed.charCodeAt((j + 32) % seed.length);\n // After 32 shuffles, take v as the starting w value.\n if (j === 0) w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = (w + 0x61c88647) | 0; // Weyl.\n t = (X[j & 127] ^= (v + w)); // Combine xor and weyl to init array.\n i = (0 == t) ? i + 1 : 0; // Count zeroes.\n }\n }\n // We have detected all zeroes; make the key nonzero.\n if (i >= 128) {\n X[(seed && seed.length || 0) & 127] = -1;\n }\n // Run the generator 512 times to further mix the state before using it.\n // Factoring this as a function slows the main generator, so it is just\n // unrolled here. The weyl generator is not advanced while warming up.\n i = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n X[i] = v ^ t;\n }\n // Storing state as object members is faster than using closure variables.\n me.w = w;\n me.X = X;\n me.i = i;\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.i = f.i;\n t.w = f.w;\n t.X = f.X.slice();\n return t;\n};\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor4096 = impl;\n}\n\n})(\n this, // window object or global\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n", "// A Javascript implementaion of the \"Tyche-i\" prng algorithm by\n// Samuel Neves and Filipe Araujo.\n// See https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a = me.a;\n b = (b << 25) ^ (b >>> 7) ^ c;\n c = (c - d) | 0;\n d = (d << 24) ^ (d >>> 8) ^ a;\n a = (a - b) | 0;\n me.b = b = (b << 20) ^ (b >>> 12) ^ c;\n me.c = c = (c - d) | 0;\n me.d = (d << 16) ^ (c >>> 16) ^ a;\n return me.a = (a - b) | 0;\n };\n\n /* The following is non-inverted tyche, which has better internal\n * bit diffusion, but which is about 25% slower than tyche-i in JS.\n me.next = function() {\n var a = me.a, b = me.b, c = me.c, d = me.d;\n a = (me.a + me.b | 0) >>> 0;\n d = me.d ^ a; d = d << 16 ^ d >>> 16;\n c = me.c + d | 0;\n b = me.b ^ c; b = b << 12 ^ d >>> 20;\n me.a = a = a + b | 0;\n d = d ^ a; me.d = d = d << 8 ^ d >>> 24;\n me.c = c = c + d | 0;\n b = b ^ c;\n return me.b = (b << 7 ^ b >>> 25);\n }\n */\n\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n\n if (seed === Math.floor(seed)) {\n // Integer seed.\n me.a = (seed / 0x100000000) | 0;\n me.b = seed | 0;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.a = f.a;\n t.b = f.b;\n t.c = f.c;\n t.d = f.d;\n return t;\n};\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.tychei = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "/*\nCopyright 2019 David Bau.\n\nPermission is hereby granted, free of charge, to any person obtaining\na copy of this software and associated documentation files (the\n\"Software\"), to deal in the Software without restriction, including\nwithout limitation the rights to use, copy, modify, merge, publish,\ndistribute, sublicense, and/or sell copies of the Software, and to\npermit persons to whom the Software is furnished to do so, subject to\nthe following conditions:\n\nThe above copyright notice and this permission notice shall be\nincluded in all copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\nEXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\nMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.\nIN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY\nCLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,\nTORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE\nSOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n\n*/\n\n(function (global, pool, math) {\n//\n// The following constants are related to IEEE 754 limits.\n//\n\nvar width = 256, // each RC4 output is 0 <= x < 256\n chunks = 6, // at least six RC4 outputs for each double\n digits = 52, // there are 52 significant digits in a double\n rngname = 'random', // rngname: name for Math.random and Math.seedrandom\n startdenom = math.pow(width, chunks),\n significance = math.pow(2, digits),\n overflow = significance * 2,\n mask = width - 1,\n nodecrypto; // node.js crypto module, initialized at the bottom.\n\n//\n// seedrandom()\n// This is the seedrandom function described above.\n//\nfunction seedrandom(seed, options, callback) {\n var key = [];\n options = (options == true) ? { entropy: true } : (options || {});\n\n // Flatten the seed string or build one from local entropy if needed.\n var shortseed = mixkey(flatten(\n options.entropy ? [seed, tostring(pool)] :\n (seed == null) ? autoseed() : seed, 3), key);\n\n // Use the seed to initialize an ARC4 generator.\n var arc4 = new ARC4(key);\n\n // This function returns a random double in [0, 1) that contains\n // randomness in every bit of the mantissa of the IEEE 754 value.\n var prng = function() {\n var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48\n d = startdenom, // and denominator d = 2 ^ 48.\n x = 0; // and no 'extra last byte'.\n while (n < significance) { // Fill up all significant digits by\n n = (n + x) * width; // shifting numerator and\n d *= width; // denominator and generating a\n x = arc4.g(1); // new least-significant-byte.\n }\n while (n >= overflow) { // To avoid rounding up, before adding\n n /= 2; // last byte, shift everything\n d /= 2; // right using integer math until\n x >>>= 1; // we have exactly the desired bits.\n }\n return (n + x) / d; // Form the number within [0, 1).\n };\n\n prng.int32 = function() { return arc4.g(4) | 0; }\n prng.quick = function() { return arc4.g(4) / 0x100000000; }\n prng.double = prng;\n\n // Mix the randomness into accumulated entropy.\n mixkey(tostring(arc4.S), pool);\n\n // Calling convention: what to return as a function of prng, seed, is_math.\n return (options.pass || callback ||\n function(prng, seed, is_math_call, state) {\n if (state) {\n // Load the arc4 state from the given state if it has an S array.\n if (state.S) { copy(state, arc4); }\n // Only provide the .state method if requested via options.state.\n prng.state = function() { return copy(arc4, {}); }\n }\n\n // If called as a method of Math (Math.seedrandom()), mutate\n // Math.random because that is how seedrandom.js has worked since v1.0.\n if (is_math_call) { math[rngname] = prng; return seed; }\n\n // Otherwise, it is a newer calling convention, so return the\n // prng directly.\n else return prng;\n })(\n prng,\n shortseed,\n 'global' in options ? options.global : (this == math),\n options.state);\n}\n\n//\n// ARC4\n//\n// An ARC4 implementation. The constructor takes a key in the form of\n// an array of at most (width) integers that should be 0 <= x < (width).\n//\n// The g(count) method returns a pseudorandom integer that concatenates\n// the next (count) outputs from ARC4. Its return value is a number x\n// that is in the range 0 <= x < (width ^ count).\n//\nfunction ARC4(key) {\n var t, keylen = key.length,\n me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];\n\n // The empty key [] is treated as [0].\n if (!keylen) { key = [keylen++]; }\n\n // Set up S using the standard key scheduling algorithm.\n while (i < width) {\n s[i] = i++;\n }\n for (i = 0; i < width; i++) {\n s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];\n s[j] = t;\n }\n\n // The \"g\" method returns the next (count) outputs as one number.\n (me.g = function(count) {\n // Using instance members instead of closure state nearly doubles speed.\n var t, r = 0,\n i = me.i, j = me.j, s = me.S;\n while (count--) {\n t = s[i = mask & (i + 1)];\n r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];\n }\n me.i = i; me.j = j;\n return r;\n // For robust unpredictability, the function call below automatically\n // discards an initial batch of values. This is called RC4-drop[256].\n // See http://google.com/search?q=rsa+fluhrer+response&btnI\n })(width);\n}\n\n//\n// copy()\n// Copies internal state of ARC4 to or from a plain object.\n//\nfunction copy(f, t) {\n t.i = f.i;\n t.j = f.j;\n t.S = f.S.slice();\n return t;\n};\n\n//\n// flatten()\n// Converts an object tree to nested arrays of strings.\n//\nfunction flatten(obj, depth) {\n var result = [], typ = (typeof obj), prop;\n if (depth && typ == 'object') {\n for (prop in obj) {\n try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}\n }\n }\n return (result.length ? result : typ == 'string' ? obj : obj + '\\0');\n}\n\n//\n// mixkey()\n// Mixes a string seed into a key that is an array of integers, and\n// returns a shortened string seed that is equivalent to the result key.\n//\nfunction mixkey(seed, key) {\n var stringseed = seed + '', smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] =\n mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));\n }\n return tostring(key);\n}\n\n//\n// autoseed()\n// Returns an object for autoseeding, using window.crypto and Node crypto\n// module if available.\n//\nfunction autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n // The use of 'out' to remember randomBytes makes tight minified code.\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global.crypto || global.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e) {\n var browser = global.navigator,\n plugins = browser && browser.plugins;\n return [+new Date, global, plugins, global.screen, tostring(pool)];\n }\n}\n\n//\n// tostring()\n// Converts an array of charcodes to a string\n//\nfunction tostring(a) {\n return String.fromCharCode.apply(0, a);\n}\n\n//\n// When seedrandom.js is loaded, we immediately mix a few bits\n// from the built-in RNG into the entropy pool. Because we do\n// not want to interfere with deterministic PRNG state later,\n// seedrandom will not call math.random on its own again after\n// initialization.\n//\nmixkey(math.random(), pool);\n\n//\n// Nodejs and AMD support: export the implementation as a module using\n// either convention.\n//\nif ((typeof module) == 'object' && module.exports) {\n module.exports = seedrandom;\n // When in node.js, try using crypto package for autoseeding.\n try {\n nodecrypto = require('crypto');\n } catch (ex) {}\n} else if ((typeof define) == 'function' && define.amd) {\n define(function() { return seedrandom; });\n} else {\n // When included as a plain script, set up Math.seedrandom global.\n math['seed' + rngname] = seedrandom;\n}\n\n\n// End anonymous scope, and pass initial values.\n})(\n // global: `self` in browsers (including strict mode and web workers),\n // otherwise `this` in Node and other environments\n (typeof self !== 'undefined') ? self : this,\n [], // pool: entropy pool starts empty\n Math // math: package containing random, pow, and seedrandom\n);\n", "// A library of seedable RNGs implemented in Javascript.\n//\n// Usage:\n//\n// var seedrandom = require('seedrandom');\n// var random = seedrandom(1); // or any seed.\n// var x = random(); // 0 <= x < 1. Every bit is random.\n// var x = random.quick(); // 0 <= x < 1. 32 bits of randomness.\n\n// alea, a 53-bit multiply-with-carry generator by Johannes Baag\u00F8e.\n// Period: ~2^116\n// Reported to pass all BigCrush tests.\nvar alea = require('./lib/alea');\n\n// xor128, a pure xor-shift generator by George Marsaglia.\n// Period: 2^128-1.\n// Reported to fail: MatrixRank and LinearComp.\nvar xor128 = require('./lib/xor128');\n\n// xorwow, George Marsaglia's 160-bit xor-shift combined plus weyl.\n// Period: 2^192-2^32\n// Reported to fail: CollisionOver, SimpPoker, and LinearComp.\nvar xorwow = require('./lib/xorwow');\n\n// xorshift7, by Fran\u00E7ois Panneton and Pierre L'ecuyer, takes\n// a different approach: it adds robustness by allowing more shifts\n// than Marsaglia's original three. It is a 7-shift generator\n// with 256 bits, that passes BigCrush with no systmatic failures.\n// Period 2^256-1.\n// No systematic BigCrush failures reported.\nvar xorshift7 = require('./lib/xorshift7');\n\n// xor4096, by Richard Brent, is a 4096-bit xor-shift with a\n// very long period that also adds a Weyl generator. It also passes\n// BigCrush with no systematic failures. Its long period may\n// be useful if you have many generators and need to avoid\n// collisions.\n// Period: 2^4128-2^32.\n// No systematic BigCrush failures reported.\nvar xor4096 = require('./lib/xor4096');\n\n// Tyche-i, by Samuel Neves and Filipe Araujo, is a bit-shifting random\n// number generator derived from ChaCha, a modern stream cipher.\n// https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n// Period: ~2^127\n// No systematic BigCrush failures reported.\nvar tychei = require('./lib/tychei');\n\n// The original ARC4-based prng included in this library.\n// Period: ~2^1600\nvar sr = require('./seedrandom');\n\nsr.alea = alea;\nsr.xor128 = xor128;\nsr.xorwow = xorwow;\nsr.xorshift7 = xorshift7;\nsr.xor4096 = xor4096;\nsr.tychei = tychei;\n\nmodule.exports = sr;\n", "", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Backend, DataId} from '../tensor';\nimport {BackendValues, DataType} from '../types';\n\nexport const EPSILON_FLOAT32 = 1e-7;\nexport const EPSILON_FLOAT16 = 1e-4;\n\n// Required information for all backends.\nexport interface BackendTimingInfo {\n kernelMs: number|{error: string};\n getExtraProfileInfo?(): string; // a field for additional timing information\n // e.g. packing / unpacking for WebGL backend\n}\n\nexport interface TensorStorage {\n read(dataId: DataId): Promise;\n readSync(dataId: DataId): BackendValues;\n disposeData(dataId: DataId, force?: boolean): boolean;\n write(values: BackendValues, shape: number[], dtype: DataType): DataId;\n move(\n dataId: DataId, values: BackendValues, shape: number[], dtype: DataType,\n refCount: number): void;\n memory(): {unreliable: boolean;}; // Backend-specific information.\n /** Returns number of data ids currently in the storage. */\n numDataIds(): number;\n refCount(dataId: DataId): number;\n}\n\n/** Convenient class for storing tensor-related data. */\nexport class DataStorage {\n private data = new WeakMap();\n private dataIdsCount = 0;\n\n constructor(private backend: KernelBackend, private dataMover: DataMover) {}\n\n get(dataId: DataId) {\n if (!this.data.has(dataId)) {\n this.dataMover.moveData(this.backend, dataId);\n }\n return this.data.get(dataId);\n }\n\n set(dataId: DataId, value: T): void {\n this.dataIdsCount++;\n this.data.set(dataId, value);\n }\n\n has(dataId: DataId): boolean {\n return this.data.has(dataId);\n }\n\n delete(dataId: DataId): boolean {\n this.dataIdsCount--;\n return this.data.delete(dataId);\n }\n\n numDataIds(): number {\n return this.dataIdsCount;\n }\n}\n\nexport interface DataMover {\n /**\n * To be called by backends whenever they see a dataId that they don't own.\n * Upon calling this method, the mover will fetch the tensor from another\n * backend and register it with the current active backend.\n */\n moveData(backend: KernelBackend, dataId: DataId): void;\n}\n\nexport interface BackendTimer {\n // check if backend timer is available\n timerAvailable(): boolean;\n time(f: () => void): Promise;\n}\n\n/**\n * The interface that defines the kernels that should be implemented when\n * adding a new backend. New backends don't need to implement every one of the\n * methods, this can be done gradually (throw an error for unimplemented\n * methods).\n */\nexport class KernelBackend implements TensorStorage, Backend, BackendTimer {\n refCount(dataId: DataId): number {\n return notYetImplemented('refCount');\n }\n incRef(dataId: DataId): void {\n return notYetImplemented('incRef');\n }\n timerAvailable(): boolean {\n return true;\n }\n time(f: () => void): Promise {\n return notYetImplemented('time');\n }\n read(dataId: object): Promise {\n return notYetImplemented('read');\n }\n readSync(dataId: object): BackendValues {\n return notYetImplemented('readSync');\n }\n numDataIds(): number {\n return notYetImplemented('numDataIds');\n }\n disposeData(dataId: object, force?: boolean): boolean {\n return notYetImplemented('disposeData');\n }\n write(values: BackendValues, shape: number[], dtype: DataType): DataId {\n return notYetImplemented('write');\n }\n move(\n dataId: DataId, values: BackendValues, shape: number[], dtype: DataType,\n refCount: number): void {\n return notYetImplemented('move');\n }\n memory(): {unreliable: boolean; reasons?: string[]} {\n return notYetImplemented('memory');\n }\n /** Returns the highest precision for floats in bits (e.g. 16 or 32) */\n floatPrecision(): 16|32 {\n return notYetImplemented('floatPrecision');\n }\n /** Returns the smallest representable number. */\n epsilon(): number {\n return this.floatPrecision() === 32 ? EPSILON_FLOAT32 : EPSILON_FLOAT16;\n }\n dispose(): void {\n return notYetImplemented('dispose');\n }\n}\n\nfunction notYetImplemented(kernelName: string): never {\n throw new Error(\n `'${kernelName}' not yet implemented or not found in the registry. ` +\n `This kernel may not be supported by the tfjs backend you have chosen`);\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {DataType, DataTypeMap, FlatVector, NumericDataType, RecursiveArray, TensorLike, TypedArray} from './types';\n\n/**\n * Shuffles the array in-place using Fisher-Yates algorithm.\n *\n * ```js\n * const a = [1, 2, 3, 4, 5];\n * tf.util.shuffle(a);\n * console.log(a);\n * ```\n *\n * @param array The array to shuffle in-place.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\n// tslint:disable-next-line:no-any\nexport function shuffle(array: any[]|Uint32Array|Int32Array|\n Float32Array): void {\n let counter = array.length;\n let temp = 0;\n let index = 0;\n // While there are elements in the array\n while (counter > 0) {\n // Pick a random index\n index = (Math.random() * counter) | 0;\n // Decrease counter by 1\n counter--;\n // And swap the last element with it\n temp = array[counter];\n array[counter] = array[index];\n array[index] = temp;\n }\n}\n\n/**\n * Shuffles two arrays in-place the same way using Fisher-Yates algorithm.\n *\n * ```js\n * const a = [1,2,3,4,5];\n * const b = [11,22,33,44,55];\n * tf.util.shuffleCombo(a, b);\n * console.log(a, b);\n * ```\n *\n * @param array The first array to shuffle in-place.\n * @param array2 The second array to shuffle in-place with the same permutation\n * as the first array.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function shuffleCombo(\n // tslint:disable-next-line:no-any\n array: any[]|Uint32Array|Int32Array|Float32Array,\n // tslint:disable-next-line:no-any\n array2: any[]|Uint32Array|Int32Array|Float32Array): void {\n if (array.length !== array2.length) {\n throw new Error(\n `Array sizes must match to be shuffled together ` +\n `First array length was ${array.length}` +\n `Second array length was ${array2.length}`);\n }\n let counter = array.length;\n let temp, temp2;\n let index = 0;\n // While there are elements in the array\n while (counter > 0) {\n // Pick a random index\n index = (Math.random() * counter) | 0;\n // Decrease counter by 1\n counter--;\n // And swap the last element of each array with it\n temp = array[counter];\n temp2 = array2[counter];\n array[counter] = array[index];\n array2[counter] = array2[index];\n array[index] = temp;\n array2[index] = temp2;\n }\n}\n\n/** Clamps a value to a specified range. */\nexport function clamp(min: number, x: number, max: number): number {\n return Math.max(min, Math.min(x, max));\n}\n\nexport function nearestLargerEven(val: number): number {\n return val % 2 === 0 ? val : val + 1;\n}\n\nexport function sum(arr: number[]): number {\n let sum = 0;\n for (let i = 0; i < arr.length; i++) {\n sum += arr[i];\n }\n return sum;\n}\n\n/**\n * Returns a sample from a uniform [a, b) distribution.\n *\n * @param a The minimum support (inclusive).\n * @param b The maximum support (exclusive).\n * @return A pseudorandom number on the half-open interval [a,b).\n */\nexport function randUniform(a: number, b: number) {\n const r = Math.random();\n return (b * r) + (1 - r) * a;\n}\n\n/** Returns the squared Euclidean distance between two vectors. */\nexport function distSquared(a: FlatVector, b: FlatVector): number {\n let result = 0;\n for (let i = 0; i < a.length; i++) {\n const diff = Number(a[i]) - Number(b[i]);\n result += diff * diff;\n }\n return result;\n}\n\n/**\n * Asserts that the expression is true. Otherwise throws an error with the\n * provided message.\n *\n * ```js\n * const x = 2;\n * tf.util.assert(x === 2, 'x is not 2');\n * ```\n *\n * @param expr The expression to assert (as a boolean).\n * @param msg A function that returns the message to report when throwing an\n * error. We use a function for performance reasons.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function assert(expr: boolean, msg: () => string) {\n if (!expr) {\n throw new Error(typeof msg === 'string' ? msg : msg());\n }\n}\n\nexport function assertShapesMatch(\n shapeA: number[], shapeB: number[], errorMessagePrefix = ''): void {\n assert(\n arraysEqual(shapeA, shapeB),\n () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`);\n}\n\nexport function assertNonNull(a: TensorLike): void {\n assert(\n a != null,\n () => `The input to the tensor constructor must be a non-null value.`);\n}\n\n// NOTE: We explicitly type out what T extends instead of any so that\n// util.flatten on a nested array of number doesn't try to infer T as a\n// number[][], causing us to explicitly type util.flatten().\n/**\n * Flattens an arbitrarily nested array.\n *\n * ```js\n * const a = [[1, 2], [3, 4], [5, [6, [7]]]];\n * const flat = tf.util.flatten(a);\n * console.log(flat);\n * ```\n *\n * @param arr The nested array to flatten.\n * @param result The destination array which holds the elements.\n * @param skipTypedArray If true, avoids flattening the typed arrays. Defaults\n * to false.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function\nflatten|TypedArray>(\n arr: T|RecursiveArray, result: T[] = [], skipTypedArray = false): T[] {\n if (result == null) {\n result = [];\n }\n if (Array.isArray(arr) || isTypedArray(arr) && !skipTypedArray) {\n for (let i = 0; i < arr.length; ++i) {\n flatten(arr[i], result, skipTypedArray);\n }\n } else {\n result.push(arr as T);\n }\n return result;\n}\n\n/**\n * Returns the size (number of elements) of the tensor given its shape.\n *\n * ```js\n * const shape = [3, 4, 2];\n * const size = tf.util.sizeFromShape(shape);\n * console.log(size);\n * ```\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function sizeFromShape(shape: number[]): number {\n if (shape.length === 0) {\n // Scalar.\n return 1;\n }\n let size = shape[0];\n for (let i = 1; i < shape.length; i++) {\n size *= shape[i];\n }\n return size;\n}\n\nexport function isScalarShape(shape: number[]): boolean {\n return shape.length === 0;\n}\n\nexport function arraysEqual(n1: FlatVector, n2: FlatVector) {\n if (n1 === n2) {\n return true;\n }\n if (n1 == null || n2 == null) {\n return false;\n }\n\n if (n1.length !== n2.length) {\n return false;\n }\n for (let i = 0; i < n1.length; i++) {\n if (n1[i] !== n2[i]) {\n return false;\n }\n }\n return true;\n}\n\nexport function isInt(a: number): boolean {\n return a % 1 === 0;\n}\n\nexport function tanh(x: number): number {\n // tslint:disable-next-line:no-any\n if ((Math as any).tanh != null) {\n // tslint:disable-next-line:no-any\n return (Math as any).tanh(x);\n }\n if (x === Infinity) {\n return 1;\n } else if (x === -Infinity) {\n return -1;\n } else {\n const e2x = Math.exp(2 * x);\n return (e2x - 1) / (e2x + 1);\n }\n}\n\nexport function sizeToSquarishShape(size: number): [number, number] {\n const width = Math.ceil(Math.sqrt(size));\n return [width, Math.ceil(size / width)];\n}\n\n/**\n * Creates a new array with randomized indicies to a given quantity.\n *\n * ```js\n * const randomTen = tf.util.createShuffledIndices(10);\n * console.log(randomTen);\n * ```\n *\n * @param number Quantity of how many shuffled indicies to create.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function createShuffledIndices(n: number): Uint32Array {\n const shuffledIndices = new Uint32Array(n);\n for (let i = 0; i < n; ++i) {\n shuffledIndices[i] = i;\n }\n shuffle(shuffledIndices);\n return shuffledIndices;\n}\n\nexport function rightPad(a: string, size: number): string {\n if (size <= a.length) {\n return a;\n }\n return a + ' '.repeat(size - a.length);\n}\n\nexport function repeatedTry(\n checkFn: () => boolean, delayFn = (counter: number) => 0,\n maxCounter?: number): Promise {\n return new Promise((resolve, reject) => {\n let tryCount = 0;\n\n const tryFn = () => {\n if (checkFn()) {\n resolve();\n return;\n }\n\n tryCount++;\n\n const nextBackoff = delayFn(tryCount);\n\n if (maxCounter != null && tryCount >= maxCounter) {\n reject();\n return;\n }\n setTimeout(tryFn, nextBackoff);\n };\n\n tryFn();\n });\n}\n\n/**\n * Given the full size of the array and a shape that may contain -1 as the\n * implicit dimension, returns the inferred shape where -1 is replaced.\n * E.g. For shape=[2, -1, 3] and size=24, it will return [2, 4, 3].\n *\n * @param shape The shape, which may contain -1 in some dimension.\n * @param size The full size (number of elements) of the array.\n * @return The inferred shape where -1 is replaced with the inferred size.\n */\nexport function inferFromImplicitShape(\n shape: number[], size: number): number[] {\n let shapeProd = 1;\n let implicitIdx = -1;\n\n for (let i = 0; i < shape.length; ++i) {\n if (shape[i] >= 0) {\n shapeProd *= shape[i];\n } else if (shape[i] === -1) {\n if (implicitIdx !== -1) {\n throw Error(\n `Shapes can only have 1 implicit size. ` +\n `Found -1 at dim ${implicitIdx} and dim ${i}`);\n }\n implicitIdx = i;\n } else if (shape[i] < 0) {\n throw Error(`Shapes can not be < 0. Found ${shape[i]} at dim ${i}`);\n }\n }\n\n if (implicitIdx === -1) {\n if (size > 0 && size !== shapeProd) {\n throw Error(`Size(${size}) must match the product of shape ${shape}`);\n }\n return shape;\n }\n\n if (shapeProd === 0) {\n throw Error(\n `Cannot infer the missing size in [${shape}] when ` +\n `there are 0 elements`);\n }\n if (size % shapeProd !== 0) {\n throw Error(\n `The implicit shape can't be a fractional number. ` +\n `Got ${size} / ${shapeProd}`);\n }\n\n const newShape = shape.slice();\n newShape[implicitIdx] = size / shapeProd;\n return newShape;\n}\n\nexport function parseAxisParam(\n axis: number|number[], shape: number[]): number[] {\n const rank = shape.length;\n\n // Normalize input\n axis = axis == null ? shape.map((s, i) => i) : [].concat(axis);\n\n // Check for valid range\n assert(\n axis.every(ax => ax >= -rank && ax < rank),\n () =>\n `All values in axis param must be in range [-${rank}, ${rank}) but ` +\n `got axis ${axis}`);\n\n // Check for only integers\n assert(\n axis.every(ax => isInt(ax)),\n () => `All values in axis param must be integers but ` +\n `got axis ${axis}`);\n\n // Handle negative axis.\n return axis.map(a => a < 0 ? rank + a : a);\n}\n\n/** Reduces the shape by removing all dimensions of shape 1. */\nexport function squeezeShape(shape: number[], axis?: number[]):\n {newShape: number[], keptDims: number[]} {\n const newShape: number[] = [];\n const keptDims: number[] = [];\n const isEmptyArray = axis != null && Array.isArray(axis) && axis.length === 0;\n const axes = (axis == null || isEmptyArray) ?\n null :\n parseAxisParam(axis, shape).sort();\n let j = 0;\n for (let i = 0; i < shape.length; ++i) {\n if (axes != null) {\n if (axes[j] === i && shape[i] !== 1) {\n throw new Error(\n `Can't squeeze axis ${i} since its dim '${shape[i]}' is not 1`);\n }\n if ((axes[j] == null || axes[j] > i) && shape[i] === 1) {\n newShape.push(shape[i]);\n keptDims.push(i);\n }\n if (axes[j] <= i) {\n j++;\n }\n }\n if (shape[i] !== 1) {\n newShape.push(shape[i]);\n keptDims.push(i);\n }\n }\n return {newShape, keptDims};\n}\n\nexport function getTypedArrayFromDType(\n dtype: D, size: number): DataTypeMap[D] {\n let values = null;\n if (dtype == null || dtype === 'float32') {\n values = new Float32Array(size);\n } else if (dtype === 'int32') {\n values = new Int32Array(size);\n } else if (dtype === 'bool') {\n values = new Uint8Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values as DataTypeMap[D];\n}\n\nexport function getArrayFromDType(\n dtype: D, size: number): DataTypeMap[D] {\n let values = null;\n if (dtype == null || dtype === 'float32') {\n values = new Float32Array(size);\n } else if (dtype === 'int32') {\n values = new Int32Array(size);\n } else if (dtype === 'bool') {\n values = new Uint8Array(size);\n } else if (dtype === 'string') {\n values = new Array<'string'>(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values as DataTypeMap[D];\n}\n\nexport function checkConversionForErrors(\n vals: DataTypeMap[D]|number[], dtype: D): void {\n for (let i = 0; i < vals.length; i++) {\n const num = vals[i] as number;\n if (isNaN(num) || !isFinite(num)) {\n throw Error(`A tensor of type ${dtype} being uploaded contains ${num}.`);\n }\n }\n}\n\n/** Returns true if the dtype is valid. */\nexport function isValidDtype(dtype: DataType): boolean {\n return dtype === 'bool' || dtype === 'complex64' || dtype === 'float32' ||\n dtype === 'int32' || dtype === 'string';\n}\n\n/**\n * Returns true if the new type can't encode the old type without loss of\n * precision.\n */\nexport function hasEncodingLoss(oldType: DataType, newType: DataType): boolean {\n if (newType === 'complex64') {\n return false;\n }\n if (newType === 'float32' && oldType !== 'complex64') {\n return false;\n }\n if (newType === 'int32' && oldType !== 'float32' && oldType !== 'complex64') {\n return false;\n }\n if (newType === 'bool' && oldType === 'bool') {\n return false;\n }\n return true;\n}\n\nexport function isTypedArray(a: {}): a is Float32Array|Int32Array|Uint8Array {\n return a instanceof Float32Array || a instanceof Int32Array ||\n a instanceof Uint8Array;\n}\n\nexport function bytesPerElement(dtype: DataType): number {\n if (dtype === 'float32' || dtype === 'int32') {\n return 4;\n } else if (dtype === 'complex64') {\n return 8;\n } else if (dtype === 'bool') {\n return 1;\n } else {\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\n\n/**\n * Returns the approximate number of bytes allocated in the string array - 2\n * bytes per character. Computing the exact bytes for a native string in JS is\n * not possible since it depends on the encoding of the html page that serves\n * the website.\n */\nexport function bytesFromStringArray(arr: Uint8Array[]): number {\n if (arr == null) {\n return 0;\n }\n let bytes = 0;\n arr.forEach(x => bytes += x.length);\n return bytes;\n}\n\n/** Returns true if the value is a string. */\nexport function isString(value: {}): value is string {\n return typeof value === 'string' || value instanceof String;\n}\n\nexport function isBoolean(value: {}): boolean {\n return typeof value === 'boolean';\n}\n\nexport function isNumber(value: {}): boolean {\n return typeof value === 'number';\n}\n\nexport function inferDtype(values: TensorLike): DataType {\n if (Array.isArray(values)) {\n return inferDtype(values[0]);\n }\n if (values instanceof Float32Array) {\n return 'float32';\n } else if (values instanceof Int32Array || values instanceof Uint8Array) {\n return 'int32';\n } else if (isNumber(values)) {\n return 'float32';\n } else if (isString(values)) {\n return 'string';\n } else if (isBoolean(values)) {\n return 'bool';\n }\n return 'float32';\n}\n\nexport function isFunction(f: Function) {\n return !!(f && f.constructor && f.call && f.apply);\n}\n\nexport function nearestDivisor(size: number, start: number): number {\n for (let i = start; i < size; ++i) {\n if (size % i === 0) {\n return i;\n }\n }\n return size;\n}\n\nexport function computeStrides(shape: number[]): number[] {\n const rank = shape.length;\n if (rank < 2) {\n return [];\n }\n\n // Last dimension has implicit stride of 1, thus having D-1 (instead of D)\n // strides.\n const strides = new Array(rank - 1);\n strides[rank - 2] = shape[rank - 1];\n for (let i = rank - 3; i >= 0; --i) {\n strides[i] = strides[i + 1] * shape[i + 1];\n }\n return strides;\n}\n\nfunction createNestedArray(\n offset: number, shape: number[], a: TypedArray, isComplex = false) {\n const ret = new Array();\n if (shape.length === 1) {\n const d = shape[0] * (isComplex ? 2 : 1);\n for (let i = 0; i < d; i++) {\n ret[i] = a[offset + i];\n }\n } else {\n const d = shape[0];\n const rest = shape.slice(1);\n const len = rest.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n for (let i = 0; i < d; i++) {\n ret[i] = createNestedArray(offset + i * len, rest, a, isComplex);\n }\n }\n return ret;\n}\n\n// Provide a nested array of TypedArray in given shape.\nexport function toNestedArray(\n shape: number[], a: TypedArray, isComplex = false) {\n if (shape.length === 0) {\n // Scalar type should return a single number.\n return a[0];\n }\n const size = shape.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n if (size === 0) {\n // A tensor with shape zero should be turned into empty list.\n return [];\n }\n if (size !== a.length) {\n throw new Error(`[${shape}] does not match the input size ${a.length}${\n isComplex ? ' for a complex tensor' : ''}.`);\n }\n\n return createNestedArray(0, shape, a, isComplex);\n}\n\nexport function makeOnesTypedArray(\n size: number, dtype: D): DataTypeMap[D] {\n const array = makeZerosTypedArray(size, dtype);\n for (let i = 0; i < array.length; i++) {\n array[i] = 1;\n }\n return array;\n}\n\nexport function makeZerosTypedArray(\n size: number, dtype: D): DataTypeMap[D] {\n if (dtype == null || dtype === 'float32' || dtype === 'complex64') {\n return new Float32Array(size) as DataTypeMap[D];\n } else if (dtype === 'int32') {\n return new Int32Array(size) as DataTypeMap[D];\n } else if (dtype === 'bool') {\n return new Uint8Array(size) as DataTypeMap[D];\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\n/**\n * Make nested `TypedArray` filled with zeros.\n * @param shape The shape information for the nested array.\n * @param dtype dtype of the array element.\n */\nexport function makeZerosNestedTypedArray(\n shape: number[], dtype: D) {\n const size = shape.reduce((prev, curr) => prev * curr, 1);\n if (dtype == null || dtype === 'float32') {\n return toNestedArray(shape, new Float32Array(size));\n } else if (dtype === 'int32') {\n return toNestedArray(shape, new Int32Array(size));\n } else if (dtype === 'bool') {\n return toNestedArray(shape, new Uint8Array(size));\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\nexport function assertNonNegativeIntegerDimensions(shape: number[]) {\n shape.forEach(dimSize => {\n assert(\n Number.isInteger(dimSize) && dimSize >= 0,\n () =>\n `Tensor must have a shape comprised of positive integers but got ` +\n `shape [${shape}].`);\n });\n}\n\n/**\n * Computes flat index for a given location (multidimentionsal index) in a\n * Tensor/multidimensional array.\n *\n * @param locs Location in the tensor.\n * @param rank Rank of the tensor.\n * @param strides Tensor strides.\n */\nexport function locToIndex(\n locs: number[], rank: number, strides: number[]): number {\n if (rank === 0) {\n return 0;\n } else if (rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += strides[i] * locs[i];\n }\n return index;\n}\n\n/**\n * Computes the location (multidimensional index) in a tensor/multidimentional\n * array for a given flat index.\n *\n * @param index Index in flat array.\n * @param rank Rank of tensor.\n * @param strides Strides of tensor.\n */\nexport function indexToLoc(\n index: number, rank: number, strides: number[]): number[] {\n if (rank === 0) {\n return [];\n } else if (rank === 1) {\n return [index];\n }\n const locs: number[] = new Array(rank);\n for (let i = 0; i < locs.length - 1; ++i) {\n locs[i] = Math.floor(index / strides[i]);\n index -= locs[i] * strides[i];\n }\n locs[locs.length - 1] = index;\n return locs;\n}\n\n/**\n * This method asserts whether an object is a Promise instance.\n * @param object\n */\n// tslint:disable-next-line: no-any\nexport function isPromise(object: any) {\n // We chose to not use 'obj instanceOf Promise' for two reasons:\n // 1. It only reliably works for es6 Promise, not other Promise\n // implementations.\n // 2. It doesn't work with framework that uses zone.js. zone.js monkey patch\n // the async calls, so it is possible the obj (patched) is comparing to a\n // pre-patched Promise.\n return object && object.then && typeof object.then === 'function';\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Platform} from './platforms/platform';\nimport {isPromise} from './util_base';\n\n// Expects flags from URL in the format ?tfjsflags=FLAG1:1,FLAG2:true.\nconst TENSORFLOWJS_FLAGS_PREFIX = 'tfjsflags';\n\ntype FlagValue = number|boolean;\ntype FlagEvaluationFn = (() => FlagValue)|(() => Promise);\nexport type Flags = {\n [featureName: string]: FlagValue\n};\nexport type FlagRegistryEntry = {\n evaluationFn: FlagEvaluationFn;\n setHook?: (value: FlagValue) => void;\n};\n\n/**\n * The environment contains evaluated flags as well as the registered platform.\n * This is always used as a global singleton and can be retrieved with\n * `tf.env()`.\n *\n * @doc {heading: 'Environment'}\n */\nexport class Environment {\n private flags: Flags = {};\n private flagRegistry: {[flagName: string]: FlagRegistryEntry} = {};\n\n private urlFlags: Flags = {};\n\n platformName: string;\n platform: Platform;\n\n // Jasmine spies on this in 'environment_test.ts'\n getQueryParams = getQueryParams;\n\n // tslint:disable-next-line: no-any\n constructor(public global: any) {\n this.populateURLFlags();\n }\n\n setPlatform(platformName: string, platform: Platform) {\n if (this.platform != null) {\n console.warn(\n `Platform ${this.platformName} has already been set. ` +\n `Overwriting the platform with ${platform}.`);\n }\n this.platformName = platformName;\n this.platform = platform;\n }\n\n registerFlag(\n flagName: string, evaluationFn: FlagEvaluationFn,\n setHook?: (value: FlagValue) => void) {\n this.flagRegistry[flagName] = {evaluationFn, setHook};\n\n // Override the flag value from the URL. This has to happen here because the\n // environment is initialized before flags get registered.\n if (this.urlFlags[flagName] != null) {\n const flagValue = this.urlFlags[flagName];\n console.warn(\n `Setting feature override from URL ${flagName}: ${flagValue}.`);\n this.set(flagName, flagValue);\n }\n }\n\n async getAsync(flagName: string): Promise {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n\n this.flags[flagName] = await this.evaluateFlag(flagName);\n return this.flags[flagName];\n }\n\n get(flagName: string): FlagValue {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n\n const flagValue = this.evaluateFlag(flagName);\n if (isPromise(flagValue)) {\n throw new Error(\n `Flag ${flagName} cannot be synchronously evaluated. ` +\n `Please use getAsync() instead.`);\n }\n\n this.flags[flagName] = flagValue as number | boolean;\n\n return this.flags[flagName];\n }\n\n getNumber(flagName: string): number {\n return this.get(flagName) as number;\n }\n\n getBool(flagName: string): boolean {\n return this.get(flagName) as boolean;\n }\n\n getFlags(): Flags {\n return this.flags;\n }\n // For backwards compatibility.\n get features(): Flags {\n return this.flags;\n }\n\n set(flagName: string, value: FlagValue): void {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(\n `Cannot set flag ${flagName} as it has not been registered.`);\n }\n this.flags[flagName] = value;\n if (this.flagRegistry[flagName].setHook != null) {\n this.flagRegistry[flagName].setHook(value);\n }\n }\n\n private evaluateFlag(flagName: string): FlagValue|Promise {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(\n `Cannot evaluate flag '${flagName}': no evaluation function found.`);\n }\n return this.flagRegistry[flagName].evaluationFn();\n }\n\n setFlags(flags: Flags) {\n this.flags = Object.assign({}, flags);\n }\n\n reset() {\n this.flags = {};\n this.urlFlags = {};\n this.populateURLFlags();\n }\n\n private populateURLFlags(): void {\n if (typeof this.global === 'undefined' ||\n typeof this.global.location === 'undefined' ||\n typeof this.global.location.search === 'undefined') {\n return;\n }\n\n const urlParams = this.getQueryParams(this.global.location.search);\n if (TENSORFLOWJS_FLAGS_PREFIX in urlParams) {\n const keyValues = urlParams[TENSORFLOWJS_FLAGS_PREFIX].split(',');\n keyValues.forEach(keyValue => {\n const [key, value] = keyValue.split(':') as [string, string];\n this.urlFlags[key] = parseValue(key, value);\n });\n }\n }\n}\n\nexport function getQueryParams(queryString: string): {[key: string]: string} {\n const params = {};\n queryString.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g, (s, ...t) => {\n decodeParam(params, t[0], t[1]);\n return t.join('=');\n });\n return params;\n}\n\nfunction decodeParam(\n params: {[key: string]: string}, name: string, value?: string) {\n params[decodeURIComponent(name)] = decodeURIComponent(value || '');\n}\n\nfunction parseValue(flagName: string, value: string): FlagValue {\n value = value.toLowerCase();\n if (value === 'true' || value === 'false') {\n return value === 'true';\n } else if (`${+ value}` === value) {\n return +value;\n }\n throw new Error(\n `Could not parse value flag value ${value} for flag ${flagName}.`);\n}\n\n/**\n * Returns the current environment (a global singleton).\n *\n * The environment object contains the evaluated feature values as well as the\n * active platform.\n *\n * @doc {heading: 'Environment'}\n */\nexport function env() {\n return ENV;\n}\n\nexport let ENV: Environment = null;\nexport function setEnvironmentGlobal(environment: Environment) {\n ENV = environment;\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Note that the identifier globalNameSpace is scoped to this module, but will\n// always resolve to the same global object regardless of how the module is\n// resolved.\n// tslint:disable-next-line:no-any\nlet globalNameSpace: {_tfGlobals: Map};\n// tslint:disable-next-line:no-any\nexport function getGlobalNamespace(): {_tfGlobals: Map} {\n if (globalNameSpace == null) {\n // tslint:disable-next-line:no-any\n let ns: any;\n if (typeof (window) !== 'undefined') {\n ns = window;\n } else if (typeof (global) !== 'undefined') {\n ns = global;\n } else if (typeof (process) !== 'undefined') {\n ns = process;\n } else if (typeof (self) !== 'undefined') {\n ns = self;\n } else {\n throw new Error('Could not find a global object');\n }\n globalNameSpace = ns;\n }\n return globalNameSpace;\n}\n\n// tslint:disable-next-line:no-any\nfunction getGlobalMap(): Map {\n const ns = getGlobalNamespace();\n if (ns._tfGlobals == null) {\n ns._tfGlobals = new Map();\n }\n return ns._tfGlobals;\n}\n\n/**\n * Returns a globally accessible 'singleton' object.\n *\n * @param key the name of the object\n * @param init a function to initialize to initialize this object\n * the first time it is fetched.\n */\nexport function getGlobal(key: string, init: () => T): T {\n const globalMap = getGlobalMap();\n if (globalMap.has(key)) {\n return globalMap.get(key);\n } else {\n const singleton = init();\n globalMap.set(key, singleton);\n return globalMap.get(key);\n }\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n// Allow UpperCamelCase variable names\n// tslint:disable: variable-name\n// Unfortunately just enabling PascalCase per file (tslint:enable:\n// allow-pascal-case) doesn't work.\nimport {NamedTensorInfoMap, TensorInfo} from './kernel_registry';\nimport {ExplicitPadding} from './ops/conv_util';\nimport {Activation} from './ops/fused_types';\nimport {DataType, PixelData} from './types';\n\nexport const Abs = 'Abs';\nexport type AbsInputs = UnaryInputs;\n\nexport const Acos = 'Acos';\nexport type AcosInputs = UnaryInputs;\n\nexport const Acosh = 'Acosh';\nexport type AcoshInputs = UnaryInputs;\n\nexport const Add = 'Add';\nexport type AddInputs = BinaryInputs;\n\nexport const AddN = 'AddN';\nexport type AddNInputs = TensorInfo[];\n\nexport const All = 'All';\nexport type AllInputs = Pick;\nexport interface AllAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Any = 'Any';\nexport type AnyInputs = Pick;\nexport interface AnyAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const ArgMax = 'ArgMax';\nexport type ArgMaxInputs = Pick;\nexport interface ArgMaxAttrs {\n axis: number;\n}\n\nexport const ArgMin = 'ArgMin';\nexport type ArgMinInputs = Pick;\nexport interface ArgMinAttrs {\n axis: number;\n}\n\nexport const Asin = 'Asin';\nexport type AsinInputs = UnaryInputs;\n\nexport const Asinh = 'Asinh';\nexport type AsinhInputs = UnaryInputs;\n\nexport const Atan = 'Atan';\nexport type AtanInputs = UnaryInputs;\n\nexport const Atanh = 'Atanh';\nexport type AtanhInputs = UnaryInputs;\n\nexport const Atan2 = 'Atan2';\nexport type Atan2Inputs = BinaryInputs;\n\nexport const AvgPool = 'AvgPool';\nexport type AvgPoolInputs = Pick;\nexport interface AvgPoolAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const AvgPoolGrad = 'AvgPoolGrad';\nexport type AvgPoolGradInputs = Pick;\nexport interface AvgPoolGradAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n}\n\nexport const AvgPool3D = 'AvgPool3D';\nexport type AvgPool3DInputs = Pick;\nexport interface AvgPool3DAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n dataFormat: 'NDHWC'|'NCDHW';\n}\n\nexport const AvgPool3DGrad = 'AvgPool3DGrad';\nexport type AvgPool3DGradInputs = Pick;\nexport interface AvgPool3DGradAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const BatchMatMul = 'BatchMatMul';\nexport type BatchMatMulInputs = Pick;\nexport interface BatchMatMulAttrs {\n transposeA: boolean;\n transposeB: boolean;\n}\n\nexport const BatchToSpaceND = 'BatchToSpaceND';\nexport type BatchToSpaceNDInputs = Pick;\nexport interface BatchToSpaceNDAttrs {\n blockShape: number[];\n crops: number[][];\n}\n\nexport type BinaryInputs = Pick;\n\nexport const Bincount = 'Bincount';\nexport type BincountInputs = Pick;\nexport interface BincountAttrs {\n size: number;\n}\n\nexport const BroadcastTo = 'BroadcastTo';\nexport type BroadcastToInputs = Pick;\nexport interface BroadCastToAttrs {\n shape: number[];\n inputShape: number[]; // for gradient\n}\n\nexport const Cast = 'Cast';\nexport type CastInputs = UnaryInputs;\nexport interface CastAttrs {\n dtype: DataType;\n}\n\nexport const Ceil = 'Ceil';\nexport type CeilInputs = UnaryInputs;\n\nexport const ClipByValue = 'ClipByValue';\nexport type ClipByValueInputs = UnaryInputs;\nexport interface ClipByValueAttrs {\n clipValueMin: number;\n clipValueMax: number;\n}\n\nexport const Complex = 'Complex';\nexport type ComplexInputs = Pick;\n\nexport const ComplexAbs = 'ComplexAbs';\nexport type ComplexAbsInputs = UnaryInputs;\n\nexport const Concat = 'Concat';\nexport type ConcatInputs = TensorInfo[];\nexport interface ConcatAttrs {\n axis: number;\n}\n\nexport const Conv2D = 'Conv2D';\nexport type Conv2DInputs = Pick;\nexport interface Conv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const Conv2DBackpropFilter = 'Conv2DBackpropFilter';\nexport type Conv2DBackpropFilterInputs = Pick;\nexport interface Conv2DBackpropFilterAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n filterShape: [number, number, number, number];\n}\n\nexport const Conv2DBackpropInput = 'Conv2DBackpropInput';\nexport type Conv2DBackpropInputInputs = Pick;\nexport interface Conv2DBackpropInputAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n inputShape: [number, number, number, number];\n}\n\nexport const Conv3D = 'Conv3D';\nexport type Conv3DInputs = Pick;\nexport interface Conv3DAttrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n dataFormat: 'NDHWC'|'NCDHW';\n dilations: [number, number, number]|number;\n}\n\nexport const Conv3DBackpropFilterV2 = 'Conv3DBackpropFilterV2';\nexport type Conv3DBackpropFilterV2Inputs = Pick;\n\nexport interface Conv3DBackpropFilterV2Attrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n filterShape: [number, number, number, number, number];\n}\n\nexport const Conv3DBackpropInputV2 = 'Conv3DBackpropInputV2';\nexport type Conv3DBackpropInputV2Inputs =\n Pick;\nexport interface Conv3DBackpropInputV2Attrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n inputShape: [number, number, number, number, number];\n}\n\nexport const Cos = 'Cos';\nexport type CosInputs = UnaryInputs;\n\nexport const Cosh = 'Cosh';\nexport type CoshInputs = UnaryInputs;\n\nexport const Cumsum = 'Cumsum';\nexport type CumsumInputs = Pick;\nexport interface CumsumAttrs {\n axis: number;\n exclusive: boolean;\n reverse: boolean;\n}\n\nexport const CropAndResize = 'CropAndResize';\nexport type CropAndResizeInputs =\n Pick;\nexport interface CropAndResizeAttrs {\n cropSize: [number, number];\n method: 'bilinear'|'nearest';\n extrapolationValue: number;\n}\n\nexport const DenseBincount = 'DenseBincount';\nexport type DenseBincountInputs = Pick;\nexport interface DenseBincountAttrs {\n size: number;\n binaryOutput?: boolean;\n}\n\nexport const DepthToSpace = 'DepthToSpace';\nexport type DepthToSpaceInputs = Pick;\nexport interface DepthToSpaceAttrs {\n blockSize: number;\n dataFormat: 'NHWC'|'NCHW';\n}\n\nexport const DepthwiseConv2dNative = 'DepthwiseConv2dNative';\nexport type DepthwiseConv2dNativeInputs =\n Pick;\nexport interface DepthwiseConv2dNativeAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const DepthwiseConv2dNativeBackpropFilter =\n 'DepthwiseConv2dNativeBackpropFilter';\nexport type DepthwiseConv2dNativeBackpropFilterInputs =\n Pick;\nexport interface DepthwiseConv2dNativeBackpropFilterAttrs {\n strides: [number, number]|number;\n dilations: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n filterShape: [number, number, number, number];\n}\n\nexport const DepthwiseConv2dNativeBackpropInput =\n 'DepthwiseConv2dNativeBackpropInput';\nexport type DepthwiseConv2dNativeBackpropInputInputs =\n Pick;\nexport interface DepthwiseConv2dNativeBackpropInputAttrs {\n strides: [number, number]|number;\n dilations: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n inputShape: [number, number, number, number];\n}\n\nexport const Diag = 'Diag';\nexport type DiagInputs = Pick;\n\nexport const Dilation2D = 'Dilation2D';\nexport type Dilation2DInputs = Pick;\nexport interface Dilation2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dilations: [number, number]|number;\n}\n\nexport const Dilation2DBackpropInput = 'Dilation2DBackpropInput';\nexport type Dilation2DBackpropInputInputs =\n Pick;\n\nexport const Dilation2DBackpropFilter = 'Dilation2DBackpropFilter';\nexport type Dilation2DBackpropFilterInputs =\n Pick;\n\nexport const RealDiv = 'RealDiv';\nexport type RealDivInputs = BinaryInputs;\n\nexport const Einsum = 'Einsum';\nexport type EinsumInputs = TensorInfo[];\nexport interface EinsumAttrs {\n equation: string;\n}\n\nexport const Elu = 'Elu';\nexport type EluInputs = Pick;\n\nexport const EluGrad = 'EluGrad';\nexport type EluGradInputs = Pick;\n\nexport const Erf = 'Erf';\nexport type ErfInputs = UnaryInputs;\n\nexport const Equal = 'Equal';\nexport type EqualInputs = BinaryInputs;\n\nexport const Exp = 'Exp';\nexport type ExpInputs = UnaryInputs;\n\nexport const ExpandDims = 'ExpandDims';\nexport type ExpandDimsInputs = Pick;\nexport interface ExpandDimsAttrs {\n dim: number;\n}\n\nexport const Expm1 = 'Expm1';\nexport type Expm1Inputs = UnaryInputs;\n\nexport const FFT = 'FFT';\nexport type FFTInputs = Pick;\n\nexport const Fill = 'Fill';\nexport interface FillAttrs {\n shape: number[];\n value: number|string;\n dtype: DataType;\n}\n\nexport const FlipLeftRight = 'FlipLeftRight';\nexport type FlipLeftRightInputs = Pick;\n\nexport const Floor = 'Floor';\nexport type FloorInputs = UnaryInputs;\n\nexport const FloorDiv = 'FloorDiv';\nexport type FloorDivInputs = BinaryInputs;\n\nexport const FusedBatchNorm = 'FusedBatchNorm';\nexport type FusedBatchNormInputs =\n Pick;\nexport interface FusedBatchNormAttrs {\n varianceEpsilon: number;\n}\n\nexport const GatherV2 = 'GatherV2';\nexport type GatherV2Inputs = Pick;\nexport interface GatherV2Attrs {\n axis: number;\n batchDims: number;\n}\n\nexport const GatherNd = 'GatherNd';\nexport type GatherNdInputs = Pick;\n\nexport const Greater = 'Greater';\nexport type GreaterInputs = BinaryInputs;\n\nexport const GreaterEqual = 'GreaterEqual';\nexport type GreaterEqualInputs = BinaryInputs;\n\nexport const Identity = 'Identity';\nexport type IdentityInputs = Pick;\n\nexport const IFFT = 'IFFT';\nexport type IFFTInputs = Pick;\n\nexport const Imag = 'Imag';\nexport type ImagInputs = Pick;\n\nexport const IsFinite = 'IsFinite';\nexport type IsFiniteInputs = UnaryInputs;\n\nexport const IsInf = 'IsInf';\nexport type IsInfInputs = UnaryInputs;\n\nexport const IsNan = 'IsNan';\nexport type IsNanInputs = UnaryInputs;\n\nexport const LeakyRelu = 'LeakyRelu';\nexport type LeakyReluInputs = Pick;\nexport interface LeakyReluAttrs {\n alpha: number;\n}\n\nexport const Less = 'Less';\nexport type LessInputs = BinaryInputs;\n\nexport const LessEqual = 'LessEqual';\nexport type LessEqualInputs = BinaryInputs;\n\nexport const LinSpace = 'LinSpace';\nexport interface LinSpaceAttrs {\n start: number;\n stop: number;\n num: number;\n}\nexport const Log = 'Log';\nexport type LogInputs = UnaryInputs;\n\nexport const Log1p = 'Log1p';\nexport type Log1pInputs = UnaryInputs;\n\nexport const LogicalAnd = 'LogicalAnd';\nexport type LogicalAndInputs = BinaryInputs;\n\nexport const LogicalNot = 'LogicalNot';\nexport type LogicalNotInputs = Pick;\n\nexport const LogicalOr = 'LogicalOr';\nexport type LogicalOrInputs = BinaryInputs;\n\nexport const LogSoftmax = 'LogSoftmax';\nexport type LogSoftmaxInputs = Pick;\nexport interface LogSoftmaxAttrs {\n axis: number;\n}\n\nexport const LRN = 'LRN';\nexport type LRNInputs = Pick;\nexport interface LRNAttrs {\n depthRadius: number;\n bias: number;\n alpha: number;\n beta: number;\n}\n\nexport const LRNGrad = 'LRNGrad';\nexport type LRNGradInputs = Pick;\nexport interface LRNGradAttrs {\n depthRadius: number;\n bias: number;\n alpha: number;\n beta: number;\n}\n\nexport const Max = 'Max';\nexport type MaxInputs = Pick;\nexport interface MaxAttrs {\n reductionIndices: number|number[];\n keepDims: boolean;\n}\n\nexport const Maximum = 'Maximum';\nexport type MaximumInputs = BinaryInputs;\n\nexport const MaxPool = 'MaxPool';\nexport type MaxPoolInputs = Pick;\nexport interface MaxPoolAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPoolGrad = 'MaxPoolGrad';\nexport type MaxPoolGradInputs = Pick;\nexport interface MaxPoolGradAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPool3D = 'MaxPool3D';\nexport type MaxPool3DInputs = Pick;\nexport interface MaxPool3DAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dataFormat: 'NDHWC'|'NCDHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPool3DGrad = 'MaxPool3DGrad';\nexport type MaxPool3DGradInputs =\n Pick;\nexport interface MaxPool3DGradAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPoolWithArgmax = 'MaxPoolWithArgmax';\nexport type MaxPoolWithArgmaxInputs = Pick;\nexport interface MaxPoolWithArgmaxAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n includeBatchInIndex: boolean;\n}\n\nexport const Mean = 'Mean';\nexport type MeanInputs = Pick;\nexport interface MeanAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Min = 'Min';\nexport type MinInputs = Pick;\nexport interface MinAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Minimum = 'Minimum';\nexport type MinimumInputs = BinaryInputs;\n\nexport const MirrorPad = 'MirrorPad';\nexport type MirrorPadInputs = Pick;\nexport interface MirrorPadAttrs {\n paddings: Array<[number, number]>;\n mode: 'reflect'|'symmetric';\n}\n\nexport const Mod = 'Mod';\nexport type ModInputs = BinaryInputs;\n\nexport const Multinomial = 'Multinomial';\nexport type MultinomialInputs = Pick;\nexport interface MultinomialAttrs {\n numSamples: number;\n seed: number;\n normalized: boolean;\n}\n\nexport const Multiply = 'Multiply';\nexport type MultiplyInputs = BinaryInputs;\n\nexport const Neg = 'Neg';\nexport type NegInputs = UnaryInputs;\n\nexport const NotEqual = 'NotEqual';\nexport type NotEqualInputs = BinaryInputs;\n\nexport const NonMaxSuppressionV3 = 'NonMaxSuppressionV3';\nexport type NonMaxSuppressionV3Inputs =\n Pick;\nexport interface NonMaxSuppressionV3Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n}\n\nexport const NonMaxSuppressionV4 = 'NonMaxSuppressionV4';\nexport type NonMaxSuppressionV4Inputs =\n Pick;\nexport interface NonMaxSuppressionV4Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n padToMaxOutputSize: boolean;\n}\n\nexport const NonMaxSuppressionV5 = 'NonMaxSuppressionV5';\nexport type NonMaxSuppressionV5Inputs =\n Pick;\nexport interface NonMaxSuppressionV5Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n softNmsSigma: number;\n}\n\nexport const OnesLike = 'OnesLike';\nexport type OnesLikeInputs = UnaryInputs;\n\nexport const OneHot = 'OneHot';\nexport type OneHotInputs = Pick;\nexport interface OneHotAttrs {\n depth: number;\n onValue: number;\n offValue: number;\n}\n\nexport const Pack = 'Pack';\nexport type PackInputs = TensorInfo[];\nexport interface PackAttrs {\n axis: number;\n}\n\nexport const PadV2 = 'PadV2';\nexport type PadV2Inputs = Pick;\nexport interface PadV2Attrs {\n paddings: Array<[number, number]>;\n constantValue: number;\n}\n\nexport const Pool = 'Pool';\nexport type PoolInputs = Pick;\n\nexport const Pow = 'Pow';\nexport type PowInputs = BinaryInputs;\n\nexport const Prelu = 'Prelu';\nexport type PreluInputs = Pick;\n\nexport const Prod = 'Prod';\nexport type ProdInputs = Pick;\nexport interface ProdAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Range = 'Range';\nexport interface RangeAttrs {\n start: number;\n stop: number;\n step: number;\n dtype: 'float32'|'int32';\n}\n\nexport const Real = 'Real';\nexport type RealInputs = Pick;\n\nexport const Reciprocal = 'Reciprocal';\nexport type ReciprocalInputs = UnaryInputs;\n\nexport const Relu = 'Relu';\nexport type ReluInputs = Pick;\n\nexport const Reshape = 'Reshape';\nexport type ReshapeInputs = Pick;\nexport interface ReshapeAttrs {\n shape: number[];\n}\n\nexport const ResizeNearestNeighbor = 'ResizeNearestNeighbor';\nexport type ResizeNearestNeighborInputs = Pick;\nexport interface ResizeNearestNeighborAttrs {\n alignCorners: boolean;\n halfPixelCenters: boolean;\n size: [number, number];\n}\n\nexport const ResizeNearestNeighborGrad = 'ResizeNearestNeighborGrad';\nexport type ResizeNearestNeighborGradInputs =\n Pick;\nexport type ResizeNearestNeighborGradAttrs = ResizeNearestNeighborAttrs;\n\nexport const ResizeBilinear = 'ResizeBilinear';\nexport type ResizeBilinearInputs = Pick;\nexport interface ResizeBilinearAttrs {\n alignCorners: boolean;\n halfPixelCenters: boolean;\n size: [number, number];\n}\n\nexport const ResizeBilinearGrad = 'ResizeBilinearGrad';\nexport type ResizeBilinearGradInputs = Pick;\nexport type ResizeBilinearGradAttrs = ResizeBilinearAttrs;\n\nexport const Relu6 = 'Relu6';\nexport type Relu6Inputs = Pick;\n\nexport const Reverse = 'Reverse';\nexport type ReverseInputs = Pick;\nexport interface ReverseAttrs {\n dims: number|number[];\n}\n\nexport const Round = 'Round';\nexport type RoundInputs = UnaryInputs;\n\nexport const Rsqrt = 'Rsqrt';\nexport type RsqrtInputs = UnaryInputs;\n\nexport const ScatterNd = 'ScatterNd';\nexport type ScatterNdInputs = Pick;\nexport interface ScatterNdAttrs {\n shape: number[];\n}\n\nexport const Select = 'Select';\nexport type SelectInputs = Pick;\n\nexport const Selu = 'Selu';\nexport type SeluInputs = Pick;\n\nexport const Slice = 'Slice';\nexport type SliceInputs = Pick;\nexport interface SliceAttrs {\n begin: number|number[];\n size: number|number[];\n}\nexport const Sin = 'Sin';\nexport type SinInputs = UnaryInputs;\n\nexport const Sinh = 'Sinh';\nexport type SinhInputs = UnaryInputs;\n\nexport const Sign = 'Sign';\nexport type SignInputs = UnaryInputs;\n\nexport const Sigmoid = 'Sigmoid';\nexport type SigmoidInputs = UnaryInputs;\n\nexport const Softplus = 'Softplus';\nexport type SoftplusInputs = UnaryInputs;\n\nexport const Sqrt = 'Sqrt';\nexport type SqrtInputs = UnaryInputs;\n\nexport const Sum = 'Sum';\nexport type SumInputs = Pick;\nexport interface SumAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const SpaceToBatchND = 'SpaceToBatchND';\nexport type SpaceToBatchNDInputs = Pick;\nexport interface SpaceToBatchNDAttrs {\n blockShape: number[];\n paddings: number[][];\n}\n\nexport const SplitV = 'SplitV';\nexport type SplitVInputs = Pick;\nexport interface SplitVAttrs {\n numOrSizeSplits: number[]|number;\n axis: number;\n}\n\nexport const Softmax = 'Softmax';\nexport type SoftmaxInputs = Pick;\nexport interface SoftmaxAttrs {\n dim: number;\n}\n\nexport const SparseReshape = 'SparseReshape';\nexport type SparseReshapeInputs =\n Pick;\n\nexport const SparseToDense = 'SparseToDense';\nexport type SparseToDenseInputs =\n Pick;\nexport interface SparseToDenseAttrs {\n outputShape: number[];\n}\n\nexport const SquaredDifference = 'SquaredDifference';\nexport type SquaredDifferenceInputs = BinaryInputs;\n\nexport const Square = 'Square';\nexport type SquareInputs = Pick;\n\nexport const StridedSlice = 'StridedSlice';\nexport type StridedSliceInputs = Pick;\nexport interface StridedSliceAttrs {\n begin: number[];\n end: number[];\n strides: number[];\n beginMask: number;\n endMask: number;\n ellipsisMask: number;\n newAxisMask: number;\n shrinkAxisMask: number;\n}\n\nexport const Sub = 'Sub';\nexport type SubInputs = BinaryInputs;\n\nexport const Tan = 'Tan';\nexport type TanInputs = UnaryInputs;\n\nexport const Tanh = 'Tanh';\nexport type TanhInputs = UnaryInputs;\n\nexport const Tile = 'Tile';\nexport type TileInputs = Pick;\nexport interface TileAttrs {\n reps: number[];\n}\n\nexport const TopK = 'TopK';\nexport type TopKInputs = Pick;\nexport interface TopKAttrs {\n k: number;\n sorted: boolean;\n}\n\nexport const Transform = 'Transform';\nexport type TransformInputs = Pick;\nexport interface TransformAttrs {\n interpolation: 'nearest'|'bilinear';\n fillMode: 'constant'|'reflect'|'wrap'|'nearest';\n fillValue: number;\n outputShape?: [number, number];\n}\n\nexport const Transpose = 'Transpose';\nexport type TransposeInputs = Pick;\nexport interface TransposeAttrs {\n perm: number[];\n}\n\nexport const Unique = 'Unique';\nexport type UniqueInputs = Pick;\nexport interface UniqueAttrs {\n axis: number;\n}\n\nexport type UnaryInputs = Pick;\n\nexport const Unpack = 'Unpack';\nexport type UnpackInputs = Pick;\nexport interface UnpackAttrs {\n axis: number;\n}\n\nexport const UnsortedSegmentSum = 'UnsortedSegmentSum';\nexport type UnsortedSegmentSumInputs =\n Pick;\nexport interface UnsortedSegmentSumAttrs {\n numSegments: number;\n}\n\nexport const ZerosLike = 'ZerosLike';\nexport type ZerosLikeInputs = UnaryInputs;\n\n/**\n * TensorFlow.js-only kernels\n */\nexport const Step = 'Step';\nexport type StepInputs = UnaryInputs;\nexport interface StepAttrs {\n alpha: number;\n}\n\nexport const FromPixels = 'FromPixels';\nexport interface FromPixelsInputs {\n pixels: PixelData|ImageData|HTMLImageElement|HTMLCanvasElement|\n HTMLVideoElement|ImageBitmap;\n}\nexport interface FromPixelsAttrs {\n numChannels: number;\n}\n\nexport const RotateWithOffset = 'RotateWithOffset';\nexport type RotateWithOffsetInputs = Pick;\nexport interface RotateWithOffsetAttrs {\n radians: number;\n fillValue: number|[number, number, number];\n center: number|[number, number];\n}\n\nexport const _FusedMatMul = '_FusedMatMul';\n// tslint:disable-next-line: class-name\nexport interface _FusedMatMulInputs extends NamedTensorInfoMap {\n a: TensorInfo;\n b: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\n// tslint:disable-next-line: class-name\nexport interface _FusedMatMulAttrs {\n transposeA: boolean;\n transposeB: boolean;\n activation: Activation;\n leakyreluAlpha?: number;\n}\n\nexport const FusedConv2D = 'FusedConv2D';\nexport interface FusedConv2DInputs extends NamedTensorInfoMap {\n x: TensorInfo;\n filter: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\nexport interface FusedConv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode: 'floor'|'round'|'ceil';\n activation: Activation;\n leakyreluAlpha?: number;\n}\n\nexport const FusedDepthwiseConv2D = 'FusedDepthwiseConv2D';\nexport interface FusedDepthwiseConv2DInputs extends NamedTensorInfoMap {\n x: TensorInfo;\n filter: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\nexport interface FusedDepthwiseConv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode: 'floor'|'round'|'ceil';\n activation: Activation;\n leakyreluAlpha?: number;\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {env} from './environment';\n\nimport {getGlobal} from './global_util';\nimport {NamedGradientMap} from './tape';\nimport {Tensor} from './tensor';\nimport {DataType, RecursiveArray} from './types';\n\nconst kernelRegistry =\n getGlobal('kernelRegistry', () => new Map());\nconst gradRegistry =\n getGlobal('gradRegistry', () => new Map());\n\nexport type DataId = object;\n\ntype AttributeValue =\n number|number[]|boolean|boolean[]|string|string[]|NamedAttrMap;\n\n/** These are extra non-tensor/primitive params passed to kernel functions. */\nexport type Attribute = AttributeValue|RecursiveArray;\n\n/** Specifies the code to run when executing a kernel. */\nexport type KernelFunc = (params: {\n inputs: NamedTensorInfoMap,\n backend: {},\n attrs?: NamedAttrMap,\n}) => TensorInfo|TensorInfo[];\n\n/** The function to run when computing a gradient during backprop. */\nexport type GradFunc =\n (dy: Tensor|Tensor[], saved: Tensor[], attrs: NamedAttrMap) =>\n NamedGradientMap;\n\n/** Function that gets called after the backend initializes. */\nexport type KernelSetupFunc = (backend: {}) => void;\n/** Function that gets called right before the backend is disposed. */\nexport type KernelDisposeFunc = KernelSetupFunc;\n\n/** Config object for registering a kernel in the global registry. */\nexport interface KernelConfig {\n kernelName: string;\n backendName: string;\n kernelFunc: KernelFunc;\n setupFunc?: KernelSetupFunc;\n disposeFunc?: KernelDisposeFunc;\n}\n\n/** Config object for registering a gradient in the global registry. */\nexport interface GradConfig {\n kernelName: string;\n inputsToSave?: string[];\n // When saveAllInputs is true, all inputs will be saved. Only use this flag\n // if inputs is an array of Tensors.\n saveAllInputs?: boolean;\n outputsToSave?: boolean[];\n gradFunc: GradFunc;\n}\n\n/** Holds metadata for a given tensor. */\nexport interface TensorInfo {\n dataId: DataId;\n shape: number[];\n dtype: DataType;\n}\n\nexport interface NamedTensorInfoMap {\n [name: string]: TensorInfo;\n}\n\nexport interface NamedAttrMap {\n [name: string]: Attribute;\n}\n\n/**\n * Returns the kernel function (code) associated with the provided names.\n *\n * @param kernelName The official name of the kernel.\n * @param backendName The official name of the backend.\n */\nexport function getKernel(\n kernelName: string, backendName: string): KernelConfig {\n const key = makeKey(kernelName, backendName);\n return kernelRegistry.get(key);\n}\n\n/**\n * Returns the registered gradient info associated with the provided kernel.\n * @param kernelName The official TF kernel name.\n */\nexport function getGradient(kernelName: string): GradConfig {\n return gradRegistry.get(kernelName);\n}\n\nexport function getKernelsForBackend(backendName: string): KernelConfig[] {\n const it = kernelRegistry.entries();\n const result: KernelConfig[] = [];\n\n while (true) {\n const {done, value} = it.next();\n if (done) {\n break;\n }\n const [key, config] = value;\n const [backend, ] = key.split('_');\n if (backend === backendName) {\n result.push(config);\n }\n }\n return result;\n}\n\n/**\n * Registers the function (forward pass) for the kernel in a global registry.\n *\n * @param config A config object with the following properties:\n * - `kernelName` The official name of the kernel.\n * - `backendName` The official name of the backend.\n * - `kernelFunc` The function to run during the forward pass of the kernel.\n * - `setupFunc` Optional. Gets called once, after the backend initializes.\n * - `disposeFunc` Optional. Gets called once, right before the backend is\n * disposed.\n */\nexport function registerKernel(config: KernelConfig) {\n const {kernelName, backendName} = config;\n const key = makeKey(kernelName, backendName);\n if (kernelRegistry.has(key)) {\n console.warn(\n `The kernel '${kernelName}' for backend ` +\n `'${backendName}' is already registered`);\n }\n kernelRegistry.set(key, config);\n}\n\n/**\n * Registers a gradient function for a given kernel in the global registry,\n * to be used during the back-propagation of that kernel.\n *\n * @param config An object with the following properties:\n * - `kernelName` The name of the kernel that the gradient function is for.\n * - `gradFunc` The function to run during back-propagation.\n */\nexport function registerGradient(config: GradConfig) {\n const {kernelName} = config;\n\n if (gradRegistry.has(kernelName)) {\n // TODO (yassogba) after 3.0 assess whether we need to keep this gated\n // to debug mode.\n if (env().getBool('DEBUG')) {\n console.warn(`Overriding the gradient for '${kernelName}'`);\n }\n }\n gradRegistry.set(kernelName, config);\n}\n\n/**\n * Removes the kernel function from the registry.\n *\n * @param kernelName The official name of the kernel.\n * @param backendName The official name of the backend.\n *\n */\nexport function unregisterKernel(\n kernelName: string, backendName: string): void {\n const key = makeKey(kernelName, backendName);\n if (!kernelRegistry.has(key)) {\n throw new Error(\n `The kernel '${kernelName}' for backend ` +\n `'${backendName}' is not registered`);\n }\n kernelRegistry.delete(key);\n}\n\n/** Removes the registered gradient from the global registry. */\nexport function unregisterGradient(kernelName: string): void {\n if (!gradRegistry.has(kernelName)) {\n throw new Error(\n `The gradient '${kernelName}' for backend is not registered`);\n }\n gradRegistry.delete(kernelName);\n}\n\n/**\n * Finds kernels that have already been registered to a backend and re-registers\n * them for a new backend. Useful for registering custom backends.\n * @param registeredBackendName Already registered backend.\n * @param newBackendName New backend.\n */\nexport function copyRegisteredKernels(\n registeredBackendName: string, newBackendName: string): void {\n const kernels = getKernelsForBackend(registeredBackendName);\n kernels.forEach(kernelConfig => {\n const newKernelConfig =\n Object.assign({}, kernelConfig, {backendName: newBackendName});\n registerKernel(newKernelConfig);\n });\n}\n\nfunction makeKey(kernelName: string, backendName: string) {\n return `${backendName}_${kernelName}`;\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {env} from './environment';\nimport {BackendValues, DataType, TensorLike, TypedArray} from './types';\nimport * as base from './util_base';\nexport * from './util_base';\n\n/**\n * Create typed array for scalar value. Used for storing in `DataStorage`.\n */\nexport function createScalarValue(\n value: DataType, dtype: DataType): BackendValues {\n if (dtype === 'string') {\n return encodeString(value);\n }\n\n return toTypedArray([value], dtype);\n}\n\nfunction noConversionNeeded(a: TensorLike, dtype: DataType): boolean {\n return (a instanceof Float32Array && dtype === 'float32') ||\n (a instanceof Int32Array && dtype === 'int32') ||\n (a instanceof Uint8Array && dtype === 'bool');\n}\n\nexport function toTypedArray(a: TensorLike, dtype: DataType): TypedArray {\n if (dtype === 'string') {\n throw new Error('Cannot convert a string[] to a TypedArray');\n }\n if (Array.isArray(a)) {\n a = base.flatten(a);\n }\n\n if (env().getBool('DEBUG')) {\n base.checkConversionForErrors(a as number[], dtype);\n }\n if (noConversionNeeded(a, dtype)) {\n return a as TypedArray;\n }\n if (dtype == null || dtype === 'float32' || dtype === 'complex64') {\n return new Float32Array(a as number[]);\n } else if (dtype === 'int32') {\n return new Int32Array(a as number[]);\n } else if (dtype === 'bool') {\n const bool = new Uint8Array((a as number[]).length);\n for (let i = 0; i < bool.length; ++i) {\n if (Math.round((a as number[])[i]) !== 0) {\n bool[i] = 1;\n }\n }\n return bool;\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\n/**\n * Returns the current high-resolution time in milliseconds relative to an\n * arbitrary time in the past. It works across different platforms (node.js,\n * browsers).\n *\n * ```js\n * console.log(tf.util.now());\n * ```\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function now(): number {\n return env().platform.now();\n}\n\n/**\n * Returns a platform-specific implementation of\n * [`fetch`](https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API).\n *\n * If `fetch` is defined on the global object (`window`, `process`, etc.),\n * `tf.util.fetch` returns that function.\n *\n * If not, `tf.util.fetch` returns a platform-specific solution.\n *\n * ```js\n * const resource = await tf.util.fetch('https://unpkg.com/@tensorflow/tfjs');\n * // handle response\n * ```\n *\n * @doc {heading: 'Util'}\n */\nexport function fetch(\n path: string, requestInits?: RequestInit): Promise {\n return env().platform.fetch(path, requestInits);\n}\n\n/**\n * Encodes the provided string into bytes using the provided encoding scheme.\n *\n * @param s The string to encode.\n * @param encoding The encoding scheme. Defaults to utf-8.\n *\n * @doc {heading: 'Util'}\n */\nexport function encodeString(s: string, encoding = 'utf-8'): Uint8Array {\n encoding = encoding || 'utf-8';\n return env().platform.encode(s, encoding);\n}\n\n/**\n * Decodes the provided bytes into a string using the provided encoding scheme.\n * @param bytes The bytes to decode.\n *\n * @param encoding The encoding scheme. Defaults to utf-8.\n *\n * @doc {heading: 'Util'}\n */\nexport function decodeString(bytes: Uint8Array, encoding = 'utf-8'): string {\n encoding = encoding || 'utf-8';\n return env().platform.decode(bytes, encoding);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {BackendTimer, BackendTimingInfo} from './backends/backend';\nimport {env} from './environment';\nimport {Tensor} from './tensor';\nimport {NamedTensorMap} from './tensor_types';\nimport {DataType, DataTypeMap, TypedArray} from './types';\nimport * as util from './util';\n\nexport type KernelProfile = {\n kernelName: string,\n outputs: Tensor[],\n inputs: NamedTensorMap,\n timeMs: Promise,\n extraInfo: Promise\n};\n\nexport class Profiler {\n constructor(private backendTimer: BackendTimer, private logger?: Logger) {\n if (logger == null) {\n this.logger = new Logger();\n }\n }\n\n profileKernel(kernelName: string, inputs: NamedTensorMap, f: () => Tensor[]):\n KernelProfile {\n let outputs: Tensor[];\n const holdResultWrapperFn = () => {\n outputs = f();\n };\n let timer: Promise;\n const start = util.now();\n if (this.backendTimer.timerAvailable()) {\n timer = this.backendTimer.time(holdResultWrapperFn);\n } else {\n holdResultWrapperFn();\n for (const output of outputs) {\n output.dataSync();\n }\n timer = Promise.resolve({kernelMs: util.now() - start});\n }\n if (env().getBool('CHECK_COMPUTATION_FOR_ERRORS')) {\n for (let i = 0; i < outputs.length; i++) {\n const output = outputs[i];\n // Dangling promise here because we don't want to propagate up\n // asynchronicity.\n output.data().then(tensorVals => {\n checkComputationForErrors(tensorVals, output.dtype, kernelName);\n });\n }\n }\n\n const kernelProfile = {\n kernelName,\n outputs,\n inputs,\n timeMs: timer.then(timing => timing.kernelMs),\n extraInfo: timer.then(\n timing => timing.getExtraProfileInfo != null ?\n timing.getExtraProfileInfo() :\n '')\n };\n return kernelProfile;\n }\n\n logKernelProfile(kernelProfile: KernelProfile): void {\n const {kernelName, outputs, timeMs, inputs, extraInfo} = kernelProfile;\n\n outputs.forEach(result => {\n Promise.all([result.data(), timeMs, extraInfo]).then(valueContainer => {\n this.logger.logKernelProfile(\n kernelName, result, valueContainer[0], valueContainer[1], inputs,\n valueContainer[2]);\n });\n });\n }\n}\n\nexport function checkComputationForErrors(\n vals: DataTypeMap[D], dtype: D, kernelName: string): boolean {\n if (dtype !== 'float32') {\n // Only floating point computations will generate NaN values\n return false;\n }\n for (let i = 0; i < vals.length; i++) {\n const num = vals[i] as number;\n if (isNaN(num) || !isFinite(num)) {\n // Throwing custom exception so behavior is testable.\n console.warn(`Found ${num} in the result of '${kernelName}'`);\n return true;\n }\n }\n return false;\n}\n\nexport class Logger {\n logKernelProfile(\n name: string, result: Tensor, vals: TypedArray,\n timeMs: number|{error: string}, inputs: NamedTensorMap,\n extraInfo?: string) {\n const time = typeof timeMs === 'number' ? util.rightPad(`${timeMs}ms`, 9) :\n timeMs['error'];\n const paddedName = util.rightPad(name, 25);\n const rank = result.rank;\n const size = result.size;\n const shape = util.rightPad(result.shape.toString(), 14);\n let inputShapesDescription = '';\n\n for (const name in inputs) {\n const input = inputs[name];\n if (input != null) {\n // The input might be a non-tensor (e.g HTMLImageElement), in which case\n // we claim the output shape as input shape.\n const inputShape = input.shape || result.shape;\n const inputRank = inputShape.length;\n inputShapesDescription +=\n `${name}: ${inputRank}D ${inputRank > 0 ? inputShape : ''} `;\n }\n }\n\n console.log(\n `%c${paddedName}\\t%c${time}\\t%c${rank}D ${shape}\\t%c${size}\\t%c${\n inputShapesDescription}\\t%c${extraInfo}`,\n 'font-weight:bold', 'color:red', 'color:blue', 'color: orange',\n 'color: green', 'color: steelblue');\n }\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from './tensor';\nimport {NamedTensorMap} from './tensor_types';\nimport * as util from './util';\n\nexport interface TapeNode {\n id: number;\n kernelName: string;\n outputs: Tensor[];\n inputs: NamedTensorMap;\n // Optional params, defined only for ops with gradient impl.\n gradient?: (dys: Tensor[]) => NamedGradientMap;\n saved?: Tensor[];\n}\n\nexport type NamedGradientMap = {\n [inputName: string]: () => Tensor;\n};\n\n/**\n * Computes a list of TapeNodes that connect x to y, filtering everything else\n * out and preserving the order of the original tape elements.\n *\n * @param tape The tape elements to filter.\n * @param xs The input Tensors.\n * @param y The output Tensor.\n */\nexport function getFilteredNodesXToY(\n tape: TapeNode[], xs: Tensor[], y: Tensor): TapeNode[] {\n // Forward pass to compute all the nodes and Tensors that are transitively a\n // function of x.\n const tensorsFromX: {[tensorId: number]: boolean} = {};\n const nodesFromX: {[nodeId: number]: boolean} = {};\n for (let i = 0; i < xs.length; i++) {\n tensorsFromX[xs[i].id] = true;\n }\n\n for (let i = 0; i < tape.length; i++) {\n const node = tape[i];\n const nodeInputs = node.inputs;\n for (const inputName in nodeInputs) {\n const input = nodeInputs[inputName];\n\n let anyInputFromX = false;\n for (let j = 0; j < xs.length; j++) {\n if (tensorsFromX[input.id]) {\n node.outputs.forEach(output => tensorsFromX[output.id] = true);\n anyInputFromX = true;\n nodesFromX[node.id] = true;\n break;\n }\n }\n\n if (anyInputFromX) {\n break;\n }\n }\n }\n\n // Backward pass to find all of the nodes and Tensors that lead to y.\n const tensorsLeadToY: {[tensorId: number]: boolean} = {};\n tensorsLeadToY[y.id] = true;\n const nodesToY: {[nodeId: number]: boolean} = {};\n\n for (let i = tape.length - 1; i >= 0; i--) {\n const node = tape[i];\n const nodeInputs = node.inputs;\n\n // If any of the outputs lead to y, mark all of the inputs as leading to y.\n for (let j = 0; j < node.outputs.length; j++) {\n if (tensorsLeadToY[node.outputs[j].id]) {\n for (const inputName in nodeInputs) {\n tensorsLeadToY[nodeInputs[inputName].id] = true;\n nodesToY[node.id] = true;\n }\n break;\n }\n }\n }\n\n // Return the paths that come from x and lead to y.\n const filteredTape: TapeNode[] = [];\n for (let i = 0; i < tape.length; i++) {\n const node = tape[i];\n\n if (nodesFromX[node.id] && nodesToY[node.id]) {\n // Prune the inputs from the node that aren't a function of x.\n const prunedInputs: {[inputName: string]: Tensor} = {};\n for (const inputName in node.inputs) {\n const nodeInput = node.inputs[inputName];\n if (tensorsFromX[nodeInput.id]) {\n prunedInputs[inputName] = nodeInput;\n }\n }\n\n // Copy the node and overwrite inputsAndArgs to the pruned version.\n const prunedNode = Object.assign({}, node);\n prunedNode.inputs = prunedInputs;\n prunedNode.outputs = node.outputs;\n\n filteredTape.push(prunedNode);\n }\n }\n\n return filteredTape;\n}\n\n/**\n * Backpropagate gradients through the filtered TapeNodes.\n *\n * @param tensorAccumulatedGradientMap A map of Tensor to its gradient. This map\n * is mutated by this method.\n * @param filteredTape The filtered TapeNodes to backprop through.\n */\nexport function backpropagateGradients(\n tensorAccumulatedGradientMap: {[tensorId: number]: Tensor},\n filteredTape: TapeNode[], tidy: (f: Function) => Tensor,\n add: (a: Tensor, b: Tensor) => Tensor) {\n // Walk the tape backward and keep a map of Tensor to its gradient.\n for (let i = filteredTape.length - 1; i >= 0; i--) {\n const node = filteredTape[i];\n\n const dys: Tensor[] = [];\n node.outputs.forEach(o => {\n const gradTensor = tensorAccumulatedGradientMap[o.id];\n if (gradTensor != null) {\n dys.push(gradTensor);\n } else {\n // This particular output is not in the back-propagation subgraph, so it\n // does not affect the final output, thus we put null for its dy.\n dys.push(null);\n }\n });\n\n if (node.gradient == null) {\n throw new Error(\n `Cannot compute gradient: gradient function not found ` +\n `for ${node.kernelName}.`);\n }\n\n // Backprop dy through this node and accumulate gradients over the inputs.\n const inputGradients = node.gradient(dys);\n\n for (const inputName in node.inputs) {\n if (!(inputName in inputGradients)) {\n throw new Error(\n `Cannot backprop through input ${inputName}. ` +\n `Available gradients found: ${Object.keys(inputGradients)}.`);\n }\n\n // Call the gradient function.\n const dx = tidy(() => inputGradients[inputName]());\n if (dx.dtype !== 'float32') {\n throw new Error(\n `Error in gradient for op ${\n node.kernelName}. The gradient of input ` +\n `${inputName} must have 'float32' dtype, but has '${dx.dtype}'`);\n }\n const x = node.inputs[inputName];\n if (!util.arraysEqual(dx.shape, x.shape)) {\n throw new Error(\n `Error in gradient for op ${\n node.kernelName}. The gradient of input ` +\n `'${inputName}' has shape '${dx.shape}', which does not match ` +\n `the shape of the input '${x.shape}'`);\n }\n\n if (tensorAccumulatedGradientMap[x.id] == null) {\n tensorAccumulatedGradientMap[x.id] = dx;\n } else {\n const curGradient = tensorAccumulatedGradientMap[x.id];\n tensorAccumulatedGradientMap[x.id] = add(curGradient, dx);\n curGradient.dispose();\n }\n }\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {DataType, TypedArray} from './types';\nimport {computeStrides, isString, rightPad, sizeFromShape} from './util';\n\n// Maximum number of values before we decide to show ellipsis.\nconst FORMAT_LIMIT_NUM_VALS = 20;\n// Number of first and last values to show when displaying a, b,...,y, z.\nconst FORMAT_NUM_FIRST_LAST_VALS = 3;\n// Number of significant digits to show.\nconst FORMAT_NUM_SIG_DIGITS = 7;\n\nexport function tensorToString(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n verbose: boolean) {\n const strides = computeStrides(shape);\n const padPerCol = computeMaxSizePerColumn(vals, shape, dtype, strides);\n const rank = shape.length;\n const valsLines = subTensorToString(vals, shape, dtype, strides, padPerCol);\n const lines = ['Tensor'];\n if (verbose) {\n lines.push(` dtype: ${dtype}`);\n lines.push(` rank: ${rank}`);\n lines.push(` shape: [${shape}]`);\n lines.push(` values:`);\n }\n lines.push(valsLines.map(l => ' ' + l).join('\\n'));\n return lines.join('\\n');\n}\n\nfunction computeMaxSizePerColumn(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n strides: number[]): number[] {\n const n = sizeFromShape(shape);\n const numCols = strides[strides.length - 1];\n const padPerCol = new Array(numCols).fill(0);\n const rank = shape.length;\n const valuesOrTuples =\n dtype === 'complex64' ? createComplexTuples(vals) : vals;\n\n if (rank > 1) {\n for (let row = 0; row < n / numCols; row++) {\n const offset = row * numCols;\n for (let j = 0; j < numCols; j++) {\n padPerCol[j] = Math.max(\n padPerCol[j],\n valToString(valuesOrTuples[offset + j], 0, dtype).length);\n }\n }\n }\n return padPerCol;\n}\n\nfunction valToString(\n val: number|string|[number, number], pad: number, dtype: DataType) {\n let valStr: string;\n if (Array.isArray(val)) {\n valStr = `${parseFloat(val[0].toFixed(FORMAT_NUM_SIG_DIGITS))} + ` +\n `${parseFloat(val[1].toFixed(FORMAT_NUM_SIG_DIGITS))}j`;\n } else if (isString(val)) {\n valStr = `'${val}'`;\n } else if (dtype === 'bool') {\n valStr = boolNumToString(val);\n } else {\n valStr = parseFloat(val.toFixed(FORMAT_NUM_SIG_DIGITS)).toString();\n }\n\n return rightPad(valStr, pad);\n}\n\nfunction boolNumToString(v: number): string {\n return v === 0 ? 'false' : 'true';\n}\n\nfunction subTensorToString(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n strides: number[], padPerCol: number[], isLast = true): string[] {\n const storagePerElement = dtype === 'complex64' ? 2 : 1;\n\n const size = shape[0];\n const rank = shape.length;\n if (rank === 0) {\n if (dtype === 'complex64') {\n const complexTuple = createComplexTuples(vals);\n return [valToString(complexTuple[0], 0, dtype)];\n }\n if (dtype === 'bool') {\n return [boolNumToString(vals[0] as number)];\n }\n return [vals[0].toString()];\n }\n\n if (rank === 1) {\n if (size > FORMAT_LIMIT_NUM_VALS) {\n const firstValsSize = FORMAT_NUM_FIRST_LAST_VALS * storagePerElement;\n\n let firstVals = Array.from(\n vals.slice(0, firstValsSize));\n let lastVals = Array.from(vals.slice(\n (size - FORMAT_NUM_FIRST_LAST_VALS) * storagePerElement,\n size * storagePerElement));\n if (dtype === 'complex64') {\n firstVals = createComplexTuples(firstVals);\n lastVals = createComplexTuples(lastVals);\n }\n return [\n '[' +\n firstVals.map((x, i) => valToString(x, padPerCol[i], dtype))\n .join(', ') +\n ', ..., ' +\n lastVals\n .map(\n (x, i) => valToString(\n x, padPerCol[size - FORMAT_NUM_FIRST_LAST_VALS + i], dtype))\n .join(', ') +\n ']'\n ];\n }\n const displayVals: Array =\n dtype === 'complex64' ? createComplexTuples(vals) :\n Array.from(vals);\n\n return [\n '[' +\n displayVals.map((x, i) => valToString(x, padPerCol[i], dtype))\n .join(', ') +\n ']'\n ];\n }\n\n // The array is rank 2 or more.\n const subshape = shape.slice(1);\n const substrides = strides.slice(1);\n const stride = strides[0] * storagePerElement;\n const lines: string[] = [];\n if (size > FORMAT_LIMIT_NUM_VALS) {\n for (let i = 0; i < FORMAT_NUM_FIRST_LAST_VALS; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n false /* isLast */));\n }\n lines.push('...');\n for (let i = size - FORMAT_NUM_FIRST_LAST_VALS; i < size; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n i === size - 1 /* isLast */));\n }\n } else {\n for (let i = 0; i < size; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n i === size - 1 /* isLast */));\n }\n }\n const sep = rank === 2 ? ',' : '';\n lines[0] = '[' + lines[0] + sep;\n for (let i = 1; i < lines.length - 1; i++) {\n lines[i] = ' ' + lines[i] + sep;\n }\n let newLineSep = ',\\n';\n for (let i = 2; i < rank; i++) {\n newLineSep += '\\n';\n }\n lines[lines.length - 1] =\n ' ' + lines[lines.length - 1] + ']' + (isLast ? '' : newLineSep);\n return lines;\n}\n\nfunction createComplexTuples(vals: Array<{}>|\n TypedArray): Array<[number, number]> {\n const complexTuples: Array<[number, number]> = [];\n for (let i = 0; i < vals.length; i += 2) {\n complexTuples.push([vals[i], vals[i + 1]] as [number, number]);\n }\n return complexTuples;\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {getGlobal} from './global_util';\nimport {tensorToString} from './tensor_format';\nimport {ArrayMap, BackendValues, DataType, DataTypeMap, DataValues, NumericDataType, Rank, ShapeMap, SingleValueMap, TypedArray} from './types';\nimport * as util from './util';\nimport {computeStrides, toNestedArray} from './util';\n\nexport interface TensorData {\n dataId?: DataId;\n values?: DataTypeMap[D];\n}\n\n// This interface mimics KernelBackend (in backend.ts), which would create a\n// circular dependency if imported.\nexport interface Backend {}\n\n/**\n * A mutable object, similar to `tf.Tensor`, that allows users to set values\n * at locations before converting to an immutable `tf.Tensor`.\n *\n * See `tf.buffer` for creating a tensor buffer.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class TensorBuffer {\n size: number;\n shape: ShapeMap[R];\n strides: number[];\n values: DataTypeMap[D];\n\n constructor(shape: ShapeMap[R], public dtype: D, values?: DataTypeMap[D]) {\n this.shape = shape.slice() as ShapeMap[R];\n this.size = util.sizeFromShape(shape);\n\n if (values != null) {\n const n = values.length;\n util.assert(\n n === this.size,\n () => `Length of values '${n}' does not match the size ` +\n `inferred by the shape '${this.size}'.`);\n }\n if (dtype === 'complex64') {\n throw new Error(\n `complex64 dtype TensorBuffers are not supported. Please create ` +\n `a TensorBuffer for the real and imaginary parts separately and ` +\n `call tf.complex(real, imag).`);\n }\n this.values = values || util.getArrayFromDType(dtype, this.size);\n this.strides = computeStrides(shape);\n }\n\n /**\n * Sets a value in the buffer at a given location.\n *\n * @param value The value to set.\n * @param locs The location indices.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n set(value: SingleValueMap[D], ...locs: number[]): void {\n if (locs.length === 0) {\n locs = [0];\n }\n util.assert(\n locs.length === this.rank,\n () => `The number of provided coordinates (${locs.length}) must ` +\n `match the rank (${this.rank})`);\n\n const index = this.locToIndex(locs);\n this.values[index] = value as number;\n }\n\n /**\n * Returns the value in the buffer at the provided location.\n *\n * @param locs The location indices.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n get(...locs: number[]): SingleValueMap[D] {\n if (locs.length === 0) {\n locs = [0];\n }\n let i = 0;\n for (const loc of locs) {\n if (loc < 0 || loc >= this.shape[i]) {\n const msg = `Requested out of range element at ${locs}. ` +\n ` Buffer shape=${this.shape}`;\n throw new Error(msg);\n }\n i++;\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += this.strides[i] * locs[i];\n }\n return this.values[index] as SingleValueMap[D];\n }\n\n locToIndex(locs: number[]): number {\n if (this.rank === 0) {\n return 0;\n } else if (this.rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += this.strides[i] * locs[i];\n }\n return index;\n }\n\n indexToLoc(index: number): number[] {\n if (this.rank === 0) {\n return [];\n } else if (this.rank === 1) {\n return [index];\n }\n const locs: number[] = new Array(this.shape.length);\n for (let i = 0; i < locs.length - 1; ++i) {\n locs[i] = Math.floor(index / this.strides[i]);\n index -= locs[i] * this.strides[i];\n }\n locs[locs.length - 1] = index;\n return locs;\n }\n\n get rank() {\n return this.shape.length;\n }\n\n /**\n * Creates an immutable `tf.Tensor` object from the buffer.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n toTensor(): Tensor {\n return trackerFn().makeTensor(this.values, this.shape, this.dtype) as\n Tensor;\n }\n}\n\nexport interface TensorTracker {\n makeTensor(\n values: DataValues, shape: number[], dtype: DataType,\n backend?: Backend): Tensor;\n makeVariable(\n initialValue: Tensor, trainable?: boolean, name?: string,\n dtype?: DataType): Variable;\n incRef(a: Tensor, backend: Backend): void;\n disposeTensor(t: Tensor): void;\n disposeVariable(v: Variable): void;\n read(dataId: DataId): Promise;\n readSync(dataId: DataId): BackendValues;\n}\n\n/**\n * The Tensor class calls into this handler to delegate chaining operations.\n */\nexport interface OpHandler {\n cast(x: T, dtype: DataType): T;\n buffer(\n shape: ShapeMap[R], dtype: D,\n values?: DataTypeMap[D]): TensorBuffer;\n print(x: T, verbose: boolean): void;\n clone(x: T): T;\n // TODO(yassogba) bring reshape back?\n}\n\n// For tracking tensor creation and disposal.\nlet trackerFn: () => TensorTracker = null;\n// Used by chaining methods to call into ops.\nlet opHandler: OpHandler = null;\n// Used to warn about deprecated methods.\nlet deprecationWarningFn: (msg: string) => void = null;\n// This here so that we can use this method on dev branches and keep the\n// functionality at master.\n// tslint:disable-next-line:no-unused-expression\n[deprecationWarningFn];\n\n/**\n * An external consumer can register itself as the tensor tracker. This way\n * the Tensor class can notify the tracker for every tensor created and\n * disposed.\n */\nexport function setTensorTracker(fn: () => TensorTracker) {\n trackerFn = fn;\n}\n\n/**\n * An external consumer can register itself as the op handler. This way the\n * Tensor class can have chaining methods that call into ops via the op\n * handler.\n */\nexport function setOpHandler(handler: OpHandler) {\n opHandler = handler;\n}\n\n/**\n * Sets the deprecation warning function to be used by this file. This way the\n * Tensor class can be a leaf but still use the environment.\n */\nexport function setDeprecationWarningFn(fn: (msg: string) => void) {\n deprecationWarningFn = fn;\n}\n\n/**\n * We wrap data id since we use weak map to avoid memory leaks.\n * Since we have our own memory management, we have a reference counter\n * mapping a tensor to its data, so there is always a pointer (even if that\n * data is otherwise garbage collectable).\n * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/\n * Global_Objects/WeakMap\n */\nexport type DataId = object; // object instead of {} to force non-primitive.\n\n// Declare this namespace to make Tensor class augmentation work in google3.\nexport declare namespace Tensor {}\n/**\n * A `tf.Tensor` object represents an immutable, multidimensional array of\n * numbers that has a shape and a data type.\n *\n * For performance reasons, functions that create tensors do not necessarily\n * perform a copy of the data passed to them (e.g. if the data is passed as a\n * `Float32Array`), and changes to the data will change the tensor. This is not\n * a feature and is not supported. To avoid this behavior, use the tensor before\n * changing the input data or create a copy with `copy = tf.add(yourTensor, 0)`.\n *\n * See `tf.tensor` for details on how to create a `tf.Tensor`.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class Tensor {\n /** Unique id of this tensor. */\n readonly id: number;\n /**\n * Id of the bucket holding the data for this tensor. Multiple arrays can\n * point to the same bucket (e.g. when calling array.reshape()).\n */\n dataId: DataId;\n /** The shape of the tensor. */\n readonly shape: ShapeMap[R];\n /** Number of elements in the tensor. */\n readonly size: number;\n /** The data type for the array. */\n readonly dtype: DataType;\n /** The rank type for the array (see `Rank` enum). */\n readonly rankType: R;\n\n /** Whether this tensor has been globally kept. */\n kept = false;\n /** The id of the scope this tensor is being tracked in. */\n scopeId: number;\n\n /**\n * Number of elements to skip in each dimension when indexing. See\n * https://docs.scipy.org/doc/numpy/reference/generated/\\\n * numpy.ndarray.strides.html\n */\n readonly strides: number[];\n\n constructor(shape: ShapeMap[R], dtype: DataType, dataId: DataId, id: number) {\n this.shape = shape.slice() as ShapeMap[R];\n this.dtype = dtype || 'float32';\n this.size = util.sizeFromShape(shape);\n this.strides = computeStrides(shape);\n this.dataId = dataId;\n this.id = id;\n this.rankType = (this.rank < 5 ? this.rank.toString() : 'higher') as R;\n }\n\n get rank(): number {\n return this.shape.length;\n }\n\n /**\n * Returns a promise of `tf.TensorBuffer` that holds the underlying data.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async buffer(): Promise> {\n const vals = await this.data();\n return opHandler.buffer(this.shape, this.dtype as D, vals);\n }\n\n /**\n * Returns a `tf.TensorBuffer` that holds the underlying data.\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n bufferSync(): TensorBuffer {\n return opHandler.buffer(this.shape, this.dtype as D, this.dataSync());\n }\n\n /**\n * Returns the tensor data as a nested array. The transfer of data is done\n * asynchronously.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async array(): Promise {\n const vals = await this.data();\n return toNestedArray(this.shape, vals, this.dtype === 'complex64') as\n ArrayMap[R];\n }\n\n /**\n * Returns the tensor data as a nested array. The transfer of data is done\n * synchronously.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n arraySync(): ArrayMap[R] {\n return toNestedArray(\n this.shape, this.dataSync(), this.dtype === 'complex64') as\n ArrayMap[R];\n }\n\n /**\n * Asynchronously downloads the values from the `tf.Tensor`. Returns a\n * promise of `TypedArray` that resolves when the computation has finished.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async data(): Promise {\n this.throwIfDisposed();\n const data = trackerFn().read(this.dataId);\n if (this.dtype === 'string') {\n const bytes = await data as Uint8Array[];\n try {\n return bytes.map(b => util.decodeString(b)) as DataTypeMap[D];\n } catch {\n throw new Error(\n 'Failed to decode the string bytes into utf-8. ' +\n 'To get the original bytes, call tensor.bytes().');\n }\n }\n return data as Promise;\n }\n\n /**\n * Synchronously downloads the values from the `tf.Tensor`. This blocks the\n * UI thread until the values are ready, which can cause performance issues.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n dataSync(): DataTypeMap[D] {\n this.throwIfDisposed();\n const data = trackerFn().readSync(this.dataId);\n if (this.dtype === 'string') {\n try {\n return (data as Uint8Array[]).map(b => util.decodeString(b)) as\n DataTypeMap[D];\n } catch {\n throw new Error(\n 'Failed to decode the string bytes into utf-8. ' +\n 'To get the original bytes, call tensor.bytes().');\n }\n }\n return data as DataTypeMap[D];\n }\n\n /** Returns the underlying bytes of the tensor's data. */\n async bytes(): Promise {\n this.throwIfDisposed();\n const data = await trackerFn().read(this.dataId);\n if (this.dtype === 'string') {\n return data as Uint8Array[];\n } else {\n return new Uint8Array((data as TypedArray).buffer);\n }\n }\n\n /**\n * Disposes `tf.Tensor` from memory.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n dispose(): void {\n if (this.isDisposed) {\n return;\n }\n trackerFn().disposeTensor(this);\n this.isDisposedInternal = true;\n }\n\n protected isDisposedInternal = false;\n get isDisposed(): boolean {\n return this.isDisposedInternal;\n }\n\n throwIfDisposed() {\n if (this.isDisposed) {\n throw new Error(`Tensor is disposed.`);\n }\n }\n\n /**\n * Prints the `tf.Tensor`. See `tf.print` for details.\n *\n * @param verbose Whether to print verbose information about the tensor,\n * including dtype and size.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n print(verbose = false): void {\n return opHandler.print(this, verbose);\n }\n\n /**\n * Returns a copy of the tensor. See `tf.clone` for details.\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n clone(this: T): T {\n this.throwIfDisposed();\n return opHandler.clone(this);\n }\n\n /**\n * Returns a human-readable description of the tensor. Useful for logging.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n toString(verbose = false): string {\n const vals = this.dataSync();\n return tensorToString(vals, this.shape, this.dtype, verbose);\n }\n\n cast(dtype: DataType): T {\n this.throwIfDisposed();\n return opHandler.cast(this as T, dtype);\n }\n variable(trainable = true, name?: string, dtype?: DataType): Variable {\n this.throwIfDisposed();\n return trackerFn().makeVariable(this, trainable, name, dtype) as\n Variable;\n }\n}\nObject.defineProperty(Tensor, Symbol.hasInstance, {\n value: (instance: Tensor) => {\n // Implementation note: we should use properties of the object that will be\n // defined before the constructor body has finished executing (methods).\n // This is because when this code is transpiled by babel, babel will call\n // classCallCheck before the constructor body is run.\n // See https://github.com/tensorflow/tfjs/issues/3384 for backstory.\n return !!instance && instance.data != null && instance.dataSync != null &&\n instance.throwIfDisposed != null;\n }\n});\n\nexport function getGlobalTensorClass() {\n // Use getGlobal so that we can augment the Tensor class across package\n // boundaries becase the node resolution alg may result in different modules\n // being returned for this file depending on the path they are loaded from.\n return getGlobal('Tensor', () => {\n return Tensor;\n });\n}\n\n// Global side effect. Cache global reference to Tensor class\ngetGlobalTensorClass();\n\nexport interface NumericTensor extends Tensor {\n dtype: NumericDataType;\n dataSync(): DataTypeMap[D];\n data(): Promise;\n}\n\nexport interface StringTensor extends Tensor {\n dtype: 'string';\n dataSync(): DataTypeMap[D];\n data(): Promise;\n}\n\n/** @doclink Tensor */\nexport type Scalar = Tensor;\n/** @doclink Tensor */\nexport type Tensor1D = Tensor;\n/** @doclink Tensor */\nexport type Tensor2D = Tensor;\n/** @doclink Tensor */\nexport type Tensor3D = Tensor;\n/** @doclink Tensor */\nexport type Tensor4D = Tensor;\n/** @doclink Tensor */\nexport type Tensor5D = Tensor;\n/** @doclink Tensor */\nexport type Tensor6D = Tensor;\n\n/**\n * A mutable `tf.Tensor`, useful for persisting state, e.g. for training.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class Variable extends Tensor {\n name: string;\n\n constructor(\n initialValue: Tensor, public trainable: boolean, name: string,\n tensorId: number) {\n super(\n initialValue.shape, initialValue.dtype, initialValue.dataId, tensorId);\n this.name = name;\n }\n\n /**\n * Assign a new `tf.Tensor` to this variable. The new `tf.Tensor` must have\n * the same shape and dtype as the old `tf.Tensor`.\n *\n * @param newValue New tensor to be assigned to this variable.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n assign(newValue: Tensor): void {\n if (newValue.dtype !== this.dtype) {\n throw new Error(\n `dtype of the new value (${newValue.dtype}) and ` +\n `previous value (${this.dtype}) must match`);\n }\n if (!util.arraysEqual(newValue.shape, this.shape)) {\n throw new Error(\n `shape of the new value (${newValue.shape}) and ` +\n `previous value (${this.shape}) must match`);\n }\n trackerFn().disposeTensor(this);\n this.dataId = newValue.dataId;\n trackerFn().incRef(this, null /* backend */);\n }\n\n dispose(): void {\n trackerFn().disposeVariable(this);\n this.isDisposedInternal = true;\n }\n}\n\nObject.defineProperty(Variable, Symbol.hasInstance, {\n value: (instance: Variable) => {\n return instance instanceof Tensor && instance.assign != null &&\n instance.assign instanceof Function;\n }\n});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from './tensor';\nimport {TensorContainer, TensorContainerArray} from './tensor_types';\nimport {upcastType} from './types';\nimport {assert} from './util';\n\nexport function makeTypesMatch(a: T, b: T): [T, T] {\n if (a.dtype === b.dtype) {\n return [a, b];\n }\n const dtype = upcastType(a.dtype, b.dtype);\n return [a.cast(dtype), b.cast(dtype)];\n}\n\nexport function assertTypesMatch(a: Tensor, b: Tensor): void {\n assert(\n a.dtype === b.dtype,\n () => `The dtypes of the first(${a.dtype}) and` +\n ` second(${b.dtype}) input must match`);\n}\n\nexport function isTensorInList(tensor: Tensor, tensorList: Tensor[]): boolean {\n return tensorList.some(x => x.id === tensor.id);\n}\n\n/**\n * Extracts any `Tensor`s found within the provided object.\n *\n * @param container an object that may be a `Tensor` or may directly contain\n * `Tensor`s, such as a `Tensor[]` or `{key: Tensor, ...}`. In general it\n * is safe to pass any object here, except that `Promise`s are not\n * supported.\n * @returns An array of `Tensors` found within the passed object. If the\n * argument is simply a `Tensor', a list containing that `Tensor` is\n * returned. If the object is not a `Tensor` or does not\n * contain `Tensors`, an empty list is returned.\n */\nexport function getTensorsInContainer(result: TensorContainer): Tensor[] {\n const list: Tensor[] = [];\n const seen = new Set<{}|void>();\n walkTensorContainer(result, list, seen);\n return list;\n}\n\nfunction walkTensorContainer(\n container: TensorContainer, list: Tensor[], seen: Set<{}|void>): void {\n if (container == null) {\n return;\n }\n if (container instanceof Tensor) {\n list.push(container);\n return;\n }\n if (!isIterable(container)) {\n return;\n }\n // Iteration over keys works also for arrays.\n const iterable = container as TensorContainerArray;\n for (const k in iterable) {\n const val = iterable[k];\n if (!seen.has(val)) {\n seen.add(val);\n walkTensorContainer(val, list, seen);\n }\n }\n}\n\n// tslint:disable-next-line:no-any\nfunction isIterable(obj: any): boolean {\n return Array.isArray(obj) || typeof obj === 'object';\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/** @docalias number[] */\nexport interface ShapeMap {\n R0: number[];\n R1: [number];\n R2: [number, number];\n R3: [number, number, number];\n R4: [number, number, number, number];\n R5: [number, number, number, number, number];\n R6: [number, number, number, number, number, number];\n}\n\n/** @docalias number[] */\nexport interface ArrayMap {\n R0: number;\n R1: number[];\n R2: number[][];\n R3: number[][][];\n R4: number[][][][];\n R5: number[][][][][];\n R6: number[][][][][][];\n}\n\nexport interface DataTypeMap {\n float32: Float32Array;\n int32: Int32Array;\n bool: Uint8Array;\n complex64: Float32Array;\n string: string[];\n}\n\nexport interface SingleValueMap {\n bool: boolean;\n int32: number;\n float32: number;\n complex64: number;\n string: string;\n}\n\n/** @docalias 'float32'|'int32'|'bool'|'complex64'|'string' */\nexport type DataType = keyof DataTypeMap;\nexport type NumericDataType = 'float32'|'int32'|'bool'|'complex64';\nexport type TypedArray = Float32Array|Int32Array|Uint8Array;\n/** Tensor data used in tensor creation and user-facing API. */\nexport type DataValues = DataTypeMap[DataType];\n/** The underlying tensor data that gets stored in a backend. */\nexport type BackendValues = Float32Array|Int32Array|Uint8Array|Uint8Array[];\n\nexport enum Rank {\n R0 = 'R0',\n R1 = 'R1',\n R2 = 'R2',\n R3 = 'R3',\n R4 = 'R4',\n R5 = 'R5',\n R6 = 'R6'\n}\n\nexport type FlatVector = boolean[]|number[]|TypedArray;\nexport type RegularArray =\n T[]|T[][]|T[][][]|T[][][][]|T[][][][][]|T[][][][][][];\n\n// tslint:disable-next-line:no-any\nexport interface RecursiveArray {\n [index: number]: T|RecursiveArray;\n}\n\n// Looks for upcasting types. Used, for example, in operations with mixed dtype\n// inputs.\nenum UpcastInt32AndMap {\n 'float32' = 'float32',\n 'int32' = 'int32',\n 'bool' = 'int32',\n 'complex64' = 'complex64'\n}\n\nenum UpcastBoolAndMap {\n 'float32' = 'float32',\n 'int32' = 'int32',\n 'bool' = 'bool',\n 'complex64' = 'complex64'\n}\n\nenum UpcastFloat32AndMap {\n 'float32' = 'float32',\n 'int32' = 'float32',\n 'bool' = 'float32',\n 'complex64' = 'complex64'\n}\n\nenum UpcastComplex64AndMap {\n 'float32' = 'complex64',\n 'int32' = 'complex64',\n 'bool' = 'complex64',\n 'complex64' = 'complex64'\n}\n\nconst upcastTypeMap = {\n 'float32': UpcastFloat32AndMap,\n 'int32': UpcastInt32AndMap,\n 'bool': UpcastBoolAndMap,\n 'complex64': UpcastComplex64AndMap\n};\n\nexport function upcastType(typeA: DataType, typeB: DataType): DataType {\n if (typeA === 'string' || typeB === 'string') {\n if (typeA === 'string' && typeB === 'string') {\n return 'string';\n }\n throw new Error(`Can not upcast ${typeA} with ${typeB}`);\n }\n return upcastTypeMap[typeA][typeB];\n}\n\n/** Returns the output type after summation. */\nexport function sumOutType(type: DataType): DataType {\n return upcastType(type, 'int32');\n}\n\n/** @docalias TypedArray|Array */\nexport type TensorLike =\n TypedArray|number|boolean|string|RecursiveArray|\n RecursiveArray|RecursiveArray|Uint8Array[];\nexport type ScalarLike = number|boolean|string|Uint8Array;\n/** @docalias TypedArray|Array */\nexport type TensorLike1D = TypedArray|number[]|boolean[]|string[]|Uint8Array[];\n/** @docalias TypedArray|Array */\nexport type TensorLike2D = TypedArray|number[]|number[][]|boolean[]|boolean[][]|\n string[]|string[][]|Uint8Array[]|Uint8Array[][];\n/** @docalias TypedArray|Array */\nexport type TensorLike3D = TypedArray|number[]|number[][][]|boolean[]|\n boolean[][][]|string[]|string[][][]|Uint8Array[]|Uint8Array[][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike4D = TypedArray|number[]|number[][][][]|boolean[]|\n boolean[][][][]|string[]|string[][][][]|Uint8Array[]|Uint8Array[][][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike5D =\n TypedArray|number[]|number[][][][][]|boolean[]|boolean[][][][][]|string[]|\n string[][][][][]|Uint8Array[]|Uint8Array[][][][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike6D =\n TypedArray|number[]|number[][][][][][]|boolean[]|boolean[][][][][][]|\n string[]|string[][][][][][]|Uint8Array[]|Uint8Array[][][][][];\n\n/** Type for representing image data in Uint8Array type. */\nexport interface PixelData {\n width: number;\n height: number;\n data: Uint8Array;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {BackendTimingInfo, DataMover, KernelBackend} from './backends/backend';\nimport {Environment, setEnvironmentGlobal} from './environment';\nimport {getGlobalNamespace} from './global_util';\nimport {Add, Cast, Identity} from './kernel_names';\nimport {getGradient, getKernel, getKernelsForBackend, GradFunc, NamedAttrMap, TensorInfo} from './kernel_registry';\nimport {KernelProfile, Profiler} from './profiler';\nimport {backpropagateGradients, getFilteredNodesXToY, TapeNode} from './tape';\nimport {DataId, setTensorTracker, Tensor, TensorTracker, Variable} from './tensor';\nimport {GradSaveFunc, NamedTensorMap, NamedVariableMap, TensorContainer} from './tensor_types';\nimport {getTensorsInContainer} from './tensor_util';\nimport {BackendValues, DataType, DataValues} from './types';\nimport * as util from './util';\nimport {bytesFromStringArray, makeOnesTypedArray, now, sizeFromShape} from './util';\n\n/**\n * A function that computes an output. The save function is for saving tensors\n * computed in the forward pass, that we need in the backward pass.\n */\nexport type ForwardFunc = (backend: KernelBackend, save?: GradSaveFunc) => T;\n\n/**\n * @docalias (a: Tensor, b: Tensor,..., save?: Function) => {\n * value: Tensor,\n * gradFunc: (dy: Tensor, saved?: NamedTensorMap) => Tensor | Tensor[]\n * }\n */\nexport type CustomGradientFunc =\n (...inputs: Array) => {\n value: T;\n gradFunc: (dy: T, saved: Tensor[]) => Tensor | Tensor[];\n };\n\nexport type MemoryInfo = {\n numTensors: number; numDataBuffers: number; numBytes: number;\n unreliable?: boolean; reasons: string[];\n};\n\ntype KernelInfo = {\n name: string; bytesAdded: number; totalBytesSnapshot: number;\n tensorsAdded: number;\n totalTensorsSnapshot: number;\n inputShapes: number[][];\n outputShapes: number[][];\n kernelTimeMs: number | {error: string} | Promise;\n extraInfo: string | Promise;\n};\n\nexport type ProfileInfo = {\n newBytes: number; newTensors: number; peakBytes: number;\n kernels: KernelInfo[];\n result: TensorContainer;\n kernelNames: string[];\n};\n\nexport interface TimingInfo extends BackendTimingInfo {\n wallMs: number;\n}\n\n/** @docalias Function */\nexport type ScopeFn = () => T;\n\ninterface ScopeState {\n track: Tensor[];\n name: string;\n id: number;\n}\n\ninterface RegisteredKernelInvocation {\n kernelName: string;\n inputs: I;\n attrs?: NamedAttrMap;\n}\n\ninterface CustomGradKernelInvocation {\n forwardFunc: ForwardFunc;\n backwardsFunc: (dy: T, saved: Tensor[]) => {\n [P in keyof I]: () => I[P]\n };\n inputs: I;\n attrs?: NamedAttrMap;\n}\n\nfunction isRegisteredKernelInvocation(\n kernelInvocation: RegisteredKernelInvocation|\n CustomGradKernelInvocation):\n kernelInvocation is RegisteredKernelInvocation {\n return (kernelInvocation as RegisteredKernelInvocation).kernelName != null;\n}\n\nclass EngineState {\n // Public since optimizers will use it.\n registeredVariables: NamedVariableMap = {};\n\n nextTapeNodeId = 0;\n numBytes = 0;\n numTensors = 0;\n numStringTensors = 0;\n numDataBuffers = 0;\n\n activeTape: TapeNode[];\n // Number of nested tf.grad() statements when computing higher-order\n // gradients. E.g. `1` for first-order gradients and `2` for second-order\n // gradients. Used to track if the tape should be removed after a backprop.\n gradientDepth = 0;\n // Number of nested kernel calls. When kernel depth is greater than 1, we turn\n // off the tape.\n kernelDepth = 0;\n\n // Keep Tensors that parallel the tapes.\n activeScope: ScopeState;\n scopeStack: ScopeState[] = [];\n /**\n * Keeps track of the number of data moves during a kernel execution. We\n * maintain a stack since kernels can call other kernels, recursively.\n */\n numDataMovesStack: number[] = [];\n nextScopeId = 0;\n\n tensorInfo = new WeakMap();\n\n profiling = false;\n activeProfile: ProfileInfo = {\n newBytes: 0,\n newTensors: 0,\n peakBytes: 0,\n kernels: [],\n result: null,\n get kernelNames():\n string[] {\n return Array.from(new Set(this.kernels.map(k => k.name)));\n }\n };\n\n dispose() {\n for (const variableName in this.registeredVariables) {\n this.registeredVariables[variableName].dispose();\n }\n }\n}\n\nexport class Engine implements TensorTracker, DataMover {\n state: EngineState;\n backendName: string;\n registry: {[id: string]: KernelBackend} = {};\n registryFactory: {\n [id: string]: {\n factory: () => KernelBackend | Promise,\n priority: number\n }\n } = {};\n\n private profiler: Profiler;\n private backendInstance: KernelBackend;\n private pendingBackendInit: Promise;\n private pendingBackendInitId = 0;\n\n constructor(public ENV: Environment) {\n this.state = new EngineState();\n }\n\n async ready(): Promise {\n if (this.pendingBackendInit != null) {\n return this.pendingBackendInit.then(() => {});\n }\n if (this.backendInstance != null) {\n return;\n }\n const sortedBackends = this.getSortedBackends();\n\n for (let i = 0; i < sortedBackends.length; i++) {\n const backendName = sortedBackends[i];\n const success = await this.initializeBackend(backendName).success;\n if (success) {\n await this.setBackend(backendName);\n return;\n }\n }\n\n throw new Error(\n `Could not initialize any backends, all backend initializations ` +\n `failed.`);\n }\n\n get backend(): KernelBackend {\n if (this.pendingBackendInit != null) {\n throw new Error(\n `Backend '${this.backendName}' has not yet been initialized. Make ` +\n `sure to await tf.ready() or await tf.setBackend() before calling ` +\n `other methods`);\n }\n if (this.backendInstance == null) {\n const {name, asyncInit} = this.initializeBackendsAndReturnBest();\n if (asyncInit) {\n throw new Error(\n `The highest priority backend '${name}' has not yet been ` +\n `initialized. Make sure to await tf.ready() or ` +\n `await tf.setBackend() before calling other methods`);\n }\n this.setBackend(name);\n }\n return this.backendInstance;\n }\n\n backendNames(): string[] {\n return Object.keys(this.registryFactory);\n }\n\n findBackend(backendName: string): KernelBackend {\n if (!(backendName in this.registry)) {\n // If the backend hasn't been initialized but we have a registry entry for\n // it, initialize it and return it.\n if (backendName in this.registryFactory) {\n const {asyncInit} = this.initializeBackend(backendName);\n if (asyncInit) {\n // Backend is not ready yet.\n return null;\n }\n } else {\n return null;\n }\n }\n return this.registry[backendName];\n }\n\n findBackendFactory(backendName: string):\n () => KernelBackend | Promise {\n if (!(backendName in this.registryFactory)) {\n return null;\n }\n return this.registryFactory[backendName].factory;\n }\n\n registerBackend(\n backendName: string,\n factory: () => KernelBackend | Promise,\n priority = 1): boolean {\n if (backendName in this.registryFactory) {\n console.warn(\n `${backendName} backend was already registered. ` +\n `Reusing existing backend factory.`);\n return false;\n }\n this.registryFactory[backendName] = {factory, priority};\n return true;\n }\n\n async setBackend(backendName: string): Promise {\n if (this.registryFactory[backendName] == null) {\n throw new Error(`Backend name '${backendName}' not found in registry`);\n }\n this.backendName = backendName;\n if (this.registry[backendName] == null) {\n this.backendInstance = null;\n const {success, asyncInit} = this.initializeBackend(backendName);\n const result = asyncInit ? await success : success;\n if (!result) {\n return false;\n }\n }\n this.backendInstance = this.registry[backendName];\n this.setupRegisteredKernels();\n // Reset the profiler.\n this.profiler = new Profiler(this.backendInstance);\n\n return true;\n }\n\n private setupRegisteredKernels(): void {\n const kernels = getKernelsForBackend(this.backendName);\n kernels.forEach(kernel => {\n if (kernel.setupFunc != null) {\n kernel.setupFunc(this.backendInstance);\n }\n });\n }\n\n private disposeRegisteredKernels(backendName: string): void {\n const kernels = getKernelsForBackend(backendName);\n kernels.forEach(kernel => {\n if (kernel.disposeFunc != null) {\n kernel.disposeFunc(this.registry[backendName]);\n }\n });\n }\n\n /**\n * Initializes a backend by looking up the backend name in the factory\n * registry and calling the factory method. Returns a boolean representing\n * whether the initialization of the backend suceeded. Throws an error if\n * there is no backend in the factory registry.\n */\n private initializeBackend(backendName: string):\n {success: boolean|Promise, asyncInit: boolean} {\n const registryFactoryEntry = this.registryFactory[backendName];\n if (registryFactoryEntry == null) {\n throw new Error(\n `Cannot initialize backend ${backendName}, no registration found.`);\n }\n\n try {\n const backend = registryFactoryEntry.factory();\n /* Test if the factory returns a promise.\n Done in a more liberal way than\n previous 'Promise.resolve(backend)===backend'\n as we needed to account for custom Promise\n implementations (e.g. Angular) */\n if (backend && !(backend instanceof KernelBackend) &&\n typeof backend.then === 'function') {\n const promiseId = ++this.pendingBackendInitId;\n const success =\n backend\n .then(backendInstance => {\n // Outdated promise. Another backend was set in the meantime.\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.registry[backendName] = backendInstance;\n this.pendingBackendInit = null;\n return true;\n })\n .catch(err => {\n // Outdated promise. Another backend was set in the meantime.\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.pendingBackendInit = null;\n console.warn(\n `Initialization of backend ${backendName} failed`);\n console.warn(err.stack || err.message);\n return false;\n });\n this.pendingBackendInit = success;\n return {success, asyncInit: true};\n } else {\n this.registry[backendName] = backend as KernelBackend;\n return {success: true, asyncInit: false};\n }\n } catch (err) {\n console.warn(`Initialization of backend ${backendName} failed`);\n console.warn(err.stack || err.message);\n return {success: false, asyncInit: false};\n }\n }\n\n removeBackend(backendName: string): void {\n if (!(backendName in this.registryFactory)) {\n throw new Error(`${backendName} backend not found in registry`);\n }\n if (this.backendName === backendName && this.pendingBackendInit != null) {\n // There is a pending promise of the backend we want to remove. Make it\n // obsolete.\n this.pendingBackendInitId++;\n }\n\n if (backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n\n delete this.registryFactory[backendName];\n\n // Unset the backend if it is active.\n if (this.backendName === backendName) {\n this.pendingBackendInit = null;\n this.backendName = null;\n this.backendInstance = null;\n }\n }\n\n private getSortedBackends(): string[] {\n if (Object.keys(this.registryFactory).length === 0) {\n throw new Error('No backend found in registry.');\n }\n return Object.keys(this.registryFactory).sort((a: string, b: string) => {\n // Highest priority comes first.\n return this.registryFactory[b].priority -\n this.registryFactory[a].priority;\n });\n }\n\n private initializeBackendsAndReturnBest():\n {name: string, asyncInit: boolean} {\n const sortedBackends = this.getSortedBackends();\n\n for (let i = 0; i < sortedBackends.length; i++) {\n const backendName = sortedBackends[i];\n const {success, asyncInit} = this.initializeBackend(backendName);\n if (asyncInit || success) {\n return {name: backendName, asyncInit};\n }\n }\n throw new Error(\n `Could not initialize any backends, all backend initializations ` +\n `failed.`);\n }\n\n moveData(backend: KernelBackend, dataId: DataId) {\n const info = this.state.tensorInfo.get(dataId);\n const srcBackend = info.backend;\n const values = this.readSync(dataId);\n const refCount = srcBackend.refCount(dataId);\n // Delete the tensor from the old backend and move it to the new\n // backend.\n srcBackend.disposeData(dataId, true);\n info.backend = backend;\n backend.move(dataId, values, info.shape, info.dtype, refCount);\n if (this.shouldCheckForMemLeaks()) {\n // Track the number of moves during a kernel execution to correctly\n // detect memory leaks.\n this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]++;\n }\n }\n\n tidy(nameOrFn: string|ScopeFn, fn?: ScopeFn):\n T {\n let name: string = null;\n if (fn == null) {\n // Called with only 1 argument.\n if (typeof nameOrFn !== 'function') {\n throw new Error('Please provide a function to tidy()');\n }\n fn = nameOrFn;\n } else {\n // Called with 2 arguments.\n if (typeof nameOrFn !== 'string' && !(nameOrFn instanceof String)) {\n throw new Error(\n 'When calling with two arguments, the first argument ' +\n 'to tidy() must be a string');\n }\n if (typeof fn !== 'function') {\n throw new Error(\n 'When calling with two arguments, the 2nd argument ' +\n 'to tidy() must be a function');\n }\n name = nameOrFn as string;\n // TODO(nsthorat,smilkov): Do operation logging and performance\n // profiling.\n }\n let result: T;\n return this.scopedRun(\n () => this.startScope(name), () => this.endScope(result), () => {\n result = fn();\n if (result instanceof Promise) {\n console.error('Cannot return a Promise inside of tidy.');\n }\n return result;\n });\n }\n\n private scopedRun(start: () => void, end: () => void, f: () => T): T {\n start();\n try {\n const res = f();\n end();\n return res;\n } catch (ex) {\n end();\n throw ex;\n }\n }\n\n private static nextTensorId = 0;\n private nextTensorId(): number {\n return Engine.nextTensorId++;\n }\n\n private static nextVariableId = 0;\n private nextVariableId(): number {\n return Engine.nextVariableId++;\n }\n\n /**\n * This method is called instead of the public-facing tensor.clone() when\n * saving a tensor for backwards pass. It makes sure to add the clone\n * operation to the tape regardless of being called inside a kernel\n * execution.\n */\n private clone(x: Tensor): Tensor {\n const y: Tensor = ENGINE.runKernel(Identity, {x} as {} as NamedTensorMap);\n const inputs = {x};\n const grad = (dy: Tensor) => ({\n x: () => {\n const dtype = 'float32';\n const gradInputs = {x: dy};\n const attrs = {dtype};\n\n return ENGINE.runKernel(\n Cast, gradInputs as {} as NamedTensorMap,\n // tslint:disable-next-line: no-unnecessary-type-assertion\n attrs as {} as NamedAttrMap) as Tensor;\n }\n });\n const saved: Tensor[] = [];\n this.addTapeNode(this.state.activeScope.name, inputs, [y], grad, saved, {});\n return y;\n }\n\n /**\n * Execute a kernel with the given name and return the output tensor.\n *\n * @param kernelName The name of the kernel to execute.\n * @param inputs A map of input names to tensors.\n * @param attrs A map of attribute names to their values. An attribute is a\n * primitive (non-tensor) input to the kernel.\n * @param inputsToSave A list of tensors, inputs to save for the backprop\n * computation.\n * @param outputsToSave A list of booleans, specifying which output to save\n * for the backprop computation. These are booleans since the output\n * tensors are not visible to the user.\n */\n runKernel(\n kernelName: string, inputs: NamedTensorMap, attrs?: NamedAttrMap): T {\n const hasKernel = getKernel(kernelName, this.backendName) != null;\n if (!hasKernel) {\n throw new Error(`Kernel '${kernelName}' not registered for backend '${\n this.backendName}'`);\n }\n return this.runKernelFunc({kernelName, inputs, attrs});\n }\n\n private shouldCheckForMemLeaks(): boolean {\n return this.ENV.getBool('IS_TEST');\n }\n\n private checkKernelForMemLeak(\n kernelName: string, numDataIdsBefore: number,\n outInfos: TensorInfo[]): void {\n const numDataIdsAfter = this.backend.numDataIds();\n\n // Count the number of data ids associated with the result of the kernel.\n let numOutputDataIds = 0;\n outInfos.forEach(info => {\n // Complex numbers allocate 3 data ids, one for 'real', one for\n // 'imaginary', and one for the container that holds the former two.\n numOutputDataIds += (info.dtype === 'complex64' ? 3 : 1);\n });\n\n // Account for the number of moves during kernel execution. A \"data move\"\n // can happen in the middle of a kernel execution, placing a new (key,value)\n // pair in the data storage. Since data moves have net zero effect (we\n // always remove the data from the old backend), we have to cancel them out\n // when detecting memory leaks.\n const numMoves =\n this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1];\n const dataIdsLeaked =\n numDataIdsAfter - numDataIdsBefore - numOutputDataIds - numMoves;\n if (dataIdsLeaked > 0) {\n throw new Error(\n `Backend '${this.backendName}' has an internal memory leak ` +\n `(${dataIdsLeaked} data ids) after running '${kernelName}'`);\n }\n }\n\n /**\n * Internal helper method to execute a kernel Func\n *\n * Use `runKernel` to execute kernels from outside of engine.\n */\n private runKernelFunc(\n kernelParams: RegisteredKernelInvocation|\n CustomGradKernelInvocation): T {\n let outputs: Tensor[];\n let saved: Tensor[] = [];\n const isTapeOn = this.isTapeOn();\n\n const startingBytecount = this.state.numBytes;\n const startingNumTensors = this.state.numTensors;\n\n if (this.shouldCheckForMemLeaks()) {\n this.state.numDataMovesStack.push(0);\n }\n\n let kernelFunc: () => Tensor[];\n if (this.backendName == null) {\n // backend has not been initialized yet (backend initialization is lazy\n // can be deferred until an op/ kernel is run).\n // The below getter has side effects that will try to initialize the\n // backend and set properties like this.backendName\n // tslint:disable-next-line: no-unused-expression\n this.backend;\n }\n\n let out: TensorInfo|TensorInfo[];\n\n const kernelOrScopeName = isRegisteredKernelInvocation(kernelParams) ?\n kernelParams.kernelName :\n this.state.activeScope != null ? this.state.activeScope.name : '';\n\n // Create the kernelFunc from either a registered kernel OR passed in\n // forward/backward functions (used by custom grad). In this context a\n // kernelFunc wraps a kernel implementation with some bookkeeping.\n\n if (isRegisteredKernelInvocation(kernelParams)) {\n const {kernelName, inputs, attrs} = kernelParams;\n if (this.backendName == null) {\n // backend has not been initialized yet (backend initialization is lazy\n // can be deferred until an op/ kernel is run).\n // The below getter has side effects that will try to initialize the\n // backend and set properties like this.backendName\n // tslint:disable-next-line: no-unused-expression\n this.backend;\n }\n const kernel = getKernel(kernelName, this.backendName);\n util.assert(\n kernel != null,\n () => `Cannot find registered kernel '${kernelName}' for backend '${\n this.backendName}'`);\n\n kernelFunc = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = kernel.kernelFunc({inputs, attrs, backend: this.backend});\n const outInfos = Array.isArray(out) ? out : [out];\n if (this.shouldCheckForMemLeaks()) {\n this.checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos);\n }\n\n const outTensors = outInfos.map((outInfo: TensorInfo|Tensor) => {\n // todo (yassogba) remove this option (Tensor) when node backend\n // methods have been modularized and they all return tensorInfo.\n // TensorInfos do not have a rank attribute.\n if ((outInfo as Tensor).rank != null) {\n return outInfo as Tensor;\n }\n const {dataId, shape, dtype} = outInfo as TensorInfo;\n return this.makeTensorFromDataId(dataId, shape, dtype);\n });\n\n // Save any required inputs and outputs.\n\n // Do not save unless we are recording to the tape. Otherwise it would\n // cause a mem leak since there would be no backprop for these tensors\n // (which would otherwise dispose them).\n if (isTapeOn) {\n const tensorsToSave =\n this.getTensorsForGradient(kernelName, inputs, outTensors);\n saved = this.saveTensorsForBackwardMode(tensorsToSave);\n }\n return outTensors;\n };\n } else {\n const {forwardFunc} = kernelParams;\n // Running a customGrad op.\n const saveFunc: GradSaveFunc = (tensors) => {\n // Do not save unless we are recording to the tape. Otherwise it would\n // cause a mem leak since we would never run backprop, which disposes\n // the kept tensors.\n if (!isTapeOn) {\n return;\n }\n saved = tensors.map(tensor => this.keep(this.clone(tensor)));\n };\n\n kernelFunc = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = this.tidy(() => forwardFunc(this.backend, saveFunc));\n const outs = (Array.isArray(out) ? out : [out]) as Tensor[];\n if (this.shouldCheckForMemLeaks()) {\n // Scope name is used to print a more helpful error message if needed.\n this.checkKernelForMemLeak(kernelOrScopeName, numDataIdsBefore, outs);\n }\n return outs;\n };\n }\n\n //\n // Run the kernelFunc. Optionally profiling it.\n //\n const {inputs, attrs} = kernelParams;\n const backwardsFunc = isRegisteredKernelInvocation(kernelParams) ?\n null :\n kernelParams.backwardsFunc;\n\n let kernelProfile: KernelProfile;\n this.scopedRun(\n // Stop recording to a tape when running a kernel.\n () => this.state.kernelDepth++, () => this.state.kernelDepth--, () => {\n if (!this.ENV.getBool('DEBUG') && !this.state.profiling) {\n outputs = kernelFunc();\n } else {\n kernelProfile = this.profiler.profileKernel(\n kernelOrScopeName, inputs, () => kernelFunc());\n if (this.ENV.getBool('DEBUG')) {\n this.profiler.logKernelProfile(kernelProfile);\n }\n outputs = kernelProfile.outputs;\n }\n });\n\n if (isTapeOn) {\n this.addTapeNode(\n kernelOrScopeName, inputs, outputs, backwardsFunc, saved, attrs);\n }\n\n if (this.state.profiling) {\n this.state.activeProfile.kernels.push({\n name: kernelOrScopeName,\n bytesAdded: this.state.numBytes - startingBytecount,\n totalBytesSnapshot: this.state.numBytes,\n tensorsAdded: this.state.numTensors - startingNumTensors,\n totalTensorsSnapshot: this.state.numTensors,\n inputShapes: Object.keys(inputs).map(\n key => inputs[key] != null ? inputs[key].shape : null),\n outputShapes: outputs.map(item => item.shape),\n kernelTimeMs: kernelProfile.timeMs,\n extraInfo: kernelProfile.extraInfo\n });\n }\n return (Array.isArray(out) ? outputs : outputs[0]) as T;\n }\n\n /**\n * Saves tensors used in forward mode for use in backward mode.\n *\n * @param tensors the list of tensors to save.\n */\n private saveTensorsForBackwardMode(tensors: Tensor[]): Tensor[] {\n const saved = tensors.map(tensor => this.keep(this.clone(tensor)));\n return saved;\n }\n\n /**\n * Returns a list of tensors to save for a given gradient calculation.\n *\n * @param kernelName name of kernel to look up gradient for.\n * @param inputs a map of input tensors.\n * @param outputs an array of output tensors from forward mode of kernel.\n */\n private getTensorsForGradient(\n kernelName: string, inputs: NamedTensorMap,\n outputs: Tensor[]): Tensor[]|null {\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n const inputsToSave: string[] = gradConfig.inputsToSave || [];\n const outputsToSave: boolean[] = gradConfig.outputsToSave || [];\n\n // If saveAllInputs is true, all inputs will be saved. Otherwise, inputs\n // specified in inputsToSave will be saved.\n let inputTensorsToSave: Tensor[];\n if (gradConfig.saveAllInputs) {\n util.assert(\n Array.isArray(inputs),\n () => 'saveAllInputs is true, expected inputs to be an array.');\n\n inputTensorsToSave = Object.keys(inputs).map((key) => inputs[key]);\n } else {\n inputTensorsToSave = inputsToSave.map((inputName) => inputs[inputName]);\n }\n\n const outputTensorsToSave: Tensor[] =\n outputs.filter((_, i) => outputsToSave[i]);\n\n return inputTensorsToSave.concat(outputTensorsToSave);\n }\n // We return an empty list rather than throw an error because the kernel we\n // are looking up may not actually be relevant to backproping through the\n // overall function\n //\n // See 'does not error if irrelevant (pruned) ops are missing grads' test\n // in gradients_test.ts for an example.\n return [];\n }\n\n /**\n * Internal method used by public APIs for tensor creation. Makes a new\n * tensor with the provided shape, dtype and values. It always\n * creates a new data id and writes the values to the underlying backend.\n */\n makeTensor(\n values: DataValues, shape: number[], dtype: DataType,\n backend?: KernelBackend): Tensor {\n if (values == null) {\n throw new Error('Values passed to engine.makeTensor() are null');\n }\n dtype = dtype || 'float32';\n backend = backend || this.backend;\n let backendVals = values as BackendValues;\n if (dtype === 'string' && util.isString(values[0])) {\n backendVals = (values as string[]).map(d => util.encodeString(d));\n }\n const dataId = backend.write(backendVals, shape, dtype);\n const t = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t, backend);\n\n // Count bytes for string tensors.\n if (dtype === 'string') {\n const info = this.state.tensorInfo.get(dataId);\n const newBytes = bytesFromStringArray(backendVals as Uint8Array[]);\n this.state.numBytes += newBytes - info.bytes;\n info.bytes = newBytes;\n }\n return t;\n }\n\n /**\n * Internal method used by backends. Makes a new tensor\n * that is a wrapper around an existing data id. It doesn't create\n * a new data id, only increments the ref count used in memory tracking.\n */\n makeTensorFromDataId(\n dataId: DataId, shape: number[], dtype: DataType,\n backend?: KernelBackend): Tensor {\n dtype = dtype || 'float32';\n const t = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t, backend);\n return t;\n }\n\n makeVariable(\n initialValue: Tensor, trainable = true, name?: string,\n dtype?: DataType): Variable {\n name = name || this.nextVariableId().toString();\n if (dtype != null && dtype !== initialValue.dtype) {\n initialValue = initialValue.cast(dtype);\n }\n const v = new Variable(initialValue, trainable, name, this.nextTensorId());\n if (this.state.registeredVariables[v.name] != null) {\n throw new Error(`Variable with name ${v.name} was already registered`);\n }\n this.state.registeredVariables[v.name] = v;\n this.incRef(v, this.backend);\n return v;\n }\n\n trackTensor(a: Tensor, backend: KernelBackend): void {\n this.state.numTensors++;\n if (a.dtype === 'string') {\n this.state.numStringTensors++;\n }\n // Bytes for complex numbers are counted by their components. Bytes for\n // string tensors are counted when writing values.\n let bytes = 0;\n if (a.dtype !== 'complex64' && a.dtype !== 'string') {\n bytes = a.size * util.bytesPerElement(a.dtype);\n }\n this.state.numBytes += bytes;\n\n if (!this.state.tensorInfo.has(a.dataId)) {\n this.state.numDataBuffers++;\n this.state.tensorInfo.set(a.dataId, {\n backend: backend || this.backend,\n dtype: a.dtype,\n shape: a.shape,\n bytes\n });\n }\n\n if (!(a instanceof Variable)) {\n this.track(a);\n }\n }\n\n // Track the tensor by dataId and increase the refCount for the dataId in the\n // backend.\n // TODO(pyu10055): This is currently used by makeVariable method, to increase\n // refCount on the backend for the dataId. It can potentially be replaced with\n // Identity op indead of calling backend directly.\n incRef(a: Tensor, backend: KernelBackend): void {\n this.trackTensor(a, backend);\n this.backend.incRef(a.dataId);\n }\n\n removeDataId(dataId: DataId, backend: KernelBackend) {\n if (this.state.tensorInfo.has(dataId) &&\n this.state.tensorInfo.get(dataId).backend === backend) {\n this.state.tensorInfo.delete(dataId);\n this.state.numDataBuffers--;\n }\n }\n disposeTensor(a: Tensor): void {\n if (!this.state.tensorInfo.has(a.dataId)) {\n return;\n }\n const info = this.state.tensorInfo.get(a.dataId);\n\n this.state.numTensors--;\n if (a.dtype === 'string') {\n this.state.numStringTensors--;\n this.state.numBytes -= info.bytes;\n }\n // Don't count bytes for complex numbers as they are counted by their\n // components.\n if (a.dtype !== 'complex64' && a.dtype !== 'string') {\n const bytes = a.size * util.bytesPerElement(a.dtype);\n this.state.numBytes -= bytes;\n }\n\n // Remove the reference to dataId if backend dispose the data successfully\n if (info.backend.disposeData(a.dataId)) {\n this.removeDataId(a.dataId, info.backend);\n }\n\n // TODO(nsthorat): Construct an error and save the stack trace for\n // debugging when in debug mode. Creating a stack trace is too expensive\n // to do unconditionally.\n }\n\n disposeVariables(): void {\n for (const varName in this.state.registeredVariables) {\n const v = this.state.registeredVariables[varName];\n this.disposeVariable(v);\n }\n }\n\n disposeVariable(v: Variable): void {\n this.disposeTensor(v);\n if (this.state.registeredVariables[v.name] != null) {\n delete this.state.registeredVariables[v.name];\n }\n }\n\n memory(): MemoryInfo {\n const info = this.backend.memory() as MemoryInfo;\n info.numTensors = this.state.numTensors;\n info.numDataBuffers = this.state.numDataBuffers;\n info.numBytes = this.state.numBytes;\n if (this.state.numStringTensors > 0) {\n info.unreliable = true;\n if (info.reasons == null) {\n info.reasons = [];\n }\n info.reasons.push(\n 'Memory usage by string tensors is approximate ' +\n '(2 bytes per character)');\n }\n return info;\n }\n\n async profile(query: () => (TensorContainer | Promise)):\n Promise {\n this.state.profiling = true;\n\n const startBytes = this.state.numBytes;\n const startNumTensors = this.state.numTensors;\n\n this.state.activeProfile.kernels = [];\n this.state.activeProfile.result = await query();\n\n this.state.profiling = false;\n\n this.state.activeProfile.peakBytes = Math.max(\n ...this.state.activeProfile.kernels.map(d => d.totalBytesSnapshot));\n this.state.activeProfile.newBytes = this.state.numBytes - startBytes;\n this.state.activeProfile.newTensors =\n this.state.numTensors - startNumTensors;\n for (const kernel of this.state.activeProfile.kernels) {\n kernel.kernelTimeMs = await kernel.kernelTimeMs;\n kernel.extraInfo = await kernel.extraInfo;\n }\n return this.state.activeProfile;\n }\n\n isTapeOn(): boolean {\n return this.state.gradientDepth > 0 && this.state.kernelDepth === 0;\n }\n\n private addTapeNode(\n kernelName: string, inputs: NamedTensorMap, outputs: Tensor[],\n gradientsFunc: GradFunc, saved: Tensor[], attrs: NamedAttrMap): void {\n const tapeNode: TapeNode =\n {id: this.state.nextTapeNodeId++, kernelName, inputs, outputs, saved};\n\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n gradientsFunc = gradConfig.gradFunc;\n }\n if (gradientsFunc != null) {\n tapeNode.gradient = (dys: Tensor[]) => {\n // TODO(smilkov): To optimize back-prop, pass dys that are not used in\n // the backprop graph to the user as null instead of zeros\n dys = dys.map((dy, i) => {\n if (dy == null) {\n const output = outputs[i];\n const vals = util.makeZerosTypedArray(output.size, output.dtype);\n return this.makeTensor(vals, output.shape, output.dtype);\n }\n return dy;\n });\n // Grad functions of ops with single outputs expect a dy, while ops\n // with multiple outputs expect dys (array of dy).\n return gradientsFunc(dys.length > 1 ? dys : dys[0], saved, attrs);\n };\n }\n this.state.activeTape.push(tapeNode);\n }\n\n keep(result: T): T {\n result.kept = true;\n return result;\n }\n\n private startTape() {\n if (this.state.gradientDepth === 0) {\n this.state.activeTape = [];\n }\n this.state.gradientDepth++;\n }\n\n private endTape() {\n this.state.gradientDepth--;\n }\n\n /**\n * Start a scope. Use this with endScope() to achieve the same functionality\n * as scope() without the need for a function closure.\n */\n startScope(name?: string) {\n const scopeInfo: ScopeState = {\n track: [],\n name: 'unnamed scope',\n id: this.state.nextScopeId++\n };\n if (name) {\n scopeInfo.name = name;\n }\n this.state.scopeStack.push(scopeInfo);\n this.state.activeScope = scopeInfo;\n }\n\n /**\n * End a scope. Use this with startScope() to achieve the same functionality\n * as scope() without the need for a function closure.\n */\n endScope(result?: TensorContainer) {\n const tensorsToTrackInParent = getTensorsInContainer(result);\n const tensorsToTrackInParentSet =\n new Set(tensorsToTrackInParent.map(t => t.id));\n\n // Dispose the arrays tracked in this scope.\n for (let i = 0; i < this.state.activeScope.track.length; i++) {\n const tensor = this.state.activeScope.track[i];\n if (!tensor.kept && !tensorsToTrackInParentSet.has(tensor.id)) {\n tensor.dispose();\n }\n }\n\n const oldScope = this.state.scopeStack.pop();\n this.state.activeScope = this.state.scopeStack.length === 0 ?\n null :\n this.state.scopeStack[this.state.scopeStack.length - 1];\n\n // Track the current result in the parent scope.\n tensorsToTrackInParent.forEach(tensor => {\n // Only track the tensor if was allocated in the inner scope and is not\n // globally kept.\n if (!tensor.kept && tensor.scopeId === oldScope.id) {\n this.track(tensor);\n }\n });\n }\n\n /**\n * Returns gradients of `f` with respect to each of the `xs`. The gradients\n * returned are of the same length as `xs`, but some might be null if `f`\n * was not a function of that `x`. It also takes optional dy to multiply the\n * gradient, which defaults to `1`.\n */\n gradients(\n f: () => T, xs: Tensor[], dy?: T,\n allowNoGradients = false): {value: T, grads: Tensor[]} {\n util.assert(\n xs.length > 0, () => 'gradients() received an empty list of xs.');\n if (dy != null && dy.dtype !== 'float32') {\n throw new Error(`dy must have 'float32' dtype, but has '${dy.dtype}'`);\n }\n\n const y = this.scopedRun(\n () => this.startTape(), () => this.endTape(),\n () => this.tidy('forward', f));\n\n util.assert(\n y instanceof Tensor,\n () => 'The result y returned by f() must be a tensor.');\n // Filter out the nodes that don't connect x => y.\n const filteredTape = getFilteredNodesXToY(this.state.activeTape, xs, y);\n if (!allowNoGradients && filteredTape.length === 0 && xs.length > 0) {\n throw new Error(\n 'Cannot compute gradient of y=f(x) with respect to x. Make sure ' +\n 'that the f you passed encloses all operations that lead from x ' +\n 'to y.');\n }\n\n return this.tidy('backward', () => {\n const accumulatedGradientMap: {[tensorId: number]: Tensor} = {};\n accumulatedGradientMap[y.id] = (dy == null) ? ones(y.shape) : dy;\n\n // Backprop gradients through the filtered nodes.\n backpropagateGradients(\n accumulatedGradientMap, filteredTape,\n // Pass the tidy function to avoid circular dep with `tape.ts`.\n f => this.tidy(f as ScopeFn),\n // Pass an add function to avoide a circular dep with `tape.ts`.\n add);\n const grads = xs.map(x => accumulatedGradientMap[x.id]);\n\n if (this.state.gradientDepth === 0) {\n // This means that we are not computing higher-order gradients\n // and can clean up the tape.\n this.state.activeTape.forEach(node => {\n for (const tensor of node.saved) {\n tensor.dispose();\n }\n });\n this.state.activeTape = null;\n }\n return {value: y, grads};\n });\n }\n\n customGrad(f: CustomGradientFunc):\n (...args: Array) => T {\n util.assert(\n util.isFunction(f),\n () => 'The f passed in customGrad(f) must be a function.');\n return (...inputs: Tensor[]): T => {\n util.assert(\n inputs.every(t => t instanceof Tensor),\n () => 'The args passed in customGrad(f)(x1, x2,...) must all be ' +\n 'tensors');\n\n let res: {\n value: T,\n gradFunc: (dy: T, saved: Tensor[]) => Tensor | Tensor[],\n };\n const inputMap: NamedTensorMap = {};\n inputs.forEach((input, i) => {\n inputMap[i] = input;\n });\n\n const forwardFunc: ForwardFunc = (_, save) => {\n res = f(...[...inputs, save]);\n util.assert(\n res.value instanceof Tensor,\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.value` is a tensor');\n util.assert(\n util.isFunction(res.gradFunc),\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function.');\n return res.value;\n };\n\n const backwardsFunc = (dy: T, saved: Tensor[]) => {\n const gradRes = res.gradFunc(dy, saved);\n const grads: Tensor[] = Array.isArray(gradRes) ? gradRes : [gradRes];\n util.assert(\n grads.length === inputs.length,\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function that returns ' +\n 'the same number of tensors as inputs passed to f(...).');\n util.assert(\n grads.every(t => t instanceof Tensor),\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function that returns ' +\n 'a list of only tensors.');\n const gradMap: {[key: string]: () => Tensor} = {};\n grads.forEach((grad, i) => {\n gradMap[i] = () => grad;\n });\n return gradMap;\n };\n\n return this.runKernelFunc({\n forwardFunc,\n backwardsFunc,\n inputs: inputMap,\n });\n };\n }\n\n readSync(dataId: DataId): BackendValues {\n // Route the read to the correct backend.\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.readSync(dataId);\n }\n read(dataId: DataId): Promise {\n // Route the read to the correct backend.\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.read(dataId);\n }\n\n async time(query: () => void): Promise {\n const start = now();\n const timingInfo = await this.backend.time(query) as TimingInfo;\n timingInfo.wallMs = now() - start;\n return timingInfo;\n }\n\n /**\n * Tracks a Tensor in the current scope to be automatically cleaned up\n * when the current scope ends, and returns the value.\n *\n * @param result The Tensor to track in the current scope.\n */\n private track(result: T): T {\n if (this.state.activeScope != null) {\n result.scopeId = this.state.activeScope.id;\n this.state.activeScope.track.push(result);\n }\n\n return result;\n }\n\n get registeredVariables(): NamedVariableMap {\n return this.state.registeredVariables;\n }\n\n /**\n * Resets the engine state. Removes all backends but does not remove\n * registered backend factories.\n */\n reset(): void {\n // Make any pending promise obsolete.\n this.pendingBackendInitId++;\n\n this.state.dispose();\n this.ENV.reset();\n this.state = new EngineState();\n\n for (const backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n this.backendName = null;\n this.backendInstance = null;\n this.pendingBackendInit = null;\n }\n}\n\nfunction ones(shape: number[]): Tensor {\n const values = makeOnesTypedArray(sizeFromShape(shape), 'float32');\n return ENGINE.makeTensor(values, shape, 'float32');\n}\n\nexport function getOrMakeEngine(): Engine {\n const ns = getGlobalNamespace() as {} as {_tfengine: Engine};\n if (ns._tfengine == null) {\n const environment = new Environment(ns);\n ns._tfengine = new Engine(environment);\n }\n setEnvironmentGlobal(ns._tfengine.ENV);\n\n // Tell the current tensor interface that the global engine is responsible\n // for tracking.\n setTensorTracker(() => ns._tfengine);\n return ns._tfengine;\n}\n\nexport const ENGINE = getOrMakeEngine();\n\n/**\n * A implementation of the add op for use within engine and tape.\n *\n * This allows us to avoid a circular dependency between add.ts and engine.\n * It is exported to be available in tape tests.\n */\nexport function add(a: Tensor, b: Tensor): Tensor {\n // We duplicate Add here to avoid a circular dependency with add.ts.\n const inputs = {a, b};\n return ENGINE.runKernel(Add, inputs as {} as NamedTensorMap);\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// tslint:disable-next-line:no-any\nfunction _isNavigatorDefined(): boolean {\n return typeof navigator !== 'undefined' && navigator != null;\n}\n\nexport function isMobile(nav?: Navigator): boolean {\n if (nav || _isNavigatorDefined()) {\n if (!nav) {\n nav = navigator;\n }\n if (nav.product === 'ReactNative') {\n return true;\n }\n\n // tslint:disable-next-line:no-any\n const a = nav.userAgent || nav.vendor || (window as any).opera;\n // tslint:disable-next-line:max-line-length\n return /(android|bb\\d+|meego).+mobile|avantgo|bada\\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i\n .test(a) ||\n // tslint:disable-next-line:max-line-length\n /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\\-(n|u)|c55\\/|capi|ccwa|cdm\\-|cell|chtm|cldc|cmd\\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\\-s|devi|dica|dmob|do(c|p)o|ds(12|\\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\\-|_)|g1 u|g560|gene|gf\\-5|g\\-mo|go(\\.w|od)|gr(ad|un)|haie|hcit|hd\\-(m|p|t)|hei\\-|hi(pt|ta)|hp( i|ip)|hs\\-c|ht(c(\\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\\-(20|go|ma)|i230|iac( |\\-|\\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\\/)|klon|kpt |kwc\\-|kyo(c|k)|le(no|xi)|lg( g|\\/(k|l|u)|50|54|\\-[a-w])|libw|lynx|m1\\-w|m3ga|m50\\/|ma(te|ui|xo)|mc(01|21|ca)|m\\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\\-2|po(ck|rt|se)|prox|psio|pt\\-g|qa\\-a|qc(07|12|21|32|60|\\-[2-7]|i\\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\\-|oo|p\\-)|sdk\\/|se(c(\\-|0|1)|47|mc|nd|ri)|sgh\\-|shar|sie(\\-|m)|sk\\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\\-|v\\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\\-|tdg\\-|tel(i|m)|tim\\-|t\\-mo|to(pl|sh)|ts(70|m\\-|m3|m5)|tx\\-9|up(\\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\\-|your|zeto|zte\\-/i\n .test(a.substr(0, 4));\n }\n return false;\n}\n\nexport function isBrowser(): boolean {\n return (typeof window !== 'undefined' && window.document != null) ||\n //@ts-ignore\n (typeof WorkerGlobalScope !== 'undefined');\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport './engine';\n\nimport * as device_util from './device_util';\nimport {env} from './environment';\n\nconst ENV = env();\n\n/**\n * This file contains environment-related flag registrations.\n */\n\n/** Whether to enable debug mode. */\nENV.registerFlag('DEBUG', () => false, debugValue => {\n if (debugValue) {\n console.warn(\n 'Debugging mode is ON. The output of every math call will ' +\n 'be downloaded to CPU and checked for NaNs. ' +\n 'This significantly impacts performance.');\n }\n});\n\n/** Whether we are in a browser (as versus, say, node.js) environment. */\nENV.registerFlag('IS_BROWSER', () => device_util.isBrowser());\n\n/** Whether we are in a browser (as versus, say, node.js) environment. */\nENV.registerFlag(\n 'IS_NODE',\n () => (typeof process !== 'undefined') &&\n (typeof process.versions !== 'undefined') &&\n (typeof process.versions.node !== 'undefined'));\n\n/** Whether this browser is Chrome. */\nENV.registerFlag(\n 'IS_CHROME',\n () => typeof navigator !== 'undefined' && navigator != null &&\n navigator.userAgent != null && /Chrome/.test(navigator.userAgent) &&\n /Google Inc/.test(navigator.vendor));\n\n/**\n * True when the environment is \"production\" where we disable safety checks\n * to gain performance.\n */\nENV.registerFlag('PROD', () => false);\n\n/**\n * Whether to do sanity checks when inferring a shape from user-provided\n * values, used when creating a new tensor.\n */\nENV.registerFlag(\n 'TENSORLIKE_CHECK_SHAPE_CONSISTENCY', () => ENV.getBool('DEBUG'));\n\n/** Whether deprecation warnings are enabled. */\nENV.registerFlag('DEPRECATION_WARNINGS_ENABLED', () => true);\n\n/** True if running unit tests. */\nENV.registerFlag('IS_TEST', () => false);\n\n/** Whether to check computation result for errors. */\nENV.registerFlag('CHECK_COMPUTATION_FOR_ERRORS', () => true);\n\n/** Whether the backend needs to wrap input to imageBitmap. */\nENV.registerFlag('WRAP_TO_IMAGEBITMAP', () => false);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from './engine';\nimport {env} from './environment';\nimport {Tensor} from './tensor';\nimport {DataType, TensorLike} from './types';\nimport {assert, flatten, inferDtype, isTypedArray, toTypedArray} from './util';\n\nexport function inferShape(val: TensorLike, dtype?: DataType): number[] {\n let firstElem: typeof val = val;\n\n if (isTypedArray(val)) {\n return dtype === 'string' ? [] : [val.length];\n }\n if (!Array.isArray(val)) {\n return []; // Scalar.\n }\n const shape: number[] = [];\n\n while (Array.isArray(firstElem) ||\n isTypedArray(firstElem) && dtype !== 'string') {\n shape.push(firstElem.length);\n firstElem = firstElem[0];\n }\n if (Array.isArray(val) &&\n env().getBool('TENSORLIKE_CHECK_SHAPE_CONSISTENCY')) {\n deepAssertShapeConsistency(val, shape, []);\n }\n\n return shape;\n}\n\nfunction deepAssertShapeConsistency(\n val: TensorLike, shape: number[], indices: number[]) {\n indices = indices || [];\n if (!(Array.isArray(val)) && !isTypedArray(val)) {\n assert(\n shape.length === 0,\n () => `Element arr[${indices.join('][')}] is a primitive, ` +\n `but should be an array/TypedArray of ${shape[0]} elements`);\n return;\n }\n assert(\n shape.length > 0,\n () => `Element arr[${indices.join('][')}] should be a primitive, ` +\n `but is an array of ${val.length} elements`);\n assert(\n val.length === shape[0],\n () => `Element arr[${indices.join('][')}] should have ${shape[0]} ` +\n `elements, but has ${val.length} elements`);\n const subShape = shape.slice(1);\n for (let i = 0; i < val.length; ++i) {\n deepAssertShapeConsistency(val[i], subShape, indices.concat(i));\n }\n}\n\nfunction assertDtype(\n expectedDtype: DataType|'numeric'|'string_or_numeric',\n actualDType: DataType, argName: string, functionName: string) {\n if (expectedDtype === 'string_or_numeric') {\n return;\n }\n if (expectedDtype == null) {\n throw new Error(`Expected dtype cannot be null.`);\n }\n if (expectedDtype !== 'numeric' && expectedDtype !== actualDType ||\n expectedDtype === 'numeric' && actualDType === 'string') {\n throw new Error(\n `Argument '${argName}' passed to '${functionName}' must ` +\n `be ${expectedDtype} tensor, but got ${actualDType} tensor`);\n }\n}\n\nexport function convertToTensor(\n x: T|TensorLike, argName: string, functionName: string,\n parseAsDtype: DataType|'numeric'|'string_or_numeric' = 'numeric'): T {\n if (x instanceof Tensor) {\n assertDtype(parseAsDtype, x.dtype, argName, functionName);\n return x;\n }\n let inferredDtype = inferDtype(x);\n // If the user expects a bool/int/float, use that info to update the\n // inferredDtype when it is not a string.\n if (inferredDtype !== 'string' &&\n ['bool', 'int32', 'float32'].indexOf(parseAsDtype) >= 0) {\n inferredDtype = parseAsDtype as DataType;\n }\n assertDtype(parseAsDtype, inferredDtype, argName, functionName);\n\n if ((x == null) ||\n (!isTypedArray(x) && !Array.isArray(x) && typeof x !== 'number' &&\n typeof x !== 'boolean' && typeof x !== 'string')) {\n const type = x == null ? 'null' : (x as {}).constructor.name;\n throw new Error(\n `Argument '${argName}' passed to '${functionName}' must be a ` +\n `Tensor or TensorLike, but got '${type}'`);\n }\n const inferredShape = inferShape(x, inferredDtype);\n if (!isTypedArray(x) && !Array.isArray(x)) {\n x = [x] as number[];\n }\n const skipTypedArray = true;\n const values = inferredDtype !== 'string' ?\n toTypedArray(x, inferredDtype as DataType) :\n flatten(x as string[], [], skipTypedArray) as string[];\n return ENGINE.makeTensor(values, inferredShape, inferredDtype) as T;\n}\n\nexport function convertToTensorArray(\n arg: Array, argName: string, functionName: string,\n parseAsDtype: DataType|'numeric'|'string_or_numeric' = 'numeric'): T[] {\n if (!Array.isArray(arg)) {\n throw new Error(\n `Argument ${argName} passed to ${functionName} must be a ` +\n '`Tensor[]` or `TensorLike[]`');\n }\n const tensors = arg as T[];\n return tensors.map(\n (t, i) =>\n convertToTensor(t, `${argName}[${i}]`, functionName, parseAsDtype));\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {isPromise} from '../util';\n\nexport const OP_SCOPE_SUFFIX = '__op';\n\n/**\n * Used for wrapping functions that perform math operations on\n * Tensors. The function will be wrapped in a named scope that cleans all\n * memory usage after the function is done.\n */\nexport function op(f: {[name: string]: T}): T {\n const keys = Object.keys(f);\n if (keys.length !== 1) {\n throw new Error(\n `Please provide an object with a single key ` +\n `(operation name) mapping to a function. Got an object with ` +\n `${keys.length} keys.`);\n }\n\n let opName = keys[0];\n const fn = f[opName];\n\n // Strip the underscore from the end of the function name.\n if (opName.endsWith('_')) {\n opName = opName.substring(0, opName.length - 1);\n }\n\n // add an __op suffix to distinguish ops from kernels in tf.profile\n opName = opName + OP_SCOPE_SUFFIX;\n\n // tslint:disable-next-line:no-any\n const f2 = (...args: any[]) => {\n ENGINE.startScope(opName);\n try {\n const result = fn(...args);\n if (isPromise(result)) {\n console.error('Cannot return a Promise inside of tidy.');\n }\n ENGINE.endScope(result);\n return result;\n } catch (ex) {\n ENGINE.endScope(null);\n throw ex;\n }\n };\n Object.defineProperty(f2, 'name', {value: opName, configurable: true});\n\n // tslint:disable-next-line:no-any\n return f2 as any as T;\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {Complex, ComplexInputs} from '../kernel_names';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Converts two real numbers to a complex number.\n *\n * Given a tensor `real` representing the real part of a complex number, and a\n * tensor `imag` representing the imaginary part of a complex number, this\n * operation returns complex numbers elementwise of the form [r0, i0, r1, i1],\n * where r represents the real part and i represents the imag part.\n *\n * The input tensors real and imag must have the same shape.\n *\n * ```js\n * const real = tf.tensor1d([2.25, 3.25]);\n * const imag = tf.tensor1d([4.75, 5.75]);\n * const complex = tf.complex(real, imag);\n *\n * complex.print();\n * ```\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction complex_(real: T|TensorLike, imag: T|TensorLike): T {\n const $real = convertToTensor(real, 'real', 'complex');\n const $imag = convertToTensor(imag, 'imag', 'complex');\n util.assertShapesMatch(\n $real.shape, $imag.shape,\n `real and imag shapes, ${$real.shape} and ${$imag.shape}, ` +\n `must match in call to tf.complex().`);\n\n const inputs: ComplexInputs = {real: $real, imag: $imag};\n return ENGINE.runKernel(Complex, inputs as {} as NamedTensorMap);\n}\n\nexport const complex = op({complex_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Tensor} from '../tensor';\nimport {TensorLike, TypedArray} from '../types';\nimport {DataType} from '../types';\nimport {assert, assertNonNegativeIntegerDimensions, flatten, inferDtype, isTypedArray, sizeFromShape, toTypedArray} from '../util';\n\n/** This is shared code across all tensor creation methods. */\nexport function makeTensor(\n values: TensorLike, shape: number[], inferredShape: number[],\n dtype?: DataType): Tensor {\n if (dtype == null) {\n dtype = inferDtype(values);\n }\n if (dtype === 'complex64') {\n throw new Error(\n `Cannot construct a complex64 tensor directly. ` +\n `Please use tf.complex(real, imag).`);\n }\n if (!isTypedArray(values) && !Array.isArray(values) &&\n typeof values !== 'number' && typeof values !== 'boolean' &&\n typeof values !== 'string') {\n throw new Error(\n 'values passed to tensor(values) must be a number/boolean/string or ' +\n 'an array of numbers/booleans/strings, or a TypedArray');\n }\n if (shape != null) {\n assertNonNegativeIntegerDimensions(shape);\n\n const providedSize = sizeFromShape(shape);\n const inferredSize = sizeFromShape(inferredShape);\n assert(\n providedSize === inferredSize,\n () =>\n `Based on the provided shape, [${shape}], the tensor should have ` +\n `${providedSize} values but has ${inferredSize}`);\n\n for (let i = 0; i < inferredShape.length; ++i) {\n const inferred = inferredShape[i];\n const flatDimsDontMatch = i === inferredShape.length - 1 ?\n inferred !== sizeFromShape(shape.slice(i)) :\n true;\n assert(\n inferredShape[i] === shape[i] || !flatDimsDontMatch,\n () => `Error creating a new Tensor. Inferred shape ` +\n `(${inferredShape}) does not match the provided ` +\n `shape (${shape}). `);\n }\n }\n\n if (!isTypedArray(values) && !Array.isArray(values)) {\n values = [values] as number[];\n }\n\n shape = shape || inferredShape;\n values = dtype !== 'string' ?\n toTypedArray(values, dtype) :\n flatten(values as string[], [], true) as string[];\n return ENGINE.makeTensor(values as TypedArray, shape, dtype);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from '../tensor';\nimport {inferShape} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport {DataType, Rank, ShapeMap} from '../types';\n\nimport {makeTensor} from './tensor_ops_util';\n\n/**\n * Creates a `tf.Tensor` with the provided values, shape and dtype.\n *\n * ```js\n * // Pass an array of values to create a vector.\n * tf.tensor([1, 2, 3, 4]).print();\n * ```\n *\n * ```js\n * // Pass a nested array of values to make a matrix or a higher\n * // dimensional tensor.\n * tf.tensor([[1, 2], [3, 4]]).print();\n * ```\n *\n * ```js\n * // Pass a flat array and specify a shape yourself.\n * tf.tensor([1, 2, 3, 4], [2, 2]).print();\n * ```\n *\n * @param values The values of the tensor. Can be nested array of numbers,\n * or a flat array, or a `TypedArray`. If the values are strings,\n * they will be encoded as utf-8 and kept as `Uint8Array[]`.\n * @param shape The shape of the tensor. Optional. If not provided,\n * it is inferred from `values`.\n * @param dtype The data type.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function tensor(\n values: TensorLike, shape?: ShapeMap[R], dtype?: DataType): Tensor {\n const inferredShape = inferShape(values, dtype);\n return makeTensor(values, shape, inferredShape, dtype) as Tensor;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/* Type definitions for exporting and importing of models. */\n\n/**\n * A map from Tensor dtype to number of bytes per element of the Tensor.\n */\nexport const DTYPE_VALUE_SIZE_MAP: {[dtype: string]: number} = {\n 'float32': 4,\n 'float16': 2,\n 'int32': 4,\n 'uint16': 2,\n 'uint8': 1,\n 'bool': 1,\n 'complex64': 8\n};\n\n/**\n * A weight manifest.\n *\n * The weight manifest consists of an ordered list of weight-manifest groups.\n * Each weight-manifest group (\"group\" for short hereafter) consists of a\n * number of weight values stored in a number of paths.\n * See the documentation of `WeightManifestGroupConfig` below for more details.\n */\nexport declare type WeightsManifestConfig = WeightsManifestGroupConfig[];\n\n/**\n * A weight-manifest group.\n *\n * Consists of an ordered list of weight values encoded in binary format,\n * stored in an ordered list of paths.\n */\nexport declare interface WeightsManifestGroupConfig {\n /**\n * An ordered list of paths.\n *\n * Paths are intentionally abstract in order to be general. For example, they\n * can be relative URL paths or relative paths on the file system.\n */\n paths: string[];\n\n /**\n * Specifications of the weights stored in the paths.\n */\n weights: WeightsManifestEntry[];\n}\n\n/**\n * Group to which the weight belongs.\n *\n * - 'optimizer': Weight from a stateful optimizer.\n */\nexport type WeightGroup = 'model'|'optimizer';\n\n/**\n * An entry in the weight manifest.\n *\n * The entry contains specification of a weight.\n */\nexport declare interface WeightsManifestEntry {\n /**\n * Name of the weight, e.g., 'Dense_1/bias'\n */\n name: string;\n\n /**\n * Shape of the weight.\n */\n shape: number[];\n\n /**\n * Data type of the weight.\n */\n dtype: 'float32'|'int32'|'bool'|'string'|'complex64';\n\n /**\n * Type of the weight.\n *\n * Optional.\n *\n * The value 'optimizer' indicates the weight belongs to an optimizer\n * (i.e., used only during model training and not during inference).\n */\n group?: WeightGroup;\n\n /**\n * Information for dequantization of the weight.\n */\n quantization?: {\n scale?: number, // The scaling constant to multiply by.\n min?: number, // The (possibly nudged) minimum weight to add.\n dtype: 'uint16'|'uint8'|'float16' // The dtype of the quantized weights.\n };\n}\n\n/**\n * Options for saving a model.\n * @innamespace io\n */\nexport interface SaveConfig {\n /**\n * Whether to save only the trainable weights of the model, ignoring the\n * non-trainable ones.\n */\n trainableOnly?: boolean;\n\n /**\n * Whether the optimizer will be saved (if exists).\n *\n * Default: `false`.\n */\n includeOptimizer?: boolean;\n}\n\n/**\n * Result of a saving operation.\n */\nexport interface SaveResult {\n /**\n * Information about the model artifacts saved.\n */\n modelArtifactsInfo: ModelArtifactsInfo;\n\n /**\n * HTTP responses from the server that handled the model-saving request (if\n * any). This is applicable only to server-based saving routes.\n */\n responses?: Response[];\n\n /**\n * Error messages and related data (if any).\n */\n errors?: Array<{}|string>;\n}\n\nexport declare interface ModelArtifactsInfo {\n /**\n * Timestamp for when the model is saved.\n */\n dateSaved: Date;\n\n /**\n * TODO (cais,yassogba) consider removing GraphDef as GraphDefs now\n * come in a JSON format and none of our IOHandlers support a non json\n * format. We could conder replacing this with 'Binary' if we want to\n * allow future handlers to save to non json formats (though they will\n * probably want more information than 'Binary').\n * Type of the model topology\n *\n * Type of the model topology\n *\n * Possible values:\n * - JSON: JSON config (human-readable, e.g., Keras JSON).\n * - GraphDef: TensorFlow\n * [GraphDef](https://www.tensorflow.org/extend/tool_developers/#graphdef)\n * protocol buffer (binary).\n */\n modelTopologyType: 'JSON'|'GraphDef';\n\n /**\n * Size of model topology (Keras JSON or GraphDef), in bytes.\n */\n modelTopologyBytes?: number;\n\n /**\n * Size of weight specification or manifest, in bytes.\n */\n weightSpecsBytes?: number;\n\n /**\n * Size of weight value data, in bytes.\n */\n weightDataBytes?: number;\n}\n\n/** Model training configuration. */\nexport declare interface TrainingConfig {\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n // See\n // tslint:disable-next-line:max-line-length\n // https://github.com/tensorflow/tfjs-layers/blob/master/src/keras_format/training_config.ts\n /** Optimizer used for the model training. */\n optimizer_config: {};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n /** Loss function(s) for the model's output(s). */\n loss: string|string[]|{[key: string]: string};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n /** Metric function(s) for the model's output(s). */\n metrics?: string[]|{[key: string]: string};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n weighted_metrics?: string[];\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n sample_weight_mode?: string;\n\n loss_weights?: number[]|{[key: string]: number};\n}\n\n/**\n * The serialized artifacts of a model, including topology and weights.\n *\n * The `modelTopology`, `trainingConfig`, `weightSpecs` and `weightData` fields\n * of this interface are optional, in order to support topology- or weights-only\n * saving and loading.\n *\n * Note this interface is used internally in IOHandlers. For the file format\n * written to disk as `model.json`, see `ModelJSON`.\n */\nexport declare interface ModelArtifacts {\n /**\n * Model topology.\n *\n * For Keras-style `tf.Model`s, this is a JSON object.\n * For TensorFlow-style models (e.g., `SavedModel`), this is the JSON\n * encoding of the `GraphDef` protocol buffer.\n */\n modelTopology?: {}|ArrayBuffer;\n\n /**\n * Serialized configuration for the model's training.\n */\n trainingConfig?: TrainingConfig;\n\n /**\n * Weight specifications.\n *\n * This corresponds to the weightsData below.\n */\n weightSpecs?: WeightsManifestEntry[];\n\n /**\n * Binary buffer for all weight values concatenated in the order specified\n * by `weightSpecs`.\n */\n weightData?: ArrayBuffer;\n\n /**\n * Hard-coded format name for models saved from TensorFlow.js or converted\n * by TensorFlow.js Converter.\n */\n format?: string;\n\n /**\n * What library is responsible for originally generating this artifact.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js v1.0.0'.\n */\n generatedBy?: string;\n\n /**\n * What library or tool is responsible for converting the original model\n * to this format, applicable only if the model is output by a converter.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js Converter v1.0.0'.\n *\n * A value of `null` means the model artifacts are generated without any\n * conversion process (e.g., saved directly from a TensorFlow.js\n * `tf.LayersModel` instance.)\n */\n convertedBy?: string|null;\n\n /**\n * Inputs and outputs signature for saved model.\n */\n signature?: {};\n\n /**\n * User-defined metadata about the model.\n */\n userDefinedMetadata?: {[key: string]: {}};\n\n /**\n * Initializer for the model.\n */\n modelInitializer?: {};\n}\n\n/**\n * The on-disk format of the `model.json` file.\n *\n * TF.js 1.0 always populates the optional fields when writing model.json.\n * Prior versions did not provide those fields.\n */\nexport declare interface ModelJSON {\n /**\n * Model topology.\n *\n * For Keras-style `tf.Model`s, this is a JSON object.\n * For TensorFlow-style models (e.g., `SavedModel`), this is the JSON\n * encoding of the `GraphDef` protocol buffer.\n */\n modelTopology: {};\n\n /** Model training configuration. */\n trainingConfig?: TrainingConfig;\n\n /**\n * Weights manifest.\n *\n * The weights manifest consists of an ordered list of weight-manifest\n * groups. Each weight-manifest group consists of a number of weight values\n * stored in a number of paths. See the documentation of\n * `WeightsManifestConfig` for more details.\n */\n weightsManifest: WeightsManifestConfig;\n\n /**\n * Hard-coded format name for models saved from TensorFlow.js or converted\n * by TensorFlow.js Converter.\n */\n format?: string;\n\n /**\n * What library is responsible for originally generating this artifact.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js v1.0.0'.\n */\n generatedBy?: string;\n\n /**\n * What library or tool is responsible for converting the original model\n * to this format, applicable only if the model is output by a converter.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js Converter v1.0.0'.\n *\n * A value of `null` means the model artifacts are generated without any\n * conversion process (e.g., saved directly from a TensorFlow.js\n * `tf.LayersModel` instance.)\n */\n convertedBy?: string|null;\n\n /**\n * Inputs and outputs signature for saved model.\n */\n signature?: {};\n\n /**\n * User-defined metadata about the model.\n */\n userDefinedMetadata?: {[key: string]: {}};\n\n /**\n * Initializer for the model.\n */\n modelInitializer?: {};\n}\n\n/**\n * Type definition for handlers of loading operations.\n */\nexport type LoadHandler = () => Promise;\n\n/**\n * Type definition for handlers of saving operations.\n */\nexport type SaveHandler = (modelArtifact: ModelArtifacts) =>\n Promise;\n\n/**\n * Interface for a model import/export handler.\n *\n * The `save` and `load` handlers are both optional, in order to allow handlers\n * that support only saving or loading.\n */\n// tslint:disable-next-line:interface-name\nexport interface IOHandler {\n save?: SaveHandler;\n load?: LoadHandler;\n}\n\n/**\n * An interface for the manager of a model store.\n *\n * A model store is defined as a storage medium on which multiple models can\n * be stored. Each stored model has a unique `path` as its identifier.\n * A `ModelStoreManager` for the store allows actions including\n *\n * - Listing the models stored in the store.\n * - Deleting a model from the store.\n */\nexport interface ModelStoreManager {\n /**\n * List all models in the model store.\n *\n * @returns A dictionary mapping paths of existing models to their\n * model artifacts info. Model artifacts info include type of the model's\n * topology, byte sizes of the topology, weights, etc.\n */\n listModels(): Promise<{[path: string]: ModelArtifactsInfo}>;\n\n /**\n * Remove a model specified by `path`.\n *\n * @param path\n * @returns ModelArtifactsInfo of the deleted model (if and only if deletion\n * is successful).\n * @throws Error if deletion fails, e.g., if no model exists at `path`.\n */\n removeModel(path: string): Promise;\n}\n\n/**\n * Callback for the progress of a long-running action such as an HTTP\n * request for a large binary object.\n *\n * `fraction` should be a number in the [0, 1] interval, indicating how\n * much of the action has completed.\n */\nexport type OnProgressCallback = (fraction: number) => void;\n\n/** @innamespace io */\nexport interface LoadOptions {\n /**\n * RequestInit (options) for HTTP requests.\n *\n * For detailed information on the supported fields, see\n * [https://developer.mozilla.org/en-US/docs/Web/API/Request/Request](\n * https://developer.mozilla.org/en-US/docs/Web/API/Request/Request)\n */\n requestInit?: RequestInit;\n\n /**\n * Progress callback.\n */\n onProgress?: OnProgressCallback;\n\n /**\n * A function used to override the `window.fetch` function.\n */\n fetchFunc?: Function;\n\n /**\n * Strict loading model: whether extraneous weights or missing\n * weights should trigger an `Error`.\n *\n * If `true`, require that the provided weights exactly match those\n * required by the layers. `false` means that both extra weights\n * and missing weights will be silently ignored.\n *\n * Default: `true`.\n */\n strict?: boolean;\n\n /**\n * Path prefix for weight files, by default this is calculated from the\n * path of the model JSON file.\n *\n * For instance, if the path to the model JSON file is\n * `http://localhost/foo/model.json`, then the default path prefix will be\n * `http://localhost/foo/`. If a weight file has the path value\n * `group1-shard1of2` in the weight manifest, then the weight file will be\n * loaded from `http://localhost/foo/group1-shard1of2` by default. However,\n * if you provide a `weightPathPrefix` value of\n * `http://localhost/foo/alt-weights`, then the weight file will be loaded\n * from the path `http://localhost/foo/alt-weights/group1-shard1of2` instead.\n */\n weightPathPrefix?: string;\n\n /**\n * Whether the module or model is to be loaded from TF Hub.\n *\n * Setting this to `true` allows passing a TF-Hub module URL, omitting the\n * standard model file name and the query parameters.\n *\n * Default: `false`.\n */\n fromTFHub?: boolean;\n\n /**\n * An async function to convert weight file name to URL. The weight file\n * names are stored in model.json's weightsManifest.paths field. By default we\n * consider weight files are colocated with the model.json file. For example:\n * model.json URL: https://www.google.com/models/1/model.json\n * group1-shard1of1.bin url:\n * https://www.google.com/models/1/group1-shard1of1.bin\n *\n * With this func you can convert the weight file name to any URL.\n */\n weightUrlConverter?: (weightFileName: string) => Promise;\n}\n\n/**\n * Additional options for Platform.fetch\n */\nexport interface RequestDetails {\n /**\n * Is this request for a binary file (as opposed to a json file)\n */\n isBinary?: boolean;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {complex} from '../ops/complex';\n\nimport {tensor} from '../ops/tensor';\nimport {NamedTensor, NamedTensorMap} from '../tensor_types';\nimport {TypedArray} from '../types';\nimport {sizeFromShape} from '../util';\n\nimport {DTYPE_VALUE_SIZE_MAP, ModelArtifacts, ModelArtifactsInfo, WeightGroup, WeightsManifestEntry} from './types';\n\n/** Number of bytes reserved for the length of the string. (32bit integer). */\nconst NUM_BYTES_STRING_LENGTH = 4;\n\n/**\n * Encode a map from names to weight values as an ArrayBuffer, along with an\n * `Array` of `WeightsManifestEntry` as specification of the encoded weights.\n *\n * This function does not perform sharding.\n *\n * This function is the reverse of `decodeWeights`.\n *\n * @param tensors A map (\"dict\") from names to tensors.\n * @param group Group to which the weights belong (optional).\n * @returns A `Promise` of\n * - A flat `ArrayBuffer` with all the binary values of the `Tensor`s\n * concatenated.\n * - An `Array` of `WeightManifestEntry`s, carrying information including\n * tensor names, `dtype`s and shapes.\n * @throws Error: on unsupported tensor `dtype`.\n */\nexport async function encodeWeights(\n tensors: NamedTensorMap|NamedTensor[], group?: WeightGroup):\n Promise<{data: ArrayBuffer, specs: WeightsManifestEntry[]}> {\n // TODO(adarob, cais): Support quantization.\n const specs: WeightsManifestEntry[] = [];\n const dataPromises: Array> = [];\n\n const names: string[] = Array.isArray(tensors) ?\n tensors.map(tensor => tensor.name) :\n Object.keys(tensors);\n\n for (let i = 0; i < names.length; ++i) {\n const name = names[i];\n const t = Array.isArray(tensors) ? tensors[i].tensor : tensors[name];\n if (t.dtype !== 'float32' && t.dtype !== 'int32' && t.dtype !== 'bool' &&\n t.dtype !== 'string' && t.dtype !== 'complex64') {\n throw new Error(`Unsupported dtype in weight '${name}': ${t.dtype}`);\n }\n const spec: WeightsManifestEntry = {name, shape: t.shape, dtype: t.dtype};\n if (t.dtype === 'string') {\n const utf8bytes = new Promise(async resolve => {\n const vals = await t.bytes() as Uint8Array[];\n const totalNumBytes = vals.reduce((p, c) => p + c.length, 0) +\n NUM_BYTES_STRING_LENGTH * vals.length;\n const bytes = new Uint8Array(totalNumBytes);\n let offset = 0;\n for (let i = 0; i < vals.length; i++) {\n const val = vals[i];\n const bytesOfLength =\n new Uint8Array(new Uint32Array([val.length]).buffer);\n bytes.set(bytesOfLength, offset);\n offset += NUM_BYTES_STRING_LENGTH;\n bytes.set(val, offset);\n offset += val.length;\n }\n resolve(bytes);\n });\n dataPromises.push(utf8bytes);\n } else {\n dataPromises.push(t.data());\n }\n if (group != null) {\n spec.group = group;\n }\n specs.push(spec);\n }\n\n const tensorValues = await Promise.all(dataPromises);\n return {data: concatenateTypedArrays(tensorValues), specs};\n}\n\n/**\n * Decode flat ArrayBuffer as weights.\n *\n * This function does not handle sharding.\n *\n * This function is the reverse of `encodeWeights`.\n *\n * @param buffer A flat ArrayBuffer carrying the binary values of the tensors\n * concatenated in the order specified in `specs`.\n * @param specs Specifications of the names, dtypes and shapes of the tensors\n * whose value are encoded by `buffer`.\n * @return A map from tensor name to tensor value, with the names corresponding\n * to names in `specs`.\n * @throws Error, if any of the tensors has unsupported dtype.\n */\nexport function decodeWeights(\n buffer: ArrayBuffer, specs: WeightsManifestEntry[]): NamedTensorMap {\n // TODO(adarob, cais): Support quantization.\n const out: NamedTensorMap = {};\n let float16Decode: (buffer: Uint16Array) => Float32Array | undefined;\n let offset = 0;\n for (const spec of specs) {\n const name = spec.name;\n const dtype = spec.dtype;\n const shape = spec.shape;\n const size = sizeFromShape(shape);\n let values: TypedArray|string[]|Uint8Array[];\n\n if ('quantization' in spec) {\n const quantization = spec.quantization;\n if (quantization.dtype === 'uint8' || quantization.dtype === 'uint16') {\n if (!('min' in quantization && 'scale' in quantization)) {\n throw new Error(\n `Weight ${spec.name} with quantization ${quantization.dtype} ` +\n `doesn't have corresponding metadata min and scale.`);\n }\n } else if (quantization.dtype === 'float16') {\n if (dtype !== 'float32') {\n throw new Error(\n `Weight ${spec.name} is quantized with ${quantization.dtype} ` +\n `which only supports weights of type float32 not ${dtype}.`);\n }\n } else {\n throw new Error(\n `Weight ${spec.name} has unknown ` +\n `quantization dtype ${quantization.dtype}. ` +\n `Supported quantization dtypes are: ` +\n `'uint8', 'uint16', and 'float16'.`);\n }\n const quantizationSizeFactor = DTYPE_VALUE_SIZE_MAP[quantization.dtype];\n const byteBuffer =\n buffer.slice(offset, offset + size * quantizationSizeFactor);\n const quantizedArray = (quantization.dtype === 'uint8') ?\n new Uint8Array(byteBuffer) :\n new Uint16Array(byteBuffer);\n if (dtype === 'float32') {\n if (quantization.dtype === 'uint8' || quantization.dtype === 'uint16') {\n values = new Float32Array(quantizedArray.length);\n for (let i = 0; i < quantizedArray.length; i++) {\n const v = quantizedArray[i];\n values[i] = v * quantization.scale + quantization.min;\n }\n } else if (quantization.dtype === 'float16') {\n if (float16Decode === undefined) {\n float16Decode = getFloat16Decoder();\n }\n values = float16Decode(quantizedArray as Uint16Array);\n } else {\n throw new Error(\n `Unsupported quantization type ${quantization.dtype} ` +\n `for weight type float32.`);\n }\n } else if (dtype === 'int32') {\n if (quantization.dtype !== 'uint8' && quantization.dtype !== 'uint16') {\n throw new Error(\n `Unsupported quantization type ${quantization.dtype} ` +\n `for weight type int32.`);\n }\n values = new Int32Array(quantizedArray.length);\n for (let i = 0; i < quantizedArray.length; i++) {\n const v = quantizedArray[i];\n values[i] = Math.round(v * quantization.scale + quantization.min);\n }\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * quantizationSizeFactor;\n } else if (dtype === 'string') {\n const size = sizeFromShape(spec.shape);\n values = [];\n for (let i = 0; i < size; i++) {\n const byteLength = new Uint32Array(\n buffer.slice(offset, offset + NUM_BYTES_STRING_LENGTH))[0];\n offset += NUM_BYTES_STRING_LENGTH;\n const bytes = new Uint8Array(buffer.slice(offset, offset + byteLength));\n (values as Uint8Array[]).push(bytes);\n offset += byteLength;\n }\n } else {\n const dtypeFactor = DTYPE_VALUE_SIZE_MAP[dtype];\n const byteBuffer = buffer.slice(offset, offset + size * dtypeFactor);\n\n if (dtype === 'float32') {\n values = new Float32Array(byteBuffer);\n } else if (dtype === 'int32') {\n values = new Int32Array(byteBuffer);\n } else if (dtype === 'bool') {\n values = new Uint8Array(byteBuffer);\n } else if (dtype === 'complex64') {\n values = new Float32Array(byteBuffer);\n const real = new Float32Array(values.length / 2);\n const image = new Float32Array(values.length / 2);\n for (let i = 0; i < real.length; i++) {\n real[i] = values[i * 2];\n image[i] = values[i * 2 + 1];\n }\n const realTensor = tensor(real, shape, 'float32');\n const imageTensor = tensor(image, shape, 'float32');\n out[name] = complex(realTensor, imageTensor);\n realTensor.dispose();\n imageTensor.dispose();\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * dtypeFactor;\n }\n if (dtype !== 'complex64') {\n out[name] = tensor(values, shape, dtype);\n }\n }\n return out;\n}\n\n/**\n * Concatenate TypedArrays into an ArrayBuffer.\n */\nexport function concatenateTypedArrays(xs: TypedArray[]): ArrayBuffer {\n // TODO(adarob, cais): Support quantization.\n if (xs === null) {\n throw new Error(`Invalid input value: ${JSON.stringify(xs)}`);\n }\n\n let totalByteLength = 0;\n\n // `normalizedXs` is here for this reason: a `TypedArray`'s `buffer'\n // can have a different byte length from that of the `TypedArray` itself,\n // for example, when the `TypedArray` is created from an offset in an\n // `ArrayBuffer`. `normliazedXs` holds `TypedArray`s whose `buffer`s match\n // the `TypedArray` in byte length. If an element of `xs` does not show\n // this property, a new `TypedArray` that satisfy this property will be\n // constructed and pushed into `normalizedXs`.\n const normalizedXs: TypedArray[] = [];\n xs.forEach((x: TypedArray) => {\n totalByteLength += x.byteLength;\n // tslint:disable:no-any\n normalizedXs.push(\n x.byteLength === x.buffer.byteLength ? x :\n new (x.constructor as any)(x));\n if (!(x as any instanceof Float32Array || x as any instanceof Int32Array ||\n x as any instanceof Uint8Array)) {\n throw new Error(`Unsupported TypedArray subtype: ${x.constructor.name}`);\n }\n // tslint:enable:no-any\n });\n\n const y = new Uint8Array(totalByteLength);\n let offset = 0;\n normalizedXs.forEach((x: TypedArray) => {\n y.set(new Uint8Array(x.buffer), offset);\n offset += x.byteLength;\n });\n\n return y.buffer;\n}\n\n// Use Buffer on Node.js instead of Blob/atob/btoa\nconst useNodeBuffer = typeof Buffer !== 'undefined' &&\n (typeof Blob === 'undefined' || typeof atob === 'undefined' ||\n typeof btoa === 'undefined');\n\n/**\n * Calculate the byte length of a JavaScript string.\n *\n * Note that a JavaScript string can contain wide characters, therefore the\n * length of the string is not necessarily equal to the byte length.\n *\n * @param str Input string.\n * @returns Byte length.\n */\nexport function stringByteLength(str: string): number {\n if (useNodeBuffer) {\n return Buffer.byteLength(str);\n }\n return new Blob([str]).size;\n}\n\n/**\n * Encode an ArrayBuffer as a base64 encoded string.\n *\n * @param buffer `ArrayBuffer` to be converted.\n * @returns A string that base64-encodes `buffer`.\n */\nexport function arrayBufferToBase64String(buffer: ArrayBuffer): string {\n if (useNodeBuffer) {\n return Buffer.from(buffer).toString('base64');\n }\n const buf = new Uint8Array(buffer);\n let s = '';\n for (let i = 0, l = buf.length; i < l; i++) {\n s += String.fromCharCode(buf[i]);\n }\n return btoa(s);\n}\n\n/**\n * Decode a base64 string as an ArrayBuffer.\n *\n * @param str Base64 string.\n * @returns Decoded `ArrayBuffer`.\n */\nexport function base64StringToArrayBuffer(str: string): ArrayBuffer {\n if (useNodeBuffer) {\n const buf = Buffer.from(str, 'base64');\n return buf.buffer.slice(buf.byteOffset, buf.byteOffset + buf.byteLength);\n }\n const s = atob(str);\n const buffer = new Uint8Array(s.length);\n for (let i = 0; i < s.length; ++i) {\n buffer.set([s.charCodeAt(i)], i);\n }\n return buffer.buffer;\n}\n\n/**\n * Concatenate a number of ArrayBuffers into one.\n *\n * @param buffers A number of array buffers to concatenate.\n * @returns Result of concatenating `buffers` in order.\n */\nexport function concatenateArrayBuffers(buffers: ArrayBuffer[]): ArrayBuffer {\n if (buffers.length === 1) {\n return buffers[0];\n }\n\n let totalByteLength = 0;\n buffers.forEach((buffer: ArrayBuffer) => {\n totalByteLength += buffer.byteLength;\n });\n\n const temp = new Uint8Array(totalByteLength);\n let offset = 0;\n buffers.forEach((buffer: ArrayBuffer) => {\n temp.set(new Uint8Array(buffer), offset);\n offset += buffer.byteLength;\n });\n return temp.buffer;\n}\n\n/**\n * Get the basename of a path.\n *\n * Behaves in a way analogous to Linux's basename command.\n *\n * @param path\n */\nexport function basename(path: string): string {\n const SEPARATOR = '/';\n path = path.trim();\n while (path.endsWith(SEPARATOR)) {\n path = path.slice(0, path.length - 1);\n }\n const items = path.split(SEPARATOR);\n return items[items.length - 1];\n}\n\n/**\n * Populate ModelArtifactsInfo fields for a model with JSON topology.\n * @param modelArtifacts\n * @returns A ModelArtifactsInfo object.\n */\nexport function getModelArtifactsInfoForJSON(modelArtifacts: ModelArtifacts):\n ModelArtifactsInfo {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error('Expected JSON model topology, received ArrayBuffer.');\n }\n\n return {\n dateSaved: new Date(),\n modelTopologyType: 'JSON',\n modelTopologyBytes: modelArtifacts.modelTopology == null ?\n 0 :\n stringByteLength(JSON.stringify(modelArtifacts.modelTopology)),\n weightSpecsBytes: modelArtifacts.weightSpecs == null ?\n 0 :\n stringByteLength(JSON.stringify(modelArtifacts.weightSpecs)),\n weightDataBytes: modelArtifacts.weightData == null ?\n 0 :\n modelArtifacts.weightData.byteLength,\n };\n}\n\n/**\n * Computes mantisa table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 2048 mantissa lookup values.\n */\nfunction computeFloat16MantisaTable(): Uint32Array {\n const convertMantissa = (i: number): number => {\n let m = i << 13;\n let e = 0;\n\n while ((m & 0x00800000) === 0) {\n e -= 0x00800000;\n m <<= 1;\n }\n m &= ~0x00800000;\n e += 0x38800000;\n\n return m | e;\n };\n\n const mantisaTable = new Uint32Array(2048);\n\n mantisaTable[0] = 0;\n for (let i = 1; i < 1024; i++) {\n mantisaTable[i] = convertMantissa(i);\n }\n for (let i = 1024; i < 2048; i++) {\n mantisaTable[i] = 0x38000000 + ((i - 1024) << 13);\n }\n\n return mantisaTable;\n}\n\n/**\n * Computes exponent table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 64 exponent lookup values.\n */\nfunction computeFloat16ExponentTable(): Uint32Array {\n const exponentTable = new Uint32Array(64);\n\n exponentTable[0] = 0;\n exponentTable[31] = 0x47800000;\n exponentTable[32] = 0x80000000;\n exponentTable[63] = 0xc7800000;\n for (let i = 1; i < 31; i++) {\n exponentTable[i] = i << 23;\n }\n for (let i = 33; i < 63; i++) {\n exponentTable[i] = 0x80000000 + ((i - 32) << 23);\n }\n\n return exponentTable;\n}\n\n/**\n * Computes offset table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 6d offset values.\n */\nfunction computeFloat16OffsetTable(): Uint32Array {\n const offsetTable = new Uint32Array(64);\n\n for (let i = 0; i < 64; i++) {\n offsetTable[i] = 1024;\n }\n offsetTable[0] = offsetTable[32] = 0;\n\n return offsetTable;\n}\n\n/**\n * Retrieve a Float16 decoder which will decode a ByteArray of Float16 values\n * to a Float32Array.\n *\n * @returns Function (buffer: Uint16Array) => Float32Array which decodes\n * the Uint16Array of Float16 bytes to a Float32Array.\n */\nexport function getFloat16Decoder(): (buffer: Uint16Array) => Float32Array {\n // Algorithm is based off of\n // http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n\n // Cache lookup tables\n const mantisaTable = computeFloat16MantisaTable();\n const exponentTable = computeFloat16ExponentTable();\n const offsetTable = computeFloat16OffsetTable();\n\n return (quantizedArray: Uint16Array) => {\n const buffer = new ArrayBuffer(4 * quantizedArray.length);\n const bufferUint32View = new Uint32Array(buffer);\n for (let index = 0; index < quantizedArray.length; index++) {\n const float16Bits = quantizedArray[index];\n const float32Bits =\n mantisaTable[offsetTable[float16Bits >> 10] + (float16Bits & 0x3ff)] +\n exponentTable[float16Bits >> 10];\n bufferUint32View[index] = float32Bits;\n }\n return new Float32Array(buffer);\n };\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {IOHandler, LoadOptions} from './types';\n\nexport type IORouter = (url: string|string[], loadOptions?: LoadOptions) =>\n IOHandler;\n\nexport class IORouterRegistry {\n // Singleton instance.\n private static instance: IORouterRegistry;\n\n private saveRouters: IORouter[];\n private loadRouters: IORouter[];\n\n private constructor() {\n this.saveRouters = [];\n this.loadRouters = [];\n }\n\n private static getInstance(): IORouterRegistry {\n if (IORouterRegistry.instance == null) {\n IORouterRegistry.instance = new IORouterRegistry();\n }\n return IORouterRegistry.instance;\n }\n\n /**\n * Register a save-handler router.\n *\n * @param saveRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `save` method defined or `null`.\n */\n static registerSaveRouter(saveRouter: IORouter) {\n IORouterRegistry.getInstance().saveRouters.push(saveRouter);\n }\n\n /**\n * Register a load-handler router.\n *\n * @param loadRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `load` method defined or `null`.\n */\n static registerLoadRouter(loadRouter: IORouter) {\n IORouterRegistry.getInstance().loadRouters.push(loadRouter);\n }\n\n /**\n * Look up IOHandler for saving, given a URL-like string.\n *\n * @param url\n * @returns If only one match is found, an instance of IOHandler with the\n * `save` method defined. If no match is found, `null`.\n * @throws Error, if more than one match is found.\n */\n static getSaveHandlers(url: string|string[]): IOHandler[] {\n return IORouterRegistry.getHandlers(url, 'save');\n }\n\n /**\n * Look up IOHandler for loading, given a URL-like string.\n *\n * @param url\n * @param loadOptions Optional, custom load options.\n * @returns All valid handlers for `url`, given the currently registered\n * handler routers.\n */\n static getLoadHandlers(url: string|string[], loadOptions?: LoadOptions):\n IOHandler[] {\n return IORouterRegistry.getHandlers(url, 'load', loadOptions);\n }\n\n private static getHandlers(\n url: string|string[], handlerType: 'save'|'load',\n loadOptions?: LoadOptions): IOHandler[] {\n const validHandlers: IOHandler[] = [];\n const routers = handlerType === 'load' ?\n IORouterRegistry.getInstance().loadRouters :\n IORouterRegistry.getInstance().saveRouters;\n routers.forEach(router => {\n const handler = router(url, loadOptions);\n if (handler !== null) {\n validHandlers.push(handler);\n }\n });\n return validHandlers;\n }\n}\n\nexport const registerSaveRouter = (loudRouter: IORouter) =>\n IORouterRegistry.registerSaveRouter(loudRouter);\nexport const registerLoadRouter = (loudRouter: IORouter) =>\n IORouterRegistry.registerLoadRouter(loudRouter);\nexport const getSaveHandlers = (url: string|string[]) =>\n IORouterRegistry.getSaveHandlers(url);\nexport const getLoadHandlers =\n (url: string|string[], loadOptions?: LoadOptions) =>\n IORouterRegistry.getLoadHandlers(url, loadOptions);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\n\nimport {env} from '../environment';\n\nimport {getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelArtifactsInfo, ModelStoreManager, SaveResult} from './types';\n\nconst DATABASE_NAME = 'tensorflowjs';\nconst DATABASE_VERSION = 1;\n\n// Model data and ModelArtifactsInfo (metadata) are stored in two separate\n// stores for efficient access of the list of stored models and their metadata.\n// 1. The object store for model data: topology, weights and weight manifests.\nconst MODEL_STORE_NAME = 'models_store';\n// 2. The object store for ModelArtifactsInfo, including meta-information such\n// as the type of topology (JSON vs binary), byte size of the topology, byte\n// size of the weights, etc.\nconst INFO_STORE_NAME = 'model_info_store';\n\n/**\n * Delete the entire database for tensorflow.js, including the models store.\n */\nexport async function deleteDatabase(): Promise {\n const idbFactory = getIndexedDBFactory();\n\n return new Promise((resolve, reject) => {\n const deleteRequest = idbFactory.deleteDatabase(DATABASE_NAME);\n deleteRequest.onsuccess = () => resolve();\n deleteRequest.onerror = error => reject(error);\n });\n}\n\nfunction getIndexedDBFactory(): IDBFactory {\n if (!env().getBool('IS_BROWSER')) {\n // TODO(cais): Add more info about what IOHandler subtypes are available.\n // Maybe point to a doc page on the web and/or automatically determine\n // the available IOHandlers and print them in the error message.\n throw new Error(\n 'Failed to obtain IndexedDB factory because the current environment' +\n 'is not a web browser.');\n }\n // tslint:disable-next-line:no-any\n const theWindow: any = typeof window === 'undefined' ? self : window;\n const factory = theWindow.indexedDB || theWindow.mozIndexedDB ||\n theWindow.webkitIndexedDB || theWindow.msIndexedDB ||\n theWindow.shimIndexedDB;\n if (factory == null) {\n throw new Error(\n 'The current browser does not appear to support IndexedDB.');\n }\n return factory;\n}\n\nfunction setUpDatabase(openRequest: IDBRequest) {\n const db = openRequest.result as IDBDatabase;\n db.createObjectStore(MODEL_STORE_NAME, {keyPath: 'modelPath'});\n db.createObjectStore(INFO_STORE_NAME, {keyPath: 'modelPath'});\n}\n\n/**\n * IOHandler subclass: Browser IndexedDB.\n *\n * See the doc string of `browserIndexedDB` for more details.\n */\nexport class BrowserIndexedDB implements IOHandler {\n protected readonly indexedDB: IDBFactory;\n protected readonly modelPath: string;\n\n static readonly URL_SCHEME = 'indexeddb://';\n\n constructor(modelPath: string) {\n this.indexedDB = getIndexedDBFactory();\n\n if (modelPath == null || !modelPath) {\n throw new Error(\n 'For IndexedDB, modelPath must not be null, undefined or empty.');\n }\n this.modelPath = modelPath;\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n // TODO(cais): Support saving GraphDef models.\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserLocalStorage.save() does not support saving model topology ' +\n 'in binary formats yet.');\n }\n\n return this.databaseAction(this.modelPath, modelArtifacts) as\n Promise;\n }\n\n async load(): Promise {\n return this.databaseAction(this.modelPath) as Promise;\n }\n\n /**\n * Perform database action to put model artifacts into or read model artifacts\n * from IndexedDB object store.\n *\n * Whether the action is put or get depends on whether `modelArtifacts` is\n * specified. If it is specified, the action will be put; otherwise the action\n * will be get.\n *\n * @param modelPath A unique string path for the model.\n * @param modelArtifacts If specified, it will be the model artifacts to be\n * stored in IndexedDB.\n * @returns A `Promise` of `SaveResult`, if the action is put, or a `Promise`\n * of `ModelArtifacts`, if the action is get.\n */\n private databaseAction(modelPath: string, modelArtifacts?: ModelArtifacts):\n Promise {\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n\n if (modelArtifacts == null) {\n // Read model out from object store.\n const modelTx = db.transaction(MODEL_STORE_NAME, 'readonly');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const getRequest = modelStore.get(this.modelPath);\n getRequest.onsuccess = () => {\n if (getRequest.result == null) {\n db.close();\n return reject(new Error(\n `Cannot find model with path '${this.modelPath}' ` +\n `in IndexedDB.`));\n } else {\n resolve(getRequest.result.modelArtifacts);\n }\n };\n getRequest.onerror = error => {\n db.close();\n return reject(getRequest.error);\n };\n modelTx.oncomplete = () => db.close();\n } else {\n // Put model into object store.\n const modelArtifactsInfo: ModelArtifactsInfo =\n getModelArtifactsInfoForJSON(modelArtifacts);\n // First, put ModelArtifactsInfo into info store.\n const infoTx = db.transaction(INFO_STORE_NAME, 'readwrite');\n let infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const putInfoRequest =\n infoStore.put({modelPath: this.modelPath, modelArtifactsInfo});\n let modelTx: IDBTransaction;\n putInfoRequest.onsuccess = () => {\n // Second, put model data into model store.\n modelTx = db.transaction(MODEL_STORE_NAME, 'readwrite');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const putModelRequest = modelStore.put({\n modelPath: this.modelPath,\n modelArtifacts,\n modelArtifactsInfo\n });\n putModelRequest.onsuccess = () => resolve({modelArtifactsInfo});\n putModelRequest.onerror = error => {\n // If the put-model request fails, roll back the info entry as\n // well.\n infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const deleteInfoRequest = infoStore.delete(this.modelPath);\n deleteInfoRequest.onsuccess = () => {\n db.close();\n return reject(putModelRequest.error);\n };\n deleteInfoRequest.onerror = error => {\n db.close();\n return reject(putModelRequest.error);\n };\n };\n };\n putInfoRequest.onerror = error => {\n db.close();\n return reject(putInfoRequest.error);\n };\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n }\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n}\n\nexport const indexedDBRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserIndexedDB.URL_SCHEME)) {\n return browserIndexedDB(url.slice(BrowserIndexedDB.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(indexedDBRouter);\nIORouterRegistry.registerLoadRouter(indexedDBRouter);\n\n/**\n * Creates a browser IndexedDB IOHandler for saving and loading models.\n *\n * ```js\n * const model = tf.sequential();\n * model.add(\n * tf.layers.dense({units: 1, inputShape: [100], activation: 'sigmoid'}));\n *\n * const saveResult = await model.save('indexeddb://MyModel'));\n * console.log(saveResult);\n * ```\n *\n * @param modelPath A unique identifier for the model to be saved. Must be a\n * non-empty string.\n * @returns An instance of `BrowserIndexedDB` (sublcass of `IOHandler`),\n * which can be used with, e.g., `tf.Model.save`.\n */\nexport function browserIndexedDB(modelPath: string): IOHandler {\n return new BrowserIndexedDB(modelPath);\n}\n\nfunction maybeStripScheme(key: string) {\n return key.startsWith(BrowserIndexedDB.URL_SCHEME) ?\n key.slice(BrowserIndexedDB.URL_SCHEME.length) :\n key;\n}\n\nexport class BrowserIndexedDBManager implements ModelStoreManager {\n private indexedDB: IDBFactory;\n\n constructor() {\n this.indexedDB = getIndexedDBFactory();\n }\n\n async listModels(): Promise<{[path: string]: ModelArtifactsInfo}> {\n return new Promise<{[path: string]: ModelArtifactsInfo}>(\n (resolve, reject) => {\n const openRequest =\n this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const tx = db.transaction(INFO_STORE_NAME, 'readonly');\n const store = tx.objectStore(INFO_STORE_NAME);\n // tslint:disable:max-line-length\n // Need to cast `store` as `any` here because TypeScript's DOM\n // library does not have the `getAll()` method even though the\n // method is supported in the latest version of most mainstream\n // browsers:\n // https://developer.mozilla.org/en-US/docs/Web/API/IDBObjectStore/getAll\n // tslint:enable:max-line-length\n // tslint:disable-next-line:no-any\n const getAllInfoRequest = (store as any).getAll() as IDBRequest;\n getAllInfoRequest.onsuccess = () => {\n const out: {[path: string]: ModelArtifactsInfo} = {};\n for (const item of getAllInfoRequest.result) {\n out[item.modelPath] = item.modelArtifactsInfo;\n }\n resolve(out);\n };\n getAllInfoRequest.onerror = error => {\n db.close();\n return reject(getAllInfoRequest.error);\n };\n tx.oncomplete = () => db.close();\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n\n async removeModel(path: string): Promise {\n path = maybeStripScheme(path);\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const infoTx = db.transaction(INFO_STORE_NAME, 'readwrite');\n const infoStore = infoTx.objectStore(INFO_STORE_NAME);\n\n const getInfoRequest = infoStore.get(path);\n let modelTx: IDBTransaction;\n getInfoRequest.onsuccess = () => {\n if (getInfoRequest.result == null) {\n db.close();\n return reject(new Error(\n `Cannot find model with path '${path}' ` +\n `in IndexedDB.`));\n } else {\n // First, delete the entry in the info store.\n const deleteInfoRequest = infoStore.delete(path);\n const deleteModelData = () => {\n // Second, delete the entry in the model store.\n modelTx = db.transaction(MODEL_STORE_NAME, 'readwrite');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const deleteModelRequest = modelStore.delete(path);\n deleteModelRequest.onsuccess = () =>\n resolve(getInfoRequest.result.modelArtifactsInfo);\n deleteModelRequest.onerror = error =>\n reject(getInfoRequest.error);\n };\n // Proceed with deleting model data regardless of whether deletion\n // of info data succeeds or not.\n deleteInfoRequest.onsuccess = deleteModelData;\n deleteInfoRequest.onerror = error => {\n deleteModelData();\n db.close();\n return reject(getInfoRequest.error);\n };\n }\n };\n getInfoRequest.onerror = error => {\n db.close();\n return reject(getInfoRequest.error);\n };\n\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\nimport {env} from '../environment';\n\nimport {assert} from '../util';\nimport {arrayBufferToBase64String, base64StringToArrayBuffer, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelArtifactsInfo, ModelStoreManager, SaveResult} from './types';\n\nconst PATH_SEPARATOR = '/';\nconst PATH_PREFIX = 'tensorflowjs_models';\nconst INFO_SUFFIX = 'info';\nconst MODEL_TOPOLOGY_SUFFIX = 'model_topology';\nconst WEIGHT_SPECS_SUFFIX = 'weight_specs';\nconst WEIGHT_DATA_SUFFIX = 'weight_data';\nconst MODEL_METADATA_SUFFIX = 'model_metadata';\n\n/**\n * Purge all tensorflow.js-saved model artifacts from local storage.\n *\n * @returns Paths of the models purged.\n */\nexport function purgeLocalStorageArtifacts(): string[] {\n if (!env().getBool('IS_BROWSER') || typeof window === 'undefined' ||\n typeof window.localStorage === 'undefined') {\n throw new Error(\n 'purgeLocalStorageModels() cannot proceed because local storage is ' +\n 'unavailable in the current environment.');\n }\n const LS = window.localStorage;\n const purgedModelPaths: string[] = [];\n for (let i = 0; i < LS.length; ++i) {\n const key = LS.key(i);\n const prefix = PATH_PREFIX + PATH_SEPARATOR;\n if (key.startsWith(prefix) && key.length > prefix.length) {\n LS.removeItem(key);\n const modelName = getModelPathFromKey(key);\n if (purgedModelPaths.indexOf(modelName) === -1) {\n purgedModelPaths.push(modelName);\n }\n }\n }\n return purgedModelPaths;\n}\n\nfunction getModelKeys(path: string): {\n info: string,\n topology: string,\n weightSpecs: string,\n weightData: string,\n modelMetadata: string\n} {\n return {\n info: [PATH_PREFIX, path, INFO_SUFFIX].join(PATH_SEPARATOR),\n topology: [PATH_PREFIX, path, MODEL_TOPOLOGY_SUFFIX].join(PATH_SEPARATOR),\n weightSpecs: [PATH_PREFIX, path, WEIGHT_SPECS_SUFFIX].join(PATH_SEPARATOR),\n weightData: [PATH_PREFIX, path, WEIGHT_DATA_SUFFIX].join(PATH_SEPARATOR),\n modelMetadata:\n [PATH_PREFIX, path, MODEL_METADATA_SUFFIX].join(PATH_SEPARATOR)\n };\n}\n\n/**\n * Get model path from a local-storage key.\n *\n * E.g., 'tensorflowjs_models/my/model/1/info' --> 'my/model/1'\n *\n * @param key\n */\nfunction getModelPathFromKey(key: string) {\n const items = key.split(PATH_SEPARATOR);\n if (items.length < 3) {\n throw new Error(`Invalid key format: ${key}`);\n }\n return items.slice(1, items.length - 1).join(PATH_SEPARATOR);\n}\n\nfunction maybeStripScheme(key: string) {\n return key.startsWith(BrowserLocalStorage.URL_SCHEME) ?\n key.slice(BrowserLocalStorage.URL_SCHEME.length) :\n key;\n}\n\ndeclare type LocalStorageKeys = {\n info: string,\n topology: string,\n weightSpecs: string,\n weightData: string,\n modelMetadata: string\n};\n\n/**\n * IOHandler subclass: Browser Local Storage.\n *\n * See the doc string to `browserLocalStorage` for more details.\n */\nexport class BrowserLocalStorage implements IOHandler {\n protected readonly LS: Storage;\n protected readonly modelPath: string;\n protected readonly keys: LocalStorageKeys;\n\n static readonly URL_SCHEME = 'localstorage://';\n\n constructor(modelPath: string) {\n if (!env().getBool('IS_BROWSER') || typeof window === 'undefined' ||\n typeof window.localStorage === 'undefined') {\n // TODO(cais): Add more info about what IOHandler subtypes are\n // available.\n // Maybe point to a doc page on the web and/or automatically determine\n // the available IOHandlers and print them in the error message.\n throw new Error(\n 'The current environment does not support local storage.');\n }\n this.LS = window.localStorage;\n\n if (modelPath == null || !modelPath) {\n throw new Error(\n 'For local storage, modelPath must not be null, undefined or empty.');\n }\n this.modelPath = modelPath;\n this.keys = getModelKeys(this.modelPath);\n }\n\n /**\n * Save model artifacts to browser local storage.\n *\n * See the documentation to `browserLocalStorage` for details on the saved\n * artifacts.\n *\n * @param modelArtifacts The model artifacts to be stored.\n * @returns An instance of SaveResult.\n */\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserLocalStorage.save() does not support saving model topology ' +\n 'in binary formats yet.');\n } else {\n const topology = JSON.stringify(modelArtifacts.modelTopology);\n const weightSpecs = JSON.stringify(modelArtifacts.weightSpecs);\n\n const modelArtifactsInfo: ModelArtifactsInfo =\n getModelArtifactsInfoForJSON(modelArtifacts);\n\n try {\n this.LS.setItem(this.keys.info, JSON.stringify(modelArtifactsInfo));\n this.LS.setItem(this.keys.topology, topology);\n this.LS.setItem(this.keys.weightSpecs, weightSpecs);\n this.LS.setItem(\n this.keys.weightData,\n arrayBufferToBase64String(modelArtifacts.weightData));\n const result: ModelArtifacts = {\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy\n };\n if (modelArtifacts.signature != null) {\n result.signature = modelArtifacts.signature;\n }\n if (modelArtifacts.userDefinedMetadata != null) {\n result.userDefinedMetadata = modelArtifacts.userDefinedMetadata;\n }\n if (modelArtifacts.modelInitializer != null) {\n result.modelInitializer = modelArtifacts.modelInitializer;\n }\n this.LS.setItem(this.keys.modelMetadata, JSON.stringify(result));\n\n return {modelArtifactsInfo};\n } catch (err) {\n // If saving failed, clean up all items saved so far.\n this.LS.removeItem(this.keys.info);\n this.LS.removeItem(this.keys.topology);\n this.LS.removeItem(this.keys.weightSpecs);\n this.LS.removeItem(this.keys.weightData);\n this.LS.removeItem(this.keys.modelMetadata);\n\n throw new Error(\n `Failed to save model '${this.modelPath}' to local storage: ` +\n `size quota being exceeded is a possible cause of this failure: ` +\n `modelTopologyBytes=${modelArtifactsInfo.modelTopologyBytes}, ` +\n `weightSpecsBytes=${modelArtifactsInfo.weightSpecsBytes}, ` +\n `weightDataBytes=${modelArtifactsInfo.weightDataBytes}.`);\n }\n }\n }\n\n /**\n * Load a model from local storage.\n *\n * See the documentation to `browserLocalStorage` for details on the saved\n * artifacts.\n *\n * @returns The loaded model (if loading succeeds).\n */\n async load(): Promise {\n const info =\n JSON.parse(this.LS.getItem(this.keys.info)) as ModelArtifactsInfo;\n if (info == null) {\n throw new Error(\n `In local storage, there is no model with name '${this.modelPath}'`);\n }\n\n if (info.modelTopologyType !== 'JSON') {\n throw new Error(\n 'BrowserLocalStorage does not support loading non-JSON model ' +\n 'topology yet.');\n }\n\n const out: ModelArtifacts = {};\n\n // Load topology.\n const topology = JSON.parse(this.LS.getItem(this.keys.topology));\n if (topology == null) {\n throw new Error(\n `In local storage, the topology of model '${this.modelPath}' ` +\n `is missing.`);\n }\n out.modelTopology = topology;\n\n // Load weight specs.\n const weightSpecs = JSON.parse(this.LS.getItem(this.keys.weightSpecs));\n if (weightSpecs == null) {\n throw new Error(\n `In local storage, the weight specs of model '${this.modelPath}' ` +\n `are missing.`);\n }\n out.weightSpecs = weightSpecs;\n\n // Load meta-data fields.\n const metadataString = this.LS.getItem(this.keys.modelMetadata);\n if (metadataString != null) {\n const metadata = JSON.parse(metadataString) as ModelArtifacts;\n out.format = metadata['format'];\n out.generatedBy = metadata['generatedBy'];\n out.convertedBy = metadata['convertedBy'];\n if (metadata['signature'] != null) {\n out.signature = metadata['signature'];\n }\n if (metadata['userDefinedMetadata'] != null) {\n out.userDefinedMetadata = metadata['userDefinedMetadata'];\n }\n if (metadata['modelInitializer'] != null) {\n out.modelInitializer = metadata['modelInitializer'];\n }\n }\n\n // Load weight data.\n const weightDataBase64 = this.LS.getItem(this.keys.weightData);\n if (weightDataBase64 == null) {\n throw new Error(\n `In local storage, the binary weight values of model ` +\n `'${this.modelPath}' are missing.`);\n }\n out.weightData = base64StringToArrayBuffer(weightDataBase64);\n\n return out;\n }\n}\n\nexport const localStorageRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserLocalStorage.URL_SCHEME)) {\n return browserLocalStorage(\n url.slice(BrowserLocalStorage.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(localStorageRouter);\nIORouterRegistry.registerLoadRouter(localStorageRouter);\n\n/**\n * Factory function for local storage IOHandler.\n *\n * This `IOHandler` supports both `save` and `load`.\n *\n * For each model's saved artifacts, four items are saved to local storage.\n * - `${PATH_SEPARATOR}/${modelPath}/info`: Contains meta-info about the\n * model, such as date saved, type of the topology, size in bytes, etc.\n * - `${PATH_SEPARATOR}/${modelPath}/topology`: Model topology. For Keras-\n * style models, this is a stringized JSON.\n * - `${PATH_SEPARATOR}/${modelPath}/weight_specs`: Weight specs of the\n * model, can be used to decode the saved binary weight values (see\n * item below).\n * - `${PATH_SEPARATOR}/${modelPath}/weight_data`: Concatenated binary\n * weight values, stored as a base64-encoded string.\n *\n * Saving may throw an `Error` if the total size of the artifacts exceed the\n * browser-specific quota.\n *\n * @param modelPath A unique identifier for the model to be saved. Must be a\n * non-empty string.\n * @returns An instance of `IOHandler`, which can be used with, e.g.,\n * `tf.Model.save`.\n */\nexport function browserLocalStorage(modelPath: string): IOHandler {\n return new BrowserLocalStorage(modelPath);\n}\n\nexport class BrowserLocalStorageManager implements ModelStoreManager {\n private readonly LS: Storage;\n\n constructor() {\n assert(\n env().getBool('IS_BROWSER'),\n () => 'Current environment is not a web browser');\n assert(\n typeof window === 'undefined' ||\n typeof window.localStorage !== 'undefined',\n () => 'Current browser does not appear to support localStorage');\n this.LS = window.localStorage;\n }\n\n async listModels(): Promise<{[path: string]: ModelArtifactsInfo}> {\n const out: {[path: string]: ModelArtifactsInfo} = {};\n const prefix = PATH_PREFIX + PATH_SEPARATOR;\n const suffix = PATH_SEPARATOR + INFO_SUFFIX;\n for (let i = 0; i < this.LS.length; ++i) {\n const key = this.LS.key(i);\n if (key.startsWith(prefix) && key.endsWith(suffix)) {\n const modelPath = getModelPathFromKey(key);\n out[modelPath] = JSON.parse(this.LS.getItem(key)) as ModelArtifactsInfo;\n }\n }\n return out;\n }\n\n async removeModel(path: string): Promise {\n path = maybeStripScheme(path);\n const keys = getModelKeys(path);\n if (this.LS.getItem(keys.info) == null) {\n throw new Error(`Cannot find model at path '${path}'`);\n }\n const info = JSON.parse(this.LS.getItem(keys.info)) as ModelArtifactsInfo;\n\n this.LS.removeItem(keys.info);\n this.LS.removeItem(keys.topology);\n this.LS.removeItem(keys.weightSpecs);\n this.LS.removeItem(keys.weightData);\n return info;\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * Classes and functions for model management across multiple storage mediums.\n *\n * Supported client actions:\n * - Listing models on all registered storage mediums.\n * - Remove model by URL from any registered storage mediums, by using URL\n * string.\n * - Moving or copying model from one path to another in the same medium or from\n * one medium to another, by using URL strings.\n */\n\nimport {assert} from '../util';\n\nimport {IORouterRegistry} from './router_registry';\nimport {ModelArtifactsInfo, ModelStoreManager} from './types';\n\nconst URL_SCHEME_SUFFIX = '://';\n\nexport class ModelStoreManagerRegistry {\n // Singleton instance.\n private static instance: ModelStoreManagerRegistry;\n\n private managers: {[scheme: string]: ModelStoreManager};\n\n private constructor() {\n this.managers = {};\n }\n\n private static getInstance(): ModelStoreManagerRegistry {\n if (ModelStoreManagerRegistry.instance == null) {\n ModelStoreManagerRegistry.instance = new ModelStoreManagerRegistry();\n }\n return ModelStoreManagerRegistry.instance;\n }\n\n /**\n * Register a save-handler router.\n *\n * @param saveRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `save` method defined or `null`.\n */\n static registerManager(scheme: string, manager: ModelStoreManager) {\n assert(scheme != null, () => 'scheme must not be undefined or null.');\n if (scheme.endsWith(URL_SCHEME_SUFFIX)) {\n scheme = scheme.slice(0, scheme.indexOf(URL_SCHEME_SUFFIX));\n }\n assert(scheme.length > 0, () => 'scheme must not be an empty string.');\n const registry = ModelStoreManagerRegistry.getInstance();\n assert(\n registry.managers[scheme] == null,\n () => `A model store manager is already registered for scheme '${\n scheme}'.`);\n registry.managers[scheme] = manager;\n }\n\n static getManager(scheme: string): ModelStoreManager {\n const manager = this.getInstance().managers[scheme];\n if (manager == null) {\n throw new Error(`Cannot find model manager for scheme '${scheme}'`);\n }\n return manager;\n }\n\n static getSchemes(): string[] {\n return Object.keys(this.getInstance().managers);\n }\n}\n\n/**\n * Helper method for parsing a URL string into a scheme and a path.\n *\n * @param url E.g., 'localstorage://my-model'\n * @returns A dictionary with two fields: scheme and path.\n * Scheme: e.g., 'localstorage' in the example above.\n * Path: e.g., 'my-model' in the example above.\n */\nfunction parseURL(url: string): {scheme: string, path: string} {\n if (url.indexOf(URL_SCHEME_SUFFIX) === -1) {\n throw new Error(\n `The url string provided does not contain a scheme. ` +\n `Supported schemes are: ` +\n `${ModelStoreManagerRegistry.getSchemes().join(',')}`);\n }\n return {\n scheme: url.split(URL_SCHEME_SUFFIX)[0],\n path: url.split(URL_SCHEME_SUFFIX)[1],\n };\n}\n\nasync function cloneModelInternal(\n sourceURL: string, destURL: string,\n deleteSource = false): Promise {\n assert(\n sourceURL !== destURL,\n () => `Old path and new path are the same: '${sourceURL}'`);\n\n const loadHandlers = IORouterRegistry.getLoadHandlers(sourceURL);\n assert(\n loadHandlers.length > 0,\n () => `Copying failed because no load handler is found for source URL ${\n sourceURL}.`);\n assert(\n loadHandlers.length < 2,\n () => `Copying failed because more than one (${loadHandlers.length}) ` +\n `load handlers for source URL ${sourceURL}.`);\n const loadHandler = loadHandlers[0];\n\n const saveHandlers = IORouterRegistry.getSaveHandlers(destURL);\n assert(\n saveHandlers.length > 0,\n () => `Copying failed because no save handler is found for destination ` +\n `URL ${destURL}.`);\n assert(\n saveHandlers.length < 2,\n () => `Copying failed because more than one (${loadHandlers.length}) ` +\n `save handlers for destination URL ${destURL}.`);\n const saveHandler = saveHandlers[0];\n\n const sourceScheme = parseURL(sourceURL).scheme;\n const sourcePath = parseURL(sourceURL).path;\n const sameMedium = sourceScheme === parseURL(sourceURL).scheme;\n\n const modelArtifacts = await loadHandler.load();\n\n // If moving within the same storage medium, remove the old model as soon as\n // the loading is done. Without doing this, it is possible that the combined\n // size of the two models will cause the cloning to fail.\n if (deleteSource && sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme)\n .removeModel(sourcePath);\n }\n\n const saveResult = await saveHandler.save(modelArtifacts);\n\n // If moving between mediums, the deletion is done after the save succeeds.\n // This guards against the case in which saving to the destination medium\n // fails.\n if (deleteSource && !sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme)\n .removeModel(sourcePath);\n }\n\n return saveResult.modelArtifactsInfo;\n}\n\n/**\n * List all models stored in registered storage mediums.\n *\n * For a web browser environment, the registered mediums are Local Storage and\n * IndexedDB.\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Delete the model.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n * ```\n *\n * @returns A `Promise` of a dictionary mapping URLs of existing models to\n * their model artifacts info. URLs include medium-specific schemes, e.g.,\n * 'indexeddb://my/model/1'. Model artifacts info include type of the\n * model's topology, byte sizes of the topology, weights, etc.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function listModels(): Promise<{[url: string]: ModelArtifactsInfo}> {\n const schemes = ModelStoreManagerRegistry.getSchemes();\n const out: {[url: string]: ModelArtifactsInfo} = {};\n for (const scheme of schemes) {\n const schemeOut =\n await ModelStoreManagerRegistry.getManager(scheme).listModels();\n for (const path in schemeOut) {\n const url = scheme + URL_SCHEME_SUFFIX + path;\n out[url] = schemeOut[path];\n }\n }\n return out;\n}\n\n/**\n * Remove a model specified by URL from a reigstered storage medium.\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Delete the model.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n * ```\n *\n * @param url A URL to a stored model, with a scheme prefix, e.g.,\n * 'localstorage://my-model-1', 'indexeddb://my/model/2'.\n * @returns ModelArtifactsInfo of the deleted model (if and only if deletion\n * is successful).\n * @throws Error if deletion fails, e.g., if no model exists at `path`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function removeModel(url: string): Promise {\n const schemeAndPath = parseURL(url);\n const manager = ModelStoreManagerRegistry.getManager(schemeAndPath.scheme);\n return manager.removeModel(schemeAndPath.path);\n}\n\n/**\n * Copy a model from one URL to another.\n *\n * This function supports:\n *\n * 1. Copying within a storage medium, e.g.,\n * `tf.io.copyModel('localstorage://model-1', 'localstorage://model-2')`\n * 2. Copying between two storage mediums, e.g.,\n * `tf.io.copyModel('localstorage://model-1', 'indexeddb://model-1')`\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Copy the model, from Local Storage to IndexedDB.\n * await tf.io.copyModel(\n * 'localstorage://demo/management/model1',\n * 'indexeddb://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Remove both models.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n * await tf.io.removeModel('indexeddb://demo/management/model1');\n * ```\n *\n * @param sourceURL Source URL of copying.\n * @param destURL Destination URL of copying.\n * @returns ModelArtifactsInfo of the copied model (if and only if copying\n * is successful).\n * @throws Error if copying fails, e.g., if no model exists at `sourceURL`, or\n * if `oldPath` and `newPath` are identical.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function copyModel(\n sourceURL: string, destURL: string): Promise {\n const deleteSource = false;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\n\n/**\n * Move a model from one URL to another.\n *\n * This function supports:\n *\n * 1. Moving within a storage medium, e.g.,\n * `tf.io.moveModel('localstorage://model-1', 'localstorage://model-2')`\n * 2. Moving between two storage mediums, e.g.,\n * `tf.io.moveModel('localstorage://model-1', 'indexeddb://model-1')`\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Move the model, from Local Storage to IndexedDB.\n * await tf.io.moveModel(\n * 'localstorage://demo/management/model1',\n * 'indexeddb://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Remove the moved model.\n * await tf.io.removeModel('indexeddb://demo/management/model1');\n * ```\n *\n * @param sourceURL Source URL of moving.\n * @param destURL Destination URL of moving.\n * @returns ModelArtifactsInfo of the copied model (if and only if copying\n * is successful).\n * @throws Error if moving fails, e.g., if no model exists at `sourceURL`, or\n * if `oldPath` and `newPath` are identical.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function moveModel(\n sourceURL: string, destURL: string): Promise {\n const deleteSource = true;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\n\nexport {moveModel, copyModel, removeModel, listModels};\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\n\nimport {env} from '../environment';\nimport {BrowserIndexedDB, BrowserIndexedDBManager} from '../io/indexed_db';\nimport {BrowserLocalStorage, BrowserLocalStorageManager} from '../io/local_storage';\nimport {ModelStoreManagerRegistry} from '../io/model_management';\n\nimport {Platform} from './platform';\n\nexport class PlatformBrowser implements Platform {\n // According to the spec, the built-in encoder can do only UTF-8 encoding.\n // https://developer.mozilla.org/en-US/docs/Web/API/TextEncoder/TextEncoder\n private textEncoder: TextEncoder;\n\n fetch(path: string, init?: RequestInit): Promise {\n return fetch(path, init);\n }\n\n now(): number {\n return performance.now();\n }\n\n encode(text: string, encoding: string): Uint8Array {\n if (encoding !== 'utf-8' && encoding !== 'utf8') {\n throw new Error(\n `Browser's encoder only supports utf-8, but got ${encoding}`);\n }\n if (this.textEncoder == null) {\n this.textEncoder = new TextEncoder();\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes: Uint8Array, encoding: string): string {\n return new TextDecoder(encoding).decode(bytes);\n }\n}\n\nif (env().get('IS_BROWSER')) {\n env().setPlatform('browser', new PlatformBrowser());\n\n // Register LocalStorage IOHandler\n try {\n ModelStoreManagerRegistry.registerManager(\n BrowserLocalStorage.URL_SCHEME, new BrowserLocalStorageManager());\n } catch (err) {\n }\n\n // Register IndexedDB IOHandler\n try {\n ModelStoreManagerRegistry.registerManager(\n BrowserIndexedDB.URL_SCHEME, new BrowserIndexedDBManager());\n } catch (err) {\n }\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {env} from '../environment';\n\nimport {Platform} from './platform';\n\n// We are wrapping this within an object so it can be stubbed by Jasmine.\nexport const getNodeFetch = {\n // tslint:disable-next-line:no-require-imports\n importFetch: () => require('node-fetch')\n};\n\ntype FetchFn = (url: string, init?: RequestInit) => Promise;\nlet systemFetch: FetchFn;\n// These getters and setters are for testing so we don't export a mutable\n// variable.\nexport function resetSystemFetch() {\n systemFetch = null;\n}\nexport function setSystemFetch(fetchFn: FetchFn) {\n systemFetch = fetchFn;\n}\nexport function getSystemFetch(): FetchFn {\n return systemFetch;\n}\n\nexport class PlatformNode implements Platform {\n private textEncoder: TextEncoder;\n // tslint:disable-next-line:no-any\n util: any;\n\n constructor() {\n // tslint:disable-next-line:no-require-imports\n this.util = require('util');\n // According to the spec, the built-in encoder can do only UTF-8 encoding.\n // https://developer.mozilla.org/en-US/docs/Web/API/TextEncoder/TextEncoder\n this.textEncoder = new this.util.TextEncoder();\n }\n\n fetch(path: string, requestInits?: RequestInit): Promise {\n if (env().global.fetch != null) {\n return env().global.fetch(path, requestInits);\n }\n\n if (systemFetch == null) {\n systemFetch = getNodeFetch.importFetch();\n }\n return systemFetch(path, requestInits);\n }\n\n now(): number {\n const time = process.hrtime();\n return time[0] * 1000 + time[1] / 1000000;\n }\n\n encode(text: string, encoding: string): Uint8Array {\n if (encoding !== 'utf-8' && encoding !== 'utf8') {\n throw new Error(\n `Node built-in encoder only supports utf-8, but got ${encoding}`);\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes: Uint8Array, encoding: string): string {\n if (bytes.length === 0) {\n return '';\n }\n return new this.util.TextDecoder(encoding).decode(bytes);\n }\n}\n\nif (env().get('IS_NODE')) {\n env().setPlatform('node', new PlatformNode());\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {TensorBuffer} from '../tensor';\nimport {DataType, DataTypeMap, Rank, ShapeMap} from '../types';\nimport * as util from '../util';\n\n/**\n * Creates an empty `tf.TensorBuffer` with the specified `shape` and `dtype`.\n *\n * The values are stored in CPU as `TypedArray`. Fill the buffer using\n * `buffer.set()`, or by modifying directly `buffer.values`.\n *\n * When done, call `buffer.toTensor()` to get an immutable `tf.Tensor` with\n * those values.\n *\n * ```js\n * // Create a buffer and set values at particular indices.\n * const buffer = tf.buffer([2, 2]);\n * buffer.set(3, 0, 0);\n * buffer.set(5, 1, 0);\n *\n * // Convert the buffer back to a tensor.\n * buffer.toTensor().print();\n * ```\n *\n * @param shape An array of integers defining the output tensor shape.\n * @param dtype The dtype of the buffer. Defaults to 'float32'.\n * @param values The values of the buffer as `TypedArray`. Defaults to\n * zeros.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function buffer(\n shape: ShapeMap[R], dtype: D = 'float32' as D,\n values?: DataTypeMap[D]): TensorBuffer {\n dtype = dtype || 'float32' as D;\n util.assertNonNegativeIntegerDimensions(shape);\n return new TensorBuffer(shape, dtype, values);\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {Cast, CastAttrs, CastInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {DataType, TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Casts a `tf.Tensor` to a new dtype.\n *\n * ```js\n * const x = tf.tensor1d([1.5, 2.5, 3]);\n * tf.cast(x, 'int32').print();\n * ```\n * @param x The input tensor to be casted.\n * @param dtype The dtype to cast the input tensor to.\n *\n * @doc {heading: 'Tensors', subheading: 'Transformations'}\n */\nfunction cast_(x: T|TensorLike, dtype: DataType): T {\n const $x = convertToTensor(x, 'x', 'cast');\n\n // Sanity checks.\n if (!util.isValidDtype(dtype)) {\n throw new Error(`Failed to cast to unknown dtype ${dtype}`);\n }\n if (dtype === 'string' && $x.dtype !== 'string' ||\n dtype !== 'string' && $x.dtype === 'string') {\n throw new Error('Only strings can be casted to strings');\n }\n\n const inputs: CastInputs = {x: $x};\n const attrs: CastAttrs = {dtype};\n\n return ENGINE.runKernel(\n Cast, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const cast = op({cast_});\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Identity, IdentityInputs} from '../kernel_names';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Creates a new tensor with the same values and shape as the specified\n * tensor.\n *\n * ```js\n * const x = tf.tensor([1, 2]);\n *\n * x.clone().print();\n * ```\n *\n * @param x The tensor to clone.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction clone_(x: T|TensorLike): T {\n const $x = convertToTensor(x, 'x', 'clone', 'string_or_numeric');\n const inputs: IdentityInputs = {x: $x};\n\n // Note this op is called tf.identity in python. Hence the kernel name used\n // here.\n return ENGINE.runKernel(Identity, inputs as {} as NamedTensorMap);\n}\n\nexport const clone = op({clone_});\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from '../tensor';\n\n/**\n * Prints information about the `tf.Tensor` including its data.\n *\n * ```js\n * const verbose = true;\n * tf.tensor2d([1, 2, 3, 4], [2, 2]).print(verbose);\n * ```\n * @param x The tensor to be printed.\n * @param verbose Whether to print verbose information about the ` Tensor`,\n * including dtype and size.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function print(x: T, verbose = false): void {\n console.log(x.toString(verbose));\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Required side effectful code for tfjs-core\n\n// Set up Engine and ENV\nimport {getOrMakeEngine} from './engine';\ngetOrMakeEngine();\n\n// Register backend-agnostic flags.\nimport './flags';\n// Register platforms\nimport './platforms/platform_browser';\nimport './platforms/platform_node';\n\n// Set up OpHandler\nimport {buffer} from './ops/buffer';\nimport {cast} from './ops/cast';\nimport {clone} from './ops/clone';\nimport {print} from './ops/print';\nimport {OpHandler, setOpHandler} from './tensor';\nconst opHandler: OpHandler = {\n buffer,\n cast,\n clone,\n print\n};\nsetOpHandler(opHandler);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Importing local_storage and indexed_db is necessary for the routers to be\n// registered.\nimport './indexed_db';\nimport './local_storage';\n\nimport {browserFiles} from './browser_files';\nimport {browserHTTPRequest, http, isHTTPScheme} from './http';\nimport {concatenateArrayBuffers, decodeWeights, encodeWeights, getModelArtifactsInfoForJSON} from './io_utils';\nimport {fromMemory, withSaveHandler} from './passthrough';\nimport {getLoadHandlers, getSaveHandlers, registerLoadRouter, registerSaveRouter} from './router_registry';\nimport {IOHandler, LoadHandler, LoadOptions, ModelArtifacts, ModelArtifactsInfo, ModelJSON, ModelStoreManager, OnProgressCallback, RequestDetails, SaveConfig, SaveHandler, SaveResult, WeightGroup, WeightsManifestConfig, WeightsManifestEntry} from './types';\nimport {loadWeights, weightsLoaderFactory} from './weights_loader';\n\nexport {copyModel, listModels, moveModel, removeModel} from './model_management';\nexport {\n browserFiles,\n browserHTTPRequest,\n concatenateArrayBuffers,\n decodeWeights,\n encodeWeights,\n fromMemory,\n getLoadHandlers,\n getModelArtifactsInfoForJSON,\n getSaveHandlers,\n http,\n IOHandler,\n isHTTPScheme,\n LoadHandler,\n LoadOptions,\n loadWeights,\n ModelArtifacts,\n ModelArtifactsInfo,\n ModelJSON,\n ModelStoreManager,\n OnProgressCallback,\n registerLoadRouter,\n registerSaveRouter,\n RequestDetails,\n SaveConfig,\n SaveHandler,\n SaveResult,\n WeightGroup,\n weightsLoaderFactory,\n WeightsManifestConfig,\n WeightsManifestEntry,\n withSaveHandler\n};\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandlers related to files, such as browser-triggered file downloads,\n * user-selected files in browser.\n */\n\nimport '../flags';\nimport {env} from '../environment';\n\nimport {basename, concatenateArrayBuffers, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelJSON, SaveResult, WeightsManifestConfig, WeightsManifestEntry} from './types';\n\nconst DEFAULT_FILE_NAME_PREFIX = 'model';\nconst DEFAULT_JSON_EXTENSION_NAME = '.json';\nconst DEFAULT_WEIGHT_DATA_EXTENSION_NAME = '.weights.bin';\n\nfunction defer(f: () => T): Promise {\n return new Promise(resolve => setTimeout(resolve)).then(f);\n}\n\nexport class BrowserDownloads implements IOHandler {\n private readonly modelTopologyFileName: string;\n private readonly weightDataFileName: string;\n private readonly jsonAnchor: HTMLAnchorElement;\n private readonly weightDataAnchor: HTMLAnchorElement;\n\n static readonly URL_SCHEME = 'downloads://';\n\n constructor(fileNamePrefix?: string) {\n if (!env().getBool('IS_BROWSER')) {\n // TODO(cais): Provide info on what IOHandlers are available under the\n // current environment.\n throw new Error(\n 'browserDownloads() cannot proceed because the current environment ' +\n 'is not a browser.');\n }\n\n if (fileNamePrefix.startsWith(BrowserDownloads.URL_SCHEME)) {\n fileNamePrefix = fileNamePrefix.slice(BrowserDownloads.URL_SCHEME.length);\n }\n if (fileNamePrefix == null || fileNamePrefix.length === 0) {\n fileNamePrefix = DEFAULT_FILE_NAME_PREFIX;\n }\n\n this.modelTopologyFileName = fileNamePrefix + DEFAULT_JSON_EXTENSION_NAME;\n this.weightDataFileName =\n fileNamePrefix + DEFAULT_WEIGHT_DATA_EXTENSION_NAME;\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (typeof (document) === 'undefined') {\n throw new Error(\n 'Browser downloads are not supported in ' +\n 'this environment since `document` is not present');\n }\n const weightsURL = window.URL.createObjectURL(new Blob(\n [modelArtifacts.weightData], {type: 'application/octet-stream'}));\n\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserDownloads.save() does not support saving model topology ' +\n 'in binary formats yet.');\n } else {\n const weightsManifest: WeightsManifestConfig = [{\n paths: ['./' + this.weightDataFileName],\n weights: modelArtifacts.weightSpecs\n }];\n const modelTopologyAndWeightManifest: ModelJSON = {\n modelTopology: modelArtifacts.modelTopology,\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy,\n weightsManifest\n };\n if (modelArtifacts.signature != null) {\n modelTopologyAndWeightManifest.signature = modelArtifacts.signature;\n }\n if (modelArtifacts.userDefinedMetadata != null) {\n modelTopologyAndWeightManifest.userDefinedMetadata =\n modelArtifacts.userDefinedMetadata;\n }\n if (modelArtifacts.modelInitializer != null) {\n modelTopologyAndWeightManifest.modelInitializer =\n modelArtifacts.modelInitializer;\n }\n const modelTopologyAndWeightManifestURL =\n window.URL.createObjectURL(new Blob(\n [JSON.stringify(modelTopologyAndWeightManifest)],\n {type: 'application/json'}));\n\n // If anchor elements are not provided, create them without attaching them\n // to parents, so that the downloaded file names can be controlled.\n const jsonAnchor = this.jsonAnchor == null ? document.createElement('a') :\n this.jsonAnchor;\n jsonAnchor.download = this.modelTopologyFileName;\n jsonAnchor.href = modelTopologyAndWeightManifestURL;\n // Trigger downloads by evoking a click event on the download anchors.\n // When multiple downloads are started synchronously, Firefox will only\n // save the last one.\n await defer(() => jsonAnchor.dispatchEvent(new MouseEvent('click')));\n\n if (modelArtifacts.weightData != null) {\n const weightDataAnchor = this.weightDataAnchor == null ?\n document.createElement('a') :\n this.weightDataAnchor;\n weightDataAnchor.download = this.weightDataFileName;\n weightDataAnchor.href = weightsURL;\n await defer(\n () => weightDataAnchor.dispatchEvent(new MouseEvent('click')));\n }\n\n return {modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts)};\n }\n }\n}\n\nclass BrowserFiles implements IOHandler {\n private readonly files: File[];\n\n constructor(files: File[]) {\n if (files == null || files.length < 1) {\n throw new Error(\n `When calling browserFiles, at least 1 file is required, ` +\n `but received ${files}`);\n }\n this.files = files;\n }\n\n async load(): Promise {\n const jsonFile = this.files[0];\n const weightFiles = this.files.slice(1);\n\n return new Promise((resolve, reject) => {\n const jsonReader = new FileReader();\n jsonReader.onload = (event: Event) => {\n // tslint:disable-next-line:no-any\n const modelJSON = JSON.parse((event.target as any).result) as ModelJSON;\n const modelTopology = modelJSON.modelTopology;\n if (modelTopology == null) {\n reject(new Error(\n `modelTopology field is missing from file ${jsonFile.name}`));\n return;\n }\n\n if (weightFiles.length === 0) {\n resolve({modelTopology});\n }\n\n const weightsManifest = modelJSON.weightsManifest;\n if (weightsManifest == null) {\n reject(new Error(\n `weightManifest field is missing from file ${jsonFile.name}`));\n return;\n }\n\n let pathToFile: {[path: string]: File};\n try {\n pathToFile =\n this.checkManifestAndWeightFiles(weightsManifest, weightFiles);\n } catch (err) {\n reject(err);\n return;\n }\n\n const weightSpecs: WeightsManifestEntry[] = [];\n const paths: string[] = [];\n const perFileBuffers: ArrayBuffer[] = [];\n weightsManifest.forEach(weightsGroup => {\n weightsGroup.paths.forEach(path => {\n paths.push(path);\n perFileBuffers.push(null);\n });\n weightSpecs.push(...weightsGroup.weights);\n });\n\n weightsManifest.forEach(weightsGroup => {\n weightsGroup.paths.forEach(path => {\n const weightFileReader = new FileReader();\n weightFileReader.onload = (event: Event) => {\n // tslint:disable-next-line:no-any\n const weightData = (event.target as any).result as ArrayBuffer;\n const index = paths.indexOf(path);\n perFileBuffers[index] = weightData;\n if (perFileBuffers.indexOf(null) === -1) {\n const result: ModelArtifacts = {\n modelTopology,\n weightSpecs,\n weightData: concatenateArrayBuffers(perFileBuffers),\n format: modelJSON.format,\n generatedBy: modelJSON.generatedBy,\n convertedBy: modelJSON.convertedBy\n };\n if (modelJSON.signature != null) {\n result.signature = modelJSON.signature;\n }\n if (modelJSON.userDefinedMetadata != null) {\n result.userDefinedMetadata = modelJSON.userDefinedMetadata;\n }\n if (modelJSON.modelInitializer != null) {\n result.modelInitializer = modelJSON.modelInitializer;\n }\n resolve(result);\n }\n };\n weightFileReader.onerror = error =>\n reject(`Failed to weights data from file of path '${path}'.`);\n weightFileReader.readAsArrayBuffer(pathToFile[path]);\n });\n });\n };\n jsonReader.onerror = error => reject(\n `Failed to read model topology and weights manifest JSON ` +\n `from file '${jsonFile.name}'. BrowserFiles supports loading ` +\n `Keras-style tf.Model artifacts only.`);\n jsonReader.readAsText(jsonFile);\n });\n }\n\n /**\n * Check the compatibility between weights manifest and weight files.\n */\n private checkManifestAndWeightFiles(\n manifest: WeightsManifestConfig, files: File[]): {[path: string]: File} {\n const basenames: string[] = [];\n const fileNames = files.map(file => basename(file.name));\n const pathToFile: {[path: string]: File} = {};\n for (const group of manifest) {\n group.paths.forEach(path => {\n const pathBasename = basename(path);\n if (basenames.indexOf(pathBasename) !== -1) {\n throw new Error(\n `Duplicate file basename found in weights manifest: ` +\n `'${pathBasename}'`);\n }\n basenames.push(pathBasename);\n if (fileNames.indexOf(pathBasename) === -1) {\n throw new Error(\n `Weight file with basename '${pathBasename}' is not provided.`);\n } else {\n pathToFile[path] = files[fileNames.indexOf(pathBasename)];\n }\n });\n }\n\n if (basenames.length !== files.length) {\n throw new Error(\n `Mismatch in the number of files in weights manifest ` +\n `(${basenames.length}) and the number of weight files provided ` +\n `(${files.length}).`);\n }\n return pathToFile;\n }\n}\n\nexport const browserDownloadsRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserDownloads.URL_SCHEME)) {\n return browserDownloads(url.slice(BrowserDownloads.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(browserDownloadsRouter);\n\n/**\n * Creates an IOHandler that triggers file downloads from the browser.\n *\n * The returned `IOHandler` instance can be used as model exporting methods such\n * as `tf.Model.save` and supports only saving.\n *\n * ```js\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * const saveResult = await model.save('downloads://mymodel');\n * // This will trigger downloading of two files:\n * // 'mymodel.json' and 'mymodel.weights.bin'.\n * console.log(saveResult);\n * ```\n *\n * @param fileNamePrefix Prefix name of the files to be downloaded. For use with\n * `tf.Model`, `fileNamePrefix` should follow either of the following two\n * formats:\n * 1. `null` or `undefined`, in which case the default file\n * names will be used:\n * - 'model.json' for the JSON file containing the model topology and\n * weights manifest.\n * - 'model.weights.bin' for the binary file containing the binary weight\n * values.\n * 2. A single string or an Array of a single string, as the file name prefix.\n * For example, if `'foo'` is provided, the downloaded JSON\n * file and binary weights file will be named 'foo.json' and\n * 'foo.weights.bin', respectively.\n * @param config Additional configuration for triggering downloads.\n * @returns An instance of `BrowserDownloads` `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function browserDownloads(fileNamePrefix = 'model'): IOHandler {\n return new BrowserDownloads(fileNamePrefix);\n}\n\n/**\n * Creates an IOHandler that loads model artifacts from user-selected files.\n *\n * This method can be used for loading from files such as user-selected files\n * in the browser.\n * When used in conjunction with `tf.loadLayersModel`, an instance of\n * `tf.LayersModel` (Keras-style) can be constructed from the loaded artifacts.\n *\n * ```js\n * // Note: This code snippet won't run properly without the actual file input\n * // elements in the HTML DOM.\n *\n * // Suppose there are two HTML file input (``)\n * // elements.\n * const uploadJSONInput = document.getElementById('upload-json');\n * const uploadWeightsInput = document.getElementById('upload-weights');\n * const model = await tf.loadLayersModel(tf.io.browserFiles(\n * [uploadJSONInput.files[0], uploadWeightsInput.files[0]]));\n * ```\n *\n * @param files `File`s to load from. Currently, this function supports only\n * loading from files that contain Keras-style models (i.e., `tf.Model`s), for\n * which an `Array` of `File`s is expected (in that order):\n * - A JSON file containing the model topology and weight manifest.\n * - Optionally, One or more binary files containing the binary weights.\n * These files must have names that match the paths in the `weightsManifest`\n * contained by the aforementioned JSON file, or errors will be thrown\n * during loading. These weights files have the same format as the ones\n * generated by `tensorflowjs_converter` that comes with the `tensorflowjs`\n * Python PIP package. If no weights files are provided, only the model\n * topology will be loaded from the JSON file above.\n * @returns An instance of `Files` `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function browserFiles(files: File[]): IOHandler {\n return new BrowserFiles(files);\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {assert} from '../util';\n\nimport {OnProgressCallback} from './types';\n\n/**\n * Monitor Promise.all progress, fire onProgress callback function.\n *\n * @param promises Promise list going to be monitored\n * @param onProgress Callback function. Fired when a promise resolved.\n * @param startFraction Optional fraction start. Default to 0.\n * @param endFraction Optional fraction end. Default to 1.\n */\nexport function monitorPromisesProgress(\n promises: Array>, onProgress: OnProgressCallback,\n startFraction?: number, endFraction?: number) {\n checkPromises(promises);\n startFraction = startFraction == null ? 0 : startFraction;\n endFraction = endFraction == null ? 1 : endFraction;\n checkFraction(startFraction, endFraction);\n let resolvedPromise = 0;\n\n const registerMonitor = (promise: Promise<{}>) => {\n promise.then(value => {\n const fraction = startFraction +\n ++resolvedPromise / promises.length * (endFraction - startFraction);\n // pass fraction as parameter to callback function.\n onProgress(fraction);\n return value;\n });\n return promise;\n };\n\n function checkPromises(promises: Array>): void {\n assert(\n promises != null && Array.isArray(promises) && promises.length > 0,\n () => 'promises must be a none empty array');\n }\n\n function checkFraction(startFraction: number, endFraction: number): void {\n assert(\n startFraction >= 0 && startFraction <= 1,\n () => `Progress fraction must be in range [0, 1], but ` +\n `got startFraction ${startFraction}`);\n assert(\n endFraction >= 0 && endFraction <= 1,\n () => `Progress fraction must be in range [0, 1], but ` +\n `got endFraction ${endFraction}`);\n assert(\n endFraction >= startFraction,\n () => `startFraction must be no more than endFraction, but ` +\n `got startFraction ${startFraction} and endFraction ` +\n `${endFraction}`);\n }\n\n return Promise.all(promises.map(registerMonitor));\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {env} from '../environment';\n\nimport {NamedTensorMap} from '../tensor_types';\nimport * as util from '../util';\nimport {decodeWeights} from './io_utils';\nimport {monitorPromisesProgress} from './progress';\nimport {DTYPE_VALUE_SIZE_MAP, LoadOptions, WeightsManifestConfig, WeightsManifestEntry} from './types';\n\n/**\n * Reads binary weights data from a number of URLs.\n *\n * @param fetchURLs URLs to send the HTTP requests at, using `fetch` calls.\n * @param requestOptions RequestInit (options) for the HTTP requests.\n * @param fetchFunc Optional overriding value for the `window.fetch` function.\n * @param onProgress Optional, progress callback function, fired periodically\n * before the load is completed.\n * @returns A `Promise` of an Array of `ArrayBuffer`. The Array has the same\n * length as `fetchURLs`.\n */\nexport async function loadWeightsAsArrayBuffer(\n fetchURLs: string[], loadOptions?: LoadOptions): Promise {\n if (loadOptions == null) {\n loadOptions = {};\n }\n\n const fetchFunc = loadOptions.fetchFunc == null ? env().platform.fetch :\n loadOptions.fetchFunc;\n\n // Create the requests for all of the weights in parallel.\n const requests = fetchURLs.map(\n fetchURL =>\n fetchFunc(fetchURL, loadOptions.requestInit, {isBinary: true}));\n\n const fetchStartFraction = 0;\n const fetchEndFraction = 0.5;\n\n const responses = loadOptions.onProgress == null ?\n await Promise.all(requests) :\n await monitorPromisesProgress(\n requests, loadOptions.onProgress, fetchStartFraction,\n fetchEndFraction);\n\n const bufferPromises = responses.map(response => response.arrayBuffer());\n\n const bufferStartFraction = 0.5;\n const bufferEndFraction = 1;\n\n const buffers = loadOptions.onProgress == null ?\n await Promise.all(bufferPromises) :\n await monitorPromisesProgress(\n bufferPromises, loadOptions.onProgress, bufferStartFraction,\n bufferEndFraction);\n return buffers;\n}\n\n/**\n * Reads a weights manifest JSON configuration, fetches the weights and\n * returns them as `Tensor`s.\n *\n * @param manifest The weights manifest JSON.\n * @param filePathPrefix The path prefix for filenames given in the manifest.\n * Defaults to the empty string.\n * @param weightNames The names of the weights to be fetched.\n */\nexport async function loadWeights(\n manifest: WeightsManifestConfig, filePathPrefix = '',\n weightNames?: string[],\n requestInit?: RequestInit): Promise {\n // TODO(nsthorat): Groups are currently fetched atomically. If you need a\n // single weight from a group, the whole group will be fetched. At a future\n // date, we should support fetching only the individual shards within a\n // group that are needed to reconstruct the requested weight.\n // TODO(cais): Use `decodeWeights` for implementation.\n\n const fetchWeights = (fetchUrls: string[]) =>\n loadWeightsAsArrayBuffer(fetchUrls, {requestInit});\n const loadWeights = weightsLoaderFactory(fetchWeights);\n\n return loadWeights(manifest, filePathPrefix, weightNames);\n}\n\n/**\n * Creates a function, which reads a weights manifest JSON configuration,\n * fetches the weight files using the specified function and returns them as\n * `Tensor`s.\n *\n * ```js\n * // example for creating a nodejs weight loader, which reads the weight files\n * // from disk using fs.readFileSync\n *\n * import * as fs from 'fs'\n *\n * const fetchWeightsFromDisk = (filePaths: string[]) =>\n * filePaths.map(filePath => fs.readFileSync(filePath).buffer)\n *\n * const loadWeights = tf.io.weightsLoaderFactory(fetchWeightsFromDisk)\n *\n * const manifest = JSON.parse(\n * fs.readFileSync('./my_model-weights_manifest').toString()\n * )\n * const weightMap = await loadWeights(manifest, './')\n * ```\n * @param fetchWeightsFunction The function used for fetching the weight files.\n * @returns Weight loading function.\n */\nexport function weightsLoaderFactory(\n fetchWeightsFunction: (fetchUrls: string[]) => Promise):\n (manifest: WeightsManifestConfig, filePathPrefix?: string,\n weightNames?: string[]) => Promise {\n return async(\n manifest: WeightsManifestConfig, filePathPrefix = '',\n weightNames?: string[]): Promise => {\n // Collect all the groups, weights, and their relative offsets to be\n // fetched.\n const groupIndicesToFetchMap = manifest.map(() => false);\n const groupWeightsToFetch: {\n [group: number]: Array<{\n manifestEntry: WeightsManifestEntry; groupOffset: number;\n sizeBytes: number;\n }>\n } = {};\n const weightsFound =\n weightNames != null ? weightNames.map(() => false) : [];\n const allManifestWeightNames: string[] = [];\n manifest.forEach((manifestGroupConfig, groupIndex) => {\n let groupOffset = 0;\n manifestGroupConfig.weights.forEach(weightsEntry => {\n const rawDtype = ('quantization' in weightsEntry) ?\n weightsEntry.quantization.dtype :\n weightsEntry.dtype;\n\n const weightsBytes = DTYPE_VALUE_SIZE_MAP[rawDtype] *\n util.sizeFromShape(weightsEntry.shape);\n\n const enqueueWeightsForFetchingFn = () => {\n groupIndicesToFetchMap[groupIndex] = true;\n if (groupWeightsToFetch[groupIndex] == null) {\n groupWeightsToFetch[groupIndex] = [];\n }\n\n groupWeightsToFetch[groupIndex].push({\n manifestEntry: weightsEntry,\n groupOffset,\n sizeBytes: weightsBytes\n });\n };\n\n if (weightNames != null) {\n weightNames.forEach((weightName, weightIndex) => {\n if (weightName === weightsEntry.name) {\n enqueueWeightsForFetchingFn();\n weightsFound[weightIndex] = true;\n }\n });\n } else {\n enqueueWeightsForFetchingFn();\n }\n\n allManifestWeightNames.push(weightsEntry.name);\n groupOffset += weightsBytes;\n });\n });\n\n if (!weightsFound.every(found => found)) {\n const weightsNotFound = weightNames.filter((_, i) => !weightsFound[i]);\n throw new Error(\n `Could not find weights in manifest with names: ` +\n `${weightsNotFound.join(', ')}. \\n` +\n `Manifest JSON has weights with names: ` +\n `${allManifestWeightNames.join(', ')}.`);\n }\n\n // Convert the one-hot boolean groupId => shouldFetch map to a list of group\n // IDs.\n const groupIndicesToFetch =\n groupIndicesToFetchMap.reduce((accumulator, shouldFetch, i) => {\n if (shouldFetch) {\n accumulator.push(i);\n }\n return accumulator;\n }, []);\n\n const fetchUrls: string[] = [];\n groupIndicesToFetch.forEach(i => {\n manifest[i].paths.forEach(filepath => {\n const fetchUrl = filePathPrefix +\n (!filePathPrefix.endsWith('/') ? '/' : '') + filepath;\n fetchUrls.push(fetchUrl);\n });\n });\n const buffers = await fetchWeightsFunction(fetchUrls);\n\n const weightsTensorMap: NamedTensorMap = {};\n let bufferIndexOffset = 0;\n groupIndicesToFetch.forEach(i => {\n const numBuffers = manifest[i].paths.length;\n\n let groupBytes = 0;\n for (let i = 0; i < numBuffers; i++) {\n groupBytes += buffers[bufferIndexOffset + i].byteLength;\n }\n\n // Create a buffer for the whole group.\n const groupBuffer = new ArrayBuffer(groupBytes);\n const groupByteBuffer = new Uint8Array(groupBuffer);\n let groupBufferOffset = 0;\n for (let i = 0; i < numBuffers; i++) {\n const buffer = new Uint8Array(buffers[bufferIndexOffset + i]);\n groupByteBuffer.set(buffer, groupBufferOffset);\n groupBufferOffset += buffer.byteLength;\n }\n\n const weightsEntries = groupWeightsToFetch[i];\n weightsEntries.forEach(weightsEntry => {\n const byteBuffer = groupBuffer.slice(\n weightsEntry.groupOffset,\n weightsEntry.groupOffset + weightsEntry.sizeBytes);\n const nameToTensorMap =\n decodeWeights(byteBuffer, [weightsEntry.manifestEntry]);\n for (const name in nameToTensorMap) {\n weightsTensorMap[name] = nameToTensorMap[name];\n }\n });\n\n bufferIndexOffset += numBuffers;\n });\n\n return weightsTensorMap;\n };\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandler implementations based on HTTP requests in the web browser.\n *\n * Uses [`fetch`](https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API).\n */\n\nimport {env} from '../environment';\n\nimport {assert} from '../util';\nimport {concatenateArrayBuffers, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, LoadOptions, ModelArtifacts, ModelJSON, OnProgressCallback, SaveResult, WeightsManifestConfig, WeightsManifestEntry} from './types';\nimport {loadWeightsAsArrayBuffer} from './weights_loader';\n\nconst OCTET_STREAM_MIME_TYPE = 'application/octet-stream';\nconst JSON_TYPE = 'application/json';\nexport class HTTPRequest implements IOHandler {\n protected readonly path: string;\n protected readonly requestInit: RequestInit;\n\n private readonly fetch: Function;\n private readonly weightUrlConverter: (weightName: string) => Promise;\n\n readonly DEFAULT_METHOD = 'POST';\n\n static readonly URL_SCHEME_REGEX = /^https?:\\/\\//;\n\n private readonly weightPathPrefix: string;\n private readonly onProgress: OnProgressCallback;\n\n constructor(path: string, loadOptions?: LoadOptions) {\n if (loadOptions == null) {\n loadOptions = {};\n }\n this.weightPathPrefix = loadOptions.weightPathPrefix;\n this.onProgress = loadOptions.onProgress;\n this.weightUrlConverter = loadOptions.weightUrlConverter;\n\n if (loadOptions.fetchFunc != null) {\n assert(\n typeof loadOptions.fetchFunc === 'function',\n () => 'Must pass a function that matches the signature of ' +\n '`fetch` (see ' +\n 'https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)');\n this.fetch = loadOptions.fetchFunc;\n } else {\n this.fetch = env().platform.fetch;\n }\n\n assert(\n path != null && path.length > 0,\n () => 'URL path for http must not be null, undefined or ' +\n 'empty.');\n\n if (Array.isArray(path)) {\n assert(\n path.length === 2,\n () => 'URL paths for http must have a length of 2, ' +\n `(actual length is ${path.length}).`);\n }\n this.path = path;\n\n if (loadOptions.requestInit != null &&\n loadOptions.requestInit.body != null) {\n throw new Error(\n 'requestInit is expected to have no pre-existing body, but has one.');\n }\n this.requestInit = loadOptions.requestInit || {};\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserHTTPRequest.save() does not support saving model topology ' +\n 'in binary formats yet.');\n }\n\n const init = Object.assign({method: this.DEFAULT_METHOD}, this.requestInit);\n init.body = new FormData();\n\n const weightsManifest: WeightsManifestConfig = [{\n paths: ['./model.weights.bin'],\n weights: modelArtifacts.weightSpecs,\n }];\n const modelTopologyAndWeightManifest: ModelJSON = {\n modelTopology: modelArtifacts.modelTopology,\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy,\n weightsManifest\n };\n if (modelArtifacts.signature != null) {\n modelTopologyAndWeightManifest.signature = modelArtifacts.signature;\n }\n if (modelArtifacts.userDefinedMetadata != null) {\n modelTopologyAndWeightManifest.userDefinedMetadata =\n modelArtifacts.userDefinedMetadata;\n }\n if (modelArtifacts.modelInitializer != null) {\n modelTopologyAndWeightManifest.modelInitializer =\n modelArtifacts.modelInitializer;\n }\n\n init.body.append(\n 'model.json',\n new Blob(\n [JSON.stringify(modelTopologyAndWeightManifest)],\n {type: JSON_TYPE}),\n 'model.json');\n\n if (modelArtifacts.weightData != null) {\n init.body.append(\n 'model.weights.bin',\n new Blob([modelArtifacts.weightData], {type: OCTET_STREAM_MIME_TYPE}),\n 'model.weights.bin');\n }\n\n const response = await this.fetch(this.path, init);\n\n if (response.ok) {\n return {\n modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts),\n responses: [response],\n };\n } else {\n throw new Error(\n `BrowserHTTPRequest.save() failed due to HTTP response status ` +\n `${response.status}.`);\n }\n }\n\n /**\n * Load model artifacts via HTTP request(s).\n *\n * See the documentation to `tf.io.http` for details on the saved\n * artifacts.\n *\n * @returns The loaded model artifacts (if loading succeeds).\n */\n async load(): Promise {\n const modelConfigRequest = await this.fetch(this.path, this.requestInit);\n\n if (!modelConfigRequest.ok) {\n throw new Error(\n `Request to ${this.path} failed with status code ` +\n `${modelConfigRequest.status}. Please verify this URL points to ` +\n `the model JSON of the model to load.`);\n }\n let modelConfig: ModelJSON;\n try {\n modelConfig = await modelConfigRequest.json();\n } catch (e) {\n let message = `Failed to parse model JSON of response from ${this.path}.`;\n // TODO(nsthorat): Remove this after some time when we're comfortable that\n // .pb files are mostly gone.\n if (this.path.endsWith('.pb')) {\n message += ' Your path contains a .pb file extension. ' +\n 'Support for .pb models have been removed in TensorFlow.js 1.0 ' +\n 'in favor of .json models. You can re-convert your Python ' +\n 'TensorFlow model using the TensorFlow.js 1.0 conversion scripts ' +\n 'or you can convert your.pb models with the \\'pb2json\\'' +\n 'NPM script in the tensorflow/tfjs-converter repository.';\n } else {\n message += ' Please make sure the server is serving valid ' +\n 'JSON for this request.';\n }\n throw new Error(message);\n }\n const modelTopology = modelConfig.modelTopology;\n const weightsManifest = modelConfig.weightsManifest;\n const generatedBy = modelConfig.generatedBy;\n const convertedBy = modelConfig.convertedBy;\n const format = modelConfig.format;\n const signature = modelConfig.signature;\n const userDefinedMetadata = modelConfig.userDefinedMetadata;\n\n // We do not allow both modelTopology and weightsManifest to be missing.\n if (modelTopology == null && weightsManifest == null) {\n throw new Error(\n `The JSON from HTTP path ${this.path} contains neither model ` +\n `topology or manifest for weights.`);\n }\n\n let weightSpecs: WeightsManifestEntry[];\n let weightData: ArrayBuffer;\n if (weightsManifest != null) {\n const results = await this.loadWeights(weightsManifest);\n [weightSpecs, weightData] = results;\n }\n\n const artifacts: ModelArtifacts = {\n modelTopology,\n weightSpecs,\n weightData,\n generatedBy,\n convertedBy,\n format\n };\n\n if (signature != null) {\n artifacts.signature = signature;\n }\n if (userDefinedMetadata != null) {\n artifacts.userDefinedMetadata = userDefinedMetadata;\n }\n\n const initializer = modelConfig.modelInitializer;\n if (initializer) {\n artifacts.modelInitializer = initializer;\n }\n\n return artifacts;\n }\n\n private async loadWeights(weightsManifest: WeightsManifestConfig):\n Promise<[WeightsManifestEntry[], ArrayBuffer]> {\n const weightPath = Array.isArray(this.path) ? this.path[1] : this.path;\n const [prefix, suffix] = parseUrl(weightPath);\n const pathPrefix = this.weightPathPrefix || prefix;\n\n const weightSpecs = [];\n for (const entry of weightsManifest) {\n weightSpecs.push(...entry.weights);\n }\n\n const fetchURLs: string[] = [];\n const urlPromises: Array> = [];\n for (const weightsGroup of weightsManifest) {\n for (const path of weightsGroup.paths) {\n if (this.weightUrlConverter != null) {\n urlPromises.push(this.weightUrlConverter(path));\n } else {\n fetchURLs.push(pathPrefix + path + suffix);\n }\n }\n }\n\n if (this.weightUrlConverter) {\n fetchURLs.push(...await Promise.all(urlPromises));\n }\n\n const buffers = await loadWeightsAsArrayBuffer(fetchURLs, {\n requestInit: this.requestInit,\n fetchFunc: this.fetch,\n onProgress: this.onProgress\n });\n return [weightSpecs, concatenateArrayBuffers(buffers)];\n }\n}\n\n/**\n * Extract the prefix and suffix of the url, where the prefix is the path before\n * the last file, and suffix is the search params after the last file.\n * ```\n * const url = 'http://tfhub.dev/model/1/tensorflowjs_model.pb?tfjs-format=file'\n * [prefix, suffix] = parseUrl(url)\n * // prefix = 'http://tfhub.dev/model/1/'\n * // suffix = '?tfjs-format=file'\n * ```\n * @param url the model url to be parsed.\n */\nexport function parseUrl(url: string): [string, string] {\n const lastSlash = url.lastIndexOf('/');\n const lastSearchParam = url.lastIndexOf('?');\n const prefix = url.substring(0, lastSlash);\n const suffix =\n lastSearchParam > lastSlash ? url.substring(lastSearchParam) : '';\n return [prefix + '/', suffix];\n}\n\nexport function isHTTPScheme(url: string): boolean {\n return url.match(HTTPRequest.URL_SCHEME_REGEX) != null;\n}\n\nexport const httpRouter: IORouter =\n (url: string, loadOptions?: LoadOptions) => {\n if (typeof fetch === 'undefined' &&\n (loadOptions == null || loadOptions.fetchFunc == null)) {\n // `http` uses `fetch` or `node-fetch`, if one wants to use it in\n // an environment that is not the browser or node they have to setup a\n // global fetch polyfill.\n return null;\n } else {\n let isHTTP = true;\n if (Array.isArray(url)) {\n isHTTP = url.every(urlItem => isHTTPScheme(urlItem));\n } else {\n isHTTP = isHTTPScheme(url);\n }\n if (isHTTP) {\n return http(url, loadOptions);\n }\n }\n return null;\n };\nIORouterRegistry.registerSaveRouter(httpRouter);\nIORouterRegistry.registerLoadRouter(httpRouter);\n\n/**\n * Creates an IOHandler subtype that sends model artifacts to HTTP server.\n *\n * An HTTP request of the `multipart/form-data` mime type will be sent to the\n * `path` URL. The form data includes artifacts that represent the topology\n * and/or weights of the model. In the case of Keras-style `tf.Model`, two\n * blobs (files) exist in form-data:\n * - A JSON file consisting of `modelTopology` and `weightsManifest`.\n * - A binary weights file consisting of the concatenated weight values.\n * These files are in the same format as the one generated by\n * [tfjs_converter](https://js.tensorflow.org/tutorials/import-keras.html).\n *\n * The following code snippet exemplifies the client-side code that uses this\n * function:\n *\n * ```js\n * const model = tf.sequential();\n * model.add(\n * tf.layers.dense({units: 1, inputShape: [100], activation: 'sigmoid'}));\n *\n * const saveResult = await model.save(tf.io.http(\n * 'http://model-server:5000/upload', {requestInit: {method: 'PUT'}}));\n * console.log(saveResult);\n * ```\n *\n * If the default `POST` method is to be used, without any custom parameters\n * such as headers, you can simply pass an HTTP or HTTPS URL to `model.save`:\n *\n * ```js\n * const saveResult = await model.save('http://model-server:5000/upload');\n * ```\n *\n * The following GitHub Gist\n * https://gist.github.com/dsmilkov/1b6046fd6132d7408d5257b0976f7864\n * implements a server based on [flask](https://github.com/pallets/flask) that\n * can receive the request. Upon receiving the model artifacts via the requst,\n * this particular server reconsistutes instances of [Keras\n * Models](https://keras.io/models/model/) in memory.\n *\n *\n * @param path A URL path to the model.\n * Can be an absolute HTTP path (e.g.,\n * 'http://localhost:8000/model-upload)') or a relative path (e.g.,\n * './model-upload').\n * @param requestInit Request configurations to be used when sending\n * HTTP request to server using `fetch`. It can contain fields such as\n * `method`, `credentials`, `headers`, `mode`, etc. See\n * https://developer.mozilla.org/en-US/docs/Web/API/Request/Request\n * for more information. `requestInit` must not have a body, because the\n * body will be set by TensorFlow.js. File blobs representing the model\n * topology (filename: 'model.json') and the weights of the model (filename:\n * 'model.weights.bin') will be appended to the body. If `requestInit` has a\n * `body`, an Error will be thrown.\n * @param loadOptions Optional configuration for the loading. It includes the\n * following fields:\n * - weightPathPrefix Optional, this specifies the path prefix for weight\n * files, by default this is calculated from the path param.\n * - fetchFunc Optional, custom `fetch` function. E.g., in Node.js,\n * the `fetch` from node-fetch can be used here.\n * - onProgress Optional, progress callback function, fired periodically\n * before the load is completed.\n * @returns An instance of `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function http(path: string, loadOptions?: LoadOptions): IOHandler {\n return new HTTPRequest(path, loadOptions);\n}\n\n/**\n * Deprecated. Use `tf.io.http`.\n * @param path\n * @param loadOptions\n */\nexport function browserHTTPRequest(\n path: string, loadOptions?: LoadOptions): IOHandler {\n return http(path, loadOptions);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandlers that pass through the in-memory ModelArtifacts format.\n */\n\nimport {IOHandler, ModelArtifacts, SaveResult, TrainingConfig, WeightsManifestEntry} from './types';\n\nclass PassthroughLoader implements IOHandler {\n constructor(private readonly modelArtifacts?: ModelArtifacts) {}\n\n async load(): Promise {\n return this.modelArtifacts;\n }\n}\n\nclass PassthroughSaver implements IOHandler {\n constructor(\n private readonly saveHandler:\n (artifacts: ModelArtifacts) => Promise) {}\n\n async save(modelArtifacts: ModelArtifacts) {\n return this.saveHandler(modelArtifacts);\n }\n}\n\n/**\n * Creates an IOHandler that loads model artifacts from memory.\n *\n * When used in conjunction with `tf.loadLayersModel`, an instance of\n * `tf.LayersModel` (Keras-style) can be constructed from the loaded artifacts.\n *\n * ```js\n * const model = await tf.loadLayersModel(tf.io.fromMemory(\n * modelTopology, weightSpecs, weightData));\n * ```\n *\n * @param modelArtifacts a object containing model topology (i.e., parsed from\n * the JSON format).\n * @param weightSpecs An array of `WeightsManifestEntry` objects describing the\n * names, shapes, types, and quantization of the weight data.\n * @param weightData A single `ArrayBuffer` containing the weight data,\n * concatenated in the order described by the weightSpecs.\n * @param trainingConfig Model training configuration. Optional.\n *\n * @returns A passthrough `IOHandler` that simply loads the provided data.\n */\nexport function fromMemory(\n modelArtifacts: {}|ModelArtifacts, weightSpecs?: WeightsManifestEntry[],\n weightData?: ArrayBuffer, trainingConfig?: TrainingConfig): IOHandler {\n if (arguments.length === 1) {\n const isModelArtifacts =\n (modelArtifacts as ModelArtifacts).modelTopology != null ||\n (modelArtifacts as ModelArtifacts).weightSpecs != null;\n if (isModelArtifacts) {\n return new PassthroughLoader(modelArtifacts as ModelArtifacts);\n } else {\n // Legacy support: with only modelTopology.\n // TODO(cais): Remove this deprecated API.\n console.warn(\n 'Please call tf.io.fromMemory() with only one argument. ' +\n 'The argument should be of type ModelArtifacts. ' +\n 'The multi-argument signature of tf.io.fromMemory() has been ' +\n 'deprecated and will be removed in a future release.');\n return new PassthroughLoader({modelTopology: modelArtifacts as {}});\n }\n } else {\n // Legacy support.\n // TODO(cais): Remove this deprecated API.\n console.warn(\n 'Please call tf.io.fromMemory() with only one argument. ' +\n 'The argument should be of type ModelArtifacts. ' +\n 'The multi-argument signature of tf.io.fromMemory() has been ' +\n 'deprecated and will be removed in a future release.');\n return new PassthroughLoader({\n modelTopology: modelArtifacts as {},\n weightSpecs,\n weightData,\n trainingConfig\n });\n }\n}\n\n/**\n * Creates an IOHandler that passes saved model artifacts to a callback.\n *\n * ```js\n * function handleSave(artifacts) {\n * // ... do something with the artifacts ...\n * return {modelArtifactsInfo: {...}, ...};\n * }\n *\n * const saveResult = model.save(tf.io.withSaveHandler(handleSave));\n * ```\n *\n * @param saveHandler A function that accepts a `ModelArtifacts` and returns a\n * `SaveResult`.\n */\nexport function withSaveHandler(\n saveHandler: (artifacts: ModelArtifacts) =>\n Promise): IOHandler {\n return new PassthroughSaver(saveHandler);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * Exports under the tf.math.* namespace.\n */\n\nimport {confusionMatrix} from './ops/confusion_matrix';\n\nexport {confusionMatrix};\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {BatchMatMul, BatchMatMulAttrs, BatchMatMulInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {makeTypesMatch} from '../tensor_util';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Computes the dot product of two matrices, A * B. These must be matrices.\n *\n * ```js\n * const a = tf.tensor2d([1, 2], [1, 2]);\n * const b = tf.tensor2d([1, 2, 3, 4], [2, 2]);\n *\n * a.matMul(b).print(); // or tf.matMul(a, b)\n * ```\n * @param a First matrix in dot product operation.\n * @param b Second matrix in dot product operation.\n * @param transposeA If true, `a` is transposed before multiplication.\n * @param transposeB If true, `b` is transposed before multiplication.\n *\n * @doc {heading: 'Operations', subheading: 'Matrices'}\n */\nfunction matMul_(\n a: Tensor|TensorLike, b: Tensor|TensorLike, transposeA = false,\n transposeB = false): T {\n let $a = convertToTensor(a, 'a', 'matMul');\n let $b = convertToTensor(b, 'b', 'matMul');\n [$a, $b] = makeTypesMatch($a, $b);\n\n const inputs: BatchMatMulInputs = {a: $a, b: $b};\n const attrs: BatchMatMulAttrs = {transposeA, transposeB};\n\n return ENGINE.runKernel(\n BatchMatMul, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const matMul = op({matMul_});\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {OneHot, OneHotAttrs, OneHotInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Creates a one-hot `tf.Tensor`. The locations represented by `indices` take\n * value `onValue` (defaults to 1), while all other locations take value\n * `offValue` (defaults to 0). If `indices` is rank `R`, the output has rank\n * `R+1` with the last axis of size `depth`.\n *\n * ```js\n * tf.oneHot(tf.tensor1d([0, 1], 'int32'), 3).print();\n * ```\n *\n * @param indices `tf.Tensor` of indices with dtype `int32`.\n * @param depth The depth of the one hot dimension.\n * @param onValue A number used to fill in the output when the index matches\n * the location.\n * @param offValue A number used to fill in the output when the index does\n * not match the location.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction oneHot_(\n indices: Tensor|TensorLike, depth: number, onValue = 1,\n offValue = 0): Tensor {\n if (depth < 2) {\n throw new Error(`Error in oneHot: depth must be >=2, but it is ${depth}`);\n }\n const $indices = convertToTensor(indices, 'indices', 'oneHot', 'int32');\n\n const inputs: OneHotInputs = {indices: $indices};\n const attrs: OneHotAttrs = {depth, onValue, offValue};\n\n return ENGINE.runKernel(\n OneHot, inputs as unknown as NamedTensorMap,\n attrs as unknown as NamedAttrMap);\n}\n\nexport const oneHot = op({oneHot_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Transpose, TransposeAttrs, TransposeInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Transposes the `tf.Tensor`. Permutes the dimensions according to `perm`.\n *\n * The returned `tf.Tensor`'s dimension `i` will correspond to the input\n * dimension `perm[i]`. If `perm` is not given, it is set to `[n-1...0]`,\n * where `n` is the rank of the input `tf.Tensor`. Hence by default, this\n * operation performs a regular matrix transpose on 2-D input `tf.Tensor`s.\n *\n * ```js\n * const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);\n *\n * a.transpose().print(); // or tf.transpose(a)\n * ```\n *\n * @param x The tensor to transpose.\n * @param perm The permutation of the dimensions of a.\n *\n * @doc {heading: 'Operations', subheading: 'Matrices'}\n */\nfunction transpose_(x: T|TensorLike, perm?: number[]): T {\n const $x = convertToTensor(x, 'x', 'transpose');\n\n if (perm == null) {\n perm = $x.shape.map((s, i) => i).reverse();\n }\n util.assert(\n $x.rank === perm.length,\n () => `Error in transpose: rank of input ${$x.rank} ` +\n `must match length of perm ${perm}.`);\n perm.forEach(axis => {\n util.assert(\n axis >= 0 && axis < $x.rank,\n () => `All entries in 'perm' must be between 0 and ${$x.rank - 1}` +\n ` but got ${perm}`);\n });\n\n if ($x.rank <= 1) {\n return $x.clone();\n }\n\n const inputs: TransposeInputs = {x: $x};\n const attrs: TransposeAttrs = {perm};\n\n return ENGINE.runKernel(\n Transpose, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const transpose = op({transpose_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor1D, Tensor2D} from '../tensor';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {cast} from './cast';\nimport {matMul} from './mat_mul';\nimport {oneHot} from './one_hot';\nimport {op} from './operation';\nimport {transpose} from './transpose';\n\n/**\n * Computes the confusion matrix from true labels and predicted labels.\n *\n * ```js\n * const labels = tf.tensor1d([0, 1, 2, 1, 0], 'int32');\n * const predictions = tf.tensor1d([0, 2, 2, 1, 0], 'int32');\n * const numClasses = 3;\n * const out = tf.math.confusionMatrix(labels, predictions, numClasses);\n * out.print();\n * // Expected output matrix:\n * // [[2, 0, 0],\n * // [0, 1, 1],\n * // [0, 0, 1]]\n * ```\n *\n * @param labels The target labels, assumed to be 0-based integers\n * for the classes. The shape is `[numExamples]`, where\n * `numExamples` is the number of examples included.\n * @param predictions The predicted classes, assumed to be\n * 0-based integers for the classes. Must have the same shape as `labels`.\n * @param numClasses Number of all classes, as an integer.\n * Its value must be larger than the largest element in `labels` and\n * `predictions`.\n * @returns The confusion matrix as a int32-type 2D tensor. The value at\n * row `r` and column `c` is the number of times examples of actual class\n * `r` were predicted as class `c`.\n *\n * @doc {heading: 'Operations', subheading: 'Evaluation'}\n */\nexport function confusionMatrix_(\n labels: Tensor1D|TensorLike, predictions: Tensor1D|TensorLike,\n numClasses: number): Tensor2D {\n const $labels = convertToTensor(labels, 'labels', 'confusionMatrix');\n const $predictions =\n convertToTensor(predictions, 'predictions', 'confusionMatrix');\n\n util.assert(\n numClasses == null || numClasses > 0 && Number.isInteger(numClasses),\n () => `If provided, numClasses must be a positive integer, ` +\n `but got ${numClasses}`);\n util.assert(\n $labels.rank === 1,\n () => `Expected the rank of labels to be 1, but got ${$labels.rank}`);\n util.assert(\n $predictions.rank === 1,\n () => `Expected the rank of predictions to be 1, ` +\n `but got ${$predictions.rank}`);\n util.assert(\n $labels.shape[0] === $predictions.shape[0],\n () => `Mismatch in the number of examples: ` +\n `${$labels.shape[0]} vs. ${$predictions.shape[0]}. ` +\n `Labels and predictions should have the same number of elements.`);\n util.assert(\n numClasses > 0 && Number.isInteger(numClasses),\n () => `numClasses is required to be a positive integer, but got ` +\n `${numClasses}`);\n // TODO(cais): In the future, if oneHot supports tensors inputs for\n // `numClasses`, `confusionMatrix` can make `numClasses` optional.\n\n const oneHotLabels = oneHot(cast($labels, 'int32'), numClasses) as Tensor2D;\n const oneHotPredictions =\n oneHot(cast($predictions, 'int32'), numClasses) as Tensor2D;\n const oneHotLabelsT: Tensor2D = transpose(oneHotLabels);\n const product: Tensor2D = matMul(oneHotLabelsT, oneHotPredictions);\n return cast(product, 'int32');\n}\n\nexport const confusionMatrix = op({confusionMatrix_});\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {env} from '../environment';\nimport {FromPixels, FromPixelsAttrs, FromPixelsInputs} from '../kernel_names';\nimport {getKernel, NamedAttrMap} from '../kernel_registry';\nimport {Tensor, Tensor2D, Tensor3D} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {PixelData, TensorLike} from '../types';\n\nimport {cast} from './cast';\nimport {op} from './operation';\nimport {tensor3d} from './tensor3d';\n\nlet fromPixels2DContext: CanvasRenderingContext2D;\n\n/**\n * Creates a `tf.Tensor` from an image.\n *\n * ```js\n * const image = new ImageData(1, 1);\n * image.data[0] = 100;\n * image.data[1] = 150;\n * image.data[2] = 200;\n * image.data[3] = 255;\n *\n * tf.browser.fromPixels(image).print();\n * ```\n *\n * @param pixels The input image to construct the tensor from. The\n * supported image types are all 4-channel. You can also pass in an image\n * object with following attributes:\n * `{data: Uint8Array; width: number; height: number}`\n * @param numChannels The number of channels of the output tensor. A\n * numChannels value less than 4 allows you to ignore channels. Defaults to\n * 3 (ignores alpha channel of input image).\n *\n * @returns A Tensor3D with the shape `[height, width, numChannels]`.\n *\n * @doc {heading: 'Browser', namespace: 'browser', ignoreCI: true}\n */\nfunction fromPixels_(\n pixels: PixelData|ImageData|HTMLImageElement|HTMLCanvasElement|\n HTMLVideoElement|ImageBitmap,\n numChannels = 3): Tensor3D {\n // Sanity checks.\n if (numChannels > 4) {\n throw new Error(\n 'Cannot construct Tensor with more than 4 channels from pixels.');\n }\n if (pixels == null) {\n throw new Error('pixels passed to tf.browser.fromPixels() can not be null');\n }\n let isPixelData = false;\n let isImageData = false;\n let isVideo = false;\n let isImage = false;\n let isCanvasLike = false;\n let isImageBitmap = false;\n if ((pixels as PixelData).data instanceof Uint8Array) {\n isPixelData = true;\n } else if (\n typeof (ImageData) !== 'undefined' && pixels instanceof ImageData) {\n isImageData = true;\n } else if (\n typeof (HTMLVideoElement) !== 'undefined' &&\n pixels instanceof HTMLVideoElement) {\n isVideo = true;\n } else if (\n typeof (HTMLImageElement) !== 'undefined' &&\n pixels instanceof HTMLImageElement) {\n isImage = true;\n // tslint:disable-next-line: no-any\n } else if ((pixels as any).getContext != null) {\n isCanvasLike = true;\n } else if (\n typeof (ImageBitmap) !== 'undefined' && pixels instanceof ImageBitmap) {\n isImageBitmap = true;\n } else {\n throw new Error(\n 'pixels passed to tf.browser.fromPixels() must be either an ' +\n `HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData ` +\n `in browser, or OffscreenCanvas, ImageData in webworker` +\n ` or {data: Uint32Array, width: number, height: number}, ` +\n `but was ${(pixels as {}).constructor.name}`);\n }\n if (isVideo) {\n const HAVE_CURRENT_DATA_READY_STATE = 2;\n if (isVideo &&\n (pixels as HTMLVideoElement).readyState <\n HAVE_CURRENT_DATA_READY_STATE) {\n throw new Error(\n 'The video element has not loaded data yet. Please wait for ' +\n '`loadeddata` event on the

classes

-
classes: { age: __module; body: __module | __module; emotion: __module; facemesh: __module; faceres: __module; gender: __module; hand: __module; nanodet: __module }
+
classes: { body: __module | __module; emotion: __module; facemesh: __module; faceres: __module; hand: __module; nanodet: __module }
@@ -173,9 +173,6 @@

Type declaration

    -
  • -
    age: __module
    -
  • body: __module | __module
  • @@ -188,9 +185,6 @@
  • faceres: __module
  • -
  • -
    gender: __module
    -
  • hand: __module
  • diff --git a/typedoc/interfaces/config.html b/typedoc/interfaces/config.html index 2b856a52..7e3dd868 100644 --- a/typedoc/interfaces/config.html +++ b/typedoc/interfaces/config.html @@ -199,7 +199,7 @@

    face

    -
    face: { age: { enabled: boolean; modelPath: string; skipFrames: number }; description: { enabled: boolean; modelPath: string; skipFrames: number }; detector: { iouThreshold: number; maxFaces: number; minConfidence: number; modelPath: string; return: boolean; rotation: boolean; scoreThreshold: number; skipFrames: number; skipInitial: boolean }; embedding: { enabled: boolean; modelPath: string }; emotion: { enabled: boolean; minConfidence: number; modelPath: string; skipFrames: number }; enabled: boolean; gender: { enabled: boolean; minConfidence: number; modelPath: string; skipFrames: number }; iris: { enabled: boolean; modelPath: string }; mesh: { enabled: boolean; modelPath: string } }
    +
    face: { description: { enabled: boolean; minConfidence: number; modelPath: string; skipFrames: number }; detector: { iouThreshold: number; maxFaces: number; minConfidence: number; modelPath: string; return: boolean; rotation: boolean; scoreThreshold: number; skipFrames: number; skipInitial: boolean }; emotion: { enabled: boolean; minConfidence: number; modelPath: string; skipFrames: number }; enabled: boolean; iris: { enabled: boolean; modelPath: string }; mesh: { enabled: boolean; modelPath: string } }
    @@ -225,24 +225,13 @@

    Type declaration

    • -
      age: { enabled: boolean; modelPath: string; skipFrames: number }
      +
      description: { enabled: boolean; minConfidence: number; modelPath: string; skipFrames: number }
      • enabled: boolean
      • -
        modelPath: string
        -
      • -
      • -
        skipFrames: number
        -
      • -
      -
    • -
    • -
      description: { enabled: boolean; modelPath: string; skipFrames: number }
      -
        -
      • -
        enabled: boolean
        +
        minConfidence: number
      • modelPath: string
        @@ -284,17 +273,6 @@
    • -
    • -
      embedding: { enabled: boolean; modelPath: string }
      -
        -
      • -
        enabled: boolean
        -
      • -
      • -
        modelPath: string
        -
      • -
      -
    • emotion: { enabled: boolean; minConfidence: number; modelPath: string; skipFrames: number }
        @@ -315,23 +293,6 @@
      • enabled: boolean
      • -
      • -
        gender: { enabled: boolean; minConfidence: number; modelPath: string; skipFrames: number }
        -
          -
        • -
          enabled: boolean
          -
        • -
        • -
          minConfidence: number
          -
        • -
        • -
          modelPath: string
          -
        • -
        • -
          skipFrames: number
          -
        • -
        -
      • iris: { enabled: boolean; modelPath: string }
          diff --git a/types/age/age.d.ts b/types/age/age.d.ts deleted file mode 100644 index 9a8863cc..00000000 --- a/types/age/age.d.ts +++ /dev/null @@ -1,2 +0,0 @@ -export declare function load(config: any): Promise; -export declare function predict(image: any, config: any): Promise; diff --git a/types/config.d.ts b/types/config.d.ts index b2b9d8fd..618e8648 100644 --- a/types/config.d.ts +++ b/types/config.d.ts @@ -124,17 +124,7 @@ export interface Config { enabled: boolean; modelPath: string; skipFrames: number; - }; - age: { - enabled: boolean; - modelPath: string; - skipFrames: number; - }; - gender: { - enabled: boolean; minConfidence: number; - modelPath: string; - skipFrames: number; }; emotion: { enabled: boolean; @@ -142,10 +132,6 @@ export interface Config { skipFrames: number; modelPath: string; }; - embedding: { - enabled: boolean; - modelPath: string; - }; }; /** Controlls and configures all body detection specific options * - enabled: true/false diff --git a/types/efficientpose/efficientpose.d.ts b/types/efficientpose/efficientpose.d.ts deleted file mode 100644 index 9a8863cc..00000000 --- a/types/efficientpose/efficientpose.d.ts +++ /dev/null @@ -1,2 +0,0 @@ -export declare function load(config: any): Promise; -export declare function predict(image: any, config: any): Promise; diff --git a/types/embedding/embedding.d.ts b/types/embedding/embedding.d.ts deleted file mode 100644 index 0c684f20..00000000 --- a/types/embedding/embedding.d.ts +++ /dev/null @@ -1,18 +0,0 @@ -import * as tf from '../../dist/tfjs.esm.js'; -declare type Tensor = typeof tf.Tensor; -declare type DB = Array<{ - name: string; - source: string; - embedding: number[]; -}>; -export declare function load(config: any): Promise; -export declare function similarity(embedding1: any, embedding2: any, order?: number): number; -export declare function match(embedding: Array, db: DB, threshold?: number): { - similarity: number; - name: string; - source: string; - embedding: number[]; -}; -export declare function enhance(input: any): Tensor; -export declare function predict(input: any, config: any): Promise; -export {}; diff --git a/types/gender/gender.d.ts b/types/gender/gender.d.ts deleted file mode 100644 index 9a8863cc..00000000 --- a/types/gender/gender.d.ts +++ /dev/null @@ -1,2 +0,0 @@ -export declare function load(config: any): Promise; -export declare function predict(image: any, config: any): Promise; diff --git a/types/human.d.ts b/types/human.d.ts index b135c90e..ed2da350 100644 --- a/types/human.d.ts +++ b/types/human.d.ts @@ -1,7 +1,5 @@ import * as tf from '../dist/tfjs.esm.js'; import * as facemesh from './blazeface/facemesh'; -import * as age from './age/age'; -import * as gender from './gender/gender'; import * as faceres from './faceres/faceres'; import * as emotion from './emotion/emotion'; import * as posenet from './posenet/posenet'; @@ -91,8 +89,6 @@ export declare class Human { /** Internal: Currently loaded classes */ classes: { facemesh: typeof facemesh; - age: typeof age; - gender: typeof gender; emotion: typeof emotion; body: typeof posenet | typeof blazepose; hand: typeof handpose; diff --git a/wiki b/wiki index ee4cf3aa..e06119f8 160000 --- a/wiki +++ b/wiki @@ -1 +1 @@ -Subproject commit ee4cf3aa27940b10e275ef9e8119e220c4b2d70d +Subproject commit e06119f8538250b84e4ff4caed40746b749a3531