From 0ea4edf39c7c53cc9ade01a6a088a277527f732f Mon Sep 17 00:00:00 2001 From: Vladimir Mandic Date: Sat, 23 Jul 2022 14:45:40 -0400 Subject: [PATCH] update tfjs --- CHANGELOG.md | 1 + dist/human.d.ts | 41 +- dist/human.esm-nobundle.d.ts | 41 +- dist/human.esm-nobundle.js | 2 +- dist/human.esm-nobundle.js.map | 2 +- dist/human.esm.d.ts | 41 +- dist/human.esm.js | 7139 ++++++++++----------- dist/human.esm.js.map | 4 +- dist/human.js | 2583 ++++---- dist/human.node-gpu.d.ts | 41 +- dist/human.node-wasm.d.ts | 41 +- dist/human.node.d.ts | 41 +- dist/tfjs.esm.js | 10287 +++++++++++++++--------------- dist/tfjs.version.js | 2 +- package.json | 24 +- test/browser.log | 160 +- test/build.log | 48 +- test/test.log | 1368 ++-- typedoc/assets/search.js | 2 +- typedoc/classes/GraphModel.html | 67 +- typedoc/classes/Tensor-1.html | 56 +- typedoc/enums/Rank.html | 16 +- typedoc/modules/Tensor.html | 4 +- typedoc/types/TensorLike.html | 2 +- types/human.d.ts | 41 +- 25 files changed, 10811 insertions(+), 11243 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index c690721c..73989edb 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -11,6 +11,7 @@ ### **HEAD -> main** 2022/07/21 mandic00@live.com +- release cleanup - tflite experiments - add load monitor test - beta for upcoming major release diff --git a/dist/human.d.ts b/dist/human.d.ts index fed34cea..4f1e9723 100644 --- a/dist/human.d.ts +++ b/dist/human.d.ts @@ -849,6 +849,8 @@ export declare class GraphModel im private initializer; private resourceManager; private signature; + private structuredOutputKeys; + private readonly io; readonly modelVersion: string; readonly inputNodes: string[]; readonly outputNodes: string[]; @@ -857,6 +859,7 @@ export declare class GraphModel im readonly weights: NamedTensorsMap; readonly metadata: {}; readonly modelSignature: {}; + readonly modelStructuredOutputKeys: {}; /** * @param modelUrl url for the model, or an `io.IOHandler`. * @param weightManifestUrl url for the weight file generated by @@ -866,7 +869,7 @@ export declare class GraphModel im * @param onProgress Optional, progress callback function, fired periodically * before the load is completed. */ - constructor(modelUrl: ModelURL, loadOptions?: io.LoadOptions); + constructor(modelUrl: ModelURL, loadOptions?: io.LoadOptions, tfio?: typeof io); private findIOHandler; /** * Loads the model and weight files, construct the in memory weight map and @@ -953,13 +956,14 @@ export declare class GraphModel im * If we are provide a batched data of 100 images, the input tensor should be * in the shape of [100, 244, 244, 3]. * - * @param config Prediction configuration for specifying the batch size and - * output node names. Currently the batch size option is ignored for graph - * model. + * @param config Prediction configuration for specifying the batch size. + * Currently the batch size option is ignored for graph model. * - * @returns Inference result tensors. The output would be single `tf.Tensor` - * if model has single output node, otherwise Tensor[] or NamedTensorMap[] - * will be returned for model with multiple outputs. + * @returns Inference result tensors. If the model is converted and it + * originally had structured_outputs in tensorflow, then a NamedTensorMap + * will be returned matching the structured_outputs. If no structured_outputs + * are present, the output will be single `tf.Tensor` if the model has single + * output node, otherwise Tensor[]. * * @doc {heading: 'Models', subheading: 'Classes'} */ @@ -1456,8 +1460,15 @@ declare interface IOHandler { load?: LoadHandler; } +/** + * Interface for a synchronous model import/export handler. + * + * The `save` and `load` handlers are both optional, in order to allow handlers + * that support only saving or loading. + */ declare type IOHandlerSync = { - [K in keyof IOHandler]: Syncify; + save?: SaveHandlerSync; + load?: LoadHandlerSync; }; declare type IORouter = (url: string | string[], loadOptions?: LoadOptions) => IOHandler; @@ -1514,6 +1525,11 @@ declare function load(instance: Human): Promise; */ declare type LoadHandler = () => Promise; +/** + * Type definition for handlers of synchronous loading operations. + */ +declare type LoadHandlerSync = () => ModelArtifacts; + /** @innamespace io */ declare interface LoadOptions { /** @@ -2048,8 +2064,6 @@ export declare interface PersonResult { /** generic point as [x, y, z?] */ export declare type Point = [number, number, number?]; -declare type PromiseFunction = (...args: unknown[]) => Promise; - export declare type Race = 'white' | 'black' | 'asian' | 'indian' | 'other'; export declare enum Rank { @@ -2168,6 +2182,11 @@ declare interface SaveConfig { */ declare type SaveHandler = (modelArtifact: ModelArtifacts) => Promise; +/** + * Type definition for handlers of synchronous saving operations. + */ +declare type SaveHandlerSync = (modelArtifact: ModelArtifacts) => SaveResult; + /** * Result of a saving operation. */ @@ -2247,8 +2266,6 @@ declare interface SingleValueMap { string: string; } -declare type Syncify = T extends (...args: infer Args) => Promise ? (...args: Args) => R : never; - export declare namespace Tensor { } /** diff --git a/dist/human.esm-nobundle.d.ts b/dist/human.esm-nobundle.d.ts index fed34cea..4f1e9723 100644 --- a/dist/human.esm-nobundle.d.ts +++ b/dist/human.esm-nobundle.d.ts @@ -849,6 +849,8 @@ export declare class GraphModel im private initializer; private resourceManager; private signature; + private structuredOutputKeys; + private readonly io; readonly modelVersion: string; readonly inputNodes: string[]; readonly outputNodes: string[]; @@ -857,6 +859,7 @@ export declare class GraphModel im readonly weights: NamedTensorsMap; readonly metadata: {}; readonly modelSignature: {}; + readonly modelStructuredOutputKeys: {}; /** * @param modelUrl url for the model, or an `io.IOHandler`. * @param weightManifestUrl url for the weight file generated by @@ -866,7 +869,7 @@ export declare class GraphModel im * @param onProgress Optional, progress callback function, fired periodically * before the load is completed. */ - constructor(modelUrl: ModelURL, loadOptions?: io.LoadOptions); + constructor(modelUrl: ModelURL, loadOptions?: io.LoadOptions, tfio?: typeof io); private findIOHandler; /** * Loads the model and weight files, construct the in memory weight map and @@ -953,13 +956,14 @@ export declare class GraphModel im * If we are provide a batched data of 100 images, the input tensor should be * in the shape of [100, 244, 244, 3]. * - * @param config Prediction configuration for specifying the batch size and - * output node names. Currently the batch size option is ignored for graph - * model. + * @param config Prediction configuration for specifying the batch size. + * Currently the batch size option is ignored for graph model. * - * @returns Inference result tensors. The output would be single `tf.Tensor` - * if model has single output node, otherwise Tensor[] or NamedTensorMap[] - * will be returned for model with multiple outputs. + * @returns Inference result tensors. If the model is converted and it + * originally had structured_outputs in tensorflow, then a NamedTensorMap + * will be returned matching the structured_outputs. If no structured_outputs + * are present, the output will be single `tf.Tensor` if the model has single + * output node, otherwise Tensor[]. * * @doc {heading: 'Models', subheading: 'Classes'} */ @@ -1456,8 +1460,15 @@ declare interface IOHandler { load?: LoadHandler; } +/** + * Interface for a synchronous model import/export handler. + * + * The `save` and `load` handlers are both optional, in order to allow handlers + * that support only saving or loading. + */ declare type IOHandlerSync = { - [K in keyof IOHandler]: Syncify; + save?: SaveHandlerSync; + load?: LoadHandlerSync; }; declare type IORouter = (url: string | string[], loadOptions?: LoadOptions) => IOHandler; @@ -1514,6 +1525,11 @@ declare function load(instance: Human): Promise; */ declare type LoadHandler = () => Promise; +/** + * Type definition for handlers of synchronous loading operations. + */ +declare type LoadHandlerSync = () => ModelArtifacts; + /** @innamespace io */ declare interface LoadOptions { /** @@ -2048,8 +2064,6 @@ export declare interface PersonResult { /** generic point as [x, y, z?] */ export declare type Point = [number, number, number?]; -declare type PromiseFunction = (...args: unknown[]) => Promise; - export declare type Race = 'white' | 'black' | 'asian' | 'indian' | 'other'; export declare enum Rank { @@ -2168,6 +2182,11 @@ declare interface SaveConfig { */ declare type SaveHandler = (modelArtifact: ModelArtifacts) => Promise; +/** + * Type definition for handlers of synchronous saving operations. + */ +declare type SaveHandlerSync = (modelArtifact: ModelArtifacts) => SaveResult; + /** * Result of a saving operation. */ @@ -2247,8 +2266,6 @@ declare interface SingleValueMap { string: string; } -declare type Syncify = T extends (...args: infer Args) => Promise ? (...args: Args) => R : never; - export declare namespace Tensor { } /** diff --git a/dist/human.esm-nobundle.js b/dist/human.esm-nobundle.js index 0cce9f4e..124fcaa1 100644 --- a/dist/human.esm-nobundle.js +++ b/dist/human.esm-nobundle.js @@ -4,7 +4,7 @@ author: ' */ -var J2=Object.defineProperty;var Po=Object.getOwnPropertyDescriptor;var Ro=Object.getOwnPropertyNames;var vo=Object.prototype.hasOwnProperty;var To=(e,t,o)=>t in e?J2(e,t,{enumerable:!0,configurable:!0,writable:!0,value:o}):e[t]=o;var U0=(e,t)=>{for(var o in t)J2(e,o,{get:t[o],enumerable:!0})},I1=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of Ro(t))!vo.call(e,r)&&r!==o&&J2(e,r,{get:()=>t[r],enumerable:!(n=Po(t,r))||n.enumerable});return e},q=(e,t,o)=>(I1(e,t,"default"),o&&I1(o,t,"default"));var w=(e,t,o)=>(To(e,typeof t!="symbol"?t+"":t,o),o),N1=(e,t,o)=>{if(!t.has(e))throw TypeError("Cannot "+o)};var Xe=(e,t,o)=>(N1(e,t,"read from private field"),o?o.call(e):t.get(e)),qe=(e,t,o)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,o)},Ue=(e,t,o,n)=>(N1(e,t,"write to private field"),n?n.call(e,o):t.set(e,o),o);function u(...e){let t=new Date,o=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(o,"Human:",...e)}function O1(e,t){let o=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${o}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var b=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Q2(e,t,o="config",n=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")Q2(e[r],t[r],r,n);else{let s=e&&typeof e[r]!="undefined";s||n.push({reason:"unknown property",where:`${o}.${r} = ${t[r]}`});let a=e&&typeof e[r]==typeof t[r];s&&!a&&n.push({reason:"property type mismatch",where:`${o}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&o==="config"&&n.length>0&&u("invalid configuration",n),n}function J(...e){let t=o=>o&&typeof o=="object";return e.reduce((o,n)=>(Object.keys(n||{}).forEach(r=>{let s=o[r],a=n[r];Array.isArray(s)&&Array.isArray(a)?o[r]=s.concat(...a):t(s)&&t(a)?o[r]=J(s,a):o[r]=a}),o),{})}var se={backend:"",modelBasePath:"",cacheModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var A={};U0(A,{GraphModel:()=>_2,Tensor:()=>ge,version:()=>Ye});q(A,SA);q(A,CA);import*as SA from"@tensorflow/tfjs/dist/index.js";import*as CA from"@tensorflow/tfjs-backend-webgl/dist/index.js";import{Tensor as ge}from"@tensorflow/tfjs/dist/index.js";import{GraphModel as _2}from"@tensorflow/tfjs-converter/dist/index";var wo="3.18.0",ko="3.18.0",Eo="3.18.0",zo="3.18.0",So="3.18.0",Co="3.18.0",jo="3.18.0",Ye={tfjs:wo,"tfjs-core":ko,"tfjs-data":Eo,"tfjs-layers":zo,"tfjs-converter":So,"tfjs-backend-webgl":Co,"tfjs-backend-wasm":jo};var L1=` +var J2=Object.defineProperty;var Po=Object.getOwnPropertyDescriptor;var Ro=Object.getOwnPropertyNames;var vo=Object.prototype.hasOwnProperty;var To=(e,t,o)=>t in e?J2(e,t,{enumerable:!0,configurable:!0,writable:!0,value:o}):e[t]=o;var U0=(e,t)=>{for(var o in t)J2(e,o,{get:t[o],enumerable:!0})},I1=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of Ro(t))!vo.call(e,r)&&r!==o&&J2(e,r,{get:()=>t[r],enumerable:!(n=Po(t,r))||n.enumerable});return e},q=(e,t,o)=>(I1(e,t,"default"),o&&I1(o,t,"default"));var w=(e,t,o)=>(To(e,typeof t!="symbol"?t+"":t,o),o),N1=(e,t,o)=>{if(!t.has(e))throw TypeError("Cannot "+o)};var Xe=(e,t,o)=>(N1(e,t,"read from private field"),o?o.call(e):t.get(e)),qe=(e,t,o)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,o)},Ue=(e,t,o,n)=>(N1(e,t,"write to private field"),n?n.call(e,o):t.set(e,o),o);function u(...e){let t=new Date,o=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(o,"Human:",...e)}function O1(e,t){let o=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${o}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var b=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Q2(e,t,o="config",n=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")Q2(e[r],t[r],r,n);else{let s=e&&typeof e[r]!="undefined";s||n.push({reason:"unknown property",where:`${o}.${r} = ${t[r]}`});let a=e&&typeof e[r]==typeof t[r];s&&!a&&n.push({reason:"property type mismatch",where:`${o}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&o==="config"&&n.length>0&&u("invalid configuration",n),n}function J(...e){let t=o=>o&&typeof o=="object";return e.reduce((o,n)=>(Object.keys(n||{}).forEach(r=>{let s=o[r],a=n[r];Array.isArray(s)&&Array.isArray(a)?o[r]=s.concat(...a):t(s)&&t(a)?o[r]=J(s,a):o[r]=a}),o),{})}var se={backend:"",modelBasePath:"",cacheModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var A={};U0(A,{GraphModel:()=>_2,Tensor:()=>ge,version:()=>Ye});q(A,SA);q(A,CA);import*as SA from"@tensorflow/tfjs/dist/index.js";import*as CA from"@tensorflow/tfjs-backend-webgl/dist/index.js";import{Tensor as ge}from"@tensorflow/tfjs/dist/index.js";import{GraphModel as _2}from"@tensorflow/tfjs-converter/dist/index";var wo="3.19.0",ko="3.19.0",Eo="3.19.0",zo="3.19.0",So="3.19.0",Co="3.19.0",jo="3.19.0",Ye={tfjs:wo,"tfjs-core":ko,"tfjs-data":Eo,"tfjs-layers":zo,"tfjs-converter":So,"tfjs-backend-webgl":Co,"tfjs-backend-wasm":jo};var L1=` precision highp float; attribute vec2 pos; attribute vec2 uv; diff --git a/dist/human.esm-nobundle.js.map b/dist/human.esm-nobundle.js.map index cdd405dd..2768e335 100644 --- a/dist/human.esm-nobundle.js.map +++ b/dist/human.esm-nobundle.js.map @@ -1,7 +1,7 @@ { "version": 3, "sources": ["../src/util/util.ts", "../src/config.ts", "tfjs.esm.js", "../src/image/imagefxshaders.ts", "../src/image/imagefx.ts", "../src/image/enhance.ts", "../src/image/image.ts", "../src/util/env.ts", "../src/tfjs/load.ts", "../src/models.ts", "../src/gear/gear.ts", "../src/tfjs/constants.ts", "../src/gear/ssrnet-age.ts", "../src/gear/ssrnet-gender.ts", "../src/face/antispoof.ts", "../src/face/facemeshcoords.ts", "../src/face/facemeshutil.ts", "../src/face/blazeface.ts", "../src/body/blazeposecoords.ts", "../src/body/blazeposedetector.ts", "../src/util/box.ts", "../src/body/blazepose.ts", "../src/object/labels.ts", "../src/object/centernet.ts", "../src/body/efficientposecoords.ts", "../src/body/efficientpose.ts", "../src/gear/emotion.ts", "../src/face/mobilefacenet.ts", "../src/face/iris.ts", "../src/face/constants.ts", "../src/face/attention.ts", "../src/face/facemesh.ts", "../src/face/faceres.ts", "../src/hand/handposeutil.ts", "../src/hand/handposeanchors.ts", "../src/hand/handposedetector.ts", "../src/hand/handposepipeline.ts", "../src/hand/fingerdef.ts", "../src/hand/fingergesture.ts", "../src/hand/fingerpose.ts", "../src/hand/handpose.ts", "../src/hand/handtrack.ts", "../src/face/liveness.ts", "../src/body/movenetcoords.ts", "../src/body/movenetfix.ts", "../src/body/movenet.ts", "../src/object/nanodet.ts", "../src/body/posenetutils.ts", "../src/body/posenet.ts", "../src/segmentation/segmentation.ts", "../src/tfjs/humangl.ts", "../src/tfjs/backend.ts", "../src/draw/draw.ts", "../src/draw/primitives.ts", "../src/draw/options.ts", "../src/draw/face.ts", "../src/draw/body.ts", "../src/draw/hand.ts", "../src/draw/object.ts", "../src/draw/gesture.ts", "../src/face/mask.ts", "../src/face/angles.ts", "../src/face/face.ts", "../src/gesture/gesture.ts", "../src/util/interpolate.ts", "../src/face/match.ts", "../src/util/persons.ts", "../src/sample.ts", "../src/warmup.ts", "../src/human.ts"], - "sourcesContent": ["import type { Config } from '../exports';\n\n/**\n * Simple helper functions used accross codebase\n */\n\n// helper function: wrapper around console output\nexport function log(...msg): void {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`modelpath error: expecting json file: ${path}`);\n return path;\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: checks current config validity\nexport function validate(defaults: Partial, config: Partial, parent = 'config', msgs: Array<{ reason: string, where: string, expected?: string }> = []) {\n for (const key of Object.keys(config)) {\n if (typeof config[key] === 'object') {\n validate(defaults[key], config[key], key, msgs);\n } else {\n const defined = defaults && (typeof defaults[key] !== 'undefined');\n if (!defined) msgs.push({ reason: 'unknown property', where: `${parent}.${key} = ${config[key]}` });\n const same = defaults && typeof defaults[key] === typeof config[key];\n if (defined && !same) msgs.push({ reason: 'property type mismatch', where: `${parent}.${key} = ${config[key]}`, expected: typeof defaults[key] });\n }\n // ok = ok && defined && same;\n }\n if (config.debug && parent === 'config' && msgs.length > 0) log('invalid configuration', msgs);\n return msgs;\n}\n\n// helper function: perform deep merge of multiple objects so it allows full inheritance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n\n// helper function: return min and max from input array\nexport const minmax = (data: Array) => data.reduce((acc: Array, val) => {\n acc[0] = (acc[0] === undefined || val < acc[0]) ? val : acc[0];\n acc[1] = (acc[1] === undefined || val > acc[1]) ? val : acc[1];\n return acc;\n}, []);\n\n// helper function: async wait\nexport async function wait(time: number) {\n const waiting = new Promise((resolve) => { setTimeout(() => resolve(true), time); });\n await waiting;\n}\n", "/* eslint-disable indent */\n/* eslint-disable no-multi-spaces */\n\n/** Generic config type inherited by all module types */\nexport interface GenericConfig {\n /** is module enabled? */\n enabled: boolean,\n /** path to model json file (relative to `modelBasePath` */\n modelPath: string,\n /** how many max frames to go without re-running model if cached results are acceptable\n * for two-phase models such as face and hand caching applies to bounding boxes detection only */\n skipFrames: number,\n /** how many max milliseconds to go without re-running model if cached results are acceptable\n * for two-phase models such as face and hand caching applies to bounding boxes detection only */\n skipTime: number,\n}\n\n/** Detector part of face configuration */\nexport interface FaceDetectorConfig extends GenericConfig {\n /** is face rotation correction performed after detecting face?\n * used to correctly analyze faces under high angles\n */\n rotation: boolean,\n /** maximum number of detected faces */\n maxDetected: number,\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected faces before one is discarded */\n iouThreshold: number,\n /** should child models perform on masked image of a face */\n mask: boolean,\n /** should face detection return processed and cropped face tensor that can with an external model for addtional processing?\n * if enabled it must be manually deallocated to avoid memory leak */\n return: boolean,\n}\n\n/** Mesh part of face configuration */\nexport interface FaceMeshConfig extends GenericConfig {\n /** Keep detected faces that cannot be verified using facemesh */\n keepInvalid: boolean\n}\n\n/** Iris part of face configuration */\nexport interface FaceIrisConfig extends GenericConfig {}\n\n/** Attention part of face configuration */\nexport interface FaceAttentionConfig extends GenericConfig {}\n\n/** Description or face embedding part of face configuration\n * - also used by age and gender detection\n */\nexport interface FaceDescriptionConfig extends GenericConfig {\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n}\n\n/** Emotion part of face configuration */\nexport interface FaceEmotionConfig extends GenericConfig {\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n}\n\n/** Anti-spoofing part of face configuration */\nexport interface FaceAntiSpoofConfig extends GenericConfig {}\n\n/** Liveness part of face configuration */\nexport interface FaceLivenessConfig extends GenericConfig {}\n\n/** Gear part of face configuration */\nexport interface FaceGearConfig extends GenericConfig {\n /** minimum confidence for a detected race before results are discarded */\n minConfidence: number,\n}\n\n/** Configures all face-specific options: face detection, mesh analysis, age, gender, emotion detection and face description */\nexport interface FaceConfig extends GenericConfig {\n detector: Partial,\n mesh: Partial,\n attention: Partial,\n iris: Partial,\n description: Partial,\n emotion: Partial,\n antispoof: Partial,\n liveness: Partial,\n gear: Partial,\n}\n\n/** Configures all body detection specific options */\nexport interface BodyConfig extends GenericConfig {\n /** maximum number of detected bodies */\n maxDetected: number,\n /** minimum confidence for a detected body before results are discarded */\n minConfidence: number,\n /* experimental\n /** experimental: detector used for body model before actual analysis\n detector?: {\n /** experimental: enable body detector before body landmarks\n enabled: boolean,\n /** experimental: path to optional body detector model json file\n modelPath: string,\n /** experimental: minimum confidence for a detected body before results are discarded\n minConfidence: number,\n /** experimental: minimum overlap between two detected bodies before one is discarded\n iouThreshold: number\n },\n */\n}\n\n/** Configures all hand detection specific options */\nexport interface HandConfig extends GenericConfig {\n /** should hand rotation correction be performed after hand detection? */\n rotation: boolean,\n /** minimum confidence for a detected hand before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected hands before one is discarded */\n iouThreshold: number,\n /** maximum number of detected hands */\n maxDetected: number,\n /** should hand landmarks be detected or just return detected hand box */\n landmarks: boolean,\n detector: {\n /** path to hand detector model json */\n modelPath?: string,\n },\n skeleton: {\n /** path to hand skeleton model json */\n modelPath?: string,\n },\n}\n\n/** Configures all object detection specific options */\nexport interface ObjectConfig extends GenericConfig {\n /** minimum confidence for a detected objects before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected objects before one is discarded */\n iouThreshold: number,\n /** maximum number of detected objects */\n maxDetected: number,\n}\n\n/** Configures all body segmentation module\n * removes background from input containing person\n * if segmentation is enabled it will run as preprocessing task before any other model\n * alternatively leave it disabled and use it on-demand using human.segmentation method which can\n * remove background or replace it with user-provided background\n*/\nexport interface SegmentationConfig extends GenericConfig {\n /** blur segmentation output by pixels for more realistic image */\n blur: number,\n}\n\n/** Run input through image filters before inference\n * - available only in Browser environments\n * - image filters run with near-zero latency as they are executed on the GPU using WebGL\n*/\nexport interface FilterConfig {\n /** are image filters enabled? */\n enabled: boolean,\n /** perform image histogram equalization\n * - equalization is performed on input as a whole and detected face before its passed for further analysis\n */\n equalization: boolean,\n /** resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** return processed canvas imagedata in result */\n return: boolean,\n /** flip input as mirror image */\n flip: boolean,\n /** range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** image negative */\n negative: boolean,\n /** image sepia colors */\n sepia: boolean,\n /** image vintage colors */\n vintage: boolean,\n /** image kodachrome colors */\n kodachrome: boolean,\n /** image technicolor colors */\n technicolor: boolean,\n /** image polaroid camera effect */\n polaroid: boolean,\n /** range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n}\n\n/** Controlls gesture detection */\nexport interface GestureConfig {\n /** is gesture detection enabled? */\n enabled: boolean,\n}\n/** Possible TensorFlow backends */\nexport type BackendType = ['cpu', 'wasm', 'webgl', 'humangl', 'tensorflow', 'webgpu'];\n\n/** Possible values for `human.warmup` */\nexport type WarmupType = ['' | 'none' | 'face' | 'full' | 'body'];\n\n/**\n * Configuration interface definition for **Human** library\n * Contains all configurable parameters\n * Defaults: [config](https://github.com/vladmandic/human/blob/main/src/config.ts#L262)\n */\nexport interface Config {\n /** Backend used for TFJS operations\n * valid build-in backends are:\n * - Browser: `cpu`, `wasm`, `webgl`, `humangl`, `webgpu`\n * - NodeJS: `cpu`, `wasm`, `tensorflow`\n * default: `humangl` for browser and `tensorflow` for nodejs\n */\n backend: '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow' | 'webgpu',\n\n /** Path to *.wasm files if backend is set to `wasm`\n *\n * default: auto-detects to link to CDN `jsdelivr` when running in browser\n */\n wasmPath: string,\n\n /** Force WASM loader to use platform fetch\n *\n * default: auto-detects to link to CDN `jsdelivr` when running in browser\n */\n wasmPlatformFetch: boolean,\n\n /** Print debug statements to console\n *\n * default: `true`\n */\n debug: boolean,\n\n /** Perform model loading and inference concurrently or sequentially\n *\n * default: `true`\n */\n async: boolean,\n\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - used by `webgl`, `humangl` and `webgpu` backends\n *\n * default: `full`\n */\n warmup: '' | 'none' | 'face' | 'full' | 'body',\n\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are relative to this path\n *\n * default: `../models/` for browsers and `file://models/` for nodejs\n */\n modelBasePath: string,\n\n /** Cache models in IndexDB on first sucessfull load\n * default: true if indexdb is available (browsers), false if its not (nodejs)\n */\n cacheModels: boolean,\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n *\n * default: 0.7\n */\n cacheSensitivity: number;\n\n /** Perform immediate garbage collection on deallocated tensors instead of caching them */\n deallocate: boolean;\n\n /** Internal Variable */\n skipAllowed: boolean;\n\n /** Filter config {@link FilterConfig} */\n filter: Partial,\n\n /** Gesture config {@link GestureConfig} */\n gesture: Partial;\n\n /** Face config {@link FaceConfig} */\n face: Partial,\n\n /** Body config {@link BodyConfig} */\n body: Partial,\n\n /** Hand config {@link HandConfig} */\n hand: Partial,\n\n /** Object config {@link ObjectConfig} */\n object: Partial,\n\n /** Segmentation config {@link SegmentationConfig} */\n segmentation: Partial,\n}\n\n/** - [See all default Config values...](https://github.com/vladmandic/human/blob/main/src/config.ts#L262) */\nconst config: Config = {\n backend: '',\n modelBasePath: '',\n cacheModels: true,\n wasmPath: '',\n wasmPlatformFetch: false,\n debug: false,\n async: true,\n warmup: 'full',\n cacheSensitivity: 0.70,\n skipAllowed: false,\n deallocate: false,\n filter: {\n enabled: true,\n equalization: false,\n width: 0,\n height: 0,\n flip: false,\n return: true,\n brightness: 0,\n contrast: 0,\n sharpness: 0,\n blur: 0,\n saturation: 0,\n hue: 0,\n negative: false,\n sepia: false,\n vintage: false,\n kodachrome: false,\n technicolor: false,\n polaroid: false,\n pixelate: 0,\n },\n gesture: {\n enabled: true,\n },\n face: {\n enabled: true,\n detector: {\n modelPath: 'blazeface.json',\n rotation: true,\n maxDetected: 1,\n skipFrames: 99,\n skipTime: 2500,\n minConfidence: 0.2,\n iouThreshold: 0.1,\n mask: false,\n return: false,\n },\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json',\n keepInvalid: false,\n },\n attention: {\n enabled: false,\n modelPath: 'facemesh-attention.json',\n },\n iris: {\n enabled: true,\n modelPath: 'iris.json',\n },\n emotion: {\n enabled: true,\n minConfidence: 0.1,\n skipFrames: 99,\n skipTime: 1500,\n modelPath: 'emotion.json',\n },\n description: {\n enabled: true,\n modelPath: 'faceres.json',\n skipFrames: 99,\n skipTime: 3000,\n minConfidence: 0.1,\n },\n antispoof: {\n enabled: false,\n skipFrames: 99,\n skipTime: 4000,\n modelPath: 'antispoof.json',\n },\n liveness: {\n enabled: false,\n skipFrames: 99,\n skipTime: 4000,\n modelPath: 'liveness.json',\n },\n },\n body: {\n enabled: true,\n modelPath: 'movenet-lightning.json',\n maxDetected: -1,\n minConfidence: 0.3,\n skipFrames: 1,\n skipTime: 200,\n },\n hand: {\n enabled: true,\n rotation: true,\n skipFrames: 99,\n skipTime: 1000,\n minConfidence: 0.50,\n iouThreshold: 0.2,\n maxDetected: -1,\n landmarks: true,\n detector: {\n modelPath: 'handtrack.json',\n },\n skeleton: {\n modelPath: 'handlandmark-full.json',\n },\n },\n object: {\n enabled: false,\n modelPath: 'mb3-centernet.json',\n minConfidence: 0.2,\n iouThreshold: 0.4,\n maxDetected: 10,\n skipFrames: 99,\n skipTime: 2000,\n },\n segmentation: {\n enabled: false,\n modelPath: 'selfie.json',\n blur: 8,\n },\n};\n\nexport { config as defaults };\n", "/*\n Human\n homepage: \n author: '\n*/\n\nexport*from\"@tensorflow/tfjs/dist/index.js\";export*from\"@tensorflow/tfjs-backend-webgl/dist/index.js\";var r=\"3.18.0\",e=\"3.18.0\",a=\"3.18.0\",o=\"3.18.0\",t=\"3.18.0\",s=\"3.18.0\",f=\"3.18.0\",v={tfjs:r,\"tfjs-core\":e,\"tfjs-data\":a,\"tfjs-layers\":o,\"tfjs-converter\":t,\"tfjs-backend-webgl\":s,\"tfjs-backend-wasm\":f};import{Tensor as d}from\"@tensorflow/tfjs/dist/index.js\";import{GraphModel as b}from\"@tensorflow/tfjs-converter/dist/index\";export{b as GraphModel,d as Tensor,v as version};\n", "export const vertexIdentity = `\n precision highp float;\n attribute vec2 pos;\n attribute vec2 uv;\n varying vec2 vUv;\n uniform float flipY;\n void main(void) {\n vUv = uv;\n gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);\n }\n`;\n\nexport const fragmentIdentity = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n void main(void) {\n gl_FragColor = texture2D(texture, vUv);\n }\n`;\n\nexport const colorMatrixWithAlpha = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform float m[20];\n void main(void) {\n vec4 c = texture2D(texture, vUv);\n gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];\n gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];\n gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];\n gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];\n }\n`;\n\nexport const colorMatrixWithoutAlpha = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform float m[20];\n void main(void) {\n vec4 c = texture2D(texture, vUv);\n gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];\n gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];\n gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];\n gl_FragColor.a = c.a;\n }\n`;\n\nexport const pixelate = `\n precision highp float;\n varying vec2 vUv;\n uniform vec2 size;\n uniform sampler2D texture;\n vec2 pixelate(vec2 coord, vec2 size) {\n return floor( coord / size ) * size;\n }\n void main(void) {\n gl_FragColor = vec4(0.0);\n vec2 coord = pixelate(vUv, size);\n gl_FragColor += texture2D(texture, coord);\n }\n`;\n\nexport const blur = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform vec2 px;\n void main(void) {\n gl_FragColor = vec4(0.0);\n gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;\n gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;\n gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;\n gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;\n gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;\n gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;\n gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;\n gl_FragColor += texture2D(texture, vUv )*0.159576912161;\n gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;\n gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;\n gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;\n gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;\n gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;\n gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;\n gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;\n }\n`;\n\nexport const convolution = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform vec2 px;\n uniform float m[9];\n void main(void) {\n vec4 c11 = texture2D(texture, vUv - px); // top left\n vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center\n vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right\n vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left\n vec4 c22 = texture2D(texture, vUv); // mid center\n vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right\n vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left\n vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center\n vec4 c33 = texture2D(texture, vUv + px ); // bottom right\n gl_FragColor = \n c11 * m[0] + c12 * m[1] + c22 * m[2] +\n c21 * m[3] + c22 * m[4] + c23 * m[5] +\n c31 * m[6] + c32 * m[7] + c33 * m[8];\n gl_FragColor.a = c22.a;\n }\n`;\n", "/**\n * Image Filters in WebGL algoritm implementation\n * Based on: [WebGLImageFilter](https://github.com/phoboslab/WebGLImageFilter)\n */\n\nimport * as shaders from './imagefxshaders';\nimport { canvas } from './image';\nimport { log } from '../util/util';\n\nconst collect = (source, prefix, collection) => {\n const r = new RegExp('\\\\b' + prefix + ' \\\\w+ (\\\\w+)', 'ig');\n source.replace(r, (match, name) => {\n collection[name] = 0;\n return match;\n });\n};\n\nclass GLProgram {\n uniform = {};\n attribute = {};\n gl: WebGLRenderingContext;\n id: WebGLProgram;\n\n constructor(gl, vertexSource, fragmentSource) {\n this.gl = gl;\n const vertexShader = this.compile(vertexSource, this.gl.VERTEX_SHADER);\n const fragmentShader = this.compile(fragmentSource, this.gl.FRAGMENT_SHADER);\n this.id = this.gl.createProgram() as WebGLProgram;\n if (!vertexShader || !fragmentShader) return;\n if (!this.id) {\n log('filter: could not create webgl program');\n return;\n }\n this.gl.attachShader(this.id, vertexShader);\n this.gl.attachShader(this.id, fragmentShader);\n this.gl.linkProgram(this.id);\n if (!this.gl.getProgramParameter(this.id, this.gl.LINK_STATUS)) {\n log(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);\n return;\n }\n this.gl.useProgram(this.id);\n collect(vertexSource, 'attribute', this.attribute); // Collect attributes\n for (const a in this.attribute) this.attribute[a] = this.gl.getAttribLocation(this.id, a);\n collect(vertexSource, 'uniform', this.uniform); // Collect uniforms\n collect(fragmentSource, 'uniform', this.uniform);\n for (const u in this.uniform) this.uniform[u] = this.gl.getUniformLocation(this.id, u);\n }\n\n compile = (source, type): WebGLShader | null => {\n const shader = this.gl.createShader(type) as WebGLShader;\n if (!shader) {\n log('filter: could not create shader');\n return null;\n }\n this.gl.shaderSource(shader, source);\n this.gl.compileShader(shader);\n if (!this.gl.getShaderParameter(shader, this.gl.COMPILE_STATUS)) {\n log(`filter: gl compile failed: ${this.gl.getShaderInfoLog(shader)}`);\n return null;\n }\n return shader;\n };\n}\n\n// function that is instantiated as class so it has private this members\n/**\n * @class GLImageFilter\n * @property {function} reset reset current filter chain\n * @property {function} add add specified filter to filter chain\n * @property {function} apply execute filter chain and draw result\n * @property {function} draw just draw input to result\n */\n\nexport function GLImageFilter() {\n let drawCount = 0;\n let sourceTexture: WebGLTexture | null = null;\n let lastInChain = false;\n let currentFramebufferIndex = -1;\n let tempFramebuffers: [null, null] | [{ fbo: WebGLFramebuffer | null, texture: WebGLTexture | null }] = [null, null];\n let filterChain: Record[] = [];\n let vertexBuffer: WebGLBuffer | null = null;\n let currentProgram: GLProgram | null = null;\n const fxcanvas = canvas(100, 100);\n const shaderProgramCache = { }; // key is the shader program source, value is the compiled program\n const DRAW = { INTERMEDIATE: 1 };\n const gl = fxcanvas.getContext('webgl') as WebGLRenderingContext;\n if (!gl) {\n log('filter: cannot get webgl context');\n return;\n }\n // @ts-ignore used for sanity checks outside of imagefx\n this.gl = gl;\n\n function resize(width, height) {\n if (width === fxcanvas.width && height === fxcanvas.height) return; // Same width/height? Nothing to do here\n fxcanvas.width = width;\n fxcanvas.height = height;\n if (!vertexBuffer) { // Create the context if we don't have it yet\n const vertices = new Float32Array([-1, -1, 0, 1, 1, -1, 1, 1, -1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 1, 1, 1, 1, 1, 0]); // Create the vertex buffer for the two triangles [x, y, u, v] * 6\n vertexBuffer = gl.createBuffer();\n gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);\n gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);\n gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);\n }\n gl.viewport(0, 0, fxcanvas.width, fxcanvas.height);\n tempFramebuffers = [null, null]; // Delete old temp framebuffers\n }\n\n function createFramebufferTexture(width, height) {\n const fbo = gl.createFramebuffer() as WebGLFramebuffer;\n gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);\n const renderbuffer = gl.createRenderbuffer();\n gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);\n const texture = gl.createTexture() as WebGLTexture;\n gl.bindTexture(gl.TEXTURE_2D, texture);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n return { fbo, texture };\n }\n\n function getTempFramebuffer(index): { fbo: WebGLFramebuffer | null, texture: WebGLTexture | null } {\n tempFramebuffers[index] = tempFramebuffers[index] || createFramebufferTexture(fxcanvas.width, fxcanvas.height);\n return tempFramebuffers[index] as { fbo: WebGLFramebuffer, texture: WebGLTexture };\n }\n\n function draw(flags = 0) {\n if (!currentProgram) return;\n let source: WebGLTexture | null = null;\n let target: WebGLFramebuffer | null = null;\n let flipY = false;\n if (drawCount === 0) source = sourceTexture; // First draw call - use the source texture\n else source = getTempFramebuffer(currentFramebufferIndex).texture || null; // All following draw calls use the temp buffer last drawn to\n drawCount++;\n if (lastInChain && !(flags & DRAW.INTERMEDIATE)) { // Last filter in our chain - draw directly to the WebGL Canvas. We may also have to flip the image vertically now\n target = null;\n flipY = drawCount % 2 === 0;\n } else {\n currentFramebufferIndex = (currentFramebufferIndex + 1) % 2;\n target = getTempFramebuffer(currentFramebufferIndex).fbo || null; // Intermediate draw call - get a temp buffer to draw to\n }\n gl.bindTexture(gl.TEXTURE_2D, source); // Bind the source and target and draw the two triangles\n gl.bindFramebuffer(gl.FRAMEBUFFER, target);\n gl.uniform1f(currentProgram.uniform['flipY'], (flipY ? -1 : 1));\n gl.drawArrays(gl.TRIANGLES, 0, 6);\n }\n\n function compileShader(fragmentSource): GLProgram | null {\n if (shaderProgramCache[fragmentSource]) {\n currentProgram = shaderProgramCache[fragmentSource];\n gl.useProgram((currentProgram ? currentProgram.id : null) || null);\n return currentProgram as GLProgram;\n }\n currentProgram = new GLProgram(gl, shaders.vertexIdentity, fragmentSource);\n if (!currentProgram) {\n log('filter: could not get webgl program');\n return null;\n }\n const floatSize = Float32Array.BYTES_PER_ELEMENT;\n const vertSize = 4 * floatSize;\n gl.enableVertexAttribArray(currentProgram.attribute['pos']);\n gl.vertexAttribPointer(currentProgram.attribute['pos'], 2, gl.FLOAT, false, vertSize, 0 * floatSize);\n gl.enableVertexAttribArray(currentProgram.attribute['uv']);\n gl.vertexAttribPointer(currentProgram.attribute['uv'], 2, gl.FLOAT, false, vertSize, 2 * floatSize);\n shaderProgramCache[fragmentSource] = currentProgram;\n return currentProgram as GLProgram;\n }\n\n const filter = {\n colorMatrix: (matrix) => { // general color matrix filter\n const m = new Float32Array(matrix);\n m[4] /= 255;\n m[9] /= 255;\n m[14] /= 255;\n m[19] /= 255;\n const shader = (m[18] === 1 && m[3] === 0 && m[8] === 0 && m[13] === 0 && m[15] === 0 && m[16] === 0 && m[17] === 0 && m[19] === 0) // Can we ignore the alpha value? Makes things a bit faster.\n ? shaders.colorMatrixWithoutAlpha\n : shaders.colorMatrixWithAlpha;\n const program = compileShader(shader);\n if (!program) return;\n gl.uniform1fv(program.uniform['m'], m);\n draw();\n },\n\n brightness: (brightness) => {\n const b = (brightness || 0) + 1;\n filter.colorMatrix([\n b, 0, 0, 0, 0,\n 0, b, 0, 0, 0,\n 0, 0, b, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n saturation: (amount) => {\n const x = (amount || 0) * 2 / 3 + 1;\n const y = ((x - 1) * -0.5);\n filter.colorMatrix([\n x, y, y, 0, 0,\n y, x, y, 0, 0,\n y, y, x, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n desaturate: () => {\n filter.saturation(-1);\n },\n\n contrast: (amount) => {\n const v = (amount || 0) + 1;\n const o = -128 * (v - 1);\n filter.colorMatrix([\n v, 0, 0, 0, o,\n 0, v, 0, 0, o,\n 0, 0, v, 0, o,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n negative: () => {\n filter.contrast(-2);\n },\n\n hue: (rotation) => {\n rotation = (rotation || 0) / 180 * Math.PI;\n const cos = Math.cos(rotation);\n const sin = Math.sin(rotation);\n const lumR = 0.213;\n const lumG = 0.715;\n const lumB = 0.072;\n filter.colorMatrix([\n lumR + cos * (1 - lumR) + sin * (-lumR), lumG + cos * (-lumG) + sin * (-lumG), lumB + cos * (-lumB) + sin * (1 - lumB), 0, 0,\n lumR + cos * (-lumR) + sin * (0.143), lumG + cos * (1 - lumG) + sin * (0.140), lumB + cos * (-lumB) + sin * (-0.283), 0, 0,\n lumR + cos * (-lumR) + sin * (-(1 - lumR)), lumG + cos * (-lumG) + sin * (lumG), lumB + cos * (1 - lumB) + sin * (lumB), 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n desaturateLuminance: () => {\n filter.colorMatrix([\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n sepia: () => {\n filter.colorMatrix([\n 0.393, 0.7689999, 0.18899999, 0, 0,\n 0.349, 0.6859999, 0.16799999, 0, 0,\n 0.272, 0.5339999, 0.13099999, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n brownie: () => {\n filter.colorMatrix([\n 0.5997023498159715, 0.34553243048391263, -0.2708298674538042, 0, 47.43192855600873,\n -0.037703249837783157, 0.8609577587992641, 0.15059552388459913, 0, -36.96841498319127,\n 0.24113635128153335, -0.07441037908422492, 0.44972182064877153, 0, -7.562075277591283,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n vintagePinhole: () => {\n filter.colorMatrix([\n 0.6279345635605994, 0.3202183420819367, -0.03965408211312453, 0, 9.651285835294123,\n 0.02578397704808868, 0.6441188644374771, 0.03259127616149294, 0, 7.462829176470591,\n 0.0466055556782719, -0.0851232987247891, 0.5241648018700465, 0, 5.159190588235296,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n kodachrome: () => {\n filter.colorMatrix([\n 1.1285582396593525, -0.3967382283601348, -0.03992559172921793, 0, 63.72958762196502,\n -0.16404339962244616, 1.0835251566291304, -0.05498805115633132, 0, 24.732407896706203,\n -0.16786010706155763, -0.5603416277695248, 1.6014850761964943, 0, 35.62982807460946,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n technicolor: () => {\n filter.colorMatrix([\n 1.9125277891456083, -0.8545344976951645, -0.09155508482755585, 0, 11.793603434377337,\n -0.3087833385928097, 1.7658908555458428, -0.10601743074722245, 0, -70.35205161461398,\n -0.231103377548616, -0.7501899197440212, 1.847597816108189, 0, 30.950940869491138,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n polaroid: () => {\n filter.colorMatrix([\n 1.438, -0.062, -0.062, 0, 0,\n -0.122, 1.378, -0.122, 0, 0,\n -0.016, -0.016, 1.483, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n shiftToBGR: () => {\n filter.colorMatrix([\n 0, 0, 1, 0, 0,\n 0, 1, 0, 0, 0,\n 1, 0, 0, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n convolution: (matrix) => { // general convolution Filter\n const m = new Float32Array(matrix);\n const pixelSizeX = 1 / fxcanvas.width;\n const pixelSizeY = 1 / fxcanvas.height;\n const program = compileShader(shaders.convolution);\n if (!program) return;\n gl.uniform1fv(program.uniform['m'], m);\n gl.uniform2f(program.uniform['px'], pixelSizeX, pixelSizeY);\n draw();\n },\n\n detectEdges: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n 0, 1, 0,\n 1, -4, 1,\n 0, 1, 0,\n ]);\n },\n\n sobelX: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n -1, 0, 1,\n -2, 0, 2,\n -1, 0, 1,\n ]);\n },\n\n sobelY: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n -1, -2, -1,\n 0, 0, 0,\n 1, 2, 1,\n ]);\n },\n\n sharpen: (amount) => {\n const a = amount || 1;\n // @ts-ignore this\n filter.convolution.call(this, [\n 0, -1 * a, 0,\n -1 * a, 1 + 4 * a, -1 * a,\n 0, -1 * a, 0,\n ]);\n },\n\n emboss: (size) => {\n const s = size || 1;\n // @ts-ignore this\n filter.convolution.call(this, [\n -2 * s, -1 * s, 0,\n -1 * s, 1, 1 * s,\n 0, 1 * s, 2 * s,\n ]);\n },\n\n blur: (size) => {\n const blurSizeX = (size / 7) / fxcanvas.width;\n const blurSizeY = (size / 7) / fxcanvas.height;\n const program = compileShader(shaders.blur);\n if (!program) return;\n // Vertical\n gl.uniform2f(program.uniform['px'], 0, blurSizeY);\n draw(DRAW.INTERMEDIATE);\n // Horizontal\n gl.uniform2f(program.uniform['px'], blurSizeX, 0);\n draw();\n },\n\n pixelate: (size) => {\n const blurSizeX = (size) / fxcanvas.width;\n const blurSizeY = (size) / fxcanvas.height;\n const program = compileShader(shaders.pixelate);\n if (!program) return;\n gl.uniform2f(program.uniform['size'], blurSizeX, blurSizeY);\n draw();\n },\n };\n\n // @ts-ignore this\n this.add = function (name) {\n // eslint-disable-next-line prefer-rest-params\n const args = Array.prototype.slice.call(arguments, 1);\n const func = filter[name];\n filterChain.push({ func, args });\n };\n\n // @ts-ignore this\n this.reset = function () {\n filterChain = [];\n };\n\n // @ts-ignore this\n this.get = function () {\n return filterChain;\n };\n\n // @ts-ignore this\n this.apply = function (image) {\n resize(image.width, image.height);\n drawCount = 0;\n if (!sourceTexture) sourceTexture = gl.createTexture(); // Create the texture for the input image if we haven't yet\n gl.bindTexture(gl.TEXTURE_2D, sourceTexture);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);\n for (let i = 0; i < filterChain.length; i++) {\n lastInChain = (i === filterChain.length - 1);\n const f = filterChain[i];\n // @ts-ignore function assigment\n f.func.apply(this, f.args || []);\n }\n return fxcanvas;\n };\n\n // @ts-ignore this\n this.draw = function (image) {\n this.add('brightness', 0);\n return this.apply(image);\n };\n}\n", "/**\n * Image enhancements\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../exports';\n\nexport async function histogramEqualization(inputImage: Tensor): Promise {\n // const maxValue = 254; // using 255 results in values slightly larger than 1 due to math rounding errors\n const squeeze = inputImage.shape.length === 4 ? tf.squeeze(inputImage) : inputImage;\n const channels = tf.split(squeeze, 3, 2);\n const min: Tensor[] = [tf.min(channels[0]), tf.min(channels[1]), tf.min(channels[2])];\n const max: Tensor[] = [tf.max(channels[0]), tf.max(channels[1]), tf.max(channels[2])];\n const absMax = await Promise.all(max.map((channel) => channel.data()));\n const maxValue = 0.99 * Math.max(absMax[0][0], absMax[1][0], absMax[2][0]);\n const sub = [tf.sub(channels[0], min[0]), tf.sub(channels[1], min[1]), tf.sub(channels[2], min[2])];\n const range = [tf.sub(max[0], min[0]), tf.sub(max[1], min[1]), tf.sub(max[2], min[2])];\n const fact = [tf.div(maxValue, range[0]), tf.div(maxValue, range[1]), tf.div(maxValue, range[2])];\n const enh = [tf.mul(sub[0], fact[0]), tf.mul(sub[1], fact[1]), tf.mul(sub[2], fact[2])];\n const rgb = tf.stack([enh[0], enh[1], enh[2]], 2);\n const reshape = tf.reshape(rgb, [1, squeeze.shape[0], squeeze.shape[1], 3]);\n tf.dispose([...channels, ...min, ...max, ...sub, ...range, ...fact, ...enh, rgb, squeeze]);\n return reshape; // output shape is [1, height, width, 3]\n}\n", "/**\n * Image Processing algorithm implementation\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as fxImage from './imagefx';\nimport type { Input, AnyCanvas, Tensor, Config } from '../exports';\nimport { env } from '../util/env';\nimport { log } from '../util/util';\nimport * as enhance from './enhance';\n\nconst maxSize = 3840;\n// internal temp canvases\nlet inCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\nlet outCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\nlet tmpCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\n// @ts-ignore // imagefx is js module that should be converted to a class\nlet fx: fxImage.GLImageFilter | null; // instance of imagefx\n\nconst last: { inputSum: number, cacheDiff: number, sumMethod: number, inputTensor: undefined | Tensor } = {\n inputSum: 0,\n cacheDiff: 1,\n sumMethod: 0,\n inputTensor: undefined,\n};\n\nexport function canvas(width: number, height: number): AnyCanvas {\n let c;\n if (env.browser) { // browser defines canvas object\n if (env.worker) { // if runing in web worker use OffscreenCanvas\n if (typeof OffscreenCanvas === 'undefined') throw new Error('canvas error: attempted to run in web worker but OffscreenCanvas is not supported');\n c = new OffscreenCanvas(width, height);\n } else { // otherwise use DOM canvas\n if (typeof document === 'undefined') throw new Error('canvas error: attempted to run in browser but DOM is not defined');\n c = document.createElement('canvas');\n c.width = width;\n c.height = height;\n }\n } else { // if not running in browser, there is no \"default\" canvas object, so we need monkey patch or fail\n // @ts-ignore // env.canvas is an external monkey-patch\n if (typeof env.Canvas !== 'undefined') c = new env.Canvas(width, height);\n else if (typeof globalThis.Canvas !== 'undefined') c = new globalThis.Canvas(width, height);\n // else throw new Error('canvas error: attempted to use canvas in nodejs without canvas support installed');\n }\n return c;\n}\n\n// helper function to copy canvas from input to output\nexport function copy(input: AnyCanvas, output?: AnyCanvas) {\n const outputCanvas = output || canvas(input.width, input.height);\n const ctx = outputCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctx.drawImage(input, 0, 0);\n return outputCanvas;\n}\n\n// process input image and return tensor\n// input can be tensor, imagedata, htmlimageelement, htmlvideoelement\n// input is resized and run through imagefx filter\nexport async function process(input: Input, config: Config, getTensor: boolean = true): Promise<{ tensor: Tensor | null, canvas: AnyCanvas | null }> {\n if (!input) {\n // throw new Error('input is missing');\n if (config.debug) log('input error: input is missing');\n return { tensor: null, canvas: null }; // video may become temporarily unavailable due to onresize\n }\n // sanity checks since different browsers do not implement all dom elements\n if (\n !(input instanceof tf.Tensor)\n && !(typeof Image !== 'undefined' && input instanceof Image)\n && !(typeof env.Canvas !== 'undefined' && input instanceof env.Canvas)\n && !(typeof globalThis.Canvas !== 'undefined' && input instanceof globalThis.Canvas)\n && !(typeof ImageData !== 'undefined' && input instanceof ImageData)\n && !(typeof ImageBitmap !== 'undefined' && input instanceof ImageBitmap)\n && !(typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n && !(typeof HTMLMediaElement !== 'undefined' && input instanceof HTMLMediaElement)\n && !(typeof HTMLVideoElement !== 'undefined' && input instanceof HTMLVideoElement)\n && !(typeof HTMLCanvasElement !== 'undefined' && input instanceof HTMLCanvasElement)\n && !(typeof OffscreenCanvas !== 'undefined' && input instanceof OffscreenCanvas)\n ) {\n throw new Error('input error: type is not recognized');\n }\n if (input instanceof tf.Tensor) { // if input is tensor use as-is without filters but correct shape as needed\n let tensor: Tensor | null = null;\n if ((input as Tensor)['isDisposedInternal']) throw new Error('input error: attempted to use tensor but it is disposed');\n if (!(input as Tensor)['shape']) throw new Error('input error: attempted to use tensor without a shape');\n if ((input as Tensor).shape.length === 3) { // [height, width, 3 || 4]\n if ((input as Tensor).shape[2] === 3) { // [height, width, 3] so add batch\n tensor = tf.expandDims(input, 0);\n } else if ((input as Tensor).shape[2] === 4) { // [height, width, 4] so strip alpha and add batch\n const rgb = tf.slice3d(input, [0, 0, 0], [-1, -1, 3]);\n tensor = tf.expandDims(rgb, 0);\n tf.dispose(rgb);\n }\n } else if ((input as Tensor).shape.length === 4) { // [1, width, height, 3 || 4]\n if ((input as Tensor).shape[3] === 3) { // [1, width, height, 3] just clone\n tensor = tf.clone(input);\n } else if ((input as Tensor).shape[3] === 4) { // [1, width, height, 4] so strip alpha\n tensor = tf.slice4d(input, [0, 0, 0, 0], [-1, -1, -1, 3]);\n }\n }\n // at the end shape must be [1, height, width, 3]\n if (tensor == null || tensor.shape.length !== 4 || tensor.shape[0] !== 1 || tensor.shape[3] !== 3) throw new Error(`input error: attempted to use tensor with unrecognized shape: ${input['shape']}`);\n if ((tensor as Tensor).dtype === 'int32') {\n const cast = tf.cast(tensor, 'float32');\n tf.dispose(tensor);\n tensor = cast;\n }\n return { tensor, canvas: (config.filter.return ? outCanvas : null) };\n } else {\n // check if resizing will be needed\n if (typeof input['readyState'] !== 'undefined' && input['readyState'] <= 2) {\n if (config.debug) log('input stream is not ready');\n return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n }\n const originalWidth = input['naturalWidth'] || input['videoWidth'] || input['width'] || (input['shape'] && (input['shape'][1] > 0));\n const originalHeight = input['naturalHeight'] || input['videoHeight'] || input['height'] || (input['shape'] && (input['shape'][2] > 0));\n if (!originalWidth || !originalHeight) {\n if (config.debug) log('cannot determine input dimensions');\n return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n }\n let targetWidth = originalWidth;\n let targetHeight = originalHeight;\n if (targetWidth > maxSize) {\n targetWidth = maxSize;\n targetHeight = Math.trunc(targetWidth * originalHeight / originalWidth);\n }\n if (targetHeight > maxSize) {\n targetHeight = maxSize;\n targetWidth = Math.trunc(targetHeight * originalWidth / originalHeight);\n }\n\n // create our canvas and resize it if needed\n if ((config.filter.width || 0) > 0) targetWidth = config.filter.width;\n else if ((config.filter.height || 0) > 0) targetWidth = originalWidth * ((config.filter.height || 0) / originalHeight);\n if ((config.filter.height || 0) > 0) targetHeight = config.filter.height;\n else if ((config.filter.width || 0) > 0) targetHeight = originalHeight * ((config.filter.width || 0) / originalWidth);\n if (!targetWidth || !targetHeight) throw new Error('input error: cannot determine dimension');\n if (!inCanvas || (inCanvas?.width !== targetWidth) || (inCanvas?.height !== targetHeight)) inCanvas = canvas(targetWidth, targetHeight);\n\n // draw input to our canvas\n const inCtx = inCanvas.getContext('2d') as CanvasRenderingContext2D;\n if ((typeof ImageData !== 'undefined') && (input instanceof ImageData)) {\n inCtx.putImageData(input, 0, 0);\n } else {\n if (config.filter.flip && typeof inCtx.translate !== 'undefined') {\n inCtx.translate(originalWidth, 0);\n inCtx.scale(-1, 1);\n inCtx.drawImage(input as AnyCanvas, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n inCtx.setTransform(1, 0, 0, 1, 0, 0); // resets transforms to defaults\n } else {\n inCtx.drawImage(input as AnyCanvas, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n }\n }\n\n if (!outCanvas || (inCanvas.width !== outCanvas.width) || (inCanvas?.height !== outCanvas?.height)) outCanvas = canvas(inCanvas.width, inCanvas.height); // init output canvas\n\n // imagefx transforms using gl from input canvas to output canvas\n if (config.filter.enabled && env.webgl.supported) {\n if (!fx) fx = env.browser ? new fxImage.GLImageFilter() : null; // && (typeof document !== 'undefined')\n env.filter = !!fx;\n if (!fx || !fx.add) {\n if (config.debug) log('input process error: cannot initialize filters');\n env.webgl.supported = false;\n config.filter.enabled = false;\n copy(inCanvas, outCanvas); // filter failed to initialize\n // return { tensor: null, canvas: inCanvas };\n } else {\n fx.reset();\n if (config.filter.brightness !== 0) fx.add('brightness', config.filter.brightness);\n if (config.filter.contrast !== 0) fx.add('contrast', config.filter.contrast);\n if (config.filter.sharpness !== 0) fx.add('sharpen', config.filter.sharpness);\n if (config.filter.blur !== 0) fx.add('blur', config.filter.blur);\n if (config.filter.saturation !== 0) fx.add('saturation', config.filter.saturation);\n if (config.filter.hue !== 0) fx.add('hue', config.filter.hue);\n if (config.filter.negative) fx.add('negative');\n if (config.filter.sepia) fx.add('sepia');\n if (config.filter.vintage) fx.add('brownie');\n if (config.filter.sepia) fx.add('sepia');\n if (config.filter.kodachrome) fx.add('kodachrome');\n if (config.filter.technicolor) fx.add('technicolor');\n if (config.filter.polaroid) fx.add('polaroid');\n if (config.filter.pixelate !== 0) fx.add('pixelate', config.filter.pixelate);\n if (fx.get() > 0) outCanvas = fx.apply(inCanvas);\n else outCanvas = fx.draw(inCanvas);\n }\n } else {\n copy(inCanvas, outCanvas); // if no filters applied, output canvas is input canvas\n if (fx) fx = null;\n env.filter = !!fx;\n }\n\n if (!getTensor) return { tensor: null, canvas: outCanvas }; // just canvas was requested\n if (!outCanvas) throw new Error('canvas error: cannot create output');\n\n // create tensor from image unless input was a tensor already\n let pixels;\n let depth = 3;\n if ((typeof ImageData !== 'undefined' && input instanceof ImageData) || (input['data'] && input['width'] && input['height'])) { // if input is imagedata, just use it\n if (env.browser && tf.browser) {\n pixels = tf.browser ? tf.browser.fromPixels(input) : null;\n } else {\n depth = input['data'].length / input['height'] / input['width'];\n // const arr = Uint8Array.from(input['data']);\n const arr = new Uint8Array(input['data']['buffer']);\n pixels = tf.tensor(arr, [input['height'], input['width'], depth], 'int32');\n }\n } else {\n if (!tmpCanvas || (outCanvas.width !== tmpCanvas.width) || (outCanvas.height !== tmpCanvas.height)) tmpCanvas = canvas(outCanvas.width, outCanvas.height); // init output canvas\n if (tf.browser && env.browser) {\n if (config.backend === 'webgl' || config.backend === 'humangl' || config.backend === 'webgpu') {\n pixels = tf.browser.fromPixels(outCanvas); // safe to reuse since both backend and context are gl based\n } else {\n tmpCanvas = copy(outCanvas); // cannot use output canvas as it already has gl context so we do a silly one more canvas\n pixels = tf.browser.fromPixels(tmpCanvas);\n }\n } else {\n const tempCanvas = copy(outCanvas); // cannot use output canvas as it already has gl context so we do a silly one more canvas\n const tempCtx = tempCanvas.getContext('2d') as CanvasRenderingContext2D;\n const tempData = tempCtx.getImageData(0, 0, targetWidth, targetHeight);\n depth = tempData.data.length / targetWidth / targetHeight;\n const arr = new Uint8Array(tempData.data.buffer);\n pixels = tf.tensor(arr, [targetWidth, targetHeight, depth]);\n }\n }\n if (depth === 4) { // rgba to rgb\n const rgb = tf.slice3d(pixels, [0, 0, 0], [-1, -1, 3]); // strip alpha channel\n tf.dispose(pixels);\n pixels = rgb;\n }\n if (!pixels) throw new Error('input error: cannot create tensor');\n const casted = tf.cast(pixels, 'float32');\n const tensor = config.filter.equalization ? await enhance.histogramEqualization(casted) : tf.expandDims(casted, 0);\n tf.dispose([pixels, casted]);\n return { tensor, canvas: (config.filter.return ? outCanvas : null) };\n }\n}\n\n/*\nconst checksum = async (input: Tensor): Promise => { // use tf sum or js based sum loop depending on which is faster\n const resizeFact = 48;\n const reduced: Tensor = tf.image.resizeBilinear(input, [Math.trunc((input.shape[1] || 1) / resizeFact), Math.trunc((input.shape[2] || 1) / resizeFact)]);\n const tfSum = async (): Promise => {\n const sumT = tf.sum(reduced);\n const sum0 = await sumT.data();\n tf.dispose(sumT);\n return sum0[0];\n };\n const jsSum = async (): Promise => {\n const reducedData = await reduced.data(); // raw image rgb array\n let sum0 = 0;\n for (let i = 0; i < reducedData.length / 3; i++) sum0 += reducedData[3 * i + 2]; // look only at green value of each pixel\n return sum0;\n };\n if (last.sumMethod === 0) {\n const t0 = now();\n await jsSum();\n const t1 = now();\n await tfSum();\n const t2 = now();\n last.sumMethod = t1 - t0 < t2 - t1 ? 1 : 2;\n }\n const res = last.sumMethod === 1 ? await jsSum() : await tfSum();\n tf.dispose(reduced);\n return res;\n};\n*/\n\nexport async function skip(config: Partial, input: Tensor) {\n let skipFrame = false;\n if (config.cacheSensitivity === 0 || !input.shape || input.shape.length !== 4 || input.shape[1] > 2048 || input.shape[2] > 2048) return skipFrame; // cache disabled or input is invalid or too large for cache analysis\n\n /*\n const checkSum = await checksum(input);\n const diff = 100 * (Math.max(checkSum, last.inputSum) / Math.min(checkSum, last.inputSum) - 1);\n last.inputSum = checkSum;\n // if previous frame was skipped, skip this frame if changed more than cacheSensitivity\n // if previous frame was not skipped, then look for cacheSensitivity or difference larger than one in previous frame to avoid resetting cache in subsequent frames unnecessarily\n let skipFrame = diff < Math.max(config.cacheSensitivity, last.cacheDiff);\n // if difference is above 10x threshold, don't use last value to force reset cache for significant change of scenes or images\n last.cacheDiff = diff > 10 * config.cacheSensitivity ? 0 : diff;\n skipFrame = skipFrame && (last.cacheDiff > 0); // if no cached diff value then force no skip\n */\n\n if (!last.inputTensor) {\n last.inputTensor = tf.clone(input);\n } else if (last.inputTensor.shape[1] !== input.shape[1] || last.inputTensor.shape[2] !== input.shape[2]) { // input resolution changed\n tf.dispose(last.inputTensor);\n last.inputTensor = tf.clone(input);\n } else {\n const t: Record = {};\n t.diff = tf.sub(input, last.inputTensor);\n t.squared = tf.mul(t.diff, t.diff);\n t.sum = tf.sum(t.squared);\n const diffSum = await t.sum.data();\n const diffRelative = diffSum[0] / (input.shape[1] || 1) / (input.shape[2] || 1) / 255 / 3; // squared difference relative to input resolution and averaged per channel\n tf.dispose([last.inputTensor, t.diff, t.squared, t.sum]);\n last.inputTensor = tf.clone(input);\n skipFrame = diffRelative <= (config.cacheSensitivity || 0);\n }\n return skipFrame;\n}\n\nexport async function compare(config: Partial, input1: Tensor, input2: Tensor): Promise {\n const t: Record = {};\n if (!input1 || !input2 || input1.shape.length !== 4 || input1.shape.length !== input2.shape.length) {\n if (!config.debug) log('invalid input tensor or tensor shapes do not match:', input1.shape, input2.shape);\n return 0;\n }\n if (input1.shape[0] !== 1 || input2.shape[0] !== 1 || input1.shape[3] !== 3 || input2.shape[3] !== 3) {\n if (!config.debug) log('input tensors must be of shape [1, height, width, 3]:', input1.shape, input2.shape);\n return 0;\n }\n t.input1 = tf.clone(input1);\n t.input2 = (input1.shape[1] !== input2.shape[1] || input1.shape[2] !== input2.shape[2]) ? tf.image.resizeBilinear(input2, [input1.shape[1], input1.shape[2]]) : tf.clone(input2);\n t.diff = tf.sub(t.input1, t.input2);\n t.squared = tf.mul(t.diff, t.diff);\n t.sum = tf.sum(t.squared);\n const diffSum = await t.sum.data();\n const diffRelative = diffSum[0] / (input1.shape[1] || 1) / (input1.shape[2] || 1) / 255 / 3;\n tf.dispose([t.input1, t.input2, t.diff, t.squared, t.sum]);\n return diffRelative;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\n\n/** Env class that holds detected capabilities */\nexport class Env {\n /** Running in Browser */\n browser: boolean;\n /** Running in NodeJS */\n node: boolean;\n /** Running in WebWorker thread */\n worker: boolean;\n /** Detected platform */\n platform: string = '';\n /** Detected agent */\n agent: string = '';\n /** List of supported backends */\n backends: string[] = [];\n /** Has any work been performed so far */\n initial: boolean;\n /** Are image filters supported? */\n filter: boolean | undefined;\n /** TFJS instance details */\n tfjs: {\n version: undefined | string,\n };\n /** Is offscreenCanvas supported? */\n offscreen: undefined | boolean;\n /** Are performance counter instant values or additive */\n perfadd: boolean = false;\n /** WASM detected capabilities */\n wasm: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n simd: undefined | boolean,\n multithread: undefined | boolean,\n } = {\n supported: undefined,\n backend: undefined,\n simd: undefined,\n multithread: undefined,\n };\n /** WebGL detected capabilities */\n webgl: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n version: undefined | string,\n renderer: undefined | string,\n } = {\n supported: undefined,\n backend: undefined,\n version: undefined,\n renderer: undefined,\n };\n /** WebGPU detected capabilities */\n webgpu: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n adapter: undefined | string,\n } = {\n supported: undefined,\n backend: undefined,\n adapter: undefined,\n };\n /** CPU info */\n cpu: {\n model: undefined | string,\n flags: string[],\n } = {\n model: undefined,\n flags: [],\n };\n /** List of supported kernels for current backend */\n kernels: string[] = [];\n /** MonkeyPatch for Canvas */\n Canvas: undefined;\n /** MonkeyPatch for Image */\n Image: undefined;\n /** MonkeyPatch for ImageData */\n ImageData: undefined;\n\n constructor() {\n this.browser = typeof navigator !== 'undefined';\n this.node = (typeof process !== 'undefined') && (typeof process.versions !== 'undefined') && (typeof process.versions.node !== 'undefined');\n this.tfjs = { version: tf.version['tfjs-core'] };\n this.offscreen = typeof OffscreenCanvas !== 'undefined';\n this.initial = true;\n // @ts-ignore WorkerGlobalScope evaluated in browser only\n this.worker = this.browser && this.offscreen ? (typeof WorkerGlobalScope !== 'undefined') : undefined;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n this.platform = (platformMatch && platformMatch[0]) ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n this.agent = navigator.userAgent.replace(raw[0], '');\n if (this.platform[1]) this.agent = this.agent.replace(raw[1], '');\n this.agent = this.agent.replace(/ /g, ' ');\n // chrome offscreencanvas gpu memory leak\n /*\n const isChrome = env.agent.match(/Chrome\\/.[0-9]/g);\n const verChrome = isChrome && isChrome[0] ? isChrome[0].split('/')[1] : 0;\n if (verChrome > 92 && verChrome < 96) {\n log('disabling offscreenCanvas due to browser error:', isChrome ? isChrome[0] : 'unknown');\n this.offscreen = false;\n }\n */\n }\n } else if (typeof process !== 'undefined') {\n this.platform = `${process.platform} ${process.arch}`;\n this.agent = `NodeJS ${process.version}`;\n }\n }\n\n /** update backend information */\n async updateBackend() {\n // analyze backends\n this.backends = Object.keys(tf.engine().registryFactory);\n this.wasm.supported = typeof WebAssembly !== 'undefined';\n this.wasm.backend = this.backends.includes('wasm');\n if (this.wasm.supported && this.wasm.backend && tf.getBackend() === 'wasm') {\n this.wasm.simd = await tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n this.wasm.multithread = await tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n }\n const c = image.canvas(100, 100);\n const ctx = c ? c.getContext('webgl2') : undefined; // causes too many gl contexts\n // const ctx = typeof tf.backend().getGPGPUContext !== undefined ? tf.backend().getGPGPUContext : null;\n this.webgl.supported = typeof ctx !== 'undefined';\n this.webgl.backend = this.backends.includes('webgl');\n if (this.webgl.supported && this.webgl.backend && (tf.getBackend() === 'webgl' || tf.getBackend() === 'humangl')) {\n // @ts-ignore getGPGPUContext only exists on WebGL backend\n const gl = tf.backend().gpgpu !== 'undefined' ? await tf.backend().getGPGPUContext().gl : null;\n if (gl) {\n this.webgl.version = gl.getParameter(gl.VERSION);\n this.webgl.renderer = gl.getParameter(gl.RENDERER);\n }\n }\n // @ts-ignore navigator.gpu is only defined when webgpu is available in browser\n this.webgpu.supported = this.browser && typeof navigator['gpu'] !== 'undefined';\n this.webgpu.backend = this.backends.includes('webgpu');\n try {\n // @ts-ignore navigator.gpu is only defined when webgpu is available in browser\n if (this.webgpu.supported) this.webgpu.adapter = (await navigator['gpu'].requestAdapter()).name;\n } catch {\n this.webgpu.supported = false;\n }\n try {\n this.kernels = tf.getKernelsForBackend(tf.getBackend()).map((kernel) => kernel.kernelName.toLowerCase());\n } catch { /**/ }\n }\n\n /** update cpu information */\n async updateCPU() {\n const cpu = { model: '', flags: [] };\n if (this.node && this.platform.startsWith('linux')) {\n /*\n const fs = require('fs');\n try {\n const data = fs.readFileSync('/proc/cpuinfo').toString();\n for (const line of data.split('\\n')) {\n if (line.startsWith('model name')) cpu.model = line.match(/:(.*)/g)[0].replace(':', '').trim();\n if (line.startsWith('flags')) cpu.flags = line.match(/:(.*)/g)[0].replace(':', '').trim().split(' ').sort();\n }\n } catch { }\n */\n }\n if (!this['cpu']) Object.defineProperty(this, 'cpu', { value: cpu });\n else this['cpu'] = cpu;\n }\n}\n\nexport const env = new Env();\n", "import { log, join } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { GraphModel } from './types';\nimport type { Config } from '../config';\nimport * as modelsDefs from '../../models/models.json';\n\nconst options = {\n cacheModels: true,\n cacheSupported: true,\n verbose: true,\n debug: false,\n modelBasePath: '',\n};\n\nexport type ModelInfo = {\n name: string,\n inCache: boolean,\n sizeDesired: number,\n sizeFromManifest: number,\n sizeLoadedWeights: number,\n}\n\nexport const modelStats: Record = {};\n\nasync function httpHandler(url, init?): Promise {\n if (options.debug) log('load model fetch:', url, init);\n return fetch(url, init);\n}\n\nexport function setModelLoadOptions(config: Config) {\n options.cacheModels = config.cacheModels;\n options.verbose = config.debug;\n options.modelBasePath = config.modelBasePath;\n}\n\nexport async function loadModel(modelPath: string | undefined): Promise {\n let modelUrl = join(options.modelBasePath, modelPath || '');\n if (!modelUrl.toLowerCase().endsWith('.json')) modelUrl += '.json';\n const modelPathSegments = modelUrl.includes('/') ? modelUrl.split('/') : modelUrl.split('\\\\');\n const shortModelName = modelPathSegments[modelPathSegments.length - 1].replace('.json', '');\n const cachedModelName = 'indexeddb://' + shortModelName; // generate short model name for cache\n modelStats[shortModelName] = {\n name: shortModelName,\n sizeFromManifest: 0,\n sizeLoadedWeights: 0,\n sizeDesired: modelsDefs[shortModelName],\n inCache: false,\n };\n options.cacheSupported = (typeof window !== 'undefined') && (typeof window.localStorage !== 'undefined') && (typeof window.indexedDB !== 'undefined'); // check if running in browser and if indexedb is available\n let cachedModels = {};\n try {\n cachedModels = (options.cacheSupported && options.cacheModels) ? await tf.io.listModels() : {}; // list all models already in cache // this fails for webview although localStorage is defined\n } catch {\n options.cacheSupported = false;\n }\n modelStats[shortModelName].inCache = (options.cacheSupported && options.cacheModels) && Object.keys(cachedModels).includes(cachedModelName); // is model found in cache\n const tfLoadOptions = typeof fetch === 'undefined' ? {} : { fetchFunc: (url, init?) => httpHandler(url, init) };\n const model: GraphModel = new tf.GraphModel(modelStats[shortModelName].inCache ? cachedModelName : modelUrl, tfLoadOptions) as unknown as GraphModel; // create model prototype and decide if load from cache or from original modelurl\n let loaded = false;\n try {\n // @ts-ignore private function\n model.findIOHandler(); // decide how to actually load a model\n if (options.debug) log('model load handler:', model['handler']);\n // @ts-ignore private property\n const artifacts = await model.handler.load(); // load manifest\n modelStats[shortModelName].sizeFromManifest = artifacts?.weightData?.byteLength || 0;\n model.loadSync(artifacts); // load weights\n // @ts-ignore private property\n modelStats[shortModelName].sizeLoadedWeights = model?.artifacts?.weightData?.byteLength || 0;\n if (options.verbose) log('load model:', model['modelUrl'], { bytes: modelStats[shortModelName].sizeLoadedWeights }, options);\n loaded = true;\n } catch (err) {\n log('error loading model:', modelUrl, err);\n }\n if (loaded && options.cacheModels && options.cacheSupported && !modelStats[shortModelName].inCache) { // save model to cache\n try {\n const saveResult = await model.save(cachedModelName);\n log('model saved:', cachedModelName, saveResult);\n } catch (err) {\n log('error saving model:', modelUrl, err);\n }\n }\n return model;\n}\n", "/**\n * Loader and Validator for all models used by Human\n */\n\nimport { env } from './util/env';\nimport { log } from './util/util';\nimport * as gear from './gear/gear';\nimport * as ssrnetAge from './gear/ssrnet-age';\nimport * as ssrnetGender from './gear/ssrnet-gender';\nimport * as antispoof from './face/antispoof';\nimport * as blazeface from './face/blazeface';\nimport * as blazepose from './body/blazepose';\nimport * as centernet from './object/centernet';\nimport * as efficientpose from './body/efficientpose';\nimport * as emotion from './gear/emotion';\nimport * as mobilefacenet from './face/mobilefacenet';\nimport * as facemesh from './face/facemesh';\nimport * as faceres from './face/faceres';\nimport * as handpose from './hand/handpose';\nimport * as handtrack from './hand/handtrack';\nimport * as iris from './face/iris';\nimport * as liveness from './face/liveness';\nimport * as movenet from './body/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as posenet from './body/posenet';\nimport * as segmentation from './segmentation/segmentation';\nimport { modelStats, ModelInfo } from './tfjs/load';\nimport type { GraphModel } from './tfjs/types';\nimport type { Human } from './human';\n\n/** Instances of all possible TFJS Graph Models used by Human\n * - loaded as needed based on configuration\n * - initialized explictly with `human.load()` method\n * - initialized implicity on first call to `human.detect()`\n * - each model can be `null` if not loaded, instance of `GraphModel` if loaded or `Promise` if loading\n */\nexport class Models {\n ssrnetage: null | GraphModel | Promise = null;\n gear: null | GraphModel | Promise = null;\n blazeposedetect: null | GraphModel | Promise = null;\n blazepose: null | GraphModel | Promise = null;\n centernet: null | GraphModel | Promise = null;\n efficientpose: null | GraphModel | Promise = null;\n mobilefacenet: null | GraphModel | Promise = null;\n emotion: null | GraphModel | Promise = null;\n facedetect: null | GraphModel | Promise = null;\n faceiris: null | GraphModel | Promise = null;\n facemesh: null | GraphModel | Promise = null;\n faceres: null | GraphModel | Promise = null;\n ssrnetgender: null | GraphModel | Promise = null;\n handpose: null | GraphModel | Promise = null;\n handskeleton: null | GraphModel | Promise = null;\n handtrack: null | GraphModel | Promise = null;\n liveness: null | GraphModel | Promise = null;\n movenet: null | GraphModel | Promise = null;\n nanodet: null | GraphModel | Promise = null;\n posenet: null | GraphModel | Promise = null;\n segmentation: null | GraphModel | Promise = null;\n antispoof: null | GraphModel | Promise = null;\n}\n\nexport type ModelStats = {\n numLoadedModels: number,\n numEnabledModels: undefined,\n numDefinedModels: number,\n percentageLoaded: number,\n totalSizeFromManifest: number,\n totalSizeWeights: number,\n totalSizeLoading: number,\n totalSizeEnabled: undefined,\n modelStats: ModelInfo[],\n}\n\nexport const getModelStats = (instance: Human): ModelStats => {\n let totalSizeFromManifest = 0;\n let totalSizeWeights = 0;\n let totalSizeLoading = 0;\n for (const m of Object.values(modelStats)) {\n totalSizeFromManifest += m.sizeFromManifest;\n totalSizeWeights += m.sizeLoadedWeights;\n totalSizeLoading += m.sizeDesired;\n }\n const percentageLoaded = totalSizeLoading > 0 ? totalSizeWeights / totalSizeLoading : 0;\n return {\n numLoadedModels: Object.values(modelStats).length,\n numEnabledModels: undefined,\n numDefinedModels: Object.keys(instance.models).length,\n percentageLoaded,\n totalSizeFromManifest,\n totalSizeWeights,\n totalSizeLoading,\n totalSizeEnabled: undefined,\n modelStats: Object.values(modelStats),\n };\n};\n\nexport function reset(instance: Human): void {\n // if (instance.config.debug) log('resetting loaded models');\n for (const model of Object.keys(instance.models)) instance.models[model as keyof Models] = null;\n}\n\n/** Load method preloads all instance.configured models on-demand */\nexport async function load(instance: Human): Promise {\n if (env.initial) reset(instance);\n if (instance.config.hand.enabled) { // handpose model is a combo that must be loaded as a whole\n if (!instance.models.handpose && instance.config.hand.detector?.modelPath?.includes('handdetect')) {\n [instance.models.handpose, instance.models.handskeleton] = await handpose.load(instance.config);\n }\n if (!instance.models.handskeleton && instance.config.hand.landmarks && instance.config.hand.detector?.modelPath?.includes('handdetect')) {\n [instance.models.handpose, instance.models.handskeleton] = await handpose.load(instance.config);\n }\n }\n if (instance.config.body.enabled && !instance.models.blazepose && instance.config.body?.modelPath?.includes('blazepose')) instance.models.blazepose = blazepose.loadPose(instance.config);\n // @ts-ignore optional model\n if (instance.config.body.enabled && !instance.models.blazeposedetect && instance.config.body['detector'] && instance.config.body['detector']['modelPath']) instance.models.blazeposedetect = blazepose.loadDetect(instance.config);\n if (instance.config.body.enabled && !instance.models.efficientpose && instance.config.body?.modelPath?.includes('efficientpose')) instance.models.efficientpose = efficientpose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.movenet && instance.config.body?.modelPath?.includes('movenet')) instance.models.movenet = movenet.load(instance.config);\n if (instance.config.body.enabled && !instance.models.posenet && instance.config.body?.modelPath?.includes('posenet')) instance.models.posenet = posenet.load(instance.config);\n if (instance.config.face.enabled && !instance.models.facedetect) instance.models.facedetect = blazeface.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.antispoof?.enabled && !instance.models.antispoof) instance.models.antispoof = antispoof.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.liveness?.enabled && !instance.models.liveness) instance.models.liveness = liveness.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.description?.enabled && !instance.models.faceres) instance.models.faceres = faceres.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.emotion?.enabled && !instance.models.emotion) instance.models.emotion = emotion.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.iris?.enabled && !instance.config.face.attention?.enabled && !instance.models.faceiris) instance.models.faceiris = iris.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.mesh?.enabled && !instance.models.facemesh) instance.models.facemesh = facemesh.load(instance.config);\n // @ts-ignore optional model\n if (instance.config.face.enabled && instance.config.face['gear']?.enabled && !instance.models.gear) instance.models.gear = gear.load(instance.config);\n // @ts-ignore optional model\n if (instance.config.face.enabled && instance.config.face['ssrnet']?.enabled && !instance.models.ssrnetage) instance.models.ssrnetage = ssrnetAge.load(instance.config);\n // @ts-ignore optional model\n if (instance.config.face.enabled && instance.config.face['ssrnet']?.enabled && !instance.models.ssrnetgender) instance.models.ssrnetgender = ssrnetGender.load(instance.config);\n // @ts-ignore optional model\n if (instance.config.face.enabled && instance.config.face['mobilefacenet']?.enabled && !instance.models.mobilefacenet) instance.models.mobilefacenet = mobilefacenet.load(instance.config);\n if (instance.config.hand.enabled && !instance.models.handtrack && instance.config.hand.detector?.modelPath?.includes('handtrack')) instance.models.handtrack = handtrack.loadDetect(instance.config);\n if (instance.config.hand.enabled && instance.config.hand.landmarks && !instance.models.handskeleton && instance.config.hand.detector?.modelPath?.includes('handtrack')) instance.models.handskeleton = handtrack.loadSkeleton(instance.config);\n if (instance.config.object.enabled && !instance.models.centernet && instance.config.object?.modelPath?.includes('centernet')) instance.models.centernet = centernet.load(instance.config);\n if (instance.config.object.enabled && !instance.models.nanodet && instance.config.object?.modelPath?.includes('nanodet')) instance.models.nanodet = nanodet.load(instance.config);\n if (instance.config.segmentation.enabled && !instance.models.segmentation) instance.models.segmentation = segmentation.load(instance.config);\n\n // models are loaded in parallel asynchronously so lets wait until they are actually loaded\n for await (const model of Object.keys(instance.models)) {\n if (instance.models[model as keyof Models] && typeof instance.models[model as keyof Models] !== 'undefined') {\n instance.models[model as keyof Models] = await instance.models[model as keyof Models];\n }\n }\n}\n\nexport async function validate(instance: Human): Promise {\n interface Op { name: string, category: string, op: string }\n const simpleOps = ['const', 'placeholder', 'noop', 'pad', 'squeeze', 'add', 'sub', 'mul', 'div'];\n for (const defined of Object.keys(instance.models)) {\n const model: GraphModel | null = instance.models[defined as keyof Models] as GraphModel | null;\n if (!model) continue;\n const ops: string[] = [];\n // @ts-ignore // executor is a private method\n const executor = model?.executor;\n if (executor && executor.graph.nodes) {\n for (const kernel of Object.values(executor.graph.nodes)) {\n const op = (kernel as Op).op.toLowerCase();\n if (!ops.includes(op)) ops.push(op);\n }\n } else {\n if (!executor && instance.config.debug) log('model signature not determined:', defined);\n }\n const missing: string[] = [];\n for (const op of ops) {\n if (!simpleOps.includes(op) // exclude simple ops\n && !instance.env.kernels.includes(op) // check actual kernel ops\n && !instance.env.kernels.includes(op.replace('_', '')) // check variation without _\n && !instance.env.kernels.includes(op.replace('native', '')) // check standard variation\n && !instance.env.kernels.includes(op.replace('v2', ''))) { // check non-versioned variation\n missing.push(op);\n }\n }\n // log('model validation ops:', defined, ops);\n if (instance.config.debug && missing.length > 0) log('model validation failed:', defined, missing);\n }\n}\n", "/**\n * GEAR [gender/emotion/age/race] model implementation\n *\n * Based on: [**GEAR Predictor**](https://github.com/Udolf15/GEAR-Predictor)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Gender, Race } from '../result';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport { env } from '../util/env';\n\nexport type GearType = { age: number, gender: Gender, genderScore: number, race: Array<{ score: number, race: Race }> }\nlet model: GraphModel | null;\nconst last: Array = [];\nconst raceNames = ['white', 'black', 'asian', 'indian', 'other'];\nconst ageWeights = [15, 23, 28, 35.5, 45.5, 55.5, 65];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['gear']?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model) return { age: 0, gender: 'unknown', genderScore: 0, race: [] };\n const skipFrame = skipped < (config.face['gear']?.skipFrames || 0);\n const skipTime = (config.face['gear']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs[0].shape) return;\n const t: Record = {};\n // t.resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape[2], model?.inputs[0].shape[1]], false);\n const box = [[0.0, 0.10, 0.90, 0.90]]; // empyrical values for top, left, bottom, right\n t.resize = tf.image.cropAndResize(image, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const obj: GearType = { age: 0, gender: 'unknown', genderScore: 0, race: [] };\n if (config.face['gear']?.enabled) [t.age, t.gender, t.race] = model.execute(t.resize, ['age_output', 'gender_output', 'race_output']) as Tensor[];\n const gender = await t.gender.data();\n obj.gender = gender[0] > gender[1] ? 'male' : 'female';\n obj.genderScore = Math.round(100 * (gender[0] > gender[1] ? gender[0] : gender[1])) / 100;\n const race = await t.race.data();\n for (let i = 0; i < race.length; i++) {\n if (race[i] > (config.face['gear']?.minConfidence || 0.2)) obj.race.push({ score: Math.round(100 * race[i]) / 100, race: raceNames[i] as Race });\n }\n obj.race.sort((a, b) => b.score - a.score);\n // {0: 'Below20', 1: '21-25', 2: '26-30', 3: '31-40',4: '41-50', 5: '51-60', 6: 'Above60'}\n const ageDistribution = Array.from(await t.age.data());\n const ageSorted = ageDistribution.map((a, i) => [ageWeights[i], a]).sort((a, b) => b[1] - a[1]);\n let age = ageSorted[0][0]; // pick best starting point\n for (let i = 1; i < ageSorted.length; i++) age += ageSorted[i][1] * (ageSorted[i][0] - age); // adjust with each other choice by weight\n obj.age = Math.round(10 * age) / 10;\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from './types';\n\nexport const constants: Record = {\n tf255: 255,\n tf1: 1,\n tf2: 2,\n tf05: 0.5,\n tf127: 127.5,\n rgb: [0.2989, 0.5870, 0.1140],\n};\n\nexport function init() {\n constants.tf255 = tf.scalar(255, 'float32');\n constants.tf1 = tf.scalar(1, 'float32');\n constants.tf2 = tf.scalar(2, 'float32');\n constants.tf05 = tf.scalar(0.5, 'float32');\n constants.tf127 = tf.scalar(127.5, 'float32');\n constants.rgb = tf.tensor1d([0.2989, 0.5870, 0.1140], 'float32'); // factors for red/green/blue colors when converting to grayscale\n}\n", "/**\n * Age model implementation\n *\n * Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\nimport { constants } from '../tfjs/constants';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\n\nlet model: GraphModel | null;\nconst last: Array<{ age: number }> = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['ssrnet'].modelPathAge);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise<{ age: number }> {\n if (!model) return { age: 0 };\n const skipFrame = skipped < (config.face['ssrnet']?.skipFrames || 0);\n const skipTime = (config.face['ssrnet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs || !model.inputs[0] || !model.inputs[0].shape) return;\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n t.enhance = tf.mul(t.resize, constants.tf255);\n const obj = { age: 0 };\n if (config.face['ssrnet'].enabled) t.age = model.execute(t.enhance) as Tensor;\n if (t.age) {\n const data = await t.age.data();\n obj.age = Math.trunc(10 * data[0]) / 10;\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "/**\n * Gender model implementation\n *\n * Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Gender } from '../result';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: Array<{ gender: Gender, genderScore: number }> = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport async function load(config: Config | any) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['ssrnet'].modelPathGender);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport async function predict(image: Tensor, config: Config, idx, count): Promise<{ gender: Gender, genderScore: number }> {\n if (!model) return { gender: 'unknown', genderScore: 0 };\n const skipFrame = skipped < (config.face['ssrnet']?.skipFrames || 0);\n const skipTime = (config.face['ssrnet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.gender && (last[idx]?.genderScore > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs[0].shape) return;\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n t.enhance = tf.tidy(() => {\n const [red, green, blue] = tf.split(t.resize, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const normalize = tf.mul(tf.sub(grayscale, constants.tf05), 2); // range grayscale:-1..1\n return normalize;\n });\n const obj: { gender: Gender, genderScore: number } = { gender: 'unknown', genderScore: 0 };\n if (config.face['ssrnet'].enabled) t.gender = model.execute(t.enhance) as Tensor;\n const data = await t.gender.data();\n obj.gender = data[0] > data[1] ? 'female' : 'male'; // returns two values 0..1, bigger one is prediction\n obj.genderScore = data[0] > data[1] ? (Math.trunc(100 * data[0]) / 100) : (Math.trunc(100 * data[1]) / 100);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "/**\n * Anti-spoofing model implementation\n */\n\nimport { log, now } from '../util/util';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst cached: Array = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastCount = 0;\nlet lastTime = 0;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.antispoof?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model) return 0;\n const skipTime = (config.face.antispoof?.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.face.antispoof?.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && cached[idx]) {\n skipped++;\n return cached[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false);\n const res = model?.execute(resize) as Tensor;\n const num = (await res.data())[0];\n cached[idx] = Math.round(100 * num) / 100;\n lastCount = count;\n lastTime = now();\n tf.dispose([resize, res]);\n resolve(cached[idx]);\n });\n}\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nexport const meshAnnotations: Record = {\n silhouette: [\n 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,\n 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,\n 172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109,\n ],\n // lipsUpperOuter: [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291], // 11\n // lipsLowerOuter: [146, 91, 181, 84, 17, 314, 405, 321, 375, 291], // 10\n // lipsUpperInner: [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308], // 11\n // lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308], // 11\n lipsUpperOuter: [185, 40, 39, 37, 0, 267, 269, 270, 409],\n lipsLowerOuter: [61, 146, 91, 181, 84, 17, 314, 405, 321, 375, 291],\n lipsUpperInner: [191, 80, 81, 82, 13, 312, 311, 310, 415],\n lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\n lipsLowerSemiOuter: [76, 77, 90, 180, 85, 16, 315, 404, 320, 307, 306],\n lipsUpperSemiOuter: [184, 74, 73, 72, 11, 302, 303, 304, 408],\n lipsLowerSemiInner: [62, 96, 89, 179, 86, 15, 316, 403, 319, 325, 292],\n lipsUpperSemiInner: [183, 42, 41, 38, 12, 268, 271, 272, 407],\n rightEyeUpper0: [246, 161, 160, 159, 158, 157, 173], // 7\n rightEyeLower0: [33, 7, 163, 144, 145, 153, 154, 155, 133], // 9\n rightEyeUpper1: [247, 30, 29, 27, 28, 56, 190], // 7\n rightEyeLower1: [130, 25, 110, 24, 23, 22, 26, 112, 243], // 9\n rightEyeUpper2: [113, 225, 224, 223, 222, 221, 189], // 7\n rightEyeLower2: [226, 31, 228, 229, 230, 231, 232, 233, 244], // 9\n rightEyeLower3: [143, 111, 117, 118, 119, 120, 121, 128, 245], // 9\n rightEyebrowUpper: [156, 70, 63, 105, 66, 107, 55, 193], // 8\n rightEyebrowLower: [35, 124, 46, 53, 52, 65], // 6\n rightEyeIris: [473, 474, 475, 476, 477], // 5\n leftEyeUpper0: [466, 388, 387, 386, 385, 384, 398],\n leftEyeLower0: [263, 249, 390, 373, 374, 380, 381, 382, 362],\n leftEyeUpper1: [467, 260, 259, 257, 258, 286, 414],\n leftEyeLower1: [359, 255, 339, 254, 253, 252, 256, 341, 463],\n leftEyeUpper2: [342, 445, 444, 443, 442, 441, 413],\n leftEyeLower2: [446, 261, 448, 449, 450, 451, 452, 453, 464],\n leftEyeLower3: [372, 340, 346, 347, 348, 349, 350, 357, 465],\n leftEyebrowUpper: [383, 300, 293, 334, 296, 336, 285, 417],\n leftEyebrowLower: [265, 353, 276, 283, 282, 295],\n leftEyeIris: [468, 469, 470, 471, 472],\n midwayBetweenEyes: [168],\n noseTip: [1],\n noseBottom: [2],\n noseRightCorner: [98],\n noseLeftCorner: [327],\n rightCheek: [205],\n leftCheek: [425],\n};\n\nexport const meshLandmarks: Record = {\n count: 468,\n mouth: 13,\n symmetryLine: [13, meshAnnotations['midwayBetweenEyes'][0]],\n};\n\nexport const blazeFaceLandmarks: Record = {\n leftEye: 0,\n rightEye: 1,\n nose: 2,\n mouth: 3,\n leftEar: 4,\n rightEar: 5,\n symmetryLine: [3, 2],\n};\n\nexport const irisIndices: Array<{ key: string, indices: number[] }> = [ // A mapping from facemesh model keypoints to iris model keypoints.\n { key: 'EyeUpper0', indices: [9, 10, 11, 12, 13, 14, 15] }, // 7 x 3d\n { key: 'EyeUpper1', indices: [25, 26, 27, 28, 29, 30, 31] }, // 7 x 3d\n { key: 'EyeUpper2', indices: [41, 42, 43, 44, 45, 46, 47] }, // 7 x 3d\n { key: 'EyeLower0', indices: [0, 1, 2, 3, 4, 5, 6, 7, 8] }, // 7 x 3d\n { key: 'EyeLower1', indices: [16, 17, 18, 19, 20, 21, 22, 23, 24] }, // 9 x 3d\n { key: 'EyeLower2', indices: [32, 33, 34, 35, 36, 37, 38, 39, 40] }, // 9 x 3d\n { key: 'EyeLower3', indices: [54, 55, 56, 57, 58, 59, 60, 61, 62] }, // 9 x 3d\n { key: 'EyebrowUpper', indices: [63, 64, 65, 66, 67, 68, 69, 70] }, // 8 x 3d\n { key: 'EyebrowLower', indices: [48, 49, 50, 51, 52, 53] }, // 6 x 3d\n];\n\nexport const UV468: [number, number][] = [\n [0.499976992607117, 0.652534008026123],\n [0.500025987625122, 0.547487020492554],\n [0.499974012374878, 0.602371990680695],\n [0.482113003730774, 0.471979022026062],\n [0.500150978565216, 0.527155995368958],\n [0.499909996986389, 0.498252987861633],\n [0.499523013830185, 0.40106201171875],\n [0.289712011814117, 0.380764007568359],\n [0.499954998493195, 0.312398016452789],\n [0.499987006187439, 0.269918978214264],\n [0.500023007392883, 0.107050001621246],\n [0.500023007392883, 0.666234016418457],\n [0.5000159740448, 0.679224014282227],\n [0.500023007392883, 0.692348003387451],\n [0.499976992607117, 0.695277988910675],\n [0.499976992607117, 0.70593398809433],\n [0.499976992607117, 0.719385027885437],\n [0.499976992607117, 0.737019002437592],\n [0.499967992305756, 0.781370997428894],\n [0.499816000461578, 0.562981009483337],\n [0.473773002624512, 0.573909997940063],\n [0.104906998574734, 0.254140973091125],\n [0.365929991006851, 0.409575998783112],\n [0.338757991790771, 0.41302502155304],\n [0.311120003461838, 0.409460008144379],\n [0.274657994508743, 0.389131009578705],\n [0.393361985683441, 0.403706014156342],\n [0.345234006643295, 0.344011008739471],\n [0.370094001293182, 0.346076011657715],\n [0.319321990013123, 0.347265005111694],\n [0.297903001308441, 0.353591024875641],\n [0.24779200553894, 0.410809993743896],\n [0.396889001131058, 0.842755019664764],\n [0.280097991228104, 0.375599980354309],\n [0.106310002505779, 0.399955987930298],\n [0.2099249958992, 0.391353011131287],\n [0.355807989835739, 0.534406006336212],\n [0.471751004457474, 0.65040397644043],\n [0.474155008792877, 0.680191993713379],\n [0.439785003662109, 0.657229006290436],\n [0.414617002010345, 0.66654098033905],\n [0.450374007225037, 0.680860996246338],\n [0.428770989179611, 0.682690978050232],\n [0.374971002340317, 0.727805018424988],\n [0.486716985702515, 0.547628998756409],\n [0.485300987958908, 0.527395009994507],\n [0.257764995098114, 0.314490020275116],\n [0.401223003864288, 0.455172002315521],\n [0.429818987846375, 0.548614978790283],\n [0.421351999044418, 0.533740997314453],\n [0.276895999908447, 0.532056987285614],\n [0.483370006084442, 0.499586999416351],\n [0.33721199631691, 0.282882988452911],\n [0.296391993761063, 0.293242990970612],\n [0.169294998049736, 0.193813979625702],\n [0.447580009698868, 0.302609980106354],\n [0.392390012741089, 0.353887975215912],\n [0.354490011930466, 0.696784019470215],\n [0.067304998636246, 0.730105042457581],\n [0.442739009857178, 0.572826027870178],\n [0.457098007202148, 0.584792017936707],\n [0.381974011659622, 0.694710969924927],\n [0.392388999462128, 0.694203019142151],\n [0.277076005935669, 0.271932005882263],\n [0.422551989555359, 0.563233017921448],\n [0.385919004678726, 0.281364023685455],\n [0.383103013038635, 0.255840003490448],\n [0.331431001424789, 0.119714021682739],\n [0.229923993349075, 0.232002973556519],\n [0.364500999450684, 0.189113974571228],\n [0.229622006416321, 0.299540996551514],\n [0.173287004232407, 0.278747975826263],\n [0.472878992557526, 0.666198015213013],\n [0.446828007698059, 0.668527007102966],\n [0.422762006521225, 0.673889994621277],\n [0.445307999849319, 0.580065965652466],\n [0.388103008270264, 0.693961024284363],\n [0.403039008378983, 0.706539988517761],\n [0.403629004955292, 0.693953037261963],\n [0.460041999816895, 0.557139039039612],\n [0.431158006191254, 0.692366003990173],\n [0.452181994915009, 0.692366003990173],\n [0.475387006998062, 0.692366003990173],\n [0.465828001499176, 0.779190003871918],\n [0.472328990697861, 0.736225962638855],\n [0.473087012767792, 0.717857003211975],\n [0.473122000694275, 0.704625964164734],\n [0.473033010959625, 0.695277988910675],\n [0.427942007780075, 0.695277988910675],\n [0.426479011774063, 0.703539967536926],\n [0.423162013292313, 0.711845993995667],\n [0.4183090031147, 0.720062971115112],\n [0.390094995498657, 0.639572978019714],\n [0.013953999616206, 0.560034036636353],\n [0.499913990497589, 0.58014702796936],\n [0.413199990987778, 0.69539999961853],\n [0.409626007080078, 0.701822996139526],\n [0.468080013990402, 0.601534962654114],\n [0.422728985548019, 0.585985004901886],\n [0.463079988956451, 0.593783974647522],\n [0.37211999297142, 0.47341400384903],\n [0.334562003612518, 0.496073007583618],\n [0.411671012639999, 0.546965003013611],\n [0.242175996303558, 0.14767599105835],\n [0.290776997804642, 0.201445996761322],\n [0.327338010072708, 0.256527006626129],\n [0.399509996175766, 0.748921036720276],\n [0.441727995872498, 0.261676013469696],\n [0.429764986038208, 0.187834024429321],\n [0.412198007106781, 0.108901023864746],\n [0.288955003023148, 0.398952007293701],\n [0.218936994671822, 0.435410976409912],\n [0.41278201341629, 0.398970007896423],\n [0.257135003805161, 0.355440020561218],\n [0.427684992551804, 0.437960982322693],\n [0.448339998722076, 0.536936044692993],\n [0.178560003638268, 0.45755398273468],\n [0.247308000922203, 0.457193970680237],\n [0.286267012357712, 0.467674970626831],\n [0.332827985286713, 0.460712015628815],\n [0.368755996227264, 0.447206974029541],\n [0.398963987827301, 0.432654976844788],\n [0.476410001516342, 0.405806005001068],\n [0.189241006970406, 0.523923993110657],\n [0.228962004184723, 0.348950982093811],\n [0.490725994110107, 0.562400996685028],\n [0.404670000076294, 0.485132992267609],\n [0.019469000399113, 0.401564002037048],\n [0.426243007183075, 0.420431017875671],\n [0.396993011236191, 0.548797011375427],\n [0.266469985246658, 0.376977026462555],\n [0.439121007919312, 0.51895797252655],\n [0.032313998788595, 0.644356966018677],\n [0.419054001569748, 0.387154996395111],\n [0.462783008813858, 0.505746960639954],\n [0.238978996872902, 0.779744982719421],\n [0.198220998048782, 0.831938028335571],\n [0.107550002634525, 0.540755033493042],\n [0.183610007166862, 0.740257024765015],\n [0.134409993886948, 0.333683013916016],\n [0.385764002799988, 0.883153975009918],\n [0.490967005491257, 0.579378008842468],\n [0.382384985685349, 0.508572995662689],\n [0.174399003386497, 0.397670984268188],\n [0.318785011768341, 0.39623498916626],\n [0.343364000320435, 0.400596976280212],\n [0.396100014448166, 0.710216999053955],\n [0.187885001301765, 0.588537991046906],\n [0.430987000465393, 0.944064974784851],\n [0.318993002176285, 0.898285031318665],\n [0.266247987747192, 0.869701027870178],\n [0.500023007392883, 0.190576016902924],\n [0.499976992607117, 0.954452991485596],\n [0.366169989109039, 0.398822009563446],\n [0.393207013607025, 0.39553701877594],\n [0.410373002290726, 0.391080021858215],\n [0.194993004202843, 0.342101991176605],\n [0.388664990663528, 0.362284004688263],\n [0.365961998701096, 0.355970978736877],\n [0.343364000320435, 0.355356991291046],\n [0.318785011768341, 0.35834002494812],\n [0.301414996385574, 0.363156020641327],\n [0.058132998645306, 0.319076001644135],\n [0.301414996385574, 0.387449026107788],\n [0.499987989664078, 0.618434011936188],\n [0.415838003158569, 0.624195992946625],\n [0.445681989192963, 0.566076993942261],\n [0.465844005346298, 0.620640993118286],\n [0.49992299079895, 0.351523995399475],\n [0.288718998432159, 0.819945991039276],\n [0.335278987884521, 0.852819979190826],\n [0.440512001514435, 0.902418971061707],\n [0.128294005990028, 0.791940987110138],\n [0.408771991729736, 0.373893976211548],\n [0.455606997013092, 0.451801002025604],\n [0.499877005815506, 0.908990025520325],\n [0.375436991453171, 0.924192011356354],\n [0.11421000212431, 0.615022003650665],\n [0.448662012815475, 0.695277988910675],\n [0.4480200111866, 0.704632043838501],\n [0.447111994028091, 0.715808033943176],\n [0.444831997156143, 0.730794012546539],\n [0.430011987686157, 0.766808986663818],\n [0.406787008047104, 0.685672998428345],\n [0.400738000869751, 0.681069016456604],\n [0.392399996519089, 0.677703022956848],\n [0.367855995893478, 0.663918972015381],\n [0.247923001646996, 0.601333022117615],\n [0.452769994735718, 0.420849978923798],\n [0.43639200925827, 0.359887003898621],\n [0.416164010763168, 0.368713974952698],\n [0.413385987281799, 0.692366003990173],\n [0.228018000721931, 0.683571994304657],\n [0.468268007040024, 0.352671027183533],\n [0.411361992359161, 0.804327011108398],\n [0.499989002943039, 0.469825029373169],\n [0.479153990745544, 0.442654013633728],\n [0.499974012374878, 0.439637005329132],\n [0.432112008333206, 0.493588984012604],\n [0.499886006116867, 0.866917014122009],\n [0.49991300702095, 0.821729004383087],\n [0.456548988819122, 0.819200992584229],\n [0.344549000263214, 0.745438992977142],\n [0.37890899181366, 0.574010014533997],\n [0.374292999505997, 0.780184984207153],\n [0.319687992334366, 0.570737957954407],\n [0.357154995203018, 0.604269981384277],\n [0.295284003019333, 0.621580958366394],\n [0.447750002145767, 0.862477004528046],\n [0.410986006259918, 0.508723020553589],\n [0.31395098567009, 0.775308012962341],\n [0.354128003120422, 0.812552988529205],\n [0.324548006057739, 0.703992962837219],\n [0.189096003770828, 0.646299958229065],\n [0.279776990413666, 0.71465802192688],\n [0.1338230073452, 0.682700991630554],\n [0.336768001317978, 0.644733011722565],\n [0.429883986711502, 0.466521978378296],\n [0.455527991056442, 0.548622965812683],\n [0.437114000320435, 0.558896005153656],\n [0.467287987470627, 0.529924988746643],\n [0.414712011814117, 0.335219979286194],\n [0.37704598903656, 0.322777986526489],\n [0.344107985496521, 0.320150971412659],\n [0.312875986099243, 0.32233202457428],\n [0.283526003360748, 0.333190023899078],\n [0.241245999932289, 0.382785975933075],\n [0.102986000478268, 0.468762993812561],\n [0.267612010240555, 0.424560010433197],\n [0.297879010438919, 0.433175981044769],\n [0.333433985710144, 0.433878004550934],\n [0.366427004337311, 0.426115989685059],\n [0.396012008190155, 0.416696012020111],\n [0.420121014118195, 0.41022801399231],\n [0.007561000064015, 0.480777025222778],\n [0.432949006557465, 0.569517970085144],\n [0.458638995885849, 0.479089021682739],\n [0.473466008901596, 0.545744001865387],\n [0.476087987422943, 0.563830018043518],\n [0.468472003936768, 0.555056989192963],\n [0.433990985155106, 0.582361996173859],\n [0.483518004417419, 0.562983989715576],\n [0.482482999563217, 0.57784903049469],\n [0.42645001411438, 0.389798998832703],\n [0.438998997211456, 0.39649498462677],\n [0.450067013502121, 0.400434017181396],\n [0.289712011814117, 0.368252992630005],\n [0.276670008897781, 0.363372981548309],\n [0.517862021923065, 0.471948027610779],\n [0.710287988185883, 0.380764007568359],\n [0.526226997375488, 0.573909997940063],\n [0.895093023777008, 0.254140973091125],\n [0.634069979190826, 0.409575998783112],\n [0.661242008209229, 0.41302502155304],\n [0.688880026340485, 0.409460008144379],\n [0.725341975688934, 0.389131009578705],\n [0.606630027294159, 0.40370500087738],\n [0.654766023159027, 0.344011008739471],\n [0.629905998706818, 0.346076011657715],\n [0.680678009986877, 0.347265005111694],\n [0.702096998691559, 0.353591024875641],\n [0.75221198797226, 0.410804986953735],\n [0.602918028831482, 0.842862963676453],\n [0.719901978969574, 0.375599980354309],\n [0.893692970275879, 0.399959981441498],\n [0.790081977844238, 0.391354024410248],\n [0.643998026847839, 0.534487962722778],\n [0.528249025344849, 0.65040397644043],\n [0.525849997997284, 0.680191040039062],\n [0.560214996337891, 0.657229006290436],\n [0.585384011268616, 0.66654098033905],\n [0.549625992774963, 0.680860996246338],\n [0.57122802734375, 0.682691991329193],\n [0.624852001667023, 0.72809898853302],\n [0.513050019741058, 0.547281980514526],\n [0.51509702205658, 0.527251958847046],\n [0.742246985435486, 0.314507007598877],\n [0.598631024360657, 0.454979002475739],\n [0.570338010787964, 0.548575043678284],\n [0.578631997108459, 0.533622980117798],\n [0.723087012767792, 0.532054007053375],\n [0.516445994377136, 0.499638974666595],\n [0.662801027297974, 0.282917976379395],\n [0.70362401008606, 0.293271005153656],\n [0.830704987049103, 0.193813979625702],\n [0.552385985851288, 0.302568018436432],\n [0.607609987258911, 0.353887975215912],\n [0.645429015159607, 0.696707010269165],\n [0.932694971561432, 0.730105042457581],\n [0.557260990142822, 0.572826027870178],\n [0.542901992797852, 0.584792017936707],\n [0.6180260181427, 0.694710969924927],\n [0.607590973377228, 0.694203019142151],\n [0.722943007946014, 0.271963000297546],\n [0.577413976192474, 0.563166975975037],\n [0.614082992076874, 0.281386971473694],\n [0.616907000541687, 0.255886018276215],\n [0.668509006500244, 0.119913995265961],\n [0.770092010498047, 0.232020974159241],\n [0.635536015033722, 0.189248979091644],\n [0.77039098739624, 0.299556016921997],\n [0.826722025871277, 0.278755009174347],\n [0.527121007442474, 0.666198015213013],\n [0.553171992301941, 0.668527007102966],\n [0.577238023281097, 0.673889994621277],\n [0.554691970348358, 0.580065965652466],\n [0.611896991729736, 0.693961024284363],\n [0.59696102142334, 0.706539988517761],\n [0.596370995044708, 0.693953037261963],\n [0.539958000183105, 0.557139039039612],\n [0.568841993808746, 0.692366003990173],\n [0.547818005084991, 0.692366003990173],\n [0.52461302280426, 0.692366003990173],\n [0.534089982509613, 0.779141008853912],\n [0.527670979499817, 0.736225962638855],\n [0.526912987232208, 0.717857003211975],\n [0.526877999305725, 0.704625964164734],\n [0.526966989040375, 0.695277988910675],\n [0.572058022022247, 0.695277988910675],\n [0.573521018028259, 0.703539967536926],\n [0.57683801651001, 0.711845993995667],\n [0.581691026687622, 0.720062971115112],\n [0.609944999217987, 0.639909982681274],\n [0.986046016216278, 0.560034036636353],\n [0.5867999792099, 0.69539999961853],\n [0.590372025966644, 0.701822996139526],\n [0.531915009021759, 0.601536989212036],\n [0.577268004417419, 0.585934996604919],\n [0.536915004253387, 0.593786001205444],\n [0.627542972564697, 0.473352015018463],\n [0.665585994720459, 0.495950996875763],\n [0.588353991508484, 0.546862006187439],\n [0.757824003696442, 0.14767599105835],\n [0.709249973297119, 0.201507985591888],\n [0.672684013843536, 0.256581008434296],\n [0.600408971309662, 0.74900496006012],\n [0.55826598405838, 0.261672019958496],\n [0.570303976535797, 0.187870979309082],\n [0.588165998458862, 0.109044015407562],\n [0.711045026779175, 0.398952007293701],\n [0.781069993972778, 0.435405015945435],\n [0.587247014045715, 0.398931980133057],\n [0.742869973182678, 0.355445981025696],\n [0.572156012058258, 0.437651991844177],\n [0.55186802148819, 0.536570012569427],\n [0.821442008018494, 0.457556009292603],\n [0.752701997756958, 0.457181990146637],\n [0.71375697851181, 0.467626988887787],\n [0.66711300611496, 0.460672974586487],\n [0.631101012229919, 0.447153985500336],\n [0.6008620262146, 0.432473003864288],\n [0.523481011390686, 0.405627012252808],\n [0.810747981071472, 0.523926019668579],\n [0.771045982837677, 0.348959028720856],\n [0.509127020835876, 0.562718033790588],\n [0.595292985439301, 0.485023975372314],\n [0.980530977249146, 0.401564002037048],\n [0.573499977588654, 0.420000016689301],\n [0.602994978427887, 0.548687994480133],\n [0.733529984951019, 0.376977026462555],\n [0.560611009597778, 0.519016981124878],\n [0.967685997486115, 0.644356966018677],\n [0.580985009670258, 0.387160003185272],\n [0.537728011608124, 0.505385041236877],\n [0.760966002941132, 0.779752969741821],\n [0.801778972148895, 0.831938028335571],\n [0.892440974712372, 0.54076099395752],\n [0.816350996494293, 0.740260004997253],\n [0.865594983100891, 0.333687007427216],\n [0.614073991775513, 0.883246004581451],\n [0.508952975273132, 0.579437971115112],\n [0.617941975593567, 0.508316040039062],\n [0.825608015060425, 0.397674977779388],\n [0.681214988231659, 0.39623498916626],\n [0.656635999679565, 0.400596976280212],\n [0.603900015354156, 0.710216999053955],\n [0.81208598613739, 0.588539004325867],\n [0.56801301240921, 0.944564998149872],\n [0.681007981300354, 0.898285031318665],\n [0.733752012252808, 0.869701027870178],\n [0.633830010890961, 0.398822009563446],\n [0.606792986392975, 0.39553701877594],\n [0.589659988880157, 0.391062021255493],\n [0.805015981197357, 0.342108011245728],\n [0.611334979534149, 0.362284004688263],\n [0.634037971496582, 0.355970978736877],\n [0.656635999679565, 0.355356991291046],\n [0.681214988231659, 0.35834002494812],\n [0.698584973812103, 0.363156020641327],\n [0.941866993904114, 0.319076001644135],\n [0.698584973812103, 0.387449026107788],\n [0.584177017211914, 0.624107003211975],\n [0.554318010807037, 0.566076993942261],\n [0.534153997898102, 0.62064003944397],\n [0.711217999458313, 0.819975018501282],\n [0.664629995822906, 0.852871000766754],\n [0.559099972248077, 0.902631998062134],\n [0.871706008911133, 0.791940987110138],\n [0.591234028339386, 0.373893976211548],\n [0.544341027736664, 0.451583981513977],\n [0.624562978744507, 0.924192011356354],\n [0.88577002286911, 0.615028977394104],\n [0.551338016986847, 0.695277988910675],\n [0.551980018615723, 0.704632043838501],\n [0.552887976169586, 0.715808033943176],\n [0.555167973041534, 0.730794012546539],\n [0.569944024085999, 0.767035007476807],\n [0.593203008174896, 0.685675978660583],\n [0.599261999130249, 0.681069016456604],\n [0.607599973678589, 0.677703022956848],\n [0.631937980651855, 0.663500010967255],\n [0.752032995223999, 0.601315021514893],\n [0.547226011753082, 0.420395016670227],\n [0.563543975353241, 0.359827995300293],\n [0.583841025829315, 0.368713974952698],\n [0.586614012718201, 0.692366003990173],\n [0.771915018558502, 0.683578014373779],\n [0.531597018241882, 0.352482974529266],\n [0.588370978832245, 0.804440975189209],\n [0.52079701423645, 0.442565023899078],\n [0.567984998226166, 0.493479013442993],\n [0.543282985687256, 0.819254994392395],\n [0.655317008495331, 0.745514988899231],\n [0.621008992195129, 0.574018001556396],\n [0.625559985637665, 0.78031200170517],\n [0.680198013782501, 0.570719003677368],\n [0.64276397228241, 0.604337990283966],\n [0.704662978649139, 0.621529996395111],\n [0.552012026309967, 0.862591981887817],\n [0.589071989059448, 0.508637011051178],\n [0.685944974422455, 0.775357007980347],\n [0.645735025405884, 0.812640011310577],\n [0.675342977046967, 0.703978002071381],\n [0.810858011245728, 0.646304965019226],\n [0.72012197971344, 0.714666962623596],\n [0.866151988506317, 0.682704985141754],\n [0.663187026977539, 0.644596993923187],\n [0.570082008838654, 0.466325998306274],\n [0.544561982154846, 0.548375964164734],\n [0.562758982181549, 0.558784961700439],\n [0.531987011432648, 0.530140042304993],\n [0.585271000862122, 0.335177004337311],\n [0.622952997684479, 0.32277899980545],\n [0.655896008014679, 0.320163011550903],\n [0.687132000923157, 0.322345972061157],\n [0.716481983661652, 0.333200991153717],\n [0.758756995201111, 0.382786989212036],\n [0.897013008594513, 0.468769013881683],\n [0.732392013072968, 0.424547016620636],\n [0.70211398601532, 0.433162987232208],\n [0.66652500629425, 0.433866024017334],\n [0.633504986763, 0.426087975502014],\n [0.603875994682312, 0.416586995124817],\n [0.579657971858978, 0.409945011138916],\n [0.992439985275269, 0.480777025222778],\n [0.567192018032074, 0.569419980049133],\n [0.54136598110199, 0.478899002075195],\n [0.526564002037048, 0.546118021011353],\n [0.523913025856018, 0.563830018043518],\n [0.531529009342194, 0.555056989192963],\n [0.566035985946655, 0.582329034805298],\n [0.51631098985672, 0.563053965568542],\n [0.5174720287323, 0.577877044677734],\n [0.573594987392426, 0.389806985855103],\n [0.560697972774506, 0.395331978797913],\n [0.549755990505219, 0.399751007556915],\n [0.710287988185883, 0.368252992630005],\n [0.723330020904541, 0.363372981548309],\n];\n\nexport const TRI468: Array = [\n 127, 34, 139, 11, 0, 37, 232, 231, 120, 72, 37, 39, 128, 121, 47, 232, 121, 128, 104, 69, 67, 175, 171, 148, 157, 154, 155, 118, 50, 101, 73, 39, 40, 9,\n 151, 108, 48, 115, 131, 194, 204, 211, 74, 40, 185, 80, 42, 183, 40, 92, 186, 230, 229, 118, 202, 212, 214, 83, 18, 17, 76, 61, 146, 160, 29, 30, 56,\n 157, 173, 106, 204, 194, 135, 214, 192, 203, 165, 98, 21, 71, 68, 51, 45, 4, 144, 24, 23, 77, 146, 91, 205, 50, 187, 201, 200, 18, 91, 106, 182, 90, 91,\n 181, 85, 84, 17, 206, 203, 36, 148, 171, 140, 92, 40, 39, 193, 189, 244, 159, 158, 28, 247, 246, 161, 236, 3, 196, 54, 68, 104, 193, 168, 8, 117,\n 228, 31, 189, 193, 55, 98, 97, 99, 126, 47, 100, 166, 79, 218, 155, 154, 26, 209, 49, 131, 135, 136, 150, 47, 126, 217, 223, 52, 53, 45, 51, 134, 211,\n 170, 140, 67, 69, 108, 43, 106, 91, 230, 119, 120, 226, 130, 247, 63, 53, 52, 238, 20, 242, 46, 70, 156, 78, 62, 96, 46, 53, 63, 143, 34, 227, 173,\n 155, 133, 123, 117, 111, 44, 125, 19, 236, 134, 51, 216, 206, 205, 154, 153, 22, 39, 37, 167, 200, 201, 208, 36, 142, 100, 57, 212, 202, 20, 60, 99, 28,\n 158, 157, 35, 226, 113, 160, 159, 27, 204, 202, 210, 113, 225, 46, 43, 202, 204, 62, 76, 77, 137, 123, 116, 41, 38, 72, 203, 129, 142, 64, 98, 240, 49,\n 102, 64, 41, 73, 74, 212, 216, 207, 42, 74, 184, 169, 170, 211, 170, 149, 176, 105, 66, 69, 122, 6, 168, 123, 147, 187, 96, 77, 90, 65, 55, 107, 89,\n 90, 180, 101, 100, 120, 63, 105, 104, 93, 137, 227, 15, 86, 85, 129, 102, 49, 14, 87, 86, 55, 8, 9, 100, 47, 121, 145, 23, 22, 88, 89, 179, 6, 122,\n 196, 88, 95, 96, 138, 172, 136, 215, 58, 172, 115, 48, 219, 42, 80, 81, 195, 3, 51, 43, 146, 61, 171, 175, 199, 81, 82, 38, 53, 46, 225, 144, 163, 110,\n 246, 33, 7, 52, 65, 66, 229, 228, 117, 34, 127, 234, 107, 108, 69, 109, 108, 151, 48, 64, 235, 62, 78, 191, 129, 209, 126, 111, 35, 143, 163, 161, 246,\n 117, 123, 50, 222, 65, 52, 19, 125, 141, 221, 55, 65, 3, 195, 197, 25, 7, 33, 220, 237, 44, 70, 71, 139, 122, 193, 245, 247, 130, 33, 71, 21, 162,\n 153, 158, 159, 170, 169, 150, 188, 174, 196, 216, 186, 92, 144, 160, 161, 2, 97, 167, 141, 125, 241, 164, 167, 37, 72, 38, 12, 145, 159, 160, 38, 82, 13,\n 63, 68, 71, 226, 35, 111, 158, 153, 154, 101, 50, 205, 206, 92, 165, 209, 198, 217, 165, 167, 97, 220, 115, 218, 133, 112, 243, 239, 238, 241, 214,\n 135, 169, 190, 173, 133, 171, 208, 32, 125, 44, 237, 86, 87, 178, 85, 86, 179, 84, 85, 180, 83, 84, 181, 201, 83, 182, 137, 93, 132, 76, 62, 183, 61,\n 76, 184, 57, 61, 185, 212, 57, 186, 214, 207, 187, 34, 143, 156, 79, 239, 237, 123, 137, 177, 44, 1, 4, 201, 194, 32, 64, 102, 129, 213, 215, 138, 59,\n 166, 219, 242, 99, 97, 2, 94, 141, 75, 59, 235, 24, 110, 228, 25, 130, 226, 23, 24, 229, 22, 23, 230, 26, 22, 231, 112, 26, 232, 189, 190, 243, 221, 56,\n 190, 28, 56, 221, 27, 28, 222, 29, 27, 223, 30, 29, 224, 247, 30, 225, 238, 79, 20, 166, 59, 75, 60, 75, 240, 147, 177, 215, 20, 79, 166, 187, 147, 213,\n 112, 233, 244, 233, 128, 245, 128, 114, 188, 114, 217, 174, 131, 115, 220, 217, 198, 236, 198, 131, 134, 177, 132, 58, 143, 35, 124, 110, 163, 7, 228,\n 110, 25, 356, 389, 368, 11, 302, 267, 452, 350, 349, 302, 303, 269, 357, 343, 277, 452, 453, 357, 333, 332, 297, 175, 152, 377, 384, 398, 382, 347,\n 348, 330, 303, 304, 270, 9, 336, 337, 278, 279, 360, 418, 262, 431, 304, 408, 409, 310, 415, 407, 270, 409, 410, 450, 348, 347, 422, 430, 434, 313,\n 314, 17, 306, 307, 375, 387, 388, 260, 286, 414, 398, 335, 406, 418, 364, 367, 416, 423, 358, 327, 251, 284, 298, 281, 5, 4, 373, 374, 253, 307, 320,\n 321, 425, 427, 411, 421, 313, 18, 321, 405, 406, 320, 404, 405, 315, 16, 17, 426, 425, 266, 377, 400, 369, 322, 391, 269, 417, 465, 464, 386, 257, 258,\n 466, 260, 388, 456, 399, 419, 284, 332, 333, 417, 285, 8, 346, 340, 261, 413, 441, 285, 327, 460, 328, 355, 371, 329, 392, 439, 438, 382, 341, 256,\n 429, 420, 360, 364, 394, 379, 277, 343, 437, 443, 444, 283, 275, 440, 363, 431, 262, 369, 297, 338, 337, 273, 375, 321, 450, 451, 349, 446, 342, 467,\n 293, 334, 282, 458, 461, 462, 276, 353, 383, 308, 324, 325, 276, 300, 293, 372, 345, 447, 382, 398, 362, 352, 345, 340, 274, 1, 19, 456, 248, 281, 436,\n 427, 425, 381, 256, 252, 269, 391, 393, 200, 199, 428, 266, 330, 329, 287, 273, 422, 250, 462, 328, 258, 286, 384, 265, 353, 342, 387, 259, 257, 424,\n 431, 430, 342, 353, 276, 273, 335, 424, 292, 325, 307, 366, 447, 345, 271, 303, 302, 423, 266, 371, 294, 455, 460, 279, 278, 294, 271, 272, 304, 432,\n 434, 427, 272, 407, 408, 394, 430, 431, 395, 369, 400, 334, 333, 299, 351, 417, 168, 352, 280, 411, 325, 319, 320, 295, 296, 336, 319, 403, 404, 330,\n 348, 349, 293, 298, 333, 323, 454, 447, 15, 16, 315, 358, 429, 279, 14, 15, 316, 285, 336, 9, 329, 349, 350, 374, 380, 252, 318, 402, 403, 6, 197, 419,\n 318, 319, 325, 367, 364, 365, 435, 367, 397, 344, 438, 439, 272, 271, 311, 195, 5, 281, 273, 287, 291, 396, 428, 199, 311, 271, 268, 283, 444, 445,\n 373, 254, 339, 263, 466, 249, 282, 334, 296, 449, 347, 346, 264, 447, 454, 336, 296, 299, 338, 10, 151, 278, 439, 455, 292, 407, 415, 358, 371, 355,\n 340, 345, 372, 390, 249, 466, 346, 347, 280, 442, 443, 282, 19, 94, 370, 441, 442, 295, 248, 419, 197, 263, 255, 359, 440, 275, 274, 300, 383, 368,\n 351, 412, 465, 263, 467, 466, 301, 368, 389, 380, 374, 386, 395, 378, 379, 412, 351, 419, 436, 426, 322, 373, 390, 388, 2, 164, 393, 370, 462, 461,\n 164, 0, 267, 302, 11, 12, 374, 373, 387, 268, 12, 13, 293, 300, 301, 446, 261, 340, 385, 384, 381, 330, 266, 425, 426, 423, 391, 429, 355, 437, 391,\n 327, 326, 440, 457, 438, 341, 382, 362, 459, 457, 461, 434, 430, 394, 414, 463, 362, 396, 369, 262, 354, 461, 457, 316, 403, 402, 315, 404, 403, 314,\n 405, 404, 313, 406, 405, 421, 418, 406, 366, 401, 361, 306, 408, 407, 291, 409, 408, 287, 410, 409, 432, 436, 410, 434, 416, 411, 264, 368, 383, 309,\n 438, 457, 352, 376, 401, 274, 275, 4, 421, 428, 262, 294, 327, 358, 433, 416, 367, 289, 455, 439, 462, 370, 326, 2, 326, 370, 305, 460, 455, 254,\n 449, 448, 255, 261, 446, 253, 450, 449, 252, 451, 450, 256, 452, 451, 341, 453, 452, 413, 464, 463, 441, 413, 414, 258, 442, 441, 257, 443, 442, 259,\n 444, 443, 260, 445, 444, 467, 342, 445, 459, 458, 250, 289, 392, 290, 290, 328, 460, 376, 433, 435, 250, 290, 392, 411, 416, 433, 341, 463, 464, 453,\n 464, 465, 357, 465, 412, 343, 412, 399, 360, 363, 440, 437, 399, 456, 420, 456, 363, 401, 435, 288, 372, 383, 353, 339, 255, 249, 448, 261, 255, 133,\n 243, 190, 133, 155, 112, 33, 246, 247, 33, 130, 25, 398, 384, 286, 362, 398, 414, 362, 463, 341, 263, 359, 467, 263, 249, 255, 466, 467, 260, 75, 60,\n 166, 238, 239, 79, 162, 127, 139, 72, 11, 37, 121, 232, 120, 73, 72, 39, 114, 128, 47, 233, 232, 128, 103, 104, 67, 152, 175, 148, 173, 157, 155,\n 119, 118, 101, 74, 73, 40, 107, 9, 108, 49, 48, 131, 32, 194, 211, 184, 74, 185, 191, 80, 183, 185, 40, 186, 119, 230, 118, 210, 202, 214, 84, 83, 17,\n 77, 76, 146, 161, 160, 30, 190, 56, 173, 182, 106, 194, 138, 135, 192, 129, 203, 98, 54, 21, 68, 5, 51, 4, 145, 144, 23, 90, 77, 91, 207, 205, 187, 83,\n 201, 18, 181, 91, 182, 180, 90, 181, 16, 85, 17, 205, 206, 36, 176, 148, 140, 165, 92, 39, 245, 193, 244, 27, 159, 28, 30, 247, 161, 174, 236, 196,\n 103, 54, 104, 55, 193, 8, 111, 117, 31, 221, 189, 55, 240, 98, 99, 142, 126, 100, 219, 166, 218, 112, 155, 26, 198, 209, 131, 169, 135, 150, 114, 47,\n 217, 224, 223, 53, 220, 45, 134, 32, 211, 140, 109, 67, 108, 146, 43, 91, 231, 230, 120, 113, 226, 247, 105, 63, 52, 241, 238, 242, 124, 46, 156, 95,\n 78, 96, 70, 46, 63, 116, 143, 227, 116, 123, 111, 1, 44, 19, 3, 236, 51, 207, 216, 205, 26, 154, 22, 165, 39, 167, 199, 200, 208, 101, 36, 100, 43,\n 57, 202, 242, 20, 99, 56, 28, 157, 124, 35, 113, 29, 160, 27, 211, 204, 210, 124, 113, 46, 106, 43, 204, 96, 62, 77, 227, 137, 116, 73, 41, 72, 36, 203,\n 142, 235, 64, 240, 48, 49, 64, 42, 41, 74, 214, 212, 207, 183, 42, 184, 210, 169, 211, 140, 170, 176, 104, 105, 69, 193, 122, 168, 50, 123, 187, 89, 96,\n 90, 66, 65, 107, 179, 89, 180, 119, 101, 120, 68, 63, 104, 234, 93, 227, 16, 15, 85, 209, 129, 49, 15, 14, 86, 107, 55, 9, 120, 100, 121, 153, 145, 22,\n 178, 88, 179, 197, 6, 196, 89, 88, 96, 135, 138, 136, 138, 215, 172, 218, 115, 219, 41, 42, 81, 5, 195, 51, 57, 43, 61, 208, 171, 199, 41, 81, 38,\n 224, 53, 225, 24, 144, 110, 105, 52, 66, 118, 229, 117, 227, 34, 234, 66, 107, 69, 10, 109, 151, 219, 48, 235, 183, 62, 191, 142, 129, 126, 116, 111,\n 143, 7, 163, 246, 118, 117, 50, 223, 222, 52, 94, 19, 141, 222, 221, 65, 196, 3, 197, 45, 220, 44, 156, 70, 139, 188, 122, 245, 139, 71, 162, 145,\n 153, 159, 149, 170, 150, 122, 188, 196, 206, 216, 92, 163, 144, 161, 164, 2, 167, 242, 141, 241, 0, 164, 37, 11, 72, 12, 144, 145, 160, 12, 38, 13, 70,\n 63, 71, 31, 226, 111, 157, 158, 154, 36, 101, 205, 203, 206, 165, 126, 209, 217, 98, 165, 97, 237, 220, 218, 237, 239, 241, 210, 214, 169, 140, 171, 32,\n 241, 125, 237, 179, 86, 178, 180, 85, 179, 181, 84, 180, 182, 83, 181, 194, 201, 182, 177, 137, 132, 184, 76, 183, 185, 61, 184, 186, 57, 185, 216, 212,\n 186, 192, 214, 187, 139, 34, 156, 218, 79, 237, 147, 123, 177, 45, 44, 4, 208, 201, 32, 98, 64, 129, 192, 213, 138, 235, 59, 219, 141, 242, 97, 97, 2,\n 141, 240, 75, 235, 229, 24, 228, 31, 25, 226, 230, 23, 229, 231, 22, 230, 232, 26, 231, 233, 112, 232, 244, 189, 243, 189, 221, 190, 222, 28, 221,\n 223, 27, 222, 224, 29, 223, 225, 30, 224, 113, 247, 225, 99, 60, 240, 213, 147, 215, 60, 20, 166, 192, 187, 213, 243, 112, 244, 244, 233, 245, 245,\n 128, 188, 188, 114, 174, 134, 131, 220, 174, 217, 236, 236, 198, 134, 215, 177, 58, 156, 143, 124, 25, 110, 7, 31, 228, 25, 264, 356, 368, 0, 11, 267,\n 451, 452, 349, 267, 302, 269, 350, 357, 277, 350, 452, 357, 299, 333, 297, 396, 175, 377, 381, 384, 382, 280, 347, 330, 269, 303, 270, 151, 9, 337,\n 344, 278, 360, 424, 418, 431, 270, 304, 409, 272, 310, 407, 322, 270, 410, 449, 450, 347, 432, 422, 434, 18, 313, 17, 291, 306, 375, 259, 387, 260,\n 424, 335, 418, 434, 364, 416, 391, 423, 327, 301, 251, 298, 275, 281, 4, 254, 373, 253, 375, 307, 321, 280, 425, 411, 200, 421, 18, 335, 321, 406,\n 321, 320, 405, 314, 315, 17, 423, 426, 266, 396, 377, 369, 270, 322, 269, 413, 417, 464, 385, 386, 258, 248, 456, 419, 298, 284, 333, 168, 417, 8,\n 448, 346, 261, 417, 413, 285, 326, 327, 328, 277, 355, 329, 309, 392, 438, 381, 382, 256, 279, 429, 360, 365, 364, 379, 355, 277, 437, 282, 443, 283,\n 281, 275, 363, 395, 431, 369, 299, 297, 337, 335, 273, 321, 348, 450, 349, 359, 446, 467, 283, 293, 282, 250, 458, 462, 300, 276, 383, 292, 308, 325,\n 283, 276, 293, 264, 372, 447, 346, 352, 340, 354, 274, 19, 363, 456, 281, 426, 436, 425, 380, 381, 252, 267, 269, 393, 421, 200, 428, 371, 266, 329,\n 432, 287, 422, 290, 250, 328, 385, 258, 384, 446, 265, 342, 386, 387, 257, 422, 424, 430, 445, 342, 276, 422, 273, 424, 306, 292, 307, 352, 366, 345,\n 268, 271, 302, 358, 423, 371, 327, 294, 460, 331, 279, 294, 303, 271, 304, 436, 432, 427, 304, 272, 408, 395, 394, 431, 378, 395, 400, 296, 334, 299,\n 6, 351, 168, 376, 352, 411, 307, 325, 320, 285, 295, 336, 320, 319, 404, 329, 330, 349, 334, 293, 333, 366, 323, 447, 316, 15, 315, 331, 358, 279,\n 317, 14, 316, 8, 285, 9, 277, 329, 350, 253, 374, 252, 319, 318, 403, 351, 6, 419, 324, 318, 325, 397, 367, 365, 288, 435, 397, 278, 344, 439, 310,\n 272, 311, 248, 195, 281, 375, 273, 291, 175, 396, 199, 312, 311, 268, 276, 283, 445, 390, 373, 339, 295, 282, 296, 448, 449, 346, 356, 264, 454, 337,\n 336, 299, 337, 338, 151, 294, 278, 455, 308, 292, 415, 429, 358, 355, 265, 340, 372, 388, 390, 466, 352, 346, 280, 295, 442, 282, 354, 19, 370, 285,\n 441, 295, 195, 248, 197, 457, 440, 274, 301, 300, 368, 417, 351, 465, 251, 301, 389, 385, 380, 386, 394, 395, 379, 399, 412, 419, 410, 436, 322, 387,\n 373, 388, 326, 2, 393, 354, 370, 461, 393, 164, 267, 268, 302, 12, 386, 374, 387, 312, 268, 13, 298, 293, 301, 265, 446, 340, 380, 385, 381, 280, 330,\n 425, 322, 426, 391, 420, 429, 437, 393, 391, 326, 344, 440, 438, 458, 459, 461, 364, 434, 394, 428, 396, 262, 274, 354, 457, 317, 316, 402, 316, 315,\n 403, 315, 314, 404, 314, 313, 405, 313, 421, 406, 323, 366, 361, 292, 306, 407, 306, 291, 408, 291, 287, 409, 287, 432, 410, 427, 434, 411, 372, 264,\n 383, 459, 309, 457, 366, 352, 401, 1, 274, 4, 418, 421, 262, 331, 294, 358, 435, 433, 367, 392, 289, 439, 328, 462, 326, 94, 2, 370, 289, 305, 455, 339,\n 254, 448, 359, 255, 446, 254, 253, 449, 253, 252, 450, 252, 256, 451, 256, 341, 452, 414, 413, 463, 286, 441, 414, 286, 258, 441, 258, 257, 442, 257,\n 259, 443, 259, 260, 444, 260, 467, 445, 309, 459, 250, 305, 289, 290, 305, 290, 460, 401, 376, 435, 309, 250, 392, 376, 411, 433, 453, 341, 464, 357,\n 453, 465, 343, 357, 412, 437, 343, 399, 344, 360, 440, 420, 437, 456, 360, 420, 363, 361, 401, 288, 265, 372, 353, 390, 339, 249, 339, 448, 255];\n\nexport const TRI68: Array = [0, 1, 36, 0, 36, 17, 1, 2, 41, 1, 41, 36, 2, 3, 31, 2, 31, 41, 3, 4, 48, 3, 48, 31, 4, 5, 48, 5, 6, 48, 6, 7, 59, 6, 59, 48, 7, 8, 58, 7, 58, 59,\n 8, 9, 56, 8, 56, 57, 8, 57, 58, 9, 10, 55, 9, 55, 56, 10, 11, 54, 10, 54, 55, 11, 12, 54, 12, 13, 54, 13, 14, 35, 13, 35, 54, 14, 15, 46, 14, 46, 35, 15, 16,\n 45, 15, 45, 46, 16, 26, 45, 17, 36, 18, 18, 37, 19, 18, 36, 37, 19, 38, 20, 19, 37, 38, 20, 39, 21, 20, 38, 39, 21, 39, 27, 22, 42, 23, 22, 27, 42, 23, 43, 24,\n 23, 42, 43, 24, 44, 25, 24, 43, 44, 25, 45, 26, 25, 44, 45, 27, 39, 28, 27, 28, 42, 28, 39, 29, 28, 29, 42, 29, 31, 30, 29, 30, 35, 29, 40, 31, 29, 35, 47, 29,\n 39, 40, 29, 47, 42, 30, 31, 32, 30, 32, 33, 30, 33, 34, 30, 34, 35, 31, 50, 32, 31, 40, 41, 31, 48, 49, 31, 49, 50, 32, 51, 33, 32, 50, 51, 33, 51, 34, 34, 52,\n 35, 34, 51, 52, 35, 46, 47, 35, 52, 53, 35, 53, 54, 36, 41, 37, 37, 40, 38, 37, 41, 40, 38, 40, 39, 42, 47, 43, 43, 47, 44, 44, 46, 45, 44, 47, 46, 48, 60, 49,\n 48, 59, 60, 49, 61, 50, 49, 60, 61, 50, 62, 51, 50, 61, 62, 51, 62, 52, 52, 63, 53, 52, 62, 63, 53, 64, 54, 53, 63, 64, 54, 64, 55, 55, 65, 56, 55, 64, 65, 56,\n 66, 57, 56, 65, 66, 57, 66, 58, 58, 67, 59, 58, 66, 67, 59, 67, 60, 60, 67, 61, 61, 66, 62, 61, 67, 66, 62, 66, 63, 63, 65, 64, 63, 66, 65, 21, 27, 22];\n\nexport const TRI33: Array = [\n /* eyes */ 0, 8, 7, 7, 8, 1, 2, 10, 9, 9, 10, 3,\n /* brows */ 17, 0, 18, 18, 0, 7, 18, 7, 19, 19, 7, 1, 19, 1, 11, 19, 11, 20, 21, 3, 22, 21, 9, 3, 20, 9, 21, 20, 2, 9, 20, 11, 2,\n /* 4head */ 23, 17, 18, 25, 21, 22, 24, 19, 20, 24, 18, 19, 24, 20, 21, 24, 23, 18, 24, 21, 25,\n /* nose */ 11, 12, 4, 11, 4, 13, 1, 12, 11, 11, 13, 2, 12, 14, 4, 4, 14, 13,\n /* up-lip */ 14, 5, 15, 14, 15, 6, 12, 5, 14, 14, 6, 13,\n /* cheeks */ 8, 12, 1, 2, 13, 10, 8, 26, 12, 10, 13, 27, 26, 5, 12, 13, 6, 27, 0, 26, 8, 10, 27, 3,\n /* chin */ 5, 32, 16, 16, 32, 6, 5, 30, 32, 6, 32, 31,\n /* cont */ 26, 30, 5, 27, 6, 31, 0, 28, 26, 3, 27, 29, 17, 28, 0, 3, 29, 22, 23, 28, 17, 22, 29, 25, 28, 30, 26, 27, 31, 29,\n];\n\nexport const TRI7: Array = [0, 4, 1, 2, 4, 3, 4, 5, 6];\n\nexport const VTX68: Array = [\n /* cont */ 127, 234, 132, 58, 172, 150, 149, 148, 152, 377, 378, 379, 397, 288, 361, 454, 356,\n /* brows */ 70, 63, 105, 66, 107, 336, 296, 334, 293, 300,\n /* nose */ 168, 6, 195, 4, 98, 97, 2, 326, 327,\n /* eyes */ 33, 160, 158, 133, 153, 144, 362, 385, 387, 263, 373, 380,\n /* lip */ 57, 40, 37, 0, 267, 270, 287, 321, 314, 17, 84, 91,\n /* mouth */ 78, 81, 13, 311, 308, 402, 14, 178,\n];\n\nexport const VTX33: Array = [33, 133, 362, 263, 1, 62, 308, 159, 145, 386, 374, 6, 102, 331, 2, 13, 14, 70, 105, 107, 336, 334, 300, 54, 10, 284, 50, 280, 234, 454, 58, 288, 152];\n\nexport const VTX7: Array = [33, 133, 362, 263, 1, 78, 308];\n\nexport const UV68 = VTX68.map((x) => UV468[x]);\n\nexport const UV33 = VTX33.map((x) => UV468[x]);\n\nexport const UV7 = VTX7.map((x) => UV468[x]);\n\n// https://github.com/tensorflow/tfjs-models/blob/master/face-landmarks-detection/src/constants.ts\n// https://github.com/google/mediapipe/mediapipe/python/solutions/face_mesh_connections.py\n\ntype PairArray = Array<[number, number]>;\n\nfunction connectionsToIndices(connections: PairArray) {\n const indices = connections.map((connection) => connection[0]);\n indices.push(connections[connections.length - 1][1]);\n return indices;\n}\n\nexport const pairsLips: PairArray = [\n [61, 146], [146, 91], [91, 181], [181, 84], [84, 17], [17, 314], [314, 405], [405, 321], [321, 375], [375, 291], [61, 185], [185, 40], [40, 39], [39, 37], [37, 0], [0, 267], [267, 269], [269, 270], [270, 409], [409, 291],\n [78, 95], [95, 88], [88, 178], [178, 87], [87, 14], [14, 317], [317, 402], [402, 318], [318, 324], [324, 308], [78, 191], [191, 80], [80, 81], [81, 82], [82, 13], [13, 312], [312, 311], [311, 310], [310, 415], [415, 308],\n];\n\nexport const pairsLeftEye: PairArray = [[263, 249], [249, 390], [390, 373], [373, 374], [374, 380], [380, 381], [381, 382], [382, 362], [263, 466], [466, 388], [388, 387], [387, 386], [386, 385], [385, 384], [384, 398], [398, 362]];\n\nexport const pairsLeftEyebrow: PairArray = [[276, 283], [283, 282], [282, 295], [295, 285], [300, 293], [293, 334], [334, 296], [296, 336]];\n\nexport const pairsLeftIris: PairArray = [[474, 475], [475, 476], [476, 477], [477, 474]];\n\nexport const pairsRightEye: PairArray = [[33, 7], [7, 163], [163, 144], [144, 145], [145, 153], [153, 154], [154, 155], [155, 133], [33, 246], [246, 161], [161, 160], [160, 159], [159, 158], [158, 157], [157, 173], [173, 133]];\n\nexport const pairsRightEyebrow: PairArray = [[46, 53], [53, 52], [52, 65], [65, 55], [70, 63], [63, 105], [105, 66], [66, 107]];\n\nexport const pairsRightIris: PairArray = [[469, 470], [470, 471], [471, 472], [472, 469]];\n\nexport const pairsFaceContour: PairArray = [\n [10, 338], [338, 297], [297, 332], [332, 284], [284, 251], [251, 389],\n [389, 356], [356, 454], [454, 323], [323, 361], [361, 288], [288, 397],\n [397, 365], [365, 379], [379, 378], [378, 400], [400, 377], [377, 152],\n [152, 148], [148, 176], [176, 149], [149, 150], [150, 136], [136, 172],\n [172, 58], [58, 132], [132, 93], [93, 234], [234, 127], [127, 162],\n [162, 21], [21, 54], [54, 103], [103, 67], [67, 109], [109, 10],\n];\n\nexport const contourKeypoints = {\n lips: connectionsToIndices(pairsLips),\n leftEye: connectionsToIndices(pairsLeftEye),\n leftEyebrow: connectionsToIndices(pairsLeftEyebrow),\n leftIris: connectionsToIndices(pairsLeftIris),\n rightEye: connectionsToIndices(pairsRightEye),\n rightEyebrow: connectionsToIndices(pairsRightEyebrow),\n rightIris: connectionsToIndices(pairsRightIris),\n faceOval: connectionsToIndices(pairsFaceContour),\n};\n\nexport const pairsFaceMesh: PairArray = [\n [127, 34], [34, 139], [139, 127], [11, 0], [0, 37], [37, 11],\n [232, 231], [231, 120], [120, 232], [72, 37], [37, 39], [39, 72],\n [128, 121], [121, 47], [47, 128], [232, 121], [121, 128], [128, 232],\n [104, 69], [69, 67], [67, 104], [175, 171], [171, 148], [148, 175],\n [118, 50], [50, 101], [101, 118], [73, 39], [39, 40], [40, 73],\n [9, 151], [151, 108], [108, 9], [48, 115], [115, 131], [131, 48],\n [194, 204], [204, 211], [211, 194], [74, 40], [40, 185], [185, 74],\n [80, 42], [42, 183], [183, 80], [40, 92], [92, 186], [186, 40],\n [230, 229], [229, 118], [118, 230], [202, 212], [212, 214], [214, 202],\n [83, 18], [18, 17], [17, 83], [76, 61], [61, 146], [146, 76],\n [160, 29], [29, 30], [30, 160], [56, 157], [157, 173], [173, 56],\n [106, 204], [204, 194], [194, 106], [135, 214], [214, 192], [192, 135],\n [203, 165], [165, 98], [98, 203], [21, 71], [71, 68], [68, 21],\n [51, 45], [45, 4], [4, 51], [144, 24], [24, 23], [23, 144],\n [77, 146], [146, 91], [91, 77], [205, 50], [50, 187], [187, 205],\n [201, 200], [200, 18], [18, 201], [91, 106], [106, 182], [182, 91],\n [90, 91], [91, 181], [181, 90], [85, 84], [84, 17], [17, 85],\n [206, 203], [203, 36], [36, 206], [148, 171], [171, 140], [140, 148],\n [92, 40], [40, 39], [39, 92], [193, 189], [189, 244], [244, 193],\n [159, 158], [158, 28], [28, 159], [247, 246], [246, 161], [161, 247],\n [236, 3], [3, 196], [196, 236], [54, 68], [68, 104], [104, 54],\n [193, 168], [168, 8], [8, 193], [117, 228], [228, 31], [31, 117],\n [189, 193], [193, 55], [55, 189], [98, 97], [97, 99], [99, 98],\n [126, 47], [47, 100], [100, 126], [166, 79], [79, 218], [218, 166],\n [155, 154], [154, 26], [26, 155], [209, 49], [49, 131], [131, 209],\n [135, 136], [136, 150], [150, 135], [47, 126], [126, 217], [217, 47],\n [223, 52], [52, 53], [53, 223], [45, 51], [51, 134], [134, 45],\n [211, 170], [170, 140], [140, 211], [67, 69], [69, 108], [108, 67],\n [43, 106], [106, 91], [91, 43], [230, 119], [119, 120], [120, 230],\n [226, 130], [130, 247], [247, 226], [63, 53], [53, 52], [52, 63],\n [238, 20], [20, 242], [242, 238], [46, 70], [70, 156], [156, 46],\n [78, 62], [62, 96], [96, 78], [46, 53], [53, 63], [63, 46],\n [143, 34], [34, 227], [227, 143], [123, 117], [117, 111], [111, 123],\n [44, 125], [125, 19], [19, 44], [236, 134], [134, 51], [51, 236],\n [216, 206], [206, 205], [205, 216], [154, 153], [153, 22], [22, 154],\n [39, 37], [37, 167], [167, 39], [200, 201], [201, 208], [208, 200],\n [36, 142], [142, 100], [100, 36], [57, 212], [212, 202], [202, 57],\n [20, 60], [60, 99], [99, 20], [28, 158], [158, 157], [157, 28],\n [35, 226], [226, 113], [113, 35], [160, 159], [159, 27], [27, 160],\n [204, 202], [202, 210], [210, 204], [113, 225], [225, 46], [46, 113],\n [43, 202], [202, 204], [204, 43], [62, 76], [76, 77], [77, 62],\n [137, 123], [123, 116], [116, 137], [41, 38], [38, 72], [72, 41],\n [203, 129], [129, 142], [142, 203], [64, 98], [98, 240], [240, 64],\n [49, 102], [102, 64], [64, 49], [41, 73], [73, 74], [74, 41],\n [212, 216], [216, 207], [207, 212], [42, 74], [74, 184], [184, 42],\n [169, 170], [170, 211], [211, 169], [170, 149], [149, 176], [176, 170],\n [105, 66], [66, 69], [69, 105], [122, 6], [6, 168], [168, 122],\n [123, 147], [147, 187], [187, 123], [96, 77], [77, 90], [90, 96],\n [65, 55], [55, 107], [107, 65], [89, 90], [90, 180], [180, 89],\n [101, 100], [100, 120], [120, 101], [63, 105], [105, 104], [104, 63],\n [93, 137], [137, 227], [227, 93], [15, 86], [86, 85], [85, 15],\n [129, 102], [102, 49], [49, 129], [14, 87], [87, 86], [86, 14],\n [55, 8], [8, 9], [9, 55], [100, 47], [47, 121], [121, 100],\n [145, 23], [23, 22], [22, 145], [88, 89], [89, 179], [179, 88],\n [6, 122], [122, 196], [196, 6], [88, 95], [95, 96], [96, 88],\n [138, 172], [172, 136], [136, 138], [215, 58], [58, 172], [172, 215],\n [115, 48], [48, 219], [219, 115], [42, 80], [80, 81], [81, 42],\n [195, 3], [3, 51], [51, 195], [43, 146], [146, 61], [61, 43],\n [171, 175], [175, 199], [199, 171], [81, 82], [82, 38], [38, 81],\n [53, 46], [46, 225], [225, 53], [144, 163], [163, 110], [110, 144],\n [52, 65], [65, 66], [66, 52], [229, 228], [228, 117], [117, 229],\n [34, 127], [127, 234], [234, 34], [107, 108], [108, 69], [69, 107],\n [109, 108], [108, 151], [151, 109], [48, 64], [64, 235], [235, 48],\n [62, 78], [78, 191], [191, 62], [129, 209], [209, 126], [126, 129],\n [111, 35], [35, 143], [143, 111], [117, 123], [123, 50], [50, 117],\n [222, 65], [65, 52], [52, 222], [19, 125], [125, 141], [141, 19],\n [221, 55], [55, 65], [65, 221], [3, 195], [195, 197], [197, 3],\n [25, 7], [7, 33], [33, 25], [220, 237], [237, 44], [44, 220],\n [70, 71], [71, 139], [139, 70], [122, 193], [193, 245], [245, 122],\n [247, 130], [130, 33], [33, 247], [71, 21], [21, 162], [162, 71],\n [170, 169], [169, 150], [150, 170], [188, 174], [174, 196], [196, 188],\n [216, 186], [186, 92], [92, 216], [2, 97], [97, 167], [167, 2],\n [141, 125], [125, 241], [241, 141], [164, 167], [167, 37], [37, 164],\n [72, 38], [38, 12], [12, 72], [38, 82], [82, 13], [13, 38],\n [63, 68], [68, 71], [71, 63], [226, 35], [35, 111], [111, 226],\n [101, 50], [50, 205], [205, 101], [206, 92], [92, 165], [165, 206],\n [209, 198], [198, 217], [217, 209], [165, 167], [167, 97], [97, 165],\n [220, 115], [115, 218], [218, 220], [133, 112], [112, 243], [243, 133],\n [239, 238], [238, 241], [241, 239], [214, 135], [135, 169], [169, 214],\n [190, 173], [173, 133], [133, 190], [171, 208], [208, 32], [32, 171],\n [125, 44], [44, 237], [237, 125], [86, 87], [87, 178], [178, 86],\n [85, 86], [86, 179], [179, 85], [84, 85], [85, 180], [180, 84],\n [83, 84], [84, 181], [181, 83], [201, 83], [83, 182], [182, 201],\n [137, 93], [93, 132], [132, 137], [76, 62], [62, 183], [183, 76],\n [61, 76], [76, 184], [184, 61], [57, 61], [61, 185], [185, 57],\n [212, 57], [57, 186], [186, 212], [214, 207], [207, 187], [187, 214],\n [34, 143], [143, 156], [156, 34], [79, 239], [239, 237], [237, 79],\n [123, 137], [137, 177], [177, 123], [44, 1], [1, 4], [4, 44],\n [201, 194], [194, 32], [32, 201], [64, 102], [102, 129], [129, 64],\n [213, 215], [215, 138], [138, 213], [59, 166], [166, 219], [219, 59],\n [242, 99], [99, 97], [97, 242], [2, 94], [94, 141], [141, 2],\n [75, 59], [59, 235], [235, 75], [24, 110], [110, 228], [228, 24],\n [25, 130], [130, 226], [226, 25], [23, 24], [24, 229], [229, 23],\n [22, 23], [23, 230], [230, 22], [26, 22], [22, 231], [231, 26],\n [112, 26], [26, 232], [232, 112], [189, 190], [190, 243], [243, 189],\n [221, 56], [56, 190], [190, 221], [28, 56], [56, 221], [221, 28],\n [27, 28], [28, 222], [222, 27], [29, 27], [27, 223], [223, 29],\n [30, 29], [29, 224], [224, 30], [247, 30], [30, 225], [225, 247],\n [238, 79], [79, 20], [20, 238], [166, 59], [59, 75], [75, 166],\n [60, 75], [75, 240], [240, 60], [147, 177], [177, 215], [215, 147],\n [20, 79], [79, 166], [166, 20], [187, 147], [147, 213], [213, 187],\n [112, 233], [233, 244], [244, 112], [233, 128], [128, 245], [245, 233],\n [128, 114], [114, 188], [188, 128], [114, 217], [217, 174], [174, 114],\n [131, 115], [115, 220], [220, 131], [217, 198], [198, 236], [236, 217],\n [198, 131], [131, 134], [134, 198], [177, 132], [132, 58], [58, 177],\n [143, 35], [35, 124], [124, 143], [110, 163], [163, 7], [7, 110],\n [228, 110], [110, 25], [25, 228], [356, 389], [389, 368], [368, 356],\n [11, 302], [302, 267], [267, 11], [452, 350], [350, 349], [349, 452],\n [302, 303], [303, 269], [269, 302], [357, 343], [343, 277], [277, 357],\n [452, 453], [453, 357], [357, 452], [333, 332], [332, 297], [297, 333],\n [175, 152], [152, 377], [377, 175], [347, 348], [348, 330], [330, 347],\n [303, 304], [304, 270], [270, 303], [9, 336], [336, 337], [337, 9],\n [278, 279], [279, 360], [360, 278], [418, 262], [262, 431], [431, 418],\n [304, 408], [408, 409], [409, 304], [310, 415], [415, 407], [407, 310],\n [270, 409], [409, 410], [410, 270], [450, 348], [348, 347], [347, 450],\n [422, 430], [430, 434], [434, 422], [313, 314], [314, 17], [17, 313],\n [306, 307], [307, 375], [375, 306], [387, 388], [388, 260], [260, 387],\n [286, 414], [414, 398], [398, 286], [335, 406], [406, 418], [418, 335],\n [364, 367], [367, 416], [416, 364], [423, 358], [358, 327], [327, 423],\n [251, 284], [284, 298], [298, 251], [281, 5], [5, 4], [4, 281],\n [373, 374], [374, 253], [253, 373], [307, 320], [320, 321], [321, 307],\n [425, 427], [427, 411], [411, 425], [421, 313], [313, 18], [18, 421],\n [321, 405], [405, 406], [406, 321], [320, 404], [404, 405], [405, 320],\n [315, 16], [16, 17], [17, 315], [426, 425], [425, 266], [266, 426],\n [377, 400], [400, 369], [369, 377], [322, 391], [391, 269], [269, 322],\n [417, 465], [465, 464], [464, 417], [386, 257], [257, 258], [258, 386],\n [466, 260], [260, 388], [388, 466], [456, 399], [399, 419], [419, 456],\n [284, 332], [332, 333], [333, 284], [417, 285], [285, 8], [8, 417],\n [346, 340], [340, 261], [261, 346], [413, 441], [441, 285], [285, 413],\n [327, 460], [460, 328], [328, 327], [355, 371], [371, 329], [329, 355],\n [392, 439], [439, 438], [438, 392], [382, 341], [341, 256], [256, 382],\n [429, 420], [420, 360], [360, 429], [364, 394], [394, 379], [379, 364],\n [277, 343], [343, 437], [437, 277], [443, 444], [444, 283], [283, 443],\n [275, 440], [440, 363], [363, 275], [431, 262], [262, 369], [369, 431],\n [297, 338], [338, 337], [337, 297], [273, 375], [375, 321], [321, 273],\n [450, 451], [451, 349], [349, 450], [446, 342], [342, 467], [467, 446],\n [293, 334], [334, 282], [282, 293], [458, 461], [461, 462], [462, 458],\n [276, 353], [353, 383], [383, 276], [308, 324], [324, 325], [325, 308],\n [276, 300], [300, 293], [293, 276], [372, 345], [345, 447], [447, 372],\n [352, 345], [345, 340], [340, 352], [274, 1], [1, 19], [19, 274],\n [456, 248], [248, 281], [281, 456], [436, 427], [427, 425], [425, 436],\n [381, 256], [256, 252], [252, 381], [269, 391], [391, 393], [393, 269],\n [200, 199], [199, 428], [428, 200], [266, 330], [330, 329], [329, 266],\n [287, 273], [273, 422], [422, 287], [250, 462], [462, 328], [328, 250],\n [258, 286], [286, 384], [384, 258], [265, 353], [353, 342], [342, 265],\n [387, 259], [259, 257], [257, 387], [424, 431], [431, 430], [430, 424],\n [342, 353], [353, 276], [276, 342], [273, 335], [335, 424], [424, 273],\n [292, 325], [325, 307], [307, 292], [366, 447], [447, 345], [345, 366],\n [271, 303], [303, 302], [302, 271], [423, 266], [266, 371], [371, 423],\n [294, 455], [455, 460], [460, 294], [279, 278], [278, 294], [294, 279],\n [271, 272], [272, 304], [304, 271], [432, 434], [434, 427], [427, 432],\n [272, 407], [407, 408], [408, 272], [394, 430], [430, 431], [431, 394],\n [395, 369], [369, 400], [400, 395], [334, 333], [333, 299], [299, 334],\n [351, 417], [417, 168], [168, 351], [352, 280], [280, 411], [411, 352],\n [325, 319], [319, 320], [320, 325], [295, 296], [296, 336], [336, 295],\n [319, 403], [403, 404], [404, 319], [330, 348], [348, 349], [349, 330],\n [293, 298], [298, 333], [333, 293], [323, 454], [454, 447], [447, 323],\n [15, 16], [16, 315], [315, 15], [358, 429], [429, 279], [279, 358],\n [14, 15], [15, 316], [316, 14], [285, 336], [336, 9], [9, 285],\n [329, 349], [349, 350], [350, 329], [374, 380], [380, 252], [252, 374],\n [318, 402], [402, 403], [403, 318], [6, 197], [197, 419], [419, 6],\n [318, 319], [319, 325], [325, 318], [367, 364], [364, 365], [365, 367],\n [435, 367], [367, 397], [397, 435], [344, 438], [438, 439], [439, 344],\n [272, 271], [271, 311], [311, 272], [195, 5], [5, 281], [281, 195],\n [273, 287], [287, 291], [291, 273], [396, 428], [428, 199], [199, 396],\n [311, 271], [271, 268], [268, 311], [283, 444], [444, 445], [445, 283],\n [373, 254], [254, 339], [339, 373], [282, 334], [334, 296], [296, 282],\n [449, 347], [347, 346], [346, 449], [264, 447], [447, 454], [454, 264],\n [336, 296], [296, 299], [299, 336], [338, 10], [10, 151], [151, 338],\n [278, 439], [439, 455], [455, 278], [292, 407], [407, 415], [415, 292],\n [358, 371], [371, 355], [355, 358], [340, 345], [345, 372], [372, 340],\n [346, 347], [347, 280], [280, 346], [442, 443], [443, 282], [282, 442],\n [19, 94], [94, 370], [370, 19], [441, 442], [442, 295], [295, 441],\n [248, 419], [419, 197], [197, 248], [263, 255], [255, 359], [359, 263],\n [440, 275], [275, 274], [274, 440], [300, 383], [383, 368], [368, 300],\n [351, 412], [412, 465], [465, 351], [263, 467], [467, 466], [466, 263],\n [301, 368], [368, 389], [389, 301], [395, 378], [378, 379], [379, 395],\n [412, 351], [351, 419], [419, 412], [436, 426], [426, 322], [322, 436],\n [2, 164], [164, 393], [393, 2], [370, 462], [462, 461], [461, 370],\n [164, 0], [0, 267], [267, 164], [302, 11], [11, 12], [12, 302],\n [268, 12], [12, 13], [13, 268], [293, 300], [300, 301], [301, 293],\n [446, 261], [261, 340], [340, 446], [330, 266], [266, 425], [425, 330],\n [426, 423], [423, 391], [391, 426], [429, 355], [355, 437], [437, 429],\n [391, 327], [327, 326], [326, 391], [440, 457], [457, 438], [438, 440],\n [341, 382], [382, 362], [362, 341], [459, 457], [457, 461], [461, 459],\n [434, 430], [430, 394], [394, 434], [414, 463], [463, 362], [362, 414],\n [396, 369], [369, 262], [262, 396], [354, 461], [461, 457], [457, 354],\n [316, 403], [403, 402], [402, 316], [315, 404], [404, 403], [403, 315],\n [314, 405], [405, 404], [404, 314], [313, 406], [406, 405], [405, 313],\n [421, 418], [418, 406], [406, 421], [366, 401], [401, 361], [361, 366],\n [306, 408], [408, 407], [407, 306], [291, 409], [409, 408], [408, 291],\n [287, 410], [410, 409], [409, 287], [432, 436], [436, 410], [410, 432],\n [434, 416], [416, 411], [411, 434], [264, 368], [368, 383], [383, 264],\n [309, 438], [438, 457], [457, 309], [352, 376], [376, 401], [401, 352],\n [274, 275], [275, 4], [4, 274], [421, 428], [428, 262], [262, 421],\n [294, 327], [327, 358], [358, 294], [433, 416], [416, 367], [367, 433],\n [289, 455], [455, 439], [439, 289], [462, 370], [370, 326], [326, 462],\n [2, 326], [326, 370], [370, 2], [305, 460], [460, 455], [455, 305],\n [254, 449], [449, 448], [448, 254], [255, 261], [261, 446], [446, 255],\n [253, 450], [450, 449], [449, 253], [252, 451], [451, 450], [450, 252],\n [256, 452], [452, 451], [451, 256], [341, 453], [453, 452], [452, 341],\n [413, 464], [464, 463], [463, 413], [441, 413], [413, 414], [414, 441],\n [258, 442], [442, 441], [441, 258], [257, 443], [443, 442], [442, 257],\n [259, 444], [444, 443], [443, 259], [260, 445], [445, 444], [444, 260],\n [467, 342], [342, 445], [445, 467], [459, 458], [458, 250], [250, 459],\n [289, 392], [392, 290], [290, 289], [290, 328], [328, 460], [460, 290],\n [376, 433], [433, 435], [435, 376], [250, 290], [290, 392], [392, 250],\n [411, 416], [416, 433], [433, 411], [341, 463], [463, 464], [464, 341],\n [453, 464], [464, 465], [465, 453], [357, 465], [465, 412], [412, 357],\n [343, 412], [412, 399], [399, 343], [360, 363], [363, 440], [440, 360],\n [437, 399], [399, 456], [456, 437], [420, 456], [456, 363], [363, 420],\n [401, 435], [435, 288], [288, 401], [372, 383], [383, 353], [353, 372],\n [339, 255], [255, 249], [249, 339], [448, 261], [261, 255], [255, 448],\n [133, 243], [243, 190], [190, 133], [133, 155], [155, 112], [112, 133],\n [33, 246], [246, 247], [247, 33], [33, 130], [130, 25], [25, 33],\n [398, 384], [384, 286], [286, 398], [362, 398], [398, 414], [414, 362],\n [362, 463], [463, 341], [341, 362], [263, 359], [359, 467], [467, 263],\n [263, 249], [249, 255], [255, 263], [466, 467], [467, 260], [260, 466],\n [75, 60], [60, 166], [166, 75], [238, 239], [239, 79], [79, 238],\n [162, 127], [127, 139], [139, 162], [72, 11], [11, 37], [37, 72],\n [121, 232], [232, 120], [120, 121], [73, 72], [72, 39], [39, 73],\n [114, 128], [128, 47], [47, 114], [233, 232], [232, 128], [128, 233],\n [103, 104], [104, 67], [67, 103], [152, 175], [175, 148], [148, 152],\n [119, 118], [118, 101], [101, 119], [74, 73], [73, 40], [40, 74],\n [107, 9], [9, 108], [108, 107], [49, 48], [48, 131], [131, 49],\n [32, 194], [194, 211], [211, 32], [184, 74], [74, 185], [185, 184],\n [191, 80], [80, 183], [183, 191], [185, 40], [40, 186], [186, 185],\n [119, 230], [230, 118], [118, 119], [210, 202], [202, 214], [214, 210],\n [84, 83], [83, 17], [17, 84], [77, 76], [76, 146], [146, 77],\n [161, 160], [160, 30], [30, 161], [190, 56], [56, 173], [173, 190],\n [182, 106], [106, 194], [194, 182], [138, 135], [135, 192], [192, 138],\n [129, 203], [203, 98], [98, 129], [54, 21], [21, 68], [68, 54],\n [5, 51], [51, 4], [4, 5], [145, 144], [144, 23], [23, 145],\n [90, 77], [77, 91], [91, 90], [207, 205], [205, 187], [187, 207],\n [83, 201], [201, 18], [18, 83], [181, 91], [91, 182], [182, 181],\n [180, 90], [90, 181], [181, 180], [16, 85], [85, 17], [17, 16],\n [205, 206], [206, 36], [36, 205], [176, 148], [148, 140], [140, 176],\n [165, 92], [92, 39], [39, 165], [245, 193], [193, 244], [244, 245],\n [27, 159], [159, 28], [28, 27], [30, 247], [247, 161], [161, 30],\n [174, 236], [236, 196], [196, 174], [103, 54], [54, 104], [104, 103],\n [55, 193], [193, 8], [8, 55], [111, 117], [117, 31], [31, 111],\n [221, 189], [189, 55], [55, 221], [240, 98], [98, 99], [99, 240],\n [142, 126], [126, 100], [100, 142], [219, 166], [166, 218], [218, 219],\n [112, 155], [155, 26], [26, 112], [198, 209], [209, 131], [131, 198],\n [169, 135], [135, 150], [150, 169], [114, 47], [47, 217], [217, 114],\n [224, 223], [223, 53], [53, 224], [220, 45], [45, 134], [134, 220],\n [32, 211], [211, 140], [140, 32], [109, 67], [67, 108], [108, 109],\n [146, 43], [43, 91], [91, 146], [231, 230], [230, 120], [120, 231],\n [113, 226], [226, 247], [247, 113], [105, 63], [63, 52], [52, 105],\n [241, 238], [238, 242], [242, 241], [124, 46], [46, 156], [156, 124],\n [95, 78], [78, 96], [96, 95], [70, 46], [46, 63], [63, 70],\n [116, 143], [143, 227], [227, 116], [116, 123], [123, 111], [111, 116],\n [1, 44], [44, 19], [19, 1], [3, 236], [236, 51], [51, 3],\n [207, 216], [216, 205], [205, 207], [26, 154], [154, 22], [22, 26],\n [165, 39], [39, 167], [167, 165], [199, 200], [200, 208], [208, 199],\n [101, 36], [36, 100], [100, 101], [43, 57], [57, 202], [202, 43],\n [242, 20], [20, 99], [99, 242], [56, 28], [28, 157], [157, 56],\n [124, 35], [35, 113], [113, 124], [29, 160], [160, 27], [27, 29],\n [211, 204], [204, 210], [210, 211], [124, 113], [113, 46], [46, 124],\n [106, 43], [43, 204], [204, 106], [96, 62], [62, 77], [77, 96],\n [227, 137], [137, 116], [116, 227], [73, 41], [41, 72], [72, 73],\n [36, 203], [203, 142], [142, 36], [235, 64], [64, 240], [240, 235],\n [48, 49], [49, 64], [64, 48], [42, 41], [41, 74], [74, 42],\n [214, 212], [212, 207], [207, 214], [183, 42], [42, 184], [184, 183],\n [210, 169], [169, 211], [211, 210], [140, 170], [170, 176], [176, 140],\n [104, 105], [105, 69], [69, 104], [193, 122], [122, 168], [168, 193],\n [50, 123], [123, 187], [187, 50], [89, 96], [96, 90], [90, 89],\n [66, 65], [65, 107], [107, 66], [179, 89], [89, 180], [180, 179],\n [119, 101], [101, 120], [120, 119], [68, 63], [63, 104], [104, 68],\n [234, 93], [93, 227], [227, 234], [16, 15], [15, 85], [85, 16],\n [209, 129], [129, 49], [49, 209], [15, 14], [14, 86], [86, 15],\n [107, 55], [55, 9], [9, 107], [120, 100], [100, 121], [121, 120],\n [153, 145], [145, 22], [22, 153], [178, 88], [88, 179], [179, 178],\n [197, 6], [6, 196], [196, 197], [89, 88], [88, 96], [96, 89],\n [135, 138], [138, 136], [136, 135], [138, 215], [215, 172], [172, 138],\n [218, 115], [115, 219], [219, 218], [41, 42], [42, 81], [81, 41],\n [5, 195], [195, 51], [51, 5], [57, 43], [43, 61], [61, 57],\n [208, 171], [171, 199], [199, 208], [41, 81], [81, 38], [38, 41],\n [224, 53], [53, 225], [225, 224], [24, 144], [144, 110], [110, 24],\n [105, 52], [52, 66], [66, 105], [118, 229], [229, 117], [117, 118],\n [227, 34], [34, 234], [234, 227], [66, 107], [107, 69], [69, 66],\n [10, 109], [109, 151], [151, 10], [219, 48], [48, 235], [235, 219],\n [183, 62], [62, 191], [191, 183], [142, 129], [129, 126], [126, 142],\n [116, 111], [111, 143], [143, 116], [118, 117], [117, 50], [50, 118],\n [223, 222], [222, 52], [52, 223], [94, 19], [19, 141], [141, 94],\n [222, 221], [221, 65], [65, 222], [196, 3], [3, 197], [197, 196],\n [45, 220], [220, 44], [44, 45], [156, 70], [70, 139], [139, 156],\n [188, 122], [122, 245], [245, 188], [139, 71], [71, 162], [162, 139],\n [149, 170], [170, 150], [150, 149], [122, 188], [188, 196], [196, 122],\n [206, 216], [216, 92], [92, 206], [164, 2], [2, 167], [167, 164],\n [242, 141], [141, 241], [241, 242], [0, 164], [164, 37], [37, 0],\n [11, 72], [72, 12], [12, 11], [12, 38], [38, 13], [13, 12],\n [70, 63], [63, 71], [71, 70], [31, 226], [226, 111], [111, 31],\n [36, 101], [101, 205], [205, 36], [203, 206], [206, 165], [165, 203],\n [126, 209], [209, 217], [217, 126], [98, 165], [165, 97], [97, 98],\n [237, 220], [220, 218], [218, 237], [237, 239], [239, 241], [241, 237],\n [210, 214], [214, 169], [169, 210], [140, 171], [171, 32], [32, 140],\n [241, 125], [125, 237], [237, 241], [179, 86], [86, 178], [178, 179],\n [180, 85], [85, 179], [179, 180], [181, 84], [84, 180], [180, 181],\n [182, 83], [83, 181], [181, 182], [194, 201], [201, 182], [182, 194],\n [177, 137], [137, 132], [132, 177], [184, 76], [76, 183], [183, 184],\n [185, 61], [61, 184], [184, 185], [186, 57], [57, 185], [185, 186],\n [216, 212], [212, 186], [186, 216], [192, 214], [214, 187], [187, 192],\n [139, 34], [34, 156], [156, 139], [218, 79], [79, 237], [237, 218],\n [147, 123], [123, 177], [177, 147], [45, 44], [44, 4], [4, 45],\n [208, 201], [201, 32], [32, 208], [98, 64], [64, 129], [129, 98],\n [192, 213], [213, 138], [138, 192], [235, 59], [59, 219], [219, 235],\n [141, 242], [242, 97], [97, 141], [97, 2], [2, 141], [141, 97],\n [240, 75], [75, 235], [235, 240], [229, 24], [24, 228], [228, 229],\n [31, 25], [25, 226], [226, 31], [230, 23], [23, 229], [229, 230],\n [231, 22], [22, 230], [230, 231], [232, 26], [26, 231], [231, 232],\n [233, 112], [112, 232], [232, 233], [244, 189], [189, 243], [243, 244],\n [189, 221], [221, 190], [190, 189], [222, 28], [28, 221], [221, 222],\n [223, 27], [27, 222], [222, 223], [224, 29], [29, 223], [223, 224],\n [225, 30], [30, 224], [224, 225], [113, 247], [247, 225], [225, 113],\n [99, 60], [60, 240], [240, 99], [213, 147], [147, 215], [215, 213],\n [60, 20], [20, 166], [166, 60], [192, 187], [187, 213], [213, 192],\n [243, 112], [112, 244], [244, 243], [244, 233], [233, 245], [245, 244],\n [245, 128], [128, 188], [188, 245], [188, 114], [114, 174], [174, 188],\n [134, 131], [131, 220], [220, 134], [174, 217], [217, 236], [236, 174],\n [236, 198], [198, 134], [134, 236], [215, 177], [177, 58], [58, 215],\n [156, 143], [143, 124], [124, 156], [25, 110], [110, 7], [7, 25],\n [31, 228], [228, 25], [25, 31], [264, 356], [356, 368], [368, 264],\n [0, 11], [11, 267], [267, 0], [451, 452], [452, 349], [349, 451],\n [267, 302], [302, 269], [269, 267], [350, 357], [357, 277], [277, 350],\n [350, 452], [452, 357], [357, 350], [299, 333], [333, 297], [297, 299],\n [396, 175], [175, 377], [377, 396], [280, 347], [347, 330], [330, 280],\n [269, 303], [303, 270], [270, 269], [151, 9], [9, 337], [337, 151],\n [344, 278], [278, 360], [360, 344], [424, 418], [418, 431], [431, 424],\n [270, 304], [304, 409], [409, 270], [272, 310], [310, 407], [407, 272],\n [322, 270], [270, 410], [410, 322], [449, 450], [450, 347], [347, 449],\n [432, 422], [422, 434], [434, 432], [18, 313], [313, 17], [17, 18],\n [291, 306], [306, 375], [375, 291], [259, 387], [387, 260], [260, 259],\n [424, 335], [335, 418], [418, 424], [434, 364], [364, 416], [416, 434],\n [391, 423], [423, 327], [327, 391], [301, 251], [251, 298], [298, 301],\n [275, 281], [281, 4], [4, 275], [254, 373], [373, 253], [253, 254],\n [375, 307], [307, 321], [321, 375], [280, 425], [425, 411], [411, 280],\n [200, 421], [421, 18], [18, 200], [335, 321], [321, 406], [406, 335],\n [321, 320], [320, 405], [405, 321], [314, 315], [315, 17], [17, 314],\n [423, 426], [426, 266], [266, 423], [396, 377], [377, 369], [369, 396],\n [270, 322], [322, 269], [269, 270], [413, 417], [417, 464], [464, 413],\n [385, 386], [386, 258], [258, 385], [248, 456], [456, 419], [419, 248],\n [298, 284], [284, 333], [333, 298], [168, 417], [417, 8], [8, 168],\n [448, 346], [346, 261], [261, 448], [417, 413], [413, 285], [285, 417],\n [326, 327], [327, 328], [328, 326], [277, 355], [355, 329], [329, 277],\n [309, 392], [392, 438], [438, 309], [381, 382], [382, 256], [256, 381],\n [279, 429], [429, 360], [360, 279], [365, 364], [364, 379], [379, 365],\n [355, 277], [277, 437], [437, 355], [282, 443], [443, 283], [283, 282],\n [281, 275], [275, 363], [363, 281], [395, 431], [431, 369], [369, 395],\n [299, 297], [297, 337], [337, 299], [335, 273], [273, 321], [321, 335],\n [348, 450], [450, 349], [349, 348], [359, 446], [446, 467], [467, 359],\n [283, 293], [293, 282], [282, 283], [250, 458], [458, 462], [462, 250],\n [300, 276], [276, 383], [383, 300], [292, 308], [308, 325], [325, 292],\n [283, 276], [276, 293], [293, 283], [264, 372], [372, 447], [447, 264],\n [346, 352], [352, 340], [340, 346], [354, 274], [274, 19], [19, 354],\n [363, 456], [456, 281], [281, 363], [426, 436], [436, 425], [425, 426],\n [380, 381], [381, 252], [252, 380], [267, 269], [269, 393], [393, 267],\n [421, 200], [200, 428], [428, 421], [371, 266], [266, 329], [329, 371],\n [432, 287], [287, 422], [422, 432], [290, 250], [250, 328], [328, 290],\n [385, 258], [258, 384], [384, 385], [446, 265], [265, 342], [342, 446],\n [386, 387], [387, 257], [257, 386], [422, 424], [424, 430], [430, 422],\n [445, 342], [342, 276], [276, 445], [422, 273], [273, 424], [424, 422],\n [306, 292], [292, 307], [307, 306], [352, 366], [366, 345], [345, 352],\n [268, 271], [271, 302], [302, 268], [358, 423], [423, 371], [371, 358],\n [327, 294], [294, 460], [460, 327], [331, 279], [279, 294], [294, 331],\n [303, 271], [271, 304], [304, 303], [436, 432], [432, 427], [427, 436],\n [304, 272], [272, 408], [408, 304], [395, 394], [394, 431], [431, 395],\n [378, 395], [395, 400], [400, 378], [296, 334], [334, 299], [299, 296],\n [6, 351], [351, 168], [168, 6], [376, 352], [352, 411], [411, 376],\n [307, 325], [325, 320], [320, 307], [285, 295], [295, 336], [336, 285],\n [320, 319], [319, 404], [404, 320], [329, 330], [330, 349], [349, 329],\n [334, 293], [293, 333], [333, 334], [366, 323], [323, 447], [447, 366],\n [316, 15], [15, 315], [315, 316], [331, 358], [358, 279], [279, 331],\n [317, 14], [14, 316], [316, 317], [8, 285], [285, 9], [9, 8],\n [277, 329], [329, 350], [350, 277], [253, 374], [374, 252], [252, 253],\n [319, 318], [318, 403], [403, 319], [351, 6], [6, 419], [419, 351],\n [324, 318], [318, 325], [325, 324], [397, 367], [367, 365], [365, 397],\n [288, 435], [435, 397], [397, 288], [278, 344], [344, 439], [439, 278],\n [310, 272], [272, 311], [311, 310], [248, 195], [195, 281], [281, 248],\n [375, 273], [273, 291], [291, 375], [175, 396], [396, 199], [199, 175],\n [312, 311], [311, 268], [268, 312], [276, 283], [283, 445], [445, 276],\n [390, 373], [373, 339], [339, 390], [295, 282], [282, 296], [296, 295],\n [448, 449], [449, 346], [346, 448], [356, 264], [264, 454], [454, 356],\n [337, 336], [336, 299], [299, 337], [337, 338], [338, 151], [151, 337],\n [294, 278], [278, 455], [455, 294], [308, 292], [292, 415], [415, 308],\n [429, 358], [358, 355], [355, 429], [265, 340], [340, 372], [372, 265],\n [352, 346], [346, 280], [280, 352], [295, 442], [442, 282], [282, 295],\n [354, 19], [19, 370], [370, 354], [285, 441], [441, 295], [295, 285],\n [195, 248], [248, 197], [197, 195], [457, 440], [440, 274], [274, 457],\n [301, 300], [300, 368], [368, 301], [417, 351], [351, 465], [465, 417],\n [251, 301], [301, 389], [389, 251], [394, 395], [395, 379], [379, 394],\n [399, 412], [412, 419], [419, 399], [410, 436], [436, 322], [322, 410],\n [326, 2], [2, 393], [393, 326], [354, 370], [370, 461], [461, 354],\n [393, 164], [164, 267], [267, 393], [268, 302], [302, 12], [12, 268],\n [312, 268], [268, 13], [13, 312], [298, 293], [293, 301], [301, 298],\n [265, 446], [446, 340], [340, 265], [280, 330], [330, 425], [425, 280],\n [322, 426], [426, 391], [391, 322], [420, 429], [429, 437], [437, 420],\n [393, 391], [391, 326], [326, 393], [344, 440], [440, 438], [438, 344],\n [458, 459], [459, 461], [461, 458], [364, 434], [434, 394], [394, 364],\n [428, 396], [396, 262], [262, 428], [274, 354], [354, 457], [457, 274],\n [317, 316], [316, 402], [402, 317], [316, 315], [315, 403], [403, 316],\n [315, 314], [314, 404], [404, 315], [314, 313], [313, 405], [405, 314],\n [313, 421], [421, 406], [406, 313], [323, 366], [366, 361], [361, 323],\n [292, 306], [306, 407], [407, 292], [306, 291], [291, 408], [408, 306],\n [291, 287], [287, 409], [409, 291], [287, 432], [432, 410], [410, 287],\n [427, 434], [434, 411], [411, 427], [372, 264], [264, 383], [383, 372],\n [459, 309], [309, 457], [457, 459], [366, 352], [352, 401], [401, 366],\n [1, 274], [274, 4], [4, 1], [418, 421], [421, 262], [262, 418],\n [331, 294], [294, 358], [358, 331], [435, 433], [433, 367], [367, 435],\n [392, 289], [289, 439], [439, 392], [328, 462], [462, 326], [326, 328],\n [94, 2], [2, 370], [370, 94], [289, 305], [305, 455], [455, 289],\n [339, 254], [254, 448], [448, 339], [359, 255], [255, 446], [446, 359],\n [254, 253], [253, 449], [449, 254], [253, 252], [252, 450], [450, 253],\n [252, 256], [256, 451], [451, 252], [256, 341], [341, 452], [452, 256],\n [414, 413], [413, 463], [463, 414], [286, 441], [441, 414], [414, 286],\n [286, 258], [258, 441], [441, 286], [258, 257], [257, 442], [442, 258],\n [257, 259], [259, 443], [443, 257], [259, 260], [260, 444], [444, 259],\n [260, 467], [467, 445], [445, 260], [309, 459], [459, 250], [250, 309],\n [305, 289], [289, 290], [290, 305], [305, 290], [290, 460], [460, 305],\n [401, 376], [376, 435], [435, 401], [309, 250], [250, 392], [392, 309],\n [376, 411], [411, 433], [433, 376], [453, 341], [341, 464], [464, 453],\n [357, 453], [453, 465], [465, 357], [343, 357], [357, 412], [412, 343],\n [437, 343], [343, 399], [399, 437], [344, 360], [360, 440], [440, 344],\n [420, 437], [437, 456], [456, 420], [360, 420], [420, 363], [363, 360],\n [361, 401], [401, 288], [288, 361], [265, 372], [372, 353], [353, 265],\n [390, 339], [339, 249], [249, 390], [339, 448], [448, 255], [255, 339],\n];\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as coords from './facemeshcoords';\nimport { constants } from '../tfjs/constants';\nimport type { Box, Point } from '../result';\nimport { env } from '../util/env';\n\nexport const createBox = (startEndTensor) => ({ startPoint: tf.slice(startEndTensor, [0, 0], [-1, 2]), endPoint: tf.slice(startEndTensor, [0, 2], [-1, 2]) });\n\nexport const disposeBox = (t) => tf.dispose([t.startPoint, t.endPoint]);\n\nexport const getBoxSize = (box): [number, number] => [Math.abs(box.endPoint[0] - box.startPoint[0]), Math.abs(box.endPoint[1] - box.startPoint[1])];\n\nexport const getBoxCenter = (box): [number, number, number] => [box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2, box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2, 1];\n\nexport const clampBox = (box, input): Box => (box ? [\n Math.trunc(Math.max(0, box.startPoint[0])),\n Math.trunc(Math.max(0, box.startPoint[1])),\n Math.trunc(Math.min((input.shape[2] || 0), box.endPoint[0]) - Math.max(0, box.startPoint[0])),\n Math.trunc(Math.min((input.shape[1] || 0), box.endPoint[1]) - Math.max(0, box.startPoint[1])),\n] : [0, 0, 0, 0]);\n\nexport const getRawBox = (box, input): Box => (box ? [\n box.startPoint[0] / (input.shape[2] || 0),\n box.startPoint[1] / (input.shape[1] || 0),\n (box.endPoint[0] - box.startPoint[0]) / (input.shape[2] || 0),\n (box.endPoint[1] - box.startPoint[1]) / (input.shape[1] || 0),\n] : [0, 0, 0, 0]);\n\nexport const scaleBoxCoordinates = (box, factor) => {\n const startPoint: Point = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint: Point = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n return { startPoint, endPoint, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const cutAndResize = (box, image, cropSize) => {\n const h = image.shape[1];\n const w = image.shape[2];\n const cutBox = [box.startPoint[1] / h, box.startPoint[0] / w, box.endPoint[1] / h, box.endPoint[0] / w];\n const crop = tf.image.cropAndResize(image, [cutBox], [0], cropSize);\n const norm = tf.div(crop, constants.tf255);\n tf.dispose(crop);\n return norm;\n};\n\nexport const enlargeBox = (box, factor) => {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const halfSize: [number, number] = [factor * size[0] / 2, factor * size[1] / 2];\n return { startPoint: [center[0] - halfSize[0], center[1] - halfSize[1]] as Point, endPoint: [center[0] + halfSize[0], center[1] + halfSize[1]] as Point, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const squarifyBox = (box) => {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const halfSize = Math.max(...size) / 2;\n return { startPoint: [Math.round(centers[0] - halfSize), Math.round(centers[1] - halfSize)] as Point, endPoint: [Math.round(centers[0] + halfSize), Math.round(centers[1] + halfSize)] as Point, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const calculateLandmarksBoundingBox = (landmarks) => {\n const x = landmarks.map((d) => d[0]);\n const y = landmarks.map((d) => d[1]);\n return { startPoint: [Math.min(...x), Math.min(...y)] as Point, endPoint: [Math.max(...x), Math.max(...y)] as Point, landmarks };\n};\n\nexport const fixedRotationMatrix = [[1, 0, 0], [0, 1, 0], [0, 0, 1]];\n\nexport const normalizeRadians = (angle) => angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n\nexport const computeRotation = (point1, point2) => normalizeRadians(Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]));\n\nexport const radToDegrees = (rad) => rad * 180 / Math.PI;\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport const dot = (v1: number[], v2: number[]) => {\n let product = 0;\n for (let i = 0; i < v1.length; i++) product += v1[i] * v2[i];\n return product;\n};\n\nexport const getColumnFrom2DArr = (arr, columnIndex) => {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) column.push(arr[i][columnIndex]);\n return column;\n};\n\nexport const multiplyTransformMatrices = (mat1, mat2) => {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n return product;\n};\n\nexport const buildRotationMatrix = (rotation, center) => {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n};\n\nexport const invertTransformMatrix = (matrix) => {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [-dot(rotationComponent[0], translationComponent), -dot(rotationComponent[1], translationComponent)];\n return [rotationComponent[0].concat(invertedTranslation[0]), rotationComponent[1].concat(invertedTranslation[1]), [0, 0, 1]];\n};\n\nexport const rotatePoint = (homogeneousCoordinate, rotationMatrix) => [dot(homogeneousCoordinate, rotationMatrix[0]), dot(homogeneousCoordinate, rotationMatrix[1])];\n\nexport const xyDistanceBetweenPoints = (a, b) => Math.sqrt(((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2));\n\nexport function generateAnchors(inputSize) {\n const spec = inputSize === 192\n ? { strides: [4], anchors: [1] } // facemesh-detector\n : { strides: [inputSize / 16, inputSize / 8], anchors: [2, 6] }; // blazeface\n const anchors: Array<[number, number]> = [];\n for (let i = 0; i < spec.strides.length; i++) {\n const stride = spec.strides[i];\n const gridRows = Math.floor((inputSize + stride - 1) / stride);\n const gridCols = Math.floor((inputSize + stride - 1) / stride);\n const anchorsNum = spec.anchors[i];\n for (let gridY = 0; gridY < gridRows; gridY++) {\n const anchorY = stride * (gridY + 0.5);\n for (let gridX = 0; gridX < gridCols; gridX++) {\n const anchorX = stride * (gridX + 0.5);\n for (let n = 0; n < anchorsNum; n++) anchors.push([anchorX, anchorY]);\n }\n }\n }\n return anchors;\n}\n\nexport function transformRawCoords(coordsRaw, box, angle, rotationMatrix, inputSize) {\n const boxSize = getBoxSize(box);\n const coordsScaled = coordsRaw.map((coord) => ([ // scaled around zero-point\n (boxSize[0] / inputSize) * (coord[0] - (inputSize / 2)),\n (boxSize[1] / inputSize) * (coord[1] - (inputSize / 2)),\n (coord[2] || 0),\n ]));\n const largeAngle = angle && (angle !== 0) && (Math.abs(angle) > 0.2);\n const coordsRotationMatrix = largeAngle ? buildRotationMatrix(angle, [0, 0]) : fixedRotationMatrix;\n const coordsRotated = largeAngle ? coordsScaled.map((coord) => ([...rotatePoint(coord, coordsRotationMatrix), coord[2]])) : coordsScaled;\n const inverseRotationMatrix = largeAngle ? invertTransformMatrix(rotationMatrix) : fixedRotationMatrix;\n const boxCenter = getBoxCenter(box);\n const offsets = [dot(boxCenter, inverseRotationMatrix[0]), dot(boxCenter, inverseRotationMatrix[1])];\n return coordsRotated.map((coord) => ([\n Math.trunc(coord[0] + offsets[0]),\n Math.trunc(coord[1] + offsets[1]),\n Math.trunc(coord[2] || 0),\n ]));\n}\n\nexport function correctFaceRotation(rotate, box, input, inputSize) {\n const symmetryLine = (box.landmarks.length >= coords.meshLandmarks.count)\n ? coords.meshLandmarks.symmetryLine\n : coords.blazeFaceLandmarks.symmetryLine;\n let angle = 0; // default\n let rotationMatrix = fixedRotationMatrix; // default\n let face; // default\n\n if (rotate && env.kernels.includes('rotatewithoffset')) { // rotateWithOffset is not defined for tfjs-node\n angle = computeRotation(box.landmarks[symmetryLine[0]], box.landmarks[symmetryLine[1]]);\n const largeAngle = angle && (angle !== 0) && (Math.abs(angle) > 0.2);\n if (largeAngle) { // perform rotation only if angle is sufficiently high\n const center: Point = getBoxCenter(box);\n const centerRaw: Point = [center[0] / input.shape[2], center[1] / input.shape[1]];\n const rotated = tf.image.rotateWithOffset(input, angle, 0, centerRaw);\n rotationMatrix = buildRotationMatrix(-angle, center);\n face = cutAndResize(box, rotated, [inputSize, inputSize]);\n tf.dispose(rotated);\n } else {\n face = cutAndResize(box, input, [inputSize, inputSize]);\n }\n } else {\n face = cutAndResize(box, input, [inputSize, inputSize]);\n }\n return [angle, rotationMatrix, face];\n}\n\nexport const findFaceCenter = (mesh) => {\n const x = mesh.map((m) => m[0]);\n const y = mesh.map((m) => m[1]);\n // weighted center\n /*\n const sum = (arr: number[]) => arr.reduce((prev, curr) => prev + curr, 0);\n return [sum(x) / mesh.length, sum(y) / mesh.length];\n */\n // absolute center\n return [Math.min(...x) + (Math.max(...x) - Math.min(...x)) / 2, Math.min(...y) + (Math.max(...y) - Math.min(...y)) / 2];\n};\n\nexport const calculateFaceBox = (mesh, previousBox) => {\n const center = findFaceCenter(mesh);\n const boxSize = getBoxSize(previousBox);\n const calculatedBox = {\n startPoint: [center[0] - boxSize[0] / 2, center[1] - boxSize[1] / 2] as Point,\n endPoint: [center[0] + boxSize[0] / 2, center[1] + boxSize[1] / 2] as Point,\n };\n return calculatedBox;\n};\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './facemeshutil';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Config } from '../config';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport type { Point } from '../result';\n\nconst keypointsCount = 6;\nconst faceBoxScaleFactor = 1.4;\nlet model: GraphModel | null;\nlet anchors: Tensor | null = null;\nlet inputSize = 0;\nlet inputSizeT: Tensor | null = null;\n\ntype DetectBox = { startPoint: Point, endPoint: Point, landmarks: Array, confidence: number };\n\nexport const size = () => inputSize;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.detector?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0;\n inputSizeT = tf.scalar(inputSize, 'int32') as Tensor;\n anchors = tf.tensor2d(util.generateAnchors(inputSize)) as Tensor;\n return model;\n}\n\nfunction decodeBoxes(boxOutputs: Tensor) {\n const t: Record = {};\n t.boxStarts = tf.slice(boxOutputs, [0, 1], [-1, 2]);\n t.centers = tf.add(t.boxStarts, anchors);\n t.boxSizes = tf.slice(boxOutputs, [0, 3], [-1, 2]);\n t.boxSizesNormalized = tf.div(t.boxSizes, inputSizeT);\n t.centersNormalized = tf.div(t.centers, inputSizeT);\n t.halfBoxSize = tf.div(t.boxSizesNormalized, constants.tf2);\n t.starts = tf.sub(t.centersNormalized, t.halfBoxSize);\n t.ends = tf.add(t.centersNormalized, t.halfBoxSize);\n t.startNormalized = tf.mul(t.starts, inputSizeT);\n t.endNormalized = tf.mul(t.ends, inputSizeT);\n const boxes = tf.concat2d([t.startNormalized, t.endNormalized], 1);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n\nexport async function getBoxes(inputImage: Tensor, config: Config) {\n // sanity check on input\n if ((!inputImage) || (inputImage['isDisposedInternal']) || (inputImage.shape.length !== 4) || (inputImage.shape[1] < 1) || (inputImage.shape[2] < 1)) return [];\n const t: Record = {};\n t.resized = tf.image.resizeBilinear(inputImage, [inputSize, inputSize]);\n t.div = tf.div(t.resized, constants.tf127);\n t.normalized = tf.sub(t.div, constants.tf05);\n const res = model?.execute(t.normalized) as Tensor[];\n if (Array.isArray(res) && res.length > 2) { // pinto converted model?\n const sorted = res.sort((a, b) => a.size - b.size);\n t.concat384 = tf.concat([sorted[0], sorted[2]], 2); // dim: 384, 1 + 16\n t.concat512 = tf.concat([sorted[1], sorted[3]], 2); // dim: 512, 1 + 16\n t.concat = tf.concat([t.concat512, t.concat384], 1);\n t.batch = tf.squeeze(t.concat, 0);\n } else if (Array.isArray(res)) { // new facemesh-detection tfhub model\n t.batch = tf.squeeze(res[0]);\n } else { // original blazeface tfhub model\n t.batch = tf.squeeze(res);\n }\n tf.dispose(res);\n t.boxes = decodeBoxes(t.batch);\n t.logits = tf.slice(t.batch, [0, 0], [-1, 1]);\n t.sigmoid = tf.sigmoid(t.logits);\n t.scores = tf.squeeze(t.sigmoid);\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, (config.face.detector?.maxDetected || 0), (config.face.detector?.iouThreshold || 0), (config.face.detector?.minConfidence || 0));\n const nms = await t.nms.array() as number[];\n const boxes: Array = [];\n const scores = await t.scores.data();\n for (let i = 0; i < nms.length; i++) {\n const confidence = scores[nms[i]];\n if (confidence > (config.face.detector?.minConfidence || 0)) {\n const b: Record = {};\n b.bbox = tf.slice(t.boxes, [nms[i], 0], [1, -1]);\n b.slice = tf.slice(t.batch, [nms[i], keypointsCount - 1], [1, -1]);\n b.squeeze = tf.squeeze(b.slice);\n b.landmarks = tf.reshape(b.squeeze, [keypointsCount, -1]);\n const points = await b.bbox.data();\n const rawBox = {\n startPoint: [points[0], points[1]] as Point,\n endPoint: [points[2], points[3]] as Point,\n landmarks: (await b.landmarks.array()) as Point[],\n confidence,\n };\n const scaledBox = util.scaleBoxCoordinates(rawBox, [(inputImage.shape[2] || 0) / inputSize, (inputImage.shape[1] || 0) / inputSize]);\n const enlargedBox = util.enlargeBox(scaledBox, config.face['scale'] || faceBoxScaleFactor);\n const squaredBox = util.squarifyBox(enlargedBox);\n boxes.push(squaredBox);\n Object.keys(b).forEach((tensor) => tf.dispose(b[tensor]));\n }\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n", "/* eslint-disable no-multi-spaces */\n\nexport const kpt: Array = [\n 'nose', // 0\n 'leftEyeInside', // 1\n 'leftEye', // 2\n 'leftEyeOutside', // 3\n 'rightEyeInside', // 4\n 'rightEye', // 5\n 'rightEyeOutside', // 6\n 'leftEar', // 7\n 'rightEar', // 8\n 'leftMouth', // 9\n 'rightMouth', // 10\n 'leftShoulder', // 11\n 'rightShoulder', // 12\n 'leftElbow', // 13\n 'rightElbow', // 14\n 'leftWrist', // 15\n 'rightWrist', // 16\n 'leftPinky', // 17\n 'rightPinky', // 18\n 'leftIndex', // 19\n 'rightIndex', // 20\n 'leftThumb', // 21\n 'rightThumb', // 22\n 'leftHip', // 23\n 'rightHip', // 24\n 'leftKnee', // 25\n 'rightKnee', // 26\n 'leftAnkle', // 27\n 'rightAnkle', // 28\n 'leftHeel', // 29\n 'rightHeel', // 30\n 'leftFoot', // 31\n 'rightFoot', // 32\n 'bodyCenter', // 33\n 'bodyTop', // 34\n 'leftPalm', // 35 // z-coord not ok\n 'leftHand', // 36 // similar to wrist but z-coord not ok\n 'rightPalm', // 37 // z-coord not ok\n 'rightHand', // 38 // similar to wrist but z-coord not ok\n];\n\nexport const connected: Record = {\n shoulders: ['leftShoulder', 'rightShoulder'],\n hips: ['rightHip', 'leftHip'],\n mouth: ['leftMouth', 'rightMouth'],\n leftLegUpper: ['leftHip', 'leftKnee'],\n leftLegLower: ['leftKnee', 'leftAnkle'],\n leftFoot: ['leftAnkle', 'leftHeel', 'leftFoot'],\n leftTorso: ['leftShoulder', 'leftHip'],\n leftArmUpper: ['leftShoulder', 'leftElbow'],\n leftArmLower: ['leftElbow', 'leftWrist'],\n leftHand: ['leftWrist', 'leftPalm'],\n leftHandPinky: ['leftPalm', 'leftPinky'],\n leftHandIndex: ['leftPalm', 'leftIndex'],\n leftHandThumb: ['leftPalm', 'leftThumb'],\n leftEyeOutline: ['leftEyeInside', 'leftEyeOutside'],\n rightLegUpper: ['rightHip', 'rightKnee'],\n rightLegLower: ['rightKnee', 'rightAnkle'],\n rightFoot: ['rightAnkle', 'rightHeel', 'rightFoot'],\n rightTorso: ['rightShoulder', 'rightHip'],\n rightArmUpper: ['rightShoulder', 'rightElbow'],\n rightArmLower: ['rightElbow', 'rightWrist'],\n rightHand: ['rightWrist', 'rightPalm'],\n rightHandPinky: ['rightPalm', 'rightPinky'],\n rightHandIndex: ['rightPalm', 'rightIndex'],\n rightHandThumb: ['rightPalm', 'rightThumb'],\n rightEyeOutline: ['rightEyeInside', 'rightEyeOutside'],\n};\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../tfjs/types';\nimport type { Box } from '../result';\nimport type { Config } from '../config';\n\ninterface DetectedBox { box: Box, boxRaw: Box, score: number }\n\nconst inputSize = 224;\nlet anchorTensor: { x, y };\nconst numLayers = 5;\nconst strides = [8, 16, 32, 32, 32];\n\nexport async function createAnchors() {\n const anchors: Array<{ x: number, y: number }> = [];\n let layerId = 0;\n while (layerId < numLayers) {\n let anchorCount = 0;\n let lastSameStrideLayer = layerId;\n while (lastSameStrideLayer < strides.length && strides[lastSameStrideLayer] === strides[layerId]) {\n anchorCount += 2;\n lastSameStrideLayer++;\n }\n const stride = strides[layerId];\n const featureMapHeight = Math.ceil(inputSize / stride);\n const featureMapWidth = Math.ceil(inputSize / stride);\n for (let y = 0; y < featureMapHeight; ++y) {\n for (let x = 0; x < featureMapWidth; ++x) {\n for (let anchorId = 0; anchorId < anchorCount; ++anchorId) {\n anchors.push({ x: (x + 0.5) / featureMapWidth, y: (y + 0.5) / featureMapHeight });\n }\n }\n }\n layerId = lastSameStrideLayer;\n }\n anchorTensor = { x: tf.tensor1d(anchors.map((a) => a.x)), y: tf.tensor1d(anchors.map((a) => a.y)) };\n}\n\nconst cropFactor = [5.0, 5.0];\nfunction decodeBoxes(boxesTensor, anchor): Tensor {\n return tf.tidy(() => {\n const split = tf.split(boxesTensor, 12, 1); // first 4 are box data [x,y,w,h] and 4 are keypoints data [x,y] for total of 12\n let xCenter = tf.squeeze(split[0]);\n let yCenter = tf.squeeze(split[1]);\n let width = tf.squeeze(split[2]);\n let height = tf.squeeze(split[3]);\n xCenter = tf.add(tf.div(xCenter, inputSize), anchor.x);\n yCenter = tf.add(tf.div(yCenter, inputSize), anchor.y);\n width = tf.mul(tf.div(width, inputSize), cropFactor[0]);\n height = tf.mul(tf.div(height, inputSize), cropFactor[1]);\n const xMin = tf.sub(xCenter, tf.div(width, 2));\n const yMin = tf.sub(yCenter, tf.div(height, 2));\n const boxes = tf.stack([xMin, yMin, width, height], 1);\n return boxes;\n });\n}\n\nexport async function decode(boxesTensor: Tensor, logitsTensor: Tensor, config: Config, outputSize: [number, number]): Promise {\n const t: Record = {};\n t.boxes = decodeBoxes(boxesTensor, anchorTensor);\n t.scores = tf.sigmoid(logitsTensor);\n t.argmax = tf.argMax(t.scores);\n const i = (await t.argmax.data())[0] as number;\n const scores = await t.scores.data();\n const detected: Array<{ box: Box, boxRaw: Box, score: number }> = [];\n const minScore = (config.body['detector'] && config.body['detector']['minConfidence']) ? config.body['detector']['minConfidence'] : 0;\n if (scores[i] >= minScore) {\n const boxes = await t.boxes.array();\n const boxRaw: Box = boxes[i];\n const box: Box = [boxRaw[0] * outputSize[0], boxRaw[1] * outputSize[1], boxRaw[2] * outputSize[0], boxRaw[3] * outputSize[1]];\n // console.log(box);\n detected.push({ box, boxRaw, score: scores[i] });\n }\n /*\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, 1, config.body.detector?.minConfidence || 0.1, config.body.detector?.iouThreshold || 0.1);\n const boxes = t.boxes.arraySync();\n const scores = t.scores.dataSync();\n const nms = t.nms.dataSync();\n const detected: Array = [];\n for (const i of Array.from(nms)) {\n const boxRaw: Box = boxes[i];\n const box: Box = [boxRaw[0] * outputSize[0], boxRaw[0] * outputSize[1], boxRaw[3] * outputSize[0], boxRaw[2] * outputSize[1]];\n detected.push({ box, boxRaw, score: scores[i] });\n }\n */\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return detected;\n}\n", "import type { Point, Box } from '../result';\n\nexport function calc(keypoints: Array, outputSize: [number, number] = [1, 1]) {\n const coords = [keypoints.map((pt) => pt[0]), keypoints.map((pt) => pt[1])]; // all x/y coords\n const min = [Math.min(...coords[0]), Math.min(...coords[1])];\n const max = [Math.max(...coords[0]), Math.max(...coords[1])];\n const box: Box = [min[0], min[1], max[0] - min[0], max[1] - min[1]];\n const boxRaw: Box = [box[0] / outputSize[0], box[1] / outputSize[1], box[2] / outputSize[0], box[3] / outputSize[1]];\n return { box, boxRaw };\n}\n\nexport function square(keypoints: Array, outputSize: [number, number] = [1, 1]) {\n const coords = [keypoints.map((pt) => pt[0]), keypoints.map((pt) => pt[1])]; // all x/y coords\n const min = [Math.min(...coords[0]), Math.min(...coords[1])];\n const max = [Math.max(...coords[0]), Math.max(...coords[1])];\n const center = [(min[0] + max[0]) / 2, (min[1] + max[1]) / 2]; // find center x and y coord of all fingers\n const dist = Math.max(center[0] - min[0], center[1] - min[1], -center[0] + max[0], -center[1] + max[1]); // largest distance from center in any direction\n const box: Box = [Math.trunc(center[0] - dist), Math.trunc(center[1] - dist), Math.trunc(2 * dist), Math.trunc(2 * dist)];\n const boxRaw: Box = [box[0] / outputSize[0], box[1] / outputSize[1], box[2] / outputSize[0], box[3] / outputSize[1]];\n return { box, boxRaw };\n}\n\nexport function scale(box: Box, scaleFact: number) {\n const dist = [box[2] * scaleFact, box[3] * scaleFact];\n const newBox: Box = [\n box[0] - (dist[0] - box[2]) / 2,\n box[1] - (dist[1] - box[3]) / 2,\n dist[0],\n dist[1],\n ];\n return newBox;\n}\n\nexport function crop(box: Box) { // [y1, x1, y2, x2] clamped to 0..1\n const yxBox: Box = [Math.max(0, box[1]), Math.max(0, box[0]), Math.min(1, box[3] + box[1]), Math.min(1, box[2] + box[0])];\n return yxBox;\n}\n", "/**\n * BlazePose model implementation\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport { log, now } from '../util/util';\nimport type { BodyKeypoint, BodyResult, BodyLandmark, Box, Point, BodyAnnotation } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport * as coords from './blazeposecoords';\nimport * as detect from './blazeposedetector';\nimport * as box from '../util/box';\n\nconst env = { initial: true };\n// const models: [GraphModel | null, GraphModel | null] = [null, null];\nconst models: { detector: GraphModel | null, landmarks: GraphModel | null } = { detector: null, landmarks: null };\nconst inputSize: { detector: [number, number], landmarks: [number, number] } = { detector: [224, 224], landmarks: [256, 256] };\nlet skipped = Number.MAX_SAFE_INTEGER;\nconst outputNodes: { detector: string[], landmarks: string[] } = {\n landmarks: ['ld_3d', 'activation_segmentation', 'activation_heatmap', 'world_3d', 'output_poseflag'],\n detector: [],\n};\n\nlet cache: BodyResult | null = null;\nlet cropBox: Box | undefined;\nlet padding: [number, number][] = [[0, 0], [0, 0], [0, 0], [0, 0]];\nlet lastTime = 0;\n\nconst sigmoid = (x) => (1 - (1 / (1 + Math.exp(x))));\n\nexport async function loadDetect(config: Config): Promise {\n if (env.initial) models.detector = null;\n if (!models.detector && config.body['detector'] && config.body['detector']['modelPath'] || '') {\n models.detector = await loadModel(config.body['detector']['modelPath']);\n const inputs = Object.values(models.detector.modelSignature['inputs']);\n inputSize.detector[0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize.detector[1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug && models.detector) log('cached model:', models.detector['modelUrl']);\n await detect.createAnchors();\n return models.detector as GraphModel;\n}\n\nexport async function loadPose(config: Config): Promise {\n if (env.initial) models.landmarks = null;\n if (!models.landmarks) {\n models.landmarks = await loadModel(config.body.modelPath);\n const inputs = Object.values(models.landmarks.modelSignature['inputs']);\n inputSize.landmarks[0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize.landmarks[1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models.landmarks['modelUrl']);\n return models.landmarks;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!models.detector) await loadDetect(config);\n if (!models.landmarks) await loadPose(config);\n return [models.detector, models.landmarks];\n}\n\nasync function prepareImage(input: Tensor, size: number): Promise {\n const t: Record = {};\n if (!input.shape || !input.shape[1] || !input.shape[2]) return input;\n let final: Tensor;\n if (cropBox) {\n t.cropped = tf.image.cropAndResize(input, [cropBox], [0], [input.shape[1], input.shape[2]]); // if we have cached box use it to crop input\n }\n if (input.shape[1] !== input.shape[2]) { // only pad if width different than height\n const height: [number, number] = [\n input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0,\n input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0,\n ];\n const width: [number, number] = [\n input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0,\n input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0,\n ];\n padding = [\n [0, 0], // dont touch batch\n height, // height before&after\n width, // width before&after\n [0, 0], // dont touch rbg\n ];\n t.pad = tf.pad(t.cropped || input, padding); // use cropped box if it exists\n t.resize = tf.image.resizeBilinear(t.pad, [size, size]);\n final = tf.div(t.resize, constants.tf255);\n } else if (input.shape[1] !== size) { // if input needs resizing\n t.resize = tf.image.resizeBilinear(t.cropped || input, [size, size]);\n final = tf.div(t.resize, constants.tf255);\n } else { // if input is already in a correct resolution just normalize it\n final = tf.div(t.cropped || input, constants.tf255);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return final;\n}\n\nfunction rescaleKeypoints(keypoints: Array, outputSize: [number, number]): Array {\n for (const kpt of keypoints) { // first rescale due to padding\n kpt.position = [\n Math.trunc(kpt.position[0] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0] - padding[2][0]),\n Math.trunc(kpt.position[1] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1] - padding[1][0]),\n kpt.position[2] as number,\n ];\n kpt.positionRaw = [kpt.position[0] / outputSize[0], kpt.position[1] / outputSize[1], 2 * (kpt.position[2] as number) / (outputSize[0] + outputSize[1])];\n }\n if (cropBox) { // second rescale due to cropping\n for (const kpt of keypoints) {\n kpt.positionRaw = [\n kpt.positionRaw[0] + cropBox[1], // correct offset due to crop\n kpt.positionRaw[1] + cropBox[0], // correct offset due to crop\n kpt.positionRaw[2] as number,\n ];\n kpt.position = [\n Math.trunc(kpt.positionRaw[0] * outputSize[0]),\n Math.trunc(kpt.positionRaw[1] * outputSize[1]),\n kpt.positionRaw[2] as number,\n ];\n }\n }\n return keypoints;\n}\n\nasync function fixKeypoints(keypoints: Array) {\n // palm z-coord is incorrect around near-zero so we approximate it\n const leftPalm = keypoints.find((k) => k.part === 'leftPalm') as BodyKeypoint;\n const leftWrist = keypoints.find((k) => k.part === 'leftWrist') as BodyKeypoint;\n const leftIndex = keypoints.find((k) => k.part === 'leftIndex') as BodyKeypoint;\n leftPalm.position[2] = ((leftWrist.position[2] || 0) + (leftIndex.position[2] || 0)) / 2;\n const rightPalm = keypoints.find((k) => k.part === 'rightPalm') as BodyKeypoint;\n const rightWrist = keypoints.find((k) => k.part === 'rightWrist') as BodyKeypoint;\n const rightIndex = keypoints.find((k) => k.part === 'rightIndex') as BodyKeypoint;\n rightPalm.position[2] = ((rightWrist.position[2] || 0) + (rightIndex.position[2] || 0)) / 2;\n}\n\nasync function detectLandmarks(input: Tensor, config: Config, outputSize: [number, number]): Promise {\n /**\n * t.ld: 39 keypoints [x,y,z,score,presence] normalized to input size\n * t.segmentation:\n * t.heatmap:\n * t.world: 39 keypoints [x,y,z] normalized to -1..1\n * t.poseflag: body score\n */\n const t: Record = {};\n [t.ld/* 1,195(39*5) */, t.segmentation/* 1,256,256,1 */, t.heatmap/* 1,64,64,39 */, t.world/* 1,117(39*3) */, t.poseflag/* 1,1 */] = models.landmarks?.execute(input, outputNodes.landmarks) as Tensor[]; // run model\n const poseScore = (await t.poseflag.data())[0];\n const points = await t.ld.data();\n const distances = await t.world.data();\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor])); // dont need tensors after this\n const keypointsRelative: Array = [];\n const depth = 5; // each points has x,y,z,visibility,presence\n for (let i = 0; i < points.length / depth; i++) {\n const score = sigmoid(points[depth * i + 3]);\n const presence = sigmoid(points[depth * i + 4]);\n const adjScore = Math.trunc(100 * score * presence * poseScore) / 100;\n const positionRaw: Point = [points[depth * i + 0] / inputSize.landmarks[0], points[depth * i + 1] / inputSize.landmarks[1], points[depth * i + 2] + 0];\n const position: Point = [Math.trunc(outputSize[0] * positionRaw[0]), Math.trunc(outputSize[1] * positionRaw[1]), positionRaw[2] as number];\n const distance: Point = [distances[depth * i + 0], distances[depth * i + 1], distances[depth * i + 2] + 0];\n keypointsRelative.push({ part: coords.kpt[i] as BodyLandmark, positionRaw, position, distance, score: adjScore });\n }\n if (poseScore < (config.body.minConfidence || 0)) return null;\n fixKeypoints(keypointsRelative);\n const keypoints: Array = rescaleKeypoints(keypointsRelative, outputSize); // keypoints were relative to input image which is padded\n const kpts = keypoints.map((k) => k.position);\n const boxes = box.calc(kpts, [outputSize[0], outputSize[1]]); // now find boxes based on rescaled keypoints\n const annotations: Record = {} as Record;\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Array = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kpt) => kpt.part === indexes[i]);\n const pt1 = keypoints.find((kpt) => kpt.part === indexes[i + 1]);\n if (pt0 && pt1) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body = { id: 0, score: Math.trunc(100 * poseScore) / 100, box: boxes.box, boxRaw: boxes.boxRaw, keypoints, annotations };\n return body;\n}\n\n/*\ninterface DetectedBox { box: Box, boxRaw: Box, score: number }\n\nfunction rescaleBoxes(boxes: Array, outputSize: [number, number]): Array {\n for (const b of boxes) {\n b.box = [\n Math.trunc(b.box[0] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0]),\n Math.trunc(b.box[1] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1]),\n Math.trunc(b.box[2] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0]),\n Math.trunc(b.box[3] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1]),\n ];\n b.boxRaw = [b.box[0] / outputSize[0], b.box[1] / outputSize[1], b.box[2] / outputSize[0], b.box[3] / outputSize[1]];\n }\n return boxes;\n}\n\nasync function detectBoxes(input: Tensor, config: Config, outputSize: [number, number]) {\n const t: Record = {};\n t.res = models.detector?.execute(input, ['Identity']) as Tensor; //\n t.logitsRaw = tf.slice(t.res, [0, 0, 0], [1, -1, 1]);\n t.boxesRaw = tf.slice(t.res, [0, 0, 1], [1, -1, -1]);\n t.logits = tf.squeeze(t.logitsRaw);\n t.boxes = tf.squeeze(t.boxesRaw);\n const boxes = await detect.decode(t.boxes, t.logits, config, outputSize);\n rescaleBoxes(boxes, outputSize);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n*/\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const outputSize: [number, number] = [input.shape[2] || 0, input.shape[1] || 0];\n const skipTime = (config.body.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && cache !== null) {\n skipped++;\n } else {\n const t: Record = {};\n /*\n if (config.body['detector'] && config.body['detector']['enabled']) {\n t.detector = await prepareImage(input, 224);\n const boxes = await detectBoxes(t.detector, config, outputSize);\n }\n */\n t.landmarks = await prepareImage(input, 256); // padded and resized\n cache = await detectLandmarks(t.landmarks, config, outputSize);\n /*\n cropBox = [0, 0, 1, 1]; // reset crop coordinates\n if (cache?.boxRaw && config.skipAllowed) {\n const cx = (2.0 * cache.boxRaw[0] + cache.boxRaw[2]) / 2;\n const cy = (2.0 * cache.boxRaw[1] + cache.boxRaw[3]) / 2;\n let size = cache.boxRaw[2] > cache.boxRaw[3] ? cache.boxRaw[2] : cache.boxRaw[3];\n size = (size * 1.0) / 2; // enlarge and half it\n if (cx > 0.1 && cx < 0.9 && cy > 0.1 && cy < 0.9 && size > 0.1) { // only update if box is sane\n const y = 0; // cy - size;\n const x = cx - size;\n cropBox = [y, x, y + 1, x + 1]; // [y0,x0,y1,x1] used for cropping but width/height are not yet implemented so we only reposition image to center of body\n }\n }\n */\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n lastTime = now();\n skipped = 0;\n }\n return cache ? [cache] : [];\n}\n", "/**\n * CoCo Labels used by object detection implementations\n */\nexport const labels = [\n { class: 1, label: 'person' },\n { class: 2, label: 'bicycle' },\n { class: 3, label: 'car' },\n { class: 4, label: 'motorcycle' },\n { class: 5, label: 'airplane' },\n { class: 6, label: 'bus' },\n { class: 7, label: 'train' },\n { class: 8, label: 'truck' },\n { class: 9, label: 'boat' },\n { class: 10, label: 'traffic light' },\n { class: 11, label: 'fire hydrant' },\n { class: 12, label: 'stop sign' },\n { class: 13, label: 'parking meter' },\n { class: 14, label: 'bench' },\n { class: 15, label: 'bird' },\n { class: 16, label: 'cat' },\n { class: 17, label: 'dog' },\n { class: 18, label: 'horse' },\n { class: 19, label: 'sheep' },\n { class: 20, label: 'cow' },\n { class: 21, label: 'elephant' },\n { class: 22, label: 'bear' },\n { class: 23, label: 'zebra' },\n { class: 24, label: 'giraffe' },\n { class: 25, label: 'backpack' },\n { class: 26, label: 'umbrella' },\n { class: 27, label: 'handbag' },\n { class: 28, label: 'tie' },\n { class: 29, label: 'suitcase' },\n { class: 30, label: 'frisbee' },\n { class: 31, label: 'skis' },\n { class: 32, label: 'snowboard' },\n { class: 33, label: 'sports ball' },\n { class: 34, label: 'kite' },\n { class: 35, label: 'baseball bat' },\n { class: 36, label: 'baseball glove' },\n { class: 37, label: 'skateboard' },\n { class: 38, label: 'surfboard' },\n { class: 39, label: 'tennis racket' },\n { class: 40, label: 'bottle' },\n { class: 41, label: 'wine glass' },\n { class: 42, label: 'cup' },\n { class: 43, label: 'fork' },\n { class: 44, label: 'knife' },\n { class: 45, label: 'spoon' },\n { class: 46, label: 'bowl' },\n { class: 47, label: 'banana' },\n { class: 48, label: 'apple' },\n { class: 49, label: 'sandwich' },\n { class: 50, label: 'orange' },\n { class: 51, label: 'broccoli' },\n { class: 52, label: 'carrot' },\n { class: 53, label: 'hot dog' },\n { class: 54, label: 'pizza' },\n { class: 55, label: 'donut' },\n { class: 56, label: 'cake' },\n { class: 57, label: 'chair' },\n { class: 58, label: 'couch' },\n { class: 59, label: 'potted plant' },\n { class: 60, label: 'bed' },\n { class: 61, label: 'dining table' },\n { class: 62, label: 'toilet' },\n { class: 63, label: 'tv' },\n { class: 64, label: 'laptop' },\n { class: 65, label: 'mouse' },\n { class: 66, label: 'remote' },\n { class: 67, label: 'keyboard' },\n { class: 68, label: 'cell phone' },\n { class: 69, label: 'microwave' },\n { class: 70, label: 'oven' },\n { class: 71, label: 'toaster' },\n { class: 72, label: 'sink' },\n { class: 73, label: 'refrigerator' },\n { class: 74, label: 'book' },\n { class: 75, label: 'clock' },\n { class: 76, label: 'vase' },\n { class: 77, label: 'scissors' },\n { class: 78, label: 'teddy bear' },\n { class: 79, label: 'hair drier' },\n { class: 80, label: 'toothbrush' },\n];\n", "/**\n * CenterNet object detection model implementation\n *\n * Based on: [**NanoDet**](https://github.com/RangiLyu/nanodet)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { labels } from './labels';\nimport type { ObjectResult, ObjectType, Box } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\nlet last: ObjectResult[] = [];\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) {\n // fakeOps(['floormod'], config);\n model = await loadModel(config.object.modelPath);\n const inputs = Object.values(model.modelSignature['inputs']);\n inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nasync function process(res: Tensor | null, outputShape: [number, number], config: Config) {\n if (!res) return [];\n const t: Record = {};\n const results: Array = [];\n const detections = await res.array() as number[][][];\n t.squeeze = tf.squeeze(res);\n const arr = tf.split(t.squeeze, 6, 1) as Tensor[]; // x1, y1, x2, y2, score, class\n t.stack = tf.stack([arr[1], arr[0], arr[3], arr[2]], 1); // reorder dims as tf.nms expects y, x\n t.boxes = tf.squeeze(t.stack);\n t.scores = tf.squeeze(arr[4]);\n t.classes = tf.squeeze(arr[5]);\n tf.dispose([res, ...arr]);\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, config.object.maxDetected, config.object.iouThreshold, (config.object.minConfidence || 0));\n const nms = await t.nms.data();\n let i = 0;\n for (const id of Array.from(nms)) {\n const score = Math.trunc(100 * detections[0][id][4]) / 100;\n const classVal = detections[0][id][5];\n const label = labels[classVal].label as ObjectType;\n const [x, y] = [\n detections[0][id][0] / inputSize,\n detections[0][id][1] / inputSize,\n ];\n const boxRaw: Box = [\n x,\n y,\n detections[0][id][2] / inputSize - x,\n detections[0][id][3] / inputSize - y,\n ];\n const box: Box = [\n Math.trunc(boxRaw[0] * outputShape[0]),\n Math.trunc(boxRaw[1] * outputShape[1]),\n Math.trunc(boxRaw[2] * outputShape[0]),\n Math.trunc(boxRaw[3] * outputShape[1]),\n ];\n results.push({ id: i++, score, class: classVal, label, box, boxRaw });\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return results;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const skipTime = (config.object.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.object.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const outputSize = [input.shape[2] || 0, input.shape[1] || 0] as [number, number];\n const resize = tf.image.resizeBilinear(input, [inputSize, inputSize]);\n const objectT = config.object.enabled ? model?.execute(resize, ['tower_0/detections']) as Tensor : null;\n lastTime = now();\n tf.dispose(resize);\n\n const obj = await process(objectT, outputSize, config);\n last = obj;\n\n resolve(obj);\n });\n}\n", "export const kpt: Array = [\n 'head',\n 'neck',\n 'rightShoulder',\n 'rightElbow',\n 'rightWrist',\n 'chest',\n 'leftShoulder',\n 'leftElbow',\n 'leftWrist',\n 'bodyCenter',\n 'rightHip',\n 'rightKnee',\n 'rightAnkle',\n 'leftHip',\n 'leftKnee',\n 'leftAnkle',\n];\n\nexport const connected: Record = {\n leftLeg: ['leftHip', 'leftKnee', 'leftAnkle'],\n rightLeg: ['rightHip', 'rightKnee', 'rightAnkle'],\n torso: ['leftShoulder', 'rightShoulder', 'rightHip', 'leftHip', 'leftShoulder'],\n leftArm: ['leftShoulder', 'leftElbow', 'leftWrist'],\n rightArm: ['rightShoulder', 'rightElbow', 'rightWrist'],\n head: [],\n};\n", "/**\n * EfficientPose model implementation\n *\n * Based on: [**EfficientPose**](https://github.com/daniegr/EfficientPose)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport * as coords from './efficientposecoords';\nimport { constants } from '../tfjs/constants';\nimport type { BodyResult, Point, BodyLandmark, BodyAnnotation } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet lastTime = 0;\nconst cache: BodyResult = { id: 0, keypoints: [], box: [0, 0, 0, 0], boxRaw: [0, 0, 0, 0], score: 0, annotations: {} as Record };\n\n// const keypoints: Array = [];\n// let box: Box = [0, 0, 0, 0];\n// let boxRaw: Box = [0, 0, 0, 0];\n// let score = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.body.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// performs argmax and max functions on a 2d tensor\nasync function max2d(inputs, minScore) {\n const [width, height] = inputs.shape;\n const reshaped = tf.reshape(inputs, [height * width]); // combine all data\n const max = tf.max(reshaped, 0);\n const newScore = (await max.data())[0]; // get highest score\n tf.dispose([reshaped, max]);\n if (newScore > minScore) { // skip coordinate calculation is score is too low\n const coordinates = tf.argMax(reshaped, 0);\n const mod = tf.mod(coordinates, width);\n const x = (await mod.data())[0];\n const div = tf.div(coordinates, tf.scalar(width, 'int32'));\n const y = (await div.data())[0];\n tf.dispose([mod, div]);\n return [x, y, newScore];\n }\n return [0, 0, newScore];\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n const skipTime = (config.body.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && Object.keys(cache.keypoints).length > 0) {\n skipped++;\n return [cache];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n if (!model?.inputs[0].shape) return null;\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, constants.tf2);\n const norm = tf.sub(enhance, constants.tf1);\n return norm;\n });\n\n let resT;\n if (config.body.enabled) resT = model?.execute(tensor);\n lastTime = now();\n tf.dispose(tensor);\n\n if (resT) {\n cache.keypoints.length = 0;\n const squeeze = resT.squeeze();\n tf.dispose(resT);\n // body parts are basically just a stack of 2d tensors\n const stack = squeeze.unstack(2);\n tf.dispose(squeeze);\n // process each unstacked tensor as a separate body part\n for (let id = 0; id < stack.length; id++) {\n // actual processing to get coordinates and score\n const [x, y, partScore] = await max2d(stack[id], config.body.minConfidence);\n if (partScore > (config.body?.minConfidence || 0)) {\n cache.keypoints.push({\n score: Math.round(100 * partScore) / 100,\n part: coords.kpt[id] as BodyLandmark,\n positionRaw: [ // normalized to 0..1\n // @ts-ignore model is not undefined here\n x / model.inputs[0].shape[2], y / model.inputs[0].shape[1],\n ],\n position: [ // normalized to input image size\n // @ts-ignore model is not undefined here\n Math.round(image.shape[2] * x / model.inputs[0].shape[2]), Math.round(image.shape[1] * y / model.inputs[0].shape[1]),\n ],\n });\n }\n }\n stack.forEach((s) => tf.dispose(s));\n }\n cache.score = cache.keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const x = cache.keypoints.map((a) => a.position[0]);\n const y = cache.keypoints.map((a) => a.position[1]);\n cache.box = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...y),\n ];\n const xRaw = cache.keypoints.map((a) => a.positionRaw[0]);\n const yRaw = cache.keypoints.map((a) => a.positionRaw[1]);\n cache.boxRaw = [\n Math.min(...xRaw),\n Math.min(...yRaw),\n Math.max(...xRaw) - Math.min(...xRaw),\n Math.max(...yRaw) - Math.min(...yRaw),\n ];\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Array = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = cache.keypoints.find((kpt) => kpt.part === indexes[i]);\n const pt1 = cache.keypoints.find((kpt) => kpt.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n cache.annotations[name] = pt;\n }\n resolve([cache]);\n });\n}\n", "/**\n * Emotion model implementation\n *\n * [**Oarriaga**](https://github.com/oarriaga/face_classification)\n */\n\nimport type { Emotion } from '../result';\nimport { log, now } from '../util/util';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\nimport { constants } from '../tfjs/constants';\n\nconst annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];\nlet model: GraphModel | null;\nconst last: Array> = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.emotion?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise> {\n if (!model) return [];\n const skipFrame = skipped < (config.face.emotion?.skipFrames || 0);\n const skipTime = (config.face.emotion?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const obj: Array<{ score: number, emotion: Emotion }> = [];\n if (config.face.emotion?.enabled) {\n const t: Record = {};\n const inputSize = model?.inputs[0].shape ? model.inputs[0].shape[2] : 0;\n t.resize = tf.image.resizeBilinear(image, [inputSize, inputSize], false);\n // const box = [[0.15, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // const resize = tf.image.cropAndResize(image, box, [0], [inputSize, inputSize]);\n // [t.red, t.green, t.blue] = tf.split(t.resize, 3, 3);\n // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n // t.redNorm = tf.mul(t.red, rgb[0]);\n // t.greenNorm = tf.mul(t.green, rgb[1]);\n // t.blueNorm = tf.mul(t.blue, rgb[2]);\n // t.grayscale = tf.addN([t.redNorm, t.greenNorm, t.blueNorm]);\n t.channels = tf.mul(t.resize, constants.rgb);\n t.grayscale = tf.sum(t.channels, 3, true);\n t.grayscaleSub = tf.sub(t.grayscale, constants.tf05);\n t.grayscaleMul = tf.mul(t.grayscaleSub, constants.tf2);\n t.emotion = model?.execute(t.grayscaleMul) as Tensor; // result is already in range 0..1, no need for additional activation\n lastTime = now();\n const data = await t.emotion.data();\n for (let i = 0; i < data.length; i++) {\n if (data[i] > (config.face.emotion?.minConfidence || 0)) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] as Emotion });\n }\n obj.sort((a, b) => b.score - a.score);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "/**\n * EfficientPose model implementation\n *\n * Based on: [**BecauseofAI MobileFace**](https://github.com/becauseofAI/MobileFace)\n *\n * Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: Array = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['mobilefacenet'].modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n/*\n// convert to black&white to avoid colorization impact\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\nconst [red, green, blue] = tf.split(crop, 3, 3);\nconst redNorm = tf.mul(red, rgb[0]);\nconst greenNorm = tf.mul(green, rgb[1]);\nconst blueNorm = tf.mul(blue, rgb[2]);\nconst grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\nconst merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n\n// optional increase image contrast\n// or do it per-channel so mean is done on each channel\n// or do it based on histogram\nconst mean = merge.mean();\nconst factor = 5;\nconst contrast = merge.sub(mean).mul(factor).add(mean);\n*/\n\nexport async function predict(input: Tensor, config: Config, idx, count): Promise {\n if (!model) return [];\n const skipFrame = skipped < (config.face['embedding']?.skipFrames || 0);\n const skipTime = (config.face['embedding']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n return new Promise(async (resolve) => {\n let data: Array = [];\n if (config.face['embedding']?.enabled && model?.inputs[0].shape) {\n const t: Record = {};\n t.crop = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n // do a tight crop of image and resize it to fit the model\n // const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // t.crop = tf.image.cropAndResize(input, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n t.data = model?.execute(t.crop) as Tensor;\n /*\n // optional normalize outputs with l2 normalization\n const scaled = tf.tidy(() => {\n const l2 = res.norm('euclidean');\n const scale = res.div(l2);\n return scale;\n });\n\n // optional reduce feature vector complexity\n const reshape = tf.reshape(res, [128, 2]); // split 256 vectors into 128 x 2\n const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it\n */\n const output = await t.data.data();\n data = Array.from(output); // convert typed array to simple array\n }\n last[idx] = data;\n lastCount = count;\n lastTime = now();\n resolve(data);\n });\n}\n", "import * as coords from './facemeshcoords';\nimport * as util from './facemeshutil';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport { log } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport type { Config } from '../config';\nimport type { Point } from '../result';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\n\nconst irisEnlarge = 2.3;\n\nconst leftOutline = coords.meshAnnotations['leftEyeLower0'];\nconst rightOutline = coords.meshAnnotations['rightEyeLower0'];\n\nconst eyeLandmarks = {\n leftBounds: [leftOutline[0], leftOutline[leftOutline.length - 1]],\n rightBounds: [rightOutline[0], rightOutline[rightOutline.length - 1]],\n};\n\nconst irisLandmarks = {\n upperCenter: 3,\n lowerCenter: 4,\n index: 71,\n numCoordinates: 76,\n};\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.iris?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0;\n if (inputSize === -1) inputSize = 64;\n return model;\n}\n\n// Replace the raw coordinates returned by facemesh with refined iris model coordinates and update the z coordinate to be an average of the original and the new.\nexport function replaceIrisCoords(rawCoords, newCoords, prefix, keys) {\n for (let i = 0; i < coords.irisIndices.length; i++) {\n const { key, indices } = coords.irisIndices[i];\n const originalIndices = coords.meshAnnotations[`${prefix}${key}`];\n if (!keys || keys.includes(key)) {\n for (let j = 0; j < indices.length; j++) {\n const index = indices[j];\n rawCoords[originalIndices[j]] = [\n newCoords[index][0],\n newCoords[index][1],\n (newCoords[index][2] + rawCoords[originalIndices[j]][2]) / 2,\n ];\n }\n }\n }\n}\n\nexport const getLeftToRightEyeDepthDifference = (rawCoords) => {\n const leftEyeZ = rawCoords[eyeLandmarks.leftBounds[0]][2];\n const rightEyeZ = rawCoords[eyeLandmarks.rightBounds[0]][2];\n return leftEyeZ - rightEyeZ;\n};\n\n// Returns a box describing a cropped region around the eye fit for passing to the iris model.\nexport const getEyeBox = (rawCoords, face, eyeInnerCornerIndex, eyeOuterCornerIndex, meshSize, flip = false) => {\n const box = util.squarifyBox(util.enlargeBox(util.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), irisEnlarge));\n const boxSize = util.getBoxSize(box);\n let crop = tf.image.cropAndResize(face, [[\n box.startPoint[1] / meshSize,\n box.startPoint[0] / meshSize, box.endPoint[1] / meshSize,\n box.endPoint[0] / meshSize,\n ]], [0], [inputSize, inputSize]);\n if (flip && env.kernels.includes('flipleftright')) {\n const flipped = tf.image.flipLeftRight(crop); // flipLeftRight is not defined for tfjs-node\n tf.dispose(crop);\n crop = flipped;\n }\n return { box, boxSize, crop };\n};\n\n// Given a cropped image of an eye, returns the coordinates of the contours surrounding the eye and the iris.\nexport const getEyeCoords = (eyeData, eyeBox, eyeBoxSize, flip = false) => {\n const eyeRawCoords: Array = [];\n for (let i = 0; i < irisLandmarks.numCoordinates; i++) {\n const x = eyeData[i * 3];\n const y = eyeData[i * 3 + 1];\n const z = eyeData[i * 3 + 2];\n eyeRawCoords.push([\n (flip ? (1 - (x / inputSize)) : (x / inputSize)) * eyeBoxSize[0] + eyeBox.startPoint[0],\n (y / inputSize) * eyeBoxSize[1] + eyeBox.startPoint[1], z,\n ]);\n }\n return { rawCoords: eyeRawCoords, iris: eyeRawCoords.slice(irisLandmarks.index) };\n};\n\n// The z-coordinates returned for the iris are unreliable, so we take the z values from the surrounding keypoints.\nexport const getAdjustedIrisCoords = (rawCoords, irisCoords, direction) => {\n const upperCenterZ = rawCoords[coords.meshAnnotations[`${direction}EyeUpper0`][irisLandmarks.upperCenter]][2];\n const lowerCenterZ = rawCoords[coords.meshAnnotations[`${direction}EyeLower0`][irisLandmarks.lowerCenter]][2];\n const averageZ = (upperCenterZ + lowerCenterZ) / 2;\n // Iris indices: 0: center | 1: right | 2: above | 3: left | 4: below\n return irisCoords.map((coord, i) => {\n let z = averageZ;\n if (i === 2) {\n z = upperCenterZ;\n } else if (i === 4) {\n z = lowerCenterZ;\n }\n return [coord[0], coord[1], z];\n });\n};\n\nexport async function augmentIris(rawCoords, face, config, meshSize) {\n if (!model) {\n if (config.debug) log('face mesh iris detection requested, but model is not loaded');\n return rawCoords;\n }\n const { box: leftEyeBox, boxSize: leftEyeBoxSize, crop: leftEyeCrop } = getEyeBox(rawCoords, face, eyeLandmarks.leftBounds[0], eyeLandmarks.leftBounds[1], meshSize, true);\n const { box: rightEyeBox, boxSize: rightEyeBoxSize, crop: rightEyeCrop } = getEyeBox(rawCoords, face, eyeLandmarks.rightBounds[0], eyeLandmarks.rightBounds[1], meshSize, true);\n const combined = tf.concat([leftEyeCrop, rightEyeCrop]);\n tf.dispose(leftEyeCrop);\n tf.dispose(rightEyeCrop);\n const eyePredictions = model.execute(combined) as Tensor;\n tf.dispose(combined);\n const eyePredictionsData = await eyePredictions.data();\n tf.dispose(eyePredictions);\n const leftEyeData = eyePredictionsData.slice(0, irisLandmarks.numCoordinates * 3);\n const { rawCoords: leftEyeRawCoords, iris: leftIrisRawCoords } = getEyeCoords(leftEyeData, leftEyeBox, leftEyeBoxSize, true);\n const rightEyeData = eyePredictionsData.slice(irisLandmarks.numCoordinates * 3);\n const { rawCoords: rightEyeRawCoords, iris: rightIrisRawCoords } = getEyeCoords(rightEyeData, rightEyeBox, rightEyeBoxSize, false);\n const leftToRightEyeDepthDifference = getLeftToRightEyeDepthDifference(rawCoords);\n if (Math.abs(leftToRightEyeDepthDifference) < 30) { // User is looking straight ahead.\n replaceIrisCoords(rawCoords, leftEyeRawCoords, 'left', null);\n replaceIrisCoords(rawCoords, rightEyeRawCoords, 'right', null);\n // If the user is looking to the left or to the right, the iris coordinates tend to diverge too much from the mesh coordinates for them to be merged so we only update a single contour line above and below the eye.\n } else if (leftToRightEyeDepthDifference < 1) { // User is looking towards the right.\n replaceIrisCoords(rawCoords, leftEyeRawCoords, 'left', ['EyeUpper0', 'EyeLower0']);\n } else { // User is looking towards the left.\n replaceIrisCoords(rawCoords, rightEyeRawCoords, 'right', ['EyeUpper0', 'EyeLower0']);\n }\n const adjustedLeftIrisCoords = getAdjustedIrisCoords(rawCoords, leftIrisRawCoords, 'left');\n const adjustedRightIrisCoords = getAdjustedIrisCoords(rawCoords, rightIrisRawCoords, 'right');\n const newCoords = rawCoords.concat(adjustedLeftIrisCoords).concat(adjustedRightIrisCoords);\n return newCoords;\n}\n", "// @tensorflow/tfjs-models/face-landmark-detection/src/constants.ts\n// https://github.com/google/mediapipe/mediapipe/python/solutions/face_mesh_connections.py\n\ntype PairArray = Array<[number, number]>;\n\nconst LIPS_CONNECTIONS: PairArray = [\n [61, 146], [146, 91], [91, 181], [181, 84], [84, 17], [17, 314], [314, 405], [405, 321], [321, 375], [375, 291], [61, 185], [185, 40], [40, 39], [39, 37], [37, 0], [0, 267], [267, 269], [269, 270], [270, 409], [409, 291],\n [78, 95], [95, 88], [88, 178], [178, 87], [87, 14], [14, 317], [317, 402], [402, 318], [318, 324], [324, 308], [78, 191], [191, 80], [80, 81], [81, 82], [82, 13], [13, 312], [312, 311], [311, 310], [310, 415], [415, 308],\n];\n\nconst LEFT_EYE_CONNECTIONS: PairArray = [[263, 249], [249, 390], [390, 373], [373, 374], [374, 380], [380, 381], [381, 382], [382, 362], [263, 466], [466, 388], [388, 387], [387, 386], [386, 385], [385, 384], [384, 398], [398, 362]];\n\nconst LEFT_EYEBROW_CONNECTIONS: PairArray = [[276, 283], [283, 282], [282, 295], [295, 285], [300, 293], [293, 334], [334, 296], [296, 336]];\n\nconst LEFT_IRIS_CONNECTIONS: PairArray = [[474, 475], [475, 476], [476, 477], [477, 474]];\n\nconst RIGHT_EYE_CONNECTIONS: PairArray = [[33, 7], [7, 163], [163, 144], [144, 145], [145, 153], [153, 154], [154, 155], [155, 133], [33, 246], [246, 161], [161, 160], [160, 159], [159, 158], [158, 157], [157, 173], [173, 133]];\n\nconst RIGHT_EYEBROW_CONNECTIONS: PairArray = [[46, 53], [53, 52], [52, 65], [65, 55], [70, 63], [63, 105], [105, 66], [66, 107]];\n\nconst RIGHT_IRIS_CONNECTIONS: PairArray = [[469, 470], [470, 471], [471, 472], [472, 469]];\n\nconst FACE_OVAL_CONNECTIONS: PairArray = [\n [10, 338], [338, 297], [297, 332], [332, 284], [284, 251], [251, 389], [389, 356], [356, 454], [454, 323], [323, 361], [361, 288], [288, 397], [397, 365], [365, 379], [379, 378], [378, 400], [400, 377], [377, 152],\n [152, 148], [148, 176], [176, 149], [149, 150], [150, 136], [136, 172], [172, 58], [58, 132], [132, 93], [93, 234], [234, 127], [127, 162], [162, 21], [21, 54], [54, 103], [103, 67], [67, 109], [109, 10],\n];\n\nexport const MEDIAPIPE_FACE_MESH_CONNECTED_KEYPOINTS_PAIRS: PairArray = [\n [127, 34], [34, 139], [139, 127], [11, 0], [0, 37], [37, 11], [232, 231], [231, 120], [120, 232], [72, 37], [37, 39], [39, 72], [128, 121], [121, 47], [47, 128], [232, 121], [121, 128], [128, 232],\n [104, 69], [69, 67], [67, 104], [175, 171], [171, 148], [148, 175], [118, 50], [50, 101], [101, 118], [73, 39], [39, 40], [40, 73], [9, 151], [151, 108], [108, 9], [48, 115], [115, 131], [131, 48],\n [194, 204], [204, 211], [211, 194], [74, 40], [40, 185], [185, 74], [80, 42], [42, 183], [183, 80], [40, 92], [92, 186], [186, 40], [230, 229], [229, 118], [118, 230], [202, 212], [212, 214], [214, 202],\n [83, 18], [18, 17], [17, 83], [76, 61], [61, 146], [146, 76], [160, 29], [29, 30], [30, 160], [56, 157], [157, 173], [173, 56], [106, 204], [204, 194], [194, 106], [135, 214], [214, 192], [192, 135],\n [203, 165], [165, 98], [98, 203], [21, 71], [71, 68], [68, 21], [51, 45], [45, 4], [4, 51], [144, 24], [24, 23], [23, 144], [77, 146], [146, 91], [91, 77], [205, 50], [50, 187], [187, 205],\n [201, 200], [200, 18], [18, 201], [91, 106], [106, 182], [182, 91], [90, 91], [91, 181], [181, 90], [85, 84], [84, 17], [17, 85], [206, 203], [203, 36], [36, 206], [148, 171], [171, 140], [140, 148],\n [92, 40], [40, 39], [39, 92], [193, 189], [189, 244], [244, 193], [159, 158], [158, 28], [28, 159], [247, 246], [246, 161], [161, 247], [236, 3], [3, 196], [196, 236], [54, 68], [68, 104], [104, 54],\n [193, 168], [168, 8], [8, 193], [117, 228], [228, 31], [31, 117], [189, 193], [193, 55], [55, 189], [98, 97], [97, 99], [99, 98], [126, 47], [47, 100], [100, 126], [166, 79], [79, 218], [218, 166],\n [155, 154], [154, 26], [26, 155], [209, 49], [49, 131], [131, 209], [135, 136], [136, 150], [150, 135], [47, 126], [126, 217], [217, 47], [223, 52], [52, 53], [53, 223], [45, 51], [51, 134], [134, 45],\n [211, 170], [170, 140], [140, 211], [67, 69], [69, 108], [108, 67], [43, 106], [106, 91], [91, 43], [230, 119], [119, 120], [120, 230], [226, 130], [130, 247], [247, 226], [63, 53], [53, 52], [52, 63],\n [238, 20], [20, 242], [242, 238], [46, 70], [70, 156], [156, 46], [78, 62], [62, 96], [96, 78], [46, 53], [53, 63], [63, 46], [143, 34], [34, 227], [227, 143], [123, 117], [117, 111], [111, 123],\n [44, 125], [125, 19], [19, 44], [236, 134], [134, 51], [51, 236], [216, 206], [206, 205], [205, 216], [154, 153], [153, 22], [22, 154], [39, 37], [37, 167], [167, 39], [200, 201], [201, 208], [208, 200],\n [36, 142], [142, 100], [100, 36], [57, 212], [212, 202], [202, 57], [20, 60], [60, 99], [99, 20], [28, 158], [158, 157], [157, 28], [35, 226], [226, 113], [113, 35], [160, 159], [159, 27], [27, 160],\n [204, 202], [202, 210], [210, 204], [113, 225], [225, 46], [46, 113], [43, 202], [202, 204], [204, 43], [62, 76], [76, 77], [77, 62], [137, 123], [123, 116], [116, 137], [41, 38], [38, 72], [72, 41],\n [203, 129], [129, 142], [142, 203], [64, 98], [98, 240], [240, 64], [49, 102], [102, 64], [64, 49], [41, 73], [73, 74], [74, 41], [212, 216], [216, 207], [207, 212], [42, 74], [74, 184], [184, 42],\n [169, 170], [170, 211], [211, 169], [170, 149], [149, 176], [176, 170], [105, 66], [66, 69], [69, 105], [122, 6], [6, 168], [168, 122], [123, 147], [147, 187], [187, 123], [96, 77], [77, 90], [90, 96],\n [65, 55], [55, 107], [107, 65], [89, 90], [90, 180], [180, 89], [101, 100], [100, 120], [120, 101], [63, 105], [105, 104], [104, 63], [93, 137], [137, 227], [227, 93], [15, 86], [86, 85], [85, 15],\n [129, 102], [102, 49], [49, 129], [14, 87], [87, 86], [86, 14], [55, 8], [8, 9], [9, 55], [100, 47], [47, 121], [121, 100], [145, 23], [23, 22], [22, 145], [88, 89], [89, 179], [179, 88],\n [6, 122], [122, 196], [196, 6], [88, 95], [95, 96], [96, 88], [138, 172], [172, 136], [136, 138], [215, 58], [58, 172], [172, 215], [115, 48], [48, 219], [219, 115], [42, 80], [80, 81], [81, 42],\n [195, 3], [3, 51], [51, 195], [43, 146], [146, 61], [61, 43], [171, 175], [175, 199], [199, 171], [81, 82], [82, 38], [38, 81], [53, 46], [46, 225], [225, 53], [144, 163], [163, 110], [110, 144],\n [52, 65], [65, 66], [66, 52], [229, 228], [228, 117], [117, 229], [34, 127], [127, 234], [234, 34], [107, 108], [108, 69], [69, 107], [109, 108], [108, 151], [151, 109], [48, 64], [64, 235], [235, 48],\n [62, 78], [78, 191], [191, 62], [129, 209], [209, 126], [126, 129], [111, 35], [35, 143], [143, 111], [117, 123], [123, 50], [50, 117], [222, 65], [65, 52], [52, 222], [19, 125], [125, 141], [141, 19],\n [221, 55], [55, 65], [65, 221], [3, 195], [195, 197], [197, 3], [25, 7], [7, 33], [33, 25], [220, 237], [237, 44], [44, 220], [70, 71], [71, 139], [139, 70], [122, 193], [193, 245], [245, 122],\n [247, 130], [130, 33], [33, 247], [71, 21], [21, 162], [162, 71], [170, 169], [169, 150], [150, 170], [188, 174], [174, 196], [196, 188], [216, 186], [186, 92], [92, 216], [2, 97], [97, 167], [167, 2],\n [141, 125], [125, 241], [241, 141], [164, 167], [167, 37], [37, 164], [72, 38], [38, 12], [12, 72], [38, 82], [82, 13], [13, 38], [63, 68], [68, 71], [71, 63], [226, 35], [35, 111], [111, 226],\n [101, 50], [50, 205], [205, 101], [206, 92], [92, 165], [165, 206], [209, 198], [198, 217], [217, 209], [165, 167], [167, 97], [97, 165], [220, 115], [115, 218], [218, 220], [133, 112], [112, 243], [243, 133],\n [239, 238], [238, 241], [241, 239], [214, 135], [135, 169], [169, 214], [190, 173], [173, 133], [133, 190], [171, 208], [208, 32], [32, 171], [125, 44], [44, 237], [237, 125], [86, 87], [87, 178], [178, 86],\n [85, 86], [86, 179], [179, 85], [84, 85], [85, 180], [180, 84], [83, 84], [84, 181], [181, 83], [201, 83], [83, 182], [182, 201], [137, 93], [93, 132], [132, 137], [76, 62], [62, 183], [183, 76],\n [61, 76], [76, 184], [184, 61], [57, 61], [61, 185], [185, 57], [212, 57], [57, 186], [186, 212], [214, 207], [207, 187], [187, 214], [34, 143], [143, 156], [156, 34], [79, 239], [239, 237], [237, 79],\n [123, 137], [137, 177], [177, 123], [44, 1], [1, 4], [4, 44], [201, 194], [194, 32], [32, 201], [64, 102], [102, 129], [129, 64], [213, 215], [215, 138], [138, 213], [59, 166], [166, 219], [219, 59],\n [242, 99], [99, 97], [97, 242], [2, 94], [94, 141], [141, 2], [75, 59], [59, 235], [235, 75], [24, 110], [110, 228], [228, 24], [25, 130], [130, 226], [226, 25], [23, 24], [24, 229], [229, 23],\n [22, 23], [23, 230], [230, 22], [26, 22], [22, 231], [231, 26], [112, 26], [26, 232], [232, 112], [189, 190], [190, 243], [243, 189], [221, 56], [56, 190], [190, 221], [28, 56], [56, 221], [221, 28],\n [27, 28], [28, 222], [222, 27], [29, 27], [27, 223], [223, 29], [30, 29], [29, 224], [224, 30], [247, 30], [30, 225], [225, 247], [238, 79], [79, 20], [20, 238], [166, 59], [59, 75], [75, 166],\n [60, 75], [75, 240], [240, 60], [147, 177], [177, 215], [215, 147], [20, 79], [79, 166], [166, 20], [187, 147], [147, 213], [213, 187], [112, 233], [233, 244], [244, 112], [233, 128], [128, 245], [245, 233],\n [128, 114], [114, 188], [188, 128], [114, 217], [217, 174], [174, 114], [131, 115], [115, 220], [220, 131], [217, 198], [198, 236], [236, 217], [198, 131], [131, 134], [134, 198], [177, 132], [132, 58], [58, 177],\n [143, 35], [35, 124], [124, 143], [110, 163], [163, 7], [7, 110], [228, 110], [110, 25], [25, 228], [356, 389], [389, 368], [368, 356], [11, 302], [302, 267], [267, 11], [452, 350], [350, 349], [349, 452],\n [302, 303], [303, 269], [269, 302], [357, 343], [343, 277], [277, 357], [452, 453], [453, 357], [357, 452], [333, 332], [332, 297], [297, 333], [175, 152], [152, 377], [377, 175], [347, 348], [348, 330], [330, 347],\n [303, 304], [304, 270], [270, 303], [9, 336], [336, 337], [337, 9], [278, 279], [279, 360], [360, 278], [418, 262], [262, 431], [431, 418], [304, 408], [408, 409], [409, 304], [310, 415], [415, 407], [407, 310],\n [270, 409], [409, 410], [410, 270], [450, 348], [348, 347], [347, 450], [422, 430], [430, 434], [434, 422], [313, 314], [314, 17], [17, 313], [306, 307], [307, 375], [375, 306], [387, 388], [388, 260], [260, 387],\n [286, 414], [414, 398], [398, 286], [335, 406], [406, 418], [418, 335], [364, 367], [367, 416], [416, 364], [423, 358], [358, 327], [327, 423], [251, 284], [284, 298], [298, 251], [281, 5], [5, 4], [4, 281],\n [373, 374], [374, 253], [253, 373], [307, 320], [320, 321], [321, 307], [425, 427], [427, 411], [411, 425], [421, 313], [313, 18], [18, 421], [321, 405], [405, 406], [406, 321], [320, 404], [404, 405], [405, 320],\n [315, 16], [16, 17], [17, 315], [426, 425], [425, 266], [266, 426], [377, 400], [400, 369], [369, 377], [322, 391], [391, 269], [269, 322], [417, 465], [465, 464], [464, 417], [386, 257], [257, 258], [258, 386],\n [466, 260], [260, 388], [388, 466], [456, 399], [399, 419], [419, 456], [284, 332], [332, 333], [333, 284], [417, 285], [285, 8], [8, 417], [346, 340], [340, 261], [261, 346], [413, 441], [441, 285], [285, 413],\n [327, 460], [460, 328], [328, 327], [355, 371], [371, 329], [329, 355], [392, 439], [439, 438], [438, 392], [382, 341], [341, 256], [256, 382], [429, 420], [420, 360], [360, 429], [364, 394], [394, 379], [379, 364],\n [277, 343], [343, 437], [437, 277], [443, 444], [444, 283], [283, 443], [275, 440], [440, 363], [363, 275], [431, 262], [262, 369], [369, 431], [297, 338], [338, 337], [337, 297], [273, 375], [375, 321], [321, 273],\n [450, 451], [451, 349], [349, 450], [446, 342], [342, 467], [467, 446], [293, 334], [334, 282], [282, 293], [458, 461], [461, 462], [462, 458], [276, 353], [353, 383], [383, 276], [308, 324], [324, 325], [325, 308],\n [276, 300], [300, 293], [293, 276], [372, 345], [345, 447], [447, 372], [352, 345], [345, 340], [340, 352], [274, 1], [1, 19], [19, 274], [456, 248], [248, 281], [281, 456], [436, 427], [427, 425], [425, 436],\n [381, 256], [256, 252], [252, 381], [269, 391], [391, 393], [393, 269], [200, 199], [199, 428], [428, 200], [266, 330], [330, 329], [329, 266], [287, 273], [273, 422], [422, 287], [250, 462], [462, 328], [328, 250],\n [258, 286], [286, 384], [384, 258], [265, 353], [353, 342], [342, 265], [387, 259], [259, 257], [257, 387], [424, 431], [431, 430], [430, 424], [342, 353], [353, 276], [276, 342], [273, 335], [335, 424], [424, 273],\n [292, 325], [325, 307], [307, 292], [366, 447], [447, 345], [345, 366], [271, 303], [303, 302], [302, 271], [423, 266], [266, 371], [371, 423], [294, 455], [455, 460], [460, 294], [279, 278], [278, 294], [294, 279],\n [271, 272], [272, 304], [304, 271], [432, 434], [434, 427], [427, 432], [272, 407], [407, 408], [408, 272], [394, 430], [430, 431], [431, 394], [395, 369], [369, 400], [400, 395], [334, 333], [333, 299], [299, 334],\n [351, 417], [417, 168], [168, 351], [352, 280], [280, 411], [411, 352], [325, 319], [319, 320], [320, 325], [295, 296], [296, 336], [336, 295], [319, 403], [403, 404], [404, 319], [330, 348], [348, 349], [349, 330],\n [293, 298], [298, 333], [333, 293], [323, 454], [454, 447], [447, 323], [15, 16], [16, 315], [315, 15], [358, 429], [429, 279], [279, 358], [14, 15], [15, 316], [316, 14], [285, 336], [336, 9], [9, 285],\n [329, 349], [349, 350], [350, 329], [374, 380], [380, 252], [252, 374], [318, 402], [402, 403], [403, 318], [6, 197], [197, 419], [419, 6], [318, 319], [319, 325], [325, 318], [367, 364], [364, 365], [365, 367],\n [435, 367], [367, 397], [397, 435], [344, 438], [438, 439], [439, 344], [272, 271], [271, 311], [311, 272], [195, 5], [5, 281], [281, 195], [273, 287], [287, 291], [291, 273], [396, 428], [428, 199], [199, 396],\n [311, 271], [271, 268], [268, 311], [283, 444], [444, 445], [445, 283], [373, 254], [254, 339], [339, 373], [282, 334], [334, 296], [296, 282], [449, 347], [347, 346], [346, 449], [264, 447], [447, 454], [454, 264],\n [336, 296], [296, 299], [299, 336], [338, 10], [10, 151], [151, 338], [278, 439], [439, 455], [455, 278], [292, 407], [407, 415], [415, 292], [358, 371], [371, 355], [355, 358], [340, 345], [345, 372], [372, 340],\n [346, 347], [347, 280], [280, 346], [442, 443], [443, 282], [282, 442], [19, 94], [94, 370], [370, 19], [441, 442], [442, 295], [295, 441], [248, 419], [419, 197], [197, 248], [263, 255], [255, 359], [359, 263],\n [440, 275], [275, 274], [274, 440], [300, 383], [383, 368], [368, 300], [351, 412], [412, 465], [465, 351], [263, 467], [467, 466], [466, 263], [301, 368], [368, 389], [389, 301], [395, 378], [378, 379], [379, 395],\n [412, 351], [351, 419], [419, 412], [436, 426], [426, 322], [322, 436], [2, 164], [164, 393], [393, 2], [370, 462], [462, 461], [461, 370], [164, 0], [0, 267], [267, 164], [302, 11], [11, 12], [12, 302],\n [268, 12], [12, 13], [13, 268], [293, 300], [300, 301], [301, 293], [446, 261], [261, 340], [340, 446], [330, 266], [266, 425], [425, 330], [426, 423], [423, 391], [391, 426], [429, 355], [355, 437], [437, 429],\n [391, 327], [327, 326], [326, 391], [440, 457], [457, 438], [438, 440], [341, 382], [382, 362], [362, 341], [459, 457], [457, 461], [461, 459], [434, 430], [430, 394], [394, 434], [414, 463], [463, 362], [362, 414],\n [396, 369], [369, 262], [262, 396], [354, 461], [461, 457], [457, 354], [316, 403], [403, 402], [402, 316], [315, 404], [404, 403], [403, 315], [314, 405], [405, 404], [404, 314], [313, 406], [406, 405], [405, 313],\n [421, 418], [418, 406], [406, 421], [366, 401], [401, 361], [361, 366], [306, 408], [408, 407], [407, 306], [291, 409], [409, 408], [408, 291], [287, 410], [410, 409], [409, 287], [432, 436], [436, 410], [410, 432],\n [434, 416], [416, 411], [411, 434], [264, 368], [368, 383], [383, 264], [309, 438], [438, 457], [457, 309], [352, 376], [376, 401], [401, 352], [274, 275], [275, 4], [4, 274], [421, 428], [428, 262], [262, 421],\n [294, 327], [327, 358], [358, 294], [433, 416], [416, 367], [367, 433], [289, 455], [455, 439], [439, 289], [462, 370], [370, 326], [326, 462], [2, 326], [326, 370], [370, 2], [305, 460], [460, 455], [455, 305],\n [254, 449], [449, 448], [448, 254], [255, 261], [261, 446], [446, 255], [253, 450], [450, 449], [449, 253], [252, 451], [451, 450], [450, 252], [256, 452], [452, 451], [451, 256], [341, 453], [453, 452], [452, 341],\n [413, 464], [464, 463], [463, 413], [441, 413], [413, 414], [414, 441], [258, 442], [442, 441], [441, 258], [257, 443], [443, 442], [442, 257], [259, 444], [444, 443], [443, 259], [260, 445], [445, 444], [444, 260],\n [467, 342], [342, 445], [445, 467], [459, 458], [458, 250], [250, 459], [289, 392], [392, 290], [290, 289], [290, 328], [328, 460], [460, 290], [376, 433], [433, 435], [435, 376], [250, 290], [290, 392], [392, 250],\n [411, 416], [416, 433], [433, 411], [341, 463], [463, 464], [464, 341], [453, 464], [464, 465], [465, 453], [357, 465], [465, 412], [412, 357], [343, 412], [412, 399], [399, 343], [360, 363], [363, 440], [440, 360],\n [437, 399], [399, 456], [456, 437], [420, 456], [456, 363], [363, 420], [401, 435], [435, 288], [288, 401], [372, 383], [383, 353], [353, 372], [339, 255], [255, 249], [249, 339], [448, 261], [261, 255], [255, 448],\n [133, 243], [243, 190], [190, 133], [133, 155], [155, 112], [112, 133], [33, 246], [246, 247], [247, 33], [33, 130], [130, 25], [25, 33], [398, 384], [384, 286], [286, 398], [362, 398], [398, 414], [414, 362],\n [362, 463], [463, 341], [341, 362], [263, 359], [359, 467], [467, 263], [263, 249], [249, 255], [255, 263], [466, 467], [467, 260], [260, 466], [75, 60], [60, 166], [166, 75], [238, 239], [239, 79], [79, 238],\n [162, 127], [127, 139], [139, 162], [72, 11], [11, 37], [37, 72], [121, 232], [232, 120], [120, 121], [73, 72], [72, 39], [39, 73], [114, 128], [128, 47], [47, 114], [233, 232], [232, 128], [128, 233],\n [103, 104], [104, 67], [67, 103], [152, 175], [175, 148], [148, 152], [119, 118], [118, 101], [101, 119], [74, 73], [73, 40], [40, 74], [107, 9], [9, 108], [108, 107], [49, 48], [48, 131], [131, 49],\n [32, 194], [194, 211], [211, 32], [184, 74], [74, 185], [185, 184], [191, 80], [80, 183], [183, 191], [185, 40], [40, 186], [186, 185], [119, 230], [230, 118], [118, 119], [210, 202], [202, 214], [214, 210],\n [84, 83], [83, 17], [17, 84], [77, 76], [76, 146], [146, 77], [161, 160], [160, 30], [30, 161], [190, 56], [56, 173], [173, 190], [182, 106], [106, 194], [194, 182], [138, 135], [135, 192], [192, 138],\n [129, 203], [203, 98], [98, 129], [54, 21], [21, 68], [68, 54], [5, 51], [51, 4], [4, 5], [145, 144], [144, 23], [23, 145], [90, 77], [77, 91], [91, 90], [207, 205], [205, 187], [187, 207],\n [83, 201], [201, 18], [18, 83], [181, 91], [91, 182], [182, 181], [180, 90], [90, 181], [181, 180], [16, 85], [85, 17], [17, 16], [205, 206], [206, 36], [36, 205], [176, 148], [148, 140], [140, 176],\n [165, 92], [92, 39], [39, 165], [245, 193], [193, 244], [244, 245], [27, 159], [159, 28], [28, 27], [30, 247], [247, 161], [161, 30], [174, 236], [236, 196], [196, 174], [103, 54], [54, 104], [104, 103],\n [55, 193], [193, 8], [8, 55], [111, 117], [117, 31], [31, 111], [221, 189], [189, 55], [55, 221], [240, 98], [98, 99], [99, 240], [142, 126], [126, 100], [100, 142], [219, 166], [166, 218], [218, 219],\n [112, 155], [155, 26], [26, 112], [198, 209], [209, 131], [131, 198], [169, 135], [135, 150], [150, 169], [114, 47], [47, 217], [217, 114], [224, 223], [223, 53], [53, 224], [220, 45], [45, 134], [134, 220],\n [32, 211], [211, 140], [140, 32], [109, 67], [67, 108], [108, 109], [146, 43], [43, 91], [91, 146], [231, 230], [230, 120], [120, 231], [113, 226], [226, 247], [247, 113], [105, 63], [63, 52], [52, 105],\n [241, 238], [238, 242], [242, 241], [124, 46], [46, 156], [156, 124], [95, 78], [78, 96], [96, 95], [70, 46], [46, 63], [63, 70], [116, 143], [143, 227], [227, 116], [116, 123], [123, 111], [111, 116],\n [1, 44], [44, 19], [19, 1], [3, 236], [236, 51], [51, 3], [207, 216], [216, 205], [205, 207], [26, 154], [154, 22], [22, 26], [165, 39], [39, 167], [167, 165], [199, 200], [200, 208], [208, 199],\n [101, 36], [36, 100], [100, 101], [43, 57], [57, 202], [202, 43], [242, 20], [20, 99], [99, 242], [56, 28], [28, 157], [157, 56], [124, 35], [35, 113], [113, 124], [29, 160], [160, 27], [27, 29],\n [211, 204], [204, 210], [210, 211], [124, 113], [113, 46], [46, 124], [106, 43], [43, 204], [204, 106], [96, 62], [62, 77], [77, 96], [227, 137], [137, 116], [116, 227], [73, 41], [41, 72], [72, 73],\n [36, 203], [203, 142], [142, 36], [235, 64], [64, 240], [240, 235], [48, 49], [49, 64], [64, 48], [42, 41], [41, 74], [74, 42], [214, 212], [212, 207], [207, 214], [183, 42], [42, 184], [184, 183],\n [210, 169], [169, 211], [211, 210], [140, 170], [170, 176], [176, 140], [104, 105], [105, 69], [69, 104], [193, 122], [122, 168], [168, 193], [50, 123], [123, 187], [187, 50], [89, 96], [96, 90], [90, 89],\n [66, 65], [65, 107], [107, 66], [179, 89], [89, 180], [180, 179], [119, 101], [101, 120], [120, 119], [68, 63], [63, 104], [104, 68], [234, 93], [93, 227], [227, 234], [16, 15], [15, 85], [85, 16],\n [209, 129], [129, 49], [49, 209], [15, 14], [14, 86], [86, 15], [107, 55], [55, 9], [9, 107], [120, 100], [100, 121], [121, 120], [153, 145], [145, 22], [22, 153], [178, 88], [88, 179], [179, 178],\n [197, 6], [6, 196], [196, 197], [89, 88], [88, 96], [96, 89], [135, 138], [138, 136], [136, 135], [138, 215], [215, 172], [172, 138], [218, 115], [115, 219], [219, 218], [41, 42], [42, 81], [81, 41],\n [5, 195], [195, 51], [51, 5], [57, 43], [43, 61], [61, 57], [208, 171], [171, 199], [199, 208], [41, 81], [81, 38], [38, 41], [224, 53], [53, 225], [225, 224], [24, 144], [144, 110], [110, 24],\n [105, 52], [52, 66], [66, 105], [118, 229], [229, 117], [117, 118], [227, 34], [34, 234], [234, 227], [66, 107], [107, 69], [69, 66], [10, 109], [109, 151], [151, 10], [219, 48], [48, 235], [235, 219],\n [183, 62], [62, 191], [191, 183], [142, 129], [129, 126], [126, 142], [116, 111], [111, 143], [143, 116], [118, 117], [117, 50], [50, 118], [223, 222], [222, 52], [52, 223], [94, 19], [19, 141], [141, 94],\n [222, 221], [221, 65], [65, 222], [196, 3], [3, 197], [197, 196], [45, 220], [220, 44], [44, 45], [156, 70], [70, 139], [139, 156], [188, 122], [122, 245], [245, 188], [139, 71], [71, 162], [162, 139],\n [149, 170], [170, 150], [150, 149], [122, 188], [188, 196], [196, 122], [206, 216], [216, 92], [92, 206], [164, 2], [2, 167], [167, 164], [242, 141], [141, 241], [241, 242], [0, 164], [164, 37], [37, 0],\n [11, 72], [72, 12], [12, 11], [12, 38], [38, 13], [13, 12], [70, 63], [63, 71], [71, 70], [31, 226], [226, 111], [111, 31], [36, 101], [101, 205], [205, 36], [203, 206], [206, 165], [165, 203],\n [126, 209], [209, 217], [217, 126], [98, 165], [165, 97], [97, 98], [237, 220], [220, 218], [218, 237], [237, 239], [239, 241], [241, 237], [210, 214], [214, 169], [169, 210], [140, 171], [171, 32], [32, 140],\n [241, 125], [125, 237], [237, 241], [179, 86], [86, 178], [178, 179], [180, 85], [85, 179], [179, 180], [181, 84], [84, 180], [180, 181], [182, 83], [83, 181], [181, 182], [194, 201], [201, 182], [182, 194],\n [177, 137], [137, 132], [132, 177], [184, 76], [76, 183], [183, 184], [185, 61], [61, 184], [184, 185], [186, 57], [57, 185], [185, 186], [216, 212], [212, 186], [186, 216], [192, 214], [214, 187], [187, 192],\n [139, 34], [34, 156], [156, 139], [218, 79], [79, 237], [237, 218], [147, 123], [123, 177], [177, 147], [45, 44], [44, 4], [4, 45], [208, 201], [201, 32], [32, 208], [98, 64], [64, 129], [129, 98],\n [192, 213], [213, 138], [138, 192], [235, 59], [59, 219], [219, 235], [141, 242], [242, 97], [97, 141], [97, 2], [2, 141], [141, 97], [240, 75], [75, 235], [235, 240], [229, 24], [24, 228], [228, 229],\n [31, 25], [25, 226], [226, 31], [230, 23], [23, 229], [229, 230], [231, 22], [22, 230], [230, 231], [232, 26], [26, 231], [231, 232], [233, 112], [112, 232], [232, 233], [244, 189], [189, 243], [243, 244],\n [189, 221], [221, 190], [190, 189], [222, 28], [28, 221], [221, 222], [223, 27], [27, 222], [222, 223], [224, 29], [29, 223], [223, 224], [225, 30], [30, 224], [224, 225], [113, 247], [247, 225], [225, 113],\n [99, 60], [60, 240], [240, 99], [213, 147], [147, 215], [215, 213], [60, 20], [20, 166], [166, 60], [192, 187], [187, 213], [213, 192], [243, 112], [112, 244], [244, 243], [244, 233], [233, 245], [245, 244],\n [245, 128], [128, 188], [188, 245], [188, 114], [114, 174], [174, 188], [134, 131], [131, 220], [220, 134], [174, 217], [217, 236], [236, 174], [236, 198], [198, 134], [134, 236], [215, 177], [177, 58], [58, 215],\n [156, 143], [143, 124], [124, 156], [25, 110], [110, 7], [7, 25], [31, 228], [228, 25], [25, 31], [264, 356], [356, 368], [368, 264], [0, 11], [11, 267], [267, 0], [451, 452], [452, 349], [349, 451],\n [267, 302], [302, 269], [269, 267], [350, 357], [357, 277], [277, 350], [350, 452], [452, 357], [357, 350], [299, 333], [333, 297], [297, 299], [396, 175], [175, 377], [377, 396], [280, 347], [347, 330], [330, 280],\n [269, 303], [303, 270], [270, 269], [151, 9], [9, 337], [337, 151], [344, 278], [278, 360], [360, 344], [424, 418], [418, 431], [431, 424], [270, 304], [304, 409], [409, 270], [272, 310], [310, 407], [407, 272],\n [322, 270], [270, 410], [410, 322], [449, 450], [450, 347], [347, 449], [432, 422], [422, 434], [434, 432], [18, 313], [313, 17], [17, 18], [291, 306], [306, 375], [375, 291], [259, 387], [387, 260], [260, 259],\n [424, 335], [335, 418], [418, 424], [434, 364], [364, 416], [416, 434], [391, 423], [423, 327], [327, 391], [301, 251], [251, 298], [298, 301], [275, 281], [281, 4], [4, 275], [254, 373], [373, 253], [253, 254],\n [375, 307], [307, 321], [321, 375], [280, 425], [425, 411], [411, 280], [200, 421], [421, 18], [18, 200], [335, 321], [321, 406], [406, 335], [321, 320], [320, 405], [405, 321], [314, 315], [315, 17], [17, 314],\n [423, 426], [426, 266], [266, 423], [396, 377], [377, 369], [369, 396], [270, 322], [322, 269], [269, 270], [413, 417], [417, 464], [464, 413], [385, 386], [386, 258], [258, 385], [248, 456], [456, 419], [419, 248],\n [298, 284], [284, 333], [333, 298], [168, 417], [417, 8], [8, 168], [448, 346], [346, 261], [261, 448], [417, 413], [413, 285], [285, 417], [326, 327], [327, 328], [328, 326], [277, 355], [355, 329], [329, 277],\n [309, 392], [392, 438], [438, 309], [381, 382], [382, 256], [256, 381], [279, 429], [429, 360], [360, 279], [365, 364], [364, 379], [379, 365], [355, 277], [277, 437], [437, 355], [282, 443], [443, 283], [283, 282],\n [281, 275], [275, 363], [363, 281], [395, 431], [431, 369], [369, 395], [299, 297], [297, 337], [337, 299], [335, 273], [273, 321], [321, 335], [348, 450], [450, 349], [349, 348], [359, 446], [446, 467], [467, 359],\n [283, 293], [293, 282], [282, 283], [250, 458], [458, 462], [462, 250], [300, 276], [276, 383], [383, 300], [292, 308], [308, 325], [325, 292], [283, 276], [276, 293], [293, 283], [264, 372], [372, 447], [447, 264],\n [346, 352], [352, 340], [340, 346], [354, 274], [274, 19], [19, 354], [363, 456], [456, 281], [281, 363], [426, 436], [436, 425], [425, 426], [380, 381], [381, 252], [252, 380], [267, 269], [269, 393], [393, 267],\n [421, 200], [200, 428], [428, 421], [371, 266], [266, 329], [329, 371], [432, 287], [287, 422], [422, 432], [290, 250], [250, 328], [328, 290], [385, 258], [258, 384], [384, 385], [446, 265], [265, 342], [342, 446],\n [386, 387], [387, 257], [257, 386], [422, 424], [424, 430], [430, 422], [445, 342], [342, 276], [276, 445], [422, 273], [273, 424], [424, 422], [306, 292], [292, 307], [307, 306], [352, 366], [366, 345], [345, 352],\n [268, 271], [271, 302], [302, 268], [358, 423], [423, 371], [371, 358], [327, 294], [294, 460], [460, 327], [331, 279], [279, 294], [294, 331], [303, 271], [271, 304], [304, 303], [436, 432], [432, 427], [427, 436],\n [304, 272], [272, 408], [408, 304], [395, 394], [394, 431], [431, 395], [378, 395], [395, 400], [400, 378], [296, 334], [334, 299], [299, 296], [6, 351], [351, 168], [168, 6], [376, 352], [352, 411], [411, 376],\n [307, 325], [325, 320], [320, 307], [285, 295], [295, 336], [336, 285], [320, 319], [319, 404], [404, 320], [329, 330], [330, 349], [349, 329], [334, 293], [293, 333], [333, 334], [366, 323], [323, 447], [447, 366],\n [316, 15], [15, 315], [315, 316], [331, 358], [358, 279], [279, 331], [317, 14], [14, 316], [316, 317], [8, 285], [285, 9], [9, 8], [277, 329], [329, 350], [350, 277], [253, 374], [374, 252], [252, 253],\n [319, 318], [318, 403], [403, 319], [351, 6], [6, 419], [419, 351], [324, 318], [318, 325], [325, 324], [397, 367], [367, 365], [365, 397], [288, 435], [435, 397], [397, 288], [278, 344], [344, 439], [439, 278],\n [310, 272], [272, 311], [311, 310], [248, 195], [195, 281], [281, 248], [375, 273], [273, 291], [291, 375], [175, 396], [396, 199], [199, 175], [312, 311], [311, 268], [268, 312], [276, 283], [283, 445], [445, 276],\n [390, 373], [373, 339], [339, 390], [295, 282], [282, 296], [296, 295], [448, 449], [449, 346], [346, 448], [356, 264], [264, 454], [454, 356], [337, 336], [336, 299], [299, 337], [337, 338], [338, 151], [151, 337],\n [294, 278], [278, 455], [455, 294], [308, 292], [292, 415], [415, 308], [429, 358], [358, 355], [355, 429], [265, 340], [340, 372], [372, 265], [352, 346], [346, 280], [280, 352], [295, 442], [442, 282], [282, 295],\n [354, 19], [19, 370], [370, 354], [285, 441], [441, 295], [295, 285], [195, 248], [248, 197], [197, 195], [457, 440], [440, 274], [274, 457], [301, 300], [300, 368], [368, 301], [417, 351], [351, 465], [465, 417],\n [251, 301], [301, 389], [389, 251], [394, 395], [395, 379], [379, 394], [399, 412], [412, 419], [419, 399], [410, 436], [436, 322], [322, 410], [326, 2], [2, 393], [393, 326], [354, 370], [370, 461], [461, 354],\n [393, 164], [164, 267], [267, 393], [268, 302], [302, 12], [12, 268], [312, 268], [268, 13], [13, 312], [298, 293], [293, 301], [301, 298], [265, 446], [446, 340], [340, 265], [280, 330], [330, 425], [425, 280],\n [322, 426], [426, 391], [391, 322], [420, 429], [429, 437], [437, 420], [393, 391], [391, 326], [326, 393], [344, 440], [440, 438], [438, 344], [458, 459], [459, 461], [461, 458], [364, 434], [434, 394], [394, 364],\n [428, 396], [396, 262], [262, 428], [274, 354], [354, 457], [457, 274], [317, 316], [316, 402], [402, 317], [316, 315], [315, 403], [403, 316], [315, 314], [314, 404], [404, 315], [314, 313], [313, 405], [405, 314],\n [313, 421], [421, 406], [406, 313], [323, 366], [366, 361], [361, 323], [292, 306], [306, 407], [407, 292], [306, 291], [291, 408], [408, 306], [291, 287], [287, 409], [409, 291], [287, 432], [432, 410], [410, 287],\n [427, 434], [434, 411], [411, 427], [372, 264], [264, 383], [383, 372], [459, 309], [309, 457], [457, 459], [366, 352], [352, 401], [401, 366], [1, 274], [274, 4], [4, 1], [418, 421], [421, 262], [262, 418],\n [331, 294], [294, 358], [358, 331], [435, 433], [433, 367], [367, 435], [392, 289], [289, 439], [439, 392], [328, 462], [462, 326], [326, 328], [94, 2], [2, 370], [370, 94], [289, 305], [305, 455], [455, 289],\n [339, 254], [254, 448], [448, 339], [359, 255], [255, 446], [446, 359], [254, 253], [253, 449], [449, 254], [253, 252], [252, 450], [450, 253], [252, 256], [256, 451], [451, 252], [256, 341], [341, 452], [452, 256],\n [414, 413], [413, 463], [463, 414], [286, 441], [441, 414], [414, 286], [286, 258], [258, 441], [441, 286], [258, 257], [257, 442], [442, 258], [257, 259], [259, 443], [443, 257], [259, 260], [260, 444], [444, 259],\n [260, 467], [467, 445], [445, 260], [309, 459], [459, 250], [250, 309], [305, 289], [289, 290], [290, 305], [305, 290], [290, 460], [460, 305], [401, 376], [376, 435], [435, 401], [309, 250], [250, 392], [392, 309],\n [376, 411], [411, 433], [433, 376], [453, 341], [341, 464], [464, 453], [357, 453], [453, 465], [465, 357], [343, 357], [357, 412], [412, 343], [437, 343], [343, 399], [399, 437], [344, 360], [360, 440], [440, 344],\n [420, 437], [437, 456], [456, 420], [360, 420], [420, 363], [363, 360], [361, 401], [401, 288], [288, 361], [265, 372], [372, 353], [353, 265], [390, 339], [339, 249], [249, 390], [339, 448], [448, 255], [255, 339],\n];\n\nfunction connectionsToIndices(connections: PairArray) {\n const indices = connections.map((connection) => connection[0]);\n indices.push(connections[connections.length - 1][1]);\n return indices;\n}\n\nexport const MEDIAPIPE_FACE_MESH_KEYPOINTS_BY_CONTOUR = {\n lips: connectionsToIndices(LIPS_CONNECTIONS),\n leftEye: connectionsToIndices(LEFT_EYE_CONNECTIONS),\n leftEyebrow: connectionsToIndices(LEFT_EYEBROW_CONNECTIONS),\n leftIris: connectionsToIndices(LEFT_IRIS_CONNECTIONS),\n rightEye: connectionsToIndices(RIGHT_EYE_CONNECTIONS),\n rightEyebrow: connectionsToIndices(RIGHT_EYEBROW_CONNECTIONS),\n rightIris: connectionsToIndices(RIGHT_IRIS_CONNECTIONS),\n faceOval: connectionsToIndices(FACE_OVAL_CONNECTIONS),\n};\n\nconst indexLabelPairs: Array<[number, string]> = Object.entries(MEDIAPIPE_FACE_MESH_KEYPOINTS_BY_CONTOUR)\n .map(([label, indices]) => indices.map((index) => [index, label] as [number, string]))\n .flat();\n\nexport const MEDIAPIPE_FACE_MESH_KEYPOINTS = new Map(indexLabelPairs);\n\ntype AssignAverage = number[];\nexport interface LandmarksRefinementConfig {\n indexesMapping: number[]; // Maps indexes of the given set of landmarks to indexes of the resulting set of landmarks. Should be non empty and contain the same amount of indexes as landmarks in the corresponding input\n zRefinement: 'none'|'copy'|AssignAverage; // Z refinement instructions.\n}\n\nexport const LANDMARKS_REFINEMENT_LIPS_CONFIG = [\n 61, 146, 91, 181, 84, 17, 314, 405, 321, 375, 291, // Lower outer.\n 185, 40, 39, 37, 0, 267, 269, 270, 409, // Upper outer(excluding corners).\n 78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308, // Lower inner.\n 191, 80, 81, 82, 13, 312, 311, 310, 415, // Upper inner(excluding corners).\n 76, 77, 90, 180, 85, 16, 315, 404, 320, 307, 306, // Lower semi - outer.\n 184, 74, 73, 72, 11, 302, 303, 304, 408, // Upper semi - outer(excluding corners).\n 62, 96, 89, 179, 86, 15, 316, 403, 319, 325, 292, // Lower semi - inner.\n 183, 42, 41, 38, 12, 268, 271, 272, 407, // Upper semi - inner(excluding corners).\n];\n\nexport const LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG = [\n 33, 7, 163, 144, 145, 153, 154, 155, 133, // Lower contour.\n 246, 161, 160, 159, 158, 157, 173, // upper contour (excluding corners).\n 130, 25, 110, 24, 23, 22, 26, 112, 243, // Halo x2 lower contour.\n 247, 30, 29, 27, 28, 56, 190, // Halo x2 upper contour (excluding corners).\n 226, 31, 228, 229, 230, 231, 232, 233, 244, // Halo x3 lower contour.\n 113, 225, 224, 223, 222, 221, 189, // Halo x3 upper contour (excluding corners).\n 35, 124, 46, 53, 52, 65, // Halo x4 upper contour (no lower because of mesh structure) or eyebrow inner contour.\n 143, 111, 117, 118, 119, 120, 121, 128, 245, // Halo x5 lower contour.\n 156, 70, 63, 105, 66, 107, 55, 193, // Halo x5 upper contour (excluding corners) or eyebrow outer contour.\n];\n\nexport const LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG = [\n 263, 249, 390, 373, 374, 380, 381, 382, 362, // Lower contour.\n 466, 388, 387, 386, 385, 384, 398, // Upper contour (excluding corners).\n 359, 255, 339, 254, 253, 252, 256, 341, 463, // Halo x2 lower contour.\n 467, 260, 259, 257, 258, 286, 414, // Halo x2 upper contour (excluding corners).\n 446, 261, 448, 449, 450, 451, 452, 453, 464, // Halo x3 lower contour.\n 342, 445, 444, 443, 442, 441, 413, // Halo x3 upper contour (excluding corners).\n 265, 353, 276, 283, 282, 295, // Halo x4 upper contour (no lower because of mesh structure) or/ eyebrow inner contour.\n 372, 340, 346, 347, 348, 349, 350, 357, 465, // Halo x5 lower contour.\n 383, 300, 293, 334, 296, 336, 285, 417, // Halo x5 upper contour (excluding corners) or eyebrow outer contour.\n];\n\nexport const LANDMARKS_REFINEMENT_LEFT_IRIS_CONFIG = [\n 468, // Center.\n 469, // Iris right edge.\n 470, // Iris top edge.\n 471, // Iris left edge.\n 472, // Iris bottom edge.\n];\n/*\nzRefinement: [\n 33, 7, 163, 144, 145, 153, 154, 155, 133, // Lower contour.\n 246, 161, 160, 159, 158, 157, 173, // Upper contour (excluding corners).\n];\n*/\n\nexport const LANDMARKS_REFINEMENT_RIGHT_IRIS_CONFIG = [\n 473, // Center.\n 474, // Iris right edge.\n 475, // Iris top edge.\n 476, // Iris left edge.\n 477, // Iris bottom edge.\n];\n/*\nzRefinement: [\n 263, 249, 390, 373, 374, 380, 381, 382, 362, // Lower contour.\n 466, 388, 387, 386, 385, 384, 398, // Upper contour (excluding corners).\n];\n*/\n", "import * as constants from './constants';\nimport type { Tensor } from '../tfjs/types';\n\nexport async function augment(rawCoords, results: Tensor[]) {\n const t: Record = { // all attention models produce 2d results so it needs to be later augmented with correct z-coords\n // mesh: results[0], // already have it in rawCoords // output_mesh_identity\n // flag: results[1], // already processed in parent // conv_faceflag\n lips: await results.filter((r) => r.size === 160)[0].data() as Float32Array, // 80 x 2d = 160 // output_lips\n irisL: await results.filter((r) => r.size === 10)[0].data() as Float32Array, // 5 x 2d = 10 // output_right_iris\n eyeL: await results.filter((r) => r.size === 142)[0].data() as Float32Array, // 71 x 2d = 142 // output_right_eye\n irisR: await results.filter((r) => r.size === 10)[1].data() as Float32Array, // 5 x 2d = 10 // output_left_iris\n eyeR: await results.filter((r) => r.size === 142)[1].data() as Float32Array, // 71 x 2d = 142// output_left_eye\n };\n\n // augment iris: adds additional 5 keypoints per eye\n const irisLDepth = constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.reduce((prev, curr) => prev += rawCoords[curr][2], 0) / constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.length; // get average z-coord for iris\n for (let i = 0; i < t.irisL.length / 2; i++) rawCoords.push([t.irisL[2 * i + 0], t.irisL[2 * i + 1], irisLDepth]);\n const irisRDepth = constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.reduce((prev, curr) => prev += rawCoords[curr][2], 0) / constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.length; // get average z-coord for iris\n for (let i = 0; i < t.irisR.length / 2; i++) rawCoords.push([t.irisR[2 * i + 0], t.irisR[2 * i + 1], irisRDepth]);\n\n // augment eyes: replaces eye keypoints based on heuristic mapping\n for (let i = 0; i < t.eyeL.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG[i]] = [t.eyeL[2 * i + 0], t.eyeL[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG[i]][2]];\n for (let i = 0; i < t.eyeR.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG[i]] = [t.eyeR[2 * i + 0], t.eyeR[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG[i]][2]];\n\n // augment lips: replaces eye keypoints based on heuristic mapping\n for (let i = 0; i < t.lips.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_LIPS_CONFIG[i]] = [t.lips[2 * i + 0], t.lips[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_LIPS_CONFIG[i]][2]];\n\n return rawCoords;\n}\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n *\n * Based on:\n * - [**MediaPipe BlazeFace**](https://drive.google.com/file/d/1f39lSzU5Oq-j_OXgS67KfN5wNsoeAZ4V/view)\n * - Facial Spacial Geometry: [**MediaPipe FaceMesh**](https://drive.google.com/file/d/1VFC_wIpw4O7xBOiTgUldl79d9LA-LsnA/view)\n * - Eye Iris Details: [**MediaPipe Iris**](https://drive.google.com/file/d/1bsWbokp9AklH2ANjCfmjqEzzxO1CNbMu/view)\n */\n\nimport { log, now } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as blazeface from './blazeface';\nimport * as util from './facemeshutil';\nimport * as coords from './facemeshcoords';\nimport * as iris from './iris';\nimport * as attention from './attention';\nimport { histogramEqualization } from '../image/enhance';\nimport { env } from '../util/env';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { FaceResult, FaceLandmark, Point } from '../result';\nimport type { Config } from '../config';\n\ntype DetectBox = { startPoint: Point, endPoint: Point, landmarks: Array, confidence: number };\n\nconst cache = {\n boxes: [] as DetectBox[],\n skipped: Number.MAX_SAFE_INTEGER,\n timestamp: 0,\n};\n\nlet model: GraphModel | null = null;\nlet inputSize = 0;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n // reset cached boxes\n const skipTime = (config.face.detector?.skipTime || 0) > (now() - cache.timestamp);\n const skipFrame = cache.skipped < (config.face.detector?.skipFrames || 0);\n if (!config.skipAllowed || !skipTime || !skipFrame || cache.boxes.length === 0) {\n cache.boxes = await blazeface.getBoxes(input, config); // get results from blazeface detector\n cache.timestamp = now();\n cache.skipped = 0;\n } else {\n cache.skipped++;\n }\n const faces: Array = [];\n const newCache: Array = [];\n let id = 0;\n for (let i = 0; i < cache.boxes.length; i++) {\n const box = cache.boxes[i];\n let angle = 0;\n let rotationMatrix;\n const face: FaceResult = { // init face result\n id: id++,\n mesh: [],\n meshRaw: [],\n box: [0, 0, 0, 0],\n boxRaw: [0, 0, 0, 0],\n score: 0,\n boxScore: 0,\n faceScore: 0,\n // contoursRaw: [],\n // contours: [],\n annotations: {} as Record,\n };\n\n // optional rotation correction based on detector data only if mesh is disabled otherwise perform it later when we have more accurate mesh data. if no rotation correction this function performs crop\n [angle, rotationMatrix, face.tensor] = util.correctFaceRotation(config.face.detector?.rotation, box, input, config.face.mesh?.enabled ? inputSize : blazeface.size());\n if (config?.filter?.equalization) {\n const equilized = await histogramEqualization(face.tensor as Tensor);\n tf.dispose(face.tensor);\n face.tensor = equilized;\n }\n face.boxScore = Math.round(100 * box.confidence) / 100;\n if (!config.face.mesh?.enabled) { // mesh not enabled, return resuts from detector only\n face.box = util.clampBox(box, input);\n face.boxRaw = util.getRawBox(box, input);\n face.score = face.boxScore;\n face.mesh = box.landmarks.map((pt) => [\n ((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()),\n ((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()),\n ]);\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / inputSize]);\n for (const key of Object.keys(coords.blazeFaceLandmarks)) {\n face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key] as number]]; // add annotations\n }\n } else if (!model) { // mesh enabled, but not loaded\n if (config.debug) log('face mesh detection requested, but model is not loaded');\n } else { // mesh enabled\n const results = model.execute(face.tensor as Tensor) as Array;\n const confidenceT = results.find((t) => t.shape[t.shape.length - 1] === 1) as Tensor;\n const faceConfidence = await confidenceT.data();\n face.faceScore = Math.round(100 * faceConfidence[0]) / 100;\n\n if (face.faceScore < (config.face.detector?.minConfidence || 1)) { // low confidence in detected mesh\n box.confidence = face.faceScore; // reset confidence of cached box\n if (config.face.mesh?.keepInvalid) {\n face.box = util.clampBox(box, input);\n face.boxRaw = util.getRawBox(box, input);\n face.score = face.boxScore;\n face.mesh = box.landmarks.map((pt) => [\n ((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()),\n ((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()),\n ]);\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 1), pt[1] / (input.shape[1] || 1), (pt[2] || 0) / inputSize]);\n for (const key of Object.keys(coords.blazeFaceLandmarks)) {\n face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key] as number]]; // add annotations\n }\n }\n } else {\n const meshT = results.find((t) => t.shape[t.shape.length - 1] === 1404) as Tensor;\n const coordsReshaped = tf.reshape(meshT, [-1, 3]);\n let rawCoords = await coordsReshaped.array();\n tf.dispose(coordsReshaped);\n if (config.face.attention?.enabled) {\n rawCoords = await attention.augment(rawCoords, results); // augment iris results using attention model results\n } else if (config.face.iris?.enabled) {\n rawCoords = await iris.augmentIris(rawCoords, face.tensor, config, inputSize); // run iris model and augment results\n }\n face.mesh = util.transformRawCoords(rawCoords, box, angle, rotationMatrix, inputSize); // get processed mesh\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / inputSize]);\n for (const key of Object.keys(coords.meshAnnotations)) face.annotations[key] = coords.meshAnnotations[key].map((index) => face.mesh[index]); // add annotations\n face.score = face.faceScore;\n const calculatedBox = { ...util.calculateFaceBox(face.mesh, box), confidence: box.confidence, landmarks: box.landmarks };\n face.box = util.clampBox(calculatedBox, input);\n face.boxRaw = util.getRawBox(calculatedBox, input);\n /*\n const contoursT = results.find((t) => t.shape[t.shape.length - 1] === 266) as Tensor;\n const contoursData = contoursT && await contoursT.data(); // 133 x 2d points\n face.contoursRaw = [];\n for (let j = 0; j < contoursData.length / 2; j++) face.contoursRaw.push([contoursData[2 * j + 0] / inputSize, contoursData[2 * j + 1] / inputSize]);\n face.contours = face.contoursRaw.map((c) => [Math.trunc((input.shape[2] || 1) * c[0]), Math.trunc((input.shape[1] || 1) * c[1])]);\n */\n newCache.push(calculatedBox);\n }\n tf.dispose(results);\n }\n if (face.score > (config.face.detector?.minConfidence || 1)) faces.push(face);\n else tf.dispose(face.tensor);\n }\n cache.boxes = newCache; // reset cache\n return faces;\n}\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n // @ts-ignore private property\n if (config?.face?.attention?.enabled && model?.signature) {\n // @ts-ignore private property\n if (Object.keys(model?.signature?.outputs || {}).length < 6) model = null;\n }\n if (!model) {\n if (config.face.attention?.enabled) model = await loadModel(config.face.attention?.modelPath);\n else model = await loadModel(config.face.mesh?.modelPath);\n } else if (config.debug) {\n log('cached model:', model['modelUrl']);\n }\n inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0;\n return model;\n}\n\nexport const triangulation = coords.TRI468;\nexport const uvmap = coords.UV468;\n", "/**\n * FaceRes model implementation\n *\n * Returns Age, Gender, Descriptor\n * Implements Face simmilarity function\n *\n * Based on: [**HSE-FaceRes**](https://github.com/HSE-asavchenko/HSE_FaceRec_tf)\n */\n\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport type { Gender, Race } from '../result';\n\nexport type FaceRes = { age: number, gender: Gender, genderScore: number, descriptor: number[], race?: { score: number, race: Race }[] };\n\nlet model: GraphModel | null;\nconst last: Array<{\n age: number,\n gender: Gender,\n genderScore: number,\n descriptor: number[],\n}> = [];\n\nlet lastTime = 0;\nlet lastCount = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.description?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport function enhance(input): Tensor {\n const tensor = (input.image || input.tensor || input) as Tensor; // input received from detector is already normalized to 0..1, input is also assumed to be straightened\n if (!model?.inputs[0].shape) return tensor; // model has no shape so no point continuing\n const crop = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const norm = tf.mul(crop, constants.tf255);\n tf.dispose(crop);\n return norm;\n /*\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n */\n /*\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n */\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model) return { age: 0, gender: 'unknown', genderScore: 0, descriptor: [] };\n const skipFrame = skipped < (config.face.description?.skipFrames || 0);\n const skipTime = (config.face.description?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const obj = {\n age: 0,\n gender: 'unknown',\n genderScore: 0,\n descriptor: [],\n };\n\n if (config.face.description?.enabled) {\n const enhanced = enhance(image);\n const resT = model?.execute(enhanced) as Tensor[];\n lastTime = now();\n tf.dispose(enhanced);\n const genderT = await resT.find((t) => t.shape[1] === 1) as Tensor;\n const gender = await genderT.data();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > (config.face.description?.minConfidence || 0)) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.genderScore = Math.min(0.99, confidence);\n }\n const argmax = tf.argMax(resT.find((t) => t.shape[1] === 100), 1);\n const age = (await argmax.data())[0];\n tf.dispose(argmax);\n const ageT = resT.find((t) => t.shape[1] === 100) as Tensor;\n const all = await ageT.data();\n obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n\n const desc = resT.find((t) => t.shape[1] === 1024);\n // const reshape = desc.reshape([128, 8]); // reshape large 1024-element descriptor to 128 x 8\n // const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it which leaves us with 128-element descriptor\n const descriptor = desc ? await desc.data() : [];\n obj.descriptor = Array.from(descriptor);\n resT.forEach((t) => tf.dispose(t));\n }\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Point } from '../result';\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]] as Point;\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]] as Point;\n const palmLandmarks = box.palmLandmarks.map((coord) => {\n const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];\n return scaledCoord;\n });\n return { startPoint, endPoint, palmLandmarks, confidence: box.confidence };\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]] as Point;\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize] as Point;\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function shiftBox(box, shiftFactor) {\n const boxSize = [\n box.endPoint[0] - box.startPoint[0],\n box.endPoint[1] - box.startPoint[1],\n ];\n const shiftVector = [boxSize[0] * shiftFactor[0], boxSize[1] * shiftFactor[1]];\n const startPoint = [box.startPoint[0] + shiftVector[0], box.startPoint[1] + shiftVector[1]] as Point;\n const endPoint = [box.endPoint[0] + shiftVector[0], box.endPoint[1] + shiftVector[1]] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n", "/**\n * HandPose model implementation constants\n * See `handpose.ts` for entry point\n */\n\nexport const anchors = [\n { x: 0.015625, y: 0.015625 },\n { x: 0.015625, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n];\n", "/**\n * HandPose model implementation\n * See `handpose.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './handposeutil';\nimport * as anchors from './handposeanchors';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Point } from '../result';\n\nexport class HandDetector {\n model: GraphModel;\n anchors: number[][];\n anchorsTensor: Tensor;\n inputSize: number;\n inputSizeTensor: Tensor;\n doubleInputSizeTensor: Tensor;\n\n constructor(model) {\n this.model = model;\n this.anchors = anchors.anchors.map((anchor) => [anchor.x, anchor.y]);\n this.anchorsTensor = tf.tensor2d(this.anchors);\n this.inputSize = (this.model && this.model.inputs && this.model.inputs[0].shape) ? this.model.inputs[0].shape[2] : 0;\n this.inputSizeTensor = tf.tensor1d([this.inputSize, this.inputSize]);\n this.doubleInputSizeTensor = tf.tensor1d([this.inputSize * 2, this.inputSize * 2]);\n }\n\n normalizeBoxes(boxes) {\n const t: Record = {};\n t.boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);\n t.boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);\n t.div = tf.div(t.boxOffsets, this.inputSizeTensor);\n t.boxCenterPoints = tf.add(t.div, this.anchorsTensor);\n t.halfBoxSizes = tf.div(t.boxSizes, this.doubleInputSizeTensor);\n t.sub = tf.sub(t.boxCenterPoints, t.halfBoxSizes);\n t.startPoints = tf.mul(t.sub, this.inputSizeTensor);\n t.add = tf.add(t.boxCenterPoints, t.halfBoxSizes);\n t.endPoints = tf.mul(t.add, this.inputSizeTensor);\n const res = tf.concat2d([t.startPoints, t.endPoints], 1);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return res;\n }\n\n normalizeLandmarks(rawPalmLandmarks, index) {\n const t: Record = {};\n t.reshape = tf.reshape(rawPalmLandmarks, [-1, 7, 2]);\n t.div = tf.div(t.reshape, this.inputSizeTensor);\n t.landmarks = tf.add(t.div, this.anchors[index]);\n const res = tf.mul(t.landmarks, this.inputSizeTensor);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return res;\n }\n\n async predict(input, config): Promise<{ startPoint: Point; endPoint: Point, palmLandmarks: Point[]; confidence: number }[]> {\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(input, [this.inputSize, this.inputSize]);\n t.div = tf.div(t.resize, constants.tf127);\n t.image = tf.sub(t.div, constants.tf1);\n t.batched = this.model.execute(t.image) as Tensor;\n t.predictions = tf.squeeze(t.batched);\n t.slice = tf.slice(t.predictions, [0, 0], [-1, 1]);\n t.sigmoid = tf.sigmoid(t.slice);\n t.scores = tf.squeeze(t.sigmoid);\n const scores = await t.scores.data();\n t.boxes = tf.slice(t.predictions, [0, 1], [-1, 4]);\n t.norm = this.normalizeBoxes(t.boxes);\n // box detection is flaky so we look for 3x boxes than we need results\n t.nms = await tf.image.nonMaxSuppressionAsync(t.norm, t.scores, 3 * config.hand.maxDetected, config.hand.iouThreshold, config.hand.minConfidence);\n const nms = await t.nms.array() as Array;\n const hands: Array<{ startPoint: Point; endPoint: Point; palmLandmarks: Point[]; confidence: number }> = [];\n for (const index of nms) {\n const p: Record = {};\n p.box = tf.slice(t.norm, [index, 0], [1, -1]);\n p.slice = tf.slice(t.predictions, [index, 5], [1, 14]);\n p.norm = this.normalizeLandmarks(p.slice, index);\n p.palmLandmarks = tf.reshape(p.norm, [-1, 2]);\n const box = await p.box.data();\n const startPoint = box.slice(0, 2) as unknown as Point;\n const endPoint = box.slice(2, 4) as unknown as Point;\n const palmLandmarks = await p.palmLandmarks.array();\n const hand = { startPoint, endPoint, palmLandmarks, confidence: scores[index] };\n const scaled = util.scaleBoxCoordinates(hand, [input.shape[2] / this.inputSize, input.shape[1] / this.inputSize]);\n hands.push(scaled);\n Object.keys(p).forEach((tensor) => tf.dispose(p[tensor]));\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return hands;\n }\n}\n", "/**\n * HandPose model implementation\n * See `handpose.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './handposeutil';\nimport type * as detector from './handposedetector';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport { now } from '../util/util';\nimport type { Point } from '../result';\n\nconst palmBoxEnlargeFactor = 5; // default 3\nconst handBoxEnlargeFactor = 1.65; // default 1.65\nconst palmLandmarkIds = [0, 5, 9, 13, 17, 1, 2];\nconst palmLandmarksPalmBase = 0;\nconst palmLandmarksMiddleFingerBase = 2;\nlet lastTime = 0;\n\nexport class HandPipeline {\n handDetector: detector.HandDetector;\n handPoseModel: GraphModel;\n inputSize: number;\n storedBoxes: Array<{ startPoint: Point; endPoint: Point; palmLandmarks: Point[]; confidence: number } | null>;\n skipped: number;\n detectedHands: number;\n\n constructor(handDetector, handPoseModel) {\n this.handDetector = handDetector;\n this.handPoseModel = handPoseModel;\n this.inputSize = this.handPoseModel && this.handPoseModel.inputs[0].shape ? this.handPoseModel.inputs[0].shape[2] : 0;\n this.storedBoxes = [];\n this.skipped = Number.MAX_SAFE_INTEGER;\n this.detectedHands = 0;\n }\n\n // eslint-disable-next-line class-methods-use-this\n calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint };\n }\n\n getBoxForPalmLandmarks(palmLandmarks, rotationMatrix) {\n const rotatedPalmLandmarks = palmLandmarks.map((coord) => util.rotatePoint([...coord, 1], rotationMatrix));\n const boxAroundPalm = this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);\n return util.enlargeBox(util.squarifyBox(boxAroundPalm), palmBoxEnlargeFactor);\n }\n\n getBoxForHandLandmarks(landmarks) {\n const boundingBox = this.calculateLandmarksBoundingBox(landmarks);\n const boxAroundHand = util.enlargeBox(util.squarifyBox(boundingBox), handBoxEnlargeFactor);\n boxAroundHand.palmLandmarks = [];\n for (let i = 0; i < palmLandmarkIds.length; i++) {\n boxAroundHand.palmLandmarks.push(landmarks[palmLandmarkIds[i]].slice(0, 2));\n }\n return boxAroundHand;\n }\n\n transformRawCoords(rawCoords, box2, angle, rotationMatrix) {\n const boxSize = util.getBoxSize(box2);\n const scaleFactor = [boxSize[0] / this.inputSize, boxSize[1] / this.inputSize, (boxSize[0] + boxSize[1]) / this.inputSize / 2];\n const coordsScaled = rawCoords.map((coord) => [\n scaleFactor[0] * (coord[0] - this.inputSize / 2),\n scaleFactor[1] * (coord[1] - this.inputSize / 2),\n scaleFactor[2] * coord[2],\n ]);\n const coordsRotationMatrix = util.buildRotationMatrix(angle, [0, 0]);\n const coordsRotated = coordsScaled.map((coord) => {\n const rotated = util.rotatePoint(coord, coordsRotationMatrix);\n return [...rotated, coord[2]];\n });\n const inverseRotationMatrix = util.invertTransformMatrix(rotationMatrix);\n const boxCenter = [...util.getBoxCenter(box2), 1];\n const originalBoxCenter = [\n util.dot(boxCenter, inverseRotationMatrix[0]),\n util.dot(boxCenter, inverseRotationMatrix[1]),\n ];\n return coordsRotated.map((coord) => [\n Math.trunc(coord[0] + originalBoxCenter[0]),\n Math.trunc(coord[1] + originalBoxCenter[1]),\n Math.trunc(coord[2]),\n ]);\n }\n\n async estimateHands(image, config) {\n let useFreshBox = false;\n\n // run new detector every skipFrames\n let boxes;\n const skipTime = (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrame = this.skipped < (config.hand.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n boxes = await this.handDetector.predict(image, config);\n this.skipped = 0;\n }\n if (config.skipAllowed) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.hand.maxDetected) || !config.hand.landmarks)) {\n this.detectedHands = 0;\n this.storedBoxes = [...boxes];\n // for (const possible of boxes) this.storedBoxes.push(possible);\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n const hands: Array<{ landmarks: Point[], confidence: number, boxConfidence: number, fingerConfidence: number, box: { topLeft: Point, bottomRight: Point } }> = [];\n\n // go through working set of boxes\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const currentBox = this.storedBoxes[i];\n if (!currentBox) continue;\n if (config.hand.landmarks) {\n const angle = config.hand.rotation ? util.computeRotation(currentBox.palmLandmarks[palmLandmarksPalmBase], currentBox.palmLandmarks[palmLandmarksMiddleFingerBase]) : 0;\n const palmCenter = util.getBoxCenter(currentBox);\n const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];\n const rotatedImage = config.hand.rotation && env.kernels.includes('rotatewithoffset') ? tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized) : image.clone();\n const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);\n const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;\n const croppedInput = util.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);\n const handImage = tf.div(croppedInput, constants.tf255);\n tf.dispose(croppedInput);\n tf.dispose(rotatedImage);\n const [confidenceT, keypoints] = this.handPoseModel.execute(handImage) as Array;\n lastTime = now();\n tf.dispose(handImage);\n const confidence = (await confidenceT.data())[0];\n tf.dispose(confidenceT);\n if (confidence >= config.hand.minConfidence / 4) {\n const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);\n const rawCoords = await keypointsReshaped.array();\n tf.dispose(keypoints);\n tf.dispose(keypointsReshaped);\n const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);\n const nextBoundingBox = this.getBoxForHandLandmarks(coords);\n this.storedBoxes[i] = { ...nextBoundingBox, confidence };\n const result = {\n landmarks: coords,\n confidence,\n boxConfidence: currentBox.confidence,\n fingerConfidence: confidence,\n box: { topLeft: nextBoundingBox.startPoint, bottomRight: nextBoundingBox.endPoint },\n };\n hands.push(result);\n } else {\n this.storedBoxes[i] = null;\n }\n tf.dispose(keypoints);\n } else {\n // const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), handBoxEnlargeFactor);\n const enlarged = util.enlargeBox(util.squarifyBox(currentBox), handBoxEnlargeFactor);\n const result = {\n confidence: currentBox.confidence,\n boxConfidence: currentBox.confidence,\n fingerConfidence: 0,\n box: { topLeft: enlarged.startPoint, bottomRight: enlarged.endPoint },\n landmarks: [],\n };\n hands.push(result);\n }\n }\n this.storedBoxes = this.storedBoxes.filter((a) => a !== null);\n this.detectedHands = hands.length;\n if (hands.length > config.hand.maxDetected) hands.length = config.hand.maxDetected;\n return hands;\n }\n}\n", "/**\n * FingerPose algorithm implementation\n * See `fingerpose.ts` for entry point\n */\n\nexport const Finger = {\n thumb: 0,\n index: 1,\n middle: 2,\n ring: 3,\n pinky: 4,\n all: [0, 1, 2, 3, 4], // just for convenience\n nameMapping: { 0: 'thumb', 1: 'index', 2: 'middle', 3: 'ring', 4: 'pinky' },\n // Describes mapping of joints based on the 21 points returned by handpose.\n // [0] Palm\n // [1-4] Thumb\n // [5-8] Index\n // [9-12] Middle\n // [13-16] Ring\n // [17-20] Pinky\n pointsMapping: {\n 0: [[0, 1], [1, 2], [2, 3], [3, 4]],\n 1: [[0, 5], [5, 6], [6, 7], [7, 8]],\n 2: [[0, 9], [9, 10], [10, 11], [11, 12]],\n 3: [[0, 13], [13, 14], [14, 15], [15, 16]],\n 4: [[0, 17], [17, 18], [18, 19], [19, 20]],\n },\n getName: (value) => Finger.nameMapping[value],\n getPoints: (value) => Finger.pointsMapping[value],\n};\n\nexport const FingerCurl = {\n none: 0,\n half: 1,\n full: 2,\n nameMapping: { 0: 'none', 1: 'half', 2: 'full' },\n getName: (value) => FingerCurl.nameMapping[value],\n};\n\nexport const FingerDirection = {\n verticalUp: 0,\n verticalDown: 1,\n horizontalLeft: 2,\n horizontalRight: 3,\n diagonalUpRight: 4,\n diagonalUpLeft: 5,\n diagonalDownRight: 6,\n diagonalDownLeft: 7,\n nameMapping: { 0: 'verticalUp', 1: 'verticalDown', 2: 'horizontalLeft', 3: 'horizontalRight', 4: 'diagonalUpRight', 5: 'diagonalUpLeft', 6: 'diagonalDownRight', 7: 'diagonalDownLeft' },\n getName: (value) => FingerDirection.nameMapping[value],\n};\n\nexport class FingerGesture {\n name;\n curls;\n directions;\n weights;\n weightsRelative;\n\n constructor(name) {\n // name (should be unique)\n this.name = name;\n this.curls = {};\n this.directions = {};\n this.weights = [1.0, 1.0, 1.0, 1.0, 1.0];\n this.weightsRelative = [1.0, 1.0, 1.0, 1.0, 1.0];\n }\n\n curl(finger, curl, confidence) {\n if (typeof this.curls[finger] === 'undefined') this.curls[finger] = [];\n this.curls[finger].push([curl, confidence]);\n }\n\n direction(finger, position, confidence) {\n if (!this.directions[finger]) this.directions[finger] = [];\n this.directions[finger].push([position, confidence]);\n }\n\n weight(finger, weight) {\n this.weights[finger] = weight;\n // recalculate relative weights\n const total = this.weights.reduce((a, b) => a + b, 0);\n this.weightsRelative = this.weights.map((el) => el * 5 / total);\n }\n\n matchAgainst(detectedCurls, detectedDirections) {\n let confidence = 0.0;\n // look at the detected curl of each finger and compare with\n // the expected curl of this finger inside current gesture\n for (const fingerIdx in detectedCurls) {\n const detectedCurl = detectedCurls[fingerIdx];\n const expectedCurls = this.curls[fingerIdx];\n if (typeof expectedCurls === 'undefined') {\n // no curl description available for this finger\n // add default confidence of \"1\"\n confidence += this.weightsRelative[fingerIdx];\n continue;\n }\n // compare to each possible curl of this specific finger\n for (const [expectedCurl, score] of expectedCurls) {\n if (detectedCurl === expectedCurl) {\n confidence += score * this.weightsRelative[fingerIdx];\n break;\n }\n }\n }\n // same for detected direction of each finger\n for (const fingerIdx in detectedDirections) {\n const detectedDirection = detectedDirections[fingerIdx];\n const expectedDirections = this.directions[fingerIdx];\n if (typeof expectedDirections === 'undefined') {\n // no direction description available for this finger\n // add default confidence of \"1\"\n confidence += this.weightsRelative[fingerIdx];\n continue;\n }\n // compare to each possible direction of this specific finger\n for (const [expectedDirection, score] of expectedDirections) {\n if (detectedDirection === expectedDirection) {\n confidence += score * this.weightsRelative[fingerIdx];\n break;\n }\n }\n }\n return confidence / 10;\n }\n}\n", "/**\n * FingerPose algorithm implementation\n * See `fingerpose.ts` for entry point\n */\n\nimport { Finger, FingerCurl, FingerDirection, FingerGesture } from './fingerdef';\n\n// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\nexport const { thumb, index, middle, ring, pinky } = Finger;\n// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\nexport const { none, half, full } = FingerCurl;\n// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\nexport const { verticalUp, verticalDown, horizontalLeft, horizontalRight, diagonalUpRight, diagonalUpLeft, diagonalDownRight, diagonalDownLeft } = FingerDirection;\n\n// describe thumbs up gesture \uD83D\uDC4D\nconst ThumbsUp = new FingerGesture('thumbs up');\nThumbsUp.curl(thumb, none, 1.0);\nThumbsUp.direction(thumb, verticalUp, 1.0);\nThumbsUp.direction(thumb, diagonalUpLeft, 0.25);\nThumbsUp.direction(thumb, diagonalUpRight, 0.25);\nfor (const finger of [Finger.index, Finger.middle, Finger.ring, Finger.pinky]) {\n ThumbsUp.curl(finger, full, 1.0);\n ThumbsUp.direction(finger, horizontalLeft, 1.0);\n ThumbsUp.direction(finger, horizontalRight, 1.0);\n}\n\n// describe Victory gesture \u270C\uFE0F\nconst Victory = new FingerGesture('victory');\nVictory.curl(thumb, half, 0.5);\nVictory.curl(thumb, none, 0.5);\nVictory.direction(thumb, verticalUp, 1.0);\nVictory.direction(thumb, diagonalUpLeft, 1.0);\nVictory.curl(index, none, 1.0);\nVictory.direction(index, verticalUp, 0.75);\nVictory.direction(index, diagonalUpLeft, 1.0);\nVictory.curl(middle, none, 1.0);\nVictory.direction(middle, verticalUp, 1.0);\nVictory.direction(middle, diagonalUpLeft, 0.75);\nVictory.curl(ring, full, 1.0);\nVictory.direction(ring, verticalUp, 0.2);\nVictory.direction(ring, diagonalUpLeft, 1.0);\nVictory.direction(ring, horizontalLeft, 0.2);\nVictory.curl(pinky, full, 1.0);\nVictory.direction(pinky, verticalUp, 0.2);\nVictory.direction(pinky, diagonalUpLeft, 1.0);\nVictory.direction(pinky, horizontalLeft, 0.2);\nVictory.weight(index, 2);\nVictory.weight(middle, 2);\n\n// describe Point gesture \u270C\uFE0F\nconst Point = new FingerGesture('point');\nPoint.curl(thumb, full, 1.0);\nPoint.curl(index, none, 0.5);\nPoint.curl(middle, full, 0.5);\nPoint.curl(ring, full, 0.5);\nPoint.curl(pinky, full, 0.5);\nPoint.weight(index, 2);\nPoint.weight(middle, 2);\n\n// describe Point gesture \u270C\uFE0F\nconst MiddleFinger = new FingerGesture('middle finger');\nMiddleFinger.curl(thumb, none, 1.0);\nMiddleFinger.curl(index, full, 0.5);\nMiddleFinger.curl(middle, full, 0.5);\nMiddleFinger.curl(ring, full, 0.5);\nMiddleFinger.curl(pinky, full, 0.5);\nMiddleFinger.weight(index, 2);\nMiddleFinger.weight(middle, 2);\n\n// describe Open Palm gesture \u270C\uFE0F\nconst OpenPalm = new FingerGesture('open palm');\nOpenPalm.curl(thumb, none, 0.75);\nOpenPalm.curl(index, none, 0.75);\nOpenPalm.curl(middle, none, 0.75);\nOpenPalm.curl(ring, none, 0.75);\nOpenPalm.curl(pinky, none, 0.75);\n\nexport default [ThumbsUp, Victory, Point, MiddleFinger, OpenPalm];\n", "/**\n * FingerPose algorithm implementation constants\n *\n * Based on: [**FingerPose***](https://github.com/andypotato/fingerpose)\n */\n\nimport { Finger, FingerCurl, FingerDirection } from './fingerdef';\nimport Gestures from '../hand/fingergesture';\n\nconst minConfidence = 0.7;\nconst options = {\n // curl estimation\n HALF_CURL_START_LIMIT: 60.0,\n NO_CURL_START_LIMIT: 130.0,\n // direction estimation\n DISTANCE_VOTE_POWER: 1.1,\n SINGLE_ANGLE_VOTE_POWER: 0.9,\n TOTAL_ANGLE_VOTE_POWER: 1.6,\n};\n\nfunction calculateSlope(point1x, point1y, point2x, point2y) {\n const value = (point1y - point2y) / (point1x - point2x);\n let slope = Math.atan(value) * 180 / Math.PI;\n if (slope <= 0) slope = -slope;\n else if (slope > 0) slope = 180 - slope;\n return slope;\n}\n\n// point1, point2 are 2d or 3d point arrays (xy[z])\n// returns either a single scalar (2d) or array of two slopes (3d)\nfunction getSlopes(point1, point2) {\n if (!point1 || !point2) return [0, 0];\n const slopeXY = calculateSlope(point1[0], point1[1], point2[0], point2[1]);\n if (point1.length === 2) return slopeXY;\n const slopeYZ = calculateSlope(point1[1], point1[2], point2[1], point2[2]);\n return [slopeXY, slopeYZ];\n}\n\nfunction angleOrientationAt(angle, weightageAt = 1.0) {\n let isVertical = 0;\n let isDiagonal = 0;\n let isHorizontal = 0;\n if (angle >= 75.0 && angle <= 105.0) isVertical = 1 * weightageAt;\n else if (angle >= 25.0 && angle <= 155.0) isDiagonal = 1 * weightageAt;\n else isHorizontal = 1 * weightageAt;\n return [isVertical, isDiagonal, isHorizontal];\n}\n\nfunction estimateFingerCurl(startPoint, midPoint, endPoint) {\n const start_mid_x_dist = startPoint[0] - midPoint[0];\n const start_end_x_dist = startPoint[0] - endPoint[0];\n const mid_end_x_dist = midPoint[0] - endPoint[0];\n const start_mid_y_dist = startPoint[1] - midPoint[1];\n const start_end_y_dist = startPoint[1] - endPoint[1];\n const mid_end_y_dist = midPoint[1] - endPoint[1];\n const start_mid_z_dist = startPoint[2] - midPoint[2];\n const start_end_z_dist = startPoint[2] - endPoint[2];\n const mid_end_z_dist = midPoint[2] - endPoint[2];\n const start_mid_dist = Math.sqrt(start_mid_x_dist * start_mid_x_dist + start_mid_y_dist * start_mid_y_dist + start_mid_z_dist * start_mid_z_dist);\n const start_end_dist = Math.sqrt(start_end_x_dist * start_end_x_dist + start_end_y_dist * start_end_y_dist + start_end_z_dist * start_end_z_dist);\n const mid_end_dist = Math.sqrt(mid_end_x_dist * mid_end_x_dist + mid_end_y_dist * mid_end_y_dist + mid_end_z_dist * mid_end_z_dist);\n let cos_in = (mid_end_dist * mid_end_dist + start_mid_dist * start_mid_dist - start_end_dist * start_end_dist) / (2 * mid_end_dist * start_mid_dist);\n if (cos_in > 1.0) cos_in = 1.0;\n else if (cos_in < -1.0) cos_in = -1.0;\n let angleOfCurve = Math.acos(cos_in);\n angleOfCurve = (57.2958 * angleOfCurve) % 180;\n let fingerCurl;\n if (angleOfCurve > options.NO_CURL_START_LIMIT) fingerCurl = FingerCurl.none;\n else if (angleOfCurve > options.HALF_CURL_START_LIMIT) fingerCurl = FingerCurl.half;\n else fingerCurl = FingerCurl.full;\n return fingerCurl;\n}\n\nfunction estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x) {\n let estimatedDirection;\n if (max_dist_x === Math.abs(start_end_x_dist)) {\n if (start_end_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n } else if (max_dist_x === Math.abs(start_mid_x_dist)) {\n if (start_mid_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n } else {\n if (mid_end_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n }\n return estimatedDirection;\n}\n\nfunction estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y) {\n let estimatedDirection;\n if (max_dist_y === Math.abs(start_end_y_dist)) {\n if (start_end_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n } else if (max_dist_y === Math.abs(start_mid_y_dist)) {\n if (start_mid_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n } else {\n if (mid_end_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n }\n return estimatedDirection;\n}\n\nfunction estimateDiagonalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y, start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x) {\n let estimatedDirection;\n const reqd_vertical_direction = estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y);\n const reqd_horizontal_direction = estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n if (reqd_vertical_direction === FingerDirection.verticalUp) {\n if (reqd_horizontal_direction === FingerDirection.horizontalLeft) estimatedDirection = FingerDirection.diagonalUpLeft;\n else estimatedDirection = FingerDirection.diagonalUpRight;\n } else {\n if (reqd_horizontal_direction === FingerDirection.horizontalLeft) estimatedDirection = FingerDirection.diagonalDownLeft;\n else estimatedDirection = FingerDirection.diagonalDownRight;\n }\n return estimatedDirection;\n}\n\nfunction calculateFingerDirection(startPoint, midPoint, endPoint, fingerSlopes) {\n const start_mid_x_dist = startPoint[0] - midPoint[0];\n const start_end_x_dist = startPoint[0] - endPoint[0];\n const mid_end_x_dist = midPoint[0] - endPoint[0];\n const start_mid_y_dist = startPoint[1] - midPoint[1];\n const start_end_y_dist = startPoint[1] - endPoint[1];\n const mid_end_y_dist = midPoint[1] - endPoint[1];\n const max_dist_x = Math.max(Math.abs(start_mid_x_dist), Math.abs(start_end_x_dist), Math.abs(mid_end_x_dist));\n const max_dist_y = Math.max(Math.abs(start_mid_y_dist), Math.abs(start_end_y_dist), Math.abs(mid_end_y_dist));\n let voteVertical = 0.0;\n let voteDiagonal = 0.0;\n let voteHorizontal = 0.0;\n const start_end_x_y_dist_ratio = max_dist_y / (max_dist_x + 0.00001);\n if (start_end_x_y_dist_ratio > 1.5) voteVertical += options.DISTANCE_VOTE_POWER;\n else if (start_end_x_y_dist_ratio > 0.66) voteDiagonal += options.DISTANCE_VOTE_POWER;\n else voteHorizontal += options.DISTANCE_VOTE_POWER;\n const start_mid_dist = Math.sqrt(start_mid_x_dist * start_mid_x_dist + start_mid_y_dist * start_mid_y_dist);\n const start_end_dist = Math.sqrt(start_end_x_dist * start_end_x_dist + start_end_y_dist * start_end_y_dist);\n const mid_end_dist = Math.sqrt(mid_end_x_dist * mid_end_x_dist + mid_end_y_dist * mid_end_y_dist);\n const max_dist = Math.max(start_mid_dist, start_end_dist, mid_end_dist);\n let calc_start_point_x = startPoint[0];\n let calc_start_point_y = startPoint[1];\n let calc_end_point_x = endPoint[0];\n let calc_end_point_y = endPoint[1];\n if (max_dist === start_mid_dist) {\n calc_end_point_x = endPoint[0];\n calc_end_point_y = endPoint[1];\n } else if (max_dist === mid_end_dist) {\n calc_start_point_x = midPoint[0];\n calc_start_point_y = midPoint[1];\n }\n const calcStartPoint = [calc_start_point_x, calc_start_point_y];\n const calcEndPoint = [calc_end_point_x, calc_end_point_y];\n const totalAngle = getSlopes(calcStartPoint, calcEndPoint);\n const votes = angleOrientationAt(totalAngle, options.TOTAL_ANGLE_VOTE_POWER);\n voteVertical += votes[0];\n voteDiagonal += votes[1];\n voteHorizontal += votes[2];\n for (const fingerSlope of fingerSlopes) {\n const fingerVotes = angleOrientationAt(fingerSlope, options.SINGLE_ANGLE_VOTE_POWER);\n voteVertical += fingerVotes[0];\n voteDiagonal += fingerVotes[1];\n voteHorizontal += fingerVotes[2];\n }\n // in case of tie, highest preference goes to Vertical,\n // followed by horizontal and then diagonal\n let estimatedDirection;\n if (voteVertical === Math.max(voteVertical, voteDiagonal, voteHorizontal)) {\n estimatedDirection = estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y);\n } else if (voteHorizontal === Math.max(voteDiagonal, voteHorizontal)) {\n estimatedDirection = estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n } else {\n estimatedDirection = estimateDiagonalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y, start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n }\n return estimatedDirection;\n}\n\nfunction estimate(landmarks) {\n // step 1: calculate slopes\n const slopesXY: Array = [];\n const slopesYZ: Array = [];\n const fingerCurls: Array = [];\n const fingerDirections: Array = [];\n if (!landmarks) return { curls: fingerCurls, directions: fingerDirections };\n\n // step 1: calculate slopes\n for (const finger of Finger.all) {\n const points = Finger.getPoints(finger);\n const slopeAtXY: Array = [];\n const slopeAtYZ: Array = [];\n for (const point of points) {\n const point1 = landmarks[point[0]];\n const point2 = landmarks[point[1]];\n // calculate single slope\n const slopes = getSlopes(point1, point2);\n const slopeXY = slopes[0];\n const slopeYZ = slopes[1];\n slopeAtXY.push(slopeXY);\n slopeAtYZ.push(slopeYZ);\n }\n slopesXY.push(slopeAtXY);\n slopesYZ.push(slopeAtYZ);\n }\n\n // step 2: calculate orientations\n for (const finger of Finger.all) {\n // start finger predictions from palm - except for thumb\n const pointIndexAt = (finger === Finger.thumb) ? 1 : 0;\n const fingerPointsAt = Finger.getPoints(finger);\n const startPoint = landmarks[fingerPointsAt[pointIndexAt][0]];\n const midPoint = landmarks[fingerPointsAt[pointIndexAt + 1][1]];\n const endPoint = landmarks[fingerPointsAt[3][1]];\n // check if finger is curled\n const fingerCurled = estimateFingerCurl(startPoint, midPoint, endPoint);\n const fingerPosition = calculateFingerDirection(startPoint, midPoint, endPoint, slopesXY[finger].slice(pointIndexAt));\n fingerCurls[finger] = fingerCurled;\n fingerDirections[finger] = fingerPosition;\n }\n return { curls: fingerCurls, directions: fingerDirections };\n}\n\nexport function analyze(keypoints) { // get estimations of curl / direction for each finger\n if (!keypoints || keypoints.length === 0) return null;\n const estimatorRes = estimate(keypoints);\n const landmarks = {};\n for (const fingerIdx of Finger.all) {\n landmarks[Finger.getName(fingerIdx)] = {\n curl: FingerCurl.getName(estimatorRes.curls[fingerIdx]),\n direction: FingerDirection.getName(estimatorRes.directions[fingerIdx]),\n };\n }\n return landmarks;\n}\n\nexport function match(keypoints) { // compare gesture description to each known gesture\n const poses: Array<{ name: string, confidence: number }> = [];\n if (!keypoints || keypoints.length === 0) return poses;\n const estimatorRes = estimate(keypoints);\n for (const gesture of Gestures) {\n const confidence = gesture.matchAgainst(estimatorRes.curls, estimatorRes.directions);\n if (confidence >= minConfidence) poses.push({ name: gesture.name, confidence });\n }\n return poses;\n}\n", "/**\n * HandPose model implementation\n *\n * Based on: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)\n */\n\nimport { log } from '../util/util';\nimport * as handdetector from './handposedetector';\nimport * as handpipeline from './handposepipeline';\nimport * as fingerPose from './fingerpose';\nimport { loadModel } from '../tfjs/load';\nimport type { HandResult, Box, Point } from '../result';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nconst meshAnnotations = {\n thumb: [1, 2, 3, 4],\n index: [5, 6, 7, 8],\n middle: [9, 10, 11, 12],\n ring: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n palm: [0],\n};\n\nlet handDetectorModel: GraphModel | null;\nlet handPoseModel: GraphModel | null;\nlet handPipeline: handpipeline.HandPipeline;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const predictions = await handPipeline.estimateHands(input, config);\n if (!predictions) return [];\n const hands: Array = [];\n for (let i = 0; i < predictions.length; i++) {\n const annotations = {};\n if (predictions[i].landmarks) {\n for (const key of Object.keys(meshAnnotations)) {\n annotations[key] = meshAnnotations[key].map((index) => predictions[i].landmarks[index]);\n }\n }\n const keypoints = predictions[i].landmarks as unknown as Array;\n let box: Box = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0]; // maximums so conditionals work\n let boxRaw: Box = [0, 0, 0, 0];\n if (keypoints && keypoints.length > 0) { // if we have landmarks, calculate box based on landmarks\n for (const pt of keypoints) {\n if (pt[0] < box[0]) box[0] = pt[0];\n if (pt[1] < box[1]) box[1] = pt[1];\n if (pt[0] > box[2]) box[2] = pt[0];\n if (pt[1] > box[3]) box[3] = pt[1];\n }\n box[2] -= box[0];\n box[3] -= box[1];\n boxRaw = [box[0] / (input.shape[2] || 0), box[1] / (input.shape[1] || 0), box[2] / (input.shape[2] || 0), box[3] / (input.shape[1] || 0)];\n } else { // otherwise use box from prediction\n box = predictions[i].box ? [\n Math.trunc(Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.max(0, predictions[i].box.topLeft[1])),\n Math.trunc(Math.min((input.shape[2] || 0), predictions[i].box.bottomRight[0]) - Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.min((input.shape[1] || 0), predictions[i].box.bottomRight[1]) - Math.max(0, predictions[i].box.topLeft[1])),\n ] : [0, 0, 0, 0];\n boxRaw = [\n (predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n (predictions[i].box.bottomRight[0] - predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.bottomRight[1] - predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n ];\n }\n const landmarks = fingerPose.analyze(keypoints);\n hands.push({\n id: i,\n score: Math.round(100 * predictions[i].confidence) / 100,\n boxScore: Math.round(100 * predictions[i].boxConfidence) / 100,\n fingerScore: Math.round(100 * predictions[i].fingerConfidence) / 100,\n label: 'hand',\n box,\n boxRaw,\n keypoints,\n annotations: annotations as HandResult['annotations'],\n landmarks: landmarks as HandResult['landmarks'],\n });\n }\n return hands;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (env.initial) {\n handDetectorModel = null;\n handPoseModel = null;\n }\n if (!handDetectorModel || !handPoseModel) {\n [handDetectorModel, handPoseModel] = await Promise.all([\n config.hand.enabled ? loadModel(config.hand.detector?.modelPath) : null,\n config.hand.landmarks ? loadModel(config.hand.skeleton?.modelPath) : null,\n ]);\n } else {\n if (config.debug) log('cached model:', handDetectorModel['modelUrl']);\n if (config.debug) log('cached model:', handPoseModel['modelUrl']);\n }\n const handDetector = new handdetector.HandDetector(handDetectorModel);\n handPipeline = new handpipeline.HandPipeline(handDetector, handPoseModel);\n return [handDetectorModel, handPoseModel];\n}\n", "/**\n * HandTrack model implementation\n *\n * Based on:\n * - Hand Detection & Skeleton: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)\n * - Hand Tracking: [**HandTracking**](https://github.com/victordibia/handtracking)\n */\n\nimport { log, now } from '../util/util';\nimport * as box from '../util/box';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { HandResult, HandType, Box, Point } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport * as fingerPose from './fingerpose';\nimport { fakeOps } from '../tfjs/backend';\nimport { constants } from '../tfjs/constants';\n\nconst models: [GraphModel | null, GraphModel | null] = [null, null];\nconst modelOutputNodes = ['StatefulPartitionedCall/Postprocessor/Slice', 'StatefulPartitionedCall/Postprocessor/ExpandDims_1'];\n\nconst inputSize = [[0, 0], [0, 0]];\n\nconst classes = ['hand', 'fist', 'pinch', 'point', 'face', 'tip', 'pinchtip'];\nconst faceIndex = 4;\n\nconst boxExpandFact = 1.6;\nconst maxDetectorResolution = 512;\nconst detectorExpandFact = 1.4;\n\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastTime = 0;\nlet outputSize: [number, number] = [0, 0];\n\ntype HandDetectResult = {\n id: number,\n score: number,\n box: Box,\n boxRaw: Box,\n label: HandType,\n}\n\nconst cache: {\n boxes: Array,\n hands: Array;\n} = {\n boxes: [],\n hands: [],\n};\n\nconst fingerMap = {\n /*\n thumb: [0, 1, 2, 3, 4],\n index: [0, 5, 6, 7, 8],\n middle: [0, 9, 10, 11, 12],\n ring: [0, 13, 14, 15, 16],\n pinky: [0, 17, 18, 19, 20],\n palm: [0],\n */\n thumb: [1, 2, 3, 4],\n index: [5, 6, 7, 8],\n middle: [9, 10, 11, 12],\n ring: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n base: [0],\n palm: [0, 17, 13, 9, 5, 1, 0],\n};\n\nexport async function loadDetect(config: Config): Promise {\n // HandTrack Model: Original: TFJS Port: \n if (env.initial) models[0] = null;\n if (!models[0]) {\n // handtrack model has some kernel ops defined in model but those are never referenced and non-existent in tfjs\n // ideally need to prune the model itself\n fakeOps(['tensorlistreserve', 'enter', 'tensorlistfromtensor', 'merge', 'loopcond', 'switch', 'exit', 'tensorliststack', 'nextiteration', 'tensorlistsetitem', 'tensorlistgetitem', 'reciprocal', 'shape', 'split', 'where'], config);\n models[0] = await loadModel(config.hand.detector?.modelPath);\n const inputs = Object.values(models[0].modelSignature['inputs']);\n inputSize[0][0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize[0][1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models[0]['modelUrl']);\n return models[0];\n}\n\nexport async function loadSkeleton(config: Config): Promise {\n if (env.initial) models[1] = null;\n if (!models[1]) {\n models[1] = await loadModel(config.hand.skeleton?.modelPath);\n const inputs = Object.values(models[1].modelSignature['inputs']);\n inputSize[1][0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize[1][1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models[1]['modelUrl']);\n return models[1];\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!models[0]) await loadDetect(config);\n if (!models[1]) await loadSkeleton(config);\n return models;\n}\n\nasync function detectHands(input: Tensor, config: Config): Promise {\n const hands: HandDetectResult[] = [];\n if (!input || !models[0]) return hands;\n const t: Record = {};\n const ratio = (input.shape[2] || 1) / (input.shape[1] || 1);\n const height = Math.min(Math.round((input.shape[1] || 0) / 8) * 8, maxDetectorResolution); // use dynamic input size but cap at 512\n const width = Math.round(height * ratio / 8) * 8;\n t.resize = tf.image.resizeBilinear(input, [height, width]); // todo: resize with padding\n t.cast = tf.cast(t.resize, 'int32');\n [t.rawScores, t.rawBoxes] = await models[0].executeAsync(t.cast, modelOutputNodes) as Tensor[];\n t.boxes = tf.squeeze(t.rawBoxes, [0, 2]);\n t.scores = tf.squeeze(t.rawScores, [0]);\n const classScores: Array = tf.unstack(t.scores, 1); // unstack scores based on classes\n tf.dispose(classScores[faceIndex]);\n classScores.splice(faceIndex, 1); // remove faces\n t.filtered = tf.stack(classScores, 1); // restack\n tf.dispose(classScores);\n // t.filtered = t.scores;\n t.max = tf.max(t.filtered, 1); // max overall score\n t.argmax = tf.argMax(t.filtered, 1); // class index of max overall score\n let id = 0;\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.max, (config.hand.maxDetected || 0) + 1, config.hand.iouThreshold || 0, config.hand.minConfidence || 1);\n const nms = await t.nms.data();\n const scores = await t.max.data();\n const classNum = await t.argmax.data();\n for (const nmsIndex of Array.from(nms)) { // generates results for each class\n const boxSlice = tf.slice(t.boxes, nmsIndex, 1);\n const boxYX = await boxSlice.data();\n tf.dispose(boxSlice);\n const boxData: Box = [boxYX[1], boxYX[0], boxYX[3] - boxYX[1], boxYX[2] - boxYX[0]]; // yx box reshaped to standard box\n const boxRaw: Box = box.scale(boxData, detectorExpandFact);\n const boxFull: Box = [Math.trunc(boxData[0] * outputSize[0]), Math.trunc(boxData[1] * outputSize[1]), Math.trunc(boxData[2] * outputSize[0]), Math.trunc(boxData[3] * outputSize[1])];\n const score = scores[nmsIndex];\n const label = classes[classNum[nmsIndex]] as HandType;\n const hand: HandDetectResult = { id: id++, score, box: boxFull, boxRaw, label };\n hands.push(hand);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n hands.sort((a, b) => b.score - a.score);\n if (hands.length > (config.hand.maxDetected || 1)) hands.length = (config.hand.maxDetected || 1);\n return hands;\n}\n\nasync function detectFingers(input: Tensor, h: HandDetectResult, config: Config): Promise {\n const hand: HandResult = { // initial values inherited from hand detect\n id: h.id,\n score: Math.round(100 * h.score) / 100,\n boxScore: Math.round(100 * h.score) / 100,\n fingerScore: 0,\n box: h.box,\n boxRaw: h.boxRaw,\n label: h.label,\n keypoints: [],\n landmarks: {} as HandResult['landmarks'],\n annotations: {} as HandResult['annotations'],\n };\n if (input && models[1] && config.hand.landmarks && h.score > (config.hand.minConfidence || 0)) {\n const t: Record = {};\n const boxCrop = [h.boxRaw[1], h.boxRaw[0], h.boxRaw[3] + h.boxRaw[1], h.boxRaw[2] + h.boxRaw[0]] as Box;\n t.crop = tf.image.cropAndResize(input, [boxCrop], [0], [inputSize[1][0], inputSize[1][1]], 'bilinear');\n t.div = tf.div(t.crop, constants.tf255);\n [t.score, t.keypoints] = models[1].execute(t.div, ['Identity_1', 'Identity']) as Tensor[];\n const rawScore = (await t.score.data())[0];\n const score = (100 - Math.trunc(100 / (1 + Math.exp(rawScore)))) / 100; // reverse sigmoid value\n if (score >= (config.hand.minConfidence || 0)) {\n hand.fingerScore = score;\n t.reshaped = tf.reshape(t.keypoints, [-1, 3]);\n const coordsData: Point[] = await t.reshaped.array() as Point[];\n const coordsRaw: Point[] = coordsData.map((kpt) => [kpt[0] / inputSize[1][1], kpt[1] / inputSize[1][0], (kpt[2] || 0)]);\n const coordsNorm: Point[] = coordsRaw.map((kpt) => [kpt[0] * h.boxRaw[2], kpt[1] * h.boxRaw[3], (kpt[2] || 0)]);\n hand.keypoints = (coordsNorm).map((kpt) => [outputSize[0] * (kpt[0] + h.boxRaw[0]), outputSize[1] * (kpt[1] + h.boxRaw[1]), (kpt[2] || 0)]);\n hand.landmarks = fingerPose.analyze(hand.keypoints) as HandResult['landmarks']; // calculate finger gestures\n for (const key of Object.keys(fingerMap)) { // map keypoints to per-finger annotations\n hand.annotations[key] = fingerMap[key].map((index: number) => (hand.landmarks && hand.keypoints[index] ? hand.keypoints[index] : null));\n }\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n return hand;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!models[0] || !models[1] || !models[0]?.inputs[0].shape || !models[1]?.inputs[0].shape) return []; // something is wrong with the model\n outputSize = [input.shape[2] || 0, input.shape[1] || 0];\n skipped++; // increment skip frames\n const skipTime = (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.hand.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n return cache.hands; // return cached results without running anything\n }\n return new Promise(async (resolve) => {\n const skipTimeExtended = 3 * (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrameExtended = skipped < 3 * (config.hand.skipFrames || 0);\n if (config.skipAllowed && cache.hands.length === config.hand.maxDetected) { // we have all detected hands so we're definitely skipping\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n } else if (config.skipAllowed && skipTimeExtended && skipFrameExtended && cache.hands.length > 0) { // we have some cached results: maybe not enough but anyhow continue for bit longer\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n } else { // finally rerun detector\n cache.boxes = await detectHands(input, config);\n lastTime = now();\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n skipped = 0;\n }\n\n const oldCache = [...cache.boxes];\n cache.boxes.length = 0; // reset cache\n if (config.cacheSensitivity > 0) {\n for (let i = 0; i < cache.hands.length; i++) {\n const boxKpt = box.square(cache.hands[i].keypoints, outputSize);\n if (boxKpt.box[2] / (input.shape[2] || 1) > 0.05 && boxKpt.box[3] / (input.shape[1] || 1) > 0.05 && cache.hands[i].fingerScore && cache.hands[i].fingerScore > (config.hand.minConfidence || 0)) {\n const boxScale = box.scale(boxKpt.box, boxExpandFact);\n const boxScaleRaw = box.scale(boxKpt.boxRaw, boxExpandFact);\n // const boxCrop = box.crop(boxScaleRaw);\n cache.boxes.push({ ...oldCache[i], box: boxScale, boxRaw: boxScaleRaw });\n }\n }\n }\n for (let i = 0; i < cache.hands.length; i++) { // replace detected boxes with calculated boxes in final output\n const bbox = box.calc(cache.hands[i].keypoints, outputSize);\n cache.hands[i].box = bbox.box;\n cache.hands[i].boxRaw = bbox.boxRaw;\n }\n resolve(cache.hands);\n });\n}\n", "/**\n * Anti-spoofing model implementation\n */\n\nimport { log, now } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst cached: Array = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastCount = 0;\nlet lastTime = 0;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.liveness?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model) return 0;\n const skipTime = (config.face.liveness?.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.face.liveness?.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && cached[idx]) {\n skipped++;\n return cached[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false);\n const res = model?.execute(resize) as Tensor;\n const num = (await res.data())[0];\n cached[idx] = Math.round(100 * num) / 100;\n lastCount = count;\n lastTime = now();\n tf.dispose([resize, res]);\n resolve(cached[idx]);\n });\n}\n", "export const kpt: Array = [ // used to create part labels\n 'nose',\n 'leftEye',\n 'rightEye',\n 'leftEar',\n 'rightEar',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'leftWrist',\n 'rightWrist',\n 'leftHip',\n 'rightHip',\n 'leftKnee',\n 'rightKnee',\n 'leftAnkle',\n 'rightAnkle',\n];\n\nexport const horizontal: Array = [ // used to fix left vs right\n ['leftEye', 'rightEye'],\n ['leftEar', 'rightEar'],\n ['leftShoulder', 'rightShoulder'],\n ['leftElbow', 'rightElbow'],\n ['leftWrist', 'rightWrist'],\n ['leftHip', 'rightHip'],\n ['leftKnee', 'rightKnee'],\n ['leftAnkle', 'rightAnkle'],\n];\n\nexport const vertical: Array = [ // used to remove unlikely keypoint positions\n ['leftKnee', 'leftShoulder'],\n ['rightKnee', 'rightShoulder'],\n ['leftAnkle', 'leftKnee'],\n ['rightAnkle', 'rightKnee'],\n];\n\nexport const relative: Array = [ // used to match relative body parts\n [['leftHip', 'rightHip'], ['leftShoulder', 'rightShoulder']],\n [['leftElbow', 'rightElbow'], ['leftShoulder', 'rightShoulder']],\n];\n\nexport const connected: Record = { // used to create body outline in annotations\n leftLeg: ['leftHip', 'leftKnee', 'leftAnkle'],\n rightLeg: ['rightHip', 'rightKnee', 'rightAnkle'],\n torso: ['leftShoulder', 'rightShoulder', 'rightHip', 'leftHip', 'leftShoulder'],\n leftArm: ['leftShoulder', 'leftElbow', 'leftWrist'],\n rightArm: ['rightShoulder', 'rightElbow', 'rightWrist'],\n head: [],\n};\n", "import type { BodyKeypoint, BodyResult } from '../result';\nimport * as box from '../util/box';\nimport * as coords from './movenetcoords';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../tfjs/types';\n\nconst maxJitter = 0.005; // default allowed jitter is within 0.5%\n\nconst cache: {\n keypoints: Array,\n padding: [number, number][];\n} = {\n keypoints: [],\n padding: [[0, 0], [0, 0], [0, 0], [0, 0]],\n};\n\nexport function bodyParts(body: BodyResult) { // model sometimes mixes up left vs right keypoints so we fix them\n for (const pair of coords.horizontal) { // fix body parts left vs right\n const left = body.keypoints.findIndex((kp) => kp.part === pair[0]);\n const right = body.keypoints.findIndex((kp) => kp.part === pair[1]);\n if (body.keypoints[left] && body.keypoints[right]) {\n if (body.keypoints[left].position[0] < body.keypoints[right].position[0]) {\n const tmp = body.keypoints[left];\n body.keypoints[left] = body.keypoints[right];\n body.keypoints[right] = tmp;\n }\n }\n }\n for (const pair of coords.vertical) { // remove body parts with improbable vertical position\n const lower = body.keypoints.findIndex((kp) => (kp && kp.part === pair[0]));\n const higher = body.keypoints.findIndex((kp) => (kp && kp.part === pair[1]));\n if (body.keypoints[lower] && body.keypoints[higher]) {\n if (body.keypoints[lower].position[1] < body.keypoints[higher].position[1]) {\n body.keypoints.splice(lower, 1);\n }\n }\n }\n for (const [pair, compare] of coords.relative) { // rearrange body parts according to their relative position\n const left = body.keypoints.findIndex((kp) => (kp && kp.part === pair[0]));\n const right = body.keypoints.findIndex((kp) => (kp && kp.part === pair[1]));\n const leftTo = body.keypoints.findIndex((kp) => (kp && kp.part === compare[0]));\n const rightTo = body.keypoints.findIndex((kp) => (kp && kp.part === compare[1]));\n if (!body.keypoints[leftTo] || !body.keypoints[rightTo]) continue; // only if we have both compare points\n const distanceLeft = body.keypoints[left] ? [\n Math.abs(body.keypoints[leftTo].position[0] - body.keypoints[left].position[0]),\n Math.abs(body.keypoints[rightTo].position[0] - body.keypoints[left].position[0]),\n ] : [0, 0];\n const distanceRight = body.keypoints[right] ? [\n Math.abs(body.keypoints[rightTo].position[0] - body.keypoints[right].position[0]),\n Math.abs(body.keypoints[leftTo].position[0] - body.keypoints[right].position[0]),\n ] : [0, 0];\n if (distanceLeft[0] > distanceLeft[1] || distanceRight[0] > distanceRight[1]) { // should flip keypoints\n const tmp = body.keypoints[left];\n body.keypoints[left] = body.keypoints[right];\n body.keypoints[right] = tmp;\n }\n }\n}\n\nexport function jitter(keypoints: Array): Array {\n for (let i = 0; i < keypoints.length; i++) {\n if (keypoints[i] && cache.keypoints[i]) {\n const diff = [Math.abs(keypoints[i].positionRaw[0] - cache.keypoints[i].positionRaw[0]), Math.abs(keypoints[i].positionRaw[1] - cache.keypoints[i].positionRaw[1])];\n if (diff[0] < maxJitter && diff[1] < maxJitter) {\n keypoints[i] = cache.keypoints[i]; // below jitter so replace keypoint\n } else {\n cache.keypoints[i] = keypoints[i]; // above jitter so update cache\n }\n } else {\n cache.keypoints[i] = keypoints[i]; // cache for keypoint doesnt exist so create it here\n }\n }\n return keypoints;\n}\n\nexport function padInput(input: Tensor, inputSize: number): Tensor {\n const t: Record = {};\n if (!input.shape || !input.shape[1] || !input.shape[2]) return input;\n cache.padding = [\n [0, 0], // dont touch batch\n [input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0, input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0], // height before&after\n [input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0, input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0], // width before&after\n [0, 0], // dont touch rbg\n ];\n t.pad = tf.pad(input, cache.padding);\n t.resize = tf.image.resizeBilinear(t.pad, [inputSize, inputSize]);\n const final = tf.cast(t.resize, 'int32');\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return final;\n}\n\nexport function rescaleBody(body: BodyResult, outputSize: [number, number]): BodyResult {\n body.keypoints = body.keypoints.filter((kpt) => kpt && kpt.position); // filter invalid keypoints\n for (const kpt of body.keypoints) {\n kpt.position = [\n kpt.position[0] * (outputSize[0] + cache.padding[2][0] + cache.padding[2][1]) / outputSize[0] - cache.padding[2][0],\n kpt.position[1] * (outputSize[1] + cache.padding[1][0] + cache.padding[1][1]) / outputSize[1] - cache.padding[1][0],\n ];\n kpt.positionRaw = [\n kpt.position[0] / outputSize[0], kpt.position[1] / outputSize[1],\n ];\n }\n const rescaledBoxes = box.calc(body.keypoints.map((pt) => pt.position), outputSize);\n body.box = rescaledBoxes.box;\n body.boxRaw = rescaledBoxes.boxRaw;\n return body;\n}\n", "/**\n * MoveNet model implementation\n *\n * Based on: [**MoveNet**](https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html)\n */\n\nimport { log, now } from '../util/util';\nimport * as box from '../util/box';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as coords from './movenetcoords';\nimport * as fix from './movenetfix';\nimport { loadModel } from '../tfjs/load';\nimport type { BodyKeypoint, BodyResult, BodyLandmark, BodyAnnotation, Box, Point } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { fakeOps } from '../tfjs/backend';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n// const boxExpandFact = 1.5; // increase to 150%\n\nconst cache: {\n boxes: Array, // unused\n bodies: Array;\n last: number,\n} = {\n boxes: [],\n bodies: [],\n last: 0,\n};\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) {\n fakeOps(['size'], config);\n model = await loadModel(config.body.modelPath);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0;\n if (inputSize < 64) inputSize = 256;\n return model;\n}\n\nasync function parseSinglePose(res, config, image) {\n const kpt = res[0][0];\n const keypoints: Array = [];\n let score = 0;\n for (let id = 0; id < kpt.length; id++) {\n score = kpt[id][2];\n if (score > config.body.minConfidence) {\n const positionRaw: Point = [kpt[id][1], kpt[id][0]];\n keypoints.push({\n score: Math.round(100 * score) / 100,\n part: coords.kpt[id] as BodyLandmark,\n positionRaw,\n position: [ // normalized to input image size\n Math.round((image.shape[2] || 0) * positionRaw[0]),\n Math.round((image.shape[1] || 0) * positionRaw[1]),\n ],\n });\n }\n }\n score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const bodies: Array = [];\n const newBox = box.calc(keypoints.map((pt) => pt.position), [image.shape[2], image.shape[1]]);\n const annotations: Record = {};\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Array = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[i]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body: BodyResult = { id: 0, score, box: newBox.box, boxRaw: newBox.boxRaw, keypoints, annotations };\n fix.bodyParts(body);\n bodies.push(body);\n return bodies;\n}\n\nasync function parseMultiPose(res, config, image) {\n const bodies: Array = [];\n for (let id = 0; id < res[0].length; id++) {\n const kpt = res[0][id];\n const totalScore = Math.round(100 * kpt[51 + 4]) / 100;\n if (totalScore > config.body.minConfidence) {\n const keypoints: Array = [];\n for (let i = 0; i < 17; i++) {\n const score = kpt[3 * i + 2];\n if (score > config.body.minConfidence) {\n const positionRaw: Point = [kpt[3 * i + 1], kpt[3 * i + 0]];\n keypoints.push({\n part: coords.kpt[i] as BodyLandmark,\n score: Math.round(100 * score) / 100,\n positionRaw,\n position: [Math.round((image.shape[2] || 0) * positionRaw[0]), Math.round((image.shape[1] || 0) * positionRaw[1])],\n });\n }\n }\n const newBox = box.calc(keypoints.map((pt) => pt.position), [image.shape[2], image.shape[1]]);\n // movenet-multipose has built-in box details\n // const boxRaw: Box = [kpt[51 + 1], kpt[51 + 0], kpt[51 + 3] - kpt[51 + 1], kpt[51 + 2] - kpt[51 + 0]];\n // const box: Box = [Math.trunc(boxRaw[0] * (image.shape[2] || 0)), Math.trunc(boxRaw[1] * (image.shape[1] || 0)), Math.trunc(boxRaw[2] * (image.shape[2] || 0)), Math.trunc(boxRaw[3] * (image.shape[1] || 0))];\n const annotations: Record = {} as Record;\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Array = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[i]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body: BodyResult = { id, score: totalScore, box: newBox.box, boxRaw: newBox.boxRaw, keypoints: [...keypoints], annotations };\n fix.bodyParts(body);\n bodies.push(body);\n }\n }\n bodies.sort((a, b) => b.score - a.score);\n if (bodies.length > config.body.maxDetected) bodies.length = config.body.maxDetected;\n return bodies;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!model || !model?.inputs[0].shape) return []; // something is wrong with the model\n if (!config.skipAllowed) cache.boxes.length = 0; // allowed to use cache or not\n skipped++; // increment skip frames\n const skipTime = (config.body.skipTime || 0) > (now() - cache.last);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n return cache.bodies; // return cached results without running anything\n }\n return new Promise(async (resolve) => {\n const t: Record = {};\n skipped = 0;\n // run detection on squared input and cached boxes\n /*\n cache.bodies = []; // reset bodies result\n if (cache.boxes.length >= (config.body.maxDetected || 0)) { // if we have enough cached boxes run detection using cache\n for (let i = 0; i < cache.boxes.length; i++) { // run detection based on cached boxes\n t.crop = tf.image.cropAndResize(input, [cache.boxes[i]], [0], [inputSize, inputSize], 'bilinear');\n t.cast = tf.cast(t.crop, 'int32');\n // t.input = prepareImage(input);\n t.res = model?.execute(t.cast) as Tensor;\n const res = await t.res.array();\n const newBodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, cache.boxes[i]) : await parseMultiPose(res, config, input, cache.boxes[i]);\n cache.bodies = cache.bodies.concat(newBodies);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n }\n if (cache.bodies.length !== config.body.maxDetected) { // did not find enough bodies based on cached boxes so run detection on full frame\n t.input = prepareImage(input);\n t.res = model?.execute(t.input) as Tensor;\n const res = await t.res.array();\n cache.bodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, [0, 0, 1, 1]) : await parseMultiPose(res, config, input, [0, 0, 1, 1]);\n for (const body of cache.bodies) rescaleBody(body, [input.shape[2] || 1, input.shape[1] || 1]);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n cache.boxes.length = 0; // reset cache\n for (let i = 0; i < cache.bodies.length; i++) {\n if (cache.bodies[i].keypoints.length > (coords.kpt.length / 2)) { // only update cache if we detected at least half keypoints\n const scaledBox = box.scale(cache.bodies[i].boxRaw, boxExpandFact);\n const cropBox = box.crop(scaledBox);\n cache.boxes.push(cropBox);\n }\n }\n */\n\n // run detection on squared input and no cached boxes\n t.input = fix.padInput(input, inputSize);\n t.res = model?.execute(t.input) as Tensor;\n cache.last = now();\n const res = await t.res.array();\n cache.bodies = (t.res.shape[2] === 17)\n ? await parseSinglePose(res, config, input)\n : await parseMultiPose(res, config, input);\n for (const body of cache.bodies) {\n fix.rescaleBody(body, [input.shape[2] || 1, input.shape[1] || 1]);\n fix.jitter(body.keypoints);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n\n resolve(cache.bodies);\n });\n}\n", "/**\n * NanoDet object detection model implementation\n *\n * Based on: [**MB3-CenterNet**](https://github.com/610265158/mobilenetv3_centernet)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport { labels } from './labels';\nimport type { ObjectResult, ObjectType, Box } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel;\nlet last: Array = [];\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet inputSize = 0;\n\nconst scaleBox = 2.5; // increase box size\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) {\n model = await loadModel(config.object.modelPath);\n const inputs = Object.values(model.modelSignature['inputs']);\n inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nasync function process(res: Tensor[], outputShape: [number, number], config: Config) {\n let id = 0;\n let results: Array = [];\n for (const strideSize of [1, 2, 4]) { // try each stride size as it detects large/medium/small objects\n // find scores, boxes, classes\n tf.tidy(async () => { // wrap in tidy to automatically deallocate temp tensors\n const baseSize = strideSize * 13; // 13x13=169, 26x26=676, 52x52=2704\n // find boxes and scores output depending on stride\n const scoresT = tf.squeeze(res.find((a: Tensor) => (a.shape[1] === (baseSize ** 2) && (a.shape[2] || 0) === labels.length)));\n const featuresT = tf.squeeze(res.find((a: Tensor) => (a.shape[1] === (baseSize ** 2) && (a.shape[2] || 0) < labels.length)));\n const boxesMax = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); // reshape [output] to [4, output / 4] where number is number of different features inside each stride\n const boxIdx = await boxesMax.argMax(2).array(); // what we need is indexes of features with highest scores, not values itself\n const scores = await scoresT.array(); // optionally use exponential scores or just as-is\n for (let i = 0; i < scoresT.shape[0]; i++) { // total strides (x * y matrix)\n for (let j = 0; j < scoresT.shape[1]; j++) { // one score for each class\n const score = scores[i][j]; // get score for current position\n if (score > (config.object.minConfidence || 0) && j !== 61) {\n const cx = (0.5 + Math.trunc(i % baseSize)) / baseSize; // center.x normalized to range 0..1\n const cy = (0.5 + Math.trunc(i / baseSize)) / baseSize; // center.y normalized to range 0..1\n const boxOffset = boxIdx[i].map((a: number) => a * (baseSize / strideSize / inputSize)); // just grab indexes of features with highest scores\n const [x, y] = [\n cx - (scaleBox / strideSize * boxOffset[0]),\n cy - (scaleBox / strideSize * boxOffset[1]),\n ];\n const [w, h] = [\n cx + (scaleBox / strideSize * boxOffset[2]) - x,\n cy + (scaleBox / strideSize * boxOffset[3]) - y,\n ];\n let boxRaw: Box = [x, y, w, h]; // results normalized to range 0..1\n boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))) as Box; // fix out-of-bounds coords\n const box = [ // results normalized to input image pixels\n boxRaw[0] * outputShape[0],\n boxRaw[1] * outputShape[1],\n boxRaw[2] * outputShape[0],\n boxRaw[3] * outputShape[1],\n ];\n const result = {\n id: id++,\n // strideSize,\n score: Math.round(100 * score) / 100,\n class: j + 1,\n label: labels[j].label as ObjectType,\n // center: [Math.trunc(outputShape[0] * cx), Math.trunc(outputShape[1] * cy)],\n // centerRaw: [cx, cy],\n box: box.map((a) => Math.trunc(a)) as Box,\n boxRaw,\n };\n results.push(result);\n }\n }\n }\n });\n }\n // deallocate tensors\n res.forEach((t) => tf.dispose(t));\n\n // normally nms is run on raw results, but since boxes need to be calculated this way we skip calulcation of\n // unnecessary boxes and run nms only on good candidates (basically it just does IOU analysis as scores are already filtered)\n const nmsBoxes = results.map((a) => [a.boxRaw[1], a.boxRaw[0], a.boxRaw[3], a.boxRaw[2]]); // switches coordinates from x,y to y,x as expected by tf.nms\n const nmsScores = results.map((a) => a.score);\n let nmsIdx: Array = [];\n if (nmsBoxes && nmsBoxes.length > 0) {\n const nms = await tf.image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);\n nmsIdx = await nms.data();\n tf.dispose(nms);\n }\n\n // filter & sort results\n results = results\n .filter((_val, idx) => nmsIdx.includes(idx))\n .sort((a, b) => (b.score - a.score));\n\n return results;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n const skipTime = (config.object.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.object.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n if (!env.kernels.includes('mod') || !env.kernels.includes('sparsetodense')) return last;\n return new Promise(async (resolve) => {\n const outputSize = [image.shape[2] || 0, image.shape[1] || 0];\n const resize = tf.image.resizeBilinear(image, [inputSize, inputSize], false);\n const norm = tf.div(resize, constants.tf255);\n const transpose = norm.transpose([0, 3, 1, 2]);\n tf.dispose(norm);\n tf.dispose(resize);\n\n let objectT;\n if (config.object.enabled) objectT = model.execute(transpose);\n lastTime = now();\n tf.dispose(transpose);\n\n const obj = await process(objectT as Tensor[], outputSize as [number, number], config);\n last = obj;\n resolve(obj);\n });\n}\n", "/**\n * PoseNet body detection model implementation constants\n * See `posenet.ts` for entry point\n */\n\nimport type { Point, BodyResult, BodyAnnotation, BodyLandmark } from '../result';\n\nexport const partNames = [\n 'nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder',\n 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist',\n 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle',\n];\n\nexport const count = partNames.length; // 17 keypoints\n\nexport const partIds = partNames.reduce((result, jointName, i) => {\n result[jointName] = i;\n return result;\n}, {});\n\nconst connectedPartNames = [\n ['leftHip', 'leftShoulder'], ['leftElbow', 'leftShoulder'],\n ['leftElbow', 'leftWrist'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['rightHip', 'rightShoulder'],\n ['rightElbow', 'rightShoulder'], ['rightElbow', 'rightWrist'],\n ['rightHip', 'rightKnee'], ['rightKnee', 'rightAnkle'],\n ['leftShoulder', 'rightShoulder'], ['leftHip', 'rightHip'],\n];\nexport const connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => ([partIds[jointNameA], partIds[jointNameB]]));\n\nexport const poseChain = [\n ['nose', 'leftEye'], ['leftEye', 'leftEar'], ['nose', 'rightEye'],\n ['rightEye', 'rightEar'], ['nose', 'leftShoulder'],\n ['leftShoulder', 'leftElbow'], ['leftElbow', 'leftWrist'],\n ['leftShoulder', 'leftHip'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['nose', 'rightShoulder'],\n ['rightShoulder', 'rightElbow'], ['rightElbow', 'rightWrist'],\n ['rightShoulder', 'rightHip'], ['rightHip', 'rightKnee'],\n ['rightKnee', 'rightAnkle'],\n];\n\nexport function eitherPointDoesntMeetConfidence(a: number, b: number, minConfidence: number) {\n return (a < minConfidence || b < minConfidence);\n}\n\nexport function getAdjacentKeyPoints(keypoints, minConfidence: number) {\n return connectedPartIndices.reduce((result, [leftJoint, rightJoint]) => {\n if (eitherPointDoesntMeetConfidence(keypoints[leftJoint].score, keypoints[rightJoint].score, minConfidence)) {\n return result;\n }\n result.push([keypoints[leftJoint], keypoints[rightJoint]]);\n return result;\n }, []);\n}\n\nexport function getBoundingBox(keypoints): [number, number, number, number] {\n const coord = keypoints.reduce(({ maxX, maxY, minX, minY }, { position: { x, y } }) => ({\n maxX: Math.max(maxX, x),\n maxY: Math.max(maxY, y),\n minX: Math.min(minX, x),\n minY: Math.min(minY, y),\n }), {\n maxX: Number.NEGATIVE_INFINITY,\n maxY: Number.NEGATIVE_INFINITY,\n minX: Number.POSITIVE_INFINITY,\n minY: Number.POSITIVE_INFINITY,\n });\n return [coord.minX, coord.minY, coord.maxX - coord.minX, coord.maxY - coord.minY];\n}\n\nexport function scalePoses(poses, [height, width], [inputResolutionHeight, inputResolutionWidth]): Array {\n const scaleY = height / inputResolutionHeight;\n const scaleX = width / inputResolutionWidth;\n const scalePose = (pose, i): BodyResult => ({\n id: i,\n score: pose.score,\n boxRaw: [pose.box[0] / inputResolutionWidth, pose.box[1] / inputResolutionHeight, pose.box[2] / inputResolutionWidth, pose.box[3] / inputResolutionHeight],\n box: [Math.trunc(pose.box[0] * scaleX), Math.trunc(pose.box[1] * scaleY), Math.trunc(pose.box[2] * scaleX), Math.trunc(pose.box[3] * scaleY)],\n keypoints: pose.keypoints.map(({ score, part, position }) => ({\n score: score as number,\n part: part as BodyLandmark,\n position: [Math.trunc(position.x * scaleX), Math.trunc(position.y * scaleY)] as Point,\n positionRaw: [position.x / inputResolutionHeight, position.y / inputResolutionHeight] as Point,\n })),\n annotations: {} as Record,\n });\n const scaledPoses = poses.map((pose, i) => scalePose(pose, i));\n return scaledPoses;\n}\n\n// algorithm based on Coursera Lecture from Algorithms, Part 1: https://www.coursera.org/learn/algorithms-part1/lecture/ZjoSM/heapsort\nexport class MaxHeap {\n priorityQueue: Array; // don't touch\n numberOfElements: number;\n getElementValue: unknown; // function call\n\n constructor(maxSize, getElementValue) {\n this.priorityQueue = new Array(maxSize);\n this.numberOfElements = -1;\n this.getElementValue = getElementValue;\n }\n\n enqueue(x) {\n this.priorityQueue[++this.numberOfElements] = x;\n this.swim(this.numberOfElements);\n }\n\n dequeue() {\n const max = this.priorityQueue[0];\n this.exchange(0, this.numberOfElements--);\n this.sink(0);\n this.priorityQueue[this.numberOfElements + 1] = null;\n return max;\n }\n\n empty() { return this.numberOfElements === -1; }\n\n size() { return this.numberOfElements + 1; }\n\n all() { return this.priorityQueue.slice(0, this.numberOfElements + 1); }\n\n max() { return this.priorityQueue[0]; }\n\n swim(k) {\n while (k > 0 && this.less(Math.floor(k / 2), k)) {\n this.exchange(k, Math.floor(k / 2));\n k = Math.floor(k / 2);\n }\n }\n\n sink(k) {\n while (2 * k <= this.numberOfElements) {\n let j = 2 * k;\n if (j < this.numberOfElements && this.less(j, j + 1)) j++;\n if (!this.less(k, j)) break;\n this.exchange(k, j);\n k = j;\n }\n }\n\n getValueAt(i) {\n // @ts-ignore getter is of unknown type\n return this.getElementValue(this.priorityQueue[i]);\n }\n\n less(i, j) {\n return this.getValueAt(i) < this.getValueAt(j);\n }\n\n exchange(i, j) {\n const t = this.priorityQueue[i];\n this.priorityQueue[i] = this.priorityQueue[j];\n this.priorityQueue[j] = t;\n }\n}\n\nexport function getOffsetPoint(y, x, keypoint, offsets) {\n return {\n y: offsets.get(y, x, keypoint),\n x: offsets.get(y, x, keypoint + count),\n };\n}\n\nexport function getImageCoords(part, outputStride, offsets) {\n const { heatmapY, heatmapX, id: keypoint } = part;\n const { y, x } = getOffsetPoint(heatmapY, heatmapX, keypoint, offsets);\n return {\n x: part.heatmapX * outputStride + x,\n y: part.heatmapY * outputStride + y,\n };\n}\n\nexport function fillArray(element, size) {\n const result = new Array(size);\n for (let i = 0; i < size; i++) {\n result[i] = element;\n }\n return result;\n}\n\nexport function clamp(a, min, max) {\n if (a < min) return min;\n if (a > max) return max;\n return a;\n}\n\nexport function squaredDistance(y1, x1, y2, x2) {\n const dy = y2 - y1;\n const dx = x2 - x1;\n return dy * dy + dx * dx;\n}\n\nexport function addVectors(a, b) {\n return { x: a.x + b.x, y: a.y + b.y };\n}\n\nexport function clampVector(a, min, max) {\n return { y: clamp(a.y, min, max), x: clamp(a.x, min, max) };\n}\n", "/**\n * PoseNet body detection model implementation\n *\n * Based on: [**PoseNet**](https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5)\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { BodyResult, BodyLandmark, Box } from '../result';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport * as utils from './posenetutils';\n\nlet model: GraphModel;\nconst poseNetOutputs = ['MobilenetV1/offset_2/BiasAdd'/* offsets */, 'MobilenetV1/heatmap_2/BiasAdd'/* heatmapScores */, 'MobilenetV1/displacement_fwd_2/BiasAdd'/* displacementFwd */, 'MobilenetV1/displacement_bwd_2/BiasAdd'/* displacementBwd */];\nconst localMaximumRadius = 1;\nconst outputStride = 16;\nconst squaredNmsRadius = 50 ** 2;\n\nfunction traverse(edgeId, sourceKeypoint, targetId, scores, offsets, displacements, offsetRefineStep = 2) {\n const getDisplacement = (point) => ({\n y: displacements.get(point.y, point.x, edgeId),\n x: displacements.get(point.y, point.x, (displacements.shape[2] / 2) + edgeId),\n });\n const getStridedIndexNearPoint = (point, height, width) => ({\n y: utils.clamp(Math.round(point.y / outputStride), 0, height - 1),\n x: utils.clamp(Math.round(point.x / outputStride), 0, width - 1),\n });\n\n const [height, width] = scores.shape;\n // Nearest neighbor interpolation for the source->target displacements.\n const sourceKeypointIndices = getStridedIndexNearPoint(sourceKeypoint.position, height, width);\n const displacement = getDisplacement(sourceKeypointIndices);\n const displacedPoint = utils.addVectors(sourceKeypoint.position, displacement);\n let targetKeypoint = displacedPoint;\n for (let i = 0; i < offsetRefineStep; i++) {\n const targetKeypointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const offsetPoint = utils.getOffsetPoint(targetKeypointIndices.y, targetKeypointIndices.x, targetId, offsets);\n targetKeypoint = utils.addVectors(\n { x: targetKeypointIndices.x * outputStride, y: targetKeypointIndices.y * outputStride },\n { x: offsetPoint.x, y: offsetPoint.y },\n );\n }\n const targetKeyPointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const score = scores.get(targetKeyPointIndices.y, targetKeyPointIndices.x, targetId);\n return { position: targetKeypoint, part: utils.partNames[targetId], score };\n}\n\nexport function decodePose(root, scores, offsets, displacementsFwd, displacementsBwd) {\n const tuples = utils.poseChain.map(([parentJoinName, childJoinName]) => ([utils.partIds[parentJoinName], utils.partIds[childJoinName]]));\n const edgesFwd = tuples.map(([, childJointId]) => childJointId);\n const edgesBwd = tuples.map(([parentJointId]) => parentJointId);\n const numParts = scores.shape[2]; // [21,21,17]\n const numEdges = edgesFwd.length;\n const keypoints = new Array(numParts);\n // Start a new detection instance at the position of the root.\n const rootPoint = utils.getImageCoords(root.part, outputStride, offsets);\n keypoints[root.part.id] = {\n score: root.score,\n part: utils.partNames[root.part.id] as BodyLandmark,\n position: rootPoint,\n };\n // Decode the part positions upwards in the tree, following the backward displacements.\n for (let edge = numEdges - 1; edge >= 0; --edge) {\n const sourceId = edgesFwd[edge];\n const targetId = edgesBwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsBwd);\n }\n }\n // Decode the part positions downwards in the tree, following the forward displacements.\n for (let edge = 0; edge < numEdges; ++edge) {\n const sourceId = edgesBwd[edge];\n const targetId = edgesFwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsFwd);\n }\n }\n return keypoints;\n}\n\nfunction scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores) {\n const [height, width] = scores.shape;\n let localMaximum = true;\n const yStart = Math.max(heatmapY - localMaximumRadius, 0);\n const yEnd = Math.min(heatmapY + localMaximumRadius + 1, height);\n for (let yCurrent = yStart; yCurrent < yEnd; ++yCurrent) {\n const xStart = Math.max(heatmapX - localMaximumRadius, 0);\n const xEnd = Math.min(heatmapX + localMaximumRadius + 1, width);\n for (let xCurrent = xStart; xCurrent < xEnd; ++xCurrent) {\n if (scores.get(yCurrent, xCurrent, keypointId) > score) {\n localMaximum = false;\n break;\n }\n }\n if (!localMaximum) break;\n }\n return localMaximum;\n}\n\nexport function buildPartWithScoreQueue(minConfidence, scores) {\n const [height, width, numKeypoints] = scores.shape;\n const queue = new utils.MaxHeap(height * width * numKeypoints, ({ score }) => score);\n for (let heatmapY = 0; heatmapY < height; ++heatmapY) {\n for (let heatmapX = 0; heatmapX < width; ++heatmapX) {\n for (let keypointId = 0; keypointId < numKeypoints; ++keypointId) {\n const score = scores.get(heatmapY, heatmapX, keypointId);\n // Only consider parts with score greater or equal to threshold as root candidates.\n if (score < minConfidence) continue;\n // Only consider keypoints whose score is maximum in a local window.\n if (scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores)) queue.enqueue({ score, part: { heatmapY, heatmapX, id: keypointId } });\n }\n }\n }\n return queue;\n}\n\nfunction withinRadius(poses, { x, y }, keypointId) {\n return poses.some(({ keypoints }) => {\n const correspondingKeypoint = keypoints[keypointId]?.position;\n if (!correspondingKeypoint) return false;\n return utils.squaredDistance(y, x, correspondingKeypoint.y, correspondingKeypoint.x) <= squaredNmsRadius;\n });\n}\n\nfunction getInstanceScore(existingPoses, keypoints) {\n const notOverlappedKeypointScores = keypoints.reduce((result, { position, score }, keypointId) => {\n if (!withinRadius(existingPoses, position, keypointId)) result += score;\n return result;\n }, 0.0);\n return notOverlappedKeypointScores / keypoints.length;\n}\n\nexport function decode(offsets, scores, displacementsFwd, displacementsBwd, maxDetected, minConfidence) {\n const poses: Array<{ keypoints, box: Box, score: number }> = [];\n const queue = buildPartWithScoreQueue(minConfidence, scores);\n // Generate at most maxDetected object instances per image in decreasing root part score order.\n while (poses.length < maxDetected && !queue.empty()) {\n // The top element in the queue is the next root candidate.\n const root = queue.dequeue();\n // Part-based non-maximum suppression: We reject a root candidate if it is within a disk of `nmsRadius` pixels from the corresponding part of a previously detected instance.\n // @ts-ignore this one is tree walk\n const rootImageCoords = utils.getImageCoords(root.part, outputStride, offsets);\n // @ts-ignore this one is tree walk\n if (withinRadius(poses, rootImageCoords, root.part.id)) continue;\n // Else start a new detection instance at the position of the root.\n let keypoints = decodePose(root, scores, offsets, displacementsFwd, displacementsBwd);\n keypoints = keypoints.filter((a) => a.score > minConfidence);\n const score = getInstanceScore(poses, keypoints);\n const box = utils.getBoundingBox(keypoints);\n if (score > minConfidence) poses.push({ keypoints, box, score: Math.round(100 * score) / 100 });\n }\n return poses;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n /** posenet is mostly obsolete\n * caching is not implemented\n */\n const res = tf.tidy(() => {\n if (!model.inputs[0].shape) return [];\n const resized = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const normalized = tf.sub(tf.div(tf.cast(resized, 'float32'), 127.5), 1.0);\n const results: Array = model.execute(normalized, poseNetOutputs) as Array;\n const results3d = results.map((y) => tf.squeeze(y, [0]));\n results3d[1] = tf.sigmoid(results3d[1]); // apply sigmoid on scores\n return results3d;\n });\n\n const buffers = await Promise.all(res.map((tensor: Tensor) => tensor.buffer()));\n for (const t of res) tf.dispose(t);\n\n const decoded = await decode(buffers[0], buffers[1], buffers[2], buffers[3], config.body.maxDetected, config.body.minConfidence);\n if (!model.inputs[0].shape) return [];\n const scaled = utils.scalePoses(decoded, [input.shape[1], input.shape[2]], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) as BodyResult[];\n return scaled;\n}\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) model = await loadModel(config.body.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n", "/**\n * Image segmentation for body detection model\n *\n * Based on:\n * - [**MediaPipe Meet**](https://drive.google.com/file/d/1lnP1bRi9CSqQQXUHa13159vLELYDgDu0/preview)\n * - [**MediaPipe Selfie**](https://drive.google.com/file/d/1dCfozqknMa068vVsO2j_1FgZkW_e3VWv/preview)\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport * as image from '../image/image';\nimport { constants } from '../tfjs/constants';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport type { Input, AnyCanvas } from '../exports';\n\nlet model: GraphModel;\nlet busy = false;\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) model = await loadModel(config.segmentation.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function process(input: Input, background: Input | undefined, config: Config)\n: Promise<{ data: Array | Tensor, canvas: AnyCanvas | null, alpha: AnyCanvas | null }> {\n if (busy) return { data: [], canvas: null, alpha: null };\n busy = true;\n if (!model) await load(config);\n const inputImage = await image.process(input, config);\n const width = inputImage.tensor?.shape[2] || 0;\n const height = inputImage.tensor?.shape[1] || 0;\n if (!inputImage.tensor) return { data: [], canvas: null, alpha: null };\n const t: Record = {};\n\n t.resize = tf.image.resizeBilinear(inputImage.tensor, [model.inputs[0].shape ? model.inputs[0].shape[1] : 0, model.inputs[0].shape ? model.inputs[0].shape[2] : 0], false);\n tf.dispose(inputImage.tensor);\n t.norm = tf.div(t.resize, constants.tf255);\n t.res = model.execute(t.norm) as Tensor;\n\n t.squeeze = tf.squeeze(t.res, 0); // meet.shape:[1,256,256,1], selfie.shape:[1,144,256,2]\n if (t.squeeze.shape[2] === 2) {\n t.softmax = tf.softmax(t.squeeze); // model meet has two channels for fg and bg\n [t.bg, t.fg] = tf.unstack(t.softmax, 2);\n t.expand = tf.expandDims(t.fg, 2);\n t.pad = tf.expandDims(t.expand, 0);\n t.crop = tf.image.cropAndResize(t.pad, [[0, 0, 0.5, 0.5]], [0], [width, height]);\n // running sofmax before unstack creates 2x2 matrix so we only take upper-left quadrant\n // otherwise run softmax after unstack and use standard resize\n // resizeOutput = tf.image.resizeBilinear(expand, [input.tensor?.shape[1], input.tensor?.shape[2]]);\n t.data = tf.squeeze(t.crop, 0);\n } else {\n t.data = tf.image.resizeBilinear(t.squeeze, [height, width]); // model selfie has a single channel that we can use directly\n }\n const data = Array.from(await t.data.data()) as number[];\n\n if (env.node && !env.Canvas && (typeof ImageData === 'undefined')) {\n if (config.debug) log('canvas support missing');\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return { data, canvas: null, alpha: null }; // running in nodejs so return alpha array as-is\n }\n\n const alphaCanvas = image.canvas(width, height);\n // @ts-ignore browser is not defined in tfjs-node\n if (tf.browser) await tf.browser.toPixels(t.data, alphaCanvas);\n const alphaCtx = alphaCanvas.getContext('2d') as CanvasRenderingContext2D;\n if (config.segmentation.blur && config.segmentation.blur > 0) alphaCtx.filter = `blur(${config.segmentation.blur}px)`; // use css filter for bluring, can be done with gaussian blur manually instead\n const alphaData = alphaCtx.getImageData(0, 0, width, height);\n\n const compositeCanvas = image.canvas(width, height);\n const compositeCtx = compositeCanvas.getContext('2d') as CanvasRenderingContext2D;\n if (inputImage.canvas) compositeCtx.drawImage(inputImage.canvas, 0, 0);\n compositeCtx.globalCompositeOperation = 'darken'; // https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation // best options are: darken, color-burn, multiply\n if (config.segmentation.blur && config.segmentation.blur > 0) compositeCtx.filter = `blur(${config.segmentation.blur}px)`; // use css filter for bluring, can be done with gaussian blur manually instead\n compositeCtx.drawImage(alphaCanvas, 0, 0);\n compositeCtx.globalCompositeOperation = 'source-over'; // reset composite operation\n compositeCtx.filter = 'none'; // reset css filter\n const compositeData = compositeCtx.getImageData(0, 0, width, height);\n for (let i = 0; i < width * height; i++) compositeData.data[4 * i + 3] = alphaData.data[4 * i + 0]; // copy original alpha value to new composite canvas\n compositeCtx.putImageData(compositeData, 0, 0);\n\n let mergedCanvas: AnyCanvas | null = null;\n if (background && compositeCanvas) { // draw background with segmentation as overlay if background is present\n mergedCanvas = image.canvas(width, height);\n const bgImage = await image.process(background, config);\n tf.dispose(bgImage.tensor);\n const ctxMerge = mergedCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctxMerge.drawImage(bgImage.canvas as HTMLCanvasElement, 0, 0, mergedCanvas.width, mergedCanvas.height);\n ctxMerge.drawImage(compositeCanvas, 0, 0);\n }\n\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n busy = false;\n // return { data, canvas: mergedCanvas || compositeCanvas, alpha: alphaCanvas };\n return { data, canvas: compositeCanvas, alpha: alphaCanvas };\n}\n", "/** TFJS custom backend registration */\n\nimport type { Human } from '../human';\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\nimport * as models from '../models';\nimport type { AnyCanvas } from '../exports';\n// import { env } from '../env';\n\nexport const config = {\n name: 'humangl',\n priority: 999,\n canvas: null,\n gl: null,\n extensions: [],\n webGLattr: { // https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.2\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: false,\n desynchronized: true,\n },\n};\n\nfunction extensions(): void {\n /*\n https://www.khronos.org/registry/webgl/extensions/\n https://webglreport.com/?v=2\n */\n const gl = config.gl;\n if (!gl) return;\n config.extensions = gl.getSupportedExtensions() as string[];\n // gl.getExtension('KHR_parallel_shader_compile');\n}\n\n/**\n * Registers custom WebGL2 backend to be used by Human library\n *\n * @returns void\n */\nexport async function register(instance: Human): Promise {\n // force backend reload if gl context is not valid\n if (instance.config.backend !== 'humangl') return;\n if ((config.name in tf.engine().registry) && (!config.gl || !config.gl.getParameter(config.gl.VERSION))) {\n log('error: humangl backend invalid context');\n models.reset(instance);\n /*\n log('resetting humangl backend');\n await tf.removeBackend(config.name);\n await register(instance); // re-register\n */\n }\n if (!tf.findBackend(config.name)) {\n try {\n config.canvas = await image.canvas(100, 100);\n } catch (err) {\n log('error: cannot create canvas:', err);\n return;\n }\n try {\n config.gl = config.canvas?.getContext('webgl2', config.webGLattr) as WebGL2RenderingContext;\n const glv2 = config.gl.getParameter(config.gl.VERSION).includes('2.0');\n if (!glv2) {\n log('override: using fallback webgl backend as webgl 2.0 is not detected');\n instance.config.backend = 'webgl';\n return;\n }\n if (config.canvas) {\n config.canvas.addEventListener('webglcontextlost', async (e) => {\n log('error: humangl:', e.type);\n log('possible browser memory leak using webgl or conflict with multiple backend registrations');\n instance.emit('error');\n throw new Error('backend error: webgl context lost');\n // log('resetting humangl backend');\n // env.initial = true;\n // models.reset(instance);\n // await tf.removeBackend(config.name);\n // await register(instance); // re-register\n });\n config.canvas.addEventListener('webglcontextrestored', (e) => {\n log('error: humangl context restored:', e);\n });\n config.canvas.addEventListener('webglcontextcreationerror', (e) => {\n log('error: humangl context create:', e);\n });\n }\n } catch (err) {\n log('error: cannot get WebGL context:', err);\n return;\n }\n try {\n tf.setWebGLContext(2, config.gl);\n } catch (err) {\n log('error: cannot set WebGL context:', err);\n return;\n }\n try {\n const ctx = new tf.GPGPUContext(config.gl);\n tf.registerBackend(config.name, () => new tf.MathBackendWebGL(ctx), config.priority);\n } catch (err) {\n log('error: cannot register WebGL backend:', err);\n return;\n }\n try {\n const kernels = tf.getKernelsForBackend('webgl');\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = { ...kernelConfig, backendName: config.name };\n tf.registerKernel(newKernelConfig);\n });\n } catch (err) {\n log('error: cannot update WebGL backend registration:', err);\n return;\n }\n const current = tf.backend().getGPGPUContext ? tf.backend().getGPGPUContext().gl : null;\n if (current) {\n log(`humangl webgl version:${current.getParameter(current.VERSION)} renderer:${current.getParameter(current.RENDERER)}`);\n } else {\n log('error: no current gl context:', current, config.gl);\n return;\n }\n try {\n tf.ENV.set('WEBGL_VERSION', 2);\n } catch (err) {\n log('error: cannot set WebGL backend flags:', err);\n return;\n }\n extensions();\n log('backend registered:', config.name);\n }\n}\n", "/** TFJS backend initialization and customization */\n\nimport type { Human } from '../human';\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as humangl from './humangl';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as constants from './constants';\n\nfunction registerCustomOps() {\n if (!env.kernels.includes('mod')) {\n const kernelMod = {\n kernelName: 'Mod',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => tf.sub(op.inputs.a, tf.mul(tf.div(op.inputs.a, op.inputs.b), op.inputs.b))),\n };\n tf.registerKernel(kernelMod);\n env.kernels.push('mod');\n }\n if (!env.kernels.includes('floormod')) {\n const kernelMod = {\n kernelName: 'FloorMod',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => tf.floorDiv(op.inputs.a / op.inputs.b) * op.inputs.b + tf.mod(op.inputs.a, op.inputs.b)),\n };\n tf.registerKernel(kernelMod);\n env.kernels.push('floormod');\n }\n}\n\nexport async function check(instance: Human, force = false) {\n instance.state = 'backend';\n if (force || env.initial || (instance.config.backend && (instance.config.backend.length > 0) && (tf.getBackend() !== instance.config.backend))) {\n const timeStamp = now();\n\n if (instance.config.backend && instance.config.backend.length > 0) {\n // detect web worker\n // @ts-ignore ignore missing type for WorkerGlobalScope as that is the point\n if (typeof window === 'undefined' && typeof WorkerGlobalScope !== 'undefined' && instance.config.debug) {\n if (instance.config.debug) log('running inside web worker');\n }\n\n // force browser vs node backend\n if (env.browser && instance.config.backend === 'tensorflow') {\n if (instance.config.debug) log('override: backend set to tensorflow while running in browser');\n instance.config.backend = 'humangl';\n }\n if (env.node && (instance.config.backend === 'webgl' || instance.config.backend === 'humangl')) {\n if (instance.config.debug) log(`override: backend set to ${instance.config.backend} while running in nodejs`);\n instance.config.backend = 'tensorflow';\n }\n\n // handle webgpu\n if (env.browser && instance.config.backend === 'webgpu') {\n if (typeof navigator === 'undefined' || typeof navigator['gpu'] === 'undefined') {\n log('override: backend set to webgpu but browser does not support webgpu');\n instance.config.backend = 'humangl';\n } else {\n const adapter = await navigator['gpu'].requestAdapter();\n if (instance.config.debug) log('enumerated webgpu adapter:', adapter);\n if (!adapter) {\n log('override: backend set to webgpu but browser reports no available gpu');\n instance.config.backend = 'humangl';\n } else {\n // @ts-ignore requestAdapterInfo is not in tslib\n // eslint-disable-next-line no-undef\n const adapterInfo = 'requestAdapterInfo' in adapter ? await (adapter as GPUAdapter).requestAdapterInfo() : undefined;\n // if (adapter.features) adapter.features.forEach((feature) => log('webgpu features:', feature));\n log('webgpu adapter info:', adapterInfo);\n }\n }\n }\n\n // check available backends\n if (instance.config.backend === 'humangl') await humangl.register(instance);\n const available = Object.keys(tf.engine().registryFactory);\n if (instance.config.debug) log('available backends:', available);\n\n if (!available.includes(instance.config.backend)) {\n log(`error: backend ${instance.config.backend} not found in registry`);\n instance.config.backend = env.node ? 'tensorflow' : 'webgl';\n if (instance.config.debug) log(`override: setting backend ${instance.config.backend}`);\n }\n\n if (instance.config.debug) log('setting backend:', instance.config.backend);\n\n // customize wasm\n if (instance.config.backend === 'wasm') {\n try {\n tf.env().set('CANVAS2D_WILL_READ_FREQUENTLY', true);\n } catch { /**/ }\n if (instance.config.debug) log('wasm path:', instance.config.wasmPath);\n if (typeof tf?.setWasmPaths !== 'undefined') await tf.setWasmPaths(instance.config.wasmPath, instance.config.wasmPlatformFetch);\n else throw new Error('backend error: attempting to use wasm backend but wasm path is not set');\n const simd = await tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n const mt = await tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n if (instance.config.debug) log(`wasm execution: ${simd ? 'SIMD' : 'no SIMD'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (instance.config.debug && !simd) log('warning: wasm simd support is not enabled');\n }\n\n try {\n await tf.setBackend(instance.config.backend);\n await tf.ready();\n constants.init();\n } catch (err) {\n log('error: cannot set backend:', instance.config.backend, err);\n return false;\n }\n }\n\n // customize humangl\n if (tf.getBackend() === 'humangl') {\n tf.ENV.set('CHECK_COMPUTATION_FOR_ERRORS', false);\n tf.ENV.set('WEBGL_CPU_FORWARD', true);\n // tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', false);\n tf.ENV.set('WEBGL_USE_SHAPES_UNIFORMS', true);\n tf.ENV.set('CPU_HANDOFF_SIZE_THRESHOLD', 256);\n // if (!instance.config.object.enabled) tf.ENV.set('WEBGL_FORCE_F16_TEXTURES', true); // safe to use 16bit precision\n if (typeof instance.config['deallocate'] !== 'undefined' && instance.config['deallocate']) { // hidden param\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', true);\n tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', 0);\n }\n if (tf.backend().getGPGPUContext) {\n const gl = await tf.backend().getGPGPUContext().gl;\n if (instance.config.debug) log(`gl version:${gl.getParameter(gl.VERSION)} renderer:${gl.getParameter(gl.RENDERER)}`);\n }\n }\n\n // customize webgpu\n if (tf.getBackend() === 'webgpu') {\n // tf.ENV.set('WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD', 512);\n // tf.ENV.set('WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE', 0);\n // tf.ENV.set('WEBGPU_CPU_FORWARD', true);\n }\n\n // wait for ready\n tf.enableProdMode();\n await tf.ready();\n\n instance.performance.initBackend = Math.trunc(now() - timeStamp);\n instance.config.backend = tf.getBackend();\n\n await env.updateBackend(); // update env on backend init\n registerCustomOps();\n // await env.updateBackend(); // update env on backend init\n }\n return true;\n}\n\n// register fake missing tfjs ops\nexport function fakeOps(kernelNames: Array, config) {\n // if (config.debug) log('registerKernel:', kernelNames);\n for (const kernelName of kernelNames) {\n const kernelConfig = {\n kernelName,\n backendName: config.backend,\n kernelFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n // setupFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n // disposeFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n };\n tf.registerKernel(kernelConfig);\n }\n env.kernels = tf.getKernelsForBackend(tf.getBackend()).map((kernel) => kernel.kernelName.toLowerCase()); // re-scan registered ops\n}\n", "/**\n * Module that implements helper draw functions, exposed as human.draw\n */\n\nimport { mergeDeep, now } from '../util/util';\nimport { env } from '../util/env';\nimport { getCanvasContext, rect } from './primitives';\nimport { options } from './options';\nimport { face } from './face';\nimport { body } from './body';\nimport { hand } from './hand';\nimport { object } from './object';\nimport { gesture } from './gesture';\nimport type { Result, PersonResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\nlet drawTime = 0;\n\nexport { options } from './options';\nexport { face } from './face';\nexport { body } from './body';\nexport { hand } from './hand';\nexport { object } from './object';\nexport { gesture } from './gesture';\n\n/** draw combined person results instead of individual detection result objects */\nexport async function person(inCanvas: AnyCanvas, result: Array, drawOptions?: Partial) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n\n for (let i = 0; i < result.length; i++) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `person #${i}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\n/** draw processed canvas */\nexport async function canvas(input: AnyCanvas | HTMLImageElement | HTMLVideoElement, output: AnyCanvas) {\n if (!input || !output) return;\n const ctx = getCanvasContext(output);\n if (!ctx) return;\n ctx.drawImage(input, 0, 0);\n}\n\n/** meta-function that performs draw for: canvas, face, body, hand */\nexport async function all(inCanvas: AnyCanvas, result: Result, drawOptions?: Partial) {\n if (!result || !result.performance || !result || !inCanvas) return null;\n const timeStamp = now();\n const localOptions = mergeDeep(options, drawOptions);\n const promise = Promise.all([\n face(inCanvas, result.face, localOptions),\n body(inCanvas, result.body, localOptions),\n hand(inCanvas, result.hand, localOptions),\n object(inCanvas, result.object, localOptions),\n gesture(inCanvas, result.gesture, localOptions), // gestures do not have buffering\n // person(inCanvas, result.persons, localOptions); // already included above\n ]);\n drawTime = env.perfadd ? drawTime + Math.round(now() - timeStamp) : Math.round(now() - timeStamp);\n result.performance.draw = drawTime;\n return promise;\n}\n", "import { log } from '../util/util';\nimport type { AnyCanvas } from '../exports';\nimport type { Point } from '../result';\nimport type { DrawOptions } from './options';\n\nexport const getCanvasContext = (input: AnyCanvas) => {\n if (!input) log('draw error: invalid canvas');\n else if (!input.getContext) log('draw error: canvas context not defined');\n else {\n const ctx = input.getContext('2d');\n if (!ctx) log('draw error: cannot get canvas context');\n else return ctx;\n }\n return null;\n};\n\nexport const rad2deg = (theta: number) => Math.round((theta * 180) / Math.PI);\n\nexport const colorDepth = (z: number | undefined, opt: DrawOptions): string => {\n if (!opt.useDepth || typeof z === 'undefined') return opt.color;\n const rgb = Uint8ClampedArray.from([127 + (2 * z), 127 - (2 * z), 255]);\n const color = `rgba(${rgb[0]}, ${rgb[1]}, ${rgb[2]}, ${opt.alpha})`;\n return color;\n};\n\nexport function point(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, x: number, y: number, z: number | undefined, localOptions: DrawOptions) {\n ctx.fillStyle = colorDepth(z, localOptions);\n ctx.beginPath();\n ctx.arc(x, y, localOptions.pointSize, 0, 2 * Math.PI);\n ctx.fill();\n}\n\nexport function rect(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, x: number, y: number, width: number, height: number, localOptions: DrawOptions) {\n ctx.beginPath();\n ctx.lineWidth = localOptions.lineWidth;\n if (localOptions.useCurves) {\n const cx = (x + x + width) / 2;\n const cy = (y + y + height) / 2;\n ctx.ellipse(cx, cy, width / 2, height / 2, 0, 0, 2 * Math.PI);\n } else {\n ctx.moveTo(x + localOptions.roundRect, y);\n ctx.lineTo(x + width - localOptions.roundRect, y);\n ctx.quadraticCurveTo(x + width, y, x + width, y + localOptions.roundRect);\n ctx.lineTo(x + width, y + height - localOptions.roundRect);\n ctx.quadraticCurveTo(x + width, y + height, x + width - localOptions.roundRect, y + height);\n ctx.lineTo(x + localOptions.roundRect, y + height);\n ctx.quadraticCurveTo(x, y + height, x, y + height - localOptions.roundRect);\n ctx.lineTo(x, y + localOptions.roundRect);\n ctx.quadraticCurveTo(x, y, x + localOptions.roundRect, y);\n ctx.closePath();\n }\n ctx.stroke();\n}\n\nexport function lines(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, points: Point[], localOptions: DrawOptions) {\n if (points.length < 2) return;\n ctx.beginPath();\n ctx.moveTo(points[0][0], points[0][1]);\n for (const pt of points) {\n ctx.strokeStyle = colorDepth(pt[2] || 0, localOptions);\n ctx.lineTo(Math.trunc(pt[0]), Math.trunc(pt[1]));\n }\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport function curves(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, points: Point[], localOptions: DrawOptions) {\n if (points.length < 2) return;\n ctx.lineWidth = localOptions.lineWidth;\n if (!localOptions.useCurves || points.length <= 2) {\n lines(ctx, points, localOptions);\n return;\n }\n ctx.moveTo(points[0][0], points[0][1]);\n for (let i = 0; i < points.length - 2; i++) {\n const xc = (points[i][0] + points[i + 1][0]) / 2;\n const yc = (points[i][1] + points[i + 1][1]) / 2;\n ctx.quadraticCurveTo(points[i][0], points[i][1], xc, yc);\n }\n ctx.quadraticCurveTo(points[points.length - 2][0], points[points.length - 2][1], points[points.length - 1][0], points[points.length - 1][1]);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport function arrow(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, from: Point, to: Point, radius = 5) {\n let angle;\n let x;\n let y;\n ctx.beginPath();\n ctx.moveTo(from[0], from[1]);\n ctx.lineTo(to[0], to[1]);\n angle = Math.atan2(to[1] - from[1], to[0] - from[0]);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.moveTo(x, y);\n angle += (1.0 / 3.0) * (2 * Math.PI);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.lineTo(x, y);\n angle += (1.0 / 3.0) * (2 * Math.PI);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.lineTo(x, y);\n ctx.closePath();\n ctx.stroke();\n ctx.fill();\n}\n", "/** Draw Options\n * - Accessed via `human.draw.options` or provided per each draw method as the drawOptions optional parameter\n */\nexport type DrawOptions = {\n /** draw line color */\n color: string,\n /** alpha value used for lines */\n alpha: number,\n /** label color */\n labelColor: string,\n /** label shadow color */\n shadowColor: string,\n /** label font */\n font: string,\n /** line spacing between labels */\n lineHeight: number,\n /** line width for drawn lines */\n lineWidth: number,\n /** size of drawn points */\n pointSize: number,\n /** draw rounded boxes by n pixels */\n roundRect: number,\n /** should points be drawn? */\n drawPoints: boolean,\n /** should labels be drawn? */\n drawLabels: boolean,\n /** should face attention keypoints be highlighted */\n drawAttention: boolean;\n /** should detected gestures be drawn? */\n drawGestures: boolean,\n /** should draw boxes around detection results? */\n drawBoxes: boolean,\n /** should draw polygons from detection points? */\n drawPolygons: boolean,\n /** should draw gaze arrows? */\n drawGaze: boolean,\n /** should fill polygons? */\n fillPolygons: boolean,\n /** use z-coordinate when available */\n useDepth: boolean,\n /** should lines be curved? */\n useCurves: boolean,\n}\n\n/** currently set draw options {@link DrawOptions} */\nexport const options: DrawOptions = {\n color: 'rgba(173, 216, 230, 0.6)', // 'lightblue' with light alpha channel\n labelColor: 'rgba(173, 216, 230, 1)', // 'lightblue' with dark alpha channel\n shadowColor: 'black',\n alpha: 0.5,\n font: 'small-caps 16px \"Segoe UI\"',\n lineHeight: 18,\n lineWidth: 4,\n pointSize: 2,\n roundRect: 8,\n drawPoints: false,\n drawLabels: true,\n drawBoxes: true,\n drawAttention: true,\n drawGestures: true,\n drawPolygons: true,\n drawGaze: true,\n fillPolygons: false,\n useDepth: true,\n useCurves: false,\n};\n", "import { TRI468 as triangulation } from '../face/facemeshcoords';\nimport { mergeDeep } from '../util/util';\nimport { getCanvasContext, rad2deg, rect, point, lines, arrow } from './primitives';\nimport { options } from './options';\nimport * as facemeshConstants from '../face/constants';\nimport type { FaceResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\nlet opt: DrawOptions;\n\nfunction drawLabels(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawLabels) {\n // silly hack since fillText does not suport new line\n const labels:string[] = [];\n labels.push(`face: ${Math.trunc(100 * f.score)}%`);\n if (f.genderScore) labels.push(`${f.gender || ''} ${Math.trunc(100 * f.genderScore)}%`);\n if (f.age) labels.push(`age: ${f.age || ''}`);\n if (f.iris) labels.push(`distance: ${f.iris}`);\n if (f.real) labels.push(`real: ${Math.trunc(100 * f.real)}%`);\n if (f.live) labels.push(`live: ${Math.trunc(100 * f.live)}%`);\n if (f.emotion && f.emotion.length > 0) {\n const emotion = f.emotion.map((a) => `${Math.trunc(100 * a.score)}% ${a.emotion}`);\n if (emotion.length > 3) emotion.length = 3;\n labels.push(emotion.join(' '));\n }\n if (f.rotation && f.rotation.angle && f.rotation.gaze) {\n if (f.rotation.angle.roll) labels.push(`roll: ${rad2deg(f.rotation.angle.roll)}\u00B0 yaw:${rad2deg(f.rotation.angle.yaw)}\u00B0 pitch:${rad2deg(f.rotation.angle.pitch)}\u00B0`);\n if (f.rotation.gaze.bearing) labels.push(`gaze: ${rad2deg(f.rotation.gaze.bearing)}\u00B0`);\n }\n if (labels.length === 0) labels.push('face');\n ctx.fillStyle = opt.color;\n for (let i = labels.length - 1; i >= 0; i--) {\n const x = Math.max(f.box[0], 0);\n const y = i * opt.lineHeight + f.box[1];\n if (opt.shadowColor && opt.shadowColor !== '') {\n ctx.fillStyle = opt.shadowColor;\n ctx.fillText(labels[i], x + 5, y + 16);\n }\n ctx.fillStyle = opt.labelColor;\n ctx.fillText(labels[i], x + 4, y + 15);\n }\n }\n}\n\nfunction drawIrisElipse(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n // iris: array[center, left, top, right, bottom]\n if (f.annotations && f.annotations['leftEyeIris'] && f.annotations['leftEyeIris'][0]) {\n ctx.strokeStyle = opt.useDepth ? 'rgba(255, 200, 255, 0.3)' : opt.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations['leftEyeIris'][3][0] - f.annotations['leftEyeIris'][1][0]) / 2;\n const sizeY = Math.abs(f.annotations['leftEyeIris'][4][1] - f.annotations['leftEyeIris'][2][1]) / 2;\n ctx.ellipse(f.annotations['leftEyeIris'][0][0], f.annotations['leftEyeIris'][0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (opt.fillPolygons) {\n ctx.fillStyle = opt.useDepth ? 'rgba(255, 255, 200, 0.3)' : opt.color;\n ctx.fill();\n }\n }\n if (f.annotations && f.annotations['rightEyeIris'] && f.annotations['rightEyeIris'][0]) {\n ctx.strokeStyle = opt.useDepth ? 'rgba(255, 200, 255, 0.3)' : opt.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations['rightEyeIris'][3][0] - f.annotations['rightEyeIris'][1][0]) / 2;\n const sizeY = Math.abs(f.annotations['rightEyeIris'][4][1] - f.annotations['rightEyeIris'][2][1]) / 2;\n ctx.ellipse(f.annotations['rightEyeIris'][0][0], f.annotations['rightEyeIris'][0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (opt.fillPolygons) {\n ctx.fillStyle = opt.useDepth ? 'rgba(255, 255, 200, 0.3)' : opt.color;\n ctx.fill();\n }\n }\n}\n\nfunction drawGazeSpheres(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawGaze && f.rotation?.angle && typeof Path2D !== 'undefined') {\n ctx.strokeStyle = 'pink';\n const valX = (f.box[0] + f.box[2] / 2) - (f.box[3] * rad2deg(f.rotation.angle.yaw) / 90);\n const valY = (f.box[1] + f.box[3] / 2) + (f.box[2] * rad2deg(f.rotation.angle.pitch) / 90);\n const pathV = new Path2D(`\n M ${f.box[0] + f.box[2] / 2} ${f.box[1]}\n C\n ${valX} ${f.box[1]},\n ${valX} ${f.box[1] + f.box[3]},\n ${f.box[0] + f.box[2] / 2} ${f.box[1] + f.box[3]}\n `);\n const pathH = new Path2D(`\n M ${f.box[0]} ${f.box[1] + f.box[3] / 2}\n C \n ${f.box[0]} ${valY},\n ${f.box[0] + f.box[2]} ${valY},\n ${f.box[0] + f.box[2]} ${f.box[1] + f.box[3] / 2}\n `);\n ctx.stroke(pathH);\n ctx.stroke(pathV);\n }\n}\n\nfunction drawGazeArrows(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawGaze && f.rotation?.gaze?.strength && f.rotation?.gaze?.bearing && f.annotations['leftEyeIris'] && f.annotations['rightEyeIris'] && f.annotations['leftEyeIris'][0] && f.annotations['rightEyeIris'][0]) {\n ctx.strokeStyle = 'pink';\n ctx.fillStyle = 'pink';\n const leftGaze = [\n f.annotations['leftEyeIris'][0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations['leftEyeIris'][0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n arrow(ctx, [f.annotations['leftEyeIris'][0][0], f.annotations['leftEyeIris'][0][1]], [leftGaze[0], leftGaze[1]], 4);\n const rightGaze = [\n f.annotations['rightEyeIris'][0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations['rightEyeIris'][0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n arrow(ctx, [f.annotations['rightEyeIris'][0][0], f.annotations['rightEyeIris'][0][1]], [rightGaze[0], rightGaze[1]], 4);\n }\n}\n\nfunction drawFacePolygons(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawPolygons && f.mesh.length >= 468) {\n ctx.lineWidth = 1;\n for (let i = 0; i < triangulation.length / 3; i++) {\n const points = [triangulation[i * 3 + 0], triangulation[i * 3 + 1], triangulation[i * 3 + 2]].map((index) => f.mesh[index]);\n lines(ctx, points, opt);\n }\n drawIrisElipse(f, ctx);\n }\n /*\n if (opt.drawPolygons && f.contours.length > 1) {\n ctx.lineWidth = 5;\n lines(ctx, f.contours, opt);\n }\n ctx.lineWidth = 1;\n */\n}\n\nfunction drawFacePoints(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawPoints && f.mesh.length >= 468) {\n for (let i = 0; i < f.mesh.length; i++) {\n point(ctx, f.mesh[i][0], f.mesh[i][1], f.mesh[i][2], opt);\n if (opt.drawAttention) {\n if (facemeshConstants.LANDMARKS_REFINEMENT_LIPS_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) + 127, opt);\n if (facemeshConstants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) - 127, opt);\n if (facemeshConstants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) - 127, opt);\n }\n }\n }\n}\n\nfunction drawFaceBoxes(f: FaceResult, ctx) {\n if (opt.drawBoxes) {\n rect(ctx, f.box[0], f.box[1], f.box[2], f.box[3], opt);\n }\n}\n\n/** draw detected faces */\nexport async function face(inCanvas: AnyCanvas, result: Array, drawOptions?: Partial) {\n opt = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.font = opt.font;\n ctx.strokeStyle = opt.color;\n ctx.fillStyle = opt.color;\n for (const f of result) {\n drawFaceBoxes(f, ctx);\n drawLabels(f, ctx);\n if (f.mesh && f.mesh.length > 0) {\n drawFacePoints(f, ctx);\n drawFacePolygons(f, ctx);\n drawGazeSpheres(f, ctx);\n drawGazeArrows(f, ctx);\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect, point, curves, colorDepth } from './primitives';\nimport { options } from './options';\nimport type { BodyResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected bodies */\nexport async function body(inCanvas: AnyCanvas, result: Array, drawOptions?: Partial) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n for (let i = 0; i < result.length; i++) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n ctx.lineWidth = localOptions.lineWidth;\n ctx.font = localOptions.font;\n if (localOptions.drawBoxes && result[i].box && result[i].box?.length === 4) {\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n }\n if (localOptions.drawPoints && result[i].keypoints) {\n for (let pt = 0; pt < result[i].keypoints.length; pt++) {\n if (!result[i].keypoints[pt].score || (result[i].keypoints[pt].score === 0)) continue;\n ctx.fillStyle = colorDepth(result[i].keypoints[pt].position[2], localOptions);\n point(ctx, result[i].keypoints[pt].position[0], result[i].keypoints[pt].position[1], 0, localOptions);\n }\n }\n if (localOptions.drawLabels && result[i].keypoints) {\n ctx.font = localOptions.font;\n for (const pt of result[i].keypoints) {\n if (!pt.score || (pt.score === 0)) continue;\n ctx.fillStyle = colorDepth(pt.position[2], localOptions);\n ctx.fillText(`${pt.part} ${Math.trunc(100 * pt.score)}%`, pt.position[0] + 4, pt.position[1] + 4);\n }\n }\n if (localOptions.drawPolygons && result[i].keypoints && result[i].annotations) {\n for (const part of Object.values(result[i].annotations)) {\n for (const connected of part) curves(ctx, connected, localOptions);\n }\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect, point, colorDepth } from './primitives';\nimport { options } from './options';\nimport type { HandResult } from '../result';\nimport type { AnyCanvas, DrawOptions, Point } from '../exports';\n\n/** draw detected hands */\nexport async function hand(inCanvas: AnyCanvas, result: Array, drawOptions?: Partial) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`hand:${Math.trunc(100 * h.score)}%`, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]); // can use h.label\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`hand:${Math.trunc(100 * h.score)}%`, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]); // can use h.label\n }\n ctx.stroke();\n }\n if (localOptions.drawPoints) {\n if (h.keypoints && h.keypoints.length > 0) {\n for (const pt of h.keypoints) {\n ctx.fillStyle = colorDepth(pt[2], localOptions);\n point(ctx, pt[0], pt[1], 0, localOptions);\n }\n }\n }\n if (localOptions.drawLabels && h.annotations) {\n const addHandLabel = (part: Array, title: string) => {\n if (!part || part.length === 0 || !part[0]) return;\n const z = part[part.length - 1][2] || -256;\n ctx.fillStyle = colorDepth(z, localOptions);\n ctx.fillText(title, part[part.length - 1][0] + 4, part[part.length - 1][1] + 4);\n };\n ctx.font = localOptions.font;\n addHandLabel(h.annotations['index'], 'index');\n addHandLabel(h.annotations['middle'], 'middle');\n addHandLabel(h.annotations['ring'], 'ring');\n addHandLabel(h.annotations['pinky'], 'pinky');\n addHandLabel(h.annotations['thumb'], 'thumb');\n addHandLabel(h.annotations['palm'], 'palm');\n }\n if (localOptions.drawPolygons && h.annotations) {\n const addHandLine = (part: Array) => {\n if (!part || part.length === 0 || !part[0]) return;\n for (let i = 0; i < part.length; i++) {\n ctx.beginPath();\n const z = part[i][2] || 0;\n ctx.strokeStyle = colorDepth(i * z, localOptions);\n ctx.moveTo(part[i > 0 ? i - 1 : 0][0], part[i > 0 ? i - 1 : 0][1]);\n ctx.lineTo(part[i][0], part[i][1]);\n ctx.stroke();\n }\n };\n ctx.lineWidth = localOptions.lineWidth;\n addHandLine(h.annotations['index']);\n addHandLine(h.annotations['middle']);\n addHandLine(h.annotations['ring']);\n addHandLine(h.annotations['pinky']);\n addHandLine(h.annotations['thumb']);\n // addPart(h.annotations.palm);\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect } from './primitives';\nimport { options } from './options';\nimport type { ObjectResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected objects */\nexport async function object(inCanvas: AnyCanvas, result: Array, drawOptions?: Partial) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `${h.label} ${Math.round(100 * h.score)}%`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext } from './primitives';\nimport { options } from './options';\nimport type { GestureResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected gestures */\nexport async function gesture(inCanvas: AnyCanvas, result: Array, drawOptions?: Partial) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (localOptions.drawGestures) {\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.font = localOptions.font;\n ctx.fillStyle = localOptions.color;\n let i = 1;\n for (let j = 0; j < result.length; j++) {\n let where: unknown[] = []; // what&where is a record\n let what: unknown[] = []; // what&where is a record\n [where, what] = Object.entries(result[j]);\n if ((what.length > 1) && ((what[1] as string).length > 0)) {\n const who = where[1] as number > 0 ? `#${where[1]}` : '';\n const label = `${where[0]} ${who}: ${what[1]}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, 8, 2 + (i * localOptions.lineHeight));\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, 6, 0 + (i * localOptions.lineHeight));\n i += 1;\n }\n }\n }\n}\n", "import type { Tensor } from '../tfjs/types';\nimport type { FaceResult } from '../result';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { meshAnnotations } from './facemeshcoords';\n\nconst expandFact = 0.1;\nconst alpha = 0.5;\n\n// point inclusion in polygon based on https://wrf.ecse.rpi.edu/Research/Short_Notes/pnpoly.html\nfunction insidePoly(x: number, y: number, polygon: Array<{ x: number, y: number }>): boolean {\n let inside = false;\n let j = polygon.length - 1;\n for (let i = 0; i < polygon.length; j = i++) {\n if (((polygon[i].y > y) !== (polygon[j].y > y)) && (x < (polygon[j].x - polygon[i].x) * (y - polygon[i].y) / (polygon[j].y - polygon[i].y) + polygon[i].x)) inside = !inside;\n }\n return inside;\n}\n\nexport async function mask(face: FaceResult): Promise {\n if (!face.tensor) return face.tensor;\n if (!face.mesh || face.mesh.length < 100) return face.tensor;\n const width = face.tensor.shape[2] || 0;\n const height = face.tensor.shape[1] || 0;\n const buffer = await face.tensor.buffer();\n let silhouette: Array<{ x: number, y: number }> = [];\n for (const pt of meshAnnotations.silhouette) silhouette.push({ x: (face.mesh[pt][0] - face.box[0]) / face.box[2], y: (face.mesh[pt][1] - face.box[1]) / face.box[3] }); // add all silhouette points scaled to local box\n if (expandFact && expandFact > 0) silhouette = silhouette.map((pt) => ({ x: pt.x > 0.5 ? pt.x + expandFact : pt.x - expandFact, y: pt.y > 0.5 ? pt.y + expandFact : pt.y - expandFact })); // expand silhouette\n for (let x = 0; x < width; x++) {\n for (let y = 0; y < height; y++) {\n const inside = insidePoly(x / width, y / width, silhouette);\n if (!inside) {\n buffer.set(alpha * buffer.get(0, y, x, 0), 0, y, x, 0);\n buffer.set(alpha * buffer.get(0, y, x, 1), 0, y, x, 1);\n buffer.set(alpha * buffer.get(0, y, x, 2), 0, y, x, 2);\n }\n }\n }\n const output = buffer.toTensor();\n tf.dispose(buffer);\n return output;\n}\n", "import type { Point, FaceResult } from '../result';\n\ntype Vector = [number, number, number];\n\nconst calculateGaze = (face: FaceResult): { bearing: number, strength: number } => {\n const radians = (pt1: Point, pt2: Point) => Math.atan2(pt1[1] - pt2[1], pt1[0] - pt2[0]); // function to calculate angle between any two points\n if (!face.annotations['rightEyeIris'] || !face.annotations['leftEyeIris']) return { bearing: 0, strength: 0 };\n\n const offsetIris = [0, -0.1]; // iris center may not align with average of eye extremes\n const eyeRatio = 1; // factor to normalize changes x vs y\n\n const left = (face.mesh[33][2] || 0) > (face.mesh[263][2] || 0); // pick left or right eye depending which one is closer bazed on outsize point z axis\n const irisCenter = left ? face.mesh[473] : face.mesh[468];\n const eyeCenter = left // eye center is average of extreme points on x axis for both x and y, ignoring y extreme points as eyelids naturally open/close more when gazing up/down so relative point is less precise\n ? [(face.mesh[133][0] + face.mesh[33][0]) / 2, (face.mesh[133][1] + face.mesh[33][1]) / 2]\n : [(face.mesh[263][0] + face.mesh[362][0]) / 2, (face.mesh[263][1] + face.mesh[362][1]) / 2];\n const eyeSize = left // eye size is difference between extreme points for both x and y, used to normalize & squarify eye dimensions\n ? [face.mesh[133][0] - face.mesh[33][0], face.mesh[23][1] - face.mesh[27][1]]\n : [face.mesh[263][0] - face.mesh[362][0], face.mesh[253][1] - face.mesh[257][1]];\n const eyeDiff: Point = [ // x distance between extreme point and center point normalized with eye size\n (eyeCenter[0] - irisCenter[0]) / eyeSize[0] - offsetIris[0],\n eyeRatio * (irisCenter[1] - eyeCenter[1]) / eyeSize[1] - offsetIris[1],\n ];\n let strength = Math.sqrt((eyeDiff[0] * eyeDiff[0]) + (eyeDiff[1] * eyeDiff[1])); // vector length is a diagonal between two differences\n strength = Math.min(strength, face.boxRaw[2] / 2, face.boxRaw[3] / 2); // limit strength to half of box size to avoid clipping due to low precision\n const bearing = (radians([0, 0], eyeDiff) + (Math.PI / 2)) % Math.PI; // using eyeDiff instead eyeCenter/irisCenter combo due to manual adjustments and rotate clockwise 90degrees\n return { bearing, strength };\n};\n\nexport const calculateFaceAngle = (face: FaceResult, imageSize: [number, number]): {\n angle: { pitch: number, yaw: number, roll: number },\n matrix: [number, number, number, number, number, number, number, number, number],\n gaze: { bearing: number, strength: number },\n} => {\n // const degrees = (theta) => Math.abs(((theta * 180) / Math.PI) % 360);\n const normalize = (v: Vector): Vector => { // normalize vector\n const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);\n v[0] /= length;\n v[1] /= length;\n v[2] /= length;\n return v;\n };\n const subVectors = (a: Vector, b: Vector): Vector => { // vector subtraction (a - b)\n const x = a[0] - b[0];\n const y = a[1] - b[1];\n const z = a[2] - b[2];\n return [x, y, z];\n };\n const crossVectors = (a: Vector, b: Vector): Vector => { // vector cross product (a x b)\n const x = a[1] * b[2] - a[2] * b[1];\n const y = a[2] * b[0] - a[0] * b[2];\n const z = a[0] * b[1] - a[1] * b[0];\n return [x, y, z];\n };\n // 3x3 rotation matrix to Euler angles based on https://www.geometrictools.com/Documentation/EulerAngles.pdf\n const rotationMatrixToEulerAngle = (r: number[]): { pitch: number, yaw: number, roll: number } => {\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const [r00, _r01, _r02, r10, r11, r12, r20, r21, r22] = r;\n let thetaX: number;\n let thetaY: number;\n let thetaZ: number;\n if (r10 < 1) { // YZX calculation\n if (r10 > -1) {\n thetaZ = Math.asin(r10);\n thetaY = Math.atan2(-r20, r00);\n thetaX = Math.atan2(-r12, r11);\n } else {\n thetaZ = -Math.PI / 2;\n thetaY = -Math.atan2(r21, r22);\n thetaX = 0;\n }\n } else {\n thetaZ = Math.PI / 2;\n thetaY = Math.atan2(r21, r22);\n thetaX = 0;\n }\n if (isNaN(thetaX)) thetaX = 0;\n if (isNaN(thetaY)) thetaY = 0;\n if (isNaN(thetaZ)) thetaZ = 0;\n return { pitch: 2 * -thetaX, yaw: 2 * -thetaY, roll: 2 * -thetaZ };\n };\n\n /*\n const meshToEulerAngle = (mesh) => { // simple Euler angle calculation based existing 3D mesh\n const radians = (a1, a2, b1, b2) => Math.atan2(b2 - a2, b1 - a1);\n return { // values are in radians in range of -pi/2 to pi/2 which is -90 to +90 degrees, value of 0 means center\n pitch: radians(mesh[10][1], mesh[10][2], mesh[152][1], mesh[152][2]), // looking at y,z of top and bottom points of the face // pitch is face move up/down\n yaw: radians(mesh[33][0], mesh[33][2], mesh[263][0], mesh[263][2]), // looking at x,z of outside corners of leftEye and rightEye // yaw is face turn left/right\n roll: radians(mesh[33][0], mesh[33][1], mesh[263][0], mesh[263][1]), // looking at x,y of outside corners of leftEye and rightEye // roll is face lean left/right\n };\n };\n */\n\n // initialize gaze and mesh\n const mesh = face.meshRaw;\n if (!mesh || mesh.length < 300) return { angle: { pitch: 0, yaw: 0, roll: 0 }, matrix: [1, 0, 0, 0, 1, 0, 0, 0, 1], gaze: { bearing: 0, strength: 0 } };\n\n const size = Math.max(face.boxRaw[2] * imageSize[0], face.boxRaw[3] * imageSize[1]) / 1.5;\n // top, bottom, left, right\n const pts: Point[] = [mesh[10], mesh[152], mesh[234], mesh[454]].map((pt) => [pt[0] * imageSize[0] / size, pt[1] * imageSize[1] / size, pt[2]] as Point); // make the xyz coordinates proportional, independent of the image/box size\n\n const y_axis = normalize(subVectors(pts[1] as Vector, pts[0] as Vector));\n let x_axis = normalize(subVectors(pts[3] as Vector, pts[2] as Vector));\n const z_axis = normalize(crossVectors(x_axis, y_axis));\n // adjust x_axis to make sure that all axes are perpendicular to each other\n x_axis = crossVectors(y_axis, z_axis);\n\n // Rotation Matrix from Axis Vectors - http://renderdan.blogspot.com/2006/05/rotation-matrix-from-axis-vectors.html\n // 3x3 rotation matrix is flatten to array in row-major order. Note that the rotation represented by this matrix is inverted.\n const matrix: [number, number, number, number, number, number, number, number, number] = [\n x_axis[0], x_axis[1], x_axis[2],\n y_axis[0], y_axis[1], y_axis[2],\n z_axis[0], z_axis[1], z_axis[2],\n ];\n const angle = rotationMatrixToEulerAngle(matrix);\n // const angle = meshToEulerAngle(mesh);\n\n // we have iris keypoints so we can calculate gaze direction\n const gaze = mesh.length === 478 ? calculateGaze(face) : { bearing: 0, strength: 0 };\n\n return { angle, matrix, gaze };\n};\n", "/**\n * Face algorithm implementation\n * Uses FaceMesh, Emotion and FaceRes models to create a unified pipeline\n */\n\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as facemesh from './facemesh';\nimport * as emotion from '../gear/emotion';\nimport * as faceres from './faceres';\nimport * as mask from './mask';\nimport * as antispoof from './antispoof';\nimport * as liveness from './liveness';\nimport * as gear from '../gear/gear';\nimport * as ssrnetAge from '../gear/ssrnet-age';\nimport * as ssrnetGender from '../gear/ssrnet-gender';\nimport * as mobilefacenet from './mobilefacenet';\nimport type { FaceResult, Emotion, Gender, Race } from '../result';\nimport type { Tensor } from '../tfjs/types';\nimport type { Human } from '../human';\nimport { calculateFaceAngle } from './angles';\n\ntype DescRes = { age: number, gender: Gender, genderScore: number, descriptor: number[], race?: { score: number, race: Race }[] };\n\nexport const detectFace = async (instance: Human /* instance of human */, input: Tensor): Promise => {\n // run facemesh, includes blazeface and iris\n // eslint-disable-next-line no-async-promise-executor\n let timeStamp: number = now();\n let ageRes: { age: number } | Promise<{ age: number }> | null;\n let gearRes: gear.GearType | Promise | null;\n let genderRes: { gender: string, genderScore: number } | Promise<{ gender: string, genderScore: number }> | null;\n let emotionRes: { score: number, emotion: Emotion }[] | Promise<{ score: number, emotion: Emotion }[]>;\n let mobilefacenetRes: number[] | Promise | null;\n let antispoofRes: number | Promise | null;\n let livenessRes: number | Promise | null;\n let descRes: DescRes | Promise | null;\n\n const faceRes: Array = [];\n instance.state = 'run:face';\n\n const faces = await facemesh.predict(input, instance.config);\n instance.performance.face = env.perfadd ? (instance.performance.face || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n if (!input.shape || input.shape.length !== 4) return [];\n if (!faces) return [];\n // for (const face of faces) {\n for (let i = 0; i < faces.length; i++) {\n instance.analyze('Get Face');\n\n // is something went wrong, skip the face\n // @ts-ignore possibly undefied\n if (!faces[i].tensor || faces[i].tensor['isDisposedInternal']) {\n log('Face object is disposed:', faces[i].tensor);\n continue;\n }\n\n // optional face mask\n if (instance.config.face.detector?.mask) {\n const masked = await mask.mask(faces[i]);\n tf.dispose(faces[i].tensor);\n faces[i].tensor = masked as Tensor;\n }\n\n // calculate face angles\n const rotation = faces[i].mesh && (faces[i].mesh.length > 200) ? calculateFaceAngle(faces[i], [input.shape[2], input.shape[1]]) : null;\n\n // run emotion, inherits face from blazeface\n instance.analyze('Start Emotion:');\n if (instance.config.async) {\n emotionRes = instance.config.face.emotion?.enabled ? emotion.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : [];\n } else {\n instance.state = 'run:emotion';\n timeStamp = now();\n emotionRes = instance.config.face.emotion?.enabled ? await emotion.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : [];\n instance.performance.emotion = env.perfadd ? (instance.performance.emotion || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Emotion:');\n\n // run antispoof, inherits face from blazeface\n instance.analyze('Start AntiSpoof:');\n if (instance.config.async) {\n antispoofRes = instance.config.face.antispoof?.enabled ? antispoof.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n } else {\n instance.state = 'run:antispoof';\n timeStamp = now();\n antispoofRes = instance.config.face.antispoof?.enabled ? await antispoof.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n instance.performance.antispoof = env.perfadd ? (instance.performance.antispoof || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End AntiSpoof:');\n\n // run liveness, inherits face from blazeface\n instance.analyze('Start Liveness:');\n if (instance.config.async) {\n livenessRes = instance.config.face.liveness?.enabled ? liveness.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n } else {\n instance.state = 'run:liveness';\n timeStamp = now();\n livenessRes = instance.config.face.liveness?.enabled ? await liveness.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n instance.performance.liveness = env.perfadd ? (instance.performance.antispoof || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Liveness:');\n\n // run gear, inherits face from blazeface\n instance.analyze('Start GEAR:');\n if (instance.config.async) {\n gearRes = instance.config.face['gear']?.enabled ? gear.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:gear';\n timeStamp = now();\n gearRes = instance.config.face['gear']?.enabled ? await gear.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.gear = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End GEAR:');\n\n // run gear, inherits face from blazeface\n instance.analyze('Start SSRNet:');\n if (instance.config.async) {\n ageRes = instance.config.face['ssrnet']?.enabled ? ssrnetAge.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n genderRes = instance.config.face['ssrnet']?.enabled ? ssrnetGender.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:ssrnet';\n timeStamp = now();\n ageRes = instance.config.face['ssrnet']?.enabled ? await ssrnetAge.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n genderRes = instance.config.face['ssrnet']?.enabled ? await ssrnetGender.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.ssrnet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End SSRNet:');\n\n // run gear, inherits face from blazeface\n instance.analyze('Start MobileFaceNet:');\n if (instance.config.async) {\n mobilefacenetRes = instance.config.face['mobilefacenet']?.enabled ? mobilefacenet.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:mobilefacenet';\n timeStamp = now();\n mobilefacenetRes = instance.config.face['mobilefacenet']?.enabled ? await mobilefacenet.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.mobilefacenet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End MobileFaceNet:');\n\n // run emotion, inherits face from blazeface\n instance.analyze('Start Description:');\n if (instance.config.async) {\n descRes = instance.config.face.description?.enabled ? faceres.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:description';\n timeStamp = now();\n descRes = instance.config.face.description?.enabled ? await faceres.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.description = env.perfadd ? (instance.performance.description || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Description:');\n\n // if async wait for results\n if (instance.config.async) {\n [ageRes, genderRes, emotionRes, mobilefacenetRes, descRes, gearRes, antispoofRes, livenessRes] = await Promise.all([ageRes, genderRes, emotionRes, mobilefacenetRes, descRes, gearRes, antispoofRes, livenessRes]);\n }\n instance.analyze('Finish Face:');\n\n if (instance.config.face['ssrnet']?.enabled && ageRes && genderRes) { // override age/gender if ssrnet model is used\n descRes = {\n ...(descRes as DescRes),\n age: (ageRes as { age: number}).age,\n gender: (genderRes as { gender: Gender, genderScore: number }).gender,\n genderScore: (genderRes as { gender: Gender, genderScore: number }).genderScore,\n };\n }\n if (instance.config.face['gear']?.enabled && gearRes) { // override age/gender/race if gear model is used\n descRes = {\n ...(descRes as DescRes),\n age: (gearRes as gear.GearType).age,\n gender: (gearRes as gear.GearType).gender,\n genderScore: (gearRes as gear.GearType).genderScore,\n race: (gearRes as gear.GearType).race,\n };\n }\n if (instance.config.face['mobilefacenet']?.enabled && mobilefacenetRes) { // override descriptor if embedding model is used\n (descRes as DescRes).descriptor = mobilefacenetRes as number[];\n }\n\n // calculate iris distance\n // iris: array[ center, left, top, right, bottom]\n if (!instance.config.face.iris?.enabled) {\n // if (faces[i]?.annotations?.leftEyeIris) delete faces[i].annotations.leftEyeIris;\n // if (faces[i]?.annotations?.rightEyeIris) delete faces[i].annotations.rightEyeIris;\n }\n const irisSize = (faces[i].annotations && faces[i].annotations.leftEyeIris && faces[i].annotations.leftEyeIris[0] && faces[i].annotations.rightEyeIris && faces[i].annotations.rightEyeIris[0]\n && (faces[i].annotations.leftEyeIris.length > 0) && (faces[i].annotations.rightEyeIris.length > 0)\n && (faces[i].annotations.leftEyeIris[0] !== null) && (faces[i].annotations.rightEyeIris[0] !== null))\n ? Math.max(Math.abs(faces[i].annotations.leftEyeIris[3][0] - faces[i].annotations.leftEyeIris[1][0]), Math.abs(faces[i].annotations.rightEyeIris[4][1] - faces[i].annotations.rightEyeIris[2][1])) / input.shape[2]\n : 0; // note: average human iris size is 11.7mm\n\n // optionally return tensor\n const tensor = instance.config.face.detector?.return ? tf.squeeze(faces[i].tensor) : null;\n // dispose original face tensor\n tf.dispose(faces[i].tensor);\n // delete temp face image\n if (faces[i].tensor) delete faces[i].tensor;\n // combine results\n const res: FaceResult = {\n ...faces[i],\n id: i,\n };\n if ((descRes as DescRes)?.age) res.age = (descRes as DescRes).age as number;\n if ((descRes as DescRes)?.gender) res.gender = (descRes as DescRes).gender as Gender;\n if ((descRes as DescRes)?.genderScore) res.genderScore = (descRes as DescRes)?.genderScore as number;\n if ((descRes as DescRes)?.descriptor) res.embedding = (descRes as DescRes)?.descriptor as Array;\n if ((descRes as DescRes)?.race) res.race = (descRes as DescRes)?.race as { score: number, race: Race }[];\n if (emotionRes) res.emotion = emotionRes as Array<{ score: number, emotion: Emotion }>;\n if (antispoofRes) res.real = antispoofRes as number;\n if (livenessRes) res.live = livenessRes as number;\n if (irisSize && irisSize !== 0) res.iris = Math.trunc(500 / irisSize / 11.7) / 100;\n if (rotation) res.rotation = rotation;\n if (tensor) res.tensor = tensor;\n faceRes.push(res);\n instance.analyze('End Face');\n }\n instance.analyze('End FaceMesh:');\n if (instance.config.async) {\n if (instance.performance.face) delete instance.performance.face;\n if (instance.performance.age) delete instance.performance.age;\n if (instance.performance.gender) delete instance.performance.gender;\n if (instance.performance.emotion) delete instance.performance.emotion;\n }\n return faceRes;\n};\n", "/**\n * Gesture detection algorithm\n */\n\nimport type { GestureResult, BodyResult, FaceResult, HandResult, Point } from '../result';\nimport * as fingerPose from '../hand/fingerpose';\n\n/** face gesture type */\nexport type FaceGesture =\n `facing ${'left' | 'center' | 'right'}`\n | `blink ${'left' | 'right'} eye`\n | `mouth ${number}% open`\n | `head ${'up' | 'down'}`;\n\n/** iris gesture type */\nexport type IrisGesture =\n 'facing center'\n | `looking ${'left' | 'right' | 'up' | 'down'}`\n | 'looking center';\n\n/** body gesture type */\nexport type BodyGesture =\n `leaning ${'left' | 'right'}`\n | `raise ${'left' | 'right'} hand`\n | 'i give up';\n\n/** hand gesture type */\nexport type HandGesture =\n `${'thumb' | 'index' | 'middle' | 'ring' | 'pinky'} forward`\n | `${'thumb' | 'index' | 'middle' | 'ring' | 'pinky'} up`\n | 'victory'\n | 'thumbs up';\n\nexport const body = (res: BodyResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: Array<{ body: number, gesture: BodyGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n // raising hands\n const leftWrist = res[i].keypoints.find((a) => (a.part === 'leftWrist'));\n const rightWrist = res[i].keypoints.find((a) => (a.part === 'rightWrist'));\n const nose = res[i].keypoints.find((a) => (a.part === 'nose'));\n if (nose && leftWrist && rightWrist && (leftWrist.position[1] < nose.position[1]) && (rightWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'i give up' });\n else if (nose && leftWrist && (leftWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'raise left hand' });\n else if (nose && rightWrist && (rightWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'raise right hand' });\n\n // leaning\n const leftShoulder = res[i].keypoints.find((a) => (a.part === 'leftShoulder'));\n const rightShoulder = res[i].keypoints.find((a) => (a.part === 'rightShoulder'));\n if (leftShoulder && rightShoulder && Math.abs(leftShoulder.positionRaw[1] - rightShoulder.positionRaw[1]) > 0.1) {\n gestures.push({ body: i, gesture: `leaning ${(leftShoulder.position[1] > rightShoulder.position[1]) ? 'left' : 'right'}` });\n }\n }\n return gestures;\n};\n\nexport const face = (res: FaceResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: Array<{ face: number, gesture: FaceGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n if (res[i].mesh && res[i].mesh.length > 450) {\n const zDiff = (res[i].mesh[33][2] || 0) - (res[i].mesh[263][2] || 0);\n const xDiff = res[i].mesh[33][0] - res[i].mesh[263][0];\n if (Math.abs(zDiff / xDiff) <= 0.15) gestures.push({ face: i, gesture: 'facing center' });\n else gestures.push({ face: i, gesture: `facing ${zDiff < 0 ? 'left' : 'right'}` });\n const openLeft = Math.abs(res[i].mesh[374][1] - res[i].mesh[386][1]) / Math.abs(res[i].mesh[443][1] - res[i].mesh[450][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openLeft < 0.2) gestures.push({ face: i, gesture: 'blink left eye' });\n const openRight = Math.abs(res[i].mesh[145][1] - res[i].mesh[159][1]) / Math.abs(res[i].mesh[223][1] - res[i].mesh[230][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openRight < 0.2) gestures.push({ face: i, gesture: 'blink right eye' });\n const mouthOpen = Math.min(100, 500 * Math.abs(res[i].mesh[13][1] - res[i].mesh[14][1]) / Math.abs(res[i].mesh[10][1] - res[i].mesh[152][1]));\n if (mouthOpen > 10) gestures.push({ face: i, gesture: `mouth ${Math.trunc(mouthOpen)}% open` });\n const chinDepth = res[i].mesh[152][2] || 0;\n if (Math.abs(chinDepth) > 10) gestures.push({ face: i, gesture: `head ${chinDepth < 0 ? 'up' : 'down'}` });\n }\n }\n return gestures;\n};\n\nexport const iris = (res: FaceResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: Array<{ iris: number, gesture: IrisGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n if (!res[i].annotations || !res[i].annotations.leftEyeIris || !res[i].annotations.leftEyeIris[0] || !res[i].annotations.rightEyeIris || !res[i].annotations.rightEyeIris[0]) continue;\n const sizeXLeft = res[i].annotations.leftEyeIris[3][0] - res[i].annotations.leftEyeIris[1][0];\n const sizeYLeft = res[i].annotations.leftEyeIris[4][1] - res[i].annotations.leftEyeIris[2][1];\n const areaLeft = Math.abs(sizeXLeft * sizeYLeft);\n\n const sizeXRight = res[i].annotations.rightEyeIris[3][0] - res[i].annotations.rightEyeIris[1][0];\n const sizeYRight = res[i].annotations.rightEyeIris[4][1] - res[i].annotations.rightEyeIris[2][1];\n const areaRight = Math.abs(sizeXRight * sizeYRight);\n\n let center = false;\n const difference = Math.abs(areaLeft - areaRight) / Math.max(areaLeft, areaRight);\n if (difference < 0.25) {\n center = true;\n gestures.push({ iris: i, gesture: 'facing center' });\n }\n\n const leftIrisCenterX = Math.abs(res[i].mesh[263][0] - res[i].annotations.leftEyeIris[0][0]) / res[i].box[2];\n const rightIrisCenterX = Math.abs(res[i].mesh[33][0] - res[i].annotations.rightEyeIris[0][0]) / res[i].box[2];\n if (leftIrisCenterX > 0.06 || rightIrisCenterX > 0.06) center = false;\n if (leftIrisCenterX > rightIrisCenterX) { // check eye with bigger offset\n if (leftIrisCenterX > 0.05) gestures.push({ iris: i, gesture: 'looking right' });\n } else {\n if (rightIrisCenterX > 0.05) gestures.push({ iris: i, gesture: 'looking left' });\n }\n\n const rightIrisCenterY = Math.abs(res[i].mesh[145][1] - res[i].annotations.rightEyeIris[0][1]) / res[i].box[3];\n const leftIrisCenterY = Math.abs(res[i].mesh[374][1] - res[i].annotations.leftEyeIris[0][1]) / res[i].box[3];\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01 || leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) center = false;\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01) gestures.push({ iris: i, gesture: 'looking down' });\n if (leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) gestures.push({ iris: i, gesture: 'looking up' });\n\n // still center;\n if (center) gestures.push({ iris: i, gesture: 'looking center' });\n }\n return gestures;\n};\n\nexport const hand = (res: HandResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: Array<{ hand: number, gesture: HandGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n const fingers: Array<{ name: string, position: Point }> = [];\n if (res[i]['annotations']) {\n for (const [finger, pos] of Object.entries(res[i]['annotations'])) {\n if (finger !== 'palmBase' && Array.isArray(pos) && pos[0]) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger\n }\n }\n if (fingers && fingers.length > 0) {\n const closest = fingers.reduce((best, a) => ((best.position[2] || 0) < (a.position[2] || 0) ? best : a));\n gestures.push({ hand: i, gesture: `${closest.name} forward` as HandGesture });\n const highest = fingers.reduce((best, a) => (best.position[1] < a.position[1] ? best : a));\n gestures.push({ hand: i, gesture: `${highest.name} up` as HandGesture });\n }\n if (res[i]['keypoints']) {\n const poses = fingerPose.match(res[i]['keypoints']);\n for (const pose of poses) gestures.push({ hand: i, gesture: pose.name as HandGesture });\n }\n }\n return gestures;\n};\n", "/**\n * Results interpolation for smoothening of video detection results inbetween detected frames\n */\n\nimport type { Result, FaceResult, BodyResult, HandResult, ObjectResult, GestureResult, PersonResult, Box, Point, BodyLandmark, BodyAnnotation } from '../result';\nimport type { Config } from '../config';\n\nimport * as moveNetCoords from '../body/movenetcoords';\nimport * as blazePoseCoords from '../body/blazeposecoords';\nimport * as efficientPoseCoords from '../body/efficientposecoords';\nimport { now } from './util';\nimport { env } from './env';\n\nconst bufferedResult: Result = { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0, error: null };\nlet interpolateTime = 0;\n\nexport function calc(newResult: Result, config: Config): Result {\n const t0 = now();\n if (!newResult) return { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0, error: null };\n // each record is only updated using deep clone when number of detected record changes, otherwise it will converge by itself\n // otherwise bufferedResult is a shallow clone of result plus updated local calculated values\n // thus mixing by-reference and by-value assignments to minimize memory operations\n\n const elapsed = Date.now() - newResult.timestamp;\n // curve fitted: buffer = 8 - ln(delay)\n // interpolation formula: current = ((buffer - 1) * previous + live) / buffer\n // - at 50ms delay buffer = ~4.1 => 28% towards live data\n // - at 250ms delay buffer = ~2.5 => 40% towards live data\n // - at 500ms delay buffer = ~1.8 => 55% towards live data\n // - at 750ms delay buffer = ~1.4 => 71% towards live data\n // - at 1sec delay buffer = 1 which means live data is used\n const bufferedFactor = elapsed < 1000 ? 8 - Math.log(elapsed + 1) : 1;\n\n if (newResult.canvas) bufferedResult.canvas = newResult.canvas;\n if (newResult.error) bufferedResult.error = newResult.error;\n\n // interpolate body results\n if (!bufferedResult.body || (newResult.body.length !== bufferedResult.body.length)) {\n bufferedResult.body = JSON.parse(JSON.stringify(newResult.body as BodyResult[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.body.length; i++) {\n const box = newResult.body[i].box // update box\n .map((newBoxCoord, j) => ((bufferedFactor - 1) * bufferedResult.body[i].box[j] + newBoxCoord) / bufferedFactor) as Box;\n const boxRaw = newResult.body[i].boxRaw // update boxRaw\n .map((newBoxCoord, j) => ((bufferedFactor - 1) * bufferedResult.body[i].boxRaw[j] + newBoxCoord) / bufferedFactor) as Box;\n const keypoints = (newResult.body[i].keypoints // update keypoints\n .map((newKpt, j) => ({\n score: newKpt.score,\n part: newKpt.part as BodyLandmark,\n position: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[0] || 0) + (newKpt.position[0] || 0)) / bufferedFactor : newKpt.position[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[1] || 0) + (newKpt.position[1] || 0)) / bufferedFactor : newKpt.position[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[2] || 0) + (newKpt.position[2] || 0)) / bufferedFactor : newKpt.position[2],\n ],\n positionRaw: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[0] || 0) + (newKpt.positionRaw[0] || 0)) / bufferedFactor : newKpt.positionRaw[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[1] || 0) + (newKpt.positionRaw[1] || 0)) / bufferedFactor : newKpt.positionRaw[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[2] || 0) + (newKpt.positionRaw[2] || 0)) / bufferedFactor : newKpt.positionRaw[2],\n ],\n distance: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[0] || 0) + (newKpt.distance?.[0] || 0)) / bufferedFactor : newKpt.distance?.[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[1] || 0) + (newKpt.distance?.[1] || 0)) / bufferedFactor : newKpt.distance?.[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[2] || 0) + (newKpt.distance?.[2] || 0)) / bufferedFactor : newKpt.distance?.[2],\n ],\n }))) as Array<{ score: number, part: BodyLandmark, position: [number, number, number?], positionRaw: [number, number, number?] }>;\n\n const annotations: Record = {} as Record; // recreate annotations\n let coords = { connected: {} };\n if (config.body?.modelPath?.includes('efficientpose')) coords = efficientPoseCoords;\n else if (config.body?.modelPath?.includes('blazepose')) coords = blazePoseCoords;\n else if (config.body?.modelPath?.includes('movenet')) coords = moveNetCoords;\n for (const [name, indexes] of Object.entries(coords.connected as Record)) {\n const pt: Array = [];\n for (let j = 0; j < indexes.length - 1; j++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[j]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[j + 1]);\n // if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n if (pt0 && pt1) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n bufferedResult.body[i] = { ...newResult.body[i], box, boxRaw, keypoints, annotations: annotations as BodyResult['annotations'] }; // shallow clone plus updated values\n }\n }\n\n // interpolate hand results\n if (!bufferedResult.hand || (newResult.hand.length !== bufferedResult.hand.length)) {\n bufferedResult.hand = JSON.parse(JSON.stringify(newResult.hand as HandResult[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.hand.length; i++) {\n const box = (newResult.hand[i].box// update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.hand[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n if (bufferedResult.hand[i].keypoints.length !== newResult.hand[i].keypoints.length) bufferedResult.hand[i].keypoints = newResult.hand[i].keypoints; // reset keypoints as previous frame did not have them\n const keypoints = newResult.hand[i].keypoints && newResult.hand[i].keypoints.length > 0 ? newResult.hand[i].keypoints // update landmarks\n .map((landmark, j) => landmark\n .map((coord, k) => (((bufferedFactor - 1) * (bufferedResult.hand[i].keypoints[j][k] || 1) + (coord || 0)) / bufferedFactor)) as Point)\n : [];\n let annotations = {};\n if (Object.keys(bufferedResult.hand[i].annotations).length !== Object.keys(newResult.hand[i].annotations).length) {\n bufferedResult.hand[i].annotations = newResult.hand[i].annotations; // reset annotations as previous frame did not have them\n annotations = bufferedResult.hand[i].annotations;\n } else if (newResult.hand[i].annotations) {\n for (const key of Object.keys(newResult.hand[i].annotations)) { // update annotations\n annotations[key] = newResult.hand[i].annotations[key] && newResult.hand[i].annotations[key][0]\n ? newResult.hand[i].annotations[key]\n .map((val, j: number) => val\n .map((coord: number, k: number) => ((bufferedFactor - 1) * bufferedResult.hand[i].annotations[key][j][k] + coord) / bufferedFactor))\n : null;\n }\n }\n bufferedResult.hand[i] = { ...newResult.hand[i], box, boxRaw, keypoints, annotations: annotations as HandResult['annotations'] }; // shallow clone plus updated values\n }\n }\n\n // interpolate face results\n if (!bufferedResult.face || (newResult.face.length !== bufferedResult.face.length)) {\n bufferedResult.face = JSON.parse(JSON.stringify(newResult.face as FaceResult[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.face.length; i++) {\n const box = (newResult.face[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.face[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n if (newResult.face[i].rotation) {\n const rotation: {\n matrix: [number, number, number, number, number, number, number, number, number],\n angle: { roll: number, yaw: number, pitch: number },\n gaze: { bearing: number, strength: number }\n } = { matrix: [0, 0, 0, 0, 0, 0, 0, 0, 0], angle: { roll: 0, yaw: 0, pitch: 0 }, gaze: { bearing: 0, strength: 0 } };\n rotation.matrix = newResult.face[i].rotation?.matrix as [number, number, number, number, number, number, number, number, number];\n rotation.angle = {\n roll: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.roll || 0) + (newResult.face[i].rotation?.angle?.roll || 0)) / bufferedFactor,\n yaw: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.yaw || 0) + (newResult.face[i].rotation?.angle?.yaw || 0)) / bufferedFactor,\n pitch: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.pitch || 0) + (newResult.face[i].rotation?.angle?.pitch || 0)) / bufferedFactor,\n };\n rotation.gaze = {\n // not fully correct due projection on circle, also causes wrap-around draw on jump from negative to positive\n bearing: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze?.bearing || 0) + (newResult.face[i].rotation?.gaze?.bearing || 0)) / bufferedFactor,\n strength: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze?.strength || 0) + (newResult.face[i].rotation?.gaze?.strength || 0)) / bufferedFactor,\n };\n bufferedResult.face[i] = { ...newResult.face[i], rotation, box, boxRaw }; // shallow clone plus updated values\n }\n bufferedResult.face[i] = { ...newResult.face[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate object detection results\n if (!bufferedResult.object || (newResult.object.length !== bufferedResult.object.length)) {\n bufferedResult.object = JSON.parse(JSON.stringify(newResult.object as ObjectResult[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.object.length; i++) {\n const box = (newResult.object[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.object[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n bufferedResult.object[i] = { ...newResult.object[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate person results\n if (newResult.persons) {\n const newPersons = newResult.persons; // trigger getter function\n if (!bufferedResult.persons || (newPersons.length !== bufferedResult.persons.length)) {\n bufferedResult.persons = JSON.parse(JSON.stringify(newPersons as PersonResult[]));\n } else {\n for (let i = 0; i < newPersons.length; i++) { // update person box, we don't update the rest as it's updated as reference anyhow\n bufferedResult.persons[i].box = (newPersons[i].box\n .map((box, j) => ((bufferedFactor - 1) * bufferedResult.persons[i].box[j] + box) / bufferedFactor)) as Box;\n }\n }\n }\n\n // just copy latest gestures without interpolation\n if (newResult.gesture) bufferedResult.gesture = newResult.gesture as GestureResult[];\n\n // append interpolation performance data\n const t1 = now();\n interpolateTime = env.perfadd ? interpolateTime + Math.round(t1 - t0) : Math.round(t1 - t0);\n if (newResult.performance) bufferedResult.performance = { ...newResult.performance, interpolate: interpolateTime };\n\n return bufferedResult;\n}\n", "/** Face descriptor type as number array */\nexport type Descriptor = Array\nexport type MatchOptions = { order?: number, threshold?: number, multiplier?: number, min?: number, max?: number } | undefined;\n\n/** Calculates distance between two descriptors\n * @param options - calculation options\n * - order - algorithm to use\n * Euclidean distance if `order` is 2 (default), Minkowski distance algorithm of nth order if `order` is higher than 2\n * - multiplier - by how much to enhance difference analysis in range of 1..100\n * default is 20 which normalizes results to similarity above 0.5 can be considered a match\n */\nexport function distance(descriptor1: Descriptor, descriptor2: Descriptor, options: MatchOptions = { order: 2, multiplier: 25 }) {\n // general minkowski distance, euclidean distance is limited case where order is 2\n let sum = 0;\n for (let i = 0; i < descriptor1.length; i++) {\n const diff = (!options.order || options.order === 2) ? (descriptor1[i] - descriptor2[i]) : (Math.abs(descriptor1[i] - descriptor2[i]));\n sum += (!options.order || options.order === 2) ? (diff * diff) : (diff ** options.order);\n }\n return (options.multiplier || 20) * sum;\n}\n\n// invert distance to similarity, normalize to given range and clamp\nconst normalizeDistance = (dist, order, min, max) => {\n if (dist === 0) return 1; // short circuit for identical inputs\n const root = order === 2 ? Math.sqrt(dist) : dist ** (1 / order); // take root of distance\n const norm = (1 - (root / 100) - min) / (max - min); // normalize to range\n const clamp = Math.max(Math.min(norm, 1), 0); // clamp to 0..1\n return clamp;\n};\n\n/** Calculates normalized similarity between two face descriptors based on their `distance`\n * @param options - calculation options\n * - order - algorithm to use\n * Euclidean distance if `order` is 2 (default), Minkowski distance algorithm of nth order if `order` is higher than 2\n * - multiplier - by how much to enhance difference analysis in range of 1..100\n * default is 20 which normalizes results to similarity above 0.5 can be considered a match\n * - min - normalize similarity result to a given range\n * - max - normalzie similarity resutl to a given range\n * default is 0.2...0.8\n * Returns similarity between two face descriptors normalized to 0..1 range where 0 is no similarity and 1 is perfect similarity\n */\nexport function similarity(descriptor1: Descriptor, descriptor2: Descriptor, options: MatchOptions = { order: 2, multiplier: 25, min: 0.2, max: 0.8 }) {\n const dist = distance(descriptor1, descriptor2, options);\n return normalizeDistance(dist, options.order || 2, options.min || 0, options.max || 1);\n}\n\n/** Matches given descriptor to a closest entry in array of descriptors\n * @param descriptor - face descriptor\n * @param descriptors - array of face descriptors to commpare given descriptor to\n * @param options - see `similarity` method for options description\n * Returns\n * - `index` index array index where best match was found or -1 if no matches\n * - `distance` calculated `distance` of given descriptor to the best match\n * - `similarity` calculated normalized `similarity` of given descriptor to the best match\n*/\nexport function match(descriptor: Descriptor, descriptors: Array, options: MatchOptions = { order: 2, multiplier: 25, threshold: 0, min: 0.2, max: 0.8 }) {\n if (!Array.isArray(descriptor) || !Array.isArray(descriptors) || descriptor.length < 64 || descriptors.length === 0 || descriptor.length !== descriptors[0].length) { // validate input\n return { index: -1, distance: Number.POSITIVE_INFINITY, similarity: 0 };\n }\n let lowestDistance = Number.MAX_SAFE_INTEGER;\n let index = -1;\n for (let i = 0; i < descriptors.length; i++) {\n const res = distance(descriptor, descriptors[i], options);\n if (res < lowestDistance) {\n lowestDistance = res;\n index = i;\n }\n if (lowestDistance < (options.threshold || 0)) break;\n }\n const normalizedSimilarity = normalizeDistance(lowestDistance, options.order || 2, options.min || 0, options.max || 1);\n return { index, distance: lowestDistance, similarity: normalizedSimilarity };\n}\n", "/**\n * Analyze detection Results and sort&combine them into per-person view\n */\n\nimport type { FaceResult, BodyResult, HandResult, GestureResult, PersonResult, Box } from '../result';\n\nexport function join(faces: Array, bodies: Array, hands: Array, gestures: Array, shape: Array | undefined): Array {\n let id = 0;\n const persons: Array = [];\n for (const face of faces) { // person is defined primarily by face and then we append other objects as found\n const person: PersonResult = { id: id++, face, body: null, hands: { left: null, right: null }, gestures: [], box: [0, 0, 0, 0] };\n for (const body of bodies) {\n if (face.box[0] > body.box[0] // x within body\n && face.box[0] < body.box[0] + body.box[2]\n && face.box[1] + face.box[3] > body.box[1] // y within body\n && face.box[1] + face.box[3] < body.box[1] + body.box[3]) {\n person.body = body;\n }\n }\n if (person.body) { // only try to join hands if body is found\n for (const hand of hands) {\n if (hand.box[0] + hand.box[2] > person.body.box[0] // x within body for left hand\n && hand.box[0] + hand.box[2] < person.body.box[0] + person.body.box[2]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for left hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.left = hand;\n }\n if (hand.box[0] < person.body.box[0] + person.body.box[2] // x within body for right hand\n && hand.box[0] > person.body.box[0]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for right hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.right = hand;\n }\n }\n }\n for (const gesture of gestures) { // append all gestures according to ids\n if (gesture['face'] !== undefined && gesture['face'] === face.id) person.gestures?.push(gesture);\n else if (gesture['iris'] !== undefined && gesture['iris'] === face.id) person.gestures?.push(gesture);\n else if (gesture['body'] !== undefined && gesture['body'] === person.body?.id) person.gestures?.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands?.left?.id) person.gestures?.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands?.right?.id) person.gestures?.push(gesture);\n }\n\n // create new overarching box from all boxes belonging to person\n const x: number[] = [];\n const y: number[] = [];\n const extractXY = (box: Box | undefined) => { // extract all [x, y] coordinates from boxes [x, y, width, height]\n if (box && box.length === 4) {\n x.push(box[0], box[0] + box[2]);\n y.push(box[1], box[1] + box[3]);\n }\n };\n extractXY(person.face?.box);\n extractXY(person.body?.box);\n extractXY(person.hands?.left?.box);\n extractXY(person.hands?.right?.box);\n const minX = Math.min(...x);\n const minY = Math.min(...y);\n person.box = [minX, minY, Math.max(...x) - minX, Math.max(...y) - minY]; // create new overarching box\n\n // shape is known so we calculate boxRaw as well\n if (shape && shape[1] && shape[2]) person.boxRaw = [person.box[0] / shape[2], person.box[1] / shape[1], person.box[2] / shape[2], person.box[3] / shape[1]];\n\n persons.push(person);\n }\n return persons;\n}\n", "/**\n * Embedded sample images used during warmup in dataURL format\n */\n\n// data:image/jpeg;base64,\nexport const face = `\n/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA\nAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu\nbmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob\nIxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo\nKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E\nAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB\nAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET\nIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla\nY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG\nx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML\nXp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF\nPUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/\nAJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z\n5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9\nzZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO\ntHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6\n8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W\nwA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk\nEtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6\nGhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT\nA7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep\nrBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb\nLCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ\nih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K\nKAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l\npBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x\nUqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4\nHaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr\nxL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS\nNO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD\n1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX\n+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3\nGBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K\nq4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0\nnhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm\nuic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH\nArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV\nwF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8\n87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P\nFQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD\nYNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv\nJmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ\nQmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el\nUJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681\nly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly\nCK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc\nUDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF\n63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x\nXY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2\nZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk\nXb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK\ncBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef\neNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4\n/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5\nrl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru\n/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A\nzviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO\nI4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1\njfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ\nGRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG\ncZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb\nWmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis\nZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH\nckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi\nlbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO\nxuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK\nJtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX\nPaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c\nW0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t\nC6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk\n4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn\nxHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW\nvHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi\nqr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV\nhamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F\nj4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6\nwqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm\noy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ\nk7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg\nnQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP\n1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1\nH1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ\n1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx\nzSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt\nfFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp\nOxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj\nVtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy\nrFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe\n5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D\nd/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69\nMlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ\nFbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ\nMA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP\nByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn\n0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU\nyOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is\npNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz\nTSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu\nuCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem\ngGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk\nHvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy\ns9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu\nm6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb\n0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz\n9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN\nDNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n\nR6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk\nnmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu\n6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd\n9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb\nSms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S\nMSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz\nFEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8\nVSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx\nY0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ\nmupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+\n5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh\n05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd\nua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ\n5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR\nMqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8\n1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4\nB9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag\nBc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA\n3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn\n3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx\n1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU\ntzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6\nf3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA\nbvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ\nzyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup\n6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM\n350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0\n/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a\nYfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ\nagBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO\nmAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl\nmOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR\nnqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo\nEPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt\n4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ\nScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p\niMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj\nPQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l\nc6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1\n8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3\nylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY\neuPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`;\n\n// data:image/jpeg;base64,\nexport const body = `\n/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk\nJyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF\nRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA\nAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA\nAQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA\nAAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA\nAhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj\n+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt\nFh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR\nPLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl\nmZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp\n+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa\nzhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D\nh1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2\nex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67\nd4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y\nRv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP\nLd3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC\nvy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi\neSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/\nMx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+\nr3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO\nO0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s\ntfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN\nTmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc\n0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj\nq83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w\n+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s\nd8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t\ncI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4\nYibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe\nbzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi\nKxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6\nrNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ\n9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf\nJvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V\nbxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q\nVbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM\nlorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/\n/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme\nE4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv\nfauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6\njkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN\n+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk\nRvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK\ncGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop\nyW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn\nE8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX\n12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW\niI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS\nRWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf\n0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx\nDS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL\nG8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK\nxC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ\na9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4\nZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6\ntvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+\nfJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE\nerk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR\nMd5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9\nlcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD\nj8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV\n5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt\nCu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/\n+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c\nvUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p\njrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0\n77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP\nSel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8\n5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe\nY0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R\nHwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV\nrWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU\nz7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8\nto6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X\ny8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt\nstcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/\nw9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT\nDpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l\nXV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t\nydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS\n34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX\ne09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn\n26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf\n3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q\n6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P\nNbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO\nyZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN\n3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8\n2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h\ndqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx\nkr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t\nDHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb\neFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc\n1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka\nc258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE\nxEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu\ns5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK\n0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9\ndM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt\nPXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T\nMd/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T\nadq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b\nSVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt\npdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm\nvfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr\nEejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N\nvwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh\nZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I\ntkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW\nd43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe\nN4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218\n8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG\nPNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY\nV1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw\nw18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT\nEx5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1\naxqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/\ntDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I\nmbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe\nXRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1\nizjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2\ncrFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4\nOadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2\nr8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx\nzc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz\n+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v\nMevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu\nryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095\nYZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE\n9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8\nmNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O\nuSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O\nfft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6\nOlty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT\nuTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3\n6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1\nMb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF\nfeH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq\nxVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v\ned7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ\nmtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz\nmWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP\nB39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0\n5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1\nmkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt\nmxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO\n1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq\nZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q\nky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7\nROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK\nGEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i\ntMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T\n+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+\nO8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO\nesd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es\nvPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz\nXV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1\n+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY\n36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL\nq555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY\n3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz\np7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr\n1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV\nxUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt\npCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS\nfP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH\nmMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z\n1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+\nn3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d\nMRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df\nzXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl\nJ2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs\nzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH\nDpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ\ndHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR\ntER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j\nadmFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC\nb2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X\nqdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh\nydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O\n8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L\nT7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0\nZa1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr\nvNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer\nrWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL\noNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq\nj/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh\nodZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8\n8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1\nlNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+\noza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL\nknU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK\nEtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N\nmtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm\n9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N\nIpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W\nMYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2\n+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql\no+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37\nO99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE\nTE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1\nL7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4\nizsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt\n1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb\nV5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum\nL37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12\nCvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE\nebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo\nGvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu\nL8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh\n5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3\n6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9\nXO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM\nfeKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj\nSZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF\nXaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr\n79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h\nyeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT\nOC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223\n2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt\nadohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y\ncnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX\nDpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p\n7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso\nS24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l\nbPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe\nvVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG\nH6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7\nx3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz\n5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY\nq+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn\nvLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2\nIjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK\nz0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ\nYYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON\nZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW\nekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf\ncjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c\nbiuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO\nCkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw\ny1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi\nQXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E\nbL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r\ntv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t\nLRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP\nRqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm\ns7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el\nXX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1\nvK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq\nqrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v\nVYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0\nZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q\nmT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm\n6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG\nf63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo\ndPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22\ngtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M\nMoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb\nc2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX\n6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn\n1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK\nfOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ\nEqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u\n7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT\nqPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa\nS2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf\nLp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU\nIiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O\n8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c\nvU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx\n5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V\nKTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm\n2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu\nj8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB\nTTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9\nRUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL\nCWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA\nAAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8\ncTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj\nqKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF\n0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK\nZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK\n66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu\nXT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9\nXOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN\nM2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv\nVrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK\n7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI\n3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m\nXY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m\n1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A\nJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC\nEgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9\n8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL\nOrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H\nM+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA\nTsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8\nelpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp\nBjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS\nCRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r\nrcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY\njbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW\nUsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB\nKUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb\nSz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL\n+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v\nT471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM\nsfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj\nFontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl\n5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q\n7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv\n6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa\n0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/\nAOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM\nd8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5\n6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP\nbFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu\nLJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy\nwt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX\n0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK\n3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn\nKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0\nvobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t\nzya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps\nuOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi\nFdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2\nO3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z\naK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz\n0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb\nT/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l\nqMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t\ntrJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn\nmvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa\neq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe\nPwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of\nTdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O\n1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG\nf/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi\n0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY\n5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc\nV2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L\n/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM\nt/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd\nVknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD\nKLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R\nfwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3\nVxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ\nDJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ\n3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv\nx7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD\nweqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI\n6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew\nPnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk\nj3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm\nOqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/\nAKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez\nN9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ\n92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp\n+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue\nV9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv\navHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0\nvQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP\n8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt\nn1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw\nnUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3\n7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P\n0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U\nx8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG\n0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L\nfaQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ\nQKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA\nBAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A\ntLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv\n9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr\njn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm\nb7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB\nACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk\ndEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1\nrMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+\nx+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA\nAAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr\nYvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4\n5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V\nkK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg\nBIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA\nAAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g\nWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx\nOEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2\nH/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF\n+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V\nh6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA\nEgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu\nZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml\nHMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl\nn0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN\n3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi\n/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00\n+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC\nUACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2\nM2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp\n5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn\nN1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS\nOjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL\n/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo\nstLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3\nGyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA\nAAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4\nqmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy\nWEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a\nfJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI\nrTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2\nrz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc\n3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3\nTur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA\nAAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx\nskA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F\no7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx\nNO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h\n2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te\npSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7\ncvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7\nmZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA\nAAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA\nhGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J\nqx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI\nXRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy\nRHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX\nqNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX\nkaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P\nya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC\nExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA\nlAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA\nAAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o\nb9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP\ny6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae\nkzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu\n9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ\nk7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1\n8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp\nDXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh\nnyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ\nAAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA\nAAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO\nyvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5\nPM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii\nIpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r\nO3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE\nyTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX\n6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2\nJgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS\nAAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA\nAAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx\nWa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI\n6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5\nK2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7\nVv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id\nPW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ\n2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4\neF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7\npiVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR\nACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ\nJQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i\nUiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61\nrZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq\nZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2\nf0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO\nIjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts\nbAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA\nAAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA\nBAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2\nSbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T\nlBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/\n2Q==`;\n", "/**\n * Warmup algorithm that uses embedded images to exercise loaded models for faster future inference\n */\n\nimport { log, now, mergeDeep } from './util/util';\nimport * as sample from './sample';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as image from './image/image';\nimport { env } from './util/env';\nimport type { Config } from './config';\nimport type { Result } from './result';\nimport type { Human, Models } from './human';\nimport type { Tensor } from './tfjs/types';\n\nasync function warmupBitmap(instance: Human): Promise {\n const b64toBlob = (base64: string, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob;\n let res;\n switch (instance.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'body':\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await instance.detect(bitmap, instance.config);\n bitmap.close();\n }\n return res;\n}\n\nasync function warmupCanvas(instance: Human): Promise {\n return new Promise((resolve) => {\n let src;\n // let size = 0;\n switch (instance.config.warmup) {\n case 'face':\n // size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n // size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = null;\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n let img: HTMLImageElement;\n if (typeof Image !== 'undefined') img = new Image();\n // @ts-ignore env.image is an external monkey-patch\n else if (env.Image) img = new env.Image();\n else return;\n img.onload = async () => {\n const canvas = image.canvas(img.naturalWidth, img.naturalHeight);\n if (!canvas) {\n log('Warmup: Canvas not found');\n resolve(undefined);\n } else {\n const ctx = canvas.getContext('2d');\n if (ctx) ctx.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const tensor = await instance.image(canvas);\n const res = await instance.detect(tensor.tensor as Tensor, instance.config);\n resolve(res);\n }\n };\n if (src) img.src = src;\n else resolve(undefined);\n });\n}\n\nasync function warmupNode(instance: Human): Promise {\n const atob = (str: string) => Buffer.from(str, 'base64');\n let img;\n if (instance.config.warmup === 'face') img = atob(sample.face);\n else img = atob(sample.body);\n let res;\n if ('node' in tf) {\n // @ts-ignore tf.node may be undefined\n const data = tf['node'].decodeJpeg(img);\n const expanded = data.expandDims(0);\n instance.tf.dispose(data);\n // log('Input:', expanded);\n res = await instance.detect(expanded, instance.config);\n instance.tf.dispose(expanded);\n } else {\n if (instance.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await instance.detect(input, instance.config);\n */\n }\n return res;\n}\n\nasync function runInference(instance: Human) {\n let res: Result | undefined;\n if (typeof createImageBitmap === 'function') res = await warmupBitmap(instance);\n else if (typeof Image !== 'undefined' || env.Canvas !== undefined) res = await warmupCanvas(instance);\n else res = await warmupNode(instance);\n return res;\n}\n\n/** Runs pre-compile on all loaded models */\nexport async function runCompile(allModels: Models) {\n const backendType = tf.getBackend();\n const webGLBackend = tf.backend();\n if ((backendType !== 'webgl' && backendType !== 'humangl') || (!webGLBackend || !webGLBackend.checkCompileCompletion)) {\n // log('compile pass: skip');\n return;\n }\n tf.env().set('ENGINE_COMPILE_ONLY', true);\n const numTensorsStart = tf.engine().state.numTensors;\n const compiledModels: string[] = [];\n for (const [modelName, model] of Object.entries(allModels).filter(([key, val]) => (key !== null && val !== null))) {\n const shape = (model.inputs && model.inputs[0] && model.inputs[0].shape) ? [...model.inputs[0].shape] : [1, 64, 64, 3];\n const dtype = (model.inputs && model.inputs[0] && model.inputs[0].dtype) ? model.inputs[0].dtype : 'float32';\n for (let dim = 0; dim < shape.length; dim++) {\n if (shape[dim] === -1) shape[dim] = dim === 0 ? 1 : 64; // override batch number and any dynamic dimensions\n }\n const tensor = tf.zeros(shape, dtype);\n // const res = await model.executeAsync(tensor); // fails with current tfjs\n try {\n const res = model.execute(tensor);\n compiledModels.push(modelName);\n if (Array.isArray(res)) res.forEach((t) => tf.dispose(t));\n else tf.dispose(res);\n } catch {\n log('compile fail model:', modelName);\n }\n tf.dispose(tensor);\n }\n const kernels = await webGLBackend.checkCompileCompletionAsync();\n webGLBackend.getUniformLocations();\n log('compile pass models:', compiledModels);\n log('compile pass kernels:', kernels.length);\n tf.env().set('ENGINE_COMPILE_ONLY', false);\n const numTensorsEnd = tf.engine().state.numTensors;\n if ((numTensorsEnd - numTensorsStart) > 0) log('tensor leak:', numTensorsEnd - numTensorsStart);\n}\n\n/** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used in browser environments for `webgl` and `humangl` backends\n * @param userConfig?: Config\n*/\nexport async function warmup(instance: Human, userConfig?: Partial): Promise {\n const t0 = now();\n instance.state = 'warmup';\n if (userConfig) instance.config = mergeDeep(instance.config, userConfig) as Config;\n if (!instance.config.warmup || instance.config.warmup.length === 0 || instance.config.warmup === 'none') {\n return { face: [], body: [], hand: [], gesture: [], object: [], performance: instance.performance, timestamp: now(), persons: [], error: null };\n }\n return new Promise(async (resolve) => {\n await runCompile(instance.models);\n const res = await runInference(instance);\n const t1 = now();\n if (instance.config.debug) log('warmup', instance.config.warmup, Math.round(t1 - t0), 'ms');\n instance.emit('warmup');\n resolve(res);\n });\n}\n", "/**\n * Human main module\n * @default Human Library\n * @summary \n * @author \n * @copyright \n * @license MIT\n */\n\n// module imports\nimport { log, now, mergeDeep, validate } from './util/util';\nimport { defaults } from './config';\nimport { env, Env } from './util/env';\nimport { setModelLoadOptions } from './tfjs/load';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as app from '../package.json';\nimport * as backend from './tfjs/backend';\nimport * as blazepose from './body/blazepose';\nimport * as centernet from './object/centernet';\nimport * as draw from './draw/draw';\nimport * as efficientpose from './body/efficientpose';\nimport * as face from './face/face';\nimport * as facemesh from './face/facemesh';\nimport * as faceres from './face/faceres';\nimport * as gesture from './gesture/gesture';\nimport * as handpose from './hand/handpose';\nimport * as handtrack from './hand/handtrack';\nimport * as humangl from './tfjs/humangl';\nimport * as image from './image/image';\nimport * as interpolate from './util/interpolate';\nimport * as match from './face/match';\nimport * as models from './models';\nimport * as movenet from './body/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as persons from './util/persons';\nimport * as posenet from './body/posenet';\nimport * as segmentation from './segmentation/segmentation';\nimport * as warmups from './warmup';\n// type definitions\nimport type { Input, Tensor, DrawOptions, Config, Result, FaceResult, HandResult, BodyResult, ObjectResult, GestureResult, PersonResult, AnyCanvas, ModelStats } from './exports';\n// type exports\nexport * from './exports';\n\n/** **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n *\n * @param userConfig - {@link Config}\n * @returns instance of {@link Human}\n */\nexport class Human {\n /** Current version of Human library in *semver* format */\n version: string;\n\n /** Current configuration\n * - Defaults: [config](https://github.com/vladmandic/human/blob/main/src/config.ts#L262)\n */\n config: Config;\n\n /** Last known result of detect run\n * - Can be accessed anytime after initial detection\n */\n result: Result;\n\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n * - Progresses through: 'config', 'check', 'backend', 'load', 'run:', 'idle'\n */\n state: string;\n\n /** currenty processed image tensor and canvas */\n process: { tensor: Tensor | null, canvas: AnyCanvas | null };\n\n /** Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n * [TFJS API](https://js.tensorflow.org/api/latest/)\n */\n tf;\n\n /** Object containing environment information used for diagnostics */\n env: Env;\n\n /** Draw helper classes that can draw detected objects on canvas using specified draw\n * - canvas: draws input to canvas\n * - options: are global settings for all draw operations, can be overriden for each draw method {@link DrawOptions}\n * - face, body, hand, gesture, object, person: draws detected results as overlays on canvas\n */\n draw: { canvas: typeof draw.canvas, face: typeof draw.face, body: typeof draw.body, hand: typeof draw.hand, gesture: typeof draw.gesture, object: typeof draw.object, person: typeof draw.person, all: typeof draw.all, options: DrawOptions };\n\n /** Currently loaded models\n * @internal\n * {@link Models}\n */\n models: models.Models;\n\n /** Container for events dispatched by Human\n * Possible events:\n * - `create`: triggered when Human object is instantiated\n * - `load`: triggered when models are loaded (explicitly or on-demand)\n * - `image`: triggered when input image is processed\n * - `result`: triggered when detection is complete\n * - `warmup`: triggered when warmup is complete\n * - `error`: triggered on some errors\n */\n events: EventTarget | undefined;\n /** Reference face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: number[];\n /** Refernce UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: [number, number][];\n /** Performance object that contains values for all recently performed operations */\n performance: Record; // perf members are dynamically defined as needed\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n /** WebGL debug info */\n gl: Record;\n // definition end\n\n /** Constructor for **Human** library that is futher used for all operations\n * @param userConfig - user configuration object {@link Config}\n */\n constructor(userConfig?: Partial) {\n this.env = env;\n /*\n defaults.wasmPath = tf.version['tfjs-core'].includes('-') // custom build or official build\n ? 'https://vladmandic.github.io/tfjs/dist/'\n : `https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${tf.version_core}/dist/`;\n */\n const tfVersion = (tf.version?.tfjs || tf.version_core).replace(/-(.*)/, '');\n defaults.wasmPath = `https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${tfVersion}/dist/`;\n defaults.modelBasePath = env.browser ? '../models/' : 'file://models/';\n defaults.backend = env.browser ? 'humangl' : 'tensorflow';\n this.version = app.version; // expose version property on instance of class\n Object.defineProperty(this, 'version', { value: app.version }); // expose version property directly on class itself\n this.config = JSON.parse(JSON.stringify(defaults));\n Object.seal(this.config);\n this.config.cacheModels = typeof indexedDB !== 'undefined';\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n setModelLoadOptions(this.config);\n this.tf = tf;\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.performance = {};\n this.events = (typeof EventTarget !== 'undefined') ? new EventTarget() : undefined;\n // object that contains all initialized models\n this.models = new models.Models();\n // reexport draw methods\n this.draw = {\n options: draw.options as DrawOptions,\n canvas: (input: AnyCanvas | HTMLImageElement | HTMLVideoElement, output: AnyCanvas) => draw.canvas(input, output),\n face: (output: AnyCanvas, result: FaceResult[], options?: Partial) => draw.face(output, result, options),\n body: (output: AnyCanvas, result: BodyResult[], options?: Partial) => draw.body(output, result, options),\n hand: (output: AnyCanvas, result: HandResult[], options?: Partial) => draw.hand(output, result, options),\n gesture: (output: AnyCanvas, result: GestureResult[], options?: Partial) => draw.gesture(output, result, options),\n object: (output: AnyCanvas, result: ObjectResult[], options?: Partial) => draw.object(output, result, options),\n person: (output: AnyCanvas, result: PersonResult[], options?: Partial) => draw.person(output, result, options),\n all: (output: AnyCanvas, result: Result, options?: Partial) => draw.all(output, result, options),\n };\n this.result = { face: [], body: [], hand: [], gesture: [], object: [], performance: {}, timestamp: 0, persons: [], error: null };\n // export access to image processing\n // @ts-ignore eslint-typescript cannot correctly infer type in anonymous function\n this.process = { tensor: null, canvas: null };\n // export raw access to underlying models\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // set gl info\n this.gl = humangl.config;\n // include platform info\n this.emit('create');\n }\n\n /** internal function to measure tensor leaks */\n analyze = (...msg: string[]) => {\n if (!this.#analyzeMemoryLeaks) return;\n const currentTensors = this.tf.engine().state.numTensors;\n const previousTensors = this.#numTensors;\n this.#numTensors = currentTensors;\n const leaked = currentTensors - previousTensors;\n if (leaked !== 0) log(...msg, leaked);\n };\n\n /** internal function for quick sanity check on inputs @hidden */\n #sanity = (input: Input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.env.node && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n };\n\n /** Reset configuration to default values */\n reset(): void {\n const currentBackend = this.config.backend; // save backend;\n this.config = JSON.parse(JSON.stringify(defaults));\n this.config.backend = currentBackend;\n }\n\n /** Validate current configuration schema */\n validate(userConfig?: Partial) {\n return validate(defaults, userConfig || this.config);\n }\n\n /** Exports face matching methods {@link match#similarity} */\n public similarity = match.similarity;\n /** Exports face matching methods {@link match#distance} */\n public distance = match.distance;\n /** Exports face matching methods {@link match#match} */\n public match = match.match;\n\n /** Utility wrapper for performance.now() */\n now(): number {\n return now();\n }\n\n /** Process input as return canvas and tensor\n *\n * @param input - any input {@link Input}\n * @param getTensor - should image processing also return tensor or just canvas\n * Returns object with `tensor` and `canvas`\n */\n image(input: Input, getTensor: boolean = true) {\n return image.process(input, this.config, getTensor);\n }\n\n /** Segmentation method takes any input and returns processed canvas with body segmentation\n * - Segmentation is not triggered as part of detect process\n * @param input - {@link Input}\n * @param background - {@link Input}\n * - Optional parameter background is used to fill the background with specific input\n * Returns:\n * - `data` as raw data array with per-pixel segmentation values\n * - `canvas` as canvas which is input image filtered with segementation data and optionally merged with background image. canvas alpha values are set to segmentation values for easy merging\n * - `alpha` as grayscale canvas that represents segmentation alpha values\n */\n async segmentation(input: Input, background?: Input): Promise<{ data: number[] | Tensor, canvas: AnyCanvas | null, alpha: AnyCanvas | null }> {\n return segmentation.process(input, background, this.config);\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n *\n * @param input - Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n // eslint-disable-next-line class-methods-use-this\n enhance(input: Tensor): Tensor | null {\n return faceres.enhance(input);\n }\n\n /** Compare two input tensors for pixel simmilarity\n * - use `human.image` to process any valid input and get a tensor that can be used for compare\n * - when passing manually generated tensors:\n * - both input tensors must be in format [1, height, width, 3]\n * - if resolution of tensors does not match, second tensor will be resized to match resolution of the first tensor\n * - return value is pixel similarity score normalized by input resolution and rgb channels\n */\n compare(firstImageTensor: Tensor, secondImageTensor: Tensor): Promise {\n return image.compare(this.config, firstImageTensor, secondImageTensor);\n }\n\n /** Explicit backend initialization\n * - Normally done implicitly during initial load phase\n * - Call to explictly register and initialize TFJS backend without any other operations\n * - Use when changing backend during runtime\n */\n async init(): Promise {\n await backend.check(this, true);\n await this.tf.ready();\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n *\n * @param userConfig - {@link Config}\n */\n async load(userConfig?: Partial): Promise {\n this.state = 'load';\n const timeStamp = now();\n const count = Object.values(this.models).filter((model) => model).length;\n if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;\n\n if (this.env.initial) { // print version info on first run and check for correct backend setup\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version['tfjs-core']}`);\n if (!await backend.check(this)) log('error: backend check failed');\n await tf.ready();\n if (this.env.browser) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('environment:', this.env);\n if (this.config.debug) log('tf flags:', this.tf.ENV['flags']);\n }\n }\n\n await models.load(this); // actually loads models\n if (this.env.initial && this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors'); // print memory stats on first run\n this.env.initial = false;\n\n const loaded = Object.values(this.models).filter((model) => model).length;\n if (loaded !== count) { // number of loaded models changed\n await models.validate(this); // validate kernel ops used by model against current backend\n this.emit('load');\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.performance.loadModels as number || 0)) this.performance.loadModels = this.env.perfadd ? (this.performance.loadModels || 0) + current : current;\n }\n\n /** emit event */\n emit = (event: string) => {\n if (this.events && this.events.dispatchEvent) this.events?.dispatchEvent(new Event(event));\n };\n\n /** Runs interpolation using last known result and returns smoothened result\n * Interpolation is based on time since last known result so can be called independently\n *\n * @param result - {@link Result} optional use specific result set to run interpolation on\n * @returns result - {@link Result}\n */\n next(result: Result = this.result): Result {\n return interpolate.calc(result, this.config) as Result;\n }\n\n /** get model loading/loaded stats */\n getModelStats(): ModelStats { return models.getModelStats(this); }\n\n /** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n * @param userConfig - {@link Config}\n * @returns result - {@link Result}\n */\n async warmup(userConfig?: Partial) {\n const t0 = now();\n const res = await warmups.warmup(this, userConfig);\n const t1 = now();\n this.performance.warmup = Math.trunc(t1 - t0);\n return res;\n }\n\n /** Run detect with tensorflow profiling\n * - result object will contain total exeuction time information for top-20 kernels\n * - actual detection object can be accessed via `human.result`\n */\n async profile(input: Input, userConfig?: Partial): Promise> {\n const profile = await this.tf.profile(() => this.detect(input, userConfig));\n const kernels: Record = {};\n for (const kernel of profile.kernels) { // sum kernel time values per kernel\n if (kernels[kernel.name]) kernels[kernel.name] += kernel.kernelTimeMs;\n else kernels[kernel.name] = kernel.kernelTimeMs;\n }\n const kernelArr: Array<{ name: string, ms: number }> = [];\n Object.entries(kernels).forEach((key) => kernelArr.push({ name: key[0], ms: key[1] as unknown as number })); // convert to array\n kernelArr.sort((a, b) => b.ms - a.ms); // sort\n kernelArr.length = 20; // crop\n const res: Record = {};\n for (const kernel of kernelArr) res[kernel.name] = kernel.ms; // create perf objects\n return res;\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n *\n * @param input - {@link Input}\n * @param userConfig - {@link Config}\n * @returns result - {@link Result}\n */\n async detect(input: Input, userConfig?: Partial): Promise {\n // detection happens inside a promise\n this.state = 'detect';\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig) as Config;\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n this.emit('error');\n resolve({ face: [], body: [], hand: [], gesture: [], object: [], performance: this.performance, timestamp: now(), persons: [], error });\n }\n\n const timeStart = now();\n\n // configure backend if needed\n await backend.check(this);\n\n // load models if enabled\n await this.load();\n\n timeStamp = now();\n this.state = 'image';\n const img = await image.process(input, this.config) as { canvas: AnyCanvas, tensor: Tensor };\n this.process = img;\n this.performance.inputProcess = this.env.perfadd ? (this.performance.inputProcess || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n if (!img.tensor) {\n if (this.config.debug) log('could not convert input to tensor');\n this.emit('error');\n resolve({ face: [], body: [], hand: [], gesture: [], object: [], performance: this.performance, timestamp: now(), persons: [], error: 'could not convert input to tensor' });\n return;\n }\n this.emit('image');\n\n timeStamp = now();\n this.config.skipAllowed = await image.skip(this.config, img.tensor);\n if (!this.performance.totalFrames) this.performance.totalFrames = 0;\n if (!this.performance.cachedFrames) this.performance.cachedFrames = 0;\n (this.performance.totalFrames as number)++;\n if (this.config.skipAllowed) this.performance.cachedFrames++;\n this.performance.cacheCheck = this.env.perfadd ? (this.performance.cacheCheck || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n this.analyze('Check Changed:');\n\n // prepare where to store model results\n // keep them with weak typing as it can be promise or not\n let faceRes: FaceResult[] | Promise | never[] = [];\n let bodyRes: BodyResult[] | Promise | never[] = [];\n let handRes: HandResult[] | Promise | never[] = [];\n let objectRes: ObjectResult[] | Promise | never[] = [];\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n this.state = 'detect:face';\n if (this.config.async) {\n faceRes = this.config.face.enabled ? face.detectFace(this, img.tensor) : [];\n if (this.performance.face) delete this.performance.face;\n } else {\n timeStamp = now();\n faceRes = this.config.face.enabled ? await face.detectFace(this, img.tensor) : [];\n this.performance.face = this.env.perfadd ? (this.performance.face || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n\n if (this.config.async && (this.config.body.maxDetected === -1 || this.config.hand.maxDetected === -1)) faceRes = await faceRes; // need face result for auto-detect number of hands or bodies\n\n // run body: can be posenet, blazepose, efficientpose, movenet\n this.analyze('Start Body:');\n this.state = 'detect:body';\n const bodyConfig = this.config.body.maxDetected === -1 ? mergeDeep(this.config, { body: { maxDetected: this.config.face.enabled ? 1 * (faceRes as FaceResult[]).length : 1 } }) : this.config; // autodetect number of bodies\n if (this.config.async) {\n if (this.config.body.modelPath?.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('movenet')) bodyRes = this.config.body.enabled ? movenet.predict(img.tensor, bodyConfig) : [];\n if (this.performance.body) delete this.performance.body;\n } else {\n timeStamp = now();\n if (this.config.body.modelPath?.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('movenet')) bodyRes = this.config.body.enabled ? await movenet.predict(img.tensor, bodyConfig) : [];\n this.performance.body = this.env.perfadd ? (this.performance.body || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n this.state = 'detect:hand';\n const handConfig = this.config.hand.maxDetected === -1 ? mergeDeep(this.config, { hand: { maxDetected: this.config.face.enabled ? 2 * (faceRes as FaceResult[]).length : 1 } }) : this.config; // autodetect number of hands\n if (this.config.async) {\n if (this.config.hand.detector?.modelPath?.includes('handdetect')) handRes = this.config.hand.enabled ? handpose.predict(img.tensor, handConfig) : [];\n else if (this.config.hand.detector?.modelPath?.includes('handtrack')) handRes = this.config.hand.enabled ? handtrack.predict(img.tensor, handConfig) : [];\n if (this.performance.hand) delete this.performance.hand;\n } else {\n timeStamp = now();\n if (this.config.hand.detector?.modelPath?.includes('handdetect')) handRes = this.config.hand.enabled ? await handpose.predict(img.tensor, handConfig) : [];\n else if (this.config.hand.detector?.modelPath?.includes('handtrack')) handRes = this.config.hand.enabled ? await handtrack.predict(img.tensor, handConfig) : [];\n this.performance.hand = this.env.perfadd ? (this.performance.hand || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Hand:');\n\n // run object detection\n this.analyze('Start Object:');\n this.state = 'detect:object';\n if (this.config.async) {\n if (this.config.object.modelPath?.includes('nanodet')) objectRes = this.config.object.enabled ? nanodet.predict(img.tensor, this.config) : [];\n else if (this.config.object.modelPath?.includes('centernet')) objectRes = this.config.object.enabled ? centernet.predict(img.tensor, this.config) : [];\n if (this.performance.object) delete this.performance.object;\n } else {\n timeStamp = now();\n if (this.config.object.modelPath?.includes('nanodet')) objectRes = this.config.object.enabled ? await nanodet.predict(img.tensor, this.config) : [];\n else if (this.config.object.modelPath?.includes('centernet')) objectRes = this.config.object.enabled ? await centernet.predict(img.tensor, this.config) : [];\n this.performance.object = this.env.perfadd ? (this.performance.object || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Object:');\n\n // if async wait for results\n this.state = 'detect:await';\n if (this.config.async) [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n\n // run gesture analysis last\n this.state = 'detect:gesture';\n let gestureRes: GestureResult[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes as FaceResult[]), ...gesture.body(bodyRes as BodyResult[]), ...gesture.hand(handRes as HandResult[]), ...gesture.iris(faceRes as FaceResult[])];\n if (!this.config.async) this.performance.gesture = this.env.perfadd ? (this.performance.gesture || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n else if (this.performance.gesture) delete this.performance.gesture;\n }\n\n this.performance.total = this.env.perfadd ? (this.performance.total || 0) + Math.trunc(now() - timeStart) : Math.trunc(now() - timeStart);\n const shape = this.process?.tensor?.shape || [];\n this.result = {\n face: faceRes as FaceResult[],\n body: bodyRes as BodyResult[],\n hand: handRes as HandResult[],\n gesture: gestureRes,\n object: objectRes as ObjectResult[],\n performance: this.performance,\n canvas: this.process.canvas,\n timestamp: Date.now(),\n error: null,\n get persons() { return persons.join(faceRes as FaceResult[], bodyRes as BodyResult[], handRes as HandResult[], gestureRes, shape); },\n };\n\n // finally dispose input tensor\n tf.dispose(img.tensor);\n\n // log('Result:', result);\n this.emit('detect');\n this.state = 'idle';\n resolve(this.result);\n });\n }\n}\n\n/** Class Human as default export */\n/* eslint no-restricted-exports: [\"off\", { \"restrictedNamedExports\": [\"default\"] }] */\nexport { Human as default, match, draw, models };\n"], + "sourcesContent": ["import type { Config } from '../exports';\n\n/**\n * Simple helper functions used accross codebase\n */\n\n// helper function: wrapper around console output\nexport function log(...msg): void {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`modelpath error: expecting json file: ${path}`);\n return path;\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: checks current config validity\nexport function validate(defaults: Partial, config: Partial, parent = 'config', msgs: Array<{ reason: string, where: string, expected?: string }> = []) {\n for (const key of Object.keys(config)) {\n if (typeof config[key] === 'object') {\n validate(defaults[key], config[key], key, msgs);\n } else {\n const defined = defaults && (typeof defaults[key] !== 'undefined');\n if (!defined) msgs.push({ reason: 'unknown property', where: `${parent}.${key} = ${config[key]}` });\n const same = defaults && typeof defaults[key] === typeof config[key];\n if (defined && !same) msgs.push({ reason: 'property type mismatch', where: `${parent}.${key} = ${config[key]}`, expected: typeof defaults[key] });\n }\n // ok = ok && defined && same;\n }\n if (config.debug && parent === 'config' && msgs.length > 0) log('invalid configuration', msgs);\n return msgs;\n}\n\n// helper function: perform deep merge of multiple objects so it allows full inheritance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n\n// helper function: return min and max from input array\nexport const minmax = (data: Array) => data.reduce((acc: Array, val) => {\n acc[0] = (acc[0] === undefined || val < acc[0]) ? val : acc[0];\n acc[1] = (acc[1] === undefined || val > acc[1]) ? val : acc[1];\n return acc;\n}, []);\n\n// helper function: async wait\nexport async function wait(time: number) {\n const waiting = new Promise((resolve) => { setTimeout(() => resolve(true), time); });\n await waiting;\n}\n", "/* eslint-disable indent */\n/* eslint-disable no-multi-spaces */\n\n/** Generic config type inherited by all module types */\nexport interface GenericConfig {\n /** is module enabled? */\n enabled: boolean,\n /** path to model json file (relative to `modelBasePath` */\n modelPath: string,\n /** how many max frames to go without re-running model if cached results are acceptable\n * for two-phase models such as face and hand caching applies to bounding boxes detection only */\n skipFrames: number,\n /** how many max milliseconds to go without re-running model if cached results are acceptable\n * for two-phase models such as face and hand caching applies to bounding boxes detection only */\n skipTime: number,\n}\n\n/** Detector part of face configuration */\nexport interface FaceDetectorConfig extends GenericConfig {\n /** is face rotation correction performed after detecting face?\n * used to correctly analyze faces under high angles\n */\n rotation: boolean,\n /** maximum number of detected faces */\n maxDetected: number,\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected faces before one is discarded */\n iouThreshold: number,\n /** should child models perform on masked image of a face */\n mask: boolean,\n /** should face detection return processed and cropped face tensor that can with an external model for addtional processing?\n * if enabled it must be manually deallocated to avoid memory leak */\n return: boolean,\n}\n\n/** Mesh part of face configuration */\nexport interface FaceMeshConfig extends GenericConfig {\n /** Keep detected faces that cannot be verified using facemesh */\n keepInvalid: boolean\n}\n\n/** Iris part of face configuration */\nexport interface FaceIrisConfig extends GenericConfig {}\n\n/** Attention part of face configuration */\nexport interface FaceAttentionConfig extends GenericConfig {}\n\n/** Description or face embedding part of face configuration\n * - also used by age and gender detection\n */\nexport interface FaceDescriptionConfig extends GenericConfig {\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n}\n\n/** Emotion part of face configuration */\nexport interface FaceEmotionConfig extends GenericConfig {\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n}\n\n/** Anti-spoofing part of face configuration */\nexport interface FaceAntiSpoofConfig extends GenericConfig {}\n\n/** Liveness part of face configuration */\nexport interface FaceLivenessConfig extends GenericConfig {}\n\n/** Gear part of face configuration */\nexport interface FaceGearConfig extends GenericConfig {\n /** minimum confidence for a detected race before results are discarded */\n minConfidence: number,\n}\n\n/** Configures all face-specific options: face detection, mesh analysis, age, gender, emotion detection and face description */\nexport interface FaceConfig extends GenericConfig {\n detector: Partial,\n mesh: Partial,\n attention: Partial,\n iris: Partial,\n description: Partial,\n emotion: Partial,\n antispoof: Partial,\n liveness: Partial,\n gear: Partial,\n}\n\n/** Configures all body detection specific options */\nexport interface BodyConfig extends GenericConfig {\n /** maximum number of detected bodies */\n maxDetected: number,\n /** minimum confidence for a detected body before results are discarded */\n minConfidence: number,\n /* experimental\n /** experimental: detector used for body model before actual analysis\n detector?: {\n /** experimental: enable body detector before body landmarks\n enabled: boolean,\n /** experimental: path to optional body detector model json file\n modelPath: string,\n /** experimental: minimum confidence for a detected body before results are discarded\n minConfidence: number,\n /** experimental: minimum overlap between two detected bodies before one is discarded\n iouThreshold: number\n },\n */\n}\n\n/** Configures all hand detection specific options */\nexport interface HandConfig extends GenericConfig {\n /** should hand rotation correction be performed after hand detection? */\n rotation: boolean,\n /** minimum confidence for a detected hand before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected hands before one is discarded */\n iouThreshold: number,\n /** maximum number of detected hands */\n maxDetected: number,\n /** should hand landmarks be detected or just return detected hand box */\n landmarks: boolean,\n detector: {\n /** path to hand detector model json */\n modelPath?: string,\n },\n skeleton: {\n /** path to hand skeleton model json */\n modelPath?: string,\n },\n}\n\n/** Configures all object detection specific options */\nexport interface ObjectConfig extends GenericConfig {\n /** minimum confidence for a detected objects before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected objects before one is discarded */\n iouThreshold: number,\n /** maximum number of detected objects */\n maxDetected: number,\n}\n\n/** Configures all body segmentation module\n * removes background from input containing person\n * if segmentation is enabled it will run as preprocessing task before any other model\n * alternatively leave it disabled and use it on-demand using human.segmentation method which can\n * remove background or replace it with user-provided background\n*/\nexport interface SegmentationConfig extends GenericConfig {\n /** blur segmentation output by pixels for more realistic image */\n blur: number,\n}\n\n/** Run input through image filters before inference\n * - available only in Browser environments\n * - image filters run with near-zero latency as they are executed on the GPU using WebGL\n*/\nexport interface FilterConfig {\n /** are image filters enabled? */\n enabled: boolean,\n /** perform image histogram equalization\n * - equalization is performed on input as a whole and detected face before its passed for further analysis\n */\n equalization: boolean,\n /** resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** return processed canvas imagedata in result */\n return: boolean,\n /** flip input as mirror image */\n flip: boolean,\n /** range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** image negative */\n negative: boolean,\n /** image sepia colors */\n sepia: boolean,\n /** image vintage colors */\n vintage: boolean,\n /** image kodachrome colors */\n kodachrome: boolean,\n /** image technicolor colors */\n technicolor: boolean,\n /** image polaroid camera effect */\n polaroid: boolean,\n /** range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n}\n\n/** Controlls gesture detection */\nexport interface GestureConfig {\n /** is gesture detection enabled? */\n enabled: boolean,\n}\n/** Possible TensorFlow backends */\nexport type BackendType = ['cpu', 'wasm', 'webgl', 'humangl', 'tensorflow', 'webgpu'];\n\n/** Possible values for `human.warmup` */\nexport type WarmupType = ['' | 'none' | 'face' | 'full' | 'body'];\n\n/**\n * Configuration interface definition for **Human** library\n * Contains all configurable parameters\n * Defaults: [config](https://github.com/vladmandic/human/blob/main/src/config.ts#L262)\n */\nexport interface Config {\n /** Backend used for TFJS operations\n * valid build-in backends are:\n * - Browser: `cpu`, `wasm`, `webgl`, `humangl`, `webgpu`\n * - NodeJS: `cpu`, `wasm`, `tensorflow`\n * default: `humangl` for browser and `tensorflow` for nodejs\n */\n backend: '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow' | 'webgpu',\n\n /** Path to *.wasm files if backend is set to `wasm`\n *\n * default: auto-detects to link to CDN `jsdelivr` when running in browser\n */\n wasmPath: string,\n\n /** Force WASM loader to use platform fetch\n *\n * default: auto-detects to link to CDN `jsdelivr` when running in browser\n */\n wasmPlatformFetch: boolean,\n\n /** Print debug statements to console\n *\n * default: `true`\n */\n debug: boolean,\n\n /** Perform model loading and inference concurrently or sequentially\n *\n * default: `true`\n */\n async: boolean,\n\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - used by `webgl`, `humangl` and `webgpu` backends\n *\n * default: `full`\n */\n warmup: '' | 'none' | 'face' | 'full' | 'body',\n\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are relative to this path\n *\n * default: `../models/` for browsers and `file://models/` for nodejs\n */\n modelBasePath: string,\n\n /** Cache models in IndexDB on first sucessfull load\n * default: true if indexdb is available (browsers), false if its not (nodejs)\n */\n cacheModels: boolean,\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n *\n * default: 0.7\n */\n cacheSensitivity: number;\n\n /** Perform immediate garbage collection on deallocated tensors instead of caching them */\n deallocate: boolean;\n\n /** Internal Variable */\n skipAllowed: boolean;\n\n /** Filter config {@link FilterConfig} */\n filter: Partial,\n\n /** Gesture config {@link GestureConfig} */\n gesture: Partial;\n\n /** Face config {@link FaceConfig} */\n face: Partial,\n\n /** Body config {@link BodyConfig} */\n body: Partial,\n\n /** Hand config {@link HandConfig} */\n hand: Partial,\n\n /** Object config {@link ObjectConfig} */\n object: Partial,\n\n /** Segmentation config {@link SegmentationConfig} */\n segmentation: Partial,\n}\n\n/** - [See all default Config values...](https://github.com/vladmandic/human/blob/main/src/config.ts#L262) */\nconst config: Config = {\n backend: '',\n modelBasePath: '',\n cacheModels: true,\n wasmPath: '',\n wasmPlatformFetch: false,\n debug: false,\n async: true,\n warmup: 'full',\n cacheSensitivity: 0.70,\n skipAllowed: false,\n deallocate: false,\n filter: {\n enabled: true,\n equalization: false,\n width: 0,\n height: 0,\n flip: false,\n return: true,\n brightness: 0,\n contrast: 0,\n sharpness: 0,\n blur: 0,\n saturation: 0,\n hue: 0,\n negative: false,\n sepia: false,\n vintage: false,\n kodachrome: false,\n technicolor: false,\n polaroid: false,\n pixelate: 0,\n },\n gesture: {\n enabled: true,\n },\n face: {\n enabled: true,\n detector: {\n modelPath: 'blazeface.json',\n rotation: true,\n maxDetected: 1,\n skipFrames: 99,\n skipTime: 2500,\n minConfidence: 0.2,\n iouThreshold: 0.1,\n mask: false,\n return: false,\n },\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json',\n keepInvalid: false,\n },\n attention: {\n enabled: false,\n modelPath: 'facemesh-attention.json',\n },\n iris: {\n enabled: true,\n modelPath: 'iris.json',\n },\n emotion: {\n enabled: true,\n minConfidence: 0.1,\n skipFrames: 99,\n skipTime: 1500,\n modelPath: 'emotion.json',\n },\n description: {\n enabled: true,\n modelPath: 'faceres.json',\n skipFrames: 99,\n skipTime: 3000,\n minConfidence: 0.1,\n },\n antispoof: {\n enabled: false,\n skipFrames: 99,\n skipTime: 4000,\n modelPath: 'antispoof.json',\n },\n liveness: {\n enabled: false,\n skipFrames: 99,\n skipTime: 4000,\n modelPath: 'liveness.json',\n },\n },\n body: {\n enabled: true,\n modelPath: 'movenet-lightning.json',\n maxDetected: -1,\n minConfidence: 0.3,\n skipFrames: 1,\n skipTime: 200,\n },\n hand: {\n enabled: true,\n rotation: true,\n skipFrames: 99,\n skipTime: 1000,\n minConfidence: 0.50,\n iouThreshold: 0.2,\n maxDetected: -1,\n landmarks: true,\n detector: {\n modelPath: 'handtrack.json',\n },\n skeleton: {\n modelPath: 'handlandmark-full.json',\n },\n },\n object: {\n enabled: false,\n modelPath: 'mb3-centernet.json',\n minConfidence: 0.2,\n iouThreshold: 0.4,\n maxDetected: 10,\n skipFrames: 99,\n skipTime: 2000,\n },\n segmentation: {\n enabled: false,\n modelPath: 'selfie.json',\n blur: 8,\n },\n};\n\nexport { config as defaults };\n", "/*\n Human\n homepage: \n author: '\n*/\n\nexport*from\"@tensorflow/tfjs/dist/index.js\";export*from\"@tensorflow/tfjs-backend-webgl/dist/index.js\";var r=\"3.19.0\",e=\"3.19.0\",o=\"3.19.0\",a=\"3.19.0\",t=\"3.19.0\",s=\"3.19.0\",f=\"3.19.0\",v={tfjs:r,\"tfjs-core\":e,\"tfjs-data\":o,\"tfjs-layers\":a,\"tfjs-converter\":t,\"tfjs-backend-webgl\":s,\"tfjs-backend-wasm\":f};import{Tensor as d}from\"@tensorflow/tfjs/dist/index.js\";import{GraphModel as b}from\"@tensorflow/tfjs-converter/dist/index\";export{b as GraphModel,d as Tensor,v as version};\n", "export const vertexIdentity = `\n precision highp float;\n attribute vec2 pos;\n attribute vec2 uv;\n varying vec2 vUv;\n uniform float flipY;\n void main(void) {\n vUv = uv;\n gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);\n }\n`;\n\nexport const fragmentIdentity = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n void main(void) {\n gl_FragColor = texture2D(texture, vUv);\n }\n`;\n\nexport const colorMatrixWithAlpha = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform float m[20];\n void main(void) {\n vec4 c = texture2D(texture, vUv);\n gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];\n gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];\n gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];\n gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];\n }\n`;\n\nexport const colorMatrixWithoutAlpha = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform float m[20];\n void main(void) {\n vec4 c = texture2D(texture, vUv);\n gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];\n gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];\n gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];\n gl_FragColor.a = c.a;\n }\n`;\n\nexport const pixelate = `\n precision highp float;\n varying vec2 vUv;\n uniform vec2 size;\n uniform sampler2D texture;\n vec2 pixelate(vec2 coord, vec2 size) {\n return floor( coord / size ) * size;\n }\n void main(void) {\n gl_FragColor = vec4(0.0);\n vec2 coord = pixelate(vUv, size);\n gl_FragColor += texture2D(texture, coord);\n }\n`;\n\nexport const blur = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform vec2 px;\n void main(void) {\n gl_FragColor = vec4(0.0);\n gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;\n gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;\n gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;\n gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;\n gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;\n gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;\n gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;\n gl_FragColor += texture2D(texture, vUv )*0.159576912161;\n gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;\n gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;\n gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;\n gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;\n gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;\n gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;\n gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;\n }\n`;\n\nexport const convolution = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform vec2 px;\n uniform float m[9];\n void main(void) {\n vec4 c11 = texture2D(texture, vUv - px); // top left\n vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center\n vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right\n vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left\n vec4 c22 = texture2D(texture, vUv); // mid center\n vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right\n vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left\n vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center\n vec4 c33 = texture2D(texture, vUv + px ); // bottom right\n gl_FragColor = \n c11 * m[0] + c12 * m[1] + c22 * m[2] +\n c21 * m[3] + c22 * m[4] + c23 * m[5] +\n c31 * m[6] + c32 * m[7] + c33 * m[8];\n gl_FragColor.a = c22.a;\n }\n`;\n", "/**\n * Image Filters in WebGL algoritm implementation\n * Based on: [WebGLImageFilter](https://github.com/phoboslab/WebGLImageFilter)\n */\n\nimport * as shaders from './imagefxshaders';\nimport { canvas } from './image';\nimport { log } from '../util/util';\n\nconst collect = (source, prefix, collection) => {\n const r = new RegExp('\\\\b' + prefix + ' \\\\w+ (\\\\w+)', 'ig');\n source.replace(r, (match, name) => {\n collection[name] = 0;\n return match;\n });\n};\n\nclass GLProgram {\n uniform = {};\n attribute = {};\n gl: WebGLRenderingContext;\n id: WebGLProgram;\n\n constructor(gl, vertexSource, fragmentSource) {\n this.gl = gl;\n const vertexShader = this.compile(vertexSource, this.gl.VERTEX_SHADER);\n const fragmentShader = this.compile(fragmentSource, this.gl.FRAGMENT_SHADER);\n this.id = this.gl.createProgram() as WebGLProgram;\n if (!vertexShader || !fragmentShader) return;\n if (!this.id) {\n log('filter: could not create webgl program');\n return;\n }\n this.gl.attachShader(this.id, vertexShader);\n this.gl.attachShader(this.id, fragmentShader);\n this.gl.linkProgram(this.id);\n if (!this.gl.getProgramParameter(this.id, this.gl.LINK_STATUS)) {\n log(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);\n return;\n }\n this.gl.useProgram(this.id);\n collect(vertexSource, 'attribute', this.attribute); // Collect attributes\n for (const a in this.attribute) this.attribute[a] = this.gl.getAttribLocation(this.id, a);\n collect(vertexSource, 'uniform', this.uniform); // Collect uniforms\n collect(fragmentSource, 'uniform', this.uniform);\n for (const u in this.uniform) this.uniform[u] = this.gl.getUniformLocation(this.id, u);\n }\n\n compile = (source, type): WebGLShader | null => {\n const shader = this.gl.createShader(type) as WebGLShader;\n if (!shader) {\n log('filter: could not create shader');\n return null;\n }\n this.gl.shaderSource(shader, source);\n this.gl.compileShader(shader);\n if (!this.gl.getShaderParameter(shader, this.gl.COMPILE_STATUS)) {\n log(`filter: gl compile failed: ${this.gl.getShaderInfoLog(shader)}`);\n return null;\n }\n return shader;\n };\n}\n\n// function that is instantiated as class so it has private this members\n/**\n * @class GLImageFilter\n * @property {function} reset reset current filter chain\n * @property {function} add add specified filter to filter chain\n * @property {function} apply execute filter chain and draw result\n * @property {function} draw just draw input to result\n */\n\nexport function GLImageFilter() {\n let drawCount = 0;\n let sourceTexture: WebGLTexture | null = null;\n let lastInChain = false;\n let currentFramebufferIndex = -1;\n let tempFramebuffers: [null, null] | [{ fbo: WebGLFramebuffer | null, texture: WebGLTexture | null }] = [null, null];\n let filterChain: Record[] = [];\n let vertexBuffer: WebGLBuffer | null = null;\n let currentProgram: GLProgram | null = null;\n const fxcanvas = canvas(100, 100);\n const shaderProgramCache = { }; // key is the shader program source, value is the compiled program\n const DRAW = { INTERMEDIATE: 1 };\n const gl = fxcanvas.getContext('webgl') as WebGLRenderingContext;\n if (!gl) {\n log('filter: cannot get webgl context');\n return;\n }\n // @ts-ignore used for sanity checks outside of imagefx\n this.gl = gl;\n\n function resize(width, height) {\n if (width === fxcanvas.width && height === fxcanvas.height) return; // Same width/height? Nothing to do here\n fxcanvas.width = width;\n fxcanvas.height = height;\n if (!vertexBuffer) { // Create the context if we don't have it yet\n const vertices = new Float32Array([-1, -1, 0, 1, 1, -1, 1, 1, -1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 1, 1, 1, 1, 1, 0]); // Create the vertex buffer for the two triangles [x, y, u, v] * 6\n vertexBuffer = gl.createBuffer();\n gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);\n gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);\n gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);\n }\n gl.viewport(0, 0, fxcanvas.width, fxcanvas.height);\n tempFramebuffers = [null, null]; // Delete old temp framebuffers\n }\n\n function createFramebufferTexture(width, height) {\n const fbo = gl.createFramebuffer() as WebGLFramebuffer;\n gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);\n const renderbuffer = gl.createRenderbuffer();\n gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);\n const texture = gl.createTexture() as WebGLTexture;\n gl.bindTexture(gl.TEXTURE_2D, texture);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n return { fbo, texture };\n }\n\n function getTempFramebuffer(index): { fbo: WebGLFramebuffer | null, texture: WebGLTexture | null } {\n tempFramebuffers[index] = tempFramebuffers[index] || createFramebufferTexture(fxcanvas.width, fxcanvas.height);\n return tempFramebuffers[index] as { fbo: WebGLFramebuffer, texture: WebGLTexture };\n }\n\n function draw(flags = 0) {\n if (!currentProgram) return;\n let source: WebGLTexture | null = null;\n let target: WebGLFramebuffer | null = null;\n let flipY = false;\n if (drawCount === 0) source = sourceTexture; // First draw call - use the source texture\n else source = getTempFramebuffer(currentFramebufferIndex).texture || null; // All following draw calls use the temp buffer last drawn to\n drawCount++;\n if (lastInChain && !(flags & DRAW.INTERMEDIATE)) { // Last filter in our chain - draw directly to the WebGL Canvas. We may also have to flip the image vertically now\n target = null;\n flipY = drawCount % 2 === 0;\n } else {\n currentFramebufferIndex = (currentFramebufferIndex + 1) % 2;\n target = getTempFramebuffer(currentFramebufferIndex).fbo || null; // Intermediate draw call - get a temp buffer to draw to\n }\n gl.bindTexture(gl.TEXTURE_2D, source); // Bind the source and target and draw the two triangles\n gl.bindFramebuffer(gl.FRAMEBUFFER, target);\n gl.uniform1f(currentProgram.uniform['flipY'], (flipY ? -1 : 1));\n gl.drawArrays(gl.TRIANGLES, 0, 6);\n }\n\n function compileShader(fragmentSource): GLProgram | null {\n if (shaderProgramCache[fragmentSource]) {\n currentProgram = shaderProgramCache[fragmentSource];\n gl.useProgram((currentProgram ? currentProgram.id : null) || null);\n return currentProgram as GLProgram;\n }\n currentProgram = new GLProgram(gl, shaders.vertexIdentity, fragmentSource);\n if (!currentProgram) {\n log('filter: could not get webgl program');\n return null;\n }\n const floatSize = Float32Array.BYTES_PER_ELEMENT;\n const vertSize = 4 * floatSize;\n gl.enableVertexAttribArray(currentProgram.attribute['pos']);\n gl.vertexAttribPointer(currentProgram.attribute['pos'], 2, gl.FLOAT, false, vertSize, 0 * floatSize);\n gl.enableVertexAttribArray(currentProgram.attribute['uv']);\n gl.vertexAttribPointer(currentProgram.attribute['uv'], 2, gl.FLOAT, false, vertSize, 2 * floatSize);\n shaderProgramCache[fragmentSource] = currentProgram;\n return currentProgram as GLProgram;\n }\n\n const filter = {\n colorMatrix: (matrix) => { // general color matrix filter\n const m = new Float32Array(matrix);\n m[4] /= 255;\n m[9] /= 255;\n m[14] /= 255;\n m[19] /= 255;\n const shader = (m[18] === 1 && m[3] === 0 && m[8] === 0 && m[13] === 0 && m[15] === 0 && m[16] === 0 && m[17] === 0 && m[19] === 0) // Can we ignore the alpha value? Makes things a bit faster.\n ? shaders.colorMatrixWithoutAlpha\n : shaders.colorMatrixWithAlpha;\n const program = compileShader(shader);\n if (!program) return;\n gl.uniform1fv(program.uniform['m'], m);\n draw();\n },\n\n brightness: (brightness) => {\n const b = (brightness || 0) + 1;\n filter.colorMatrix([\n b, 0, 0, 0, 0,\n 0, b, 0, 0, 0,\n 0, 0, b, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n saturation: (amount) => {\n const x = (amount || 0) * 2 / 3 + 1;\n const y = ((x - 1) * -0.5);\n filter.colorMatrix([\n x, y, y, 0, 0,\n y, x, y, 0, 0,\n y, y, x, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n desaturate: () => {\n filter.saturation(-1);\n },\n\n contrast: (amount) => {\n const v = (amount || 0) + 1;\n const o = -128 * (v - 1);\n filter.colorMatrix([\n v, 0, 0, 0, o,\n 0, v, 0, 0, o,\n 0, 0, v, 0, o,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n negative: () => {\n filter.contrast(-2);\n },\n\n hue: (rotation) => {\n rotation = (rotation || 0) / 180 * Math.PI;\n const cos = Math.cos(rotation);\n const sin = Math.sin(rotation);\n const lumR = 0.213;\n const lumG = 0.715;\n const lumB = 0.072;\n filter.colorMatrix([\n lumR + cos * (1 - lumR) + sin * (-lumR), lumG + cos * (-lumG) + sin * (-lumG), lumB + cos * (-lumB) + sin * (1 - lumB), 0, 0,\n lumR + cos * (-lumR) + sin * (0.143), lumG + cos * (1 - lumG) + sin * (0.140), lumB + cos * (-lumB) + sin * (-0.283), 0, 0,\n lumR + cos * (-lumR) + sin * (-(1 - lumR)), lumG + cos * (-lumG) + sin * (lumG), lumB + cos * (1 - lumB) + sin * (lumB), 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n desaturateLuminance: () => {\n filter.colorMatrix([\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n sepia: () => {\n filter.colorMatrix([\n 0.393, 0.7689999, 0.18899999, 0, 0,\n 0.349, 0.6859999, 0.16799999, 0, 0,\n 0.272, 0.5339999, 0.13099999, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n brownie: () => {\n filter.colorMatrix([\n 0.5997023498159715, 0.34553243048391263, -0.2708298674538042, 0, 47.43192855600873,\n -0.037703249837783157, 0.8609577587992641, 0.15059552388459913, 0, -36.96841498319127,\n 0.24113635128153335, -0.07441037908422492, 0.44972182064877153, 0, -7.562075277591283,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n vintagePinhole: () => {\n filter.colorMatrix([\n 0.6279345635605994, 0.3202183420819367, -0.03965408211312453, 0, 9.651285835294123,\n 0.02578397704808868, 0.6441188644374771, 0.03259127616149294, 0, 7.462829176470591,\n 0.0466055556782719, -0.0851232987247891, 0.5241648018700465, 0, 5.159190588235296,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n kodachrome: () => {\n filter.colorMatrix([\n 1.1285582396593525, -0.3967382283601348, -0.03992559172921793, 0, 63.72958762196502,\n -0.16404339962244616, 1.0835251566291304, -0.05498805115633132, 0, 24.732407896706203,\n -0.16786010706155763, -0.5603416277695248, 1.6014850761964943, 0, 35.62982807460946,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n technicolor: () => {\n filter.colorMatrix([\n 1.9125277891456083, -0.8545344976951645, -0.09155508482755585, 0, 11.793603434377337,\n -0.3087833385928097, 1.7658908555458428, -0.10601743074722245, 0, -70.35205161461398,\n -0.231103377548616, -0.7501899197440212, 1.847597816108189, 0, 30.950940869491138,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n polaroid: () => {\n filter.colorMatrix([\n 1.438, -0.062, -0.062, 0, 0,\n -0.122, 1.378, -0.122, 0, 0,\n -0.016, -0.016, 1.483, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n shiftToBGR: () => {\n filter.colorMatrix([\n 0, 0, 1, 0, 0,\n 0, 1, 0, 0, 0,\n 1, 0, 0, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n convolution: (matrix) => { // general convolution Filter\n const m = new Float32Array(matrix);\n const pixelSizeX = 1 / fxcanvas.width;\n const pixelSizeY = 1 / fxcanvas.height;\n const program = compileShader(shaders.convolution);\n if (!program) return;\n gl.uniform1fv(program.uniform['m'], m);\n gl.uniform2f(program.uniform['px'], pixelSizeX, pixelSizeY);\n draw();\n },\n\n detectEdges: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n 0, 1, 0,\n 1, -4, 1,\n 0, 1, 0,\n ]);\n },\n\n sobelX: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n -1, 0, 1,\n -2, 0, 2,\n -1, 0, 1,\n ]);\n },\n\n sobelY: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n -1, -2, -1,\n 0, 0, 0,\n 1, 2, 1,\n ]);\n },\n\n sharpen: (amount) => {\n const a = amount || 1;\n // @ts-ignore this\n filter.convolution.call(this, [\n 0, -1 * a, 0,\n -1 * a, 1 + 4 * a, -1 * a,\n 0, -1 * a, 0,\n ]);\n },\n\n emboss: (size) => {\n const s = size || 1;\n // @ts-ignore this\n filter.convolution.call(this, [\n -2 * s, -1 * s, 0,\n -1 * s, 1, 1 * s,\n 0, 1 * s, 2 * s,\n ]);\n },\n\n blur: (size) => {\n const blurSizeX = (size / 7) / fxcanvas.width;\n const blurSizeY = (size / 7) / fxcanvas.height;\n const program = compileShader(shaders.blur);\n if (!program) return;\n // Vertical\n gl.uniform2f(program.uniform['px'], 0, blurSizeY);\n draw(DRAW.INTERMEDIATE);\n // Horizontal\n gl.uniform2f(program.uniform['px'], blurSizeX, 0);\n draw();\n },\n\n pixelate: (size) => {\n const blurSizeX = (size) / fxcanvas.width;\n const blurSizeY = (size) / fxcanvas.height;\n const program = compileShader(shaders.pixelate);\n if (!program) return;\n gl.uniform2f(program.uniform['size'], blurSizeX, blurSizeY);\n draw();\n },\n };\n\n // @ts-ignore this\n this.add = function (name) {\n // eslint-disable-next-line prefer-rest-params\n const args = Array.prototype.slice.call(arguments, 1);\n const func = filter[name];\n filterChain.push({ func, args });\n };\n\n // @ts-ignore this\n this.reset = function () {\n filterChain = [];\n };\n\n // @ts-ignore this\n this.get = function () {\n return filterChain;\n };\n\n // @ts-ignore this\n this.apply = function (image) {\n resize(image.width, image.height);\n drawCount = 0;\n if (!sourceTexture) sourceTexture = gl.createTexture(); // Create the texture for the input image if we haven't yet\n gl.bindTexture(gl.TEXTURE_2D, sourceTexture);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);\n for (let i = 0; i < filterChain.length; i++) {\n lastInChain = (i === filterChain.length - 1);\n const f = filterChain[i];\n // @ts-ignore function assigment\n f.func.apply(this, f.args || []);\n }\n return fxcanvas;\n };\n\n // @ts-ignore this\n this.draw = function (image) {\n this.add('brightness', 0);\n return this.apply(image);\n };\n}\n", "/**\n * Image enhancements\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../exports';\n\nexport async function histogramEqualization(inputImage: Tensor): Promise {\n // const maxValue = 254; // using 255 results in values slightly larger than 1 due to math rounding errors\n const squeeze = inputImage.shape.length === 4 ? tf.squeeze(inputImage) : inputImage;\n const channels = tf.split(squeeze, 3, 2);\n const min: Tensor[] = [tf.min(channels[0]), tf.min(channels[1]), tf.min(channels[2])];\n const max: Tensor[] = [tf.max(channels[0]), tf.max(channels[1]), tf.max(channels[2])];\n const absMax = await Promise.all(max.map((channel) => channel.data()));\n const maxValue = 0.99 * Math.max(absMax[0][0], absMax[1][0], absMax[2][0]);\n const sub = [tf.sub(channels[0], min[0]), tf.sub(channels[1], min[1]), tf.sub(channels[2], min[2])];\n const range = [tf.sub(max[0], min[0]), tf.sub(max[1], min[1]), tf.sub(max[2], min[2])];\n const fact = [tf.div(maxValue, range[0]), tf.div(maxValue, range[1]), tf.div(maxValue, range[2])];\n const enh = [tf.mul(sub[0], fact[0]), tf.mul(sub[1], fact[1]), tf.mul(sub[2], fact[2])];\n const rgb = tf.stack([enh[0], enh[1], enh[2]], 2);\n const reshape = tf.reshape(rgb, [1, squeeze.shape[0], squeeze.shape[1], 3]);\n tf.dispose([...channels, ...min, ...max, ...sub, ...range, ...fact, ...enh, rgb, squeeze]);\n return reshape; // output shape is [1, height, width, 3]\n}\n", "/**\n * Image Processing algorithm implementation\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as fxImage from './imagefx';\nimport type { Input, AnyCanvas, Tensor, Config } from '../exports';\nimport { env } from '../util/env';\nimport { log } from '../util/util';\nimport * as enhance from './enhance';\n\nconst maxSize = 3840;\n// internal temp canvases\nlet inCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\nlet outCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\nlet tmpCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\n// @ts-ignore // imagefx is js module that should be converted to a class\nlet fx: fxImage.GLImageFilter | null; // instance of imagefx\n\nconst last: { inputSum: number, cacheDiff: number, sumMethod: number, inputTensor: undefined | Tensor } = {\n inputSum: 0,\n cacheDiff: 1,\n sumMethod: 0,\n inputTensor: undefined,\n};\n\nexport function canvas(width: number, height: number): AnyCanvas {\n let c;\n if (env.browser) { // browser defines canvas object\n if (env.worker) { // if runing in web worker use OffscreenCanvas\n if (typeof OffscreenCanvas === 'undefined') throw new Error('canvas error: attempted to run in web worker but OffscreenCanvas is not supported');\n c = new OffscreenCanvas(width, height);\n } else { // otherwise use DOM canvas\n if (typeof document === 'undefined') throw new Error('canvas error: attempted to run in browser but DOM is not defined');\n c = document.createElement('canvas');\n c.width = width;\n c.height = height;\n }\n } else { // if not running in browser, there is no \"default\" canvas object, so we need monkey patch or fail\n // @ts-ignore // env.canvas is an external monkey-patch\n if (typeof env.Canvas !== 'undefined') c = new env.Canvas(width, height);\n else if (typeof globalThis.Canvas !== 'undefined') c = new globalThis.Canvas(width, height);\n // else throw new Error('canvas error: attempted to use canvas in nodejs without canvas support installed');\n }\n return c;\n}\n\n// helper function to copy canvas from input to output\nexport function copy(input: AnyCanvas, output?: AnyCanvas) {\n const outputCanvas = output || canvas(input.width, input.height);\n const ctx = outputCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctx.drawImage(input, 0, 0);\n return outputCanvas;\n}\n\n// process input image and return tensor\n// input can be tensor, imagedata, htmlimageelement, htmlvideoelement\n// input is resized and run through imagefx filter\nexport async function process(input: Input, config: Config, getTensor: boolean = true): Promise<{ tensor: Tensor | null, canvas: AnyCanvas | null }> {\n if (!input) {\n // throw new Error('input is missing');\n if (config.debug) log('input error: input is missing');\n return { tensor: null, canvas: null }; // video may become temporarily unavailable due to onresize\n }\n // sanity checks since different browsers do not implement all dom elements\n if (\n !(input instanceof tf.Tensor)\n && !(typeof Image !== 'undefined' && input instanceof Image)\n && !(typeof env.Canvas !== 'undefined' && input instanceof env.Canvas)\n && !(typeof globalThis.Canvas !== 'undefined' && input instanceof globalThis.Canvas)\n && !(typeof ImageData !== 'undefined' && input instanceof ImageData)\n && !(typeof ImageBitmap !== 'undefined' && input instanceof ImageBitmap)\n && !(typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n && !(typeof HTMLMediaElement !== 'undefined' && input instanceof HTMLMediaElement)\n && !(typeof HTMLVideoElement !== 'undefined' && input instanceof HTMLVideoElement)\n && !(typeof HTMLCanvasElement !== 'undefined' && input instanceof HTMLCanvasElement)\n && !(typeof OffscreenCanvas !== 'undefined' && input instanceof OffscreenCanvas)\n ) {\n throw new Error('input error: type is not recognized');\n }\n if (input instanceof tf.Tensor) { // if input is tensor use as-is without filters but correct shape as needed\n let tensor: Tensor | null = null;\n if ((input as Tensor)['isDisposedInternal']) throw new Error('input error: attempted to use tensor but it is disposed');\n if (!(input as Tensor)['shape']) throw new Error('input error: attempted to use tensor without a shape');\n if ((input as Tensor).shape.length === 3) { // [height, width, 3 || 4]\n if ((input as Tensor).shape[2] === 3) { // [height, width, 3] so add batch\n tensor = tf.expandDims(input, 0);\n } else if ((input as Tensor).shape[2] === 4) { // [height, width, 4] so strip alpha and add batch\n const rgb = tf.slice3d(input, [0, 0, 0], [-1, -1, 3]);\n tensor = tf.expandDims(rgb, 0);\n tf.dispose(rgb);\n }\n } else if ((input as Tensor).shape.length === 4) { // [1, width, height, 3 || 4]\n if ((input as Tensor).shape[3] === 3) { // [1, width, height, 3] just clone\n tensor = tf.clone(input);\n } else if ((input as Tensor).shape[3] === 4) { // [1, width, height, 4] so strip alpha\n tensor = tf.slice4d(input, [0, 0, 0, 0], [-1, -1, -1, 3]);\n }\n }\n // at the end shape must be [1, height, width, 3]\n if (tensor == null || tensor.shape.length !== 4 || tensor.shape[0] !== 1 || tensor.shape[3] !== 3) throw new Error(`input error: attempted to use tensor with unrecognized shape: ${input['shape']}`);\n if ((tensor as Tensor).dtype === 'int32') {\n const cast = tf.cast(tensor, 'float32');\n tf.dispose(tensor);\n tensor = cast;\n }\n return { tensor, canvas: (config.filter.return ? outCanvas : null) };\n } else {\n // check if resizing will be needed\n if (typeof input['readyState'] !== 'undefined' && input['readyState'] <= 2) {\n if (config.debug) log('input stream is not ready');\n return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n }\n const originalWidth = input['naturalWidth'] || input['videoWidth'] || input['width'] || (input['shape'] && (input['shape'][1] > 0));\n const originalHeight = input['naturalHeight'] || input['videoHeight'] || input['height'] || (input['shape'] && (input['shape'][2] > 0));\n if (!originalWidth || !originalHeight) {\n if (config.debug) log('cannot determine input dimensions');\n return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n }\n let targetWidth = originalWidth;\n let targetHeight = originalHeight;\n if (targetWidth > maxSize) {\n targetWidth = maxSize;\n targetHeight = Math.trunc(targetWidth * originalHeight / originalWidth);\n }\n if (targetHeight > maxSize) {\n targetHeight = maxSize;\n targetWidth = Math.trunc(targetHeight * originalWidth / originalHeight);\n }\n\n // create our canvas and resize it if needed\n if ((config.filter.width || 0) > 0) targetWidth = config.filter.width;\n else if ((config.filter.height || 0) > 0) targetWidth = originalWidth * ((config.filter.height || 0) / originalHeight);\n if ((config.filter.height || 0) > 0) targetHeight = config.filter.height;\n else if ((config.filter.width || 0) > 0) targetHeight = originalHeight * ((config.filter.width || 0) / originalWidth);\n if (!targetWidth || !targetHeight) throw new Error('input error: cannot determine dimension');\n if (!inCanvas || (inCanvas?.width !== targetWidth) || (inCanvas?.height !== targetHeight)) inCanvas = canvas(targetWidth, targetHeight);\n\n // draw input to our canvas\n const inCtx = inCanvas.getContext('2d') as CanvasRenderingContext2D;\n if ((typeof ImageData !== 'undefined') && (input instanceof ImageData)) {\n inCtx.putImageData(input, 0, 0);\n } else {\n if (config.filter.flip && typeof inCtx.translate !== 'undefined') {\n inCtx.translate(originalWidth, 0);\n inCtx.scale(-1, 1);\n inCtx.drawImage(input as AnyCanvas, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n inCtx.setTransform(1, 0, 0, 1, 0, 0); // resets transforms to defaults\n } else {\n inCtx.drawImage(input as AnyCanvas, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n }\n }\n\n if (!outCanvas || (inCanvas.width !== outCanvas.width) || (inCanvas?.height !== outCanvas?.height)) outCanvas = canvas(inCanvas.width, inCanvas.height); // init output canvas\n\n // imagefx transforms using gl from input canvas to output canvas\n if (config.filter.enabled && env.webgl.supported) {\n if (!fx) fx = env.browser ? new fxImage.GLImageFilter() : null; // && (typeof document !== 'undefined')\n env.filter = !!fx;\n if (!fx || !fx.add) {\n if (config.debug) log('input process error: cannot initialize filters');\n env.webgl.supported = false;\n config.filter.enabled = false;\n copy(inCanvas, outCanvas); // filter failed to initialize\n // return { tensor: null, canvas: inCanvas };\n } else {\n fx.reset();\n if (config.filter.brightness !== 0) fx.add('brightness', config.filter.brightness);\n if (config.filter.contrast !== 0) fx.add('contrast', config.filter.contrast);\n if (config.filter.sharpness !== 0) fx.add('sharpen', config.filter.sharpness);\n if (config.filter.blur !== 0) fx.add('blur', config.filter.blur);\n if (config.filter.saturation !== 0) fx.add('saturation', config.filter.saturation);\n if (config.filter.hue !== 0) fx.add('hue', config.filter.hue);\n if (config.filter.negative) fx.add('negative');\n if (config.filter.sepia) fx.add('sepia');\n if (config.filter.vintage) fx.add('brownie');\n if (config.filter.sepia) fx.add('sepia');\n if (config.filter.kodachrome) fx.add('kodachrome');\n if (config.filter.technicolor) fx.add('technicolor');\n if (config.filter.polaroid) fx.add('polaroid');\n if (config.filter.pixelate !== 0) fx.add('pixelate', config.filter.pixelate);\n if (fx.get() > 0) outCanvas = fx.apply(inCanvas);\n else outCanvas = fx.draw(inCanvas);\n }\n } else {\n copy(inCanvas, outCanvas); // if no filters applied, output canvas is input canvas\n if (fx) fx = null;\n env.filter = !!fx;\n }\n\n if (!getTensor) return { tensor: null, canvas: outCanvas }; // just canvas was requested\n if (!outCanvas) throw new Error('canvas error: cannot create output');\n\n // create tensor from image unless input was a tensor already\n let pixels;\n let depth = 3;\n if ((typeof ImageData !== 'undefined' && input instanceof ImageData) || (input['data'] && input['width'] && input['height'])) { // if input is imagedata, just use it\n if (env.browser && tf.browser) {\n pixels = tf.browser ? tf.browser.fromPixels(input) : null;\n } else {\n depth = input['data'].length / input['height'] / input['width'];\n // const arr = Uint8Array.from(input['data']);\n const arr = new Uint8Array(input['data']['buffer']);\n pixels = tf.tensor(arr, [input['height'], input['width'], depth], 'int32');\n }\n } else {\n if (!tmpCanvas || (outCanvas.width !== tmpCanvas.width) || (outCanvas.height !== tmpCanvas.height)) tmpCanvas = canvas(outCanvas.width, outCanvas.height); // init output canvas\n if (tf.browser && env.browser) {\n if (config.backend === 'webgl' || config.backend === 'humangl' || config.backend === 'webgpu') {\n pixels = tf.browser.fromPixels(outCanvas); // safe to reuse since both backend and context are gl based\n } else {\n tmpCanvas = copy(outCanvas); // cannot use output canvas as it already has gl context so we do a silly one more canvas\n pixels = tf.browser.fromPixels(tmpCanvas);\n }\n } else {\n const tempCanvas = copy(outCanvas); // cannot use output canvas as it already has gl context so we do a silly one more canvas\n const tempCtx = tempCanvas.getContext('2d') as CanvasRenderingContext2D;\n const tempData = tempCtx.getImageData(0, 0, targetWidth, targetHeight);\n depth = tempData.data.length / targetWidth / targetHeight;\n const arr = new Uint8Array(tempData.data.buffer);\n pixels = tf.tensor(arr, [targetWidth, targetHeight, depth]);\n }\n }\n if (depth === 4) { // rgba to rgb\n const rgb = tf.slice3d(pixels, [0, 0, 0], [-1, -1, 3]); // strip alpha channel\n tf.dispose(pixels);\n pixels = rgb;\n }\n if (!pixels) throw new Error('input error: cannot create tensor');\n const casted = tf.cast(pixels, 'float32');\n const tensor = config.filter.equalization ? await enhance.histogramEqualization(casted) : tf.expandDims(casted, 0);\n tf.dispose([pixels, casted]);\n return { tensor, canvas: (config.filter.return ? outCanvas : null) };\n }\n}\n\n/*\nconst checksum = async (input: Tensor): Promise => { // use tf sum or js based sum loop depending on which is faster\n const resizeFact = 48;\n const reduced: Tensor = tf.image.resizeBilinear(input, [Math.trunc((input.shape[1] || 1) / resizeFact), Math.trunc((input.shape[2] || 1) / resizeFact)]);\n const tfSum = async (): Promise => {\n const sumT = tf.sum(reduced);\n const sum0 = await sumT.data();\n tf.dispose(sumT);\n return sum0[0];\n };\n const jsSum = async (): Promise => {\n const reducedData = await reduced.data(); // raw image rgb array\n let sum0 = 0;\n for (let i = 0; i < reducedData.length / 3; i++) sum0 += reducedData[3 * i + 2]; // look only at green value of each pixel\n return sum0;\n };\n if (last.sumMethod === 0) {\n const t0 = now();\n await jsSum();\n const t1 = now();\n await tfSum();\n const t2 = now();\n last.sumMethod = t1 - t0 < t2 - t1 ? 1 : 2;\n }\n const res = last.sumMethod === 1 ? await jsSum() : await tfSum();\n tf.dispose(reduced);\n return res;\n};\n*/\n\nexport async function skip(config: Partial, input: Tensor) {\n let skipFrame = false;\n if (config.cacheSensitivity === 0 || !input.shape || input.shape.length !== 4 || input.shape[1] > 2048 || input.shape[2] > 2048) return skipFrame; // cache disabled or input is invalid or too large for cache analysis\n\n /*\n const checkSum = await checksum(input);\n const diff = 100 * (Math.max(checkSum, last.inputSum) / Math.min(checkSum, last.inputSum) - 1);\n last.inputSum = checkSum;\n // if previous frame was skipped, skip this frame if changed more than cacheSensitivity\n // if previous frame was not skipped, then look for cacheSensitivity or difference larger than one in previous frame to avoid resetting cache in subsequent frames unnecessarily\n let skipFrame = diff < Math.max(config.cacheSensitivity, last.cacheDiff);\n // if difference is above 10x threshold, don't use last value to force reset cache for significant change of scenes or images\n last.cacheDiff = diff > 10 * config.cacheSensitivity ? 0 : diff;\n skipFrame = skipFrame && (last.cacheDiff > 0); // if no cached diff value then force no skip\n */\n\n if (!last.inputTensor) {\n last.inputTensor = tf.clone(input);\n } else if (last.inputTensor.shape[1] !== input.shape[1] || last.inputTensor.shape[2] !== input.shape[2]) { // input resolution changed\n tf.dispose(last.inputTensor);\n last.inputTensor = tf.clone(input);\n } else {\n const t: Record = {};\n t.diff = tf.sub(input, last.inputTensor);\n t.squared = tf.mul(t.diff, t.diff);\n t.sum = tf.sum(t.squared);\n const diffSum = await t.sum.data();\n const diffRelative = diffSum[0] / (input.shape[1] || 1) / (input.shape[2] || 1) / 255 / 3; // squared difference relative to input resolution and averaged per channel\n tf.dispose([last.inputTensor, t.diff, t.squared, t.sum]);\n last.inputTensor = tf.clone(input);\n skipFrame = diffRelative <= (config.cacheSensitivity || 0);\n }\n return skipFrame;\n}\n\nexport async function compare(config: Partial, input1: Tensor, input2: Tensor): Promise {\n const t: Record = {};\n if (!input1 || !input2 || input1.shape.length !== 4 || input1.shape.length !== input2.shape.length) {\n if (!config.debug) log('invalid input tensor or tensor shapes do not match:', input1.shape, input2.shape);\n return 0;\n }\n if (input1.shape[0] !== 1 || input2.shape[0] !== 1 || input1.shape[3] !== 3 || input2.shape[3] !== 3) {\n if (!config.debug) log('input tensors must be of shape [1, height, width, 3]:', input1.shape, input2.shape);\n return 0;\n }\n t.input1 = tf.clone(input1);\n t.input2 = (input1.shape[1] !== input2.shape[1] || input1.shape[2] !== input2.shape[2]) ? tf.image.resizeBilinear(input2, [input1.shape[1], input1.shape[2]]) : tf.clone(input2);\n t.diff = tf.sub(t.input1, t.input2);\n t.squared = tf.mul(t.diff, t.diff);\n t.sum = tf.sum(t.squared);\n const diffSum = await t.sum.data();\n const diffRelative = diffSum[0] / (input1.shape[1] || 1) / (input1.shape[2] || 1) / 255 / 3;\n tf.dispose([t.input1, t.input2, t.diff, t.squared, t.sum]);\n return diffRelative;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\n\n/** Env class that holds detected capabilities */\nexport class Env {\n /** Running in Browser */\n browser: boolean;\n /** Running in NodeJS */\n node: boolean;\n /** Running in WebWorker thread */\n worker: boolean;\n /** Detected platform */\n platform: string = '';\n /** Detected agent */\n agent: string = '';\n /** List of supported backends */\n backends: string[] = [];\n /** Has any work been performed so far */\n initial: boolean;\n /** Are image filters supported? */\n filter: boolean | undefined;\n /** TFJS instance details */\n tfjs: {\n version: undefined | string,\n };\n /** Is offscreenCanvas supported? */\n offscreen: undefined | boolean;\n /** Are performance counter instant values or additive */\n perfadd: boolean = false;\n /** WASM detected capabilities */\n wasm: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n simd: undefined | boolean,\n multithread: undefined | boolean,\n } = {\n supported: undefined,\n backend: undefined,\n simd: undefined,\n multithread: undefined,\n };\n /** WebGL detected capabilities */\n webgl: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n version: undefined | string,\n renderer: undefined | string,\n } = {\n supported: undefined,\n backend: undefined,\n version: undefined,\n renderer: undefined,\n };\n /** WebGPU detected capabilities */\n webgpu: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n adapter: undefined | string,\n } = {\n supported: undefined,\n backend: undefined,\n adapter: undefined,\n };\n /** CPU info */\n cpu: {\n model: undefined | string,\n flags: string[],\n } = {\n model: undefined,\n flags: [],\n };\n /** List of supported kernels for current backend */\n kernels: string[] = [];\n /** MonkeyPatch for Canvas */\n Canvas: undefined;\n /** MonkeyPatch for Image */\n Image: undefined;\n /** MonkeyPatch for ImageData */\n ImageData: undefined;\n\n constructor() {\n this.browser = typeof navigator !== 'undefined';\n this.node = (typeof process !== 'undefined') && (typeof process.versions !== 'undefined') && (typeof process.versions.node !== 'undefined');\n this.tfjs = { version: tf.version['tfjs-core'] };\n this.offscreen = typeof OffscreenCanvas !== 'undefined';\n this.initial = true;\n // @ts-ignore WorkerGlobalScope evaluated in browser only\n this.worker = this.browser && this.offscreen ? (typeof WorkerGlobalScope !== 'undefined') : undefined;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n this.platform = (platformMatch && platformMatch[0]) ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n this.agent = navigator.userAgent.replace(raw[0], '');\n if (this.platform[1]) this.agent = this.agent.replace(raw[1], '');\n this.agent = this.agent.replace(/ /g, ' ');\n // chrome offscreencanvas gpu memory leak\n /*\n const isChrome = env.agent.match(/Chrome\\/.[0-9]/g);\n const verChrome = isChrome && isChrome[0] ? isChrome[0].split('/')[1] : 0;\n if (verChrome > 92 && verChrome < 96) {\n log('disabling offscreenCanvas due to browser error:', isChrome ? isChrome[0] : 'unknown');\n this.offscreen = false;\n }\n */\n }\n } else if (typeof process !== 'undefined') {\n this.platform = `${process.platform} ${process.arch}`;\n this.agent = `NodeJS ${process.version}`;\n }\n }\n\n /** update backend information */\n async updateBackend() {\n // analyze backends\n this.backends = Object.keys(tf.engine().registryFactory);\n this.wasm.supported = typeof WebAssembly !== 'undefined';\n this.wasm.backend = this.backends.includes('wasm');\n if (this.wasm.supported && this.wasm.backend && tf.getBackend() === 'wasm') {\n this.wasm.simd = await tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n this.wasm.multithread = await tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n }\n const c = image.canvas(100, 100);\n const ctx = c ? c.getContext('webgl2') : undefined; // causes too many gl contexts\n // const ctx = typeof tf.backend().getGPGPUContext !== undefined ? tf.backend().getGPGPUContext : null;\n this.webgl.supported = typeof ctx !== 'undefined';\n this.webgl.backend = this.backends.includes('webgl');\n if (this.webgl.supported && this.webgl.backend && (tf.getBackend() === 'webgl' || tf.getBackend() === 'humangl')) {\n // @ts-ignore getGPGPUContext only exists on WebGL backend\n const gl = tf.backend().gpgpu !== 'undefined' ? await tf.backend().getGPGPUContext().gl : null;\n if (gl) {\n this.webgl.version = gl.getParameter(gl.VERSION);\n this.webgl.renderer = gl.getParameter(gl.RENDERER);\n }\n }\n // @ts-ignore navigator.gpu is only defined when webgpu is available in browser\n this.webgpu.supported = this.browser && typeof navigator['gpu'] !== 'undefined';\n this.webgpu.backend = this.backends.includes('webgpu');\n try {\n // @ts-ignore navigator.gpu is only defined when webgpu is available in browser\n if (this.webgpu.supported) this.webgpu.adapter = (await navigator['gpu'].requestAdapter()).name;\n } catch {\n this.webgpu.supported = false;\n }\n try {\n this.kernels = tf.getKernelsForBackend(tf.getBackend()).map((kernel) => kernel.kernelName.toLowerCase());\n } catch { /**/ }\n }\n\n /** update cpu information */\n async updateCPU() {\n const cpu = { model: '', flags: [] };\n if (this.node && this.platform.startsWith('linux')) {\n /*\n const fs = require('fs');\n try {\n const data = fs.readFileSync('/proc/cpuinfo').toString();\n for (const line of data.split('\\n')) {\n if (line.startsWith('model name')) cpu.model = line.match(/:(.*)/g)[0].replace(':', '').trim();\n if (line.startsWith('flags')) cpu.flags = line.match(/:(.*)/g)[0].replace(':', '').trim().split(' ').sort();\n }\n } catch { }\n */\n }\n if (!this['cpu']) Object.defineProperty(this, 'cpu', { value: cpu });\n else this['cpu'] = cpu;\n }\n}\n\nexport const env = new Env();\n", "import { log, join } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { GraphModel } from './types';\nimport type { Config } from '../config';\nimport * as modelsDefs from '../../models/models.json';\n\nconst options = {\n cacheModels: true,\n cacheSupported: true,\n verbose: true,\n debug: false,\n modelBasePath: '',\n};\n\nexport type ModelInfo = {\n name: string,\n inCache: boolean,\n sizeDesired: number,\n sizeFromManifest: number,\n sizeLoadedWeights: number,\n}\n\nexport const modelStats: Record = {};\n\nasync function httpHandler(url, init?): Promise {\n if (options.debug) log('load model fetch:', url, init);\n return fetch(url, init);\n}\n\nexport function setModelLoadOptions(config: Config) {\n options.cacheModels = config.cacheModels;\n options.verbose = config.debug;\n options.modelBasePath = config.modelBasePath;\n}\n\nexport async function loadModel(modelPath: string | undefined): Promise {\n let modelUrl = join(options.modelBasePath, modelPath || '');\n if (!modelUrl.toLowerCase().endsWith('.json')) modelUrl += '.json';\n const modelPathSegments = modelUrl.includes('/') ? modelUrl.split('/') : modelUrl.split('\\\\');\n const shortModelName = modelPathSegments[modelPathSegments.length - 1].replace('.json', '');\n const cachedModelName = 'indexeddb://' + shortModelName; // generate short model name for cache\n modelStats[shortModelName] = {\n name: shortModelName,\n sizeFromManifest: 0,\n sizeLoadedWeights: 0,\n sizeDesired: modelsDefs[shortModelName],\n inCache: false,\n };\n options.cacheSupported = (typeof window !== 'undefined') && (typeof window.localStorage !== 'undefined') && (typeof window.indexedDB !== 'undefined'); // check if running in browser and if indexedb is available\n let cachedModels = {};\n try {\n cachedModels = (options.cacheSupported && options.cacheModels) ? await tf.io.listModels() : {}; // list all models already in cache // this fails for webview although localStorage is defined\n } catch {\n options.cacheSupported = false;\n }\n modelStats[shortModelName].inCache = (options.cacheSupported && options.cacheModels) && Object.keys(cachedModels).includes(cachedModelName); // is model found in cache\n const tfLoadOptions = typeof fetch === 'undefined' ? {} : { fetchFunc: (url, init?) => httpHandler(url, init) };\n const model: GraphModel = new tf.GraphModel(modelStats[shortModelName].inCache ? cachedModelName : modelUrl, tfLoadOptions) as unknown as GraphModel; // create model prototype and decide if load from cache or from original modelurl\n let loaded = false;\n try {\n // @ts-ignore private function\n model.findIOHandler(); // decide how to actually load a model\n if (options.debug) log('model load handler:', model['handler']);\n // @ts-ignore private property\n const artifacts = await model.handler.load(); // load manifest\n modelStats[shortModelName].sizeFromManifest = artifacts?.weightData?.byteLength || 0;\n model.loadSync(artifacts); // load weights\n // @ts-ignore private property\n modelStats[shortModelName].sizeLoadedWeights = model?.artifacts?.weightData?.byteLength || 0;\n if (options.verbose) log('load model:', model['modelUrl'], { bytes: modelStats[shortModelName].sizeLoadedWeights }, options);\n loaded = true;\n } catch (err) {\n log('error loading model:', modelUrl, err);\n }\n if (loaded && options.cacheModels && options.cacheSupported && !modelStats[shortModelName].inCache) { // save model to cache\n try {\n const saveResult = await model.save(cachedModelName);\n log('model saved:', cachedModelName, saveResult);\n } catch (err) {\n log('error saving model:', modelUrl, err);\n }\n }\n return model;\n}\n", "/**\n * Loader and Validator for all models used by Human\n */\n\nimport { env } from './util/env';\nimport { log } from './util/util';\nimport * as gear from './gear/gear';\nimport * as ssrnetAge from './gear/ssrnet-age';\nimport * as ssrnetGender from './gear/ssrnet-gender';\nimport * as antispoof from './face/antispoof';\nimport * as blazeface from './face/blazeface';\nimport * as blazepose from './body/blazepose';\nimport * as centernet from './object/centernet';\nimport * as efficientpose from './body/efficientpose';\nimport * as emotion from './gear/emotion';\nimport * as mobilefacenet from './face/mobilefacenet';\nimport * as facemesh from './face/facemesh';\nimport * as faceres from './face/faceres';\nimport * as handpose from './hand/handpose';\nimport * as handtrack from './hand/handtrack';\nimport * as iris from './face/iris';\nimport * as liveness from './face/liveness';\nimport * as movenet from './body/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as posenet from './body/posenet';\nimport * as segmentation from './segmentation/segmentation';\nimport { modelStats, ModelInfo } from './tfjs/load';\nimport type { GraphModel } from './tfjs/types';\nimport type { Human } from './human';\n\n/** Instances of all possible TFJS Graph Models used by Human\n * - loaded as needed based on configuration\n * - initialized explictly with `human.load()` method\n * - initialized implicity on first call to `human.detect()`\n * - each model can be `null` if not loaded, instance of `GraphModel` if loaded or `Promise` if loading\n */\nexport class Models {\n ssrnetage: null | GraphModel | Promise = null;\n gear: null | GraphModel | Promise = null;\n blazeposedetect: null | GraphModel | Promise = null;\n blazepose: null | GraphModel | Promise = null;\n centernet: null | GraphModel | Promise = null;\n efficientpose: null | GraphModel | Promise = null;\n mobilefacenet: null | GraphModel | Promise = null;\n emotion: null | GraphModel | Promise = null;\n facedetect: null | GraphModel | Promise = null;\n faceiris: null | GraphModel | Promise = null;\n facemesh: null | GraphModel | Promise = null;\n faceres: null | GraphModel | Promise = null;\n ssrnetgender: null | GraphModel | Promise = null;\n handpose: null | GraphModel | Promise = null;\n handskeleton: null | GraphModel | Promise = null;\n handtrack: null | GraphModel | Promise = null;\n liveness: null | GraphModel | Promise = null;\n movenet: null | GraphModel | Promise = null;\n nanodet: null | GraphModel | Promise = null;\n posenet: null | GraphModel | Promise = null;\n segmentation: null | GraphModel | Promise = null;\n antispoof: null | GraphModel | Promise = null;\n}\n\nexport type ModelStats = {\n numLoadedModels: number,\n numEnabledModels: undefined,\n numDefinedModels: number,\n percentageLoaded: number,\n totalSizeFromManifest: number,\n totalSizeWeights: number,\n totalSizeLoading: number,\n totalSizeEnabled: undefined,\n modelStats: ModelInfo[],\n}\n\nexport const getModelStats = (instance: Human): ModelStats => {\n let totalSizeFromManifest = 0;\n let totalSizeWeights = 0;\n let totalSizeLoading = 0;\n for (const m of Object.values(modelStats)) {\n totalSizeFromManifest += m.sizeFromManifest;\n totalSizeWeights += m.sizeLoadedWeights;\n totalSizeLoading += m.sizeDesired;\n }\n const percentageLoaded = totalSizeLoading > 0 ? totalSizeWeights / totalSizeLoading : 0;\n return {\n numLoadedModels: Object.values(modelStats).length,\n numEnabledModels: undefined,\n numDefinedModels: Object.keys(instance.models).length,\n percentageLoaded,\n totalSizeFromManifest,\n totalSizeWeights,\n totalSizeLoading,\n totalSizeEnabled: undefined,\n modelStats: Object.values(modelStats),\n };\n};\n\nexport function reset(instance: Human): void {\n // if (instance.config.debug) log('resetting loaded models');\n for (const model of Object.keys(instance.models)) instance.models[model as keyof Models] = null;\n}\n\n/** Load method preloads all instance.configured models on-demand */\nexport async function load(instance: Human): Promise {\n if (env.initial) reset(instance);\n if (instance.config.hand.enabled) { // handpose model is a combo that must be loaded as a whole\n if (!instance.models.handpose && instance.config.hand.detector?.modelPath?.includes('handdetect')) {\n [instance.models.handpose, instance.models.handskeleton] = await handpose.load(instance.config);\n }\n if (!instance.models.handskeleton && instance.config.hand.landmarks && instance.config.hand.detector?.modelPath?.includes('handdetect')) {\n [instance.models.handpose, instance.models.handskeleton] = await handpose.load(instance.config);\n }\n }\n if (instance.config.body.enabled && !instance.models.blazepose && instance.config.body?.modelPath?.includes('blazepose')) instance.models.blazepose = blazepose.loadPose(instance.config);\n // @ts-ignore optional model\n if (instance.config.body.enabled && !instance.models.blazeposedetect && instance.config.body['detector'] && instance.config.body['detector']['modelPath']) instance.models.blazeposedetect = blazepose.loadDetect(instance.config);\n if (instance.config.body.enabled && !instance.models.efficientpose && instance.config.body?.modelPath?.includes('efficientpose')) instance.models.efficientpose = efficientpose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.movenet && instance.config.body?.modelPath?.includes('movenet')) instance.models.movenet = movenet.load(instance.config);\n if (instance.config.body.enabled && !instance.models.posenet && instance.config.body?.modelPath?.includes('posenet')) instance.models.posenet = posenet.load(instance.config);\n if (instance.config.face.enabled && !instance.models.facedetect) instance.models.facedetect = blazeface.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.antispoof?.enabled && !instance.models.antispoof) instance.models.antispoof = antispoof.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.liveness?.enabled && !instance.models.liveness) instance.models.liveness = liveness.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.description?.enabled && !instance.models.faceres) instance.models.faceres = faceres.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.emotion?.enabled && !instance.models.emotion) instance.models.emotion = emotion.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.iris?.enabled && !instance.config.face.attention?.enabled && !instance.models.faceiris) instance.models.faceiris = iris.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.mesh?.enabled && !instance.models.facemesh) instance.models.facemesh = facemesh.load(instance.config);\n // @ts-ignore optional model\n if (instance.config.face.enabled && instance.config.face['gear']?.enabled && !instance.models.gear) instance.models.gear = gear.load(instance.config);\n // @ts-ignore optional model\n if (instance.config.face.enabled && instance.config.face['ssrnet']?.enabled && !instance.models.ssrnetage) instance.models.ssrnetage = ssrnetAge.load(instance.config);\n // @ts-ignore optional model\n if (instance.config.face.enabled && instance.config.face['ssrnet']?.enabled && !instance.models.ssrnetgender) instance.models.ssrnetgender = ssrnetGender.load(instance.config);\n // @ts-ignore optional model\n if (instance.config.face.enabled && instance.config.face['mobilefacenet']?.enabled && !instance.models.mobilefacenet) instance.models.mobilefacenet = mobilefacenet.load(instance.config);\n if (instance.config.hand.enabled && !instance.models.handtrack && instance.config.hand.detector?.modelPath?.includes('handtrack')) instance.models.handtrack = handtrack.loadDetect(instance.config);\n if (instance.config.hand.enabled && instance.config.hand.landmarks && !instance.models.handskeleton && instance.config.hand.detector?.modelPath?.includes('handtrack')) instance.models.handskeleton = handtrack.loadSkeleton(instance.config);\n if (instance.config.object.enabled && !instance.models.centernet && instance.config.object?.modelPath?.includes('centernet')) instance.models.centernet = centernet.load(instance.config);\n if (instance.config.object.enabled && !instance.models.nanodet && instance.config.object?.modelPath?.includes('nanodet')) instance.models.nanodet = nanodet.load(instance.config);\n if (instance.config.segmentation.enabled && !instance.models.segmentation) instance.models.segmentation = segmentation.load(instance.config);\n\n // models are loaded in parallel asynchronously so lets wait until they are actually loaded\n for await (const model of Object.keys(instance.models)) {\n if (instance.models[model as keyof Models] && typeof instance.models[model as keyof Models] !== 'undefined') {\n instance.models[model as keyof Models] = await instance.models[model as keyof Models];\n }\n }\n}\n\nexport async function validate(instance: Human): Promise {\n interface Op { name: string, category: string, op: string }\n const simpleOps = ['const', 'placeholder', 'noop', 'pad', 'squeeze', 'add', 'sub', 'mul', 'div'];\n for (const defined of Object.keys(instance.models)) {\n const model: GraphModel | null = instance.models[defined as keyof Models] as GraphModel | null;\n if (!model) continue;\n const ops: string[] = [];\n // @ts-ignore // executor is a private method\n const executor = model?.executor;\n if (executor && executor.graph.nodes) {\n for (const kernel of Object.values(executor.graph.nodes)) {\n const op = (kernel as Op).op.toLowerCase();\n if (!ops.includes(op)) ops.push(op);\n }\n } else {\n if (!executor && instance.config.debug) log('model signature not determined:', defined);\n }\n const missing: string[] = [];\n for (const op of ops) {\n if (!simpleOps.includes(op) // exclude simple ops\n && !instance.env.kernels.includes(op) // check actual kernel ops\n && !instance.env.kernels.includes(op.replace('_', '')) // check variation without _\n && !instance.env.kernels.includes(op.replace('native', '')) // check standard variation\n && !instance.env.kernels.includes(op.replace('v2', ''))) { // check non-versioned variation\n missing.push(op);\n }\n }\n // log('model validation ops:', defined, ops);\n if (instance.config.debug && missing.length > 0) log('model validation failed:', defined, missing);\n }\n}\n", "/**\n * GEAR [gender/emotion/age/race] model implementation\n *\n * Based on: [**GEAR Predictor**](https://github.com/Udolf15/GEAR-Predictor)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Gender, Race } from '../result';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport { env } from '../util/env';\n\nexport type GearType = { age: number, gender: Gender, genderScore: number, race: Array<{ score: number, race: Race }> }\nlet model: GraphModel | null;\nconst last: Array = [];\nconst raceNames = ['white', 'black', 'asian', 'indian', 'other'];\nconst ageWeights = [15, 23, 28, 35.5, 45.5, 55.5, 65];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['gear']?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model) return { age: 0, gender: 'unknown', genderScore: 0, race: [] };\n const skipFrame = skipped < (config.face['gear']?.skipFrames || 0);\n const skipTime = (config.face['gear']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs[0].shape) return;\n const t: Record = {};\n // t.resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape[2], model?.inputs[0].shape[1]], false);\n const box = [[0.0, 0.10, 0.90, 0.90]]; // empyrical values for top, left, bottom, right\n t.resize = tf.image.cropAndResize(image, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const obj: GearType = { age: 0, gender: 'unknown', genderScore: 0, race: [] };\n if (config.face['gear']?.enabled) [t.age, t.gender, t.race] = model.execute(t.resize, ['age_output', 'gender_output', 'race_output']) as Tensor[];\n const gender = await t.gender.data();\n obj.gender = gender[0] > gender[1] ? 'male' : 'female';\n obj.genderScore = Math.round(100 * (gender[0] > gender[1] ? gender[0] : gender[1])) / 100;\n const race = await t.race.data();\n for (let i = 0; i < race.length; i++) {\n if (race[i] > (config.face['gear']?.minConfidence || 0.2)) obj.race.push({ score: Math.round(100 * race[i]) / 100, race: raceNames[i] as Race });\n }\n obj.race.sort((a, b) => b.score - a.score);\n // {0: 'Below20', 1: '21-25', 2: '26-30', 3: '31-40',4: '41-50', 5: '51-60', 6: 'Above60'}\n const ageDistribution = Array.from(await t.age.data());\n const ageSorted = ageDistribution.map((a, i) => [ageWeights[i], a]).sort((a, b) => b[1] - a[1]);\n let age = ageSorted[0][0]; // pick best starting point\n for (let i = 1; i < ageSorted.length; i++) age += ageSorted[i][1] * (ageSorted[i][0] - age); // adjust with each other choice by weight\n obj.age = Math.round(10 * age) / 10;\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from './types';\n\nexport const constants: Record = {\n tf255: 255,\n tf1: 1,\n tf2: 2,\n tf05: 0.5,\n tf127: 127.5,\n rgb: [0.2989, 0.5870, 0.1140],\n};\n\nexport function init() {\n constants.tf255 = tf.scalar(255, 'float32');\n constants.tf1 = tf.scalar(1, 'float32');\n constants.tf2 = tf.scalar(2, 'float32');\n constants.tf05 = tf.scalar(0.5, 'float32');\n constants.tf127 = tf.scalar(127.5, 'float32');\n constants.rgb = tf.tensor1d([0.2989, 0.5870, 0.1140], 'float32'); // factors for red/green/blue colors when converting to grayscale\n}\n", "/**\n * Age model implementation\n *\n * Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\nimport { constants } from '../tfjs/constants';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\n\nlet model: GraphModel | null;\nconst last: Array<{ age: number }> = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['ssrnet'].modelPathAge);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise<{ age: number }> {\n if (!model) return { age: 0 };\n const skipFrame = skipped < (config.face['ssrnet']?.skipFrames || 0);\n const skipTime = (config.face['ssrnet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs || !model.inputs[0] || !model.inputs[0].shape) return;\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n t.enhance = tf.mul(t.resize, constants.tf255);\n const obj = { age: 0 };\n if (config.face['ssrnet'].enabled) t.age = model.execute(t.enhance) as Tensor;\n if (t.age) {\n const data = await t.age.data();\n obj.age = Math.trunc(10 * data[0]) / 10;\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "/**\n * Gender model implementation\n *\n * Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Gender } from '../result';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: Array<{ gender: Gender, genderScore: number }> = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport async function load(config: Config | any) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['ssrnet'].modelPathGender);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport async function predict(image: Tensor, config: Config, idx, count): Promise<{ gender: Gender, genderScore: number }> {\n if (!model) return { gender: 'unknown', genderScore: 0 };\n const skipFrame = skipped < (config.face['ssrnet']?.skipFrames || 0);\n const skipTime = (config.face['ssrnet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.gender && (last[idx]?.genderScore > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs[0].shape) return;\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n t.enhance = tf.tidy(() => {\n const [red, green, blue] = tf.split(t.resize, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const normalize = tf.mul(tf.sub(grayscale, constants.tf05), 2); // range grayscale:-1..1\n return normalize;\n });\n const obj: { gender: Gender, genderScore: number } = { gender: 'unknown', genderScore: 0 };\n if (config.face['ssrnet'].enabled) t.gender = model.execute(t.enhance) as Tensor;\n const data = await t.gender.data();\n obj.gender = data[0] > data[1] ? 'female' : 'male'; // returns two values 0..1, bigger one is prediction\n obj.genderScore = data[0] > data[1] ? (Math.trunc(100 * data[0]) / 100) : (Math.trunc(100 * data[1]) / 100);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "/**\n * Anti-spoofing model implementation\n */\n\nimport { log, now } from '../util/util';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst cached: Array = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastCount = 0;\nlet lastTime = 0;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.antispoof?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model) return 0;\n const skipTime = (config.face.antispoof?.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.face.antispoof?.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && cached[idx]) {\n skipped++;\n return cached[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false);\n const res = model?.execute(resize) as Tensor;\n const num = (await res.data())[0];\n cached[idx] = Math.round(100 * num) / 100;\n lastCount = count;\n lastTime = now();\n tf.dispose([resize, res]);\n resolve(cached[idx]);\n });\n}\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nexport const meshAnnotations: Record = {\n silhouette: [\n 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,\n 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,\n 172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109,\n ],\n // lipsUpperOuter: [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291], // 11\n // lipsLowerOuter: [146, 91, 181, 84, 17, 314, 405, 321, 375, 291], // 10\n // lipsUpperInner: [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308], // 11\n // lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308], // 11\n lipsUpperOuter: [185, 40, 39, 37, 0, 267, 269, 270, 409],\n lipsLowerOuter: [61, 146, 91, 181, 84, 17, 314, 405, 321, 375, 291],\n lipsUpperInner: [191, 80, 81, 82, 13, 312, 311, 310, 415],\n lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\n lipsLowerSemiOuter: [76, 77, 90, 180, 85, 16, 315, 404, 320, 307, 306],\n lipsUpperSemiOuter: [184, 74, 73, 72, 11, 302, 303, 304, 408],\n lipsLowerSemiInner: [62, 96, 89, 179, 86, 15, 316, 403, 319, 325, 292],\n lipsUpperSemiInner: [183, 42, 41, 38, 12, 268, 271, 272, 407],\n rightEyeUpper0: [246, 161, 160, 159, 158, 157, 173], // 7\n rightEyeLower0: [33, 7, 163, 144, 145, 153, 154, 155, 133], // 9\n rightEyeUpper1: [247, 30, 29, 27, 28, 56, 190], // 7\n rightEyeLower1: [130, 25, 110, 24, 23, 22, 26, 112, 243], // 9\n rightEyeUpper2: [113, 225, 224, 223, 222, 221, 189], // 7\n rightEyeLower2: [226, 31, 228, 229, 230, 231, 232, 233, 244], // 9\n rightEyeLower3: [143, 111, 117, 118, 119, 120, 121, 128, 245], // 9\n rightEyebrowUpper: [156, 70, 63, 105, 66, 107, 55, 193], // 8\n rightEyebrowLower: [35, 124, 46, 53, 52, 65], // 6\n rightEyeIris: [473, 474, 475, 476, 477], // 5\n leftEyeUpper0: [466, 388, 387, 386, 385, 384, 398],\n leftEyeLower0: [263, 249, 390, 373, 374, 380, 381, 382, 362],\n leftEyeUpper1: [467, 260, 259, 257, 258, 286, 414],\n leftEyeLower1: [359, 255, 339, 254, 253, 252, 256, 341, 463],\n leftEyeUpper2: [342, 445, 444, 443, 442, 441, 413],\n leftEyeLower2: [446, 261, 448, 449, 450, 451, 452, 453, 464],\n leftEyeLower3: [372, 340, 346, 347, 348, 349, 350, 357, 465],\n leftEyebrowUpper: [383, 300, 293, 334, 296, 336, 285, 417],\n leftEyebrowLower: [265, 353, 276, 283, 282, 295],\n leftEyeIris: [468, 469, 470, 471, 472],\n midwayBetweenEyes: [168],\n noseTip: [1],\n noseBottom: [2],\n noseRightCorner: [98],\n noseLeftCorner: [327],\n rightCheek: [205],\n leftCheek: [425],\n};\n\nexport const meshLandmarks: Record = {\n count: 468,\n mouth: 13,\n symmetryLine: [13, meshAnnotations['midwayBetweenEyes'][0]],\n};\n\nexport const blazeFaceLandmarks: Record = {\n leftEye: 0,\n rightEye: 1,\n nose: 2,\n mouth: 3,\n leftEar: 4,\n rightEar: 5,\n symmetryLine: [3, 2],\n};\n\nexport const irisIndices: Array<{ key: string, indices: number[] }> = [ // A mapping from facemesh model keypoints to iris model keypoints.\n { key: 'EyeUpper0', indices: [9, 10, 11, 12, 13, 14, 15] }, // 7 x 3d\n { key: 'EyeUpper1', indices: [25, 26, 27, 28, 29, 30, 31] }, // 7 x 3d\n { key: 'EyeUpper2', indices: [41, 42, 43, 44, 45, 46, 47] }, // 7 x 3d\n { key: 'EyeLower0', indices: [0, 1, 2, 3, 4, 5, 6, 7, 8] }, // 7 x 3d\n { key: 'EyeLower1', indices: [16, 17, 18, 19, 20, 21, 22, 23, 24] }, // 9 x 3d\n { key: 'EyeLower2', indices: [32, 33, 34, 35, 36, 37, 38, 39, 40] }, // 9 x 3d\n { key: 'EyeLower3', indices: [54, 55, 56, 57, 58, 59, 60, 61, 62] }, // 9 x 3d\n { key: 'EyebrowUpper', indices: [63, 64, 65, 66, 67, 68, 69, 70] }, // 8 x 3d\n { key: 'EyebrowLower', indices: [48, 49, 50, 51, 52, 53] }, // 6 x 3d\n];\n\nexport const UV468: [number, number][] = [\n [0.499976992607117, 0.652534008026123],\n [0.500025987625122, 0.547487020492554],\n [0.499974012374878, 0.602371990680695],\n [0.482113003730774, 0.471979022026062],\n [0.500150978565216, 0.527155995368958],\n [0.499909996986389, 0.498252987861633],\n [0.499523013830185, 0.40106201171875],\n [0.289712011814117, 0.380764007568359],\n [0.499954998493195, 0.312398016452789],\n [0.499987006187439, 0.269918978214264],\n [0.500023007392883, 0.107050001621246],\n [0.500023007392883, 0.666234016418457],\n [0.5000159740448, 0.679224014282227],\n [0.500023007392883, 0.692348003387451],\n [0.499976992607117, 0.695277988910675],\n [0.499976992607117, 0.70593398809433],\n [0.499976992607117, 0.719385027885437],\n [0.499976992607117, 0.737019002437592],\n [0.499967992305756, 0.781370997428894],\n [0.499816000461578, 0.562981009483337],\n [0.473773002624512, 0.573909997940063],\n [0.104906998574734, 0.254140973091125],\n [0.365929991006851, 0.409575998783112],\n [0.338757991790771, 0.41302502155304],\n [0.311120003461838, 0.409460008144379],\n [0.274657994508743, 0.389131009578705],\n [0.393361985683441, 0.403706014156342],\n [0.345234006643295, 0.344011008739471],\n [0.370094001293182, 0.346076011657715],\n [0.319321990013123, 0.347265005111694],\n [0.297903001308441, 0.353591024875641],\n [0.24779200553894, 0.410809993743896],\n [0.396889001131058, 0.842755019664764],\n [0.280097991228104, 0.375599980354309],\n [0.106310002505779, 0.399955987930298],\n [0.2099249958992, 0.391353011131287],\n [0.355807989835739, 0.534406006336212],\n [0.471751004457474, 0.65040397644043],\n [0.474155008792877, 0.680191993713379],\n [0.439785003662109, 0.657229006290436],\n [0.414617002010345, 0.66654098033905],\n [0.450374007225037, 0.680860996246338],\n [0.428770989179611, 0.682690978050232],\n [0.374971002340317, 0.727805018424988],\n [0.486716985702515, 0.547628998756409],\n [0.485300987958908, 0.527395009994507],\n [0.257764995098114, 0.314490020275116],\n [0.401223003864288, 0.455172002315521],\n [0.429818987846375, 0.548614978790283],\n [0.421351999044418, 0.533740997314453],\n [0.276895999908447, 0.532056987285614],\n [0.483370006084442, 0.499586999416351],\n [0.33721199631691, 0.282882988452911],\n [0.296391993761063, 0.293242990970612],\n [0.169294998049736, 0.193813979625702],\n [0.447580009698868, 0.302609980106354],\n [0.392390012741089, 0.353887975215912],\n [0.354490011930466, 0.696784019470215],\n [0.067304998636246, 0.730105042457581],\n [0.442739009857178, 0.572826027870178],\n [0.457098007202148, 0.584792017936707],\n [0.381974011659622, 0.694710969924927],\n [0.392388999462128, 0.694203019142151],\n [0.277076005935669, 0.271932005882263],\n [0.422551989555359, 0.563233017921448],\n [0.385919004678726, 0.281364023685455],\n [0.383103013038635, 0.255840003490448],\n [0.331431001424789, 0.119714021682739],\n [0.229923993349075, 0.232002973556519],\n [0.364500999450684, 0.189113974571228],\n [0.229622006416321, 0.299540996551514],\n [0.173287004232407, 0.278747975826263],\n [0.472878992557526, 0.666198015213013],\n [0.446828007698059, 0.668527007102966],\n [0.422762006521225, 0.673889994621277],\n [0.445307999849319, 0.580065965652466],\n [0.388103008270264, 0.693961024284363],\n [0.403039008378983, 0.706539988517761],\n [0.403629004955292, 0.693953037261963],\n [0.460041999816895, 0.557139039039612],\n [0.431158006191254, 0.692366003990173],\n [0.452181994915009, 0.692366003990173],\n [0.475387006998062, 0.692366003990173],\n [0.465828001499176, 0.779190003871918],\n [0.472328990697861, 0.736225962638855],\n [0.473087012767792, 0.717857003211975],\n [0.473122000694275, 0.704625964164734],\n [0.473033010959625, 0.695277988910675],\n [0.427942007780075, 0.695277988910675],\n [0.426479011774063, 0.703539967536926],\n [0.423162013292313, 0.711845993995667],\n [0.4183090031147, 0.720062971115112],\n [0.390094995498657, 0.639572978019714],\n [0.013953999616206, 0.560034036636353],\n [0.499913990497589, 0.58014702796936],\n [0.413199990987778, 0.69539999961853],\n [0.409626007080078, 0.701822996139526],\n [0.468080013990402, 0.601534962654114],\n [0.422728985548019, 0.585985004901886],\n [0.463079988956451, 0.593783974647522],\n [0.37211999297142, 0.47341400384903],\n [0.334562003612518, 0.496073007583618],\n [0.411671012639999, 0.546965003013611],\n [0.242175996303558, 0.14767599105835],\n [0.290776997804642, 0.201445996761322],\n [0.327338010072708, 0.256527006626129],\n [0.399509996175766, 0.748921036720276],\n [0.441727995872498, 0.261676013469696],\n [0.429764986038208, 0.187834024429321],\n [0.412198007106781, 0.108901023864746],\n [0.288955003023148, 0.398952007293701],\n [0.218936994671822, 0.435410976409912],\n [0.41278201341629, 0.398970007896423],\n [0.257135003805161, 0.355440020561218],\n [0.427684992551804, 0.437960982322693],\n [0.448339998722076, 0.536936044692993],\n [0.178560003638268, 0.45755398273468],\n [0.247308000922203, 0.457193970680237],\n [0.286267012357712, 0.467674970626831],\n [0.332827985286713, 0.460712015628815],\n [0.368755996227264, 0.447206974029541],\n [0.398963987827301, 0.432654976844788],\n [0.476410001516342, 0.405806005001068],\n [0.189241006970406, 0.523923993110657],\n [0.228962004184723, 0.348950982093811],\n [0.490725994110107, 0.562400996685028],\n [0.404670000076294, 0.485132992267609],\n [0.019469000399113, 0.401564002037048],\n [0.426243007183075, 0.420431017875671],\n [0.396993011236191, 0.548797011375427],\n [0.266469985246658, 0.376977026462555],\n [0.439121007919312, 0.51895797252655],\n [0.032313998788595, 0.644356966018677],\n [0.419054001569748, 0.387154996395111],\n [0.462783008813858, 0.505746960639954],\n [0.238978996872902, 0.779744982719421],\n [0.198220998048782, 0.831938028335571],\n [0.107550002634525, 0.540755033493042],\n [0.183610007166862, 0.740257024765015],\n [0.134409993886948, 0.333683013916016],\n [0.385764002799988, 0.883153975009918],\n [0.490967005491257, 0.579378008842468],\n [0.382384985685349, 0.508572995662689],\n [0.174399003386497, 0.397670984268188],\n [0.318785011768341, 0.39623498916626],\n [0.343364000320435, 0.400596976280212],\n [0.396100014448166, 0.710216999053955],\n [0.187885001301765, 0.588537991046906],\n [0.430987000465393, 0.944064974784851],\n [0.318993002176285, 0.898285031318665],\n [0.266247987747192, 0.869701027870178],\n [0.500023007392883, 0.190576016902924],\n [0.499976992607117, 0.954452991485596],\n [0.366169989109039, 0.398822009563446],\n [0.393207013607025, 0.39553701877594],\n [0.410373002290726, 0.391080021858215],\n [0.194993004202843, 0.342101991176605],\n [0.388664990663528, 0.362284004688263],\n [0.365961998701096, 0.355970978736877],\n [0.343364000320435, 0.355356991291046],\n [0.318785011768341, 0.35834002494812],\n [0.301414996385574, 0.363156020641327],\n [0.058132998645306, 0.319076001644135],\n [0.301414996385574, 0.387449026107788],\n [0.499987989664078, 0.618434011936188],\n [0.415838003158569, 0.624195992946625],\n [0.445681989192963, 0.566076993942261],\n [0.465844005346298, 0.620640993118286],\n [0.49992299079895, 0.351523995399475],\n [0.288718998432159, 0.819945991039276],\n [0.335278987884521, 0.852819979190826],\n [0.440512001514435, 0.902418971061707],\n [0.128294005990028, 0.791940987110138],\n [0.408771991729736, 0.373893976211548],\n [0.455606997013092, 0.451801002025604],\n [0.499877005815506, 0.908990025520325],\n [0.375436991453171, 0.924192011356354],\n [0.11421000212431, 0.615022003650665],\n [0.448662012815475, 0.695277988910675],\n [0.4480200111866, 0.704632043838501],\n [0.447111994028091, 0.715808033943176],\n [0.444831997156143, 0.730794012546539],\n [0.430011987686157, 0.766808986663818],\n [0.406787008047104, 0.685672998428345],\n [0.400738000869751, 0.681069016456604],\n [0.392399996519089, 0.677703022956848],\n [0.367855995893478, 0.663918972015381],\n [0.247923001646996, 0.601333022117615],\n [0.452769994735718, 0.420849978923798],\n [0.43639200925827, 0.359887003898621],\n [0.416164010763168, 0.368713974952698],\n [0.413385987281799, 0.692366003990173],\n [0.228018000721931, 0.683571994304657],\n [0.468268007040024, 0.352671027183533],\n [0.411361992359161, 0.804327011108398],\n [0.499989002943039, 0.469825029373169],\n [0.479153990745544, 0.442654013633728],\n [0.499974012374878, 0.439637005329132],\n [0.432112008333206, 0.493588984012604],\n [0.499886006116867, 0.866917014122009],\n [0.49991300702095, 0.821729004383087],\n [0.456548988819122, 0.819200992584229],\n [0.344549000263214, 0.745438992977142],\n [0.37890899181366, 0.574010014533997],\n [0.374292999505997, 0.780184984207153],\n [0.319687992334366, 0.570737957954407],\n [0.357154995203018, 0.604269981384277],\n [0.295284003019333, 0.621580958366394],\n [0.447750002145767, 0.862477004528046],\n [0.410986006259918, 0.508723020553589],\n [0.31395098567009, 0.775308012962341],\n [0.354128003120422, 0.812552988529205],\n [0.324548006057739, 0.703992962837219],\n [0.189096003770828, 0.646299958229065],\n [0.279776990413666, 0.71465802192688],\n [0.1338230073452, 0.682700991630554],\n [0.336768001317978, 0.644733011722565],\n [0.429883986711502, 0.466521978378296],\n [0.455527991056442, 0.548622965812683],\n [0.437114000320435, 0.558896005153656],\n [0.467287987470627, 0.529924988746643],\n [0.414712011814117, 0.335219979286194],\n [0.37704598903656, 0.322777986526489],\n [0.344107985496521, 0.320150971412659],\n [0.312875986099243, 0.32233202457428],\n [0.283526003360748, 0.333190023899078],\n [0.241245999932289, 0.382785975933075],\n [0.102986000478268, 0.468762993812561],\n [0.267612010240555, 0.424560010433197],\n [0.297879010438919, 0.433175981044769],\n [0.333433985710144, 0.433878004550934],\n [0.366427004337311, 0.426115989685059],\n [0.396012008190155, 0.416696012020111],\n [0.420121014118195, 0.41022801399231],\n [0.007561000064015, 0.480777025222778],\n [0.432949006557465, 0.569517970085144],\n [0.458638995885849, 0.479089021682739],\n [0.473466008901596, 0.545744001865387],\n [0.476087987422943, 0.563830018043518],\n [0.468472003936768, 0.555056989192963],\n [0.433990985155106, 0.582361996173859],\n [0.483518004417419, 0.562983989715576],\n [0.482482999563217, 0.57784903049469],\n [0.42645001411438, 0.389798998832703],\n [0.438998997211456, 0.39649498462677],\n [0.450067013502121, 0.400434017181396],\n [0.289712011814117, 0.368252992630005],\n [0.276670008897781, 0.363372981548309],\n [0.517862021923065, 0.471948027610779],\n [0.710287988185883, 0.380764007568359],\n [0.526226997375488, 0.573909997940063],\n [0.895093023777008, 0.254140973091125],\n [0.634069979190826, 0.409575998783112],\n [0.661242008209229, 0.41302502155304],\n [0.688880026340485, 0.409460008144379],\n [0.725341975688934, 0.389131009578705],\n [0.606630027294159, 0.40370500087738],\n [0.654766023159027, 0.344011008739471],\n [0.629905998706818, 0.346076011657715],\n [0.680678009986877, 0.347265005111694],\n [0.702096998691559, 0.353591024875641],\n [0.75221198797226, 0.410804986953735],\n [0.602918028831482, 0.842862963676453],\n [0.719901978969574, 0.375599980354309],\n [0.893692970275879, 0.399959981441498],\n [0.790081977844238, 0.391354024410248],\n [0.643998026847839, 0.534487962722778],\n [0.528249025344849, 0.65040397644043],\n [0.525849997997284, 0.680191040039062],\n [0.560214996337891, 0.657229006290436],\n [0.585384011268616, 0.66654098033905],\n [0.549625992774963, 0.680860996246338],\n [0.57122802734375, 0.682691991329193],\n [0.624852001667023, 0.72809898853302],\n [0.513050019741058, 0.547281980514526],\n [0.51509702205658, 0.527251958847046],\n [0.742246985435486, 0.314507007598877],\n [0.598631024360657, 0.454979002475739],\n [0.570338010787964, 0.548575043678284],\n [0.578631997108459, 0.533622980117798],\n [0.723087012767792, 0.532054007053375],\n [0.516445994377136, 0.499638974666595],\n [0.662801027297974, 0.282917976379395],\n [0.70362401008606, 0.293271005153656],\n [0.830704987049103, 0.193813979625702],\n [0.552385985851288, 0.302568018436432],\n [0.607609987258911, 0.353887975215912],\n [0.645429015159607, 0.696707010269165],\n [0.932694971561432, 0.730105042457581],\n [0.557260990142822, 0.572826027870178],\n [0.542901992797852, 0.584792017936707],\n [0.6180260181427, 0.694710969924927],\n [0.607590973377228, 0.694203019142151],\n [0.722943007946014, 0.271963000297546],\n [0.577413976192474, 0.563166975975037],\n [0.614082992076874, 0.281386971473694],\n [0.616907000541687, 0.255886018276215],\n [0.668509006500244, 0.119913995265961],\n [0.770092010498047, 0.232020974159241],\n [0.635536015033722, 0.189248979091644],\n [0.77039098739624, 0.299556016921997],\n [0.826722025871277, 0.278755009174347],\n [0.527121007442474, 0.666198015213013],\n [0.553171992301941, 0.668527007102966],\n [0.577238023281097, 0.673889994621277],\n [0.554691970348358, 0.580065965652466],\n [0.611896991729736, 0.693961024284363],\n [0.59696102142334, 0.706539988517761],\n [0.596370995044708, 0.693953037261963],\n [0.539958000183105, 0.557139039039612],\n [0.568841993808746, 0.692366003990173],\n [0.547818005084991, 0.692366003990173],\n [0.52461302280426, 0.692366003990173],\n [0.534089982509613, 0.779141008853912],\n [0.527670979499817, 0.736225962638855],\n [0.526912987232208, 0.717857003211975],\n [0.526877999305725, 0.704625964164734],\n [0.526966989040375, 0.695277988910675],\n [0.572058022022247, 0.695277988910675],\n [0.573521018028259, 0.703539967536926],\n [0.57683801651001, 0.711845993995667],\n [0.581691026687622, 0.720062971115112],\n [0.609944999217987, 0.639909982681274],\n [0.986046016216278, 0.560034036636353],\n [0.5867999792099, 0.69539999961853],\n [0.590372025966644, 0.701822996139526],\n [0.531915009021759, 0.601536989212036],\n [0.577268004417419, 0.585934996604919],\n [0.536915004253387, 0.593786001205444],\n [0.627542972564697, 0.473352015018463],\n [0.665585994720459, 0.495950996875763],\n [0.588353991508484, 0.546862006187439],\n [0.757824003696442, 0.14767599105835],\n [0.709249973297119, 0.201507985591888],\n [0.672684013843536, 0.256581008434296],\n [0.600408971309662, 0.74900496006012],\n [0.55826598405838, 0.261672019958496],\n [0.570303976535797, 0.187870979309082],\n [0.588165998458862, 0.109044015407562],\n [0.711045026779175, 0.398952007293701],\n [0.781069993972778, 0.435405015945435],\n [0.587247014045715, 0.398931980133057],\n [0.742869973182678, 0.355445981025696],\n [0.572156012058258, 0.437651991844177],\n [0.55186802148819, 0.536570012569427],\n [0.821442008018494, 0.457556009292603],\n [0.752701997756958, 0.457181990146637],\n [0.71375697851181, 0.467626988887787],\n [0.66711300611496, 0.460672974586487],\n [0.631101012229919, 0.447153985500336],\n [0.6008620262146, 0.432473003864288],\n [0.523481011390686, 0.405627012252808],\n [0.810747981071472, 0.523926019668579],\n [0.771045982837677, 0.348959028720856],\n [0.509127020835876, 0.562718033790588],\n [0.595292985439301, 0.485023975372314],\n [0.980530977249146, 0.401564002037048],\n [0.573499977588654, 0.420000016689301],\n [0.602994978427887, 0.548687994480133],\n [0.733529984951019, 0.376977026462555],\n [0.560611009597778, 0.519016981124878],\n [0.967685997486115, 0.644356966018677],\n [0.580985009670258, 0.387160003185272],\n [0.537728011608124, 0.505385041236877],\n [0.760966002941132, 0.779752969741821],\n [0.801778972148895, 0.831938028335571],\n [0.892440974712372, 0.54076099395752],\n [0.816350996494293, 0.740260004997253],\n [0.865594983100891, 0.333687007427216],\n [0.614073991775513, 0.883246004581451],\n [0.508952975273132, 0.579437971115112],\n [0.617941975593567, 0.508316040039062],\n [0.825608015060425, 0.397674977779388],\n [0.681214988231659, 0.39623498916626],\n [0.656635999679565, 0.400596976280212],\n [0.603900015354156, 0.710216999053955],\n [0.81208598613739, 0.588539004325867],\n [0.56801301240921, 0.944564998149872],\n [0.681007981300354, 0.898285031318665],\n [0.733752012252808, 0.869701027870178],\n [0.633830010890961, 0.398822009563446],\n [0.606792986392975, 0.39553701877594],\n [0.589659988880157, 0.391062021255493],\n [0.805015981197357, 0.342108011245728],\n [0.611334979534149, 0.362284004688263],\n [0.634037971496582, 0.355970978736877],\n [0.656635999679565, 0.355356991291046],\n [0.681214988231659, 0.35834002494812],\n [0.698584973812103, 0.363156020641327],\n [0.941866993904114, 0.319076001644135],\n [0.698584973812103, 0.387449026107788],\n [0.584177017211914, 0.624107003211975],\n [0.554318010807037, 0.566076993942261],\n [0.534153997898102, 0.62064003944397],\n [0.711217999458313, 0.819975018501282],\n [0.664629995822906, 0.852871000766754],\n [0.559099972248077, 0.902631998062134],\n [0.871706008911133, 0.791940987110138],\n [0.591234028339386, 0.373893976211548],\n [0.544341027736664, 0.451583981513977],\n [0.624562978744507, 0.924192011356354],\n [0.88577002286911, 0.615028977394104],\n [0.551338016986847, 0.695277988910675],\n [0.551980018615723, 0.704632043838501],\n [0.552887976169586, 0.715808033943176],\n [0.555167973041534, 0.730794012546539],\n [0.569944024085999, 0.767035007476807],\n [0.593203008174896, 0.685675978660583],\n [0.599261999130249, 0.681069016456604],\n [0.607599973678589, 0.677703022956848],\n [0.631937980651855, 0.663500010967255],\n [0.752032995223999, 0.601315021514893],\n [0.547226011753082, 0.420395016670227],\n [0.563543975353241, 0.359827995300293],\n [0.583841025829315, 0.368713974952698],\n [0.586614012718201, 0.692366003990173],\n [0.771915018558502, 0.683578014373779],\n [0.531597018241882, 0.352482974529266],\n [0.588370978832245, 0.804440975189209],\n [0.52079701423645, 0.442565023899078],\n [0.567984998226166, 0.493479013442993],\n [0.543282985687256, 0.819254994392395],\n [0.655317008495331, 0.745514988899231],\n [0.621008992195129, 0.574018001556396],\n [0.625559985637665, 0.78031200170517],\n [0.680198013782501, 0.570719003677368],\n [0.64276397228241, 0.604337990283966],\n [0.704662978649139, 0.621529996395111],\n [0.552012026309967, 0.862591981887817],\n [0.589071989059448, 0.508637011051178],\n [0.685944974422455, 0.775357007980347],\n [0.645735025405884, 0.812640011310577],\n [0.675342977046967, 0.703978002071381],\n [0.810858011245728, 0.646304965019226],\n [0.72012197971344, 0.714666962623596],\n [0.866151988506317, 0.682704985141754],\n [0.663187026977539, 0.644596993923187],\n [0.570082008838654, 0.466325998306274],\n [0.544561982154846, 0.548375964164734],\n [0.562758982181549, 0.558784961700439],\n [0.531987011432648, 0.530140042304993],\n [0.585271000862122, 0.335177004337311],\n [0.622952997684479, 0.32277899980545],\n [0.655896008014679, 0.320163011550903],\n [0.687132000923157, 0.322345972061157],\n [0.716481983661652, 0.333200991153717],\n [0.758756995201111, 0.382786989212036],\n [0.897013008594513, 0.468769013881683],\n [0.732392013072968, 0.424547016620636],\n [0.70211398601532, 0.433162987232208],\n [0.66652500629425, 0.433866024017334],\n [0.633504986763, 0.426087975502014],\n [0.603875994682312, 0.416586995124817],\n [0.579657971858978, 0.409945011138916],\n [0.992439985275269, 0.480777025222778],\n [0.567192018032074, 0.569419980049133],\n [0.54136598110199, 0.478899002075195],\n [0.526564002037048, 0.546118021011353],\n [0.523913025856018, 0.563830018043518],\n [0.531529009342194, 0.555056989192963],\n [0.566035985946655, 0.582329034805298],\n [0.51631098985672, 0.563053965568542],\n [0.5174720287323, 0.577877044677734],\n [0.573594987392426, 0.389806985855103],\n [0.560697972774506, 0.395331978797913],\n [0.549755990505219, 0.399751007556915],\n [0.710287988185883, 0.368252992630005],\n [0.723330020904541, 0.363372981548309],\n];\n\nexport const TRI468: Array = [\n 127, 34, 139, 11, 0, 37, 232, 231, 120, 72, 37, 39, 128, 121, 47, 232, 121, 128, 104, 69, 67, 175, 171, 148, 157, 154, 155, 118, 50, 101, 73, 39, 40, 9,\n 151, 108, 48, 115, 131, 194, 204, 211, 74, 40, 185, 80, 42, 183, 40, 92, 186, 230, 229, 118, 202, 212, 214, 83, 18, 17, 76, 61, 146, 160, 29, 30, 56,\n 157, 173, 106, 204, 194, 135, 214, 192, 203, 165, 98, 21, 71, 68, 51, 45, 4, 144, 24, 23, 77, 146, 91, 205, 50, 187, 201, 200, 18, 91, 106, 182, 90, 91,\n 181, 85, 84, 17, 206, 203, 36, 148, 171, 140, 92, 40, 39, 193, 189, 244, 159, 158, 28, 247, 246, 161, 236, 3, 196, 54, 68, 104, 193, 168, 8, 117,\n 228, 31, 189, 193, 55, 98, 97, 99, 126, 47, 100, 166, 79, 218, 155, 154, 26, 209, 49, 131, 135, 136, 150, 47, 126, 217, 223, 52, 53, 45, 51, 134, 211,\n 170, 140, 67, 69, 108, 43, 106, 91, 230, 119, 120, 226, 130, 247, 63, 53, 52, 238, 20, 242, 46, 70, 156, 78, 62, 96, 46, 53, 63, 143, 34, 227, 173,\n 155, 133, 123, 117, 111, 44, 125, 19, 236, 134, 51, 216, 206, 205, 154, 153, 22, 39, 37, 167, 200, 201, 208, 36, 142, 100, 57, 212, 202, 20, 60, 99, 28,\n 158, 157, 35, 226, 113, 160, 159, 27, 204, 202, 210, 113, 225, 46, 43, 202, 204, 62, 76, 77, 137, 123, 116, 41, 38, 72, 203, 129, 142, 64, 98, 240, 49,\n 102, 64, 41, 73, 74, 212, 216, 207, 42, 74, 184, 169, 170, 211, 170, 149, 176, 105, 66, 69, 122, 6, 168, 123, 147, 187, 96, 77, 90, 65, 55, 107, 89,\n 90, 180, 101, 100, 120, 63, 105, 104, 93, 137, 227, 15, 86, 85, 129, 102, 49, 14, 87, 86, 55, 8, 9, 100, 47, 121, 145, 23, 22, 88, 89, 179, 6, 122,\n 196, 88, 95, 96, 138, 172, 136, 215, 58, 172, 115, 48, 219, 42, 80, 81, 195, 3, 51, 43, 146, 61, 171, 175, 199, 81, 82, 38, 53, 46, 225, 144, 163, 110,\n 246, 33, 7, 52, 65, 66, 229, 228, 117, 34, 127, 234, 107, 108, 69, 109, 108, 151, 48, 64, 235, 62, 78, 191, 129, 209, 126, 111, 35, 143, 163, 161, 246,\n 117, 123, 50, 222, 65, 52, 19, 125, 141, 221, 55, 65, 3, 195, 197, 25, 7, 33, 220, 237, 44, 70, 71, 139, 122, 193, 245, 247, 130, 33, 71, 21, 162,\n 153, 158, 159, 170, 169, 150, 188, 174, 196, 216, 186, 92, 144, 160, 161, 2, 97, 167, 141, 125, 241, 164, 167, 37, 72, 38, 12, 145, 159, 160, 38, 82, 13,\n 63, 68, 71, 226, 35, 111, 158, 153, 154, 101, 50, 205, 206, 92, 165, 209, 198, 217, 165, 167, 97, 220, 115, 218, 133, 112, 243, 239, 238, 241, 214,\n 135, 169, 190, 173, 133, 171, 208, 32, 125, 44, 237, 86, 87, 178, 85, 86, 179, 84, 85, 180, 83, 84, 181, 201, 83, 182, 137, 93, 132, 76, 62, 183, 61,\n 76, 184, 57, 61, 185, 212, 57, 186, 214, 207, 187, 34, 143, 156, 79, 239, 237, 123, 137, 177, 44, 1, 4, 201, 194, 32, 64, 102, 129, 213, 215, 138, 59,\n 166, 219, 242, 99, 97, 2, 94, 141, 75, 59, 235, 24, 110, 228, 25, 130, 226, 23, 24, 229, 22, 23, 230, 26, 22, 231, 112, 26, 232, 189, 190, 243, 221, 56,\n 190, 28, 56, 221, 27, 28, 222, 29, 27, 223, 30, 29, 224, 247, 30, 225, 238, 79, 20, 166, 59, 75, 60, 75, 240, 147, 177, 215, 20, 79, 166, 187, 147, 213,\n 112, 233, 244, 233, 128, 245, 128, 114, 188, 114, 217, 174, 131, 115, 220, 217, 198, 236, 198, 131, 134, 177, 132, 58, 143, 35, 124, 110, 163, 7, 228,\n 110, 25, 356, 389, 368, 11, 302, 267, 452, 350, 349, 302, 303, 269, 357, 343, 277, 452, 453, 357, 333, 332, 297, 175, 152, 377, 384, 398, 382, 347,\n 348, 330, 303, 304, 270, 9, 336, 337, 278, 279, 360, 418, 262, 431, 304, 408, 409, 310, 415, 407, 270, 409, 410, 450, 348, 347, 422, 430, 434, 313,\n 314, 17, 306, 307, 375, 387, 388, 260, 286, 414, 398, 335, 406, 418, 364, 367, 416, 423, 358, 327, 251, 284, 298, 281, 5, 4, 373, 374, 253, 307, 320,\n 321, 425, 427, 411, 421, 313, 18, 321, 405, 406, 320, 404, 405, 315, 16, 17, 426, 425, 266, 377, 400, 369, 322, 391, 269, 417, 465, 464, 386, 257, 258,\n 466, 260, 388, 456, 399, 419, 284, 332, 333, 417, 285, 8, 346, 340, 261, 413, 441, 285, 327, 460, 328, 355, 371, 329, 392, 439, 438, 382, 341, 256,\n 429, 420, 360, 364, 394, 379, 277, 343, 437, 443, 444, 283, 275, 440, 363, 431, 262, 369, 297, 338, 337, 273, 375, 321, 450, 451, 349, 446, 342, 467,\n 293, 334, 282, 458, 461, 462, 276, 353, 383, 308, 324, 325, 276, 300, 293, 372, 345, 447, 382, 398, 362, 352, 345, 340, 274, 1, 19, 456, 248, 281, 436,\n 427, 425, 381, 256, 252, 269, 391, 393, 200, 199, 428, 266, 330, 329, 287, 273, 422, 250, 462, 328, 258, 286, 384, 265, 353, 342, 387, 259, 257, 424,\n 431, 430, 342, 353, 276, 273, 335, 424, 292, 325, 307, 366, 447, 345, 271, 303, 302, 423, 266, 371, 294, 455, 460, 279, 278, 294, 271, 272, 304, 432,\n 434, 427, 272, 407, 408, 394, 430, 431, 395, 369, 400, 334, 333, 299, 351, 417, 168, 352, 280, 411, 325, 319, 320, 295, 296, 336, 319, 403, 404, 330,\n 348, 349, 293, 298, 333, 323, 454, 447, 15, 16, 315, 358, 429, 279, 14, 15, 316, 285, 336, 9, 329, 349, 350, 374, 380, 252, 318, 402, 403, 6, 197, 419,\n 318, 319, 325, 367, 364, 365, 435, 367, 397, 344, 438, 439, 272, 271, 311, 195, 5, 281, 273, 287, 291, 396, 428, 199, 311, 271, 268, 283, 444, 445,\n 373, 254, 339, 263, 466, 249, 282, 334, 296, 449, 347, 346, 264, 447, 454, 336, 296, 299, 338, 10, 151, 278, 439, 455, 292, 407, 415, 358, 371, 355,\n 340, 345, 372, 390, 249, 466, 346, 347, 280, 442, 443, 282, 19, 94, 370, 441, 442, 295, 248, 419, 197, 263, 255, 359, 440, 275, 274, 300, 383, 368,\n 351, 412, 465, 263, 467, 466, 301, 368, 389, 380, 374, 386, 395, 378, 379, 412, 351, 419, 436, 426, 322, 373, 390, 388, 2, 164, 393, 370, 462, 461,\n 164, 0, 267, 302, 11, 12, 374, 373, 387, 268, 12, 13, 293, 300, 301, 446, 261, 340, 385, 384, 381, 330, 266, 425, 426, 423, 391, 429, 355, 437, 391,\n 327, 326, 440, 457, 438, 341, 382, 362, 459, 457, 461, 434, 430, 394, 414, 463, 362, 396, 369, 262, 354, 461, 457, 316, 403, 402, 315, 404, 403, 314,\n 405, 404, 313, 406, 405, 421, 418, 406, 366, 401, 361, 306, 408, 407, 291, 409, 408, 287, 410, 409, 432, 436, 410, 434, 416, 411, 264, 368, 383, 309,\n 438, 457, 352, 376, 401, 274, 275, 4, 421, 428, 262, 294, 327, 358, 433, 416, 367, 289, 455, 439, 462, 370, 326, 2, 326, 370, 305, 460, 455, 254,\n 449, 448, 255, 261, 446, 253, 450, 449, 252, 451, 450, 256, 452, 451, 341, 453, 452, 413, 464, 463, 441, 413, 414, 258, 442, 441, 257, 443, 442, 259,\n 444, 443, 260, 445, 444, 467, 342, 445, 459, 458, 250, 289, 392, 290, 290, 328, 460, 376, 433, 435, 250, 290, 392, 411, 416, 433, 341, 463, 464, 453,\n 464, 465, 357, 465, 412, 343, 412, 399, 360, 363, 440, 437, 399, 456, 420, 456, 363, 401, 435, 288, 372, 383, 353, 339, 255, 249, 448, 261, 255, 133,\n 243, 190, 133, 155, 112, 33, 246, 247, 33, 130, 25, 398, 384, 286, 362, 398, 414, 362, 463, 341, 263, 359, 467, 263, 249, 255, 466, 467, 260, 75, 60,\n 166, 238, 239, 79, 162, 127, 139, 72, 11, 37, 121, 232, 120, 73, 72, 39, 114, 128, 47, 233, 232, 128, 103, 104, 67, 152, 175, 148, 173, 157, 155,\n 119, 118, 101, 74, 73, 40, 107, 9, 108, 49, 48, 131, 32, 194, 211, 184, 74, 185, 191, 80, 183, 185, 40, 186, 119, 230, 118, 210, 202, 214, 84, 83, 17,\n 77, 76, 146, 161, 160, 30, 190, 56, 173, 182, 106, 194, 138, 135, 192, 129, 203, 98, 54, 21, 68, 5, 51, 4, 145, 144, 23, 90, 77, 91, 207, 205, 187, 83,\n 201, 18, 181, 91, 182, 180, 90, 181, 16, 85, 17, 205, 206, 36, 176, 148, 140, 165, 92, 39, 245, 193, 244, 27, 159, 28, 30, 247, 161, 174, 236, 196,\n 103, 54, 104, 55, 193, 8, 111, 117, 31, 221, 189, 55, 240, 98, 99, 142, 126, 100, 219, 166, 218, 112, 155, 26, 198, 209, 131, 169, 135, 150, 114, 47,\n 217, 224, 223, 53, 220, 45, 134, 32, 211, 140, 109, 67, 108, 146, 43, 91, 231, 230, 120, 113, 226, 247, 105, 63, 52, 241, 238, 242, 124, 46, 156, 95,\n 78, 96, 70, 46, 63, 116, 143, 227, 116, 123, 111, 1, 44, 19, 3, 236, 51, 207, 216, 205, 26, 154, 22, 165, 39, 167, 199, 200, 208, 101, 36, 100, 43,\n 57, 202, 242, 20, 99, 56, 28, 157, 124, 35, 113, 29, 160, 27, 211, 204, 210, 124, 113, 46, 106, 43, 204, 96, 62, 77, 227, 137, 116, 73, 41, 72, 36, 203,\n 142, 235, 64, 240, 48, 49, 64, 42, 41, 74, 214, 212, 207, 183, 42, 184, 210, 169, 211, 140, 170, 176, 104, 105, 69, 193, 122, 168, 50, 123, 187, 89, 96,\n 90, 66, 65, 107, 179, 89, 180, 119, 101, 120, 68, 63, 104, 234, 93, 227, 16, 15, 85, 209, 129, 49, 15, 14, 86, 107, 55, 9, 120, 100, 121, 153, 145, 22,\n 178, 88, 179, 197, 6, 196, 89, 88, 96, 135, 138, 136, 138, 215, 172, 218, 115, 219, 41, 42, 81, 5, 195, 51, 57, 43, 61, 208, 171, 199, 41, 81, 38,\n 224, 53, 225, 24, 144, 110, 105, 52, 66, 118, 229, 117, 227, 34, 234, 66, 107, 69, 10, 109, 151, 219, 48, 235, 183, 62, 191, 142, 129, 126, 116, 111,\n 143, 7, 163, 246, 118, 117, 50, 223, 222, 52, 94, 19, 141, 222, 221, 65, 196, 3, 197, 45, 220, 44, 156, 70, 139, 188, 122, 245, 139, 71, 162, 145,\n 153, 159, 149, 170, 150, 122, 188, 196, 206, 216, 92, 163, 144, 161, 164, 2, 167, 242, 141, 241, 0, 164, 37, 11, 72, 12, 144, 145, 160, 12, 38, 13, 70,\n 63, 71, 31, 226, 111, 157, 158, 154, 36, 101, 205, 203, 206, 165, 126, 209, 217, 98, 165, 97, 237, 220, 218, 237, 239, 241, 210, 214, 169, 140, 171, 32,\n 241, 125, 237, 179, 86, 178, 180, 85, 179, 181, 84, 180, 182, 83, 181, 194, 201, 182, 177, 137, 132, 184, 76, 183, 185, 61, 184, 186, 57, 185, 216, 212,\n 186, 192, 214, 187, 139, 34, 156, 218, 79, 237, 147, 123, 177, 45, 44, 4, 208, 201, 32, 98, 64, 129, 192, 213, 138, 235, 59, 219, 141, 242, 97, 97, 2,\n 141, 240, 75, 235, 229, 24, 228, 31, 25, 226, 230, 23, 229, 231, 22, 230, 232, 26, 231, 233, 112, 232, 244, 189, 243, 189, 221, 190, 222, 28, 221,\n 223, 27, 222, 224, 29, 223, 225, 30, 224, 113, 247, 225, 99, 60, 240, 213, 147, 215, 60, 20, 166, 192, 187, 213, 243, 112, 244, 244, 233, 245, 245,\n 128, 188, 188, 114, 174, 134, 131, 220, 174, 217, 236, 236, 198, 134, 215, 177, 58, 156, 143, 124, 25, 110, 7, 31, 228, 25, 264, 356, 368, 0, 11, 267,\n 451, 452, 349, 267, 302, 269, 350, 357, 277, 350, 452, 357, 299, 333, 297, 396, 175, 377, 381, 384, 382, 280, 347, 330, 269, 303, 270, 151, 9, 337,\n 344, 278, 360, 424, 418, 431, 270, 304, 409, 272, 310, 407, 322, 270, 410, 449, 450, 347, 432, 422, 434, 18, 313, 17, 291, 306, 375, 259, 387, 260,\n 424, 335, 418, 434, 364, 416, 391, 423, 327, 301, 251, 298, 275, 281, 4, 254, 373, 253, 375, 307, 321, 280, 425, 411, 200, 421, 18, 335, 321, 406,\n 321, 320, 405, 314, 315, 17, 423, 426, 266, 396, 377, 369, 270, 322, 269, 413, 417, 464, 385, 386, 258, 248, 456, 419, 298, 284, 333, 168, 417, 8,\n 448, 346, 261, 417, 413, 285, 326, 327, 328, 277, 355, 329, 309, 392, 438, 381, 382, 256, 279, 429, 360, 365, 364, 379, 355, 277, 437, 282, 443, 283,\n 281, 275, 363, 395, 431, 369, 299, 297, 337, 335, 273, 321, 348, 450, 349, 359, 446, 467, 283, 293, 282, 250, 458, 462, 300, 276, 383, 292, 308, 325,\n 283, 276, 293, 264, 372, 447, 346, 352, 340, 354, 274, 19, 363, 456, 281, 426, 436, 425, 380, 381, 252, 267, 269, 393, 421, 200, 428, 371, 266, 329,\n 432, 287, 422, 290, 250, 328, 385, 258, 384, 446, 265, 342, 386, 387, 257, 422, 424, 430, 445, 342, 276, 422, 273, 424, 306, 292, 307, 352, 366, 345,\n 268, 271, 302, 358, 423, 371, 327, 294, 460, 331, 279, 294, 303, 271, 304, 436, 432, 427, 304, 272, 408, 395, 394, 431, 378, 395, 400, 296, 334, 299,\n 6, 351, 168, 376, 352, 411, 307, 325, 320, 285, 295, 336, 320, 319, 404, 329, 330, 349, 334, 293, 333, 366, 323, 447, 316, 15, 315, 331, 358, 279,\n 317, 14, 316, 8, 285, 9, 277, 329, 350, 253, 374, 252, 319, 318, 403, 351, 6, 419, 324, 318, 325, 397, 367, 365, 288, 435, 397, 278, 344, 439, 310,\n 272, 311, 248, 195, 281, 375, 273, 291, 175, 396, 199, 312, 311, 268, 276, 283, 445, 390, 373, 339, 295, 282, 296, 448, 449, 346, 356, 264, 454, 337,\n 336, 299, 337, 338, 151, 294, 278, 455, 308, 292, 415, 429, 358, 355, 265, 340, 372, 388, 390, 466, 352, 346, 280, 295, 442, 282, 354, 19, 370, 285,\n 441, 295, 195, 248, 197, 457, 440, 274, 301, 300, 368, 417, 351, 465, 251, 301, 389, 385, 380, 386, 394, 395, 379, 399, 412, 419, 410, 436, 322, 387,\n 373, 388, 326, 2, 393, 354, 370, 461, 393, 164, 267, 268, 302, 12, 386, 374, 387, 312, 268, 13, 298, 293, 301, 265, 446, 340, 380, 385, 381, 280, 330,\n 425, 322, 426, 391, 420, 429, 437, 393, 391, 326, 344, 440, 438, 458, 459, 461, 364, 434, 394, 428, 396, 262, 274, 354, 457, 317, 316, 402, 316, 315,\n 403, 315, 314, 404, 314, 313, 405, 313, 421, 406, 323, 366, 361, 292, 306, 407, 306, 291, 408, 291, 287, 409, 287, 432, 410, 427, 434, 411, 372, 264,\n 383, 459, 309, 457, 366, 352, 401, 1, 274, 4, 418, 421, 262, 331, 294, 358, 435, 433, 367, 392, 289, 439, 328, 462, 326, 94, 2, 370, 289, 305, 455, 339,\n 254, 448, 359, 255, 446, 254, 253, 449, 253, 252, 450, 252, 256, 451, 256, 341, 452, 414, 413, 463, 286, 441, 414, 286, 258, 441, 258, 257, 442, 257,\n 259, 443, 259, 260, 444, 260, 467, 445, 309, 459, 250, 305, 289, 290, 305, 290, 460, 401, 376, 435, 309, 250, 392, 376, 411, 433, 453, 341, 464, 357,\n 453, 465, 343, 357, 412, 437, 343, 399, 344, 360, 440, 420, 437, 456, 360, 420, 363, 361, 401, 288, 265, 372, 353, 390, 339, 249, 339, 448, 255];\n\nexport const TRI68: Array = [0, 1, 36, 0, 36, 17, 1, 2, 41, 1, 41, 36, 2, 3, 31, 2, 31, 41, 3, 4, 48, 3, 48, 31, 4, 5, 48, 5, 6, 48, 6, 7, 59, 6, 59, 48, 7, 8, 58, 7, 58, 59,\n 8, 9, 56, 8, 56, 57, 8, 57, 58, 9, 10, 55, 9, 55, 56, 10, 11, 54, 10, 54, 55, 11, 12, 54, 12, 13, 54, 13, 14, 35, 13, 35, 54, 14, 15, 46, 14, 46, 35, 15, 16,\n 45, 15, 45, 46, 16, 26, 45, 17, 36, 18, 18, 37, 19, 18, 36, 37, 19, 38, 20, 19, 37, 38, 20, 39, 21, 20, 38, 39, 21, 39, 27, 22, 42, 23, 22, 27, 42, 23, 43, 24,\n 23, 42, 43, 24, 44, 25, 24, 43, 44, 25, 45, 26, 25, 44, 45, 27, 39, 28, 27, 28, 42, 28, 39, 29, 28, 29, 42, 29, 31, 30, 29, 30, 35, 29, 40, 31, 29, 35, 47, 29,\n 39, 40, 29, 47, 42, 30, 31, 32, 30, 32, 33, 30, 33, 34, 30, 34, 35, 31, 50, 32, 31, 40, 41, 31, 48, 49, 31, 49, 50, 32, 51, 33, 32, 50, 51, 33, 51, 34, 34, 52,\n 35, 34, 51, 52, 35, 46, 47, 35, 52, 53, 35, 53, 54, 36, 41, 37, 37, 40, 38, 37, 41, 40, 38, 40, 39, 42, 47, 43, 43, 47, 44, 44, 46, 45, 44, 47, 46, 48, 60, 49,\n 48, 59, 60, 49, 61, 50, 49, 60, 61, 50, 62, 51, 50, 61, 62, 51, 62, 52, 52, 63, 53, 52, 62, 63, 53, 64, 54, 53, 63, 64, 54, 64, 55, 55, 65, 56, 55, 64, 65, 56,\n 66, 57, 56, 65, 66, 57, 66, 58, 58, 67, 59, 58, 66, 67, 59, 67, 60, 60, 67, 61, 61, 66, 62, 61, 67, 66, 62, 66, 63, 63, 65, 64, 63, 66, 65, 21, 27, 22];\n\nexport const TRI33: Array = [\n /* eyes */ 0, 8, 7, 7, 8, 1, 2, 10, 9, 9, 10, 3,\n /* brows */ 17, 0, 18, 18, 0, 7, 18, 7, 19, 19, 7, 1, 19, 1, 11, 19, 11, 20, 21, 3, 22, 21, 9, 3, 20, 9, 21, 20, 2, 9, 20, 11, 2,\n /* 4head */ 23, 17, 18, 25, 21, 22, 24, 19, 20, 24, 18, 19, 24, 20, 21, 24, 23, 18, 24, 21, 25,\n /* nose */ 11, 12, 4, 11, 4, 13, 1, 12, 11, 11, 13, 2, 12, 14, 4, 4, 14, 13,\n /* up-lip */ 14, 5, 15, 14, 15, 6, 12, 5, 14, 14, 6, 13,\n /* cheeks */ 8, 12, 1, 2, 13, 10, 8, 26, 12, 10, 13, 27, 26, 5, 12, 13, 6, 27, 0, 26, 8, 10, 27, 3,\n /* chin */ 5, 32, 16, 16, 32, 6, 5, 30, 32, 6, 32, 31,\n /* cont */ 26, 30, 5, 27, 6, 31, 0, 28, 26, 3, 27, 29, 17, 28, 0, 3, 29, 22, 23, 28, 17, 22, 29, 25, 28, 30, 26, 27, 31, 29,\n];\n\nexport const TRI7: Array = [0, 4, 1, 2, 4, 3, 4, 5, 6];\n\nexport const VTX68: Array = [\n /* cont */ 127, 234, 132, 58, 172, 150, 149, 148, 152, 377, 378, 379, 397, 288, 361, 454, 356,\n /* brows */ 70, 63, 105, 66, 107, 336, 296, 334, 293, 300,\n /* nose */ 168, 6, 195, 4, 98, 97, 2, 326, 327,\n /* eyes */ 33, 160, 158, 133, 153, 144, 362, 385, 387, 263, 373, 380,\n /* lip */ 57, 40, 37, 0, 267, 270, 287, 321, 314, 17, 84, 91,\n /* mouth */ 78, 81, 13, 311, 308, 402, 14, 178,\n];\n\nexport const VTX33: Array = [33, 133, 362, 263, 1, 62, 308, 159, 145, 386, 374, 6, 102, 331, 2, 13, 14, 70, 105, 107, 336, 334, 300, 54, 10, 284, 50, 280, 234, 454, 58, 288, 152];\n\nexport const VTX7: Array = [33, 133, 362, 263, 1, 78, 308];\n\nexport const UV68 = VTX68.map((x) => UV468[x]);\n\nexport const UV33 = VTX33.map((x) => UV468[x]);\n\nexport const UV7 = VTX7.map((x) => UV468[x]);\n\n// https://github.com/tensorflow/tfjs-models/blob/master/face-landmarks-detection/src/constants.ts\n// https://github.com/google/mediapipe/mediapipe/python/solutions/face_mesh_connections.py\n\ntype PairArray = Array<[number, number]>;\n\nfunction connectionsToIndices(connections: PairArray) {\n const indices = connections.map((connection) => connection[0]);\n indices.push(connections[connections.length - 1][1]);\n return indices;\n}\n\nexport const pairsLips: PairArray = [\n [61, 146], [146, 91], [91, 181], [181, 84], [84, 17], [17, 314], [314, 405], [405, 321], [321, 375], [375, 291], [61, 185], [185, 40], [40, 39], [39, 37], [37, 0], [0, 267], [267, 269], [269, 270], [270, 409], [409, 291],\n [78, 95], [95, 88], [88, 178], [178, 87], [87, 14], [14, 317], [317, 402], [402, 318], [318, 324], [324, 308], [78, 191], [191, 80], [80, 81], [81, 82], [82, 13], [13, 312], [312, 311], [311, 310], [310, 415], [415, 308],\n];\n\nexport const pairsLeftEye: PairArray = [[263, 249], [249, 390], [390, 373], [373, 374], [374, 380], [380, 381], [381, 382], [382, 362], [263, 466], [466, 388], [388, 387], [387, 386], [386, 385], [385, 384], [384, 398], [398, 362]];\n\nexport const pairsLeftEyebrow: PairArray = [[276, 283], [283, 282], [282, 295], [295, 285], [300, 293], [293, 334], [334, 296], [296, 336]];\n\nexport const pairsLeftIris: PairArray = [[474, 475], [475, 476], [476, 477], [477, 474]];\n\nexport const pairsRightEye: PairArray = [[33, 7], [7, 163], [163, 144], [144, 145], [145, 153], [153, 154], [154, 155], [155, 133], [33, 246], [246, 161], [161, 160], [160, 159], [159, 158], [158, 157], [157, 173], [173, 133]];\n\nexport const pairsRightEyebrow: PairArray = [[46, 53], [53, 52], [52, 65], [65, 55], [70, 63], [63, 105], [105, 66], [66, 107]];\n\nexport const pairsRightIris: PairArray = [[469, 470], [470, 471], [471, 472], [472, 469]];\n\nexport const pairsFaceContour: PairArray = [\n [10, 338], [338, 297], [297, 332], [332, 284], [284, 251], [251, 389],\n [389, 356], [356, 454], [454, 323], [323, 361], [361, 288], [288, 397],\n [397, 365], [365, 379], [379, 378], [378, 400], [400, 377], [377, 152],\n [152, 148], [148, 176], [176, 149], [149, 150], [150, 136], [136, 172],\n [172, 58], [58, 132], [132, 93], [93, 234], [234, 127], [127, 162],\n [162, 21], [21, 54], [54, 103], [103, 67], [67, 109], [109, 10],\n];\n\nexport const contourKeypoints = {\n lips: connectionsToIndices(pairsLips),\n leftEye: connectionsToIndices(pairsLeftEye),\n leftEyebrow: connectionsToIndices(pairsLeftEyebrow),\n leftIris: connectionsToIndices(pairsLeftIris),\n rightEye: connectionsToIndices(pairsRightEye),\n rightEyebrow: connectionsToIndices(pairsRightEyebrow),\n rightIris: connectionsToIndices(pairsRightIris),\n faceOval: connectionsToIndices(pairsFaceContour),\n};\n\nexport const pairsFaceMesh: PairArray = [\n [127, 34], [34, 139], [139, 127], [11, 0], [0, 37], [37, 11],\n [232, 231], [231, 120], [120, 232], [72, 37], [37, 39], [39, 72],\n [128, 121], [121, 47], [47, 128], [232, 121], [121, 128], [128, 232],\n [104, 69], [69, 67], [67, 104], [175, 171], [171, 148], [148, 175],\n [118, 50], [50, 101], [101, 118], [73, 39], [39, 40], [40, 73],\n [9, 151], [151, 108], [108, 9], [48, 115], [115, 131], [131, 48],\n [194, 204], [204, 211], [211, 194], [74, 40], [40, 185], [185, 74],\n [80, 42], [42, 183], [183, 80], [40, 92], [92, 186], [186, 40],\n [230, 229], [229, 118], [118, 230], [202, 212], [212, 214], [214, 202],\n [83, 18], [18, 17], [17, 83], [76, 61], [61, 146], [146, 76],\n [160, 29], [29, 30], [30, 160], [56, 157], [157, 173], [173, 56],\n [106, 204], [204, 194], [194, 106], [135, 214], [214, 192], [192, 135],\n [203, 165], [165, 98], [98, 203], [21, 71], [71, 68], [68, 21],\n [51, 45], [45, 4], [4, 51], [144, 24], [24, 23], [23, 144],\n [77, 146], [146, 91], [91, 77], [205, 50], [50, 187], [187, 205],\n [201, 200], [200, 18], [18, 201], [91, 106], [106, 182], [182, 91],\n [90, 91], [91, 181], [181, 90], [85, 84], [84, 17], [17, 85],\n [206, 203], [203, 36], [36, 206], [148, 171], [171, 140], [140, 148],\n [92, 40], [40, 39], [39, 92], [193, 189], [189, 244], [244, 193],\n [159, 158], [158, 28], [28, 159], [247, 246], [246, 161], [161, 247],\n [236, 3], [3, 196], [196, 236], [54, 68], [68, 104], [104, 54],\n [193, 168], [168, 8], [8, 193], [117, 228], [228, 31], [31, 117],\n [189, 193], [193, 55], [55, 189], [98, 97], [97, 99], [99, 98],\n [126, 47], [47, 100], [100, 126], [166, 79], [79, 218], [218, 166],\n [155, 154], [154, 26], [26, 155], [209, 49], [49, 131], [131, 209],\n [135, 136], [136, 150], [150, 135], [47, 126], [126, 217], [217, 47],\n [223, 52], [52, 53], [53, 223], [45, 51], [51, 134], [134, 45],\n [211, 170], [170, 140], [140, 211], [67, 69], [69, 108], [108, 67],\n [43, 106], [106, 91], [91, 43], [230, 119], [119, 120], [120, 230],\n [226, 130], [130, 247], [247, 226], [63, 53], [53, 52], [52, 63],\n [238, 20], [20, 242], [242, 238], [46, 70], [70, 156], [156, 46],\n [78, 62], [62, 96], [96, 78], [46, 53], [53, 63], [63, 46],\n [143, 34], [34, 227], [227, 143], [123, 117], [117, 111], [111, 123],\n [44, 125], [125, 19], [19, 44], [236, 134], [134, 51], [51, 236],\n [216, 206], [206, 205], [205, 216], [154, 153], [153, 22], [22, 154],\n [39, 37], [37, 167], [167, 39], [200, 201], [201, 208], [208, 200],\n [36, 142], [142, 100], [100, 36], [57, 212], [212, 202], [202, 57],\n [20, 60], [60, 99], [99, 20], [28, 158], [158, 157], [157, 28],\n [35, 226], [226, 113], [113, 35], [160, 159], [159, 27], [27, 160],\n [204, 202], [202, 210], [210, 204], [113, 225], [225, 46], [46, 113],\n [43, 202], [202, 204], [204, 43], [62, 76], [76, 77], [77, 62],\n [137, 123], [123, 116], [116, 137], [41, 38], [38, 72], [72, 41],\n [203, 129], [129, 142], [142, 203], [64, 98], [98, 240], [240, 64],\n [49, 102], [102, 64], [64, 49], [41, 73], [73, 74], [74, 41],\n [212, 216], [216, 207], [207, 212], [42, 74], [74, 184], [184, 42],\n [169, 170], [170, 211], [211, 169], [170, 149], [149, 176], [176, 170],\n [105, 66], [66, 69], [69, 105], [122, 6], [6, 168], [168, 122],\n [123, 147], [147, 187], [187, 123], [96, 77], [77, 90], [90, 96],\n [65, 55], [55, 107], [107, 65], [89, 90], [90, 180], [180, 89],\n [101, 100], [100, 120], [120, 101], [63, 105], [105, 104], [104, 63],\n [93, 137], [137, 227], [227, 93], [15, 86], [86, 85], [85, 15],\n [129, 102], [102, 49], [49, 129], [14, 87], [87, 86], [86, 14],\n [55, 8], [8, 9], [9, 55], [100, 47], [47, 121], [121, 100],\n [145, 23], [23, 22], [22, 145], [88, 89], [89, 179], [179, 88],\n [6, 122], [122, 196], [196, 6], [88, 95], [95, 96], [96, 88],\n [138, 172], [172, 136], [136, 138], [215, 58], [58, 172], [172, 215],\n [115, 48], [48, 219], [219, 115], [42, 80], [80, 81], [81, 42],\n [195, 3], [3, 51], [51, 195], [43, 146], [146, 61], [61, 43],\n [171, 175], [175, 199], [199, 171], [81, 82], [82, 38], [38, 81],\n [53, 46], [46, 225], [225, 53], [144, 163], [163, 110], [110, 144],\n [52, 65], [65, 66], [66, 52], [229, 228], [228, 117], [117, 229],\n [34, 127], [127, 234], [234, 34], [107, 108], [108, 69], [69, 107],\n [109, 108], [108, 151], [151, 109], [48, 64], [64, 235], [235, 48],\n [62, 78], [78, 191], [191, 62], [129, 209], [209, 126], [126, 129],\n [111, 35], [35, 143], [143, 111], [117, 123], [123, 50], [50, 117],\n [222, 65], [65, 52], [52, 222], [19, 125], [125, 141], [141, 19],\n [221, 55], [55, 65], [65, 221], [3, 195], [195, 197], [197, 3],\n [25, 7], [7, 33], [33, 25], [220, 237], [237, 44], [44, 220],\n [70, 71], [71, 139], [139, 70], [122, 193], [193, 245], [245, 122],\n [247, 130], [130, 33], [33, 247], [71, 21], [21, 162], [162, 71],\n [170, 169], [169, 150], [150, 170], [188, 174], [174, 196], [196, 188],\n [216, 186], [186, 92], [92, 216], [2, 97], [97, 167], [167, 2],\n [141, 125], [125, 241], [241, 141], [164, 167], [167, 37], [37, 164],\n [72, 38], [38, 12], [12, 72], [38, 82], [82, 13], [13, 38],\n [63, 68], [68, 71], [71, 63], [226, 35], [35, 111], [111, 226],\n [101, 50], [50, 205], [205, 101], [206, 92], [92, 165], [165, 206],\n [209, 198], [198, 217], [217, 209], [165, 167], [167, 97], [97, 165],\n [220, 115], [115, 218], [218, 220], [133, 112], [112, 243], [243, 133],\n [239, 238], [238, 241], [241, 239], [214, 135], [135, 169], [169, 214],\n [190, 173], [173, 133], [133, 190], [171, 208], [208, 32], [32, 171],\n [125, 44], [44, 237], [237, 125], [86, 87], [87, 178], [178, 86],\n [85, 86], [86, 179], [179, 85], [84, 85], [85, 180], [180, 84],\n [83, 84], [84, 181], [181, 83], [201, 83], [83, 182], [182, 201],\n [137, 93], [93, 132], [132, 137], [76, 62], [62, 183], [183, 76],\n [61, 76], [76, 184], [184, 61], [57, 61], [61, 185], [185, 57],\n [212, 57], [57, 186], [186, 212], [214, 207], [207, 187], [187, 214],\n [34, 143], [143, 156], [156, 34], [79, 239], [239, 237], [237, 79],\n [123, 137], [137, 177], [177, 123], [44, 1], [1, 4], [4, 44],\n [201, 194], [194, 32], [32, 201], [64, 102], [102, 129], [129, 64],\n [213, 215], [215, 138], [138, 213], [59, 166], [166, 219], [219, 59],\n [242, 99], [99, 97], [97, 242], [2, 94], [94, 141], [141, 2],\n [75, 59], [59, 235], [235, 75], [24, 110], [110, 228], [228, 24],\n [25, 130], [130, 226], [226, 25], [23, 24], [24, 229], [229, 23],\n [22, 23], [23, 230], [230, 22], [26, 22], [22, 231], [231, 26],\n [112, 26], [26, 232], [232, 112], [189, 190], [190, 243], [243, 189],\n [221, 56], [56, 190], [190, 221], [28, 56], [56, 221], [221, 28],\n [27, 28], [28, 222], [222, 27], [29, 27], [27, 223], [223, 29],\n [30, 29], [29, 224], [224, 30], [247, 30], [30, 225], [225, 247],\n [238, 79], [79, 20], [20, 238], [166, 59], [59, 75], [75, 166],\n [60, 75], [75, 240], [240, 60], [147, 177], [177, 215], [215, 147],\n [20, 79], [79, 166], [166, 20], [187, 147], [147, 213], [213, 187],\n [112, 233], [233, 244], [244, 112], [233, 128], [128, 245], [245, 233],\n [128, 114], [114, 188], [188, 128], [114, 217], [217, 174], [174, 114],\n [131, 115], [115, 220], [220, 131], [217, 198], [198, 236], [236, 217],\n [198, 131], [131, 134], [134, 198], [177, 132], [132, 58], [58, 177],\n [143, 35], [35, 124], [124, 143], [110, 163], [163, 7], [7, 110],\n [228, 110], [110, 25], [25, 228], [356, 389], [389, 368], [368, 356],\n [11, 302], [302, 267], [267, 11], [452, 350], [350, 349], [349, 452],\n [302, 303], [303, 269], [269, 302], [357, 343], [343, 277], [277, 357],\n [452, 453], [453, 357], [357, 452], [333, 332], [332, 297], [297, 333],\n [175, 152], [152, 377], [377, 175], [347, 348], [348, 330], [330, 347],\n [303, 304], [304, 270], [270, 303], [9, 336], [336, 337], [337, 9],\n [278, 279], [279, 360], [360, 278], [418, 262], [262, 431], [431, 418],\n [304, 408], [408, 409], [409, 304], [310, 415], [415, 407], [407, 310],\n [270, 409], [409, 410], [410, 270], [450, 348], [348, 347], [347, 450],\n [422, 430], [430, 434], [434, 422], [313, 314], [314, 17], [17, 313],\n [306, 307], [307, 375], [375, 306], [387, 388], [388, 260], [260, 387],\n [286, 414], [414, 398], [398, 286], [335, 406], [406, 418], [418, 335],\n [364, 367], [367, 416], [416, 364], [423, 358], [358, 327], [327, 423],\n [251, 284], [284, 298], [298, 251], [281, 5], [5, 4], [4, 281],\n [373, 374], [374, 253], [253, 373], [307, 320], [320, 321], [321, 307],\n [425, 427], [427, 411], [411, 425], [421, 313], [313, 18], [18, 421],\n [321, 405], [405, 406], [406, 321], [320, 404], [404, 405], [405, 320],\n [315, 16], [16, 17], [17, 315], [426, 425], [425, 266], [266, 426],\n [377, 400], [400, 369], [369, 377], [322, 391], [391, 269], [269, 322],\n [417, 465], [465, 464], [464, 417], [386, 257], [257, 258], [258, 386],\n [466, 260], [260, 388], [388, 466], [456, 399], [399, 419], [419, 456],\n [284, 332], [332, 333], [333, 284], [417, 285], [285, 8], [8, 417],\n [346, 340], [340, 261], [261, 346], [413, 441], [441, 285], [285, 413],\n [327, 460], [460, 328], [328, 327], [355, 371], [371, 329], [329, 355],\n [392, 439], [439, 438], [438, 392], [382, 341], [341, 256], [256, 382],\n [429, 420], [420, 360], [360, 429], [364, 394], [394, 379], [379, 364],\n [277, 343], [343, 437], [437, 277], [443, 444], [444, 283], [283, 443],\n [275, 440], [440, 363], [363, 275], [431, 262], [262, 369], [369, 431],\n [297, 338], [338, 337], [337, 297], [273, 375], [375, 321], [321, 273],\n [450, 451], [451, 349], [349, 450], [446, 342], [342, 467], [467, 446],\n [293, 334], [334, 282], [282, 293], [458, 461], [461, 462], [462, 458],\n [276, 353], [353, 383], [383, 276], [308, 324], [324, 325], [325, 308],\n [276, 300], [300, 293], [293, 276], [372, 345], [345, 447], [447, 372],\n [352, 345], [345, 340], [340, 352], [274, 1], [1, 19], [19, 274],\n [456, 248], [248, 281], [281, 456], [436, 427], [427, 425], [425, 436],\n [381, 256], [256, 252], [252, 381], [269, 391], [391, 393], [393, 269],\n [200, 199], [199, 428], [428, 200], [266, 330], [330, 329], [329, 266],\n [287, 273], [273, 422], [422, 287], [250, 462], [462, 328], [328, 250],\n [258, 286], [286, 384], [384, 258], [265, 353], [353, 342], [342, 265],\n [387, 259], [259, 257], [257, 387], [424, 431], [431, 430], [430, 424],\n [342, 353], [353, 276], [276, 342], [273, 335], [335, 424], [424, 273],\n [292, 325], [325, 307], [307, 292], [366, 447], [447, 345], [345, 366],\n [271, 303], [303, 302], [302, 271], [423, 266], [266, 371], [371, 423],\n [294, 455], [455, 460], [460, 294], [279, 278], [278, 294], [294, 279],\n [271, 272], [272, 304], [304, 271], [432, 434], [434, 427], [427, 432],\n [272, 407], [407, 408], [408, 272], [394, 430], [430, 431], [431, 394],\n [395, 369], [369, 400], [400, 395], [334, 333], [333, 299], [299, 334],\n [351, 417], [417, 168], [168, 351], [352, 280], [280, 411], [411, 352],\n [325, 319], [319, 320], [320, 325], [295, 296], [296, 336], [336, 295],\n [319, 403], [403, 404], [404, 319], [330, 348], [348, 349], [349, 330],\n [293, 298], [298, 333], [333, 293], [323, 454], [454, 447], [447, 323],\n [15, 16], [16, 315], [315, 15], [358, 429], [429, 279], [279, 358],\n [14, 15], [15, 316], [316, 14], [285, 336], [336, 9], [9, 285],\n [329, 349], [349, 350], [350, 329], [374, 380], [380, 252], [252, 374],\n [318, 402], [402, 403], [403, 318], [6, 197], [197, 419], [419, 6],\n [318, 319], [319, 325], [325, 318], [367, 364], [364, 365], [365, 367],\n [435, 367], [367, 397], [397, 435], [344, 438], [438, 439], [439, 344],\n [272, 271], [271, 311], [311, 272], [195, 5], [5, 281], [281, 195],\n [273, 287], [287, 291], [291, 273], [396, 428], [428, 199], [199, 396],\n [311, 271], [271, 268], [268, 311], [283, 444], [444, 445], [445, 283],\n [373, 254], [254, 339], [339, 373], [282, 334], [334, 296], [296, 282],\n [449, 347], [347, 346], [346, 449], [264, 447], [447, 454], [454, 264],\n [336, 296], [296, 299], [299, 336], [338, 10], [10, 151], [151, 338],\n [278, 439], [439, 455], [455, 278], [292, 407], [407, 415], [415, 292],\n [358, 371], [371, 355], [355, 358], [340, 345], [345, 372], [372, 340],\n [346, 347], [347, 280], [280, 346], [442, 443], [443, 282], [282, 442],\n [19, 94], [94, 370], [370, 19], [441, 442], [442, 295], [295, 441],\n [248, 419], [419, 197], [197, 248], [263, 255], [255, 359], [359, 263],\n [440, 275], [275, 274], [274, 440], [300, 383], [383, 368], [368, 300],\n [351, 412], [412, 465], [465, 351], [263, 467], [467, 466], [466, 263],\n [301, 368], [368, 389], [389, 301], [395, 378], [378, 379], [379, 395],\n [412, 351], [351, 419], [419, 412], [436, 426], [426, 322], [322, 436],\n [2, 164], [164, 393], [393, 2], [370, 462], [462, 461], [461, 370],\n [164, 0], [0, 267], [267, 164], [302, 11], [11, 12], [12, 302],\n [268, 12], [12, 13], [13, 268], [293, 300], [300, 301], [301, 293],\n [446, 261], [261, 340], [340, 446], [330, 266], [266, 425], [425, 330],\n [426, 423], [423, 391], [391, 426], [429, 355], [355, 437], [437, 429],\n [391, 327], [327, 326], [326, 391], [440, 457], [457, 438], [438, 440],\n [341, 382], [382, 362], [362, 341], [459, 457], [457, 461], [461, 459],\n [434, 430], [430, 394], [394, 434], [414, 463], [463, 362], [362, 414],\n [396, 369], [369, 262], [262, 396], [354, 461], [461, 457], [457, 354],\n [316, 403], [403, 402], [402, 316], [315, 404], [404, 403], [403, 315],\n [314, 405], [405, 404], [404, 314], [313, 406], [406, 405], [405, 313],\n [421, 418], [418, 406], [406, 421], [366, 401], [401, 361], [361, 366],\n [306, 408], [408, 407], [407, 306], [291, 409], [409, 408], [408, 291],\n [287, 410], [410, 409], [409, 287], [432, 436], [436, 410], [410, 432],\n [434, 416], [416, 411], [411, 434], [264, 368], [368, 383], [383, 264],\n [309, 438], [438, 457], [457, 309], [352, 376], [376, 401], [401, 352],\n [274, 275], [275, 4], [4, 274], [421, 428], [428, 262], [262, 421],\n [294, 327], [327, 358], [358, 294], [433, 416], [416, 367], [367, 433],\n [289, 455], [455, 439], [439, 289], [462, 370], [370, 326], [326, 462],\n [2, 326], [326, 370], [370, 2], [305, 460], [460, 455], [455, 305],\n [254, 449], [449, 448], [448, 254], [255, 261], [261, 446], [446, 255],\n [253, 450], [450, 449], [449, 253], [252, 451], [451, 450], [450, 252],\n [256, 452], [452, 451], [451, 256], [341, 453], [453, 452], [452, 341],\n [413, 464], [464, 463], [463, 413], [441, 413], [413, 414], [414, 441],\n [258, 442], [442, 441], [441, 258], [257, 443], [443, 442], [442, 257],\n [259, 444], [444, 443], [443, 259], [260, 445], [445, 444], [444, 260],\n [467, 342], [342, 445], [445, 467], [459, 458], [458, 250], [250, 459],\n [289, 392], [392, 290], [290, 289], [290, 328], [328, 460], [460, 290],\n [376, 433], [433, 435], [435, 376], [250, 290], [290, 392], [392, 250],\n [411, 416], [416, 433], [433, 411], [341, 463], [463, 464], [464, 341],\n [453, 464], [464, 465], [465, 453], [357, 465], [465, 412], [412, 357],\n [343, 412], [412, 399], [399, 343], [360, 363], [363, 440], [440, 360],\n [437, 399], [399, 456], [456, 437], [420, 456], [456, 363], [363, 420],\n [401, 435], [435, 288], [288, 401], [372, 383], [383, 353], [353, 372],\n [339, 255], [255, 249], [249, 339], [448, 261], [261, 255], [255, 448],\n [133, 243], [243, 190], [190, 133], [133, 155], [155, 112], [112, 133],\n [33, 246], [246, 247], [247, 33], [33, 130], [130, 25], [25, 33],\n [398, 384], [384, 286], [286, 398], [362, 398], [398, 414], [414, 362],\n [362, 463], [463, 341], [341, 362], [263, 359], [359, 467], [467, 263],\n [263, 249], [249, 255], [255, 263], [466, 467], [467, 260], [260, 466],\n [75, 60], [60, 166], [166, 75], [238, 239], [239, 79], [79, 238],\n [162, 127], [127, 139], [139, 162], [72, 11], [11, 37], [37, 72],\n [121, 232], [232, 120], [120, 121], [73, 72], [72, 39], [39, 73],\n [114, 128], [128, 47], [47, 114], [233, 232], [232, 128], [128, 233],\n [103, 104], [104, 67], [67, 103], [152, 175], [175, 148], [148, 152],\n [119, 118], [118, 101], [101, 119], [74, 73], [73, 40], [40, 74],\n [107, 9], [9, 108], [108, 107], [49, 48], [48, 131], [131, 49],\n [32, 194], [194, 211], [211, 32], [184, 74], [74, 185], [185, 184],\n [191, 80], [80, 183], [183, 191], [185, 40], [40, 186], [186, 185],\n [119, 230], [230, 118], [118, 119], [210, 202], [202, 214], [214, 210],\n [84, 83], [83, 17], [17, 84], [77, 76], [76, 146], [146, 77],\n [161, 160], [160, 30], [30, 161], [190, 56], [56, 173], [173, 190],\n [182, 106], [106, 194], [194, 182], [138, 135], [135, 192], [192, 138],\n [129, 203], [203, 98], [98, 129], [54, 21], [21, 68], [68, 54],\n [5, 51], [51, 4], [4, 5], [145, 144], [144, 23], [23, 145],\n [90, 77], [77, 91], [91, 90], [207, 205], [205, 187], [187, 207],\n [83, 201], [201, 18], [18, 83], [181, 91], [91, 182], [182, 181],\n [180, 90], [90, 181], [181, 180], [16, 85], [85, 17], [17, 16],\n [205, 206], [206, 36], [36, 205], [176, 148], [148, 140], [140, 176],\n [165, 92], [92, 39], [39, 165], [245, 193], [193, 244], [244, 245],\n [27, 159], [159, 28], [28, 27], [30, 247], [247, 161], [161, 30],\n [174, 236], [236, 196], [196, 174], [103, 54], [54, 104], [104, 103],\n [55, 193], [193, 8], [8, 55], [111, 117], [117, 31], [31, 111],\n [221, 189], [189, 55], [55, 221], [240, 98], [98, 99], [99, 240],\n [142, 126], [126, 100], [100, 142], [219, 166], [166, 218], [218, 219],\n [112, 155], [155, 26], [26, 112], [198, 209], [209, 131], [131, 198],\n [169, 135], [135, 150], [150, 169], [114, 47], [47, 217], [217, 114],\n [224, 223], [223, 53], [53, 224], [220, 45], [45, 134], [134, 220],\n [32, 211], [211, 140], [140, 32], [109, 67], [67, 108], [108, 109],\n [146, 43], [43, 91], [91, 146], [231, 230], [230, 120], [120, 231],\n [113, 226], [226, 247], [247, 113], [105, 63], [63, 52], [52, 105],\n [241, 238], [238, 242], [242, 241], [124, 46], [46, 156], [156, 124],\n [95, 78], [78, 96], [96, 95], [70, 46], [46, 63], [63, 70],\n [116, 143], [143, 227], [227, 116], [116, 123], [123, 111], [111, 116],\n [1, 44], [44, 19], [19, 1], [3, 236], [236, 51], [51, 3],\n [207, 216], [216, 205], [205, 207], [26, 154], [154, 22], [22, 26],\n [165, 39], [39, 167], [167, 165], [199, 200], [200, 208], [208, 199],\n [101, 36], [36, 100], [100, 101], [43, 57], [57, 202], [202, 43],\n [242, 20], [20, 99], [99, 242], [56, 28], [28, 157], [157, 56],\n [124, 35], [35, 113], [113, 124], [29, 160], [160, 27], [27, 29],\n [211, 204], [204, 210], [210, 211], [124, 113], [113, 46], [46, 124],\n [106, 43], [43, 204], [204, 106], [96, 62], [62, 77], [77, 96],\n [227, 137], [137, 116], [116, 227], [73, 41], [41, 72], [72, 73],\n [36, 203], [203, 142], [142, 36], [235, 64], [64, 240], [240, 235],\n [48, 49], [49, 64], [64, 48], [42, 41], [41, 74], [74, 42],\n [214, 212], [212, 207], [207, 214], [183, 42], [42, 184], [184, 183],\n [210, 169], [169, 211], [211, 210], [140, 170], [170, 176], [176, 140],\n [104, 105], [105, 69], [69, 104], [193, 122], [122, 168], [168, 193],\n [50, 123], [123, 187], [187, 50], [89, 96], [96, 90], [90, 89],\n [66, 65], [65, 107], [107, 66], [179, 89], [89, 180], [180, 179],\n [119, 101], [101, 120], [120, 119], [68, 63], [63, 104], [104, 68],\n [234, 93], [93, 227], [227, 234], [16, 15], [15, 85], [85, 16],\n [209, 129], [129, 49], [49, 209], [15, 14], [14, 86], [86, 15],\n [107, 55], [55, 9], [9, 107], [120, 100], [100, 121], [121, 120],\n [153, 145], [145, 22], [22, 153], [178, 88], [88, 179], [179, 178],\n [197, 6], [6, 196], [196, 197], [89, 88], [88, 96], [96, 89],\n [135, 138], [138, 136], [136, 135], [138, 215], [215, 172], [172, 138],\n [218, 115], [115, 219], [219, 218], [41, 42], [42, 81], [81, 41],\n [5, 195], [195, 51], [51, 5], [57, 43], [43, 61], [61, 57],\n [208, 171], [171, 199], [199, 208], [41, 81], [81, 38], [38, 41],\n [224, 53], [53, 225], [225, 224], [24, 144], [144, 110], [110, 24],\n [105, 52], [52, 66], [66, 105], [118, 229], [229, 117], [117, 118],\n [227, 34], [34, 234], [234, 227], [66, 107], [107, 69], [69, 66],\n [10, 109], [109, 151], [151, 10], [219, 48], [48, 235], [235, 219],\n [183, 62], [62, 191], [191, 183], [142, 129], [129, 126], [126, 142],\n [116, 111], [111, 143], [143, 116], [118, 117], [117, 50], [50, 118],\n [223, 222], [222, 52], [52, 223], [94, 19], [19, 141], [141, 94],\n [222, 221], [221, 65], [65, 222], [196, 3], [3, 197], [197, 196],\n [45, 220], [220, 44], [44, 45], [156, 70], [70, 139], [139, 156],\n [188, 122], [122, 245], [245, 188], [139, 71], [71, 162], [162, 139],\n [149, 170], [170, 150], [150, 149], [122, 188], [188, 196], [196, 122],\n [206, 216], [216, 92], [92, 206], [164, 2], [2, 167], [167, 164],\n [242, 141], [141, 241], [241, 242], [0, 164], [164, 37], [37, 0],\n [11, 72], [72, 12], [12, 11], [12, 38], [38, 13], [13, 12],\n [70, 63], [63, 71], [71, 70], [31, 226], [226, 111], [111, 31],\n [36, 101], [101, 205], [205, 36], [203, 206], [206, 165], [165, 203],\n [126, 209], [209, 217], [217, 126], [98, 165], [165, 97], [97, 98],\n [237, 220], [220, 218], [218, 237], [237, 239], [239, 241], [241, 237],\n [210, 214], [214, 169], [169, 210], [140, 171], [171, 32], [32, 140],\n [241, 125], [125, 237], [237, 241], [179, 86], [86, 178], [178, 179],\n [180, 85], [85, 179], [179, 180], [181, 84], [84, 180], [180, 181],\n [182, 83], [83, 181], [181, 182], [194, 201], [201, 182], [182, 194],\n [177, 137], [137, 132], [132, 177], [184, 76], [76, 183], [183, 184],\n [185, 61], [61, 184], [184, 185], [186, 57], [57, 185], [185, 186],\n [216, 212], [212, 186], [186, 216], [192, 214], [214, 187], [187, 192],\n [139, 34], [34, 156], [156, 139], [218, 79], [79, 237], [237, 218],\n [147, 123], [123, 177], [177, 147], [45, 44], [44, 4], [4, 45],\n [208, 201], [201, 32], [32, 208], [98, 64], [64, 129], [129, 98],\n [192, 213], [213, 138], [138, 192], [235, 59], [59, 219], [219, 235],\n [141, 242], [242, 97], [97, 141], [97, 2], [2, 141], [141, 97],\n [240, 75], [75, 235], [235, 240], [229, 24], [24, 228], [228, 229],\n [31, 25], [25, 226], [226, 31], [230, 23], [23, 229], [229, 230],\n [231, 22], [22, 230], [230, 231], [232, 26], [26, 231], [231, 232],\n [233, 112], [112, 232], [232, 233], [244, 189], [189, 243], [243, 244],\n [189, 221], [221, 190], [190, 189], [222, 28], [28, 221], [221, 222],\n [223, 27], [27, 222], [222, 223], [224, 29], [29, 223], [223, 224],\n [225, 30], [30, 224], [224, 225], [113, 247], [247, 225], [225, 113],\n [99, 60], [60, 240], [240, 99], [213, 147], [147, 215], [215, 213],\n [60, 20], [20, 166], [166, 60], [192, 187], [187, 213], [213, 192],\n [243, 112], [112, 244], [244, 243], [244, 233], [233, 245], [245, 244],\n [245, 128], [128, 188], [188, 245], [188, 114], [114, 174], [174, 188],\n [134, 131], [131, 220], [220, 134], [174, 217], [217, 236], [236, 174],\n [236, 198], [198, 134], [134, 236], [215, 177], [177, 58], [58, 215],\n [156, 143], [143, 124], [124, 156], [25, 110], [110, 7], [7, 25],\n [31, 228], [228, 25], [25, 31], [264, 356], [356, 368], [368, 264],\n [0, 11], [11, 267], [267, 0], [451, 452], [452, 349], [349, 451],\n [267, 302], [302, 269], [269, 267], [350, 357], [357, 277], [277, 350],\n [350, 452], [452, 357], [357, 350], [299, 333], [333, 297], [297, 299],\n [396, 175], [175, 377], [377, 396], [280, 347], [347, 330], [330, 280],\n [269, 303], [303, 270], [270, 269], [151, 9], [9, 337], [337, 151],\n [344, 278], [278, 360], [360, 344], [424, 418], [418, 431], [431, 424],\n [270, 304], [304, 409], [409, 270], [272, 310], [310, 407], [407, 272],\n [322, 270], [270, 410], [410, 322], [449, 450], [450, 347], [347, 449],\n [432, 422], [422, 434], [434, 432], [18, 313], [313, 17], [17, 18],\n [291, 306], [306, 375], [375, 291], [259, 387], [387, 260], [260, 259],\n [424, 335], [335, 418], [418, 424], [434, 364], [364, 416], [416, 434],\n [391, 423], [423, 327], [327, 391], [301, 251], [251, 298], [298, 301],\n [275, 281], [281, 4], [4, 275], [254, 373], [373, 253], [253, 254],\n [375, 307], [307, 321], [321, 375], [280, 425], [425, 411], [411, 280],\n [200, 421], [421, 18], [18, 200], [335, 321], [321, 406], [406, 335],\n [321, 320], [320, 405], [405, 321], [314, 315], [315, 17], [17, 314],\n [423, 426], [426, 266], [266, 423], [396, 377], [377, 369], [369, 396],\n [270, 322], [322, 269], [269, 270], [413, 417], [417, 464], [464, 413],\n [385, 386], [386, 258], [258, 385], [248, 456], [456, 419], [419, 248],\n [298, 284], [284, 333], [333, 298], [168, 417], [417, 8], [8, 168],\n [448, 346], [346, 261], [261, 448], [417, 413], [413, 285], [285, 417],\n [326, 327], [327, 328], [328, 326], [277, 355], [355, 329], [329, 277],\n [309, 392], [392, 438], [438, 309], [381, 382], [382, 256], [256, 381],\n [279, 429], [429, 360], [360, 279], [365, 364], [364, 379], [379, 365],\n [355, 277], [277, 437], [437, 355], [282, 443], [443, 283], [283, 282],\n [281, 275], [275, 363], [363, 281], [395, 431], [431, 369], [369, 395],\n [299, 297], [297, 337], [337, 299], [335, 273], [273, 321], [321, 335],\n [348, 450], [450, 349], [349, 348], [359, 446], [446, 467], [467, 359],\n [283, 293], [293, 282], [282, 283], [250, 458], [458, 462], [462, 250],\n [300, 276], [276, 383], [383, 300], [292, 308], [308, 325], [325, 292],\n [283, 276], [276, 293], [293, 283], [264, 372], [372, 447], [447, 264],\n [346, 352], [352, 340], [340, 346], [354, 274], [274, 19], [19, 354],\n [363, 456], [456, 281], [281, 363], [426, 436], [436, 425], [425, 426],\n [380, 381], [381, 252], [252, 380], [267, 269], [269, 393], [393, 267],\n [421, 200], [200, 428], [428, 421], [371, 266], [266, 329], [329, 371],\n [432, 287], [287, 422], [422, 432], [290, 250], [250, 328], [328, 290],\n [385, 258], [258, 384], [384, 385], [446, 265], [265, 342], [342, 446],\n [386, 387], [387, 257], [257, 386], [422, 424], [424, 430], [430, 422],\n [445, 342], [342, 276], [276, 445], [422, 273], [273, 424], [424, 422],\n [306, 292], [292, 307], [307, 306], [352, 366], [366, 345], [345, 352],\n [268, 271], [271, 302], [302, 268], [358, 423], [423, 371], [371, 358],\n [327, 294], [294, 460], [460, 327], [331, 279], [279, 294], [294, 331],\n [303, 271], [271, 304], [304, 303], [436, 432], [432, 427], [427, 436],\n [304, 272], [272, 408], [408, 304], [395, 394], [394, 431], [431, 395],\n [378, 395], [395, 400], [400, 378], [296, 334], [334, 299], [299, 296],\n [6, 351], [351, 168], [168, 6], [376, 352], [352, 411], [411, 376],\n [307, 325], [325, 320], [320, 307], [285, 295], [295, 336], [336, 285],\n [320, 319], [319, 404], [404, 320], [329, 330], [330, 349], [349, 329],\n [334, 293], [293, 333], [333, 334], [366, 323], [323, 447], [447, 366],\n [316, 15], [15, 315], [315, 316], [331, 358], [358, 279], [279, 331],\n [317, 14], [14, 316], [316, 317], [8, 285], [285, 9], [9, 8],\n [277, 329], [329, 350], [350, 277], [253, 374], [374, 252], [252, 253],\n [319, 318], [318, 403], [403, 319], [351, 6], [6, 419], [419, 351],\n [324, 318], [318, 325], [325, 324], [397, 367], [367, 365], [365, 397],\n [288, 435], [435, 397], [397, 288], [278, 344], [344, 439], [439, 278],\n [310, 272], [272, 311], [311, 310], [248, 195], [195, 281], [281, 248],\n [375, 273], [273, 291], [291, 375], [175, 396], [396, 199], [199, 175],\n [312, 311], [311, 268], [268, 312], [276, 283], [283, 445], [445, 276],\n [390, 373], [373, 339], [339, 390], [295, 282], [282, 296], [296, 295],\n [448, 449], [449, 346], [346, 448], [356, 264], [264, 454], [454, 356],\n [337, 336], [336, 299], [299, 337], [337, 338], [338, 151], [151, 337],\n [294, 278], [278, 455], [455, 294], [308, 292], [292, 415], [415, 308],\n [429, 358], [358, 355], [355, 429], [265, 340], [340, 372], [372, 265],\n [352, 346], [346, 280], [280, 352], [295, 442], [442, 282], [282, 295],\n [354, 19], [19, 370], [370, 354], [285, 441], [441, 295], [295, 285],\n [195, 248], [248, 197], [197, 195], [457, 440], [440, 274], [274, 457],\n [301, 300], [300, 368], [368, 301], [417, 351], [351, 465], [465, 417],\n [251, 301], [301, 389], [389, 251], [394, 395], [395, 379], [379, 394],\n [399, 412], [412, 419], [419, 399], [410, 436], [436, 322], [322, 410],\n [326, 2], [2, 393], [393, 326], [354, 370], [370, 461], [461, 354],\n [393, 164], [164, 267], [267, 393], [268, 302], [302, 12], [12, 268],\n [312, 268], [268, 13], [13, 312], [298, 293], [293, 301], [301, 298],\n [265, 446], [446, 340], [340, 265], [280, 330], [330, 425], [425, 280],\n [322, 426], [426, 391], [391, 322], [420, 429], [429, 437], [437, 420],\n [393, 391], [391, 326], [326, 393], [344, 440], [440, 438], [438, 344],\n [458, 459], [459, 461], [461, 458], [364, 434], [434, 394], [394, 364],\n [428, 396], [396, 262], [262, 428], [274, 354], [354, 457], [457, 274],\n [317, 316], [316, 402], [402, 317], [316, 315], [315, 403], [403, 316],\n [315, 314], [314, 404], [404, 315], [314, 313], [313, 405], [405, 314],\n [313, 421], [421, 406], [406, 313], [323, 366], [366, 361], [361, 323],\n [292, 306], [306, 407], [407, 292], [306, 291], [291, 408], [408, 306],\n [291, 287], [287, 409], [409, 291], [287, 432], [432, 410], [410, 287],\n [427, 434], [434, 411], [411, 427], [372, 264], [264, 383], [383, 372],\n [459, 309], [309, 457], [457, 459], [366, 352], [352, 401], [401, 366],\n [1, 274], [274, 4], [4, 1], [418, 421], [421, 262], [262, 418],\n [331, 294], [294, 358], [358, 331], [435, 433], [433, 367], [367, 435],\n [392, 289], [289, 439], [439, 392], [328, 462], [462, 326], [326, 328],\n [94, 2], [2, 370], [370, 94], [289, 305], [305, 455], [455, 289],\n [339, 254], [254, 448], [448, 339], [359, 255], [255, 446], [446, 359],\n [254, 253], [253, 449], [449, 254], [253, 252], [252, 450], [450, 253],\n [252, 256], [256, 451], [451, 252], [256, 341], [341, 452], [452, 256],\n [414, 413], [413, 463], [463, 414], [286, 441], [441, 414], [414, 286],\n [286, 258], [258, 441], [441, 286], [258, 257], [257, 442], [442, 258],\n [257, 259], [259, 443], [443, 257], [259, 260], [260, 444], [444, 259],\n [260, 467], [467, 445], [445, 260], [309, 459], [459, 250], [250, 309],\n [305, 289], [289, 290], [290, 305], [305, 290], [290, 460], [460, 305],\n [401, 376], [376, 435], [435, 401], [309, 250], [250, 392], [392, 309],\n [376, 411], [411, 433], [433, 376], [453, 341], [341, 464], [464, 453],\n [357, 453], [453, 465], [465, 357], [343, 357], [357, 412], [412, 343],\n [437, 343], [343, 399], [399, 437], [344, 360], [360, 440], [440, 344],\n [420, 437], [437, 456], [456, 420], [360, 420], [420, 363], [363, 360],\n [361, 401], [401, 288], [288, 361], [265, 372], [372, 353], [353, 265],\n [390, 339], [339, 249], [249, 390], [339, 448], [448, 255], [255, 339],\n];\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as coords from './facemeshcoords';\nimport { constants } from '../tfjs/constants';\nimport type { Box, Point } from '../result';\nimport { env } from '../util/env';\n\nexport const createBox = (startEndTensor) => ({ startPoint: tf.slice(startEndTensor, [0, 0], [-1, 2]), endPoint: tf.slice(startEndTensor, [0, 2], [-1, 2]) });\n\nexport const disposeBox = (t) => tf.dispose([t.startPoint, t.endPoint]);\n\nexport const getBoxSize = (box): [number, number] => [Math.abs(box.endPoint[0] - box.startPoint[0]), Math.abs(box.endPoint[1] - box.startPoint[1])];\n\nexport const getBoxCenter = (box): [number, number, number] => [box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2, box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2, 1];\n\nexport const clampBox = (box, input): Box => (box ? [\n Math.trunc(Math.max(0, box.startPoint[0])),\n Math.trunc(Math.max(0, box.startPoint[1])),\n Math.trunc(Math.min((input.shape[2] || 0), box.endPoint[0]) - Math.max(0, box.startPoint[0])),\n Math.trunc(Math.min((input.shape[1] || 0), box.endPoint[1]) - Math.max(0, box.startPoint[1])),\n] : [0, 0, 0, 0]);\n\nexport const getRawBox = (box, input): Box => (box ? [\n box.startPoint[0] / (input.shape[2] || 0),\n box.startPoint[1] / (input.shape[1] || 0),\n (box.endPoint[0] - box.startPoint[0]) / (input.shape[2] || 0),\n (box.endPoint[1] - box.startPoint[1]) / (input.shape[1] || 0),\n] : [0, 0, 0, 0]);\n\nexport const scaleBoxCoordinates = (box, factor) => {\n const startPoint: Point = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint: Point = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n return { startPoint, endPoint, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const cutAndResize = (box, image, cropSize) => {\n const h = image.shape[1];\n const w = image.shape[2];\n const cutBox = [box.startPoint[1] / h, box.startPoint[0] / w, box.endPoint[1] / h, box.endPoint[0] / w];\n const crop = tf.image.cropAndResize(image, [cutBox], [0], cropSize);\n const norm = tf.div(crop, constants.tf255);\n tf.dispose(crop);\n return norm;\n};\n\nexport const enlargeBox = (box, factor) => {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const halfSize: [number, number] = [factor * size[0] / 2, factor * size[1] / 2];\n return { startPoint: [center[0] - halfSize[0], center[1] - halfSize[1]] as Point, endPoint: [center[0] + halfSize[0], center[1] + halfSize[1]] as Point, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const squarifyBox = (box) => {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const halfSize = Math.max(...size) / 2;\n return { startPoint: [Math.round(centers[0] - halfSize), Math.round(centers[1] - halfSize)] as Point, endPoint: [Math.round(centers[0] + halfSize), Math.round(centers[1] + halfSize)] as Point, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const calculateLandmarksBoundingBox = (landmarks) => {\n const x = landmarks.map((d) => d[0]);\n const y = landmarks.map((d) => d[1]);\n return { startPoint: [Math.min(...x), Math.min(...y)] as Point, endPoint: [Math.max(...x), Math.max(...y)] as Point, landmarks };\n};\n\nexport const fixedRotationMatrix = [[1, 0, 0], [0, 1, 0], [0, 0, 1]];\n\nexport const normalizeRadians = (angle) => angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n\nexport const computeRotation = (point1, point2) => normalizeRadians(Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]));\n\nexport const radToDegrees = (rad) => rad * 180 / Math.PI;\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport const dot = (v1: number[], v2: number[]) => {\n let product = 0;\n for (let i = 0; i < v1.length; i++) product += v1[i] * v2[i];\n return product;\n};\n\nexport const getColumnFrom2DArr = (arr, columnIndex) => {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) column.push(arr[i][columnIndex]);\n return column;\n};\n\nexport const multiplyTransformMatrices = (mat1, mat2) => {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n return product;\n};\n\nexport const buildRotationMatrix = (rotation, center) => {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n};\n\nexport const invertTransformMatrix = (matrix) => {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [-dot(rotationComponent[0], translationComponent), -dot(rotationComponent[1], translationComponent)];\n return [rotationComponent[0].concat(invertedTranslation[0]), rotationComponent[1].concat(invertedTranslation[1]), [0, 0, 1]];\n};\n\nexport const rotatePoint = (homogeneousCoordinate, rotationMatrix) => [dot(homogeneousCoordinate, rotationMatrix[0]), dot(homogeneousCoordinate, rotationMatrix[1])];\n\nexport const xyDistanceBetweenPoints = (a, b) => Math.sqrt(((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2));\n\nexport function generateAnchors(inputSize) {\n const spec = inputSize === 192\n ? { strides: [4], anchors: [1] } // facemesh-detector\n : { strides: [inputSize / 16, inputSize / 8], anchors: [2, 6] }; // blazeface\n const anchors: Array<[number, number]> = [];\n for (let i = 0; i < spec.strides.length; i++) {\n const stride = spec.strides[i];\n const gridRows = Math.floor((inputSize + stride - 1) / stride);\n const gridCols = Math.floor((inputSize + stride - 1) / stride);\n const anchorsNum = spec.anchors[i];\n for (let gridY = 0; gridY < gridRows; gridY++) {\n const anchorY = stride * (gridY + 0.5);\n for (let gridX = 0; gridX < gridCols; gridX++) {\n const anchorX = stride * (gridX + 0.5);\n for (let n = 0; n < anchorsNum; n++) anchors.push([anchorX, anchorY]);\n }\n }\n }\n return anchors;\n}\n\nexport function transformRawCoords(coordsRaw, box, angle, rotationMatrix, inputSize) {\n const boxSize = getBoxSize(box);\n const coordsScaled = coordsRaw.map((coord) => ([ // scaled around zero-point\n (boxSize[0] / inputSize) * (coord[0] - (inputSize / 2)),\n (boxSize[1] / inputSize) * (coord[1] - (inputSize / 2)),\n (coord[2] || 0),\n ]));\n const largeAngle = angle && (angle !== 0) && (Math.abs(angle) > 0.2);\n const coordsRotationMatrix = largeAngle ? buildRotationMatrix(angle, [0, 0]) : fixedRotationMatrix;\n const coordsRotated = largeAngle ? coordsScaled.map((coord) => ([...rotatePoint(coord, coordsRotationMatrix), coord[2]])) : coordsScaled;\n const inverseRotationMatrix = largeAngle ? invertTransformMatrix(rotationMatrix) : fixedRotationMatrix;\n const boxCenter = getBoxCenter(box);\n const offsets = [dot(boxCenter, inverseRotationMatrix[0]), dot(boxCenter, inverseRotationMatrix[1])];\n return coordsRotated.map((coord) => ([\n Math.trunc(coord[0] + offsets[0]),\n Math.trunc(coord[1] + offsets[1]),\n Math.trunc(coord[2] || 0),\n ]));\n}\n\nexport function correctFaceRotation(rotate, box, input, inputSize) {\n const symmetryLine = (box.landmarks.length >= coords.meshLandmarks.count)\n ? coords.meshLandmarks.symmetryLine\n : coords.blazeFaceLandmarks.symmetryLine;\n let angle = 0; // default\n let rotationMatrix = fixedRotationMatrix; // default\n let face; // default\n\n if (rotate && env.kernels.includes('rotatewithoffset')) { // rotateWithOffset is not defined for tfjs-node\n angle = computeRotation(box.landmarks[symmetryLine[0]], box.landmarks[symmetryLine[1]]);\n const largeAngle = angle && (angle !== 0) && (Math.abs(angle) > 0.2);\n if (largeAngle) { // perform rotation only if angle is sufficiently high\n const center: Point = getBoxCenter(box);\n const centerRaw: Point = [center[0] / input.shape[2], center[1] / input.shape[1]];\n const rotated = tf.image.rotateWithOffset(input, angle, 0, centerRaw);\n rotationMatrix = buildRotationMatrix(-angle, center);\n face = cutAndResize(box, rotated, [inputSize, inputSize]);\n tf.dispose(rotated);\n } else {\n face = cutAndResize(box, input, [inputSize, inputSize]);\n }\n } else {\n face = cutAndResize(box, input, [inputSize, inputSize]);\n }\n return [angle, rotationMatrix, face];\n}\n\nexport const findFaceCenter = (mesh) => {\n const x = mesh.map((m) => m[0]);\n const y = mesh.map((m) => m[1]);\n // weighted center\n /*\n const sum = (arr: number[]) => arr.reduce((prev, curr) => prev + curr, 0);\n return [sum(x) / mesh.length, sum(y) / mesh.length];\n */\n // absolute center\n return [Math.min(...x) + (Math.max(...x) - Math.min(...x)) / 2, Math.min(...y) + (Math.max(...y) - Math.min(...y)) / 2];\n};\n\nexport const calculateFaceBox = (mesh, previousBox) => {\n const center = findFaceCenter(mesh);\n const boxSize = getBoxSize(previousBox);\n const calculatedBox = {\n startPoint: [center[0] - boxSize[0] / 2, center[1] - boxSize[1] / 2] as Point,\n endPoint: [center[0] + boxSize[0] / 2, center[1] + boxSize[1] / 2] as Point,\n };\n return calculatedBox;\n};\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './facemeshutil';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Config } from '../config';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport type { Point } from '../result';\n\nconst keypointsCount = 6;\nconst faceBoxScaleFactor = 1.4;\nlet model: GraphModel | null;\nlet anchors: Tensor | null = null;\nlet inputSize = 0;\nlet inputSizeT: Tensor | null = null;\n\ntype DetectBox = { startPoint: Point, endPoint: Point, landmarks: Array, confidence: number };\n\nexport const size = () => inputSize;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.detector?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0;\n inputSizeT = tf.scalar(inputSize, 'int32') as Tensor;\n anchors = tf.tensor2d(util.generateAnchors(inputSize)) as Tensor;\n return model;\n}\n\nfunction decodeBoxes(boxOutputs: Tensor) {\n const t: Record = {};\n t.boxStarts = tf.slice(boxOutputs, [0, 1], [-1, 2]);\n t.centers = tf.add(t.boxStarts, anchors);\n t.boxSizes = tf.slice(boxOutputs, [0, 3], [-1, 2]);\n t.boxSizesNormalized = tf.div(t.boxSizes, inputSizeT);\n t.centersNormalized = tf.div(t.centers, inputSizeT);\n t.halfBoxSize = tf.div(t.boxSizesNormalized, constants.tf2);\n t.starts = tf.sub(t.centersNormalized, t.halfBoxSize);\n t.ends = tf.add(t.centersNormalized, t.halfBoxSize);\n t.startNormalized = tf.mul(t.starts, inputSizeT);\n t.endNormalized = tf.mul(t.ends, inputSizeT);\n const boxes = tf.concat2d([t.startNormalized, t.endNormalized], 1);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n\nexport async function getBoxes(inputImage: Tensor, config: Config) {\n // sanity check on input\n if ((!inputImage) || (inputImage['isDisposedInternal']) || (inputImage.shape.length !== 4) || (inputImage.shape[1] < 1) || (inputImage.shape[2] < 1)) return [];\n const t: Record = {};\n t.resized = tf.image.resizeBilinear(inputImage, [inputSize, inputSize]);\n t.div = tf.div(t.resized, constants.tf127);\n t.normalized = tf.sub(t.div, constants.tf05);\n const res = model?.execute(t.normalized) as Tensor[];\n if (Array.isArray(res) && res.length > 2) { // pinto converted model?\n const sorted = res.sort((a, b) => a.size - b.size);\n t.concat384 = tf.concat([sorted[0], sorted[2]], 2); // dim: 384, 1 + 16\n t.concat512 = tf.concat([sorted[1], sorted[3]], 2); // dim: 512, 1 + 16\n t.concat = tf.concat([t.concat512, t.concat384], 1);\n t.batch = tf.squeeze(t.concat, 0);\n } else if (Array.isArray(res)) { // new facemesh-detection tfhub model\n t.batch = tf.squeeze(res[0]);\n } else { // original blazeface tfhub model\n t.batch = tf.squeeze(res);\n }\n tf.dispose(res);\n t.boxes = decodeBoxes(t.batch);\n t.logits = tf.slice(t.batch, [0, 0], [-1, 1]);\n t.sigmoid = tf.sigmoid(t.logits);\n t.scores = tf.squeeze(t.sigmoid);\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, (config.face.detector?.maxDetected || 0), (config.face.detector?.iouThreshold || 0), (config.face.detector?.minConfidence || 0));\n const nms = await t.nms.array() as number[];\n const boxes: Array = [];\n const scores = await t.scores.data();\n for (let i = 0; i < nms.length; i++) {\n const confidence = scores[nms[i]];\n if (confidence > (config.face.detector?.minConfidence || 0)) {\n const b: Record = {};\n b.bbox = tf.slice(t.boxes, [nms[i], 0], [1, -1]);\n b.slice = tf.slice(t.batch, [nms[i], keypointsCount - 1], [1, -1]);\n b.squeeze = tf.squeeze(b.slice);\n b.landmarks = tf.reshape(b.squeeze, [keypointsCount, -1]);\n const points = await b.bbox.data();\n const rawBox = {\n startPoint: [points[0], points[1]] as Point,\n endPoint: [points[2], points[3]] as Point,\n landmarks: (await b.landmarks.array()) as Point[],\n confidence,\n };\n const scaledBox = util.scaleBoxCoordinates(rawBox, [(inputImage.shape[2] || 0) / inputSize, (inputImage.shape[1] || 0) / inputSize]);\n const enlargedBox = util.enlargeBox(scaledBox, config.face['scale'] || faceBoxScaleFactor);\n const squaredBox = util.squarifyBox(enlargedBox);\n boxes.push(squaredBox);\n Object.keys(b).forEach((tensor) => tf.dispose(b[tensor]));\n }\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n", "/* eslint-disable no-multi-spaces */\n\nexport const kpt: Array = [\n 'nose', // 0\n 'leftEyeInside', // 1\n 'leftEye', // 2\n 'leftEyeOutside', // 3\n 'rightEyeInside', // 4\n 'rightEye', // 5\n 'rightEyeOutside', // 6\n 'leftEar', // 7\n 'rightEar', // 8\n 'leftMouth', // 9\n 'rightMouth', // 10\n 'leftShoulder', // 11\n 'rightShoulder', // 12\n 'leftElbow', // 13\n 'rightElbow', // 14\n 'leftWrist', // 15\n 'rightWrist', // 16\n 'leftPinky', // 17\n 'rightPinky', // 18\n 'leftIndex', // 19\n 'rightIndex', // 20\n 'leftThumb', // 21\n 'rightThumb', // 22\n 'leftHip', // 23\n 'rightHip', // 24\n 'leftKnee', // 25\n 'rightKnee', // 26\n 'leftAnkle', // 27\n 'rightAnkle', // 28\n 'leftHeel', // 29\n 'rightHeel', // 30\n 'leftFoot', // 31\n 'rightFoot', // 32\n 'bodyCenter', // 33\n 'bodyTop', // 34\n 'leftPalm', // 35 // z-coord not ok\n 'leftHand', // 36 // similar to wrist but z-coord not ok\n 'rightPalm', // 37 // z-coord not ok\n 'rightHand', // 38 // similar to wrist but z-coord not ok\n];\n\nexport const connected: Record = {\n shoulders: ['leftShoulder', 'rightShoulder'],\n hips: ['rightHip', 'leftHip'],\n mouth: ['leftMouth', 'rightMouth'],\n leftLegUpper: ['leftHip', 'leftKnee'],\n leftLegLower: ['leftKnee', 'leftAnkle'],\n leftFoot: ['leftAnkle', 'leftHeel', 'leftFoot'],\n leftTorso: ['leftShoulder', 'leftHip'],\n leftArmUpper: ['leftShoulder', 'leftElbow'],\n leftArmLower: ['leftElbow', 'leftWrist'],\n leftHand: ['leftWrist', 'leftPalm'],\n leftHandPinky: ['leftPalm', 'leftPinky'],\n leftHandIndex: ['leftPalm', 'leftIndex'],\n leftHandThumb: ['leftPalm', 'leftThumb'],\n leftEyeOutline: ['leftEyeInside', 'leftEyeOutside'],\n rightLegUpper: ['rightHip', 'rightKnee'],\n rightLegLower: ['rightKnee', 'rightAnkle'],\n rightFoot: ['rightAnkle', 'rightHeel', 'rightFoot'],\n rightTorso: ['rightShoulder', 'rightHip'],\n rightArmUpper: ['rightShoulder', 'rightElbow'],\n rightArmLower: ['rightElbow', 'rightWrist'],\n rightHand: ['rightWrist', 'rightPalm'],\n rightHandPinky: ['rightPalm', 'rightPinky'],\n rightHandIndex: ['rightPalm', 'rightIndex'],\n rightHandThumb: ['rightPalm', 'rightThumb'],\n rightEyeOutline: ['rightEyeInside', 'rightEyeOutside'],\n};\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../tfjs/types';\nimport type { Box } from '../result';\nimport type { Config } from '../config';\n\ninterface DetectedBox { box: Box, boxRaw: Box, score: number }\n\nconst inputSize = 224;\nlet anchorTensor: { x, y };\nconst numLayers = 5;\nconst strides = [8, 16, 32, 32, 32];\n\nexport async function createAnchors() {\n const anchors: Array<{ x: number, y: number }> = [];\n let layerId = 0;\n while (layerId < numLayers) {\n let anchorCount = 0;\n let lastSameStrideLayer = layerId;\n while (lastSameStrideLayer < strides.length && strides[lastSameStrideLayer] === strides[layerId]) {\n anchorCount += 2;\n lastSameStrideLayer++;\n }\n const stride = strides[layerId];\n const featureMapHeight = Math.ceil(inputSize / stride);\n const featureMapWidth = Math.ceil(inputSize / stride);\n for (let y = 0; y < featureMapHeight; ++y) {\n for (let x = 0; x < featureMapWidth; ++x) {\n for (let anchorId = 0; anchorId < anchorCount; ++anchorId) {\n anchors.push({ x: (x + 0.5) / featureMapWidth, y: (y + 0.5) / featureMapHeight });\n }\n }\n }\n layerId = lastSameStrideLayer;\n }\n anchorTensor = { x: tf.tensor1d(anchors.map((a) => a.x)), y: tf.tensor1d(anchors.map((a) => a.y)) };\n}\n\nconst cropFactor = [5.0, 5.0];\nfunction decodeBoxes(boxesTensor, anchor): Tensor {\n return tf.tidy(() => {\n const split = tf.split(boxesTensor, 12, 1); // first 4 are box data [x,y,w,h] and 4 are keypoints data [x,y] for total of 12\n let xCenter = tf.squeeze(split[0]);\n let yCenter = tf.squeeze(split[1]);\n let width = tf.squeeze(split[2]);\n let height = tf.squeeze(split[3]);\n xCenter = tf.add(tf.div(xCenter, inputSize), anchor.x);\n yCenter = tf.add(tf.div(yCenter, inputSize), anchor.y);\n width = tf.mul(tf.div(width, inputSize), cropFactor[0]);\n height = tf.mul(tf.div(height, inputSize), cropFactor[1]);\n const xMin = tf.sub(xCenter, tf.div(width, 2));\n const yMin = tf.sub(yCenter, tf.div(height, 2));\n const boxes = tf.stack([xMin, yMin, width, height], 1);\n return boxes;\n });\n}\n\nexport async function decode(boxesTensor: Tensor, logitsTensor: Tensor, config: Config, outputSize: [number, number]): Promise {\n const t: Record = {};\n t.boxes = decodeBoxes(boxesTensor, anchorTensor);\n t.scores = tf.sigmoid(logitsTensor);\n t.argmax = tf.argMax(t.scores);\n const i = (await t.argmax.data())[0] as number;\n const scores = await t.scores.data();\n const detected: Array<{ box: Box, boxRaw: Box, score: number }> = [];\n const minScore = (config.body['detector'] && config.body['detector']['minConfidence']) ? config.body['detector']['minConfidence'] : 0;\n if (scores[i] >= minScore) {\n const boxes = await t.boxes.array();\n const boxRaw: Box = boxes[i];\n const box: Box = [boxRaw[0] * outputSize[0], boxRaw[1] * outputSize[1], boxRaw[2] * outputSize[0], boxRaw[3] * outputSize[1]];\n // console.log(box);\n detected.push({ box, boxRaw, score: scores[i] });\n }\n /*\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, 1, config.body.detector?.minConfidence || 0.1, config.body.detector?.iouThreshold || 0.1);\n const boxes = t.boxes.arraySync();\n const scores = t.scores.dataSync();\n const nms = t.nms.dataSync();\n const detected: Array = [];\n for (const i of Array.from(nms)) {\n const boxRaw: Box = boxes[i];\n const box: Box = [boxRaw[0] * outputSize[0], boxRaw[0] * outputSize[1], boxRaw[3] * outputSize[0], boxRaw[2] * outputSize[1]];\n detected.push({ box, boxRaw, score: scores[i] });\n }\n */\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return detected;\n}\n", "import type { Point, Box } from '../result';\n\nexport function calc(keypoints: Array, outputSize: [number, number] = [1, 1]) {\n const coords = [keypoints.map((pt) => pt[0]), keypoints.map((pt) => pt[1])]; // all x/y coords\n const min = [Math.min(...coords[0]), Math.min(...coords[1])];\n const max = [Math.max(...coords[0]), Math.max(...coords[1])];\n const box: Box = [min[0], min[1], max[0] - min[0], max[1] - min[1]];\n const boxRaw: Box = [box[0] / outputSize[0], box[1] / outputSize[1], box[2] / outputSize[0], box[3] / outputSize[1]];\n return { box, boxRaw };\n}\n\nexport function square(keypoints: Array, outputSize: [number, number] = [1, 1]) {\n const coords = [keypoints.map((pt) => pt[0]), keypoints.map((pt) => pt[1])]; // all x/y coords\n const min = [Math.min(...coords[0]), Math.min(...coords[1])];\n const max = [Math.max(...coords[0]), Math.max(...coords[1])];\n const center = [(min[0] + max[0]) / 2, (min[1] + max[1]) / 2]; // find center x and y coord of all fingers\n const dist = Math.max(center[0] - min[0], center[1] - min[1], -center[0] + max[0], -center[1] + max[1]); // largest distance from center in any direction\n const box: Box = [Math.trunc(center[0] - dist), Math.trunc(center[1] - dist), Math.trunc(2 * dist), Math.trunc(2 * dist)];\n const boxRaw: Box = [box[0] / outputSize[0], box[1] / outputSize[1], box[2] / outputSize[0], box[3] / outputSize[1]];\n return { box, boxRaw };\n}\n\nexport function scale(box: Box, scaleFact: number) {\n const dist = [box[2] * scaleFact, box[3] * scaleFact];\n const newBox: Box = [\n box[0] - (dist[0] - box[2]) / 2,\n box[1] - (dist[1] - box[3]) / 2,\n dist[0],\n dist[1],\n ];\n return newBox;\n}\n\nexport function crop(box: Box) { // [y1, x1, y2, x2] clamped to 0..1\n const yxBox: Box = [Math.max(0, box[1]), Math.max(0, box[0]), Math.min(1, box[3] + box[1]), Math.min(1, box[2] + box[0])];\n return yxBox;\n}\n", "/**\n * BlazePose model implementation\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport { log, now } from '../util/util';\nimport type { BodyKeypoint, BodyResult, BodyLandmark, Box, Point, BodyAnnotation } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport * as coords from './blazeposecoords';\nimport * as detect from './blazeposedetector';\nimport * as box from '../util/box';\n\nconst env = { initial: true };\n// const models: [GraphModel | null, GraphModel | null] = [null, null];\nconst models: { detector: GraphModel | null, landmarks: GraphModel | null } = { detector: null, landmarks: null };\nconst inputSize: { detector: [number, number], landmarks: [number, number] } = { detector: [224, 224], landmarks: [256, 256] };\nlet skipped = Number.MAX_SAFE_INTEGER;\nconst outputNodes: { detector: string[], landmarks: string[] } = {\n landmarks: ['ld_3d', 'activation_segmentation', 'activation_heatmap', 'world_3d', 'output_poseflag'],\n detector: [],\n};\n\nlet cache: BodyResult | null = null;\nlet cropBox: Box | undefined;\nlet padding: [number, number][] = [[0, 0], [0, 0], [0, 0], [0, 0]];\nlet lastTime = 0;\n\nconst sigmoid = (x) => (1 - (1 / (1 + Math.exp(x))));\n\nexport async function loadDetect(config: Config): Promise {\n if (env.initial) models.detector = null;\n if (!models.detector && config.body['detector'] && config.body['detector']['modelPath'] || '') {\n models.detector = await loadModel(config.body['detector']['modelPath']);\n const inputs = Object.values(models.detector.modelSignature['inputs']);\n inputSize.detector[0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize.detector[1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug && models.detector) log('cached model:', models.detector['modelUrl']);\n await detect.createAnchors();\n return models.detector as GraphModel;\n}\n\nexport async function loadPose(config: Config): Promise {\n if (env.initial) models.landmarks = null;\n if (!models.landmarks) {\n models.landmarks = await loadModel(config.body.modelPath);\n const inputs = Object.values(models.landmarks.modelSignature['inputs']);\n inputSize.landmarks[0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize.landmarks[1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models.landmarks['modelUrl']);\n return models.landmarks;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!models.detector) await loadDetect(config);\n if (!models.landmarks) await loadPose(config);\n return [models.detector, models.landmarks];\n}\n\nasync function prepareImage(input: Tensor, size: number): Promise {\n const t: Record = {};\n if (!input.shape || !input.shape[1] || !input.shape[2]) return input;\n let final: Tensor;\n if (cropBox) {\n t.cropped = tf.image.cropAndResize(input, [cropBox], [0], [input.shape[1], input.shape[2]]); // if we have cached box use it to crop input\n }\n if (input.shape[1] !== input.shape[2]) { // only pad if width different than height\n const height: [number, number] = [\n input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0,\n input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0,\n ];\n const width: [number, number] = [\n input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0,\n input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0,\n ];\n padding = [\n [0, 0], // dont touch batch\n height, // height before&after\n width, // width before&after\n [0, 0], // dont touch rbg\n ];\n t.pad = tf.pad(t.cropped || input, padding); // use cropped box if it exists\n t.resize = tf.image.resizeBilinear(t.pad, [size, size]);\n final = tf.div(t.resize, constants.tf255);\n } else if (input.shape[1] !== size) { // if input needs resizing\n t.resize = tf.image.resizeBilinear(t.cropped || input, [size, size]);\n final = tf.div(t.resize, constants.tf255);\n } else { // if input is already in a correct resolution just normalize it\n final = tf.div(t.cropped || input, constants.tf255);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return final;\n}\n\nfunction rescaleKeypoints(keypoints: Array, outputSize: [number, number]): Array {\n for (const kpt of keypoints) { // first rescale due to padding\n kpt.position = [\n Math.trunc(kpt.position[0] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0] - padding[2][0]),\n Math.trunc(kpt.position[1] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1] - padding[1][0]),\n kpt.position[2] as number,\n ];\n kpt.positionRaw = [kpt.position[0] / outputSize[0], kpt.position[1] / outputSize[1], 2 * (kpt.position[2] as number) / (outputSize[0] + outputSize[1])];\n }\n if (cropBox) { // second rescale due to cropping\n for (const kpt of keypoints) {\n kpt.positionRaw = [\n kpt.positionRaw[0] + cropBox[1], // correct offset due to crop\n kpt.positionRaw[1] + cropBox[0], // correct offset due to crop\n kpt.positionRaw[2] as number,\n ];\n kpt.position = [\n Math.trunc(kpt.positionRaw[0] * outputSize[0]),\n Math.trunc(kpt.positionRaw[1] * outputSize[1]),\n kpt.positionRaw[2] as number,\n ];\n }\n }\n return keypoints;\n}\n\nasync function fixKeypoints(keypoints: Array) {\n // palm z-coord is incorrect around near-zero so we approximate it\n const leftPalm = keypoints.find((k) => k.part === 'leftPalm') as BodyKeypoint;\n const leftWrist = keypoints.find((k) => k.part === 'leftWrist') as BodyKeypoint;\n const leftIndex = keypoints.find((k) => k.part === 'leftIndex') as BodyKeypoint;\n leftPalm.position[2] = ((leftWrist.position[2] || 0) + (leftIndex.position[2] || 0)) / 2;\n const rightPalm = keypoints.find((k) => k.part === 'rightPalm') as BodyKeypoint;\n const rightWrist = keypoints.find((k) => k.part === 'rightWrist') as BodyKeypoint;\n const rightIndex = keypoints.find((k) => k.part === 'rightIndex') as BodyKeypoint;\n rightPalm.position[2] = ((rightWrist.position[2] || 0) + (rightIndex.position[2] || 0)) / 2;\n}\n\nasync function detectLandmarks(input: Tensor, config: Config, outputSize: [number, number]): Promise {\n /**\n * t.ld: 39 keypoints [x,y,z,score,presence] normalized to input size\n * t.segmentation:\n * t.heatmap:\n * t.world: 39 keypoints [x,y,z] normalized to -1..1\n * t.poseflag: body score\n */\n const t: Record = {};\n [t.ld/* 1,195(39*5) */, t.segmentation/* 1,256,256,1 */, t.heatmap/* 1,64,64,39 */, t.world/* 1,117(39*3) */, t.poseflag/* 1,1 */] = models.landmarks?.execute(input, outputNodes.landmarks) as Tensor[]; // run model\n const poseScore = (await t.poseflag.data())[0];\n const points = await t.ld.data();\n const distances = await t.world.data();\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor])); // dont need tensors after this\n const keypointsRelative: Array = [];\n const depth = 5; // each points has x,y,z,visibility,presence\n for (let i = 0; i < points.length / depth; i++) {\n const score = sigmoid(points[depth * i + 3]);\n const presence = sigmoid(points[depth * i + 4]);\n const adjScore = Math.trunc(100 * score * presence * poseScore) / 100;\n const positionRaw: Point = [points[depth * i + 0] / inputSize.landmarks[0], points[depth * i + 1] / inputSize.landmarks[1], points[depth * i + 2] + 0];\n const position: Point = [Math.trunc(outputSize[0] * positionRaw[0]), Math.trunc(outputSize[1] * positionRaw[1]), positionRaw[2] as number];\n const distance: Point = [distances[depth * i + 0], distances[depth * i + 1], distances[depth * i + 2] + 0];\n keypointsRelative.push({ part: coords.kpt[i] as BodyLandmark, positionRaw, position, distance, score: adjScore });\n }\n if (poseScore < (config.body.minConfidence || 0)) return null;\n fixKeypoints(keypointsRelative);\n const keypoints: Array = rescaleKeypoints(keypointsRelative, outputSize); // keypoints were relative to input image which is padded\n const kpts = keypoints.map((k) => k.position);\n const boxes = box.calc(kpts, [outputSize[0], outputSize[1]]); // now find boxes based on rescaled keypoints\n const annotations: Record = {} as Record;\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Array = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kpt) => kpt.part === indexes[i]);\n const pt1 = keypoints.find((kpt) => kpt.part === indexes[i + 1]);\n if (pt0 && pt1) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body = { id: 0, score: Math.trunc(100 * poseScore) / 100, box: boxes.box, boxRaw: boxes.boxRaw, keypoints, annotations };\n return body;\n}\n\n/*\ninterface DetectedBox { box: Box, boxRaw: Box, score: number }\n\nfunction rescaleBoxes(boxes: Array, outputSize: [number, number]): Array {\n for (const b of boxes) {\n b.box = [\n Math.trunc(b.box[0] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0]),\n Math.trunc(b.box[1] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1]),\n Math.trunc(b.box[2] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0]),\n Math.trunc(b.box[3] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1]),\n ];\n b.boxRaw = [b.box[0] / outputSize[0], b.box[1] / outputSize[1], b.box[2] / outputSize[0], b.box[3] / outputSize[1]];\n }\n return boxes;\n}\n\nasync function detectBoxes(input: Tensor, config: Config, outputSize: [number, number]) {\n const t: Record = {};\n t.res = models.detector?.execute(input, ['Identity']) as Tensor; //\n t.logitsRaw = tf.slice(t.res, [0, 0, 0], [1, -1, 1]);\n t.boxesRaw = tf.slice(t.res, [0, 0, 1], [1, -1, -1]);\n t.logits = tf.squeeze(t.logitsRaw);\n t.boxes = tf.squeeze(t.boxesRaw);\n const boxes = await detect.decode(t.boxes, t.logits, config, outputSize);\n rescaleBoxes(boxes, outputSize);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n*/\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const outputSize: [number, number] = [input.shape[2] || 0, input.shape[1] || 0];\n const skipTime = (config.body.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && cache !== null) {\n skipped++;\n } else {\n const t: Record = {};\n /*\n if (config.body['detector'] && config.body['detector']['enabled']) {\n t.detector = await prepareImage(input, 224);\n const boxes = await detectBoxes(t.detector, config, outputSize);\n }\n */\n t.landmarks = await prepareImage(input, 256); // padded and resized\n cache = await detectLandmarks(t.landmarks, config, outputSize);\n /*\n cropBox = [0, 0, 1, 1]; // reset crop coordinates\n if (cache?.boxRaw && config.skipAllowed) {\n const cx = (2.0 * cache.boxRaw[0] + cache.boxRaw[2]) / 2;\n const cy = (2.0 * cache.boxRaw[1] + cache.boxRaw[3]) / 2;\n let size = cache.boxRaw[2] > cache.boxRaw[3] ? cache.boxRaw[2] : cache.boxRaw[3];\n size = (size * 1.0) / 2; // enlarge and half it\n if (cx > 0.1 && cx < 0.9 && cy > 0.1 && cy < 0.9 && size > 0.1) { // only update if box is sane\n const y = 0; // cy - size;\n const x = cx - size;\n cropBox = [y, x, y + 1, x + 1]; // [y0,x0,y1,x1] used for cropping but width/height are not yet implemented so we only reposition image to center of body\n }\n }\n */\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n lastTime = now();\n skipped = 0;\n }\n return cache ? [cache] : [];\n}\n", "/**\n * CoCo Labels used by object detection implementations\n */\nexport const labels = [\n { class: 1, label: 'person' },\n { class: 2, label: 'bicycle' },\n { class: 3, label: 'car' },\n { class: 4, label: 'motorcycle' },\n { class: 5, label: 'airplane' },\n { class: 6, label: 'bus' },\n { class: 7, label: 'train' },\n { class: 8, label: 'truck' },\n { class: 9, label: 'boat' },\n { class: 10, label: 'traffic light' },\n { class: 11, label: 'fire hydrant' },\n { class: 12, label: 'stop sign' },\n { class: 13, label: 'parking meter' },\n { class: 14, label: 'bench' },\n { class: 15, label: 'bird' },\n { class: 16, label: 'cat' },\n { class: 17, label: 'dog' },\n { class: 18, label: 'horse' },\n { class: 19, label: 'sheep' },\n { class: 20, label: 'cow' },\n { class: 21, label: 'elephant' },\n { class: 22, label: 'bear' },\n { class: 23, label: 'zebra' },\n { class: 24, label: 'giraffe' },\n { class: 25, label: 'backpack' },\n { class: 26, label: 'umbrella' },\n { class: 27, label: 'handbag' },\n { class: 28, label: 'tie' },\n { class: 29, label: 'suitcase' },\n { class: 30, label: 'frisbee' },\n { class: 31, label: 'skis' },\n { class: 32, label: 'snowboard' },\n { class: 33, label: 'sports ball' },\n { class: 34, label: 'kite' },\n { class: 35, label: 'baseball bat' },\n { class: 36, label: 'baseball glove' },\n { class: 37, label: 'skateboard' },\n { class: 38, label: 'surfboard' },\n { class: 39, label: 'tennis racket' },\n { class: 40, label: 'bottle' },\n { class: 41, label: 'wine glass' },\n { class: 42, label: 'cup' },\n { class: 43, label: 'fork' },\n { class: 44, label: 'knife' },\n { class: 45, label: 'spoon' },\n { class: 46, label: 'bowl' },\n { class: 47, label: 'banana' },\n { class: 48, label: 'apple' },\n { class: 49, label: 'sandwich' },\n { class: 50, label: 'orange' },\n { class: 51, label: 'broccoli' },\n { class: 52, label: 'carrot' },\n { class: 53, label: 'hot dog' },\n { class: 54, label: 'pizza' },\n { class: 55, label: 'donut' },\n { class: 56, label: 'cake' },\n { class: 57, label: 'chair' },\n { class: 58, label: 'couch' },\n { class: 59, label: 'potted plant' },\n { class: 60, label: 'bed' },\n { class: 61, label: 'dining table' },\n { class: 62, label: 'toilet' },\n { class: 63, label: 'tv' },\n { class: 64, label: 'laptop' },\n { class: 65, label: 'mouse' },\n { class: 66, label: 'remote' },\n { class: 67, label: 'keyboard' },\n { class: 68, label: 'cell phone' },\n { class: 69, label: 'microwave' },\n { class: 70, label: 'oven' },\n { class: 71, label: 'toaster' },\n { class: 72, label: 'sink' },\n { class: 73, label: 'refrigerator' },\n { class: 74, label: 'book' },\n { class: 75, label: 'clock' },\n { class: 76, label: 'vase' },\n { class: 77, label: 'scissors' },\n { class: 78, label: 'teddy bear' },\n { class: 79, label: 'hair drier' },\n { class: 80, label: 'toothbrush' },\n];\n", "/**\n * CenterNet object detection model implementation\n *\n * Based on: [**NanoDet**](https://github.com/RangiLyu/nanodet)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { labels } from './labels';\nimport type { ObjectResult, ObjectType, Box } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\nlet last: ObjectResult[] = [];\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) {\n // fakeOps(['floormod'], config);\n model = await loadModel(config.object.modelPath);\n const inputs = Object.values(model.modelSignature['inputs']);\n inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nasync function process(res: Tensor | null, outputShape: [number, number], config: Config) {\n if (!res) return [];\n const t: Record = {};\n const results: Array = [];\n const detections = await res.array() as number[][][];\n t.squeeze = tf.squeeze(res);\n const arr = tf.split(t.squeeze, 6, 1) as Tensor[]; // x1, y1, x2, y2, score, class\n t.stack = tf.stack([arr[1], arr[0], arr[3], arr[2]], 1); // reorder dims as tf.nms expects y, x\n t.boxes = tf.squeeze(t.stack);\n t.scores = tf.squeeze(arr[4]);\n t.classes = tf.squeeze(arr[5]);\n tf.dispose([res, ...arr]);\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, config.object.maxDetected, config.object.iouThreshold, (config.object.minConfidence || 0));\n const nms = await t.nms.data();\n let i = 0;\n for (const id of Array.from(nms)) {\n const score = Math.trunc(100 * detections[0][id][4]) / 100;\n const classVal = detections[0][id][5];\n const label = labels[classVal].label as ObjectType;\n const [x, y] = [\n detections[0][id][0] / inputSize,\n detections[0][id][1] / inputSize,\n ];\n const boxRaw: Box = [\n x,\n y,\n detections[0][id][2] / inputSize - x,\n detections[0][id][3] / inputSize - y,\n ];\n const box: Box = [\n Math.trunc(boxRaw[0] * outputShape[0]),\n Math.trunc(boxRaw[1] * outputShape[1]),\n Math.trunc(boxRaw[2] * outputShape[0]),\n Math.trunc(boxRaw[3] * outputShape[1]),\n ];\n results.push({ id: i++, score, class: classVal, label, box, boxRaw });\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return results;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const skipTime = (config.object.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.object.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const outputSize = [input.shape[2] || 0, input.shape[1] || 0] as [number, number];\n const resize = tf.image.resizeBilinear(input, [inputSize, inputSize]);\n const objectT = config.object.enabled ? model?.execute(resize, ['tower_0/detections']) as Tensor : null;\n lastTime = now();\n tf.dispose(resize);\n\n const obj = await process(objectT, outputSize, config);\n last = obj;\n\n resolve(obj);\n });\n}\n", "export const kpt: Array = [\n 'head',\n 'neck',\n 'rightShoulder',\n 'rightElbow',\n 'rightWrist',\n 'chest',\n 'leftShoulder',\n 'leftElbow',\n 'leftWrist',\n 'bodyCenter',\n 'rightHip',\n 'rightKnee',\n 'rightAnkle',\n 'leftHip',\n 'leftKnee',\n 'leftAnkle',\n];\n\nexport const connected: Record = {\n leftLeg: ['leftHip', 'leftKnee', 'leftAnkle'],\n rightLeg: ['rightHip', 'rightKnee', 'rightAnkle'],\n torso: ['leftShoulder', 'rightShoulder', 'rightHip', 'leftHip', 'leftShoulder'],\n leftArm: ['leftShoulder', 'leftElbow', 'leftWrist'],\n rightArm: ['rightShoulder', 'rightElbow', 'rightWrist'],\n head: [],\n};\n", "/**\n * EfficientPose model implementation\n *\n * Based on: [**EfficientPose**](https://github.com/daniegr/EfficientPose)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport * as coords from './efficientposecoords';\nimport { constants } from '../tfjs/constants';\nimport type { BodyResult, Point, BodyLandmark, BodyAnnotation } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet lastTime = 0;\nconst cache: BodyResult = { id: 0, keypoints: [], box: [0, 0, 0, 0], boxRaw: [0, 0, 0, 0], score: 0, annotations: {} as Record };\n\n// const keypoints: Array = [];\n// let box: Box = [0, 0, 0, 0];\n// let boxRaw: Box = [0, 0, 0, 0];\n// let score = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.body.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// performs argmax and max functions on a 2d tensor\nasync function max2d(inputs, minScore) {\n const [width, height] = inputs.shape;\n const reshaped = tf.reshape(inputs, [height * width]); // combine all data\n const max = tf.max(reshaped, 0);\n const newScore = (await max.data())[0]; // get highest score\n tf.dispose([reshaped, max]);\n if (newScore > minScore) { // skip coordinate calculation is score is too low\n const coordinates = tf.argMax(reshaped, 0);\n const mod = tf.mod(coordinates, width);\n const x = (await mod.data())[0];\n const div = tf.div(coordinates, tf.scalar(width, 'int32'));\n const y = (await div.data())[0];\n tf.dispose([mod, div]);\n return [x, y, newScore];\n }\n return [0, 0, newScore];\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n const skipTime = (config.body.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && Object.keys(cache.keypoints).length > 0) {\n skipped++;\n return [cache];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n if (!model?.inputs[0].shape) return null;\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, constants.tf2);\n const norm = tf.sub(enhance, constants.tf1);\n return norm;\n });\n\n let resT;\n if (config.body.enabled) resT = model?.execute(tensor);\n lastTime = now();\n tf.dispose(tensor);\n\n if (resT) {\n cache.keypoints.length = 0;\n const squeeze = resT.squeeze();\n tf.dispose(resT);\n // body parts are basically just a stack of 2d tensors\n const stack = squeeze.unstack(2);\n tf.dispose(squeeze);\n // process each unstacked tensor as a separate body part\n for (let id = 0; id < stack.length; id++) {\n // actual processing to get coordinates and score\n const [x, y, partScore] = await max2d(stack[id], config.body.minConfidence);\n if (partScore > (config.body?.minConfidence || 0)) {\n cache.keypoints.push({\n score: Math.round(100 * partScore) / 100,\n part: coords.kpt[id] as BodyLandmark,\n positionRaw: [ // normalized to 0..1\n // @ts-ignore model is not undefined here\n x / model.inputs[0].shape[2], y / model.inputs[0].shape[1],\n ],\n position: [ // normalized to input image size\n // @ts-ignore model is not undefined here\n Math.round(image.shape[2] * x / model.inputs[0].shape[2]), Math.round(image.shape[1] * y / model.inputs[0].shape[1]),\n ],\n });\n }\n }\n stack.forEach((s) => tf.dispose(s));\n }\n cache.score = cache.keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const x = cache.keypoints.map((a) => a.position[0]);\n const y = cache.keypoints.map((a) => a.position[1]);\n cache.box = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...y),\n ];\n const xRaw = cache.keypoints.map((a) => a.positionRaw[0]);\n const yRaw = cache.keypoints.map((a) => a.positionRaw[1]);\n cache.boxRaw = [\n Math.min(...xRaw),\n Math.min(...yRaw),\n Math.max(...xRaw) - Math.min(...xRaw),\n Math.max(...yRaw) - Math.min(...yRaw),\n ];\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Array = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = cache.keypoints.find((kpt) => kpt.part === indexes[i]);\n const pt1 = cache.keypoints.find((kpt) => kpt.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n cache.annotations[name] = pt;\n }\n resolve([cache]);\n });\n}\n", "/**\n * Emotion model implementation\n *\n * [**Oarriaga**](https://github.com/oarriaga/face_classification)\n */\n\nimport type { Emotion } from '../result';\nimport { log, now } from '../util/util';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\nimport { constants } from '../tfjs/constants';\n\nconst annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];\nlet model: GraphModel | null;\nconst last: Array> = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.emotion?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise> {\n if (!model) return [];\n const skipFrame = skipped < (config.face.emotion?.skipFrames || 0);\n const skipTime = (config.face.emotion?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const obj: Array<{ score: number, emotion: Emotion }> = [];\n if (config.face.emotion?.enabled) {\n const t: Record = {};\n const inputSize = model?.inputs[0].shape ? model.inputs[0].shape[2] : 0;\n t.resize = tf.image.resizeBilinear(image, [inputSize, inputSize], false);\n // const box = [[0.15, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // const resize = tf.image.cropAndResize(image, box, [0], [inputSize, inputSize]);\n // [t.red, t.green, t.blue] = tf.split(t.resize, 3, 3);\n // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n // t.redNorm = tf.mul(t.red, rgb[0]);\n // t.greenNorm = tf.mul(t.green, rgb[1]);\n // t.blueNorm = tf.mul(t.blue, rgb[2]);\n // t.grayscale = tf.addN([t.redNorm, t.greenNorm, t.blueNorm]);\n t.channels = tf.mul(t.resize, constants.rgb);\n t.grayscale = tf.sum(t.channels, 3, true);\n t.grayscaleSub = tf.sub(t.grayscale, constants.tf05);\n t.grayscaleMul = tf.mul(t.grayscaleSub, constants.tf2);\n t.emotion = model?.execute(t.grayscaleMul) as Tensor; // result is already in range 0..1, no need for additional activation\n lastTime = now();\n const data = await t.emotion.data();\n for (let i = 0; i < data.length; i++) {\n if (data[i] > (config.face.emotion?.minConfidence || 0)) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] as Emotion });\n }\n obj.sort((a, b) => b.score - a.score);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "/**\n * EfficientPose model implementation\n *\n * Based on: [**BecauseofAI MobileFace**](https://github.com/becauseofAI/MobileFace)\n *\n * Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: Array = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['mobilefacenet'].modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n/*\n// convert to black&white to avoid colorization impact\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\nconst [red, green, blue] = tf.split(crop, 3, 3);\nconst redNorm = tf.mul(red, rgb[0]);\nconst greenNorm = tf.mul(green, rgb[1]);\nconst blueNorm = tf.mul(blue, rgb[2]);\nconst grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\nconst merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n\n// optional increase image contrast\n// or do it per-channel so mean is done on each channel\n// or do it based on histogram\nconst mean = merge.mean();\nconst factor = 5;\nconst contrast = merge.sub(mean).mul(factor).add(mean);\n*/\n\nexport async function predict(input: Tensor, config: Config, idx, count): Promise {\n if (!model) return [];\n const skipFrame = skipped < (config.face['embedding']?.skipFrames || 0);\n const skipTime = (config.face['embedding']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n return new Promise(async (resolve) => {\n let data: Array = [];\n if (config.face['embedding']?.enabled && model?.inputs[0].shape) {\n const t: Record = {};\n t.crop = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n // do a tight crop of image and resize it to fit the model\n // const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // t.crop = tf.image.cropAndResize(input, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n t.data = model?.execute(t.crop) as Tensor;\n /*\n // optional normalize outputs with l2 normalization\n const scaled = tf.tidy(() => {\n const l2 = res.norm('euclidean');\n const scale = res.div(l2);\n return scale;\n });\n\n // optional reduce feature vector complexity\n const reshape = tf.reshape(res, [128, 2]); // split 256 vectors into 128 x 2\n const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it\n */\n const output = await t.data.data();\n data = Array.from(output); // convert typed array to simple array\n }\n last[idx] = data;\n lastCount = count;\n lastTime = now();\n resolve(data);\n });\n}\n", "import * as coords from './facemeshcoords';\nimport * as util from './facemeshutil';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport { log } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport type { Config } from '../config';\nimport type { Point } from '../result';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\n\nconst irisEnlarge = 2.3;\n\nconst leftOutline = coords.meshAnnotations['leftEyeLower0'];\nconst rightOutline = coords.meshAnnotations['rightEyeLower0'];\n\nconst eyeLandmarks = {\n leftBounds: [leftOutline[0], leftOutline[leftOutline.length - 1]],\n rightBounds: [rightOutline[0], rightOutline[rightOutline.length - 1]],\n};\n\nconst irisLandmarks = {\n upperCenter: 3,\n lowerCenter: 4,\n index: 71,\n numCoordinates: 76,\n};\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.iris?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0;\n if (inputSize === -1) inputSize = 64;\n return model;\n}\n\n// Replace the raw coordinates returned by facemesh with refined iris model coordinates and update the z coordinate to be an average of the original and the new.\nexport function replaceIrisCoords(rawCoords, newCoords, prefix, keys) {\n for (let i = 0; i < coords.irisIndices.length; i++) {\n const { key, indices } = coords.irisIndices[i];\n const originalIndices = coords.meshAnnotations[`${prefix}${key}`];\n if (!keys || keys.includes(key)) {\n for (let j = 0; j < indices.length; j++) {\n const index = indices[j];\n rawCoords[originalIndices[j]] = [\n newCoords[index][0],\n newCoords[index][1],\n (newCoords[index][2] + rawCoords[originalIndices[j]][2]) / 2,\n ];\n }\n }\n }\n}\n\nexport const getLeftToRightEyeDepthDifference = (rawCoords) => {\n const leftEyeZ = rawCoords[eyeLandmarks.leftBounds[0]][2];\n const rightEyeZ = rawCoords[eyeLandmarks.rightBounds[0]][2];\n return leftEyeZ - rightEyeZ;\n};\n\n// Returns a box describing a cropped region around the eye fit for passing to the iris model.\nexport const getEyeBox = (rawCoords, face, eyeInnerCornerIndex, eyeOuterCornerIndex, meshSize, flip = false) => {\n const box = util.squarifyBox(util.enlargeBox(util.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), irisEnlarge));\n const boxSize = util.getBoxSize(box);\n let crop = tf.image.cropAndResize(face, [[\n box.startPoint[1] / meshSize,\n box.startPoint[0] / meshSize, box.endPoint[1] / meshSize,\n box.endPoint[0] / meshSize,\n ]], [0], [inputSize, inputSize]);\n if (flip && env.kernels.includes('flipleftright')) {\n const flipped = tf.image.flipLeftRight(crop); // flipLeftRight is not defined for tfjs-node\n tf.dispose(crop);\n crop = flipped;\n }\n return { box, boxSize, crop };\n};\n\n// Given a cropped image of an eye, returns the coordinates of the contours surrounding the eye and the iris.\nexport const getEyeCoords = (eyeData, eyeBox, eyeBoxSize, flip = false) => {\n const eyeRawCoords: Array = [];\n for (let i = 0; i < irisLandmarks.numCoordinates; i++) {\n const x = eyeData[i * 3];\n const y = eyeData[i * 3 + 1];\n const z = eyeData[i * 3 + 2];\n eyeRawCoords.push([\n (flip ? (1 - (x / inputSize)) : (x / inputSize)) * eyeBoxSize[0] + eyeBox.startPoint[0],\n (y / inputSize) * eyeBoxSize[1] + eyeBox.startPoint[1], z,\n ]);\n }\n return { rawCoords: eyeRawCoords, iris: eyeRawCoords.slice(irisLandmarks.index) };\n};\n\n// The z-coordinates returned for the iris are unreliable, so we take the z values from the surrounding keypoints.\nexport const getAdjustedIrisCoords = (rawCoords, irisCoords, direction) => {\n const upperCenterZ = rawCoords[coords.meshAnnotations[`${direction}EyeUpper0`][irisLandmarks.upperCenter]][2];\n const lowerCenterZ = rawCoords[coords.meshAnnotations[`${direction}EyeLower0`][irisLandmarks.lowerCenter]][2];\n const averageZ = (upperCenterZ + lowerCenterZ) / 2;\n // Iris indices: 0: center | 1: right | 2: above | 3: left | 4: below\n return irisCoords.map((coord, i) => {\n let z = averageZ;\n if (i === 2) {\n z = upperCenterZ;\n } else if (i === 4) {\n z = lowerCenterZ;\n }\n return [coord[0], coord[1], z];\n });\n};\n\nexport async function augmentIris(rawCoords, face, config, meshSize) {\n if (!model) {\n if (config.debug) log('face mesh iris detection requested, but model is not loaded');\n return rawCoords;\n }\n const { box: leftEyeBox, boxSize: leftEyeBoxSize, crop: leftEyeCrop } = getEyeBox(rawCoords, face, eyeLandmarks.leftBounds[0], eyeLandmarks.leftBounds[1], meshSize, true);\n const { box: rightEyeBox, boxSize: rightEyeBoxSize, crop: rightEyeCrop } = getEyeBox(rawCoords, face, eyeLandmarks.rightBounds[0], eyeLandmarks.rightBounds[1], meshSize, true);\n const combined = tf.concat([leftEyeCrop, rightEyeCrop]);\n tf.dispose(leftEyeCrop);\n tf.dispose(rightEyeCrop);\n const eyePredictions = model.execute(combined) as Tensor;\n tf.dispose(combined);\n const eyePredictionsData = await eyePredictions.data();\n tf.dispose(eyePredictions);\n const leftEyeData = eyePredictionsData.slice(0, irisLandmarks.numCoordinates * 3);\n const { rawCoords: leftEyeRawCoords, iris: leftIrisRawCoords } = getEyeCoords(leftEyeData, leftEyeBox, leftEyeBoxSize, true);\n const rightEyeData = eyePredictionsData.slice(irisLandmarks.numCoordinates * 3);\n const { rawCoords: rightEyeRawCoords, iris: rightIrisRawCoords } = getEyeCoords(rightEyeData, rightEyeBox, rightEyeBoxSize, false);\n const leftToRightEyeDepthDifference = getLeftToRightEyeDepthDifference(rawCoords);\n if (Math.abs(leftToRightEyeDepthDifference) < 30) { // User is looking straight ahead.\n replaceIrisCoords(rawCoords, leftEyeRawCoords, 'left', null);\n replaceIrisCoords(rawCoords, rightEyeRawCoords, 'right', null);\n // If the user is looking to the left or to the right, the iris coordinates tend to diverge too much from the mesh coordinates for them to be merged so we only update a single contour line above and below the eye.\n } else if (leftToRightEyeDepthDifference < 1) { // User is looking towards the right.\n replaceIrisCoords(rawCoords, leftEyeRawCoords, 'left', ['EyeUpper0', 'EyeLower0']);\n } else { // User is looking towards the left.\n replaceIrisCoords(rawCoords, rightEyeRawCoords, 'right', ['EyeUpper0', 'EyeLower0']);\n }\n const adjustedLeftIrisCoords = getAdjustedIrisCoords(rawCoords, leftIrisRawCoords, 'left');\n const adjustedRightIrisCoords = getAdjustedIrisCoords(rawCoords, rightIrisRawCoords, 'right');\n const newCoords = rawCoords.concat(adjustedLeftIrisCoords).concat(adjustedRightIrisCoords);\n return newCoords;\n}\n", "// @tensorflow/tfjs-models/face-landmark-detection/src/constants.ts\n// https://github.com/google/mediapipe/mediapipe/python/solutions/face_mesh_connections.py\n\ntype PairArray = Array<[number, number]>;\n\nconst LIPS_CONNECTIONS: PairArray = [\n [61, 146], [146, 91], [91, 181], [181, 84], [84, 17], [17, 314], [314, 405], [405, 321], [321, 375], [375, 291], [61, 185], [185, 40], [40, 39], [39, 37], [37, 0], [0, 267], [267, 269], [269, 270], [270, 409], [409, 291],\n [78, 95], [95, 88], [88, 178], [178, 87], [87, 14], [14, 317], [317, 402], [402, 318], [318, 324], [324, 308], [78, 191], [191, 80], [80, 81], [81, 82], [82, 13], [13, 312], [312, 311], [311, 310], [310, 415], [415, 308],\n];\n\nconst LEFT_EYE_CONNECTIONS: PairArray = [[263, 249], [249, 390], [390, 373], [373, 374], [374, 380], [380, 381], [381, 382], [382, 362], [263, 466], [466, 388], [388, 387], [387, 386], [386, 385], [385, 384], [384, 398], [398, 362]];\n\nconst LEFT_EYEBROW_CONNECTIONS: PairArray = [[276, 283], [283, 282], [282, 295], [295, 285], [300, 293], [293, 334], [334, 296], [296, 336]];\n\nconst LEFT_IRIS_CONNECTIONS: PairArray = [[474, 475], [475, 476], [476, 477], [477, 474]];\n\nconst RIGHT_EYE_CONNECTIONS: PairArray = [[33, 7], [7, 163], [163, 144], [144, 145], [145, 153], [153, 154], [154, 155], [155, 133], [33, 246], [246, 161], [161, 160], [160, 159], [159, 158], [158, 157], [157, 173], [173, 133]];\n\nconst RIGHT_EYEBROW_CONNECTIONS: PairArray = [[46, 53], [53, 52], [52, 65], [65, 55], [70, 63], [63, 105], [105, 66], [66, 107]];\n\nconst RIGHT_IRIS_CONNECTIONS: PairArray = [[469, 470], [470, 471], [471, 472], [472, 469]];\n\nconst FACE_OVAL_CONNECTIONS: PairArray = [\n [10, 338], [338, 297], [297, 332], [332, 284], [284, 251], [251, 389], [389, 356], [356, 454], [454, 323], [323, 361], [361, 288], [288, 397], [397, 365], [365, 379], [379, 378], [378, 400], [400, 377], [377, 152],\n [152, 148], [148, 176], [176, 149], [149, 150], [150, 136], [136, 172], [172, 58], [58, 132], [132, 93], [93, 234], [234, 127], [127, 162], [162, 21], [21, 54], [54, 103], [103, 67], [67, 109], [109, 10],\n];\n\nexport const MEDIAPIPE_FACE_MESH_CONNECTED_KEYPOINTS_PAIRS: PairArray = [\n [127, 34], [34, 139], [139, 127], [11, 0], [0, 37], [37, 11], [232, 231], [231, 120], [120, 232], [72, 37], [37, 39], [39, 72], [128, 121], [121, 47], [47, 128], [232, 121], [121, 128], [128, 232],\n [104, 69], [69, 67], [67, 104], [175, 171], [171, 148], [148, 175], [118, 50], [50, 101], [101, 118], [73, 39], [39, 40], [40, 73], [9, 151], [151, 108], [108, 9], [48, 115], [115, 131], [131, 48],\n [194, 204], [204, 211], [211, 194], [74, 40], [40, 185], [185, 74], [80, 42], [42, 183], [183, 80], [40, 92], [92, 186], [186, 40], [230, 229], [229, 118], [118, 230], [202, 212], [212, 214], [214, 202],\n [83, 18], [18, 17], [17, 83], [76, 61], [61, 146], [146, 76], [160, 29], [29, 30], [30, 160], [56, 157], [157, 173], [173, 56], [106, 204], [204, 194], [194, 106], [135, 214], [214, 192], [192, 135],\n [203, 165], [165, 98], [98, 203], [21, 71], [71, 68], [68, 21], [51, 45], [45, 4], [4, 51], [144, 24], [24, 23], [23, 144], [77, 146], [146, 91], [91, 77], [205, 50], [50, 187], [187, 205],\n [201, 200], [200, 18], [18, 201], [91, 106], [106, 182], [182, 91], [90, 91], [91, 181], [181, 90], [85, 84], [84, 17], [17, 85], [206, 203], [203, 36], [36, 206], [148, 171], [171, 140], [140, 148],\n [92, 40], [40, 39], [39, 92], [193, 189], [189, 244], [244, 193], [159, 158], [158, 28], [28, 159], [247, 246], [246, 161], [161, 247], [236, 3], [3, 196], [196, 236], [54, 68], [68, 104], [104, 54],\n [193, 168], [168, 8], [8, 193], [117, 228], [228, 31], [31, 117], [189, 193], [193, 55], [55, 189], [98, 97], [97, 99], [99, 98], [126, 47], [47, 100], [100, 126], [166, 79], [79, 218], [218, 166],\n [155, 154], [154, 26], [26, 155], [209, 49], [49, 131], [131, 209], [135, 136], [136, 150], [150, 135], [47, 126], [126, 217], [217, 47], [223, 52], [52, 53], [53, 223], [45, 51], [51, 134], [134, 45],\n [211, 170], [170, 140], [140, 211], [67, 69], [69, 108], [108, 67], [43, 106], [106, 91], [91, 43], [230, 119], [119, 120], [120, 230], [226, 130], [130, 247], [247, 226], [63, 53], [53, 52], [52, 63],\n [238, 20], [20, 242], [242, 238], [46, 70], [70, 156], [156, 46], [78, 62], [62, 96], [96, 78], [46, 53], [53, 63], [63, 46], [143, 34], [34, 227], [227, 143], [123, 117], [117, 111], [111, 123],\n [44, 125], [125, 19], [19, 44], [236, 134], [134, 51], [51, 236], [216, 206], [206, 205], [205, 216], [154, 153], [153, 22], [22, 154], [39, 37], [37, 167], [167, 39], [200, 201], [201, 208], [208, 200],\n [36, 142], [142, 100], [100, 36], [57, 212], [212, 202], [202, 57], [20, 60], [60, 99], [99, 20], [28, 158], [158, 157], [157, 28], [35, 226], [226, 113], [113, 35], [160, 159], [159, 27], [27, 160],\n [204, 202], [202, 210], [210, 204], [113, 225], [225, 46], [46, 113], [43, 202], [202, 204], [204, 43], [62, 76], [76, 77], [77, 62], [137, 123], [123, 116], [116, 137], [41, 38], [38, 72], [72, 41],\n [203, 129], [129, 142], [142, 203], [64, 98], [98, 240], [240, 64], [49, 102], [102, 64], [64, 49], [41, 73], [73, 74], [74, 41], [212, 216], [216, 207], [207, 212], [42, 74], [74, 184], [184, 42],\n [169, 170], [170, 211], [211, 169], [170, 149], [149, 176], [176, 170], [105, 66], [66, 69], [69, 105], [122, 6], [6, 168], [168, 122], [123, 147], [147, 187], [187, 123], [96, 77], [77, 90], [90, 96],\n [65, 55], [55, 107], [107, 65], [89, 90], [90, 180], [180, 89], [101, 100], [100, 120], [120, 101], [63, 105], [105, 104], [104, 63], [93, 137], [137, 227], [227, 93], [15, 86], [86, 85], [85, 15],\n [129, 102], [102, 49], [49, 129], [14, 87], [87, 86], [86, 14], [55, 8], [8, 9], [9, 55], [100, 47], [47, 121], [121, 100], [145, 23], [23, 22], [22, 145], [88, 89], [89, 179], [179, 88],\n [6, 122], [122, 196], [196, 6], [88, 95], [95, 96], [96, 88], [138, 172], [172, 136], [136, 138], [215, 58], [58, 172], [172, 215], [115, 48], [48, 219], [219, 115], [42, 80], [80, 81], [81, 42],\n [195, 3], [3, 51], [51, 195], [43, 146], [146, 61], [61, 43], [171, 175], [175, 199], [199, 171], [81, 82], [82, 38], [38, 81], [53, 46], [46, 225], [225, 53], [144, 163], [163, 110], [110, 144],\n [52, 65], [65, 66], [66, 52], [229, 228], [228, 117], [117, 229], [34, 127], [127, 234], [234, 34], [107, 108], [108, 69], [69, 107], [109, 108], [108, 151], [151, 109], [48, 64], [64, 235], [235, 48],\n [62, 78], [78, 191], [191, 62], [129, 209], [209, 126], [126, 129], [111, 35], [35, 143], [143, 111], [117, 123], [123, 50], [50, 117], [222, 65], [65, 52], [52, 222], [19, 125], [125, 141], [141, 19],\n [221, 55], [55, 65], [65, 221], [3, 195], [195, 197], [197, 3], [25, 7], [7, 33], [33, 25], [220, 237], [237, 44], [44, 220], [70, 71], [71, 139], [139, 70], [122, 193], [193, 245], [245, 122],\n [247, 130], [130, 33], [33, 247], [71, 21], [21, 162], [162, 71], [170, 169], [169, 150], [150, 170], [188, 174], [174, 196], [196, 188], [216, 186], [186, 92], [92, 216], [2, 97], [97, 167], [167, 2],\n [141, 125], [125, 241], [241, 141], [164, 167], [167, 37], [37, 164], [72, 38], [38, 12], [12, 72], [38, 82], [82, 13], [13, 38], [63, 68], [68, 71], [71, 63], [226, 35], [35, 111], [111, 226],\n [101, 50], [50, 205], [205, 101], [206, 92], [92, 165], [165, 206], [209, 198], [198, 217], [217, 209], [165, 167], [167, 97], [97, 165], [220, 115], [115, 218], [218, 220], [133, 112], [112, 243], [243, 133],\n [239, 238], [238, 241], [241, 239], [214, 135], [135, 169], [169, 214], [190, 173], [173, 133], [133, 190], [171, 208], [208, 32], [32, 171], [125, 44], [44, 237], [237, 125], [86, 87], [87, 178], [178, 86],\n [85, 86], [86, 179], [179, 85], [84, 85], [85, 180], [180, 84], [83, 84], [84, 181], [181, 83], [201, 83], [83, 182], [182, 201], [137, 93], [93, 132], [132, 137], [76, 62], [62, 183], [183, 76],\n [61, 76], [76, 184], [184, 61], [57, 61], [61, 185], [185, 57], [212, 57], [57, 186], [186, 212], [214, 207], [207, 187], [187, 214], [34, 143], [143, 156], [156, 34], [79, 239], [239, 237], [237, 79],\n [123, 137], [137, 177], [177, 123], [44, 1], [1, 4], [4, 44], [201, 194], [194, 32], [32, 201], [64, 102], [102, 129], [129, 64], [213, 215], [215, 138], [138, 213], [59, 166], [166, 219], [219, 59],\n [242, 99], [99, 97], [97, 242], [2, 94], [94, 141], [141, 2], [75, 59], [59, 235], [235, 75], [24, 110], [110, 228], [228, 24], [25, 130], [130, 226], [226, 25], [23, 24], [24, 229], [229, 23],\n [22, 23], [23, 230], [230, 22], [26, 22], [22, 231], [231, 26], [112, 26], [26, 232], [232, 112], [189, 190], [190, 243], [243, 189], [221, 56], [56, 190], [190, 221], [28, 56], [56, 221], [221, 28],\n [27, 28], [28, 222], [222, 27], [29, 27], [27, 223], [223, 29], [30, 29], [29, 224], [224, 30], [247, 30], [30, 225], [225, 247], [238, 79], [79, 20], [20, 238], [166, 59], [59, 75], [75, 166],\n [60, 75], [75, 240], [240, 60], [147, 177], [177, 215], [215, 147], [20, 79], [79, 166], [166, 20], [187, 147], [147, 213], [213, 187], [112, 233], [233, 244], [244, 112], [233, 128], [128, 245], [245, 233],\n [128, 114], [114, 188], [188, 128], [114, 217], [217, 174], [174, 114], [131, 115], [115, 220], [220, 131], [217, 198], [198, 236], [236, 217], [198, 131], [131, 134], [134, 198], [177, 132], [132, 58], [58, 177],\n [143, 35], [35, 124], [124, 143], [110, 163], [163, 7], [7, 110], [228, 110], [110, 25], [25, 228], [356, 389], [389, 368], [368, 356], [11, 302], [302, 267], [267, 11], [452, 350], [350, 349], [349, 452],\n [302, 303], [303, 269], [269, 302], [357, 343], [343, 277], [277, 357], [452, 453], [453, 357], [357, 452], [333, 332], [332, 297], [297, 333], [175, 152], [152, 377], [377, 175], [347, 348], [348, 330], [330, 347],\n [303, 304], [304, 270], [270, 303], [9, 336], [336, 337], [337, 9], [278, 279], [279, 360], [360, 278], [418, 262], [262, 431], [431, 418], [304, 408], [408, 409], [409, 304], [310, 415], [415, 407], [407, 310],\n [270, 409], [409, 410], [410, 270], [450, 348], [348, 347], [347, 450], [422, 430], [430, 434], [434, 422], [313, 314], [314, 17], [17, 313], [306, 307], [307, 375], [375, 306], [387, 388], [388, 260], [260, 387],\n [286, 414], [414, 398], [398, 286], [335, 406], [406, 418], [418, 335], [364, 367], [367, 416], [416, 364], [423, 358], [358, 327], [327, 423], [251, 284], [284, 298], [298, 251], [281, 5], [5, 4], [4, 281],\n [373, 374], [374, 253], [253, 373], [307, 320], [320, 321], [321, 307], [425, 427], [427, 411], [411, 425], [421, 313], [313, 18], [18, 421], [321, 405], [405, 406], [406, 321], [320, 404], [404, 405], [405, 320],\n [315, 16], [16, 17], [17, 315], [426, 425], [425, 266], [266, 426], [377, 400], [400, 369], [369, 377], [322, 391], [391, 269], [269, 322], [417, 465], [465, 464], [464, 417], [386, 257], [257, 258], [258, 386],\n [466, 260], [260, 388], [388, 466], [456, 399], [399, 419], [419, 456], [284, 332], [332, 333], [333, 284], [417, 285], [285, 8], [8, 417], [346, 340], [340, 261], [261, 346], [413, 441], [441, 285], [285, 413],\n [327, 460], [460, 328], [328, 327], [355, 371], [371, 329], [329, 355], [392, 439], [439, 438], [438, 392], [382, 341], [341, 256], [256, 382], [429, 420], [420, 360], [360, 429], [364, 394], [394, 379], [379, 364],\n [277, 343], [343, 437], [437, 277], [443, 444], [444, 283], [283, 443], [275, 440], [440, 363], [363, 275], [431, 262], [262, 369], [369, 431], [297, 338], [338, 337], [337, 297], [273, 375], [375, 321], [321, 273],\n [450, 451], [451, 349], [349, 450], [446, 342], [342, 467], [467, 446], [293, 334], [334, 282], [282, 293], [458, 461], [461, 462], [462, 458], [276, 353], [353, 383], [383, 276], [308, 324], [324, 325], [325, 308],\n [276, 300], [300, 293], [293, 276], [372, 345], [345, 447], [447, 372], [352, 345], [345, 340], [340, 352], [274, 1], [1, 19], [19, 274], [456, 248], [248, 281], [281, 456], [436, 427], [427, 425], [425, 436],\n [381, 256], [256, 252], [252, 381], [269, 391], [391, 393], [393, 269], [200, 199], [199, 428], [428, 200], [266, 330], [330, 329], [329, 266], [287, 273], [273, 422], [422, 287], [250, 462], [462, 328], [328, 250],\n [258, 286], [286, 384], [384, 258], [265, 353], [353, 342], [342, 265], [387, 259], [259, 257], [257, 387], [424, 431], [431, 430], [430, 424], [342, 353], [353, 276], [276, 342], [273, 335], [335, 424], [424, 273],\n [292, 325], [325, 307], [307, 292], [366, 447], [447, 345], [345, 366], [271, 303], [303, 302], [302, 271], [423, 266], [266, 371], [371, 423], [294, 455], [455, 460], [460, 294], [279, 278], [278, 294], [294, 279],\n [271, 272], [272, 304], [304, 271], [432, 434], [434, 427], [427, 432], [272, 407], [407, 408], [408, 272], [394, 430], [430, 431], [431, 394], [395, 369], [369, 400], [400, 395], [334, 333], [333, 299], [299, 334],\n [351, 417], [417, 168], [168, 351], [352, 280], [280, 411], [411, 352], [325, 319], [319, 320], [320, 325], [295, 296], [296, 336], [336, 295], [319, 403], [403, 404], [404, 319], [330, 348], [348, 349], [349, 330],\n [293, 298], [298, 333], [333, 293], [323, 454], [454, 447], [447, 323], [15, 16], [16, 315], [315, 15], [358, 429], [429, 279], [279, 358], [14, 15], [15, 316], [316, 14], [285, 336], [336, 9], [9, 285],\n [329, 349], [349, 350], [350, 329], [374, 380], [380, 252], [252, 374], [318, 402], [402, 403], [403, 318], [6, 197], [197, 419], [419, 6], [318, 319], [319, 325], [325, 318], [367, 364], [364, 365], [365, 367],\n [435, 367], [367, 397], [397, 435], [344, 438], [438, 439], [439, 344], [272, 271], [271, 311], [311, 272], [195, 5], [5, 281], [281, 195], [273, 287], [287, 291], [291, 273], [396, 428], [428, 199], [199, 396],\n [311, 271], [271, 268], [268, 311], [283, 444], [444, 445], [445, 283], [373, 254], [254, 339], [339, 373], [282, 334], [334, 296], [296, 282], [449, 347], [347, 346], [346, 449], [264, 447], [447, 454], [454, 264],\n [336, 296], [296, 299], [299, 336], [338, 10], [10, 151], [151, 338], [278, 439], [439, 455], [455, 278], [292, 407], [407, 415], [415, 292], [358, 371], [371, 355], [355, 358], [340, 345], [345, 372], [372, 340],\n [346, 347], [347, 280], [280, 346], [442, 443], [443, 282], [282, 442], [19, 94], [94, 370], [370, 19], [441, 442], [442, 295], [295, 441], [248, 419], [419, 197], [197, 248], [263, 255], [255, 359], [359, 263],\n [440, 275], [275, 274], [274, 440], [300, 383], [383, 368], [368, 300], [351, 412], [412, 465], [465, 351], [263, 467], [467, 466], [466, 263], [301, 368], [368, 389], [389, 301], [395, 378], [378, 379], [379, 395],\n [412, 351], [351, 419], [419, 412], [436, 426], [426, 322], [322, 436], [2, 164], [164, 393], [393, 2], [370, 462], [462, 461], [461, 370], [164, 0], [0, 267], [267, 164], [302, 11], [11, 12], [12, 302],\n [268, 12], [12, 13], [13, 268], [293, 300], [300, 301], [301, 293], [446, 261], [261, 340], [340, 446], [330, 266], [266, 425], [425, 330], [426, 423], [423, 391], [391, 426], [429, 355], [355, 437], [437, 429],\n [391, 327], [327, 326], [326, 391], [440, 457], [457, 438], [438, 440], [341, 382], [382, 362], [362, 341], [459, 457], [457, 461], [461, 459], [434, 430], [430, 394], [394, 434], [414, 463], [463, 362], [362, 414],\n [396, 369], [369, 262], [262, 396], [354, 461], [461, 457], [457, 354], [316, 403], [403, 402], [402, 316], [315, 404], [404, 403], [403, 315], [314, 405], [405, 404], [404, 314], [313, 406], [406, 405], [405, 313],\n [421, 418], [418, 406], [406, 421], [366, 401], [401, 361], [361, 366], [306, 408], [408, 407], [407, 306], [291, 409], [409, 408], [408, 291], [287, 410], [410, 409], [409, 287], [432, 436], [436, 410], [410, 432],\n [434, 416], [416, 411], [411, 434], [264, 368], [368, 383], [383, 264], [309, 438], [438, 457], [457, 309], [352, 376], [376, 401], [401, 352], [274, 275], [275, 4], [4, 274], [421, 428], [428, 262], [262, 421],\n [294, 327], [327, 358], [358, 294], [433, 416], [416, 367], [367, 433], [289, 455], [455, 439], [439, 289], [462, 370], [370, 326], [326, 462], [2, 326], [326, 370], [370, 2], [305, 460], [460, 455], [455, 305],\n [254, 449], [449, 448], [448, 254], [255, 261], [261, 446], [446, 255], [253, 450], [450, 449], [449, 253], [252, 451], [451, 450], [450, 252], [256, 452], [452, 451], [451, 256], [341, 453], [453, 452], [452, 341],\n [413, 464], [464, 463], [463, 413], [441, 413], [413, 414], [414, 441], [258, 442], [442, 441], [441, 258], [257, 443], [443, 442], [442, 257], [259, 444], [444, 443], [443, 259], [260, 445], [445, 444], [444, 260],\n [467, 342], [342, 445], [445, 467], [459, 458], [458, 250], [250, 459], [289, 392], [392, 290], [290, 289], [290, 328], [328, 460], [460, 290], [376, 433], [433, 435], [435, 376], [250, 290], [290, 392], [392, 250],\n [411, 416], [416, 433], [433, 411], [341, 463], [463, 464], [464, 341], [453, 464], [464, 465], [465, 453], [357, 465], [465, 412], [412, 357], [343, 412], [412, 399], [399, 343], [360, 363], [363, 440], [440, 360],\n [437, 399], [399, 456], [456, 437], [420, 456], [456, 363], [363, 420], [401, 435], [435, 288], [288, 401], [372, 383], [383, 353], [353, 372], [339, 255], [255, 249], [249, 339], [448, 261], [261, 255], [255, 448],\n [133, 243], [243, 190], [190, 133], [133, 155], [155, 112], [112, 133], [33, 246], [246, 247], [247, 33], [33, 130], [130, 25], [25, 33], [398, 384], [384, 286], [286, 398], [362, 398], [398, 414], [414, 362],\n [362, 463], [463, 341], [341, 362], [263, 359], [359, 467], [467, 263], [263, 249], [249, 255], [255, 263], [466, 467], [467, 260], [260, 466], [75, 60], [60, 166], [166, 75], [238, 239], [239, 79], [79, 238],\n [162, 127], [127, 139], [139, 162], [72, 11], [11, 37], [37, 72], [121, 232], [232, 120], [120, 121], [73, 72], [72, 39], [39, 73], [114, 128], [128, 47], [47, 114], [233, 232], [232, 128], [128, 233],\n [103, 104], [104, 67], [67, 103], [152, 175], [175, 148], [148, 152], [119, 118], [118, 101], [101, 119], [74, 73], [73, 40], [40, 74], [107, 9], [9, 108], [108, 107], [49, 48], [48, 131], [131, 49],\n [32, 194], [194, 211], [211, 32], [184, 74], [74, 185], [185, 184], [191, 80], [80, 183], [183, 191], [185, 40], [40, 186], [186, 185], [119, 230], [230, 118], [118, 119], [210, 202], [202, 214], [214, 210],\n [84, 83], [83, 17], [17, 84], [77, 76], [76, 146], [146, 77], [161, 160], [160, 30], [30, 161], [190, 56], [56, 173], [173, 190], [182, 106], [106, 194], [194, 182], [138, 135], [135, 192], [192, 138],\n [129, 203], [203, 98], [98, 129], [54, 21], [21, 68], [68, 54], [5, 51], [51, 4], [4, 5], [145, 144], [144, 23], [23, 145], [90, 77], [77, 91], [91, 90], [207, 205], [205, 187], [187, 207],\n [83, 201], [201, 18], [18, 83], [181, 91], [91, 182], [182, 181], [180, 90], [90, 181], [181, 180], [16, 85], [85, 17], [17, 16], [205, 206], [206, 36], [36, 205], [176, 148], [148, 140], [140, 176],\n [165, 92], [92, 39], [39, 165], [245, 193], [193, 244], [244, 245], [27, 159], [159, 28], [28, 27], [30, 247], [247, 161], [161, 30], [174, 236], [236, 196], [196, 174], [103, 54], [54, 104], [104, 103],\n [55, 193], [193, 8], [8, 55], [111, 117], [117, 31], [31, 111], [221, 189], [189, 55], [55, 221], [240, 98], [98, 99], [99, 240], [142, 126], [126, 100], [100, 142], [219, 166], [166, 218], [218, 219],\n [112, 155], [155, 26], [26, 112], [198, 209], [209, 131], [131, 198], [169, 135], [135, 150], [150, 169], [114, 47], [47, 217], [217, 114], [224, 223], [223, 53], [53, 224], [220, 45], [45, 134], [134, 220],\n [32, 211], [211, 140], [140, 32], [109, 67], [67, 108], [108, 109], [146, 43], [43, 91], [91, 146], [231, 230], [230, 120], [120, 231], [113, 226], [226, 247], [247, 113], [105, 63], [63, 52], [52, 105],\n [241, 238], [238, 242], [242, 241], [124, 46], [46, 156], [156, 124], [95, 78], [78, 96], [96, 95], [70, 46], [46, 63], [63, 70], [116, 143], [143, 227], [227, 116], [116, 123], [123, 111], [111, 116],\n [1, 44], [44, 19], [19, 1], [3, 236], [236, 51], [51, 3], [207, 216], [216, 205], [205, 207], [26, 154], [154, 22], [22, 26], [165, 39], [39, 167], [167, 165], [199, 200], [200, 208], [208, 199],\n [101, 36], [36, 100], [100, 101], [43, 57], [57, 202], [202, 43], [242, 20], [20, 99], [99, 242], [56, 28], [28, 157], [157, 56], [124, 35], [35, 113], [113, 124], [29, 160], [160, 27], [27, 29],\n [211, 204], [204, 210], [210, 211], [124, 113], [113, 46], [46, 124], [106, 43], [43, 204], [204, 106], [96, 62], [62, 77], [77, 96], [227, 137], [137, 116], [116, 227], [73, 41], [41, 72], [72, 73],\n [36, 203], [203, 142], [142, 36], [235, 64], [64, 240], [240, 235], [48, 49], [49, 64], [64, 48], [42, 41], [41, 74], [74, 42], [214, 212], [212, 207], [207, 214], [183, 42], [42, 184], [184, 183],\n [210, 169], [169, 211], [211, 210], [140, 170], [170, 176], [176, 140], [104, 105], [105, 69], [69, 104], [193, 122], [122, 168], [168, 193], [50, 123], [123, 187], [187, 50], [89, 96], [96, 90], [90, 89],\n [66, 65], [65, 107], [107, 66], [179, 89], [89, 180], [180, 179], [119, 101], [101, 120], [120, 119], [68, 63], [63, 104], [104, 68], [234, 93], [93, 227], [227, 234], [16, 15], [15, 85], [85, 16],\n [209, 129], [129, 49], [49, 209], [15, 14], [14, 86], [86, 15], [107, 55], [55, 9], [9, 107], [120, 100], [100, 121], [121, 120], [153, 145], [145, 22], [22, 153], [178, 88], [88, 179], [179, 178],\n [197, 6], [6, 196], [196, 197], [89, 88], [88, 96], [96, 89], [135, 138], [138, 136], [136, 135], [138, 215], [215, 172], [172, 138], [218, 115], [115, 219], [219, 218], [41, 42], [42, 81], [81, 41],\n [5, 195], [195, 51], [51, 5], [57, 43], [43, 61], [61, 57], [208, 171], [171, 199], [199, 208], [41, 81], [81, 38], [38, 41], [224, 53], [53, 225], [225, 224], [24, 144], [144, 110], [110, 24],\n [105, 52], [52, 66], [66, 105], [118, 229], [229, 117], [117, 118], [227, 34], [34, 234], [234, 227], [66, 107], [107, 69], [69, 66], [10, 109], [109, 151], [151, 10], [219, 48], [48, 235], [235, 219],\n [183, 62], [62, 191], [191, 183], [142, 129], [129, 126], [126, 142], [116, 111], [111, 143], [143, 116], [118, 117], [117, 50], [50, 118], [223, 222], [222, 52], [52, 223], [94, 19], [19, 141], [141, 94],\n [222, 221], [221, 65], [65, 222], [196, 3], [3, 197], [197, 196], [45, 220], [220, 44], [44, 45], [156, 70], [70, 139], [139, 156], [188, 122], [122, 245], [245, 188], [139, 71], [71, 162], [162, 139],\n [149, 170], [170, 150], [150, 149], [122, 188], [188, 196], [196, 122], [206, 216], [216, 92], [92, 206], [164, 2], [2, 167], [167, 164], [242, 141], [141, 241], [241, 242], [0, 164], [164, 37], [37, 0],\n [11, 72], [72, 12], [12, 11], [12, 38], [38, 13], [13, 12], [70, 63], [63, 71], [71, 70], [31, 226], [226, 111], [111, 31], [36, 101], [101, 205], [205, 36], [203, 206], [206, 165], [165, 203],\n [126, 209], [209, 217], [217, 126], [98, 165], [165, 97], [97, 98], [237, 220], [220, 218], [218, 237], [237, 239], [239, 241], [241, 237], [210, 214], [214, 169], [169, 210], [140, 171], [171, 32], [32, 140],\n [241, 125], [125, 237], [237, 241], [179, 86], [86, 178], [178, 179], [180, 85], [85, 179], [179, 180], [181, 84], [84, 180], [180, 181], [182, 83], [83, 181], [181, 182], [194, 201], [201, 182], [182, 194],\n [177, 137], [137, 132], [132, 177], [184, 76], [76, 183], [183, 184], [185, 61], [61, 184], [184, 185], [186, 57], [57, 185], [185, 186], [216, 212], [212, 186], [186, 216], [192, 214], [214, 187], [187, 192],\n [139, 34], [34, 156], [156, 139], [218, 79], [79, 237], [237, 218], [147, 123], [123, 177], [177, 147], [45, 44], [44, 4], [4, 45], [208, 201], [201, 32], [32, 208], [98, 64], [64, 129], [129, 98],\n [192, 213], [213, 138], [138, 192], [235, 59], [59, 219], [219, 235], [141, 242], [242, 97], [97, 141], [97, 2], [2, 141], [141, 97], [240, 75], [75, 235], [235, 240], [229, 24], [24, 228], [228, 229],\n [31, 25], [25, 226], [226, 31], [230, 23], [23, 229], [229, 230], [231, 22], [22, 230], [230, 231], [232, 26], [26, 231], [231, 232], [233, 112], [112, 232], [232, 233], [244, 189], [189, 243], [243, 244],\n [189, 221], [221, 190], [190, 189], [222, 28], [28, 221], [221, 222], [223, 27], [27, 222], [222, 223], [224, 29], [29, 223], [223, 224], [225, 30], [30, 224], [224, 225], [113, 247], [247, 225], [225, 113],\n [99, 60], [60, 240], [240, 99], [213, 147], [147, 215], [215, 213], [60, 20], [20, 166], [166, 60], [192, 187], [187, 213], [213, 192], [243, 112], [112, 244], [244, 243], [244, 233], [233, 245], [245, 244],\n [245, 128], [128, 188], [188, 245], [188, 114], [114, 174], [174, 188], [134, 131], [131, 220], [220, 134], [174, 217], [217, 236], [236, 174], [236, 198], [198, 134], [134, 236], [215, 177], [177, 58], [58, 215],\n [156, 143], [143, 124], [124, 156], [25, 110], [110, 7], [7, 25], [31, 228], [228, 25], [25, 31], [264, 356], [356, 368], [368, 264], [0, 11], [11, 267], [267, 0], [451, 452], [452, 349], [349, 451],\n [267, 302], [302, 269], [269, 267], [350, 357], [357, 277], [277, 350], [350, 452], [452, 357], [357, 350], [299, 333], [333, 297], [297, 299], [396, 175], [175, 377], [377, 396], [280, 347], [347, 330], [330, 280],\n [269, 303], [303, 270], [270, 269], [151, 9], [9, 337], [337, 151], [344, 278], [278, 360], [360, 344], [424, 418], [418, 431], [431, 424], [270, 304], [304, 409], [409, 270], [272, 310], [310, 407], [407, 272],\n [322, 270], [270, 410], [410, 322], [449, 450], [450, 347], [347, 449], [432, 422], [422, 434], [434, 432], [18, 313], [313, 17], [17, 18], [291, 306], [306, 375], [375, 291], [259, 387], [387, 260], [260, 259],\n [424, 335], [335, 418], [418, 424], [434, 364], [364, 416], [416, 434], [391, 423], [423, 327], [327, 391], [301, 251], [251, 298], [298, 301], [275, 281], [281, 4], [4, 275], [254, 373], [373, 253], [253, 254],\n [375, 307], [307, 321], [321, 375], [280, 425], [425, 411], [411, 280], [200, 421], [421, 18], [18, 200], [335, 321], [321, 406], [406, 335], [321, 320], [320, 405], [405, 321], [314, 315], [315, 17], [17, 314],\n [423, 426], [426, 266], [266, 423], [396, 377], [377, 369], [369, 396], [270, 322], [322, 269], [269, 270], [413, 417], [417, 464], [464, 413], [385, 386], [386, 258], [258, 385], [248, 456], [456, 419], [419, 248],\n [298, 284], [284, 333], [333, 298], [168, 417], [417, 8], [8, 168], [448, 346], [346, 261], [261, 448], [417, 413], [413, 285], [285, 417], [326, 327], [327, 328], [328, 326], [277, 355], [355, 329], [329, 277],\n [309, 392], [392, 438], [438, 309], [381, 382], [382, 256], [256, 381], [279, 429], [429, 360], [360, 279], [365, 364], [364, 379], [379, 365], [355, 277], [277, 437], [437, 355], [282, 443], [443, 283], [283, 282],\n [281, 275], [275, 363], [363, 281], [395, 431], [431, 369], [369, 395], [299, 297], [297, 337], [337, 299], [335, 273], [273, 321], [321, 335], [348, 450], [450, 349], [349, 348], [359, 446], [446, 467], [467, 359],\n [283, 293], [293, 282], [282, 283], [250, 458], [458, 462], [462, 250], [300, 276], [276, 383], [383, 300], [292, 308], [308, 325], [325, 292], [283, 276], [276, 293], [293, 283], [264, 372], [372, 447], [447, 264],\n [346, 352], [352, 340], [340, 346], [354, 274], [274, 19], [19, 354], [363, 456], [456, 281], [281, 363], [426, 436], [436, 425], [425, 426], [380, 381], [381, 252], [252, 380], [267, 269], [269, 393], [393, 267],\n [421, 200], [200, 428], [428, 421], [371, 266], [266, 329], [329, 371], [432, 287], [287, 422], [422, 432], [290, 250], [250, 328], [328, 290], [385, 258], [258, 384], [384, 385], [446, 265], [265, 342], [342, 446],\n [386, 387], [387, 257], [257, 386], [422, 424], [424, 430], [430, 422], [445, 342], [342, 276], [276, 445], [422, 273], [273, 424], [424, 422], [306, 292], [292, 307], [307, 306], [352, 366], [366, 345], [345, 352],\n [268, 271], [271, 302], [302, 268], [358, 423], [423, 371], [371, 358], [327, 294], [294, 460], [460, 327], [331, 279], [279, 294], [294, 331], [303, 271], [271, 304], [304, 303], [436, 432], [432, 427], [427, 436],\n [304, 272], [272, 408], [408, 304], [395, 394], [394, 431], [431, 395], [378, 395], [395, 400], [400, 378], [296, 334], [334, 299], [299, 296], [6, 351], [351, 168], [168, 6], [376, 352], [352, 411], [411, 376],\n [307, 325], [325, 320], [320, 307], [285, 295], [295, 336], [336, 285], [320, 319], [319, 404], [404, 320], [329, 330], [330, 349], [349, 329], [334, 293], [293, 333], [333, 334], [366, 323], [323, 447], [447, 366],\n [316, 15], [15, 315], [315, 316], [331, 358], [358, 279], [279, 331], [317, 14], [14, 316], [316, 317], [8, 285], [285, 9], [9, 8], [277, 329], [329, 350], [350, 277], [253, 374], [374, 252], [252, 253],\n [319, 318], [318, 403], [403, 319], [351, 6], [6, 419], [419, 351], [324, 318], [318, 325], [325, 324], [397, 367], [367, 365], [365, 397], [288, 435], [435, 397], [397, 288], [278, 344], [344, 439], [439, 278],\n [310, 272], [272, 311], [311, 310], [248, 195], [195, 281], [281, 248], [375, 273], [273, 291], [291, 375], [175, 396], [396, 199], [199, 175], [312, 311], [311, 268], [268, 312], [276, 283], [283, 445], [445, 276],\n [390, 373], [373, 339], [339, 390], [295, 282], [282, 296], [296, 295], [448, 449], [449, 346], [346, 448], [356, 264], [264, 454], [454, 356], [337, 336], [336, 299], [299, 337], [337, 338], [338, 151], [151, 337],\n [294, 278], [278, 455], [455, 294], [308, 292], [292, 415], [415, 308], [429, 358], [358, 355], [355, 429], [265, 340], [340, 372], [372, 265], [352, 346], [346, 280], [280, 352], [295, 442], [442, 282], [282, 295],\n [354, 19], [19, 370], [370, 354], [285, 441], [441, 295], [295, 285], [195, 248], [248, 197], [197, 195], [457, 440], [440, 274], [274, 457], [301, 300], [300, 368], [368, 301], [417, 351], [351, 465], [465, 417],\n [251, 301], [301, 389], [389, 251], [394, 395], [395, 379], [379, 394], [399, 412], [412, 419], [419, 399], [410, 436], [436, 322], [322, 410], [326, 2], [2, 393], [393, 326], [354, 370], [370, 461], [461, 354],\n [393, 164], [164, 267], [267, 393], [268, 302], [302, 12], [12, 268], [312, 268], [268, 13], [13, 312], [298, 293], [293, 301], [301, 298], [265, 446], [446, 340], [340, 265], [280, 330], [330, 425], [425, 280],\n [322, 426], [426, 391], [391, 322], [420, 429], [429, 437], [437, 420], [393, 391], [391, 326], [326, 393], [344, 440], [440, 438], [438, 344], [458, 459], [459, 461], [461, 458], [364, 434], [434, 394], [394, 364],\n [428, 396], [396, 262], [262, 428], [274, 354], [354, 457], [457, 274], [317, 316], [316, 402], [402, 317], [316, 315], [315, 403], [403, 316], [315, 314], [314, 404], [404, 315], [314, 313], [313, 405], [405, 314],\n [313, 421], [421, 406], [406, 313], [323, 366], [366, 361], [361, 323], [292, 306], [306, 407], [407, 292], [306, 291], [291, 408], [408, 306], [291, 287], [287, 409], [409, 291], [287, 432], [432, 410], [410, 287],\n [427, 434], [434, 411], [411, 427], [372, 264], [264, 383], [383, 372], [459, 309], [309, 457], [457, 459], [366, 352], [352, 401], [401, 366], [1, 274], [274, 4], [4, 1], [418, 421], [421, 262], [262, 418],\n [331, 294], [294, 358], [358, 331], [435, 433], [433, 367], [367, 435], [392, 289], [289, 439], [439, 392], [328, 462], [462, 326], [326, 328], [94, 2], [2, 370], [370, 94], [289, 305], [305, 455], [455, 289],\n [339, 254], [254, 448], [448, 339], [359, 255], [255, 446], [446, 359], [254, 253], [253, 449], [449, 254], [253, 252], [252, 450], [450, 253], [252, 256], [256, 451], [451, 252], [256, 341], [341, 452], [452, 256],\n [414, 413], [413, 463], [463, 414], [286, 441], [441, 414], [414, 286], [286, 258], [258, 441], [441, 286], [258, 257], [257, 442], [442, 258], [257, 259], [259, 443], [443, 257], [259, 260], [260, 444], [444, 259],\n [260, 467], [467, 445], [445, 260], [309, 459], [459, 250], [250, 309], [305, 289], [289, 290], [290, 305], [305, 290], [290, 460], [460, 305], [401, 376], [376, 435], [435, 401], [309, 250], [250, 392], [392, 309],\n [376, 411], [411, 433], [433, 376], [453, 341], [341, 464], [464, 453], [357, 453], [453, 465], [465, 357], [343, 357], [357, 412], [412, 343], [437, 343], [343, 399], [399, 437], [344, 360], [360, 440], [440, 344],\n [420, 437], [437, 456], [456, 420], [360, 420], [420, 363], [363, 360], [361, 401], [401, 288], [288, 361], [265, 372], [372, 353], [353, 265], [390, 339], [339, 249], [249, 390], [339, 448], [448, 255], [255, 339],\n];\n\nfunction connectionsToIndices(connections: PairArray) {\n const indices = connections.map((connection) => connection[0]);\n indices.push(connections[connections.length - 1][1]);\n return indices;\n}\n\nexport const MEDIAPIPE_FACE_MESH_KEYPOINTS_BY_CONTOUR = {\n lips: connectionsToIndices(LIPS_CONNECTIONS),\n leftEye: connectionsToIndices(LEFT_EYE_CONNECTIONS),\n leftEyebrow: connectionsToIndices(LEFT_EYEBROW_CONNECTIONS),\n leftIris: connectionsToIndices(LEFT_IRIS_CONNECTIONS),\n rightEye: connectionsToIndices(RIGHT_EYE_CONNECTIONS),\n rightEyebrow: connectionsToIndices(RIGHT_EYEBROW_CONNECTIONS),\n rightIris: connectionsToIndices(RIGHT_IRIS_CONNECTIONS),\n faceOval: connectionsToIndices(FACE_OVAL_CONNECTIONS),\n};\n\nconst indexLabelPairs: Array<[number, string]> = Object.entries(MEDIAPIPE_FACE_MESH_KEYPOINTS_BY_CONTOUR)\n .map(([label, indices]) => indices.map((index) => [index, label] as [number, string]))\n .flat();\n\nexport const MEDIAPIPE_FACE_MESH_KEYPOINTS = new Map(indexLabelPairs);\n\ntype AssignAverage = number[];\nexport interface LandmarksRefinementConfig {\n indexesMapping: number[]; // Maps indexes of the given set of landmarks to indexes of the resulting set of landmarks. Should be non empty and contain the same amount of indexes as landmarks in the corresponding input\n zRefinement: 'none'|'copy'|AssignAverage; // Z refinement instructions.\n}\n\nexport const LANDMARKS_REFINEMENT_LIPS_CONFIG = [\n 61, 146, 91, 181, 84, 17, 314, 405, 321, 375, 291, // Lower outer.\n 185, 40, 39, 37, 0, 267, 269, 270, 409, // Upper outer(excluding corners).\n 78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308, // Lower inner.\n 191, 80, 81, 82, 13, 312, 311, 310, 415, // Upper inner(excluding corners).\n 76, 77, 90, 180, 85, 16, 315, 404, 320, 307, 306, // Lower semi - outer.\n 184, 74, 73, 72, 11, 302, 303, 304, 408, // Upper semi - outer(excluding corners).\n 62, 96, 89, 179, 86, 15, 316, 403, 319, 325, 292, // Lower semi - inner.\n 183, 42, 41, 38, 12, 268, 271, 272, 407, // Upper semi - inner(excluding corners).\n];\n\nexport const LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG = [\n 33, 7, 163, 144, 145, 153, 154, 155, 133, // Lower contour.\n 246, 161, 160, 159, 158, 157, 173, // upper contour (excluding corners).\n 130, 25, 110, 24, 23, 22, 26, 112, 243, // Halo x2 lower contour.\n 247, 30, 29, 27, 28, 56, 190, // Halo x2 upper contour (excluding corners).\n 226, 31, 228, 229, 230, 231, 232, 233, 244, // Halo x3 lower contour.\n 113, 225, 224, 223, 222, 221, 189, // Halo x3 upper contour (excluding corners).\n 35, 124, 46, 53, 52, 65, // Halo x4 upper contour (no lower because of mesh structure) or eyebrow inner contour.\n 143, 111, 117, 118, 119, 120, 121, 128, 245, // Halo x5 lower contour.\n 156, 70, 63, 105, 66, 107, 55, 193, // Halo x5 upper contour (excluding corners) or eyebrow outer contour.\n];\n\nexport const LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG = [\n 263, 249, 390, 373, 374, 380, 381, 382, 362, // Lower contour.\n 466, 388, 387, 386, 385, 384, 398, // Upper contour (excluding corners).\n 359, 255, 339, 254, 253, 252, 256, 341, 463, // Halo x2 lower contour.\n 467, 260, 259, 257, 258, 286, 414, // Halo x2 upper contour (excluding corners).\n 446, 261, 448, 449, 450, 451, 452, 453, 464, // Halo x3 lower contour.\n 342, 445, 444, 443, 442, 441, 413, // Halo x3 upper contour (excluding corners).\n 265, 353, 276, 283, 282, 295, // Halo x4 upper contour (no lower because of mesh structure) or/ eyebrow inner contour.\n 372, 340, 346, 347, 348, 349, 350, 357, 465, // Halo x5 lower contour.\n 383, 300, 293, 334, 296, 336, 285, 417, // Halo x5 upper contour (excluding corners) or eyebrow outer contour.\n];\n\nexport const LANDMARKS_REFINEMENT_LEFT_IRIS_CONFIG = [\n 468, // Center.\n 469, // Iris right edge.\n 470, // Iris top edge.\n 471, // Iris left edge.\n 472, // Iris bottom edge.\n];\n/*\nzRefinement: [\n 33, 7, 163, 144, 145, 153, 154, 155, 133, // Lower contour.\n 246, 161, 160, 159, 158, 157, 173, // Upper contour (excluding corners).\n];\n*/\n\nexport const LANDMARKS_REFINEMENT_RIGHT_IRIS_CONFIG = [\n 473, // Center.\n 474, // Iris right edge.\n 475, // Iris top edge.\n 476, // Iris left edge.\n 477, // Iris bottom edge.\n];\n/*\nzRefinement: [\n 263, 249, 390, 373, 374, 380, 381, 382, 362, // Lower contour.\n 466, 388, 387, 386, 385, 384, 398, // Upper contour (excluding corners).\n];\n*/\n", "import * as constants from './constants';\nimport type { Tensor } from '../tfjs/types';\n\nexport async function augment(rawCoords, results: Tensor[]) {\n const t: Record = { // all attention models produce 2d results so it needs to be later augmented with correct z-coords\n // mesh: results[0], // already have it in rawCoords // output_mesh_identity\n // flag: results[1], // already processed in parent // conv_faceflag\n lips: await results.filter((r) => r.size === 160)[0].data() as Float32Array, // 80 x 2d = 160 // output_lips\n irisL: await results.filter((r) => r.size === 10)[0].data() as Float32Array, // 5 x 2d = 10 // output_right_iris\n eyeL: await results.filter((r) => r.size === 142)[0].data() as Float32Array, // 71 x 2d = 142 // output_right_eye\n irisR: await results.filter((r) => r.size === 10)[1].data() as Float32Array, // 5 x 2d = 10 // output_left_iris\n eyeR: await results.filter((r) => r.size === 142)[1].data() as Float32Array, // 71 x 2d = 142// output_left_eye\n };\n\n // augment iris: adds additional 5 keypoints per eye\n const irisLDepth = constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.reduce((prev, curr) => prev += rawCoords[curr][2], 0) / constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.length; // get average z-coord for iris\n for (let i = 0; i < t.irisL.length / 2; i++) rawCoords.push([t.irisL[2 * i + 0], t.irisL[2 * i + 1], irisLDepth]);\n const irisRDepth = constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.reduce((prev, curr) => prev += rawCoords[curr][2], 0) / constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.length; // get average z-coord for iris\n for (let i = 0; i < t.irisR.length / 2; i++) rawCoords.push([t.irisR[2 * i + 0], t.irisR[2 * i + 1], irisRDepth]);\n\n // augment eyes: replaces eye keypoints based on heuristic mapping\n for (let i = 0; i < t.eyeL.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG[i]] = [t.eyeL[2 * i + 0], t.eyeL[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG[i]][2]];\n for (let i = 0; i < t.eyeR.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG[i]] = [t.eyeR[2 * i + 0], t.eyeR[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG[i]][2]];\n\n // augment lips: replaces eye keypoints based on heuristic mapping\n for (let i = 0; i < t.lips.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_LIPS_CONFIG[i]] = [t.lips[2 * i + 0], t.lips[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_LIPS_CONFIG[i]][2]];\n\n return rawCoords;\n}\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n *\n * Based on:\n * - [**MediaPipe BlazeFace**](https://drive.google.com/file/d/1f39lSzU5Oq-j_OXgS67KfN5wNsoeAZ4V/view)\n * - Facial Spacial Geometry: [**MediaPipe FaceMesh**](https://drive.google.com/file/d/1VFC_wIpw4O7xBOiTgUldl79d9LA-LsnA/view)\n * - Eye Iris Details: [**MediaPipe Iris**](https://drive.google.com/file/d/1bsWbokp9AklH2ANjCfmjqEzzxO1CNbMu/view)\n */\n\nimport { log, now } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as blazeface from './blazeface';\nimport * as util from './facemeshutil';\nimport * as coords from './facemeshcoords';\nimport * as iris from './iris';\nimport * as attention from './attention';\nimport { histogramEqualization } from '../image/enhance';\nimport { env } from '../util/env';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { FaceResult, FaceLandmark, Point } from '../result';\nimport type { Config } from '../config';\n\ntype DetectBox = { startPoint: Point, endPoint: Point, landmarks: Array, confidence: number };\n\nconst cache = {\n boxes: [] as DetectBox[],\n skipped: Number.MAX_SAFE_INTEGER,\n timestamp: 0,\n};\n\nlet model: GraphModel | null = null;\nlet inputSize = 0;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n // reset cached boxes\n const skipTime = (config.face.detector?.skipTime || 0) > (now() - cache.timestamp);\n const skipFrame = cache.skipped < (config.face.detector?.skipFrames || 0);\n if (!config.skipAllowed || !skipTime || !skipFrame || cache.boxes.length === 0) {\n cache.boxes = await blazeface.getBoxes(input, config); // get results from blazeface detector\n cache.timestamp = now();\n cache.skipped = 0;\n } else {\n cache.skipped++;\n }\n const faces: Array = [];\n const newCache: Array = [];\n let id = 0;\n for (let i = 0; i < cache.boxes.length; i++) {\n const box = cache.boxes[i];\n let angle = 0;\n let rotationMatrix;\n const face: FaceResult = { // init face result\n id: id++,\n mesh: [],\n meshRaw: [],\n box: [0, 0, 0, 0],\n boxRaw: [0, 0, 0, 0],\n score: 0,\n boxScore: 0,\n faceScore: 0,\n // contoursRaw: [],\n // contours: [],\n annotations: {} as Record,\n };\n\n // optional rotation correction based on detector data only if mesh is disabled otherwise perform it later when we have more accurate mesh data. if no rotation correction this function performs crop\n [angle, rotationMatrix, face.tensor] = util.correctFaceRotation(config.face.detector?.rotation, box, input, config.face.mesh?.enabled ? inputSize : blazeface.size());\n if (config?.filter?.equalization) {\n const equilized = await histogramEqualization(face.tensor as Tensor);\n tf.dispose(face.tensor);\n face.tensor = equilized;\n }\n face.boxScore = Math.round(100 * box.confidence) / 100;\n if (!config.face.mesh?.enabled) { // mesh not enabled, return resuts from detector only\n face.box = util.clampBox(box, input);\n face.boxRaw = util.getRawBox(box, input);\n face.score = face.boxScore;\n face.mesh = box.landmarks.map((pt) => [\n ((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()),\n ((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()),\n ]);\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / inputSize]);\n for (const key of Object.keys(coords.blazeFaceLandmarks)) {\n face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key] as number]]; // add annotations\n }\n } else if (!model) { // mesh enabled, but not loaded\n if (config.debug) log('face mesh detection requested, but model is not loaded');\n } else { // mesh enabled\n const results = model.execute(face.tensor as Tensor) as Array;\n const confidenceT = results.find((t) => t.shape[t.shape.length - 1] === 1) as Tensor;\n const faceConfidence = await confidenceT.data();\n face.faceScore = Math.round(100 * faceConfidence[0]) / 100;\n\n if (face.faceScore < (config.face.detector?.minConfidence || 1)) { // low confidence in detected mesh\n box.confidence = face.faceScore; // reset confidence of cached box\n if (config.face.mesh?.keepInvalid) {\n face.box = util.clampBox(box, input);\n face.boxRaw = util.getRawBox(box, input);\n face.score = face.boxScore;\n face.mesh = box.landmarks.map((pt) => [\n ((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()),\n ((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()),\n ]);\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 1), pt[1] / (input.shape[1] || 1), (pt[2] || 0) / inputSize]);\n for (const key of Object.keys(coords.blazeFaceLandmarks)) {\n face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key] as number]]; // add annotations\n }\n }\n } else {\n const meshT = results.find((t) => t.shape[t.shape.length - 1] === 1404) as Tensor;\n const coordsReshaped = tf.reshape(meshT, [-1, 3]);\n let rawCoords = await coordsReshaped.array();\n tf.dispose(coordsReshaped);\n if (config.face.attention?.enabled) {\n rawCoords = await attention.augment(rawCoords, results); // augment iris results using attention model results\n } else if (config.face.iris?.enabled) {\n rawCoords = await iris.augmentIris(rawCoords, face.tensor, config, inputSize); // run iris model and augment results\n }\n face.mesh = util.transformRawCoords(rawCoords, box, angle, rotationMatrix, inputSize); // get processed mesh\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / inputSize]);\n for (const key of Object.keys(coords.meshAnnotations)) face.annotations[key] = coords.meshAnnotations[key].map((index) => face.mesh[index]); // add annotations\n face.score = face.faceScore;\n const calculatedBox = { ...util.calculateFaceBox(face.mesh, box), confidence: box.confidence, landmarks: box.landmarks };\n face.box = util.clampBox(calculatedBox, input);\n face.boxRaw = util.getRawBox(calculatedBox, input);\n /*\n const contoursT = results.find((t) => t.shape[t.shape.length - 1] === 266) as Tensor;\n const contoursData = contoursT && await contoursT.data(); // 133 x 2d points\n face.contoursRaw = [];\n for (let j = 0; j < contoursData.length / 2; j++) face.contoursRaw.push([contoursData[2 * j + 0] / inputSize, contoursData[2 * j + 1] / inputSize]);\n face.contours = face.contoursRaw.map((c) => [Math.trunc((input.shape[2] || 1) * c[0]), Math.trunc((input.shape[1] || 1) * c[1])]);\n */\n newCache.push(calculatedBox);\n }\n tf.dispose(results);\n }\n if (face.score > (config.face.detector?.minConfidence || 1)) faces.push(face);\n else tf.dispose(face.tensor);\n }\n cache.boxes = newCache; // reset cache\n return faces;\n}\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n // @ts-ignore private property\n if (config?.face?.attention?.enabled && model?.signature) {\n // @ts-ignore private property\n if (Object.keys(model?.signature?.outputs || {}).length < 6) model = null;\n }\n if (!model) {\n if (config.face.attention?.enabled) model = await loadModel(config.face.attention?.modelPath);\n else model = await loadModel(config.face.mesh?.modelPath);\n } else if (config.debug) {\n log('cached model:', model['modelUrl']);\n }\n inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0;\n return model;\n}\n\nexport const triangulation = coords.TRI468;\nexport const uvmap = coords.UV468;\n", "/**\n * FaceRes model implementation\n *\n * Returns Age, Gender, Descriptor\n * Implements Face simmilarity function\n *\n * Based on: [**HSE-FaceRes**](https://github.com/HSE-asavchenko/HSE_FaceRec_tf)\n */\n\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport type { Gender, Race } from '../result';\n\nexport type FaceRes = { age: number, gender: Gender, genderScore: number, descriptor: number[], race?: { score: number, race: Race }[] };\n\nlet model: GraphModel | null;\nconst last: Array<{\n age: number,\n gender: Gender,\n genderScore: number,\n descriptor: number[],\n}> = [];\n\nlet lastTime = 0;\nlet lastCount = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.description?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport function enhance(input): Tensor {\n const tensor = (input.image || input.tensor || input) as Tensor; // input received from detector is already normalized to 0..1, input is also assumed to be straightened\n if (!model?.inputs[0].shape) return tensor; // model has no shape so no point continuing\n const crop = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const norm = tf.mul(crop, constants.tf255);\n tf.dispose(crop);\n return norm;\n /*\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n */\n /*\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n */\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model) return { age: 0, gender: 'unknown', genderScore: 0, descriptor: [] };\n const skipFrame = skipped < (config.face.description?.skipFrames || 0);\n const skipTime = (config.face.description?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const obj = {\n age: 0,\n gender: 'unknown',\n genderScore: 0,\n descriptor: [],\n };\n\n if (config.face.description?.enabled) {\n const enhanced = enhance(image);\n const resT = model?.execute(enhanced) as Tensor[];\n lastTime = now();\n tf.dispose(enhanced);\n const genderT = await resT.find((t) => t.shape[1] === 1) as Tensor;\n const gender = await genderT.data();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > (config.face.description?.minConfidence || 0)) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.genderScore = Math.min(0.99, confidence);\n }\n const argmax = tf.argMax(resT.find((t) => t.shape[1] === 100), 1);\n const age = (await argmax.data())[0];\n tf.dispose(argmax);\n const ageT = resT.find((t) => t.shape[1] === 100) as Tensor;\n const all = await ageT.data();\n obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n\n const desc = resT.find((t) => t.shape[1] === 1024);\n // const reshape = desc.reshape([128, 8]); // reshape large 1024-element descriptor to 128 x 8\n // const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it which leaves us with 128-element descriptor\n const descriptor = desc ? await desc.data() : [];\n obj.descriptor = Array.from(descriptor);\n resT.forEach((t) => tf.dispose(t));\n }\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Point } from '../result';\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]] as Point;\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]] as Point;\n const palmLandmarks = box.palmLandmarks.map((coord) => {\n const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];\n return scaledCoord;\n });\n return { startPoint, endPoint, palmLandmarks, confidence: box.confidence };\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]] as Point;\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize] as Point;\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function shiftBox(box, shiftFactor) {\n const boxSize = [\n box.endPoint[0] - box.startPoint[0],\n box.endPoint[1] - box.startPoint[1],\n ];\n const shiftVector = [boxSize[0] * shiftFactor[0], boxSize[1] * shiftFactor[1]];\n const startPoint = [box.startPoint[0] + shiftVector[0], box.startPoint[1] + shiftVector[1]] as Point;\n const endPoint = [box.endPoint[0] + shiftVector[0], box.endPoint[1] + shiftVector[1]] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n", "/**\n * HandPose model implementation constants\n * See `handpose.ts` for entry point\n */\n\nexport const anchors = [\n { x: 0.015625, y: 0.015625 },\n { x: 0.015625, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n];\n", "/**\n * HandPose model implementation\n * See `handpose.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './handposeutil';\nimport * as anchors from './handposeanchors';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Point } from '../result';\n\nexport class HandDetector {\n model: GraphModel;\n anchors: number[][];\n anchorsTensor: Tensor;\n inputSize: number;\n inputSizeTensor: Tensor;\n doubleInputSizeTensor: Tensor;\n\n constructor(model) {\n this.model = model;\n this.anchors = anchors.anchors.map((anchor) => [anchor.x, anchor.y]);\n this.anchorsTensor = tf.tensor2d(this.anchors);\n this.inputSize = (this.model && this.model.inputs && this.model.inputs[0].shape) ? this.model.inputs[0].shape[2] : 0;\n this.inputSizeTensor = tf.tensor1d([this.inputSize, this.inputSize]);\n this.doubleInputSizeTensor = tf.tensor1d([this.inputSize * 2, this.inputSize * 2]);\n }\n\n normalizeBoxes(boxes) {\n const t: Record = {};\n t.boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);\n t.boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);\n t.div = tf.div(t.boxOffsets, this.inputSizeTensor);\n t.boxCenterPoints = tf.add(t.div, this.anchorsTensor);\n t.halfBoxSizes = tf.div(t.boxSizes, this.doubleInputSizeTensor);\n t.sub = tf.sub(t.boxCenterPoints, t.halfBoxSizes);\n t.startPoints = tf.mul(t.sub, this.inputSizeTensor);\n t.add = tf.add(t.boxCenterPoints, t.halfBoxSizes);\n t.endPoints = tf.mul(t.add, this.inputSizeTensor);\n const res = tf.concat2d([t.startPoints, t.endPoints], 1);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return res;\n }\n\n normalizeLandmarks(rawPalmLandmarks, index) {\n const t: Record = {};\n t.reshape = tf.reshape(rawPalmLandmarks, [-1, 7, 2]);\n t.div = tf.div(t.reshape, this.inputSizeTensor);\n t.landmarks = tf.add(t.div, this.anchors[index]);\n const res = tf.mul(t.landmarks, this.inputSizeTensor);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return res;\n }\n\n async predict(input, config): Promise<{ startPoint: Point; endPoint: Point, palmLandmarks: Point[]; confidence: number }[]> {\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(input, [this.inputSize, this.inputSize]);\n t.div = tf.div(t.resize, constants.tf127);\n t.image = tf.sub(t.div, constants.tf1);\n t.batched = this.model.execute(t.image) as Tensor;\n t.predictions = tf.squeeze(t.batched);\n t.slice = tf.slice(t.predictions, [0, 0], [-1, 1]);\n t.sigmoid = tf.sigmoid(t.slice);\n t.scores = tf.squeeze(t.sigmoid);\n const scores = await t.scores.data();\n t.boxes = tf.slice(t.predictions, [0, 1], [-1, 4]);\n t.norm = this.normalizeBoxes(t.boxes);\n // box detection is flaky so we look for 3x boxes than we need results\n t.nms = await tf.image.nonMaxSuppressionAsync(t.norm, t.scores, 3 * config.hand.maxDetected, config.hand.iouThreshold, config.hand.minConfidence);\n const nms = await t.nms.array() as Array;\n const hands: Array<{ startPoint: Point; endPoint: Point; palmLandmarks: Point[]; confidence: number }> = [];\n for (const index of nms) {\n const p: Record = {};\n p.box = tf.slice(t.norm, [index, 0], [1, -1]);\n p.slice = tf.slice(t.predictions, [index, 5], [1, 14]);\n p.norm = this.normalizeLandmarks(p.slice, index);\n p.palmLandmarks = tf.reshape(p.norm, [-1, 2]);\n const box = await p.box.data();\n const startPoint = box.slice(0, 2) as unknown as Point;\n const endPoint = box.slice(2, 4) as unknown as Point;\n const palmLandmarks = await p.palmLandmarks.array();\n const hand = { startPoint, endPoint, palmLandmarks, confidence: scores[index] };\n const scaled = util.scaleBoxCoordinates(hand, [input.shape[2] / this.inputSize, input.shape[1] / this.inputSize]);\n hands.push(scaled);\n Object.keys(p).forEach((tensor) => tf.dispose(p[tensor]));\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return hands;\n }\n}\n", "/**\n * HandPose model implementation\n * See `handpose.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './handposeutil';\nimport type * as detector from './handposedetector';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport { now } from '../util/util';\nimport type { Point } from '../result';\n\nconst palmBoxEnlargeFactor = 5; // default 3\nconst handBoxEnlargeFactor = 1.65; // default 1.65\nconst palmLandmarkIds = [0, 5, 9, 13, 17, 1, 2];\nconst palmLandmarksPalmBase = 0;\nconst palmLandmarksMiddleFingerBase = 2;\nlet lastTime = 0;\n\nexport class HandPipeline {\n handDetector: detector.HandDetector;\n handPoseModel: GraphModel;\n inputSize: number;\n storedBoxes: Array<{ startPoint: Point; endPoint: Point; palmLandmarks: Point[]; confidence: number } | null>;\n skipped: number;\n detectedHands: number;\n\n constructor(handDetector, handPoseModel) {\n this.handDetector = handDetector;\n this.handPoseModel = handPoseModel;\n this.inputSize = this.handPoseModel && this.handPoseModel.inputs[0].shape ? this.handPoseModel.inputs[0].shape[2] : 0;\n this.storedBoxes = [];\n this.skipped = Number.MAX_SAFE_INTEGER;\n this.detectedHands = 0;\n }\n\n // eslint-disable-next-line class-methods-use-this\n calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint };\n }\n\n getBoxForPalmLandmarks(palmLandmarks, rotationMatrix) {\n const rotatedPalmLandmarks = palmLandmarks.map((coord) => util.rotatePoint([...coord, 1], rotationMatrix));\n const boxAroundPalm = this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);\n return util.enlargeBox(util.squarifyBox(boxAroundPalm), palmBoxEnlargeFactor);\n }\n\n getBoxForHandLandmarks(landmarks) {\n const boundingBox = this.calculateLandmarksBoundingBox(landmarks);\n const boxAroundHand = util.enlargeBox(util.squarifyBox(boundingBox), handBoxEnlargeFactor);\n boxAroundHand.palmLandmarks = [];\n for (let i = 0; i < palmLandmarkIds.length; i++) {\n boxAroundHand.palmLandmarks.push(landmarks[palmLandmarkIds[i]].slice(0, 2));\n }\n return boxAroundHand;\n }\n\n transformRawCoords(rawCoords, box2, angle, rotationMatrix) {\n const boxSize = util.getBoxSize(box2);\n const scaleFactor = [boxSize[0] / this.inputSize, boxSize[1] / this.inputSize, (boxSize[0] + boxSize[1]) / this.inputSize / 2];\n const coordsScaled = rawCoords.map((coord) => [\n scaleFactor[0] * (coord[0] - this.inputSize / 2),\n scaleFactor[1] * (coord[1] - this.inputSize / 2),\n scaleFactor[2] * coord[2],\n ]);\n const coordsRotationMatrix = util.buildRotationMatrix(angle, [0, 0]);\n const coordsRotated = coordsScaled.map((coord) => {\n const rotated = util.rotatePoint(coord, coordsRotationMatrix);\n return [...rotated, coord[2]];\n });\n const inverseRotationMatrix = util.invertTransformMatrix(rotationMatrix);\n const boxCenter = [...util.getBoxCenter(box2), 1];\n const originalBoxCenter = [\n util.dot(boxCenter, inverseRotationMatrix[0]),\n util.dot(boxCenter, inverseRotationMatrix[1]),\n ];\n return coordsRotated.map((coord) => [\n Math.trunc(coord[0] + originalBoxCenter[0]),\n Math.trunc(coord[1] + originalBoxCenter[1]),\n Math.trunc(coord[2]),\n ]);\n }\n\n async estimateHands(image, config) {\n let useFreshBox = false;\n\n // run new detector every skipFrames\n let boxes;\n const skipTime = (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrame = this.skipped < (config.hand.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n boxes = await this.handDetector.predict(image, config);\n this.skipped = 0;\n }\n if (config.skipAllowed) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.hand.maxDetected) || !config.hand.landmarks)) {\n this.detectedHands = 0;\n this.storedBoxes = [...boxes];\n // for (const possible of boxes) this.storedBoxes.push(possible);\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n const hands: Array<{ landmarks: Point[], confidence: number, boxConfidence: number, fingerConfidence: number, box: { topLeft: Point, bottomRight: Point } }> = [];\n\n // go through working set of boxes\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const currentBox = this.storedBoxes[i];\n if (!currentBox) continue;\n if (config.hand.landmarks) {\n const angle = config.hand.rotation ? util.computeRotation(currentBox.palmLandmarks[palmLandmarksPalmBase], currentBox.palmLandmarks[palmLandmarksMiddleFingerBase]) : 0;\n const palmCenter = util.getBoxCenter(currentBox);\n const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];\n const rotatedImage = config.hand.rotation && env.kernels.includes('rotatewithoffset') ? tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized) : image.clone();\n const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);\n const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;\n const croppedInput = util.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);\n const handImage = tf.div(croppedInput, constants.tf255);\n tf.dispose(croppedInput);\n tf.dispose(rotatedImage);\n const [confidenceT, keypoints] = this.handPoseModel.execute(handImage) as Array;\n lastTime = now();\n tf.dispose(handImage);\n const confidence = (await confidenceT.data())[0];\n tf.dispose(confidenceT);\n if (confidence >= config.hand.minConfidence / 4) {\n const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);\n const rawCoords = await keypointsReshaped.array();\n tf.dispose(keypoints);\n tf.dispose(keypointsReshaped);\n const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);\n const nextBoundingBox = this.getBoxForHandLandmarks(coords);\n this.storedBoxes[i] = { ...nextBoundingBox, confidence };\n const result = {\n landmarks: coords,\n confidence,\n boxConfidence: currentBox.confidence,\n fingerConfidence: confidence,\n box: { topLeft: nextBoundingBox.startPoint, bottomRight: nextBoundingBox.endPoint },\n };\n hands.push(result);\n } else {\n this.storedBoxes[i] = null;\n }\n tf.dispose(keypoints);\n } else {\n // const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), handBoxEnlargeFactor);\n const enlarged = util.enlargeBox(util.squarifyBox(currentBox), handBoxEnlargeFactor);\n const result = {\n confidence: currentBox.confidence,\n boxConfidence: currentBox.confidence,\n fingerConfidence: 0,\n box: { topLeft: enlarged.startPoint, bottomRight: enlarged.endPoint },\n landmarks: [],\n };\n hands.push(result);\n }\n }\n this.storedBoxes = this.storedBoxes.filter((a) => a !== null);\n this.detectedHands = hands.length;\n if (hands.length > config.hand.maxDetected) hands.length = config.hand.maxDetected;\n return hands;\n }\n}\n", "/**\n * FingerPose algorithm implementation\n * See `fingerpose.ts` for entry point\n */\n\nexport const Finger = {\n thumb: 0,\n index: 1,\n middle: 2,\n ring: 3,\n pinky: 4,\n all: [0, 1, 2, 3, 4], // just for convenience\n nameMapping: { 0: 'thumb', 1: 'index', 2: 'middle', 3: 'ring', 4: 'pinky' },\n // Describes mapping of joints based on the 21 points returned by handpose.\n // [0] Palm\n // [1-4] Thumb\n // [5-8] Index\n // [9-12] Middle\n // [13-16] Ring\n // [17-20] Pinky\n pointsMapping: {\n 0: [[0, 1], [1, 2], [2, 3], [3, 4]],\n 1: [[0, 5], [5, 6], [6, 7], [7, 8]],\n 2: [[0, 9], [9, 10], [10, 11], [11, 12]],\n 3: [[0, 13], [13, 14], [14, 15], [15, 16]],\n 4: [[0, 17], [17, 18], [18, 19], [19, 20]],\n },\n getName: (value) => Finger.nameMapping[value],\n getPoints: (value) => Finger.pointsMapping[value],\n};\n\nexport const FingerCurl = {\n none: 0,\n half: 1,\n full: 2,\n nameMapping: { 0: 'none', 1: 'half', 2: 'full' },\n getName: (value) => FingerCurl.nameMapping[value],\n};\n\nexport const FingerDirection = {\n verticalUp: 0,\n verticalDown: 1,\n horizontalLeft: 2,\n horizontalRight: 3,\n diagonalUpRight: 4,\n diagonalUpLeft: 5,\n diagonalDownRight: 6,\n diagonalDownLeft: 7,\n nameMapping: { 0: 'verticalUp', 1: 'verticalDown', 2: 'horizontalLeft', 3: 'horizontalRight', 4: 'diagonalUpRight', 5: 'diagonalUpLeft', 6: 'diagonalDownRight', 7: 'diagonalDownLeft' },\n getName: (value) => FingerDirection.nameMapping[value],\n};\n\nexport class FingerGesture {\n name;\n curls;\n directions;\n weights;\n weightsRelative;\n\n constructor(name) {\n // name (should be unique)\n this.name = name;\n this.curls = {};\n this.directions = {};\n this.weights = [1.0, 1.0, 1.0, 1.0, 1.0];\n this.weightsRelative = [1.0, 1.0, 1.0, 1.0, 1.0];\n }\n\n curl(finger, curl, confidence) {\n if (typeof this.curls[finger] === 'undefined') this.curls[finger] = [];\n this.curls[finger].push([curl, confidence]);\n }\n\n direction(finger, position, confidence) {\n if (!this.directions[finger]) this.directions[finger] = [];\n this.directions[finger].push([position, confidence]);\n }\n\n weight(finger, weight) {\n this.weights[finger] = weight;\n // recalculate relative weights\n const total = this.weights.reduce((a, b) => a + b, 0);\n this.weightsRelative = this.weights.map((el) => el * 5 / total);\n }\n\n matchAgainst(detectedCurls, detectedDirections) {\n let confidence = 0.0;\n // look at the detected curl of each finger and compare with\n // the expected curl of this finger inside current gesture\n for (const fingerIdx in detectedCurls) {\n const detectedCurl = detectedCurls[fingerIdx];\n const expectedCurls = this.curls[fingerIdx];\n if (typeof expectedCurls === 'undefined') {\n // no curl description available for this finger\n // add default confidence of \"1\"\n confidence += this.weightsRelative[fingerIdx];\n continue;\n }\n // compare to each possible curl of this specific finger\n for (const [expectedCurl, score] of expectedCurls) {\n if (detectedCurl === expectedCurl) {\n confidence += score * this.weightsRelative[fingerIdx];\n break;\n }\n }\n }\n // same for detected direction of each finger\n for (const fingerIdx in detectedDirections) {\n const detectedDirection = detectedDirections[fingerIdx];\n const expectedDirections = this.directions[fingerIdx];\n if (typeof expectedDirections === 'undefined') {\n // no direction description available for this finger\n // add default confidence of \"1\"\n confidence += this.weightsRelative[fingerIdx];\n continue;\n }\n // compare to each possible direction of this specific finger\n for (const [expectedDirection, score] of expectedDirections) {\n if (detectedDirection === expectedDirection) {\n confidence += score * this.weightsRelative[fingerIdx];\n break;\n }\n }\n }\n return confidence / 10;\n }\n}\n", "/**\n * FingerPose algorithm implementation\n * See `fingerpose.ts` for entry point\n */\n\nimport { Finger, FingerCurl, FingerDirection, FingerGesture } from './fingerdef';\n\n// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\nexport const { thumb, index, middle, ring, pinky } = Finger;\n// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\nexport const { none, half, full } = FingerCurl;\n// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\nexport const { verticalUp, verticalDown, horizontalLeft, horizontalRight, diagonalUpRight, diagonalUpLeft, diagonalDownRight, diagonalDownLeft } = FingerDirection;\n\n// describe thumbs up gesture \uD83D\uDC4D\nconst ThumbsUp = new FingerGesture('thumbs up');\nThumbsUp.curl(thumb, none, 1.0);\nThumbsUp.direction(thumb, verticalUp, 1.0);\nThumbsUp.direction(thumb, diagonalUpLeft, 0.25);\nThumbsUp.direction(thumb, diagonalUpRight, 0.25);\nfor (const finger of [Finger.index, Finger.middle, Finger.ring, Finger.pinky]) {\n ThumbsUp.curl(finger, full, 1.0);\n ThumbsUp.direction(finger, horizontalLeft, 1.0);\n ThumbsUp.direction(finger, horizontalRight, 1.0);\n}\n\n// describe Victory gesture \u270C\uFE0F\nconst Victory = new FingerGesture('victory');\nVictory.curl(thumb, half, 0.5);\nVictory.curl(thumb, none, 0.5);\nVictory.direction(thumb, verticalUp, 1.0);\nVictory.direction(thumb, diagonalUpLeft, 1.0);\nVictory.curl(index, none, 1.0);\nVictory.direction(index, verticalUp, 0.75);\nVictory.direction(index, diagonalUpLeft, 1.0);\nVictory.curl(middle, none, 1.0);\nVictory.direction(middle, verticalUp, 1.0);\nVictory.direction(middle, diagonalUpLeft, 0.75);\nVictory.curl(ring, full, 1.0);\nVictory.direction(ring, verticalUp, 0.2);\nVictory.direction(ring, diagonalUpLeft, 1.0);\nVictory.direction(ring, horizontalLeft, 0.2);\nVictory.curl(pinky, full, 1.0);\nVictory.direction(pinky, verticalUp, 0.2);\nVictory.direction(pinky, diagonalUpLeft, 1.0);\nVictory.direction(pinky, horizontalLeft, 0.2);\nVictory.weight(index, 2);\nVictory.weight(middle, 2);\n\n// describe Point gesture \u270C\uFE0F\nconst Point = new FingerGesture('point');\nPoint.curl(thumb, full, 1.0);\nPoint.curl(index, none, 0.5);\nPoint.curl(middle, full, 0.5);\nPoint.curl(ring, full, 0.5);\nPoint.curl(pinky, full, 0.5);\nPoint.weight(index, 2);\nPoint.weight(middle, 2);\n\n// describe Point gesture \u270C\uFE0F\nconst MiddleFinger = new FingerGesture('middle finger');\nMiddleFinger.curl(thumb, none, 1.0);\nMiddleFinger.curl(index, full, 0.5);\nMiddleFinger.curl(middle, full, 0.5);\nMiddleFinger.curl(ring, full, 0.5);\nMiddleFinger.curl(pinky, full, 0.5);\nMiddleFinger.weight(index, 2);\nMiddleFinger.weight(middle, 2);\n\n// describe Open Palm gesture \u270C\uFE0F\nconst OpenPalm = new FingerGesture('open palm');\nOpenPalm.curl(thumb, none, 0.75);\nOpenPalm.curl(index, none, 0.75);\nOpenPalm.curl(middle, none, 0.75);\nOpenPalm.curl(ring, none, 0.75);\nOpenPalm.curl(pinky, none, 0.75);\n\nexport default [ThumbsUp, Victory, Point, MiddleFinger, OpenPalm];\n", "/**\n * FingerPose algorithm implementation constants\n *\n * Based on: [**FingerPose***](https://github.com/andypotato/fingerpose)\n */\n\nimport { Finger, FingerCurl, FingerDirection } from './fingerdef';\nimport Gestures from '../hand/fingergesture';\n\nconst minConfidence = 0.7;\nconst options = {\n // curl estimation\n HALF_CURL_START_LIMIT: 60.0,\n NO_CURL_START_LIMIT: 130.0,\n // direction estimation\n DISTANCE_VOTE_POWER: 1.1,\n SINGLE_ANGLE_VOTE_POWER: 0.9,\n TOTAL_ANGLE_VOTE_POWER: 1.6,\n};\n\nfunction calculateSlope(point1x, point1y, point2x, point2y) {\n const value = (point1y - point2y) / (point1x - point2x);\n let slope = Math.atan(value) * 180 / Math.PI;\n if (slope <= 0) slope = -slope;\n else if (slope > 0) slope = 180 - slope;\n return slope;\n}\n\n// point1, point2 are 2d or 3d point arrays (xy[z])\n// returns either a single scalar (2d) or array of two slopes (3d)\nfunction getSlopes(point1, point2) {\n if (!point1 || !point2) return [0, 0];\n const slopeXY = calculateSlope(point1[0], point1[1], point2[0], point2[1]);\n if (point1.length === 2) return slopeXY;\n const slopeYZ = calculateSlope(point1[1], point1[2], point2[1], point2[2]);\n return [slopeXY, slopeYZ];\n}\n\nfunction angleOrientationAt(angle, weightageAt = 1.0) {\n let isVertical = 0;\n let isDiagonal = 0;\n let isHorizontal = 0;\n if (angle >= 75.0 && angle <= 105.0) isVertical = 1 * weightageAt;\n else if (angle >= 25.0 && angle <= 155.0) isDiagonal = 1 * weightageAt;\n else isHorizontal = 1 * weightageAt;\n return [isVertical, isDiagonal, isHorizontal];\n}\n\nfunction estimateFingerCurl(startPoint, midPoint, endPoint) {\n const start_mid_x_dist = startPoint[0] - midPoint[0];\n const start_end_x_dist = startPoint[0] - endPoint[0];\n const mid_end_x_dist = midPoint[0] - endPoint[0];\n const start_mid_y_dist = startPoint[1] - midPoint[1];\n const start_end_y_dist = startPoint[1] - endPoint[1];\n const mid_end_y_dist = midPoint[1] - endPoint[1];\n const start_mid_z_dist = startPoint[2] - midPoint[2];\n const start_end_z_dist = startPoint[2] - endPoint[2];\n const mid_end_z_dist = midPoint[2] - endPoint[2];\n const start_mid_dist = Math.sqrt(start_mid_x_dist * start_mid_x_dist + start_mid_y_dist * start_mid_y_dist + start_mid_z_dist * start_mid_z_dist);\n const start_end_dist = Math.sqrt(start_end_x_dist * start_end_x_dist + start_end_y_dist * start_end_y_dist + start_end_z_dist * start_end_z_dist);\n const mid_end_dist = Math.sqrt(mid_end_x_dist * mid_end_x_dist + mid_end_y_dist * mid_end_y_dist + mid_end_z_dist * mid_end_z_dist);\n let cos_in = (mid_end_dist * mid_end_dist + start_mid_dist * start_mid_dist - start_end_dist * start_end_dist) / (2 * mid_end_dist * start_mid_dist);\n if (cos_in > 1.0) cos_in = 1.0;\n else if (cos_in < -1.0) cos_in = -1.0;\n let angleOfCurve = Math.acos(cos_in);\n angleOfCurve = (57.2958 * angleOfCurve) % 180;\n let fingerCurl;\n if (angleOfCurve > options.NO_CURL_START_LIMIT) fingerCurl = FingerCurl.none;\n else if (angleOfCurve > options.HALF_CURL_START_LIMIT) fingerCurl = FingerCurl.half;\n else fingerCurl = FingerCurl.full;\n return fingerCurl;\n}\n\nfunction estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x) {\n let estimatedDirection;\n if (max_dist_x === Math.abs(start_end_x_dist)) {\n if (start_end_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n } else if (max_dist_x === Math.abs(start_mid_x_dist)) {\n if (start_mid_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n } else {\n if (mid_end_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n }\n return estimatedDirection;\n}\n\nfunction estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y) {\n let estimatedDirection;\n if (max_dist_y === Math.abs(start_end_y_dist)) {\n if (start_end_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n } else if (max_dist_y === Math.abs(start_mid_y_dist)) {\n if (start_mid_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n } else {\n if (mid_end_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n }\n return estimatedDirection;\n}\n\nfunction estimateDiagonalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y, start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x) {\n let estimatedDirection;\n const reqd_vertical_direction = estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y);\n const reqd_horizontal_direction = estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n if (reqd_vertical_direction === FingerDirection.verticalUp) {\n if (reqd_horizontal_direction === FingerDirection.horizontalLeft) estimatedDirection = FingerDirection.diagonalUpLeft;\n else estimatedDirection = FingerDirection.diagonalUpRight;\n } else {\n if (reqd_horizontal_direction === FingerDirection.horizontalLeft) estimatedDirection = FingerDirection.diagonalDownLeft;\n else estimatedDirection = FingerDirection.diagonalDownRight;\n }\n return estimatedDirection;\n}\n\nfunction calculateFingerDirection(startPoint, midPoint, endPoint, fingerSlopes) {\n const start_mid_x_dist = startPoint[0] - midPoint[0];\n const start_end_x_dist = startPoint[0] - endPoint[0];\n const mid_end_x_dist = midPoint[0] - endPoint[0];\n const start_mid_y_dist = startPoint[1] - midPoint[1];\n const start_end_y_dist = startPoint[1] - endPoint[1];\n const mid_end_y_dist = midPoint[1] - endPoint[1];\n const max_dist_x = Math.max(Math.abs(start_mid_x_dist), Math.abs(start_end_x_dist), Math.abs(mid_end_x_dist));\n const max_dist_y = Math.max(Math.abs(start_mid_y_dist), Math.abs(start_end_y_dist), Math.abs(mid_end_y_dist));\n let voteVertical = 0.0;\n let voteDiagonal = 0.0;\n let voteHorizontal = 0.0;\n const start_end_x_y_dist_ratio = max_dist_y / (max_dist_x + 0.00001);\n if (start_end_x_y_dist_ratio > 1.5) voteVertical += options.DISTANCE_VOTE_POWER;\n else if (start_end_x_y_dist_ratio > 0.66) voteDiagonal += options.DISTANCE_VOTE_POWER;\n else voteHorizontal += options.DISTANCE_VOTE_POWER;\n const start_mid_dist = Math.sqrt(start_mid_x_dist * start_mid_x_dist + start_mid_y_dist * start_mid_y_dist);\n const start_end_dist = Math.sqrt(start_end_x_dist * start_end_x_dist + start_end_y_dist * start_end_y_dist);\n const mid_end_dist = Math.sqrt(mid_end_x_dist * mid_end_x_dist + mid_end_y_dist * mid_end_y_dist);\n const max_dist = Math.max(start_mid_dist, start_end_dist, mid_end_dist);\n let calc_start_point_x = startPoint[0];\n let calc_start_point_y = startPoint[1];\n let calc_end_point_x = endPoint[0];\n let calc_end_point_y = endPoint[1];\n if (max_dist === start_mid_dist) {\n calc_end_point_x = endPoint[0];\n calc_end_point_y = endPoint[1];\n } else if (max_dist === mid_end_dist) {\n calc_start_point_x = midPoint[0];\n calc_start_point_y = midPoint[1];\n }\n const calcStartPoint = [calc_start_point_x, calc_start_point_y];\n const calcEndPoint = [calc_end_point_x, calc_end_point_y];\n const totalAngle = getSlopes(calcStartPoint, calcEndPoint);\n const votes = angleOrientationAt(totalAngle, options.TOTAL_ANGLE_VOTE_POWER);\n voteVertical += votes[0];\n voteDiagonal += votes[1];\n voteHorizontal += votes[2];\n for (const fingerSlope of fingerSlopes) {\n const fingerVotes = angleOrientationAt(fingerSlope, options.SINGLE_ANGLE_VOTE_POWER);\n voteVertical += fingerVotes[0];\n voteDiagonal += fingerVotes[1];\n voteHorizontal += fingerVotes[2];\n }\n // in case of tie, highest preference goes to Vertical,\n // followed by horizontal and then diagonal\n let estimatedDirection;\n if (voteVertical === Math.max(voteVertical, voteDiagonal, voteHorizontal)) {\n estimatedDirection = estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y);\n } else if (voteHorizontal === Math.max(voteDiagonal, voteHorizontal)) {\n estimatedDirection = estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n } else {\n estimatedDirection = estimateDiagonalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y, start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n }\n return estimatedDirection;\n}\n\nfunction estimate(landmarks) {\n // step 1: calculate slopes\n const slopesXY: Array = [];\n const slopesYZ: Array = [];\n const fingerCurls: Array = [];\n const fingerDirections: Array = [];\n if (!landmarks) return { curls: fingerCurls, directions: fingerDirections };\n\n // step 1: calculate slopes\n for (const finger of Finger.all) {\n const points = Finger.getPoints(finger);\n const slopeAtXY: Array = [];\n const slopeAtYZ: Array = [];\n for (const point of points) {\n const point1 = landmarks[point[0]];\n const point2 = landmarks[point[1]];\n // calculate single slope\n const slopes = getSlopes(point1, point2);\n const slopeXY = slopes[0];\n const slopeYZ = slopes[1];\n slopeAtXY.push(slopeXY);\n slopeAtYZ.push(slopeYZ);\n }\n slopesXY.push(slopeAtXY);\n slopesYZ.push(slopeAtYZ);\n }\n\n // step 2: calculate orientations\n for (const finger of Finger.all) {\n // start finger predictions from palm - except for thumb\n const pointIndexAt = (finger === Finger.thumb) ? 1 : 0;\n const fingerPointsAt = Finger.getPoints(finger);\n const startPoint = landmarks[fingerPointsAt[pointIndexAt][0]];\n const midPoint = landmarks[fingerPointsAt[pointIndexAt + 1][1]];\n const endPoint = landmarks[fingerPointsAt[3][1]];\n // check if finger is curled\n const fingerCurled = estimateFingerCurl(startPoint, midPoint, endPoint);\n const fingerPosition = calculateFingerDirection(startPoint, midPoint, endPoint, slopesXY[finger].slice(pointIndexAt));\n fingerCurls[finger] = fingerCurled;\n fingerDirections[finger] = fingerPosition;\n }\n return { curls: fingerCurls, directions: fingerDirections };\n}\n\nexport function analyze(keypoints) { // get estimations of curl / direction for each finger\n if (!keypoints || keypoints.length === 0) return null;\n const estimatorRes = estimate(keypoints);\n const landmarks = {};\n for (const fingerIdx of Finger.all) {\n landmarks[Finger.getName(fingerIdx)] = {\n curl: FingerCurl.getName(estimatorRes.curls[fingerIdx]),\n direction: FingerDirection.getName(estimatorRes.directions[fingerIdx]),\n };\n }\n return landmarks;\n}\n\nexport function match(keypoints) { // compare gesture description to each known gesture\n const poses: Array<{ name: string, confidence: number }> = [];\n if (!keypoints || keypoints.length === 0) return poses;\n const estimatorRes = estimate(keypoints);\n for (const gesture of Gestures) {\n const confidence = gesture.matchAgainst(estimatorRes.curls, estimatorRes.directions);\n if (confidence >= minConfidence) poses.push({ name: gesture.name, confidence });\n }\n return poses;\n}\n", "/**\n * HandPose model implementation\n *\n * Based on: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)\n */\n\nimport { log } from '../util/util';\nimport * as handdetector from './handposedetector';\nimport * as handpipeline from './handposepipeline';\nimport * as fingerPose from './fingerpose';\nimport { loadModel } from '../tfjs/load';\nimport type { HandResult, Box, Point } from '../result';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nconst meshAnnotations = {\n thumb: [1, 2, 3, 4],\n index: [5, 6, 7, 8],\n middle: [9, 10, 11, 12],\n ring: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n palm: [0],\n};\n\nlet handDetectorModel: GraphModel | null;\nlet handPoseModel: GraphModel | null;\nlet handPipeline: handpipeline.HandPipeline;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const predictions = await handPipeline.estimateHands(input, config);\n if (!predictions) return [];\n const hands: Array = [];\n for (let i = 0; i < predictions.length; i++) {\n const annotations = {};\n if (predictions[i].landmarks) {\n for (const key of Object.keys(meshAnnotations)) {\n annotations[key] = meshAnnotations[key].map((index) => predictions[i].landmarks[index]);\n }\n }\n const keypoints = predictions[i].landmarks as unknown as Array;\n let box: Box = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0]; // maximums so conditionals work\n let boxRaw: Box = [0, 0, 0, 0];\n if (keypoints && keypoints.length > 0) { // if we have landmarks, calculate box based on landmarks\n for (const pt of keypoints) {\n if (pt[0] < box[0]) box[0] = pt[0];\n if (pt[1] < box[1]) box[1] = pt[1];\n if (pt[0] > box[2]) box[2] = pt[0];\n if (pt[1] > box[3]) box[3] = pt[1];\n }\n box[2] -= box[0];\n box[3] -= box[1];\n boxRaw = [box[0] / (input.shape[2] || 0), box[1] / (input.shape[1] || 0), box[2] / (input.shape[2] || 0), box[3] / (input.shape[1] || 0)];\n } else { // otherwise use box from prediction\n box = predictions[i].box ? [\n Math.trunc(Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.max(0, predictions[i].box.topLeft[1])),\n Math.trunc(Math.min((input.shape[2] || 0), predictions[i].box.bottomRight[0]) - Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.min((input.shape[1] || 0), predictions[i].box.bottomRight[1]) - Math.max(0, predictions[i].box.topLeft[1])),\n ] : [0, 0, 0, 0];\n boxRaw = [\n (predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n (predictions[i].box.bottomRight[0] - predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.bottomRight[1] - predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n ];\n }\n const landmarks = fingerPose.analyze(keypoints);\n hands.push({\n id: i,\n score: Math.round(100 * predictions[i].confidence) / 100,\n boxScore: Math.round(100 * predictions[i].boxConfidence) / 100,\n fingerScore: Math.round(100 * predictions[i].fingerConfidence) / 100,\n label: 'hand',\n box,\n boxRaw,\n keypoints,\n annotations: annotations as HandResult['annotations'],\n landmarks: landmarks as HandResult['landmarks'],\n });\n }\n return hands;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (env.initial) {\n handDetectorModel = null;\n handPoseModel = null;\n }\n if (!handDetectorModel || !handPoseModel) {\n [handDetectorModel, handPoseModel] = await Promise.all([\n config.hand.enabled ? loadModel(config.hand.detector?.modelPath) : null,\n config.hand.landmarks ? loadModel(config.hand.skeleton?.modelPath) : null,\n ]);\n } else {\n if (config.debug) log('cached model:', handDetectorModel['modelUrl']);\n if (config.debug) log('cached model:', handPoseModel['modelUrl']);\n }\n const handDetector = new handdetector.HandDetector(handDetectorModel);\n handPipeline = new handpipeline.HandPipeline(handDetector, handPoseModel);\n return [handDetectorModel, handPoseModel];\n}\n", "/**\n * HandTrack model implementation\n *\n * Based on:\n * - Hand Detection & Skeleton: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)\n * - Hand Tracking: [**HandTracking**](https://github.com/victordibia/handtracking)\n */\n\nimport { log, now } from '../util/util';\nimport * as box from '../util/box';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { HandResult, HandType, Box, Point } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport * as fingerPose from './fingerpose';\nimport { fakeOps } from '../tfjs/backend';\nimport { constants } from '../tfjs/constants';\n\nconst models: [GraphModel | null, GraphModel | null] = [null, null];\nconst modelOutputNodes = ['StatefulPartitionedCall/Postprocessor/Slice', 'StatefulPartitionedCall/Postprocessor/ExpandDims_1'];\n\nconst inputSize = [[0, 0], [0, 0]];\n\nconst classes = ['hand', 'fist', 'pinch', 'point', 'face', 'tip', 'pinchtip'];\nconst faceIndex = 4;\n\nconst boxExpandFact = 1.6;\nconst maxDetectorResolution = 512;\nconst detectorExpandFact = 1.4;\n\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastTime = 0;\nlet outputSize: [number, number] = [0, 0];\n\ntype HandDetectResult = {\n id: number,\n score: number,\n box: Box,\n boxRaw: Box,\n label: HandType,\n}\n\nconst cache: {\n boxes: Array,\n hands: Array;\n} = {\n boxes: [],\n hands: [],\n};\n\nconst fingerMap = {\n /*\n thumb: [0, 1, 2, 3, 4],\n index: [0, 5, 6, 7, 8],\n middle: [0, 9, 10, 11, 12],\n ring: [0, 13, 14, 15, 16],\n pinky: [0, 17, 18, 19, 20],\n palm: [0],\n */\n thumb: [1, 2, 3, 4],\n index: [5, 6, 7, 8],\n middle: [9, 10, 11, 12],\n ring: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n base: [0],\n palm: [0, 17, 13, 9, 5, 1, 0],\n};\n\nexport async function loadDetect(config: Config): Promise {\n // HandTrack Model: Original: TFJS Port: \n if (env.initial) models[0] = null;\n if (!models[0]) {\n // handtrack model has some kernel ops defined in model but those are never referenced and non-existent in tfjs\n // ideally need to prune the model itself\n fakeOps(['tensorlistreserve', 'enter', 'tensorlistfromtensor', 'merge', 'loopcond', 'switch', 'exit', 'tensorliststack', 'nextiteration', 'tensorlistsetitem', 'tensorlistgetitem', 'reciprocal', 'shape', 'split', 'where'], config);\n models[0] = await loadModel(config.hand.detector?.modelPath);\n const inputs = Object.values(models[0].modelSignature['inputs']);\n inputSize[0][0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize[0][1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models[0]['modelUrl']);\n return models[0];\n}\n\nexport async function loadSkeleton(config: Config): Promise {\n if (env.initial) models[1] = null;\n if (!models[1]) {\n models[1] = await loadModel(config.hand.skeleton?.modelPath);\n const inputs = Object.values(models[1].modelSignature['inputs']);\n inputSize[1][0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize[1][1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models[1]['modelUrl']);\n return models[1];\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!models[0]) await loadDetect(config);\n if (!models[1]) await loadSkeleton(config);\n return models;\n}\n\nasync function detectHands(input: Tensor, config: Config): Promise {\n const hands: HandDetectResult[] = [];\n if (!input || !models[0]) return hands;\n const t: Record = {};\n const ratio = (input.shape[2] || 1) / (input.shape[1] || 1);\n const height = Math.min(Math.round((input.shape[1] || 0) / 8) * 8, maxDetectorResolution); // use dynamic input size but cap at 512\n const width = Math.round(height * ratio / 8) * 8;\n t.resize = tf.image.resizeBilinear(input, [height, width]); // todo: resize with padding\n t.cast = tf.cast(t.resize, 'int32');\n [t.rawScores, t.rawBoxes] = await models[0].executeAsync(t.cast, modelOutputNodes) as Tensor[];\n t.boxes = tf.squeeze(t.rawBoxes, [0, 2]);\n t.scores = tf.squeeze(t.rawScores, [0]);\n const classScores: Array = tf.unstack(t.scores, 1); // unstack scores based on classes\n tf.dispose(classScores[faceIndex]);\n classScores.splice(faceIndex, 1); // remove faces\n t.filtered = tf.stack(classScores, 1); // restack\n tf.dispose(classScores);\n // t.filtered = t.scores;\n t.max = tf.max(t.filtered, 1); // max overall score\n t.argmax = tf.argMax(t.filtered, 1); // class index of max overall score\n let id = 0;\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.max, (config.hand.maxDetected || 0) + 1, config.hand.iouThreshold || 0, config.hand.minConfidence || 1);\n const nms = await t.nms.data();\n const scores = await t.max.data();\n const classNum = await t.argmax.data();\n for (const nmsIndex of Array.from(nms)) { // generates results for each class\n const boxSlice = tf.slice(t.boxes, nmsIndex, 1);\n const boxYX = await boxSlice.data();\n tf.dispose(boxSlice);\n const boxData: Box = [boxYX[1], boxYX[0], boxYX[3] - boxYX[1], boxYX[2] - boxYX[0]]; // yx box reshaped to standard box\n const boxRaw: Box = box.scale(boxData, detectorExpandFact);\n const boxFull: Box = [Math.trunc(boxData[0] * outputSize[0]), Math.trunc(boxData[1] * outputSize[1]), Math.trunc(boxData[2] * outputSize[0]), Math.trunc(boxData[3] * outputSize[1])];\n const score = scores[nmsIndex];\n const label = classes[classNum[nmsIndex]] as HandType;\n const hand: HandDetectResult = { id: id++, score, box: boxFull, boxRaw, label };\n hands.push(hand);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n hands.sort((a, b) => b.score - a.score);\n if (hands.length > (config.hand.maxDetected || 1)) hands.length = (config.hand.maxDetected || 1);\n return hands;\n}\n\nasync function detectFingers(input: Tensor, h: HandDetectResult, config: Config): Promise {\n const hand: HandResult = { // initial values inherited from hand detect\n id: h.id,\n score: Math.round(100 * h.score) / 100,\n boxScore: Math.round(100 * h.score) / 100,\n fingerScore: 0,\n box: h.box,\n boxRaw: h.boxRaw,\n label: h.label,\n keypoints: [],\n landmarks: {} as HandResult['landmarks'],\n annotations: {} as HandResult['annotations'],\n };\n if (input && models[1] && config.hand.landmarks && h.score > (config.hand.minConfidence || 0)) {\n const t: Record = {};\n const boxCrop = [h.boxRaw[1], h.boxRaw[0], h.boxRaw[3] + h.boxRaw[1], h.boxRaw[2] + h.boxRaw[0]] as Box;\n t.crop = tf.image.cropAndResize(input, [boxCrop], [0], [inputSize[1][0], inputSize[1][1]], 'bilinear');\n t.div = tf.div(t.crop, constants.tf255);\n [t.score, t.keypoints] = models[1].execute(t.div, ['Identity_1', 'Identity']) as Tensor[];\n const rawScore = (await t.score.data())[0];\n const score = (100 - Math.trunc(100 / (1 + Math.exp(rawScore)))) / 100; // reverse sigmoid value\n if (score >= (config.hand.minConfidence || 0)) {\n hand.fingerScore = score;\n t.reshaped = tf.reshape(t.keypoints, [-1, 3]);\n const coordsData: Point[] = await t.reshaped.array() as Point[];\n const coordsRaw: Point[] = coordsData.map((kpt) => [kpt[0] / inputSize[1][1], kpt[1] / inputSize[1][0], (kpt[2] || 0)]);\n const coordsNorm: Point[] = coordsRaw.map((kpt) => [kpt[0] * h.boxRaw[2], kpt[1] * h.boxRaw[3], (kpt[2] || 0)]);\n hand.keypoints = (coordsNorm).map((kpt) => [outputSize[0] * (kpt[0] + h.boxRaw[0]), outputSize[1] * (kpt[1] + h.boxRaw[1]), (kpt[2] || 0)]);\n hand.landmarks = fingerPose.analyze(hand.keypoints) as HandResult['landmarks']; // calculate finger gestures\n for (const key of Object.keys(fingerMap)) { // map keypoints to per-finger annotations\n hand.annotations[key] = fingerMap[key].map((index: number) => (hand.landmarks && hand.keypoints[index] ? hand.keypoints[index] : null));\n }\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n return hand;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!models[0] || !models[1] || !models[0]?.inputs[0].shape || !models[1]?.inputs[0].shape) return []; // something is wrong with the model\n outputSize = [input.shape[2] || 0, input.shape[1] || 0];\n skipped++; // increment skip frames\n const skipTime = (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.hand.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n return cache.hands; // return cached results without running anything\n }\n return new Promise(async (resolve) => {\n const skipTimeExtended = 3 * (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrameExtended = skipped < 3 * (config.hand.skipFrames || 0);\n if (config.skipAllowed && cache.hands.length === config.hand.maxDetected) { // we have all detected hands so we're definitely skipping\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n } else if (config.skipAllowed && skipTimeExtended && skipFrameExtended && cache.hands.length > 0) { // we have some cached results: maybe not enough but anyhow continue for bit longer\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n } else { // finally rerun detector\n cache.boxes = await detectHands(input, config);\n lastTime = now();\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n skipped = 0;\n }\n\n const oldCache = [...cache.boxes];\n cache.boxes.length = 0; // reset cache\n if (config.cacheSensitivity > 0) {\n for (let i = 0; i < cache.hands.length; i++) {\n const boxKpt = box.square(cache.hands[i].keypoints, outputSize);\n if (boxKpt.box[2] / (input.shape[2] || 1) > 0.05 && boxKpt.box[3] / (input.shape[1] || 1) > 0.05 && cache.hands[i].fingerScore && cache.hands[i].fingerScore > (config.hand.minConfidence || 0)) {\n const boxScale = box.scale(boxKpt.box, boxExpandFact);\n const boxScaleRaw = box.scale(boxKpt.boxRaw, boxExpandFact);\n // const boxCrop = box.crop(boxScaleRaw);\n cache.boxes.push({ ...oldCache[i], box: boxScale, boxRaw: boxScaleRaw });\n }\n }\n }\n for (let i = 0; i < cache.hands.length; i++) { // replace detected boxes with calculated boxes in final output\n const bbox = box.calc(cache.hands[i].keypoints, outputSize);\n cache.hands[i].box = bbox.box;\n cache.hands[i].boxRaw = bbox.boxRaw;\n }\n resolve(cache.hands);\n });\n}\n", "/**\n * Anti-spoofing model implementation\n */\n\nimport { log, now } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst cached: Array = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastCount = 0;\nlet lastTime = 0;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.liveness?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model) return 0;\n const skipTime = (config.face.liveness?.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.face.liveness?.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && cached[idx]) {\n skipped++;\n return cached[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false);\n const res = model?.execute(resize) as Tensor;\n const num = (await res.data())[0];\n cached[idx] = Math.round(100 * num) / 100;\n lastCount = count;\n lastTime = now();\n tf.dispose([resize, res]);\n resolve(cached[idx]);\n });\n}\n", "export const kpt: Array = [ // used to create part labels\n 'nose',\n 'leftEye',\n 'rightEye',\n 'leftEar',\n 'rightEar',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'leftWrist',\n 'rightWrist',\n 'leftHip',\n 'rightHip',\n 'leftKnee',\n 'rightKnee',\n 'leftAnkle',\n 'rightAnkle',\n];\n\nexport const horizontal: Array = [ // used to fix left vs right\n ['leftEye', 'rightEye'],\n ['leftEar', 'rightEar'],\n ['leftShoulder', 'rightShoulder'],\n ['leftElbow', 'rightElbow'],\n ['leftWrist', 'rightWrist'],\n ['leftHip', 'rightHip'],\n ['leftKnee', 'rightKnee'],\n ['leftAnkle', 'rightAnkle'],\n];\n\nexport const vertical: Array = [ // used to remove unlikely keypoint positions\n ['leftKnee', 'leftShoulder'],\n ['rightKnee', 'rightShoulder'],\n ['leftAnkle', 'leftKnee'],\n ['rightAnkle', 'rightKnee'],\n];\n\nexport const relative: Array = [ // used to match relative body parts\n [['leftHip', 'rightHip'], ['leftShoulder', 'rightShoulder']],\n [['leftElbow', 'rightElbow'], ['leftShoulder', 'rightShoulder']],\n];\n\nexport const connected: Record = { // used to create body outline in annotations\n leftLeg: ['leftHip', 'leftKnee', 'leftAnkle'],\n rightLeg: ['rightHip', 'rightKnee', 'rightAnkle'],\n torso: ['leftShoulder', 'rightShoulder', 'rightHip', 'leftHip', 'leftShoulder'],\n leftArm: ['leftShoulder', 'leftElbow', 'leftWrist'],\n rightArm: ['rightShoulder', 'rightElbow', 'rightWrist'],\n head: [],\n};\n", "import type { BodyKeypoint, BodyResult } from '../result';\nimport * as box from '../util/box';\nimport * as coords from './movenetcoords';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../tfjs/types';\n\nconst maxJitter = 0.005; // default allowed jitter is within 0.5%\n\nconst cache: {\n keypoints: Array,\n padding: [number, number][];\n} = {\n keypoints: [],\n padding: [[0, 0], [0, 0], [0, 0], [0, 0]],\n};\n\nexport function bodyParts(body: BodyResult) { // model sometimes mixes up left vs right keypoints so we fix them\n for (const pair of coords.horizontal) { // fix body parts left vs right\n const left = body.keypoints.findIndex((kp) => kp.part === pair[0]);\n const right = body.keypoints.findIndex((kp) => kp.part === pair[1]);\n if (body.keypoints[left] && body.keypoints[right]) {\n if (body.keypoints[left].position[0] < body.keypoints[right].position[0]) {\n const tmp = body.keypoints[left];\n body.keypoints[left] = body.keypoints[right];\n body.keypoints[right] = tmp;\n }\n }\n }\n for (const pair of coords.vertical) { // remove body parts with improbable vertical position\n const lower = body.keypoints.findIndex((kp) => (kp && kp.part === pair[0]));\n const higher = body.keypoints.findIndex((kp) => (kp && kp.part === pair[1]));\n if (body.keypoints[lower] && body.keypoints[higher]) {\n if (body.keypoints[lower].position[1] < body.keypoints[higher].position[1]) {\n body.keypoints.splice(lower, 1);\n }\n }\n }\n for (const [pair, compare] of coords.relative) { // rearrange body parts according to their relative position\n const left = body.keypoints.findIndex((kp) => (kp && kp.part === pair[0]));\n const right = body.keypoints.findIndex((kp) => (kp && kp.part === pair[1]));\n const leftTo = body.keypoints.findIndex((kp) => (kp && kp.part === compare[0]));\n const rightTo = body.keypoints.findIndex((kp) => (kp && kp.part === compare[1]));\n if (!body.keypoints[leftTo] || !body.keypoints[rightTo]) continue; // only if we have both compare points\n const distanceLeft = body.keypoints[left] ? [\n Math.abs(body.keypoints[leftTo].position[0] - body.keypoints[left].position[0]),\n Math.abs(body.keypoints[rightTo].position[0] - body.keypoints[left].position[0]),\n ] : [0, 0];\n const distanceRight = body.keypoints[right] ? [\n Math.abs(body.keypoints[rightTo].position[0] - body.keypoints[right].position[0]),\n Math.abs(body.keypoints[leftTo].position[0] - body.keypoints[right].position[0]),\n ] : [0, 0];\n if (distanceLeft[0] > distanceLeft[1] || distanceRight[0] > distanceRight[1]) { // should flip keypoints\n const tmp = body.keypoints[left];\n body.keypoints[left] = body.keypoints[right];\n body.keypoints[right] = tmp;\n }\n }\n}\n\nexport function jitter(keypoints: Array): Array {\n for (let i = 0; i < keypoints.length; i++) {\n if (keypoints[i] && cache.keypoints[i]) {\n const diff = [Math.abs(keypoints[i].positionRaw[0] - cache.keypoints[i].positionRaw[0]), Math.abs(keypoints[i].positionRaw[1] - cache.keypoints[i].positionRaw[1])];\n if (diff[0] < maxJitter && diff[1] < maxJitter) {\n keypoints[i] = cache.keypoints[i]; // below jitter so replace keypoint\n } else {\n cache.keypoints[i] = keypoints[i]; // above jitter so update cache\n }\n } else {\n cache.keypoints[i] = keypoints[i]; // cache for keypoint doesnt exist so create it here\n }\n }\n return keypoints;\n}\n\nexport function padInput(input: Tensor, inputSize: number): Tensor {\n const t: Record = {};\n if (!input.shape || !input.shape[1] || !input.shape[2]) return input;\n cache.padding = [\n [0, 0], // dont touch batch\n [input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0, input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0], // height before&after\n [input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0, input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0], // width before&after\n [0, 0], // dont touch rbg\n ];\n t.pad = tf.pad(input, cache.padding);\n t.resize = tf.image.resizeBilinear(t.pad, [inputSize, inputSize]);\n const final = tf.cast(t.resize, 'int32');\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return final;\n}\n\nexport function rescaleBody(body: BodyResult, outputSize: [number, number]): BodyResult {\n body.keypoints = body.keypoints.filter((kpt) => kpt && kpt.position); // filter invalid keypoints\n for (const kpt of body.keypoints) {\n kpt.position = [\n kpt.position[0] * (outputSize[0] + cache.padding[2][0] + cache.padding[2][1]) / outputSize[0] - cache.padding[2][0],\n kpt.position[1] * (outputSize[1] + cache.padding[1][0] + cache.padding[1][1]) / outputSize[1] - cache.padding[1][0],\n ];\n kpt.positionRaw = [\n kpt.position[0] / outputSize[0], kpt.position[1] / outputSize[1],\n ];\n }\n const rescaledBoxes = box.calc(body.keypoints.map((pt) => pt.position), outputSize);\n body.box = rescaledBoxes.box;\n body.boxRaw = rescaledBoxes.boxRaw;\n return body;\n}\n", "/**\n * MoveNet model implementation\n *\n * Based on: [**MoveNet**](https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html)\n */\n\nimport { log, now } from '../util/util';\nimport * as box from '../util/box';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as coords from './movenetcoords';\nimport * as fix from './movenetfix';\nimport { loadModel } from '../tfjs/load';\nimport type { BodyKeypoint, BodyResult, BodyLandmark, BodyAnnotation, Box, Point } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { fakeOps } from '../tfjs/backend';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n// const boxExpandFact = 1.5; // increase to 150%\n\nconst cache: {\n boxes: Array, // unused\n bodies: Array;\n last: number,\n} = {\n boxes: [],\n bodies: [],\n last: 0,\n};\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) {\n fakeOps(['size'], config);\n model = await loadModel(config.body.modelPath);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0;\n if (inputSize < 64) inputSize = 256;\n return model;\n}\n\nasync function parseSinglePose(res, config, image) {\n const kpt = res[0][0];\n const keypoints: Array = [];\n let score = 0;\n for (let id = 0; id < kpt.length; id++) {\n score = kpt[id][2];\n if (score > config.body.minConfidence) {\n const positionRaw: Point = [kpt[id][1], kpt[id][0]];\n keypoints.push({\n score: Math.round(100 * score) / 100,\n part: coords.kpt[id] as BodyLandmark,\n positionRaw,\n position: [ // normalized to input image size\n Math.round((image.shape[2] || 0) * positionRaw[0]),\n Math.round((image.shape[1] || 0) * positionRaw[1]),\n ],\n });\n }\n }\n score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const bodies: Array = [];\n const newBox = box.calc(keypoints.map((pt) => pt.position), [image.shape[2], image.shape[1]]);\n const annotations: Record = {};\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Array = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[i]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body: BodyResult = { id: 0, score, box: newBox.box, boxRaw: newBox.boxRaw, keypoints, annotations };\n fix.bodyParts(body);\n bodies.push(body);\n return bodies;\n}\n\nasync function parseMultiPose(res, config, image) {\n const bodies: Array = [];\n for (let id = 0; id < res[0].length; id++) {\n const kpt = res[0][id];\n const totalScore = Math.round(100 * kpt[51 + 4]) / 100;\n if (totalScore > config.body.minConfidence) {\n const keypoints: Array = [];\n for (let i = 0; i < 17; i++) {\n const score = kpt[3 * i + 2];\n if (score > config.body.minConfidence) {\n const positionRaw: Point = [kpt[3 * i + 1], kpt[3 * i + 0]];\n keypoints.push({\n part: coords.kpt[i] as BodyLandmark,\n score: Math.round(100 * score) / 100,\n positionRaw,\n position: [Math.round((image.shape[2] || 0) * positionRaw[0]), Math.round((image.shape[1] || 0) * positionRaw[1])],\n });\n }\n }\n const newBox = box.calc(keypoints.map((pt) => pt.position), [image.shape[2], image.shape[1]]);\n // movenet-multipose has built-in box details\n // const boxRaw: Box = [kpt[51 + 1], kpt[51 + 0], kpt[51 + 3] - kpt[51 + 1], kpt[51 + 2] - kpt[51 + 0]];\n // const box: Box = [Math.trunc(boxRaw[0] * (image.shape[2] || 0)), Math.trunc(boxRaw[1] * (image.shape[1] || 0)), Math.trunc(boxRaw[2] * (image.shape[2] || 0)), Math.trunc(boxRaw[3] * (image.shape[1] || 0))];\n const annotations: Record = {} as Record;\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Array = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[i]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body: BodyResult = { id, score: totalScore, box: newBox.box, boxRaw: newBox.boxRaw, keypoints: [...keypoints], annotations };\n fix.bodyParts(body);\n bodies.push(body);\n }\n }\n bodies.sort((a, b) => b.score - a.score);\n if (bodies.length > config.body.maxDetected) bodies.length = config.body.maxDetected;\n return bodies;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!model || !model?.inputs[0].shape) return []; // something is wrong with the model\n if (!config.skipAllowed) cache.boxes.length = 0; // allowed to use cache or not\n skipped++; // increment skip frames\n const skipTime = (config.body.skipTime || 0) > (now() - cache.last);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n return cache.bodies; // return cached results without running anything\n }\n return new Promise(async (resolve) => {\n const t: Record = {};\n skipped = 0;\n // run detection on squared input and cached boxes\n /*\n cache.bodies = []; // reset bodies result\n if (cache.boxes.length >= (config.body.maxDetected || 0)) { // if we have enough cached boxes run detection using cache\n for (let i = 0; i < cache.boxes.length; i++) { // run detection based on cached boxes\n t.crop = tf.image.cropAndResize(input, [cache.boxes[i]], [0], [inputSize, inputSize], 'bilinear');\n t.cast = tf.cast(t.crop, 'int32');\n // t.input = prepareImage(input);\n t.res = model?.execute(t.cast) as Tensor;\n const res = await t.res.array();\n const newBodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, cache.boxes[i]) : await parseMultiPose(res, config, input, cache.boxes[i]);\n cache.bodies = cache.bodies.concat(newBodies);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n }\n if (cache.bodies.length !== config.body.maxDetected) { // did not find enough bodies based on cached boxes so run detection on full frame\n t.input = prepareImage(input);\n t.res = model?.execute(t.input) as Tensor;\n const res = await t.res.array();\n cache.bodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, [0, 0, 1, 1]) : await parseMultiPose(res, config, input, [0, 0, 1, 1]);\n for (const body of cache.bodies) rescaleBody(body, [input.shape[2] || 1, input.shape[1] || 1]);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n cache.boxes.length = 0; // reset cache\n for (let i = 0; i < cache.bodies.length; i++) {\n if (cache.bodies[i].keypoints.length > (coords.kpt.length / 2)) { // only update cache if we detected at least half keypoints\n const scaledBox = box.scale(cache.bodies[i].boxRaw, boxExpandFact);\n const cropBox = box.crop(scaledBox);\n cache.boxes.push(cropBox);\n }\n }\n */\n\n // run detection on squared input and no cached boxes\n t.input = fix.padInput(input, inputSize);\n t.res = model?.execute(t.input) as Tensor;\n cache.last = now();\n const res = await t.res.array();\n cache.bodies = (t.res.shape[2] === 17)\n ? await parseSinglePose(res, config, input)\n : await parseMultiPose(res, config, input);\n for (const body of cache.bodies) {\n fix.rescaleBody(body, [input.shape[2] || 1, input.shape[1] || 1]);\n fix.jitter(body.keypoints);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n\n resolve(cache.bodies);\n });\n}\n", "/**\n * NanoDet object detection model implementation\n *\n * Based on: [**MB3-CenterNet**](https://github.com/610265158/mobilenetv3_centernet)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport { labels } from './labels';\nimport type { ObjectResult, ObjectType, Box } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel;\nlet last: Array = [];\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet inputSize = 0;\n\nconst scaleBox = 2.5; // increase box size\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) {\n model = await loadModel(config.object.modelPath);\n const inputs = Object.values(model.modelSignature['inputs']);\n inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nasync function process(res: Tensor[], outputShape: [number, number], config: Config) {\n let id = 0;\n let results: Array = [];\n for (const strideSize of [1, 2, 4]) { // try each stride size as it detects large/medium/small objects\n // find scores, boxes, classes\n tf.tidy(async () => { // wrap in tidy to automatically deallocate temp tensors\n const baseSize = strideSize * 13; // 13x13=169, 26x26=676, 52x52=2704\n // find boxes and scores output depending on stride\n const scoresT = tf.squeeze(res.find((a: Tensor) => (a.shape[1] === (baseSize ** 2) && (a.shape[2] || 0) === labels.length)));\n const featuresT = tf.squeeze(res.find((a: Tensor) => (a.shape[1] === (baseSize ** 2) && (a.shape[2] || 0) < labels.length)));\n const boxesMax = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); // reshape [output] to [4, output / 4] where number is number of different features inside each stride\n const boxIdx = await boxesMax.argMax(2).array(); // what we need is indexes of features with highest scores, not values itself\n const scores = await scoresT.array(); // optionally use exponential scores or just as-is\n for (let i = 0; i < scoresT.shape[0]; i++) { // total strides (x * y matrix)\n for (let j = 0; j < scoresT.shape[1]; j++) { // one score for each class\n const score = scores[i][j]; // get score for current position\n if (score > (config.object.minConfidence || 0) && j !== 61) {\n const cx = (0.5 + Math.trunc(i % baseSize)) / baseSize; // center.x normalized to range 0..1\n const cy = (0.5 + Math.trunc(i / baseSize)) / baseSize; // center.y normalized to range 0..1\n const boxOffset = boxIdx[i].map((a: number) => a * (baseSize / strideSize / inputSize)); // just grab indexes of features with highest scores\n const [x, y] = [\n cx - (scaleBox / strideSize * boxOffset[0]),\n cy - (scaleBox / strideSize * boxOffset[1]),\n ];\n const [w, h] = [\n cx + (scaleBox / strideSize * boxOffset[2]) - x,\n cy + (scaleBox / strideSize * boxOffset[3]) - y,\n ];\n let boxRaw: Box = [x, y, w, h]; // results normalized to range 0..1\n boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))) as Box; // fix out-of-bounds coords\n const box = [ // results normalized to input image pixels\n boxRaw[0] * outputShape[0],\n boxRaw[1] * outputShape[1],\n boxRaw[2] * outputShape[0],\n boxRaw[3] * outputShape[1],\n ];\n const result = {\n id: id++,\n // strideSize,\n score: Math.round(100 * score) / 100,\n class: j + 1,\n label: labels[j].label as ObjectType,\n // center: [Math.trunc(outputShape[0] * cx), Math.trunc(outputShape[1] * cy)],\n // centerRaw: [cx, cy],\n box: box.map((a) => Math.trunc(a)) as Box,\n boxRaw,\n };\n results.push(result);\n }\n }\n }\n });\n }\n // deallocate tensors\n res.forEach((t) => tf.dispose(t));\n\n // normally nms is run on raw results, but since boxes need to be calculated this way we skip calulcation of\n // unnecessary boxes and run nms only on good candidates (basically it just does IOU analysis as scores are already filtered)\n const nmsBoxes = results.map((a) => [a.boxRaw[1], a.boxRaw[0], a.boxRaw[3], a.boxRaw[2]]); // switches coordinates from x,y to y,x as expected by tf.nms\n const nmsScores = results.map((a) => a.score);\n let nmsIdx: Array = [];\n if (nmsBoxes && nmsBoxes.length > 0) {\n const nms = await tf.image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);\n nmsIdx = await nms.data();\n tf.dispose(nms);\n }\n\n // filter & sort results\n results = results\n .filter((_val, idx) => nmsIdx.includes(idx))\n .sort((a, b) => (b.score - a.score));\n\n return results;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n const skipTime = (config.object.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.object.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n if (!env.kernels.includes('mod') || !env.kernels.includes('sparsetodense')) return last;\n return new Promise(async (resolve) => {\n const outputSize = [image.shape[2] || 0, image.shape[1] || 0];\n const resize = tf.image.resizeBilinear(image, [inputSize, inputSize], false);\n const norm = tf.div(resize, constants.tf255);\n const transpose = norm.transpose([0, 3, 1, 2]);\n tf.dispose(norm);\n tf.dispose(resize);\n\n let objectT;\n if (config.object.enabled) objectT = model.execute(transpose);\n lastTime = now();\n tf.dispose(transpose);\n\n const obj = await process(objectT as Tensor[], outputSize as [number, number], config);\n last = obj;\n resolve(obj);\n });\n}\n", "/**\n * PoseNet body detection model implementation constants\n * See `posenet.ts` for entry point\n */\n\nimport type { Point, BodyResult, BodyAnnotation, BodyLandmark } from '../result';\n\nexport const partNames = [\n 'nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder',\n 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist',\n 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle',\n];\n\nexport const count = partNames.length; // 17 keypoints\n\nexport const partIds = partNames.reduce((result, jointName, i) => {\n result[jointName] = i;\n return result;\n}, {});\n\nconst connectedPartNames = [\n ['leftHip', 'leftShoulder'], ['leftElbow', 'leftShoulder'],\n ['leftElbow', 'leftWrist'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['rightHip', 'rightShoulder'],\n ['rightElbow', 'rightShoulder'], ['rightElbow', 'rightWrist'],\n ['rightHip', 'rightKnee'], ['rightKnee', 'rightAnkle'],\n ['leftShoulder', 'rightShoulder'], ['leftHip', 'rightHip'],\n];\nexport const connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => ([partIds[jointNameA], partIds[jointNameB]]));\n\nexport const poseChain = [\n ['nose', 'leftEye'], ['leftEye', 'leftEar'], ['nose', 'rightEye'],\n ['rightEye', 'rightEar'], ['nose', 'leftShoulder'],\n ['leftShoulder', 'leftElbow'], ['leftElbow', 'leftWrist'],\n ['leftShoulder', 'leftHip'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['nose', 'rightShoulder'],\n ['rightShoulder', 'rightElbow'], ['rightElbow', 'rightWrist'],\n ['rightShoulder', 'rightHip'], ['rightHip', 'rightKnee'],\n ['rightKnee', 'rightAnkle'],\n];\n\nexport function eitherPointDoesntMeetConfidence(a: number, b: number, minConfidence: number) {\n return (a < minConfidence || b < minConfidence);\n}\n\nexport function getAdjacentKeyPoints(keypoints, minConfidence: number) {\n return connectedPartIndices.reduce((result, [leftJoint, rightJoint]) => {\n if (eitherPointDoesntMeetConfidence(keypoints[leftJoint].score, keypoints[rightJoint].score, minConfidence)) {\n return result;\n }\n result.push([keypoints[leftJoint], keypoints[rightJoint]]);\n return result;\n }, []);\n}\n\nexport function getBoundingBox(keypoints): [number, number, number, number] {\n const coord = keypoints.reduce(({ maxX, maxY, minX, minY }, { position: { x, y } }) => ({\n maxX: Math.max(maxX, x),\n maxY: Math.max(maxY, y),\n minX: Math.min(minX, x),\n minY: Math.min(minY, y),\n }), {\n maxX: Number.NEGATIVE_INFINITY,\n maxY: Number.NEGATIVE_INFINITY,\n minX: Number.POSITIVE_INFINITY,\n minY: Number.POSITIVE_INFINITY,\n });\n return [coord.minX, coord.minY, coord.maxX - coord.minX, coord.maxY - coord.minY];\n}\n\nexport function scalePoses(poses, [height, width], [inputResolutionHeight, inputResolutionWidth]): Array {\n const scaleY = height / inputResolutionHeight;\n const scaleX = width / inputResolutionWidth;\n const scalePose = (pose, i): BodyResult => ({\n id: i,\n score: pose.score,\n boxRaw: [pose.box[0] / inputResolutionWidth, pose.box[1] / inputResolutionHeight, pose.box[2] / inputResolutionWidth, pose.box[3] / inputResolutionHeight],\n box: [Math.trunc(pose.box[0] * scaleX), Math.trunc(pose.box[1] * scaleY), Math.trunc(pose.box[2] * scaleX), Math.trunc(pose.box[3] * scaleY)],\n keypoints: pose.keypoints.map(({ score, part, position }) => ({\n score: score as number,\n part: part as BodyLandmark,\n position: [Math.trunc(position.x * scaleX), Math.trunc(position.y * scaleY)] as Point,\n positionRaw: [position.x / inputResolutionHeight, position.y / inputResolutionHeight] as Point,\n })),\n annotations: {} as Record,\n });\n const scaledPoses = poses.map((pose, i) => scalePose(pose, i));\n return scaledPoses;\n}\n\n// algorithm based on Coursera Lecture from Algorithms, Part 1: https://www.coursera.org/learn/algorithms-part1/lecture/ZjoSM/heapsort\nexport class MaxHeap {\n priorityQueue: Array; // don't touch\n numberOfElements: number;\n getElementValue: unknown; // function call\n\n constructor(maxSize, getElementValue) {\n this.priorityQueue = new Array(maxSize);\n this.numberOfElements = -1;\n this.getElementValue = getElementValue;\n }\n\n enqueue(x) {\n this.priorityQueue[++this.numberOfElements] = x;\n this.swim(this.numberOfElements);\n }\n\n dequeue() {\n const max = this.priorityQueue[0];\n this.exchange(0, this.numberOfElements--);\n this.sink(0);\n this.priorityQueue[this.numberOfElements + 1] = null;\n return max;\n }\n\n empty() { return this.numberOfElements === -1; }\n\n size() { return this.numberOfElements + 1; }\n\n all() { return this.priorityQueue.slice(0, this.numberOfElements + 1); }\n\n max() { return this.priorityQueue[0]; }\n\n swim(k) {\n while (k > 0 && this.less(Math.floor(k / 2), k)) {\n this.exchange(k, Math.floor(k / 2));\n k = Math.floor(k / 2);\n }\n }\n\n sink(k) {\n while (2 * k <= this.numberOfElements) {\n let j = 2 * k;\n if (j < this.numberOfElements && this.less(j, j + 1)) j++;\n if (!this.less(k, j)) break;\n this.exchange(k, j);\n k = j;\n }\n }\n\n getValueAt(i) {\n // @ts-ignore getter is of unknown type\n return this.getElementValue(this.priorityQueue[i]);\n }\n\n less(i, j) {\n return this.getValueAt(i) < this.getValueAt(j);\n }\n\n exchange(i, j) {\n const t = this.priorityQueue[i];\n this.priorityQueue[i] = this.priorityQueue[j];\n this.priorityQueue[j] = t;\n }\n}\n\nexport function getOffsetPoint(y, x, keypoint, offsets) {\n return {\n y: offsets.get(y, x, keypoint),\n x: offsets.get(y, x, keypoint + count),\n };\n}\n\nexport function getImageCoords(part, outputStride, offsets) {\n const { heatmapY, heatmapX, id: keypoint } = part;\n const { y, x } = getOffsetPoint(heatmapY, heatmapX, keypoint, offsets);\n return {\n x: part.heatmapX * outputStride + x,\n y: part.heatmapY * outputStride + y,\n };\n}\n\nexport function fillArray(element, size) {\n const result = new Array(size);\n for (let i = 0; i < size; i++) {\n result[i] = element;\n }\n return result;\n}\n\nexport function clamp(a, min, max) {\n if (a < min) return min;\n if (a > max) return max;\n return a;\n}\n\nexport function squaredDistance(y1, x1, y2, x2) {\n const dy = y2 - y1;\n const dx = x2 - x1;\n return dy * dy + dx * dx;\n}\n\nexport function addVectors(a, b) {\n return { x: a.x + b.x, y: a.y + b.y };\n}\n\nexport function clampVector(a, min, max) {\n return { y: clamp(a.y, min, max), x: clamp(a.x, min, max) };\n}\n", "/**\n * PoseNet body detection model implementation\n *\n * Based on: [**PoseNet**](https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5)\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { BodyResult, BodyLandmark, Box } from '../result';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport * as utils from './posenetutils';\n\nlet model: GraphModel;\nconst poseNetOutputs = ['MobilenetV1/offset_2/BiasAdd'/* offsets */, 'MobilenetV1/heatmap_2/BiasAdd'/* heatmapScores */, 'MobilenetV1/displacement_fwd_2/BiasAdd'/* displacementFwd */, 'MobilenetV1/displacement_bwd_2/BiasAdd'/* displacementBwd */];\nconst localMaximumRadius = 1;\nconst outputStride = 16;\nconst squaredNmsRadius = 50 ** 2;\n\nfunction traverse(edgeId, sourceKeypoint, targetId, scores, offsets, displacements, offsetRefineStep = 2) {\n const getDisplacement = (point) => ({\n y: displacements.get(point.y, point.x, edgeId),\n x: displacements.get(point.y, point.x, (displacements.shape[2] / 2) + edgeId),\n });\n const getStridedIndexNearPoint = (point, height, width) => ({\n y: utils.clamp(Math.round(point.y / outputStride), 0, height - 1),\n x: utils.clamp(Math.round(point.x / outputStride), 0, width - 1),\n });\n\n const [height, width] = scores.shape;\n // Nearest neighbor interpolation for the source->target displacements.\n const sourceKeypointIndices = getStridedIndexNearPoint(sourceKeypoint.position, height, width);\n const displacement = getDisplacement(sourceKeypointIndices);\n const displacedPoint = utils.addVectors(sourceKeypoint.position, displacement);\n let targetKeypoint = displacedPoint;\n for (let i = 0; i < offsetRefineStep; i++) {\n const targetKeypointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const offsetPoint = utils.getOffsetPoint(targetKeypointIndices.y, targetKeypointIndices.x, targetId, offsets);\n targetKeypoint = utils.addVectors(\n { x: targetKeypointIndices.x * outputStride, y: targetKeypointIndices.y * outputStride },\n { x: offsetPoint.x, y: offsetPoint.y },\n );\n }\n const targetKeyPointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const score = scores.get(targetKeyPointIndices.y, targetKeyPointIndices.x, targetId);\n return { position: targetKeypoint, part: utils.partNames[targetId], score };\n}\n\nexport function decodePose(root, scores, offsets, displacementsFwd, displacementsBwd) {\n const tuples = utils.poseChain.map(([parentJoinName, childJoinName]) => ([utils.partIds[parentJoinName], utils.partIds[childJoinName]]));\n const edgesFwd = tuples.map(([, childJointId]) => childJointId);\n const edgesBwd = tuples.map(([parentJointId]) => parentJointId);\n const numParts = scores.shape[2]; // [21,21,17]\n const numEdges = edgesFwd.length;\n const keypoints = new Array(numParts);\n // Start a new detection instance at the position of the root.\n const rootPoint = utils.getImageCoords(root.part, outputStride, offsets);\n keypoints[root.part.id] = {\n score: root.score,\n part: utils.partNames[root.part.id] as BodyLandmark,\n position: rootPoint,\n };\n // Decode the part positions upwards in the tree, following the backward displacements.\n for (let edge = numEdges - 1; edge >= 0; --edge) {\n const sourceId = edgesFwd[edge];\n const targetId = edgesBwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsBwd);\n }\n }\n // Decode the part positions downwards in the tree, following the forward displacements.\n for (let edge = 0; edge < numEdges; ++edge) {\n const sourceId = edgesBwd[edge];\n const targetId = edgesFwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsFwd);\n }\n }\n return keypoints;\n}\n\nfunction scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores) {\n const [height, width] = scores.shape;\n let localMaximum = true;\n const yStart = Math.max(heatmapY - localMaximumRadius, 0);\n const yEnd = Math.min(heatmapY + localMaximumRadius + 1, height);\n for (let yCurrent = yStart; yCurrent < yEnd; ++yCurrent) {\n const xStart = Math.max(heatmapX - localMaximumRadius, 0);\n const xEnd = Math.min(heatmapX + localMaximumRadius + 1, width);\n for (let xCurrent = xStart; xCurrent < xEnd; ++xCurrent) {\n if (scores.get(yCurrent, xCurrent, keypointId) > score) {\n localMaximum = false;\n break;\n }\n }\n if (!localMaximum) break;\n }\n return localMaximum;\n}\n\nexport function buildPartWithScoreQueue(minConfidence, scores) {\n const [height, width, numKeypoints] = scores.shape;\n const queue = new utils.MaxHeap(height * width * numKeypoints, ({ score }) => score);\n for (let heatmapY = 0; heatmapY < height; ++heatmapY) {\n for (let heatmapX = 0; heatmapX < width; ++heatmapX) {\n for (let keypointId = 0; keypointId < numKeypoints; ++keypointId) {\n const score = scores.get(heatmapY, heatmapX, keypointId);\n // Only consider parts with score greater or equal to threshold as root candidates.\n if (score < minConfidence) continue;\n // Only consider keypoints whose score is maximum in a local window.\n if (scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores)) queue.enqueue({ score, part: { heatmapY, heatmapX, id: keypointId } });\n }\n }\n }\n return queue;\n}\n\nfunction withinRadius(poses, { x, y }, keypointId) {\n return poses.some(({ keypoints }) => {\n const correspondingKeypoint = keypoints[keypointId]?.position;\n if (!correspondingKeypoint) return false;\n return utils.squaredDistance(y, x, correspondingKeypoint.y, correspondingKeypoint.x) <= squaredNmsRadius;\n });\n}\n\nfunction getInstanceScore(existingPoses, keypoints) {\n const notOverlappedKeypointScores = keypoints.reduce((result, { position, score }, keypointId) => {\n if (!withinRadius(existingPoses, position, keypointId)) result += score;\n return result;\n }, 0.0);\n return notOverlappedKeypointScores / keypoints.length;\n}\n\nexport function decode(offsets, scores, displacementsFwd, displacementsBwd, maxDetected, minConfidence) {\n const poses: Array<{ keypoints, box: Box, score: number }> = [];\n const queue = buildPartWithScoreQueue(minConfidence, scores);\n // Generate at most maxDetected object instances per image in decreasing root part score order.\n while (poses.length < maxDetected && !queue.empty()) {\n // The top element in the queue is the next root candidate.\n const root = queue.dequeue();\n // Part-based non-maximum suppression: We reject a root candidate if it is within a disk of `nmsRadius` pixels from the corresponding part of a previously detected instance.\n // @ts-ignore this one is tree walk\n const rootImageCoords = utils.getImageCoords(root.part, outputStride, offsets);\n // @ts-ignore this one is tree walk\n if (withinRadius(poses, rootImageCoords, root.part.id)) continue;\n // Else start a new detection instance at the position of the root.\n let keypoints = decodePose(root, scores, offsets, displacementsFwd, displacementsBwd);\n keypoints = keypoints.filter((a) => a.score > minConfidence);\n const score = getInstanceScore(poses, keypoints);\n const box = utils.getBoundingBox(keypoints);\n if (score > minConfidence) poses.push({ keypoints, box, score: Math.round(100 * score) / 100 });\n }\n return poses;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n /** posenet is mostly obsolete\n * caching is not implemented\n */\n const res = tf.tidy(() => {\n if (!model.inputs[0].shape) return [];\n const resized = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const normalized = tf.sub(tf.div(tf.cast(resized, 'float32'), 127.5), 1.0);\n const results: Array = model.execute(normalized, poseNetOutputs) as Array;\n const results3d = results.map((y) => tf.squeeze(y, [0]));\n results3d[1] = tf.sigmoid(results3d[1]); // apply sigmoid on scores\n return results3d;\n });\n\n const buffers = await Promise.all(res.map((tensor: Tensor) => tensor.buffer()));\n for (const t of res) tf.dispose(t);\n\n const decoded = await decode(buffers[0], buffers[1], buffers[2], buffers[3], config.body.maxDetected, config.body.minConfidence);\n if (!model.inputs[0].shape) return [];\n const scaled = utils.scalePoses(decoded, [input.shape[1], input.shape[2]], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) as BodyResult[];\n return scaled;\n}\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) model = await loadModel(config.body.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n", "/**\n * Image segmentation for body detection model\n *\n * Based on:\n * - [**MediaPipe Meet**](https://drive.google.com/file/d/1lnP1bRi9CSqQQXUHa13159vLELYDgDu0/preview)\n * - [**MediaPipe Selfie**](https://drive.google.com/file/d/1dCfozqknMa068vVsO2j_1FgZkW_e3VWv/preview)\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport * as image from '../image/image';\nimport { constants } from '../tfjs/constants';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport type { Input, AnyCanvas } from '../exports';\n\nlet model: GraphModel;\nlet busy = false;\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) model = await loadModel(config.segmentation.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function process(input: Input, background: Input | undefined, config: Config)\n: Promise<{ data: Array | Tensor, canvas: AnyCanvas | null, alpha: AnyCanvas | null }> {\n if (busy) return { data: [], canvas: null, alpha: null };\n busy = true;\n if (!model) await load(config);\n const inputImage = await image.process(input, config);\n const width = inputImage.tensor?.shape[2] || 0;\n const height = inputImage.tensor?.shape[1] || 0;\n if (!inputImage.tensor) return { data: [], canvas: null, alpha: null };\n const t: Record = {};\n\n t.resize = tf.image.resizeBilinear(inputImage.tensor, [model.inputs[0].shape ? model.inputs[0].shape[1] : 0, model.inputs[0].shape ? model.inputs[0].shape[2] : 0], false);\n tf.dispose(inputImage.tensor);\n t.norm = tf.div(t.resize, constants.tf255);\n t.res = model.execute(t.norm) as Tensor;\n\n t.squeeze = tf.squeeze(t.res, 0); // meet.shape:[1,256,256,1], selfie.shape:[1,144,256,2]\n if (t.squeeze.shape[2] === 2) {\n t.softmax = tf.softmax(t.squeeze); // model meet has two channels for fg and bg\n [t.bg, t.fg] = tf.unstack(t.softmax, 2);\n t.expand = tf.expandDims(t.fg, 2);\n t.pad = tf.expandDims(t.expand, 0);\n t.crop = tf.image.cropAndResize(t.pad, [[0, 0, 0.5, 0.5]], [0], [width, height]);\n // running sofmax before unstack creates 2x2 matrix so we only take upper-left quadrant\n // otherwise run softmax after unstack and use standard resize\n // resizeOutput = tf.image.resizeBilinear(expand, [input.tensor?.shape[1], input.tensor?.shape[2]]);\n t.data = tf.squeeze(t.crop, 0);\n } else {\n t.data = tf.image.resizeBilinear(t.squeeze, [height, width]); // model selfie has a single channel that we can use directly\n }\n const data = Array.from(await t.data.data()) as number[];\n\n if (env.node && !env.Canvas && (typeof ImageData === 'undefined')) {\n if (config.debug) log('canvas support missing');\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return { data, canvas: null, alpha: null }; // running in nodejs so return alpha array as-is\n }\n\n const alphaCanvas = image.canvas(width, height);\n // @ts-ignore browser is not defined in tfjs-node\n if (tf.browser) await tf.browser.toPixels(t.data, alphaCanvas);\n const alphaCtx = alphaCanvas.getContext('2d') as CanvasRenderingContext2D;\n if (config.segmentation.blur && config.segmentation.blur > 0) alphaCtx.filter = `blur(${config.segmentation.blur}px)`; // use css filter for bluring, can be done with gaussian blur manually instead\n const alphaData = alphaCtx.getImageData(0, 0, width, height);\n\n const compositeCanvas = image.canvas(width, height);\n const compositeCtx = compositeCanvas.getContext('2d') as CanvasRenderingContext2D;\n if (inputImage.canvas) compositeCtx.drawImage(inputImage.canvas, 0, 0);\n compositeCtx.globalCompositeOperation = 'darken'; // https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation // best options are: darken, color-burn, multiply\n if (config.segmentation.blur && config.segmentation.blur > 0) compositeCtx.filter = `blur(${config.segmentation.blur}px)`; // use css filter for bluring, can be done with gaussian blur manually instead\n compositeCtx.drawImage(alphaCanvas, 0, 0);\n compositeCtx.globalCompositeOperation = 'source-over'; // reset composite operation\n compositeCtx.filter = 'none'; // reset css filter\n const compositeData = compositeCtx.getImageData(0, 0, width, height);\n for (let i = 0; i < width * height; i++) compositeData.data[4 * i + 3] = alphaData.data[4 * i + 0]; // copy original alpha value to new composite canvas\n compositeCtx.putImageData(compositeData, 0, 0);\n\n let mergedCanvas: AnyCanvas | null = null;\n if (background && compositeCanvas) { // draw background with segmentation as overlay if background is present\n mergedCanvas = image.canvas(width, height);\n const bgImage = await image.process(background, config);\n tf.dispose(bgImage.tensor);\n const ctxMerge = mergedCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctxMerge.drawImage(bgImage.canvas as HTMLCanvasElement, 0, 0, mergedCanvas.width, mergedCanvas.height);\n ctxMerge.drawImage(compositeCanvas, 0, 0);\n }\n\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n busy = false;\n // return { data, canvas: mergedCanvas || compositeCanvas, alpha: alphaCanvas };\n return { data, canvas: compositeCanvas, alpha: alphaCanvas };\n}\n", "/** TFJS custom backend registration */\n\nimport type { Human } from '../human';\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\nimport * as models from '../models';\nimport type { AnyCanvas } from '../exports';\n// import { env } from '../env';\n\nexport const config = {\n name: 'humangl',\n priority: 999,\n canvas: null,\n gl: null,\n extensions: [],\n webGLattr: { // https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.2\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: false,\n desynchronized: true,\n },\n};\n\nfunction extensions(): void {\n /*\n https://www.khronos.org/registry/webgl/extensions/\n https://webglreport.com/?v=2\n */\n const gl = config.gl;\n if (!gl) return;\n config.extensions = gl.getSupportedExtensions() as string[];\n // gl.getExtension('KHR_parallel_shader_compile');\n}\n\n/**\n * Registers custom WebGL2 backend to be used by Human library\n *\n * @returns void\n */\nexport async function register(instance: Human): Promise {\n // force backend reload if gl context is not valid\n if (instance.config.backend !== 'humangl') return;\n if ((config.name in tf.engine().registry) && (!config.gl || !config.gl.getParameter(config.gl.VERSION))) {\n log('error: humangl backend invalid context');\n models.reset(instance);\n /*\n log('resetting humangl backend');\n await tf.removeBackend(config.name);\n await register(instance); // re-register\n */\n }\n if (!tf.findBackend(config.name)) {\n try {\n config.canvas = await image.canvas(100, 100);\n } catch (err) {\n log('error: cannot create canvas:', err);\n return;\n }\n try {\n config.gl = config.canvas?.getContext('webgl2', config.webGLattr) as WebGL2RenderingContext;\n const glv2 = config.gl.getParameter(config.gl.VERSION).includes('2.0');\n if (!glv2) {\n log('override: using fallback webgl backend as webgl 2.0 is not detected');\n instance.config.backend = 'webgl';\n return;\n }\n if (config.canvas) {\n config.canvas.addEventListener('webglcontextlost', async (e) => {\n log('error: humangl:', e.type);\n log('possible browser memory leak using webgl or conflict with multiple backend registrations');\n instance.emit('error');\n throw new Error('backend error: webgl context lost');\n // log('resetting humangl backend');\n // env.initial = true;\n // models.reset(instance);\n // await tf.removeBackend(config.name);\n // await register(instance); // re-register\n });\n config.canvas.addEventListener('webglcontextrestored', (e) => {\n log('error: humangl context restored:', e);\n });\n config.canvas.addEventListener('webglcontextcreationerror', (e) => {\n log('error: humangl context create:', e);\n });\n }\n } catch (err) {\n log('error: cannot get WebGL context:', err);\n return;\n }\n try {\n tf.setWebGLContext(2, config.gl);\n } catch (err) {\n log('error: cannot set WebGL context:', err);\n return;\n }\n try {\n const ctx = new tf.GPGPUContext(config.gl);\n tf.registerBackend(config.name, () => new tf.MathBackendWebGL(ctx), config.priority);\n } catch (err) {\n log('error: cannot register WebGL backend:', err);\n return;\n }\n try {\n const kernels = tf.getKernelsForBackend('webgl');\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = { ...kernelConfig, backendName: config.name };\n tf.registerKernel(newKernelConfig);\n });\n } catch (err) {\n log('error: cannot update WebGL backend registration:', err);\n return;\n }\n const current = tf.backend().getGPGPUContext ? tf.backend().getGPGPUContext().gl : null;\n if (current) {\n log(`humangl webgl version:${current.getParameter(current.VERSION)} renderer:${current.getParameter(current.RENDERER)}`);\n } else {\n log('error: no current gl context:', current, config.gl);\n return;\n }\n try {\n tf.ENV.set('WEBGL_VERSION', 2);\n } catch (err) {\n log('error: cannot set WebGL backend flags:', err);\n return;\n }\n extensions();\n log('backend registered:', config.name);\n }\n}\n", "/** TFJS backend initialization and customization */\n\nimport type { Human } from '../human';\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as humangl from './humangl';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as constants from './constants';\n\nfunction registerCustomOps() {\n if (!env.kernels.includes('mod')) {\n const kernelMod = {\n kernelName: 'Mod',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => tf.sub(op.inputs.a, tf.mul(tf.div(op.inputs.a, op.inputs.b), op.inputs.b))),\n };\n tf.registerKernel(kernelMod);\n env.kernels.push('mod');\n }\n if (!env.kernels.includes('floormod')) {\n const kernelMod = {\n kernelName: 'FloorMod',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => tf.floorDiv(op.inputs.a / op.inputs.b) * op.inputs.b + tf.mod(op.inputs.a, op.inputs.b)),\n };\n tf.registerKernel(kernelMod);\n env.kernels.push('floormod');\n }\n}\n\nexport async function check(instance: Human, force = false) {\n instance.state = 'backend';\n if (force || env.initial || (instance.config.backend && (instance.config.backend.length > 0) && (tf.getBackend() !== instance.config.backend))) {\n const timeStamp = now();\n\n if (instance.config.backend && instance.config.backend.length > 0) {\n // detect web worker\n // @ts-ignore ignore missing type for WorkerGlobalScope as that is the point\n if (typeof window === 'undefined' && typeof WorkerGlobalScope !== 'undefined' && instance.config.debug) {\n if (instance.config.debug) log('running inside web worker');\n }\n\n // force browser vs node backend\n if (env.browser && instance.config.backend === 'tensorflow') {\n if (instance.config.debug) log('override: backend set to tensorflow while running in browser');\n instance.config.backend = 'humangl';\n }\n if (env.node && (instance.config.backend === 'webgl' || instance.config.backend === 'humangl')) {\n if (instance.config.debug) log(`override: backend set to ${instance.config.backend} while running in nodejs`);\n instance.config.backend = 'tensorflow';\n }\n\n // handle webgpu\n if (env.browser && instance.config.backend === 'webgpu') {\n if (typeof navigator === 'undefined' || typeof navigator['gpu'] === 'undefined') {\n log('override: backend set to webgpu but browser does not support webgpu');\n instance.config.backend = 'humangl';\n } else {\n const adapter = await navigator['gpu'].requestAdapter();\n if (instance.config.debug) log('enumerated webgpu adapter:', adapter);\n if (!adapter) {\n log('override: backend set to webgpu but browser reports no available gpu');\n instance.config.backend = 'humangl';\n } else {\n // @ts-ignore requestAdapterInfo is not in tslib\n // eslint-disable-next-line no-undef\n const adapterInfo = 'requestAdapterInfo' in adapter ? await (adapter as GPUAdapter).requestAdapterInfo() : undefined;\n // if (adapter.features) adapter.features.forEach((feature) => log('webgpu features:', feature));\n log('webgpu adapter info:', adapterInfo);\n }\n }\n }\n\n // check available backends\n if (instance.config.backend === 'humangl') await humangl.register(instance);\n const available = Object.keys(tf.engine().registryFactory);\n if (instance.config.debug) log('available backends:', available);\n\n if (!available.includes(instance.config.backend)) {\n log(`error: backend ${instance.config.backend} not found in registry`);\n instance.config.backend = env.node ? 'tensorflow' : 'webgl';\n if (instance.config.debug) log(`override: setting backend ${instance.config.backend}`);\n }\n\n if (instance.config.debug) log('setting backend:', instance.config.backend);\n\n // customize wasm\n if (instance.config.backend === 'wasm') {\n try {\n tf.env().set('CANVAS2D_WILL_READ_FREQUENTLY', true);\n } catch { /**/ }\n if (instance.config.debug) log('wasm path:', instance.config.wasmPath);\n if (typeof tf?.setWasmPaths !== 'undefined') await tf.setWasmPaths(instance.config.wasmPath, instance.config.wasmPlatformFetch);\n else throw new Error('backend error: attempting to use wasm backend but wasm path is not set');\n const simd = await tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n const mt = await tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n if (instance.config.debug) log(`wasm execution: ${simd ? 'SIMD' : 'no SIMD'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (instance.config.debug && !simd) log('warning: wasm simd support is not enabled');\n }\n\n try {\n await tf.setBackend(instance.config.backend);\n await tf.ready();\n constants.init();\n } catch (err) {\n log('error: cannot set backend:', instance.config.backend, err);\n return false;\n }\n }\n\n // customize humangl\n if (tf.getBackend() === 'humangl') {\n tf.ENV.set('CHECK_COMPUTATION_FOR_ERRORS', false);\n tf.ENV.set('WEBGL_CPU_FORWARD', true);\n // tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', false);\n tf.ENV.set('WEBGL_USE_SHAPES_UNIFORMS', true);\n tf.ENV.set('CPU_HANDOFF_SIZE_THRESHOLD', 256);\n // if (!instance.config.object.enabled) tf.ENV.set('WEBGL_FORCE_F16_TEXTURES', true); // safe to use 16bit precision\n if (typeof instance.config['deallocate'] !== 'undefined' && instance.config['deallocate']) { // hidden param\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', true);\n tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', 0);\n }\n if (tf.backend().getGPGPUContext) {\n const gl = await tf.backend().getGPGPUContext().gl;\n if (instance.config.debug) log(`gl version:${gl.getParameter(gl.VERSION)} renderer:${gl.getParameter(gl.RENDERER)}`);\n }\n }\n\n // customize webgpu\n if (tf.getBackend() === 'webgpu') {\n // tf.ENV.set('WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD', 512);\n // tf.ENV.set('WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE', 0);\n // tf.ENV.set('WEBGPU_CPU_FORWARD', true);\n }\n\n // wait for ready\n tf.enableProdMode();\n await tf.ready();\n\n instance.performance.initBackend = Math.trunc(now() - timeStamp);\n instance.config.backend = tf.getBackend();\n\n await env.updateBackend(); // update env on backend init\n registerCustomOps();\n // await env.updateBackend(); // update env on backend init\n }\n return true;\n}\n\n// register fake missing tfjs ops\nexport function fakeOps(kernelNames: Array, config) {\n // if (config.debug) log('registerKernel:', kernelNames);\n for (const kernelName of kernelNames) {\n const kernelConfig = {\n kernelName,\n backendName: config.backend,\n kernelFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n // setupFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n // disposeFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n };\n tf.registerKernel(kernelConfig);\n }\n env.kernels = tf.getKernelsForBackend(tf.getBackend()).map((kernel) => kernel.kernelName.toLowerCase()); // re-scan registered ops\n}\n", "/**\n * Module that implements helper draw functions, exposed as human.draw\n */\n\nimport { mergeDeep, now } from '../util/util';\nimport { env } from '../util/env';\nimport { getCanvasContext, rect } from './primitives';\nimport { options } from './options';\nimport { face } from './face';\nimport { body } from './body';\nimport { hand } from './hand';\nimport { object } from './object';\nimport { gesture } from './gesture';\nimport type { Result, PersonResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\nlet drawTime = 0;\n\nexport { options } from './options';\nexport { face } from './face';\nexport { body } from './body';\nexport { hand } from './hand';\nexport { object } from './object';\nexport { gesture } from './gesture';\n\n/** draw combined person results instead of individual detection result objects */\nexport async function person(inCanvas: AnyCanvas, result: Array, drawOptions?: Partial) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n\n for (let i = 0; i < result.length; i++) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `person #${i}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\n/** draw processed canvas */\nexport async function canvas(input: AnyCanvas | HTMLImageElement | HTMLVideoElement, output: AnyCanvas) {\n if (!input || !output) return;\n const ctx = getCanvasContext(output);\n if (!ctx) return;\n ctx.drawImage(input, 0, 0);\n}\n\n/** meta-function that performs draw for: canvas, face, body, hand */\nexport async function all(inCanvas: AnyCanvas, result: Result, drawOptions?: Partial) {\n if (!result || !result.performance || !result || !inCanvas) return null;\n const timeStamp = now();\n const localOptions = mergeDeep(options, drawOptions);\n const promise = Promise.all([\n face(inCanvas, result.face, localOptions),\n body(inCanvas, result.body, localOptions),\n hand(inCanvas, result.hand, localOptions),\n object(inCanvas, result.object, localOptions),\n gesture(inCanvas, result.gesture, localOptions), // gestures do not have buffering\n // person(inCanvas, result.persons, localOptions); // already included above\n ]);\n drawTime = env.perfadd ? drawTime + Math.round(now() - timeStamp) : Math.round(now() - timeStamp);\n result.performance.draw = drawTime;\n return promise;\n}\n", "import { log } from '../util/util';\nimport type { AnyCanvas } from '../exports';\nimport type { Point } from '../result';\nimport type { DrawOptions } from './options';\n\nexport const getCanvasContext = (input: AnyCanvas) => {\n if (!input) log('draw error: invalid canvas');\n else if (!input.getContext) log('draw error: canvas context not defined');\n else {\n const ctx = input.getContext('2d');\n if (!ctx) log('draw error: cannot get canvas context');\n else return ctx;\n }\n return null;\n};\n\nexport const rad2deg = (theta: number) => Math.round((theta * 180) / Math.PI);\n\nexport const colorDepth = (z: number | undefined, opt: DrawOptions): string => {\n if (!opt.useDepth || typeof z === 'undefined') return opt.color;\n const rgb = Uint8ClampedArray.from([127 + (2 * z), 127 - (2 * z), 255]);\n const color = `rgba(${rgb[0]}, ${rgb[1]}, ${rgb[2]}, ${opt.alpha})`;\n return color;\n};\n\nexport function point(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, x: number, y: number, z: number | undefined, localOptions: DrawOptions) {\n ctx.fillStyle = colorDepth(z, localOptions);\n ctx.beginPath();\n ctx.arc(x, y, localOptions.pointSize, 0, 2 * Math.PI);\n ctx.fill();\n}\n\nexport function rect(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, x: number, y: number, width: number, height: number, localOptions: DrawOptions) {\n ctx.beginPath();\n ctx.lineWidth = localOptions.lineWidth;\n if (localOptions.useCurves) {\n const cx = (x + x + width) / 2;\n const cy = (y + y + height) / 2;\n ctx.ellipse(cx, cy, width / 2, height / 2, 0, 0, 2 * Math.PI);\n } else {\n ctx.moveTo(x + localOptions.roundRect, y);\n ctx.lineTo(x + width - localOptions.roundRect, y);\n ctx.quadraticCurveTo(x + width, y, x + width, y + localOptions.roundRect);\n ctx.lineTo(x + width, y + height - localOptions.roundRect);\n ctx.quadraticCurveTo(x + width, y + height, x + width - localOptions.roundRect, y + height);\n ctx.lineTo(x + localOptions.roundRect, y + height);\n ctx.quadraticCurveTo(x, y + height, x, y + height - localOptions.roundRect);\n ctx.lineTo(x, y + localOptions.roundRect);\n ctx.quadraticCurveTo(x, y, x + localOptions.roundRect, y);\n ctx.closePath();\n }\n ctx.stroke();\n}\n\nexport function lines(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, points: Point[], localOptions: DrawOptions) {\n if (points.length < 2) return;\n ctx.beginPath();\n ctx.moveTo(points[0][0], points[0][1]);\n for (const pt of points) {\n ctx.strokeStyle = colorDepth(pt[2] || 0, localOptions);\n ctx.lineTo(Math.trunc(pt[0]), Math.trunc(pt[1]));\n }\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport function curves(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, points: Point[], localOptions: DrawOptions) {\n if (points.length < 2) return;\n ctx.lineWidth = localOptions.lineWidth;\n if (!localOptions.useCurves || points.length <= 2) {\n lines(ctx, points, localOptions);\n return;\n }\n ctx.moveTo(points[0][0], points[0][1]);\n for (let i = 0; i < points.length - 2; i++) {\n const xc = (points[i][0] + points[i + 1][0]) / 2;\n const yc = (points[i][1] + points[i + 1][1]) / 2;\n ctx.quadraticCurveTo(points[i][0], points[i][1], xc, yc);\n }\n ctx.quadraticCurveTo(points[points.length - 2][0], points[points.length - 2][1], points[points.length - 1][0], points[points.length - 1][1]);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport function arrow(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, from: Point, to: Point, radius = 5) {\n let angle;\n let x;\n let y;\n ctx.beginPath();\n ctx.moveTo(from[0], from[1]);\n ctx.lineTo(to[0], to[1]);\n angle = Math.atan2(to[1] - from[1], to[0] - from[0]);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.moveTo(x, y);\n angle += (1.0 / 3.0) * (2 * Math.PI);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.lineTo(x, y);\n angle += (1.0 / 3.0) * (2 * Math.PI);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.lineTo(x, y);\n ctx.closePath();\n ctx.stroke();\n ctx.fill();\n}\n", "/** Draw Options\n * - Accessed via `human.draw.options` or provided per each draw method as the drawOptions optional parameter\n */\nexport type DrawOptions = {\n /** draw line color */\n color: string,\n /** alpha value used for lines */\n alpha: number,\n /** label color */\n labelColor: string,\n /** label shadow color */\n shadowColor: string,\n /** label font */\n font: string,\n /** line spacing between labels */\n lineHeight: number,\n /** line width for drawn lines */\n lineWidth: number,\n /** size of drawn points */\n pointSize: number,\n /** draw rounded boxes by n pixels */\n roundRect: number,\n /** should points be drawn? */\n drawPoints: boolean,\n /** should labels be drawn? */\n drawLabels: boolean,\n /** should face attention keypoints be highlighted */\n drawAttention: boolean;\n /** should detected gestures be drawn? */\n drawGestures: boolean,\n /** should draw boxes around detection results? */\n drawBoxes: boolean,\n /** should draw polygons from detection points? */\n drawPolygons: boolean,\n /** should draw gaze arrows? */\n drawGaze: boolean,\n /** should fill polygons? */\n fillPolygons: boolean,\n /** use z-coordinate when available */\n useDepth: boolean,\n /** should lines be curved? */\n useCurves: boolean,\n}\n\n/** currently set draw options {@link DrawOptions} */\nexport const options: DrawOptions = {\n color: 'rgba(173, 216, 230, 0.6)', // 'lightblue' with light alpha channel\n labelColor: 'rgba(173, 216, 230, 1)', // 'lightblue' with dark alpha channel\n shadowColor: 'black',\n alpha: 0.5,\n font: 'small-caps 16px \"Segoe UI\"',\n lineHeight: 18,\n lineWidth: 4,\n pointSize: 2,\n roundRect: 8,\n drawPoints: false,\n drawLabels: true,\n drawBoxes: true,\n drawAttention: true,\n drawGestures: true,\n drawPolygons: true,\n drawGaze: true,\n fillPolygons: false,\n useDepth: true,\n useCurves: false,\n};\n", "import { TRI468 as triangulation } from '../face/facemeshcoords';\nimport { mergeDeep } from '../util/util';\nimport { getCanvasContext, rad2deg, rect, point, lines, arrow } from './primitives';\nimport { options } from './options';\nimport * as facemeshConstants from '../face/constants';\nimport type { FaceResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\nlet opt: DrawOptions;\n\nfunction drawLabels(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawLabels) {\n // silly hack since fillText does not suport new line\n const labels:string[] = [];\n labels.push(`face: ${Math.trunc(100 * f.score)}%`);\n if (f.genderScore) labels.push(`${f.gender || ''} ${Math.trunc(100 * f.genderScore)}%`);\n if (f.age) labels.push(`age: ${f.age || ''}`);\n if (f.iris) labels.push(`distance: ${f.iris}`);\n if (f.real) labels.push(`real: ${Math.trunc(100 * f.real)}%`);\n if (f.live) labels.push(`live: ${Math.trunc(100 * f.live)}%`);\n if (f.emotion && f.emotion.length > 0) {\n const emotion = f.emotion.map((a) => `${Math.trunc(100 * a.score)}% ${a.emotion}`);\n if (emotion.length > 3) emotion.length = 3;\n labels.push(emotion.join(' '));\n }\n if (f.rotation && f.rotation.angle && f.rotation.gaze) {\n if (f.rotation.angle.roll) labels.push(`roll: ${rad2deg(f.rotation.angle.roll)}\u00B0 yaw:${rad2deg(f.rotation.angle.yaw)}\u00B0 pitch:${rad2deg(f.rotation.angle.pitch)}\u00B0`);\n if (f.rotation.gaze.bearing) labels.push(`gaze: ${rad2deg(f.rotation.gaze.bearing)}\u00B0`);\n }\n if (labels.length === 0) labels.push('face');\n ctx.fillStyle = opt.color;\n for (let i = labels.length - 1; i >= 0; i--) {\n const x = Math.max(f.box[0], 0);\n const y = i * opt.lineHeight + f.box[1];\n if (opt.shadowColor && opt.shadowColor !== '') {\n ctx.fillStyle = opt.shadowColor;\n ctx.fillText(labels[i], x + 5, y + 16);\n }\n ctx.fillStyle = opt.labelColor;\n ctx.fillText(labels[i], x + 4, y + 15);\n }\n }\n}\n\nfunction drawIrisElipse(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n // iris: array[center, left, top, right, bottom]\n if (f.annotations && f.annotations['leftEyeIris'] && f.annotations['leftEyeIris'][0]) {\n ctx.strokeStyle = opt.useDepth ? 'rgba(255, 200, 255, 0.3)' : opt.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations['leftEyeIris'][3][0] - f.annotations['leftEyeIris'][1][0]) / 2;\n const sizeY = Math.abs(f.annotations['leftEyeIris'][4][1] - f.annotations['leftEyeIris'][2][1]) / 2;\n ctx.ellipse(f.annotations['leftEyeIris'][0][0], f.annotations['leftEyeIris'][0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (opt.fillPolygons) {\n ctx.fillStyle = opt.useDepth ? 'rgba(255, 255, 200, 0.3)' : opt.color;\n ctx.fill();\n }\n }\n if (f.annotations && f.annotations['rightEyeIris'] && f.annotations['rightEyeIris'][0]) {\n ctx.strokeStyle = opt.useDepth ? 'rgba(255, 200, 255, 0.3)' : opt.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations['rightEyeIris'][3][0] - f.annotations['rightEyeIris'][1][0]) / 2;\n const sizeY = Math.abs(f.annotations['rightEyeIris'][4][1] - f.annotations['rightEyeIris'][2][1]) / 2;\n ctx.ellipse(f.annotations['rightEyeIris'][0][0], f.annotations['rightEyeIris'][0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (opt.fillPolygons) {\n ctx.fillStyle = opt.useDepth ? 'rgba(255, 255, 200, 0.3)' : opt.color;\n ctx.fill();\n }\n }\n}\n\nfunction drawGazeSpheres(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawGaze && f.rotation?.angle && typeof Path2D !== 'undefined') {\n ctx.strokeStyle = 'pink';\n const valX = (f.box[0] + f.box[2] / 2) - (f.box[3] * rad2deg(f.rotation.angle.yaw) / 90);\n const valY = (f.box[1] + f.box[3] / 2) + (f.box[2] * rad2deg(f.rotation.angle.pitch) / 90);\n const pathV = new Path2D(`\n M ${f.box[0] + f.box[2] / 2} ${f.box[1]}\n C\n ${valX} ${f.box[1]},\n ${valX} ${f.box[1] + f.box[3]},\n ${f.box[0] + f.box[2] / 2} ${f.box[1] + f.box[3]}\n `);\n const pathH = new Path2D(`\n M ${f.box[0]} ${f.box[1] + f.box[3] / 2}\n C \n ${f.box[0]} ${valY},\n ${f.box[0] + f.box[2]} ${valY},\n ${f.box[0] + f.box[2]} ${f.box[1] + f.box[3] / 2}\n `);\n ctx.stroke(pathH);\n ctx.stroke(pathV);\n }\n}\n\nfunction drawGazeArrows(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawGaze && f.rotation?.gaze?.strength && f.rotation?.gaze?.bearing && f.annotations['leftEyeIris'] && f.annotations['rightEyeIris'] && f.annotations['leftEyeIris'][0] && f.annotations['rightEyeIris'][0]) {\n ctx.strokeStyle = 'pink';\n ctx.fillStyle = 'pink';\n const leftGaze = [\n f.annotations['leftEyeIris'][0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations['leftEyeIris'][0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n arrow(ctx, [f.annotations['leftEyeIris'][0][0], f.annotations['leftEyeIris'][0][1]], [leftGaze[0], leftGaze[1]], 4);\n const rightGaze = [\n f.annotations['rightEyeIris'][0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations['rightEyeIris'][0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n arrow(ctx, [f.annotations['rightEyeIris'][0][0], f.annotations['rightEyeIris'][0][1]], [rightGaze[0], rightGaze[1]], 4);\n }\n}\n\nfunction drawFacePolygons(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawPolygons && f.mesh.length >= 468) {\n ctx.lineWidth = 1;\n for (let i = 0; i < triangulation.length / 3; i++) {\n const points = [triangulation[i * 3 + 0], triangulation[i * 3 + 1], triangulation[i * 3 + 2]].map((index) => f.mesh[index]);\n lines(ctx, points, opt);\n }\n drawIrisElipse(f, ctx);\n }\n /*\n if (opt.drawPolygons && f.contours.length > 1) {\n ctx.lineWidth = 5;\n lines(ctx, f.contours, opt);\n }\n ctx.lineWidth = 1;\n */\n}\n\nfunction drawFacePoints(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawPoints && f.mesh.length >= 468) {\n for (let i = 0; i < f.mesh.length; i++) {\n point(ctx, f.mesh[i][0], f.mesh[i][1], f.mesh[i][2], opt);\n if (opt.drawAttention) {\n if (facemeshConstants.LANDMARKS_REFINEMENT_LIPS_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) + 127, opt);\n if (facemeshConstants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) - 127, opt);\n if (facemeshConstants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) - 127, opt);\n }\n }\n }\n}\n\nfunction drawFaceBoxes(f: FaceResult, ctx) {\n if (opt.drawBoxes) {\n rect(ctx, f.box[0], f.box[1], f.box[2], f.box[3], opt);\n }\n}\n\n/** draw detected faces */\nexport async function face(inCanvas: AnyCanvas, result: Array, drawOptions?: Partial) {\n opt = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.font = opt.font;\n ctx.strokeStyle = opt.color;\n ctx.fillStyle = opt.color;\n for (const f of result) {\n drawFaceBoxes(f, ctx);\n drawLabels(f, ctx);\n if (f.mesh && f.mesh.length > 0) {\n drawFacePoints(f, ctx);\n drawFacePolygons(f, ctx);\n drawGazeSpheres(f, ctx);\n drawGazeArrows(f, ctx);\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect, point, curves, colorDepth } from './primitives';\nimport { options } from './options';\nimport type { BodyResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected bodies */\nexport async function body(inCanvas: AnyCanvas, result: Array, drawOptions?: Partial) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n for (let i = 0; i < result.length; i++) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n ctx.lineWidth = localOptions.lineWidth;\n ctx.font = localOptions.font;\n if (localOptions.drawBoxes && result[i].box && result[i].box?.length === 4) {\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n }\n if (localOptions.drawPoints && result[i].keypoints) {\n for (let pt = 0; pt < result[i].keypoints.length; pt++) {\n if (!result[i].keypoints[pt].score || (result[i].keypoints[pt].score === 0)) continue;\n ctx.fillStyle = colorDepth(result[i].keypoints[pt].position[2], localOptions);\n point(ctx, result[i].keypoints[pt].position[0], result[i].keypoints[pt].position[1], 0, localOptions);\n }\n }\n if (localOptions.drawLabels && result[i].keypoints) {\n ctx.font = localOptions.font;\n for (const pt of result[i].keypoints) {\n if (!pt.score || (pt.score === 0)) continue;\n ctx.fillStyle = colorDepth(pt.position[2], localOptions);\n ctx.fillText(`${pt.part} ${Math.trunc(100 * pt.score)}%`, pt.position[0] + 4, pt.position[1] + 4);\n }\n }\n if (localOptions.drawPolygons && result[i].keypoints && result[i].annotations) {\n for (const part of Object.values(result[i].annotations)) {\n for (const connected of part) curves(ctx, connected, localOptions);\n }\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect, point, colorDepth } from './primitives';\nimport { options } from './options';\nimport type { HandResult } from '../result';\nimport type { AnyCanvas, DrawOptions, Point } from '../exports';\n\n/** draw detected hands */\nexport async function hand(inCanvas: AnyCanvas, result: Array, drawOptions?: Partial) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`hand:${Math.trunc(100 * h.score)}%`, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]); // can use h.label\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`hand:${Math.trunc(100 * h.score)}%`, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]); // can use h.label\n }\n ctx.stroke();\n }\n if (localOptions.drawPoints) {\n if (h.keypoints && h.keypoints.length > 0) {\n for (const pt of h.keypoints) {\n ctx.fillStyle = colorDepth(pt[2], localOptions);\n point(ctx, pt[0], pt[1], 0, localOptions);\n }\n }\n }\n if (localOptions.drawLabels && h.annotations) {\n const addHandLabel = (part: Array, title: string) => {\n if (!part || part.length === 0 || !part[0]) return;\n const z = part[part.length - 1][2] || -256;\n ctx.fillStyle = colorDepth(z, localOptions);\n ctx.fillText(title, part[part.length - 1][0] + 4, part[part.length - 1][1] + 4);\n };\n ctx.font = localOptions.font;\n addHandLabel(h.annotations['index'], 'index');\n addHandLabel(h.annotations['middle'], 'middle');\n addHandLabel(h.annotations['ring'], 'ring');\n addHandLabel(h.annotations['pinky'], 'pinky');\n addHandLabel(h.annotations['thumb'], 'thumb');\n addHandLabel(h.annotations['palm'], 'palm');\n }\n if (localOptions.drawPolygons && h.annotations) {\n const addHandLine = (part: Array) => {\n if (!part || part.length === 0 || !part[0]) return;\n for (let i = 0; i < part.length; i++) {\n ctx.beginPath();\n const z = part[i][2] || 0;\n ctx.strokeStyle = colorDepth(i * z, localOptions);\n ctx.moveTo(part[i > 0 ? i - 1 : 0][0], part[i > 0 ? i - 1 : 0][1]);\n ctx.lineTo(part[i][0], part[i][1]);\n ctx.stroke();\n }\n };\n ctx.lineWidth = localOptions.lineWidth;\n addHandLine(h.annotations['index']);\n addHandLine(h.annotations['middle']);\n addHandLine(h.annotations['ring']);\n addHandLine(h.annotations['pinky']);\n addHandLine(h.annotations['thumb']);\n // addPart(h.annotations.palm);\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect } from './primitives';\nimport { options } from './options';\nimport type { ObjectResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected objects */\nexport async function object(inCanvas: AnyCanvas, result: Array, drawOptions?: Partial) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `${h.label} ${Math.round(100 * h.score)}%`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext } from './primitives';\nimport { options } from './options';\nimport type { GestureResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected gestures */\nexport async function gesture(inCanvas: AnyCanvas, result: Array, drawOptions?: Partial) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (localOptions.drawGestures) {\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.font = localOptions.font;\n ctx.fillStyle = localOptions.color;\n let i = 1;\n for (let j = 0; j < result.length; j++) {\n let where: unknown[] = []; // what&where is a record\n let what: unknown[] = []; // what&where is a record\n [where, what] = Object.entries(result[j]);\n if ((what.length > 1) && ((what[1] as string).length > 0)) {\n const who = where[1] as number > 0 ? `#${where[1]}` : '';\n const label = `${where[0]} ${who}: ${what[1]}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, 8, 2 + (i * localOptions.lineHeight));\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, 6, 0 + (i * localOptions.lineHeight));\n i += 1;\n }\n }\n }\n}\n", "import type { Tensor } from '../tfjs/types';\nimport type { FaceResult } from '../result';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { meshAnnotations } from './facemeshcoords';\n\nconst expandFact = 0.1;\nconst alpha = 0.5;\n\n// point inclusion in polygon based on https://wrf.ecse.rpi.edu/Research/Short_Notes/pnpoly.html\nfunction insidePoly(x: number, y: number, polygon: Array<{ x: number, y: number }>): boolean {\n let inside = false;\n let j = polygon.length - 1;\n for (let i = 0; i < polygon.length; j = i++) {\n if (((polygon[i].y > y) !== (polygon[j].y > y)) && (x < (polygon[j].x - polygon[i].x) * (y - polygon[i].y) / (polygon[j].y - polygon[i].y) + polygon[i].x)) inside = !inside;\n }\n return inside;\n}\n\nexport async function mask(face: FaceResult): Promise {\n if (!face.tensor) return face.tensor;\n if (!face.mesh || face.mesh.length < 100) return face.tensor;\n const width = face.tensor.shape[2] || 0;\n const height = face.tensor.shape[1] || 0;\n const buffer = await face.tensor.buffer();\n let silhouette: Array<{ x: number, y: number }> = [];\n for (const pt of meshAnnotations.silhouette) silhouette.push({ x: (face.mesh[pt][0] - face.box[0]) / face.box[2], y: (face.mesh[pt][1] - face.box[1]) / face.box[3] }); // add all silhouette points scaled to local box\n if (expandFact && expandFact > 0) silhouette = silhouette.map((pt) => ({ x: pt.x > 0.5 ? pt.x + expandFact : pt.x - expandFact, y: pt.y > 0.5 ? pt.y + expandFact : pt.y - expandFact })); // expand silhouette\n for (let x = 0; x < width; x++) {\n for (let y = 0; y < height; y++) {\n const inside = insidePoly(x / width, y / width, silhouette);\n if (!inside) {\n buffer.set(alpha * buffer.get(0, y, x, 0), 0, y, x, 0);\n buffer.set(alpha * buffer.get(0, y, x, 1), 0, y, x, 1);\n buffer.set(alpha * buffer.get(0, y, x, 2), 0, y, x, 2);\n }\n }\n }\n const output = buffer.toTensor();\n tf.dispose(buffer);\n return output;\n}\n", "import type { Point, FaceResult } from '../result';\n\ntype Vector = [number, number, number];\n\nconst calculateGaze = (face: FaceResult): { bearing: number, strength: number } => {\n const radians = (pt1: Point, pt2: Point) => Math.atan2(pt1[1] - pt2[1], pt1[0] - pt2[0]); // function to calculate angle between any two points\n if (!face.annotations['rightEyeIris'] || !face.annotations['leftEyeIris']) return { bearing: 0, strength: 0 };\n\n const offsetIris = [0, -0.1]; // iris center may not align with average of eye extremes\n const eyeRatio = 1; // factor to normalize changes x vs y\n\n const left = (face.mesh[33][2] || 0) > (face.mesh[263][2] || 0); // pick left or right eye depending which one is closer bazed on outsize point z axis\n const irisCenter = left ? face.mesh[473] : face.mesh[468];\n const eyeCenter = left // eye center is average of extreme points on x axis for both x and y, ignoring y extreme points as eyelids naturally open/close more when gazing up/down so relative point is less precise\n ? [(face.mesh[133][0] + face.mesh[33][0]) / 2, (face.mesh[133][1] + face.mesh[33][1]) / 2]\n : [(face.mesh[263][0] + face.mesh[362][0]) / 2, (face.mesh[263][1] + face.mesh[362][1]) / 2];\n const eyeSize = left // eye size is difference between extreme points for both x and y, used to normalize & squarify eye dimensions\n ? [face.mesh[133][0] - face.mesh[33][0], face.mesh[23][1] - face.mesh[27][1]]\n : [face.mesh[263][0] - face.mesh[362][0], face.mesh[253][1] - face.mesh[257][1]];\n const eyeDiff: Point = [ // x distance between extreme point and center point normalized with eye size\n (eyeCenter[0] - irisCenter[0]) / eyeSize[0] - offsetIris[0],\n eyeRatio * (irisCenter[1] - eyeCenter[1]) / eyeSize[1] - offsetIris[1],\n ];\n let strength = Math.sqrt((eyeDiff[0] * eyeDiff[0]) + (eyeDiff[1] * eyeDiff[1])); // vector length is a diagonal between two differences\n strength = Math.min(strength, face.boxRaw[2] / 2, face.boxRaw[3] / 2); // limit strength to half of box size to avoid clipping due to low precision\n const bearing = (radians([0, 0], eyeDiff) + (Math.PI / 2)) % Math.PI; // using eyeDiff instead eyeCenter/irisCenter combo due to manual adjustments and rotate clockwise 90degrees\n return { bearing, strength };\n};\n\nexport const calculateFaceAngle = (face: FaceResult, imageSize: [number, number]): {\n angle: { pitch: number, yaw: number, roll: number },\n matrix: [number, number, number, number, number, number, number, number, number],\n gaze: { bearing: number, strength: number },\n} => {\n // const degrees = (theta) => Math.abs(((theta * 180) / Math.PI) % 360);\n const normalize = (v: Vector): Vector => { // normalize vector\n const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);\n v[0] /= length;\n v[1] /= length;\n v[2] /= length;\n return v;\n };\n const subVectors = (a: Vector, b: Vector): Vector => { // vector subtraction (a - b)\n const x = a[0] - b[0];\n const y = a[1] - b[1];\n const z = a[2] - b[2];\n return [x, y, z];\n };\n const crossVectors = (a: Vector, b: Vector): Vector => { // vector cross product (a x b)\n const x = a[1] * b[2] - a[2] * b[1];\n const y = a[2] * b[0] - a[0] * b[2];\n const z = a[0] * b[1] - a[1] * b[0];\n return [x, y, z];\n };\n // 3x3 rotation matrix to Euler angles based on https://www.geometrictools.com/Documentation/EulerAngles.pdf\n const rotationMatrixToEulerAngle = (r: number[]): { pitch: number, yaw: number, roll: number } => {\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const [r00, _r01, _r02, r10, r11, r12, r20, r21, r22] = r;\n let thetaX: number;\n let thetaY: number;\n let thetaZ: number;\n if (r10 < 1) { // YZX calculation\n if (r10 > -1) {\n thetaZ = Math.asin(r10);\n thetaY = Math.atan2(-r20, r00);\n thetaX = Math.atan2(-r12, r11);\n } else {\n thetaZ = -Math.PI / 2;\n thetaY = -Math.atan2(r21, r22);\n thetaX = 0;\n }\n } else {\n thetaZ = Math.PI / 2;\n thetaY = Math.atan2(r21, r22);\n thetaX = 0;\n }\n if (isNaN(thetaX)) thetaX = 0;\n if (isNaN(thetaY)) thetaY = 0;\n if (isNaN(thetaZ)) thetaZ = 0;\n return { pitch: 2 * -thetaX, yaw: 2 * -thetaY, roll: 2 * -thetaZ };\n };\n\n /*\n const meshToEulerAngle = (mesh) => { // simple Euler angle calculation based existing 3D mesh\n const radians = (a1, a2, b1, b2) => Math.atan2(b2 - a2, b1 - a1);\n return { // values are in radians in range of -pi/2 to pi/2 which is -90 to +90 degrees, value of 0 means center\n pitch: radians(mesh[10][1], mesh[10][2], mesh[152][1], mesh[152][2]), // looking at y,z of top and bottom points of the face // pitch is face move up/down\n yaw: radians(mesh[33][0], mesh[33][2], mesh[263][0], mesh[263][2]), // looking at x,z of outside corners of leftEye and rightEye // yaw is face turn left/right\n roll: radians(mesh[33][0], mesh[33][1], mesh[263][0], mesh[263][1]), // looking at x,y of outside corners of leftEye and rightEye // roll is face lean left/right\n };\n };\n */\n\n // initialize gaze and mesh\n const mesh = face.meshRaw;\n if (!mesh || mesh.length < 300) return { angle: { pitch: 0, yaw: 0, roll: 0 }, matrix: [1, 0, 0, 0, 1, 0, 0, 0, 1], gaze: { bearing: 0, strength: 0 } };\n\n const size = Math.max(face.boxRaw[2] * imageSize[0], face.boxRaw[3] * imageSize[1]) / 1.5;\n // top, bottom, left, right\n const pts: Point[] = [mesh[10], mesh[152], mesh[234], mesh[454]].map((pt) => [pt[0] * imageSize[0] / size, pt[1] * imageSize[1] / size, pt[2]] as Point); // make the xyz coordinates proportional, independent of the image/box size\n\n const y_axis = normalize(subVectors(pts[1] as Vector, pts[0] as Vector));\n let x_axis = normalize(subVectors(pts[3] as Vector, pts[2] as Vector));\n const z_axis = normalize(crossVectors(x_axis, y_axis));\n // adjust x_axis to make sure that all axes are perpendicular to each other\n x_axis = crossVectors(y_axis, z_axis);\n\n // Rotation Matrix from Axis Vectors - http://renderdan.blogspot.com/2006/05/rotation-matrix-from-axis-vectors.html\n // 3x3 rotation matrix is flatten to array in row-major order. Note that the rotation represented by this matrix is inverted.\n const matrix: [number, number, number, number, number, number, number, number, number] = [\n x_axis[0], x_axis[1], x_axis[2],\n y_axis[0], y_axis[1], y_axis[2],\n z_axis[0], z_axis[1], z_axis[2],\n ];\n const angle = rotationMatrixToEulerAngle(matrix);\n // const angle = meshToEulerAngle(mesh);\n\n // we have iris keypoints so we can calculate gaze direction\n const gaze = mesh.length === 478 ? calculateGaze(face) : { bearing: 0, strength: 0 };\n\n return { angle, matrix, gaze };\n};\n", "/**\n * Face algorithm implementation\n * Uses FaceMesh, Emotion and FaceRes models to create a unified pipeline\n */\n\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as facemesh from './facemesh';\nimport * as emotion from '../gear/emotion';\nimport * as faceres from './faceres';\nimport * as mask from './mask';\nimport * as antispoof from './antispoof';\nimport * as liveness from './liveness';\nimport * as gear from '../gear/gear';\nimport * as ssrnetAge from '../gear/ssrnet-age';\nimport * as ssrnetGender from '../gear/ssrnet-gender';\nimport * as mobilefacenet from './mobilefacenet';\nimport type { FaceResult, Emotion, Gender, Race } from '../result';\nimport type { Tensor } from '../tfjs/types';\nimport type { Human } from '../human';\nimport { calculateFaceAngle } from './angles';\n\ntype DescRes = { age: number, gender: Gender, genderScore: number, descriptor: number[], race?: { score: number, race: Race }[] };\n\nexport const detectFace = async (instance: Human /* instance of human */, input: Tensor): Promise => {\n // run facemesh, includes blazeface and iris\n // eslint-disable-next-line no-async-promise-executor\n let timeStamp: number = now();\n let ageRes: { age: number } | Promise<{ age: number }> | null;\n let gearRes: gear.GearType | Promise | null;\n let genderRes: { gender: string, genderScore: number } | Promise<{ gender: string, genderScore: number }> | null;\n let emotionRes: { score: number, emotion: Emotion }[] | Promise<{ score: number, emotion: Emotion }[]>;\n let mobilefacenetRes: number[] | Promise | null;\n let antispoofRes: number | Promise | null;\n let livenessRes: number | Promise | null;\n let descRes: DescRes | Promise | null;\n\n const faceRes: Array = [];\n instance.state = 'run:face';\n\n const faces = await facemesh.predict(input, instance.config);\n instance.performance.face = env.perfadd ? (instance.performance.face || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n if (!input.shape || input.shape.length !== 4) return [];\n if (!faces) return [];\n // for (const face of faces) {\n for (let i = 0; i < faces.length; i++) {\n instance.analyze('Get Face');\n\n // is something went wrong, skip the face\n // @ts-ignore possibly undefied\n if (!faces[i].tensor || faces[i].tensor['isDisposedInternal']) {\n log('Face object is disposed:', faces[i].tensor);\n continue;\n }\n\n // optional face mask\n if (instance.config.face.detector?.mask) {\n const masked = await mask.mask(faces[i]);\n tf.dispose(faces[i].tensor);\n faces[i].tensor = masked as Tensor;\n }\n\n // calculate face angles\n const rotation = faces[i].mesh && (faces[i].mesh.length > 200) ? calculateFaceAngle(faces[i], [input.shape[2], input.shape[1]]) : null;\n\n // run emotion, inherits face from blazeface\n instance.analyze('Start Emotion:');\n if (instance.config.async) {\n emotionRes = instance.config.face.emotion?.enabled ? emotion.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : [];\n } else {\n instance.state = 'run:emotion';\n timeStamp = now();\n emotionRes = instance.config.face.emotion?.enabled ? await emotion.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : [];\n instance.performance.emotion = env.perfadd ? (instance.performance.emotion || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Emotion:');\n\n // run antispoof, inherits face from blazeface\n instance.analyze('Start AntiSpoof:');\n if (instance.config.async) {\n antispoofRes = instance.config.face.antispoof?.enabled ? antispoof.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n } else {\n instance.state = 'run:antispoof';\n timeStamp = now();\n antispoofRes = instance.config.face.antispoof?.enabled ? await antispoof.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n instance.performance.antispoof = env.perfadd ? (instance.performance.antispoof || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End AntiSpoof:');\n\n // run liveness, inherits face from blazeface\n instance.analyze('Start Liveness:');\n if (instance.config.async) {\n livenessRes = instance.config.face.liveness?.enabled ? liveness.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n } else {\n instance.state = 'run:liveness';\n timeStamp = now();\n livenessRes = instance.config.face.liveness?.enabled ? await liveness.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n instance.performance.liveness = env.perfadd ? (instance.performance.antispoof || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Liveness:');\n\n // run gear, inherits face from blazeface\n instance.analyze('Start GEAR:');\n if (instance.config.async) {\n gearRes = instance.config.face['gear']?.enabled ? gear.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:gear';\n timeStamp = now();\n gearRes = instance.config.face['gear']?.enabled ? await gear.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.gear = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End GEAR:');\n\n // run gear, inherits face from blazeface\n instance.analyze('Start SSRNet:');\n if (instance.config.async) {\n ageRes = instance.config.face['ssrnet']?.enabled ? ssrnetAge.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n genderRes = instance.config.face['ssrnet']?.enabled ? ssrnetGender.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:ssrnet';\n timeStamp = now();\n ageRes = instance.config.face['ssrnet']?.enabled ? await ssrnetAge.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n genderRes = instance.config.face['ssrnet']?.enabled ? await ssrnetGender.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.ssrnet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End SSRNet:');\n\n // run gear, inherits face from blazeface\n instance.analyze('Start MobileFaceNet:');\n if (instance.config.async) {\n mobilefacenetRes = instance.config.face['mobilefacenet']?.enabled ? mobilefacenet.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:mobilefacenet';\n timeStamp = now();\n mobilefacenetRes = instance.config.face['mobilefacenet']?.enabled ? await mobilefacenet.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.mobilefacenet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End MobileFaceNet:');\n\n // run emotion, inherits face from blazeface\n instance.analyze('Start Description:');\n if (instance.config.async) {\n descRes = instance.config.face.description?.enabled ? faceres.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:description';\n timeStamp = now();\n descRes = instance.config.face.description?.enabled ? await faceres.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.description = env.perfadd ? (instance.performance.description || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Description:');\n\n // if async wait for results\n if (instance.config.async) {\n [ageRes, genderRes, emotionRes, mobilefacenetRes, descRes, gearRes, antispoofRes, livenessRes] = await Promise.all([ageRes, genderRes, emotionRes, mobilefacenetRes, descRes, gearRes, antispoofRes, livenessRes]);\n }\n instance.analyze('Finish Face:');\n\n if (instance.config.face['ssrnet']?.enabled && ageRes && genderRes) { // override age/gender if ssrnet model is used\n descRes = {\n ...(descRes as DescRes),\n age: (ageRes as { age: number}).age,\n gender: (genderRes as { gender: Gender, genderScore: number }).gender,\n genderScore: (genderRes as { gender: Gender, genderScore: number }).genderScore,\n };\n }\n if (instance.config.face['gear']?.enabled && gearRes) { // override age/gender/race if gear model is used\n descRes = {\n ...(descRes as DescRes),\n age: (gearRes as gear.GearType).age,\n gender: (gearRes as gear.GearType).gender,\n genderScore: (gearRes as gear.GearType).genderScore,\n race: (gearRes as gear.GearType).race,\n };\n }\n if (instance.config.face['mobilefacenet']?.enabled && mobilefacenetRes) { // override descriptor if embedding model is used\n (descRes as DescRes).descriptor = mobilefacenetRes as number[];\n }\n\n // calculate iris distance\n // iris: array[ center, left, top, right, bottom]\n if (!instance.config.face.iris?.enabled) {\n // if (faces[i]?.annotations?.leftEyeIris) delete faces[i].annotations.leftEyeIris;\n // if (faces[i]?.annotations?.rightEyeIris) delete faces[i].annotations.rightEyeIris;\n }\n const irisSize = (faces[i].annotations && faces[i].annotations.leftEyeIris && faces[i].annotations.leftEyeIris[0] && faces[i].annotations.rightEyeIris && faces[i].annotations.rightEyeIris[0]\n && (faces[i].annotations.leftEyeIris.length > 0) && (faces[i].annotations.rightEyeIris.length > 0)\n && (faces[i].annotations.leftEyeIris[0] !== null) && (faces[i].annotations.rightEyeIris[0] !== null))\n ? Math.max(Math.abs(faces[i].annotations.leftEyeIris[3][0] - faces[i].annotations.leftEyeIris[1][0]), Math.abs(faces[i].annotations.rightEyeIris[4][1] - faces[i].annotations.rightEyeIris[2][1])) / input.shape[2]\n : 0; // note: average human iris size is 11.7mm\n\n // optionally return tensor\n const tensor = instance.config.face.detector?.return ? tf.squeeze(faces[i].tensor) : null;\n // dispose original face tensor\n tf.dispose(faces[i].tensor);\n // delete temp face image\n if (faces[i].tensor) delete faces[i].tensor;\n // combine results\n const res: FaceResult = {\n ...faces[i],\n id: i,\n };\n if ((descRes as DescRes)?.age) res.age = (descRes as DescRes).age as number;\n if ((descRes as DescRes)?.gender) res.gender = (descRes as DescRes).gender as Gender;\n if ((descRes as DescRes)?.genderScore) res.genderScore = (descRes as DescRes)?.genderScore as number;\n if ((descRes as DescRes)?.descriptor) res.embedding = (descRes as DescRes)?.descriptor as Array;\n if ((descRes as DescRes)?.race) res.race = (descRes as DescRes)?.race as { score: number, race: Race }[];\n if (emotionRes) res.emotion = emotionRes as Array<{ score: number, emotion: Emotion }>;\n if (antispoofRes) res.real = antispoofRes as number;\n if (livenessRes) res.live = livenessRes as number;\n if (irisSize && irisSize !== 0) res.iris = Math.trunc(500 / irisSize / 11.7) / 100;\n if (rotation) res.rotation = rotation;\n if (tensor) res.tensor = tensor;\n faceRes.push(res);\n instance.analyze('End Face');\n }\n instance.analyze('End FaceMesh:');\n if (instance.config.async) {\n if (instance.performance.face) delete instance.performance.face;\n if (instance.performance.age) delete instance.performance.age;\n if (instance.performance.gender) delete instance.performance.gender;\n if (instance.performance.emotion) delete instance.performance.emotion;\n }\n return faceRes;\n};\n", "/**\n * Gesture detection algorithm\n */\n\nimport type { GestureResult, BodyResult, FaceResult, HandResult, Point } from '../result';\nimport * as fingerPose from '../hand/fingerpose';\n\n/** face gesture type */\nexport type FaceGesture =\n `facing ${'left' | 'center' | 'right'}`\n | `blink ${'left' | 'right'} eye`\n | `mouth ${number}% open`\n | `head ${'up' | 'down'}`;\n\n/** iris gesture type */\nexport type IrisGesture =\n 'facing center'\n | `looking ${'left' | 'right' | 'up' | 'down'}`\n | 'looking center';\n\n/** body gesture type */\nexport type BodyGesture =\n `leaning ${'left' | 'right'}`\n | `raise ${'left' | 'right'} hand`\n | 'i give up';\n\n/** hand gesture type */\nexport type HandGesture =\n `${'thumb' | 'index' | 'middle' | 'ring' | 'pinky'} forward`\n | `${'thumb' | 'index' | 'middle' | 'ring' | 'pinky'} up`\n | 'victory'\n | 'thumbs up';\n\nexport const body = (res: BodyResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: Array<{ body: number, gesture: BodyGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n // raising hands\n const leftWrist = res[i].keypoints.find((a) => (a.part === 'leftWrist'));\n const rightWrist = res[i].keypoints.find((a) => (a.part === 'rightWrist'));\n const nose = res[i].keypoints.find((a) => (a.part === 'nose'));\n if (nose && leftWrist && rightWrist && (leftWrist.position[1] < nose.position[1]) && (rightWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'i give up' });\n else if (nose && leftWrist && (leftWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'raise left hand' });\n else if (nose && rightWrist && (rightWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'raise right hand' });\n\n // leaning\n const leftShoulder = res[i].keypoints.find((a) => (a.part === 'leftShoulder'));\n const rightShoulder = res[i].keypoints.find((a) => (a.part === 'rightShoulder'));\n if (leftShoulder && rightShoulder && Math.abs(leftShoulder.positionRaw[1] - rightShoulder.positionRaw[1]) > 0.1) {\n gestures.push({ body: i, gesture: `leaning ${(leftShoulder.position[1] > rightShoulder.position[1]) ? 'left' : 'right'}` });\n }\n }\n return gestures;\n};\n\nexport const face = (res: FaceResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: Array<{ face: number, gesture: FaceGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n if (res[i].mesh && res[i].mesh.length > 450) {\n const zDiff = (res[i].mesh[33][2] || 0) - (res[i].mesh[263][2] || 0);\n const xDiff = res[i].mesh[33][0] - res[i].mesh[263][0];\n if (Math.abs(zDiff / xDiff) <= 0.15) gestures.push({ face: i, gesture: 'facing center' });\n else gestures.push({ face: i, gesture: `facing ${zDiff < 0 ? 'left' : 'right'}` });\n const openLeft = Math.abs(res[i].mesh[374][1] - res[i].mesh[386][1]) / Math.abs(res[i].mesh[443][1] - res[i].mesh[450][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openLeft < 0.2) gestures.push({ face: i, gesture: 'blink left eye' });\n const openRight = Math.abs(res[i].mesh[145][1] - res[i].mesh[159][1]) / Math.abs(res[i].mesh[223][1] - res[i].mesh[230][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openRight < 0.2) gestures.push({ face: i, gesture: 'blink right eye' });\n const mouthOpen = Math.min(100, 500 * Math.abs(res[i].mesh[13][1] - res[i].mesh[14][1]) / Math.abs(res[i].mesh[10][1] - res[i].mesh[152][1]));\n if (mouthOpen > 10) gestures.push({ face: i, gesture: `mouth ${Math.trunc(mouthOpen)}% open` });\n const chinDepth = res[i].mesh[152][2] || 0;\n if (Math.abs(chinDepth) > 10) gestures.push({ face: i, gesture: `head ${chinDepth < 0 ? 'up' : 'down'}` });\n }\n }\n return gestures;\n};\n\nexport const iris = (res: FaceResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: Array<{ iris: number, gesture: IrisGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n if (!res[i].annotations || !res[i].annotations.leftEyeIris || !res[i].annotations.leftEyeIris[0] || !res[i].annotations.rightEyeIris || !res[i].annotations.rightEyeIris[0]) continue;\n const sizeXLeft = res[i].annotations.leftEyeIris[3][0] - res[i].annotations.leftEyeIris[1][0];\n const sizeYLeft = res[i].annotations.leftEyeIris[4][1] - res[i].annotations.leftEyeIris[2][1];\n const areaLeft = Math.abs(sizeXLeft * sizeYLeft);\n\n const sizeXRight = res[i].annotations.rightEyeIris[3][0] - res[i].annotations.rightEyeIris[1][0];\n const sizeYRight = res[i].annotations.rightEyeIris[4][1] - res[i].annotations.rightEyeIris[2][1];\n const areaRight = Math.abs(sizeXRight * sizeYRight);\n\n let center = false;\n const difference = Math.abs(areaLeft - areaRight) / Math.max(areaLeft, areaRight);\n if (difference < 0.25) {\n center = true;\n gestures.push({ iris: i, gesture: 'facing center' });\n }\n\n const leftIrisCenterX = Math.abs(res[i].mesh[263][0] - res[i].annotations.leftEyeIris[0][0]) / res[i].box[2];\n const rightIrisCenterX = Math.abs(res[i].mesh[33][0] - res[i].annotations.rightEyeIris[0][0]) / res[i].box[2];\n if (leftIrisCenterX > 0.06 || rightIrisCenterX > 0.06) center = false;\n if (leftIrisCenterX > rightIrisCenterX) { // check eye with bigger offset\n if (leftIrisCenterX > 0.05) gestures.push({ iris: i, gesture: 'looking right' });\n } else {\n if (rightIrisCenterX > 0.05) gestures.push({ iris: i, gesture: 'looking left' });\n }\n\n const rightIrisCenterY = Math.abs(res[i].mesh[145][1] - res[i].annotations.rightEyeIris[0][1]) / res[i].box[3];\n const leftIrisCenterY = Math.abs(res[i].mesh[374][1] - res[i].annotations.leftEyeIris[0][1]) / res[i].box[3];\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01 || leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) center = false;\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01) gestures.push({ iris: i, gesture: 'looking down' });\n if (leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) gestures.push({ iris: i, gesture: 'looking up' });\n\n // still center;\n if (center) gestures.push({ iris: i, gesture: 'looking center' });\n }\n return gestures;\n};\n\nexport const hand = (res: HandResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: Array<{ hand: number, gesture: HandGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n const fingers: Array<{ name: string, position: Point }> = [];\n if (res[i]['annotations']) {\n for (const [finger, pos] of Object.entries(res[i]['annotations'])) {\n if (finger !== 'palmBase' && Array.isArray(pos) && pos[0]) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger\n }\n }\n if (fingers && fingers.length > 0) {\n const closest = fingers.reduce((best, a) => ((best.position[2] || 0) < (a.position[2] || 0) ? best : a));\n gestures.push({ hand: i, gesture: `${closest.name} forward` as HandGesture });\n const highest = fingers.reduce((best, a) => (best.position[1] < a.position[1] ? best : a));\n gestures.push({ hand: i, gesture: `${highest.name} up` as HandGesture });\n }\n if (res[i]['keypoints']) {\n const poses = fingerPose.match(res[i]['keypoints']);\n for (const pose of poses) gestures.push({ hand: i, gesture: pose.name as HandGesture });\n }\n }\n return gestures;\n};\n", "/**\n * Results interpolation for smoothening of video detection results inbetween detected frames\n */\n\nimport type { Result, FaceResult, BodyResult, HandResult, ObjectResult, GestureResult, PersonResult, Box, Point, BodyLandmark, BodyAnnotation } from '../result';\nimport type { Config } from '../config';\n\nimport * as moveNetCoords from '../body/movenetcoords';\nimport * as blazePoseCoords from '../body/blazeposecoords';\nimport * as efficientPoseCoords from '../body/efficientposecoords';\nimport { now } from './util';\nimport { env } from './env';\n\nconst bufferedResult: Result = { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0, error: null };\nlet interpolateTime = 0;\n\nexport function calc(newResult: Result, config: Config): Result {\n const t0 = now();\n if (!newResult) return { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0, error: null };\n // each record is only updated using deep clone when number of detected record changes, otherwise it will converge by itself\n // otherwise bufferedResult is a shallow clone of result plus updated local calculated values\n // thus mixing by-reference and by-value assignments to minimize memory operations\n\n const elapsed = Date.now() - newResult.timestamp;\n // curve fitted: buffer = 8 - ln(delay)\n // interpolation formula: current = ((buffer - 1) * previous + live) / buffer\n // - at 50ms delay buffer = ~4.1 => 28% towards live data\n // - at 250ms delay buffer = ~2.5 => 40% towards live data\n // - at 500ms delay buffer = ~1.8 => 55% towards live data\n // - at 750ms delay buffer = ~1.4 => 71% towards live data\n // - at 1sec delay buffer = 1 which means live data is used\n const bufferedFactor = elapsed < 1000 ? 8 - Math.log(elapsed + 1) : 1;\n\n if (newResult.canvas) bufferedResult.canvas = newResult.canvas;\n if (newResult.error) bufferedResult.error = newResult.error;\n\n // interpolate body results\n if (!bufferedResult.body || (newResult.body.length !== bufferedResult.body.length)) {\n bufferedResult.body = JSON.parse(JSON.stringify(newResult.body as BodyResult[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.body.length; i++) {\n const box = newResult.body[i].box // update box\n .map((newBoxCoord, j) => ((bufferedFactor - 1) * bufferedResult.body[i].box[j] + newBoxCoord) / bufferedFactor) as Box;\n const boxRaw = newResult.body[i].boxRaw // update boxRaw\n .map((newBoxCoord, j) => ((bufferedFactor - 1) * bufferedResult.body[i].boxRaw[j] + newBoxCoord) / bufferedFactor) as Box;\n const keypoints = (newResult.body[i].keypoints // update keypoints\n .map((newKpt, j) => ({\n score: newKpt.score,\n part: newKpt.part as BodyLandmark,\n position: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[0] || 0) + (newKpt.position[0] || 0)) / bufferedFactor : newKpt.position[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[1] || 0) + (newKpt.position[1] || 0)) / bufferedFactor : newKpt.position[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[2] || 0) + (newKpt.position[2] || 0)) / bufferedFactor : newKpt.position[2],\n ],\n positionRaw: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[0] || 0) + (newKpt.positionRaw[0] || 0)) / bufferedFactor : newKpt.positionRaw[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[1] || 0) + (newKpt.positionRaw[1] || 0)) / bufferedFactor : newKpt.positionRaw[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[2] || 0) + (newKpt.positionRaw[2] || 0)) / bufferedFactor : newKpt.positionRaw[2],\n ],\n distance: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[0] || 0) + (newKpt.distance?.[0] || 0)) / bufferedFactor : newKpt.distance?.[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[1] || 0) + (newKpt.distance?.[1] || 0)) / bufferedFactor : newKpt.distance?.[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[2] || 0) + (newKpt.distance?.[2] || 0)) / bufferedFactor : newKpt.distance?.[2],\n ],\n }))) as Array<{ score: number, part: BodyLandmark, position: [number, number, number?], positionRaw: [number, number, number?] }>;\n\n const annotations: Record = {} as Record; // recreate annotations\n let coords = { connected: {} };\n if (config.body?.modelPath?.includes('efficientpose')) coords = efficientPoseCoords;\n else if (config.body?.modelPath?.includes('blazepose')) coords = blazePoseCoords;\n else if (config.body?.modelPath?.includes('movenet')) coords = moveNetCoords;\n for (const [name, indexes] of Object.entries(coords.connected as Record)) {\n const pt: Array = [];\n for (let j = 0; j < indexes.length - 1; j++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[j]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[j + 1]);\n // if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n if (pt0 && pt1) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n bufferedResult.body[i] = { ...newResult.body[i], box, boxRaw, keypoints, annotations: annotations as BodyResult['annotations'] }; // shallow clone plus updated values\n }\n }\n\n // interpolate hand results\n if (!bufferedResult.hand || (newResult.hand.length !== bufferedResult.hand.length)) {\n bufferedResult.hand = JSON.parse(JSON.stringify(newResult.hand as HandResult[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.hand.length; i++) {\n const box = (newResult.hand[i].box// update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.hand[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n if (bufferedResult.hand[i].keypoints.length !== newResult.hand[i].keypoints.length) bufferedResult.hand[i].keypoints = newResult.hand[i].keypoints; // reset keypoints as previous frame did not have them\n const keypoints = newResult.hand[i].keypoints && newResult.hand[i].keypoints.length > 0 ? newResult.hand[i].keypoints // update landmarks\n .map((landmark, j) => landmark\n .map((coord, k) => (((bufferedFactor - 1) * (bufferedResult.hand[i].keypoints[j][k] || 1) + (coord || 0)) / bufferedFactor)) as Point)\n : [];\n let annotations = {};\n if (Object.keys(bufferedResult.hand[i].annotations).length !== Object.keys(newResult.hand[i].annotations).length) {\n bufferedResult.hand[i].annotations = newResult.hand[i].annotations; // reset annotations as previous frame did not have them\n annotations = bufferedResult.hand[i].annotations;\n } else if (newResult.hand[i].annotations) {\n for (const key of Object.keys(newResult.hand[i].annotations)) { // update annotations\n annotations[key] = newResult.hand[i].annotations[key] && newResult.hand[i].annotations[key][0]\n ? newResult.hand[i].annotations[key]\n .map((val, j: number) => val\n .map((coord: number, k: number) => ((bufferedFactor - 1) * bufferedResult.hand[i].annotations[key][j][k] + coord) / bufferedFactor))\n : null;\n }\n }\n bufferedResult.hand[i] = { ...newResult.hand[i], box, boxRaw, keypoints, annotations: annotations as HandResult['annotations'] }; // shallow clone plus updated values\n }\n }\n\n // interpolate face results\n if (!bufferedResult.face || (newResult.face.length !== bufferedResult.face.length)) {\n bufferedResult.face = JSON.parse(JSON.stringify(newResult.face as FaceResult[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.face.length; i++) {\n const box = (newResult.face[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.face[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n if (newResult.face[i].rotation) {\n const rotation: {\n matrix: [number, number, number, number, number, number, number, number, number],\n angle: { roll: number, yaw: number, pitch: number },\n gaze: { bearing: number, strength: number }\n } = { matrix: [0, 0, 0, 0, 0, 0, 0, 0, 0], angle: { roll: 0, yaw: 0, pitch: 0 }, gaze: { bearing: 0, strength: 0 } };\n rotation.matrix = newResult.face[i].rotation?.matrix as [number, number, number, number, number, number, number, number, number];\n rotation.angle = {\n roll: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.roll || 0) + (newResult.face[i].rotation?.angle?.roll || 0)) / bufferedFactor,\n yaw: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.yaw || 0) + (newResult.face[i].rotation?.angle?.yaw || 0)) / bufferedFactor,\n pitch: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.pitch || 0) + (newResult.face[i].rotation?.angle?.pitch || 0)) / bufferedFactor,\n };\n rotation.gaze = {\n // not fully correct due projection on circle, also causes wrap-around draw on jump from negative to positive\n bearing: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze?.bearing || 0) + (newResult.face[i].rotation?.gaze?.bearing || 0)) / bufferedFactor,\n strength: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze?.strength || 0) + (newResult.face[i].rotation?.gaze?.strength || 0)) / bufferedFactor,\n };\n bufferedResult.face[i] = { ...newResult.face[i], rotation, box, boxRaw }; // shallow clone plus updated values\n }\n bufferedResult.face[i] = { ...newResult.face[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate object detection results\n if (!bufferedResult.object || (newResult.object.length !== bufferedResult.object.length)) {\n bufferedResult.object = JSON.parse(JSON.stringify(newResult.object as ObjectResult[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.object.length; i++) {\n const box = (newResult.object[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.object[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n bufferedResult.object[i] = { ...newResult.object[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate person results\n if (newResult.persons) {\n const newPersons = newResult.persons; // trigger getter function\n if (!bufferedResult.persons || (newPersons.length !== bufferedResult.persons.length)) {\n bufferedResult.persons = JSON.parse(JSON.stringify(newPersons as PersonResult[]));\n } else {\n for (let i = 0; i < newPersons.length; i++) { // update person box, we don't update the rest as it's updated as reference anyhow\n bufferedResult.persons[i].box = (newPersons[i].box\n .map((box, j) => ((bufferedFactor - 1) * bufferedResult.persons[i].box[j] + box) / bufferedFactor)) as Box;\n }\n }\n }\n\n // just copy latest gestures without interpolation\n if (newResult.gesture) bufferedResult.gesture = newResult.gesture as GestureResult[];\n\n // append interpolation performance data\n const t1 = now();\n interpolateTime = env.perfadd ? interpolateTime + Math.round(t1 - t0) : Math.round(t1 - t0);\n if (newResult.performance) bufferedResult.performance = { ...newResult.performance, interpolate: interpolateTime };\n\n return bufferedResult;\n}\n", "/** Face descriptor type as number array */\nexport type Descriptor = Array\nexport type MatchOptions = { order?: number, threshold?: number, multiplier?: number, min?: number, max?: number } | undefined;\n\n/** Calculates distance between two descriptors\n * @param options - calculation options\n * - order - algorithm to use\n * Euclidean distance if `order` is 2 (default), Minkowski distance algorithm of nth order if `order` is higher than 2\n * - multiplier - by how much to enhance difference analysis in range of 1..100\n * default is 20 which normalizes results to similarity above 0.5 can be considered a match\n */\nexport function distance(descriptor1: Descriptor, descriptor2: Descriptor, options: MatchOptions = { order: 2, multiplier: 25 }) {\n // general minkowski distance, euclidean distance is limited case where order is 2\n let sum = 0;\n for (let i = 0; i < descriptor1.length; i++) {\n const diff = (!options.order || options.order === 2) ? (descriptor1[i] - descriptor2[i]) : (Math.abs(descriptor1[i] - descriptor2[i]));\n sum += (!options.order || options.order === 2) ? (diff * diff) : (diff ** options.order);\n }\n return (options.multiplier || 20) * sum;\n}\n\n// invert distance to similarity, normalize to given range and clamp\nconst normalizeDistance = (dist, order, min, max) => {\n if (dist === 0) return 1; // short circuit for identical inputs\n const root = order === 2 ? Math.sqrt(dist) : dist ** (1 / order); // take root of distance\n const norm = (1 - (root / 100) - min) / (max - min); // normalize to range\n const clamp = Math.max(Math.min(norm, 1), 0); // clamp to 0..1\n return clamp;\n};\n\n/** Calculates normalized similarity between two face descriptors based on their `distance`\n * @param options - calculation options\n * - order - algorithm to use\n * Euclidean distance if `order` is 2 (default), Minkowski distance algorithm of nth order if `order` is higher than 2\n * - multiplier - by how much to enhance difference analysis in range of 1..100\n * default is 20 which normalizes results to similarity above 0.5 can be considered a match\n * - min - normalize similarity result to a given range\n * - max - normalzie similarity resutl to a given range\n * default is 0.2...0.8\n * Returns similarity between two face descriptors normalized to 0..1 range where 0 is no similarity and 1 is perfect similarity\n */\nexport function similarity(descriptor1: Descriptor, descriptor2: Descriptor, options: MatchOptions = { order: 2, multiplier: 25, min: 0.2, max: 0.8 }) {\n const dist = distance(descriptor1, descriptor2, options);\n return normalizeDistance(dist, options.order || 2, options.min || 0, options.max || 1);\n}\n\n/** Matches given descriptor to a closest entry in array of descriptors\n * @param descriptor - face descriptor\n * @param descriptors - array of face descriptors to commpare given descriptor to\n * @param options - see `similarity` method for options description\n * Returns\n * - `index` index array index where best match was found or -1 if no matches\n * - `distance` calculated `distance` of given descriptor to the best match\n * - `similarity` calculated normalized `similarity` of given descriptor to the best match\n*/\nexport function match(descriptor: Descriptor, descriptors: Array, options: MatchOptions = { order: 2, multiplier: 25, threshold: 0, min: 0.2, max: 0.8 }) {\n if (!Array.isArray(descriptor) || !Array.isArray(descriptors) || descriptor.length < 64 || descriptors.length === 0 || descriptor.length !== descriptors[0].length) { // validate input\n return { index: -1, distance: Number.POSITIVE_INFINITY, similarity: 0 };\n }\n let lowestDistance = Number.MAX_SAFE_INTEGER;\n let index = -1;\n for (let i = 0; i < descriptors.length; i++) {\n const res = distance(descriptor, descriptors[i], options);\n if (res < lowestDistance) {\n lowestDistance = res;\n index = i;\n }\n if (lowestDistance < (options.threshold || 0)) break;\n }\n const normalizedSimilarity = normalizeDistance(lowestDistance, options.order || 2, options.min || 0, options.max || 1);\n return { index, distance: lowestDistance, similarity: normalizedSimilarity };\n}\n", "/**\n * Analyze detection Results and sort&combine them into per-person view\n */\n\nimport type { FaceResult, BodyResult, HandResult, GestureResult, PersonResult, Box } from '../result';\n\nexport function join(faces: Array, bodies: Array, hands: Array, gestures: Array, shape: Array | undefined): Array {\n let id = 0;\n const persons: Array = [];\n for (const face of faces) { // person is defined primarily by face and then we append other objects as found\n const person: PersonResult = { id: id++, face, body: null, hands: { left: null, right: null }, gestures: [], box: [0, 0, 0, 0] };\n for (const body of bodies) {\n if (face.box[0] > body.box[0] // x within body\n && face.box[0] < body.box[0] + body.box[2]\n && face.box[1] + face.box[3] > body.box[1] // y within body\n && face.box[1] + face.box[3] < body.box[1] + body.box[3]) {\n person.body = body;\n }\n }\n if (person.body) { // only try to join hands if body is found\n for (const hand of hands) {\n if (hand.box[0] + hand.box[2] > person.body.box[0] // x within body for left hand\n && hand.box[0] + hand.box[2] < person.body.box[0] + person.body.box[2]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for left hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.left = hand;\n }\n if (hand.box[0] < person.body.box[0] + person.body.box[2] // x within body for right hand\n && hand.box[0] > person.body.box[0]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for right hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.right = hand;\n }\n }\n }\n for (const gesture of gestures) { // append all gestures according to ids\n if (gesture['face'] !== undefined && gesture['face'] === face.id) person.gestures?.push(gesture);\n else if (gesture['iris'] !== undefined && gesture['iris'] === face.id) person.gestures?.push(gesture);\n else if (gesture['body'] !== undefined && gesture['body'] === person.body?.id) person.gestures?.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands?.left?.id) person.gestures?.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands?.right?.id) person.gestures?.push(gesture);\n }\n\n // create new overarching box from all boxes belonging to person\n const x: number[] = [];\n const y: number[] = [];\n const extractXY = (box: Box | undefined) => { // extract all [x, y] coordinates from boxes [x, y, width, height]\n if (box && box.length === 4) {\n x.push(box[0], box[0] + box[2]);\n y.push(box[1], box[1] + box[3]);\n }\n };\n extractXY(person.face?.box);\n extractXY(person.body?.box);\n extractXY(person.hands?.left?.box);\n extractXY(person.hands?.right?.box);\n const minX = Math.min(...x);\n const minY = Math.min(...y);\n person.box = [minX, minY, Math.max(...x) - minX, Math.max(...y) - minY]; // create new overarching box\n\n // shape is known so we calculate boxRaw as well\n if (shape && shape[1] && shape[2]) person.boxRaw = [person.box[0] / shape[2], person.box[1] / shape[1], person.box[2] / shape[2], person.box[3] / shape[1]];\n\n persons.push(person);\n }\n return persons;\n}\n", "/**\n * Embedded sample images used during warmup in dataURL format\n */\n\n// data:image/jpeg;base64,\nexport const face = `\n/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA\nAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu\nbmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob\nIxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo\nKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E\nAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB\nAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET\nIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla\nY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG\nx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML\nXp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF\nPUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/\nAJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z\n5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9\nzZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO\ntHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6\n8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W\nwA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk\nEtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6\nGhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT\nA7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep\nrBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb\nLCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ\nih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K\nKAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l\npBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x\nUqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4\nHaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr\nxL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS\nNO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD\n1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX\n+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3\nGBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K\nq4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0\nnhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm\nuic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH\nArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV\nwF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8\n87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P\nFQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD\nYNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv\nJmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ\nQmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el\nUJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681\nly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly\nCK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc\nUDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF\n63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x\nXY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2\nZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk\nXb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK\ncBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef\neNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4\n/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5\nrl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru\n/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A\nzviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO\nI4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1\njfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ\nGRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG\ncZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb\nWmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis\nZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH\nckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi\nlbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO\nxuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK\nJtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX\nPaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c\nW0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t\nC6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk\n4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn\nxHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW\nvHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi\nqr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV\nhamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F\nj4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6\nwqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm\noy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ\nk7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg\nnQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP\n1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1\nH1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ\n1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx\nzSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt\nfFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp\nOxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj\nVtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy\nrFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe\n5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D\nd/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69\nMlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ\nFbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ\nMA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP\nByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn\n0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU\nyOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is\npNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz\nTSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu\nuCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem\ngGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk\nHvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy\ns9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu\nm6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb\n0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz\n9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN\nDNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n\nR6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk\nnmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu\n6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd\n9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb\nSms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S\nMSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz\nFEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8\nVSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx\nY0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ\nmupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+\n5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh\n05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd\nua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ\n5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR\nMqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8\n1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4\nB9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag\nBc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA\n3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn\n3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx\n1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU\ntzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6\nf3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA\nbvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ\nzyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup\n6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM\n350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0\n/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a\nYfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ\nagBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO\nmAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl\nmOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR\nnqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo\nEPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt\n4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ\nScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p\niMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj\nPQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l\nc6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1\n8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3\nylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY\neuPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`;\n\n// data:image/jpeg;base64,\nexport const body = `\n/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk\nJyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF\nRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA\nAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA\nAQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA\nAAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA\nAhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj\n+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt\nFh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR\nPLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl\nmZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp\n+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa\nzhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D\nh1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2\nex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67\nd4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y\nRv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP\nLd3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC\nvy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi\neSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/\nMx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+\nr3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO\nO0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s\ntfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN\nTmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc\n0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj\nq83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w\n+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s\nd8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t\ncI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4\nYibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe\nbzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi\nKxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6\nrNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ\n9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf\nJvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V\nbxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q\nVbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM\nlorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/\n/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme\nE4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv\nfauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6\njkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN\n+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk\nRvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK\ncGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop\nyW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn\nE8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX\n12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW\niI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS\nRWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf\n0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx\nDS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL\nG8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK\nxC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ\na9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4\nZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6\ntvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+\nfJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE\nerk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR\nMd5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9\nlcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD\nj8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV\n5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt\nCu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/\n+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c\nvUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p\njrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0\n77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP\nSel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8\n5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe\nY0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R\nHwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV\nrWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU\nz7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8\nto6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X\ny8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt\nstcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/\nw9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT\nDpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l\nXV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t\nydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS\n34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX\ne09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn\n26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf\n3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q\n6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P\nNbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO\nyZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN\n3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8\n2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h\ndqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx\nkr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t\nDHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb\neFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc\n1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka\nc258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE\nxEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu\ns5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK\n0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9\ndM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt\nPXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T\nMd/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T\nadq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b\nSVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt\npdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm\nvfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr\nEejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N\nvwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh\nZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I\ntkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW\nd43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe\nN4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218\n8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG\nPNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY\nV1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw\nw18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT\nEx5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1\naxqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/\ntDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I\nmbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe\nXRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1\nizjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2\ncrFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4\nOadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2\nr8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx\nzc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz\n+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v\nMevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu\nryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095\nYZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE\n9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8\nmNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O\nuSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O\nfft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6\nOlty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT\nuTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3\n6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1\nMb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF\nfeH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq\nxVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v\ned7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ\nmtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz\nmWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP\nB39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0\n5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1\nmkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt\nmxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO\n1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq\nZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q\nky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7\nROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK\nGEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i\ntMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T\n+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+\nO8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO\nesd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es\nvPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz\nXV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1\n+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY\n36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL\nq555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY\n3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz\np7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr\n1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV\nxUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt\npCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS\nfP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH\nmMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z\n1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+\nn3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d\nMRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df\nzXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl\nJ2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs\nzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH\nDpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ\ndHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR\ntER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j\nadmFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC\nb2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X\nqdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh\nydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O\n8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L\nT7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0\nZa1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr\nvNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer\nrWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL\noNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq\nj/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh\nodZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8\n8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1\nlNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+\noza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL\nknU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK\nEtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N\nmtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm\n9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N\nIpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W\nMYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2\n+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql\no+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37\nO99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE\nTE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1\nL7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4\nizsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt\n1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb\nV5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum\nL37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12\nCvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE\nebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo\nGvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu\nL8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh\n5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3\n6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9\nXO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM\nfeKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj\nSZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF\nXaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr\n79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h\nyeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT\nOC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223\n2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt\nadohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y\ncnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX\nDpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p\n7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso\nS24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l\nbPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe\nvVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG\nH6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7\nx3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz\n5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY\nq+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn\nvLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2\nIjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK\nz0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ\nYYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON\nZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW\nekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf\ncjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c\nbiuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO\nCkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw\ny1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi\nQXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E\nbL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r\ntv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t\nLRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP\nRqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm\ns7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el\nXX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1\nvK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq\nqrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v\nVYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0\nZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q\nmT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm\n6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG\nf63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo\ndPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22\ngtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M\nMoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb\nc2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX\n6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn\n1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK\nfOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ\nEqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u\n7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT\nqPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa\nS2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf\nLp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU\nIiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O\n8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c\nvU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx\n5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V\nKTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm\n2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu\nj8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB\nTTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9\nRUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL\nCWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA\nAAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8\ncTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj\nqKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF\n0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK\nZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK\n66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu\nXT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9\nXOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN\nM2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv\nVrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK\n7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI\n3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m\nXY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m\n1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A\nJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC\nEgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9\n8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL\nOrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H\nM+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA\nTsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8\nelpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp\nBjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS\nCRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r\nrcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY\njbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW\nUsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB\nKUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb\nSz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL\n+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v\nT471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM\nsfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj\nFontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl\n5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q\n7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv\n6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa\n0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/\nAOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM\nd8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5\n6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP\nbFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu\nLJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy\nwt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX\n0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK\n3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn\nKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0\nvobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t\nzya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps\nuOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi\nFdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2\nO3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z\naK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz\n0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb\nT/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l\nqMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t\ntrJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn\nmvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa\neq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe\nPwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of\nTdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O\n1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG\nf/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi\n0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY\n5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc\nV2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L\n/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM\nt/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd\nVknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD\nKLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R\nfwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3\nVxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ\nDJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ\n3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv\nx7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD\nweqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI\n6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew\nPnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk\nj3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm\nOqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/\nAKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez\nN9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ\n92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp\n+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue\nV9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv\navHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0\nvQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP\n8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt\nn1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw\nnUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3\n7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P\n0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U\nx8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG\n0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L\nfaQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ\nQKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA\nBAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A\ntLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv\n9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr\njn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm\nb7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB\nACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk\ndEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1\nrMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+\nx+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA\nAAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr\nYvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4\n5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V\nkK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg\nBIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA\nAAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g\nWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx\nOEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2\nH/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF\n+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V\nh6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA\nEgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu\nZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml\nHMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl\nn0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN\n3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi\n/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00\n+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC\nUACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2\nM2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp\n5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn\nN1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS\nOjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL\n/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo\nstLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3\nGyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA\nAAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4\nqmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy\nWEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a\nfJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI\nrTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2\nrz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc\n3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3\nTur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA\nAAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx\nskA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F\no7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx\nNO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h\n2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te\npSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7\ncvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7\nmZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA\nAAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA\nhGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J\nqx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI\nXRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy\nRHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX\nqNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX\nkaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P\nya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC\nExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA\nlAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA\nAAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o\nb9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP\ny6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae\nkzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu\n9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ\nk7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1\n8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp\nDXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh\nnyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ\nAAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA\nAAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO\nyvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5\nPM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii\nIpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r\nO3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE\nyTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX\n6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2\nJgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS\nAAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA\nAAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx\nWa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI\n6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5\nK2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7\nVv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id\nPW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ\n2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4\neF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7\npiVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR\nACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ\nJQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i\nUiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61\nrZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq\nZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2\nf0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO\nIjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts\nbAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA\nAAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA\nBAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2\nSbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T\nlBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/\n2Q==`;\n", "/**\n * Warmup algorithm that uses embedded images to exercise loaded models for faster future inference\n */\n\nimport { log, now, mergeDeep } from './util/util';\nimport * as sample from './sample';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as image from './image/image';\nimport { env } from './util/env';\nimport type { Config } from './config';\nimport type { Result } from './result';\nimport type { Human, Models } from './human';\nimport type { Tensor } from './tfjs/types';\n\nasync function warmupBitmap(instance: Human): Promise {\n const b64toBlob = (base64: string, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob;\n let res;\n switch (instance.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'body':\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await instance.detect(bitmap, instance.config);\n bitmap.close();\n }\n return res;\n}\n\nasync function warmupCanvas(instance: Human): Promise {\n return new Promise((resolve) => {\n let src;\n // let size = 0;\n switch (instance.config.warmup) {\n case 'face':\n // size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n // size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = null;\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n let img: HTMLImageElement;\n if (typeof Image !== 'undefined') img = new Image();\n // @ts-ignore env.image is an external monkey-patch\n else if (env.Image) img = new env.Image();\n else return;\n img.onload = async () => {\n const canvas = image.canvas(img.naturalWidth, img.naturalHeight);\n if (!canvas) {\n log('Warmup: Canvas not found');\n resolve(undefined);\n } else {\n const ctx = canvas.getContext('2d');\n if (ctx) ctx.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const tensor = await instance.image(canvas);\n const res = await instance.detect(tensor.tensor as Tensor, instance.config);\n resolve(res);\n }\n };\n if (src) img.src = src;\n else resolve(undefined);\n });\n}\n\nasync function warmupNode(instance: Human): Promise {\n const atob = (str: string) => Buffer.from(str, 'base64');\n let img;\n if (instance.config.warmup === 'face') img = atob(sample.face);\n else img = atob(sample.body);\n let res;\n if ('node' in tf) {\n // @ts-ignore tf.node may be undefined\n const data = tf['node'].decodeJpeg(img);\n const expanded = data.expandDims(0);\n instance.tf.dispose(data);\n // log('Input:', expanded);\n res = await instance.detect(expanded, instance.config);\n instance.tf.dispose(expanded);\n } else {\n if (instance.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await instance.detect(input, instance.config);\n */\n }\n return res;\n}\n\nasync function runInference(instance: Human) {\n let res: Result | undefined;\n if (typeof createImageBitmap === 'function') res = await warmupBitmap(instance);\n else if (typeof Image !== 'undefined' || env.Canvas !== undefined) res = await warmupCanvas(instance);\n else res = await warmupNode(instance);\n return res;\n}\n\n/** Runs pre-compile on all loaded models */\nexport async function runCompile(allModels: Models) {\n const backendType = tf.getBackend();\n const webGLBackend = tf.backend();\n if ((backendType !== 'webgl' && backendType !== 'humangl') || (!webGLBackend || !webGLBackend.checkCompileCompletion)) {\n // log('compile pass: skip');\n return;\n }\n tf.env().set('ENGINE_COMPILE_ONLY', true);\n const numTensorsStart = tf.engine().state.numTensors;\n const compiledModels: string[] = [];\n for (const [modelName, model] of Object.entries(allModels).filter(([key, val]) => (key !== null && val !== null))) {\n const shape = (model.inputs && model.inputs[0] && model.inputs[0].shape) ? [...model.inputs[0].shape] : [1, 64, 64, 3];\n const dtype = (model.inputs && model.inputs[0] && model.inputs[0].dtype) ? model.inputs[0].dtype : 'float32';\n for (let dim = 0; dim < shape.length; dim++) {\n if (shape[dim] === -1) shape[dim] = dim === 0 ? 1 : 64; // override batch number and any dynamic dimensions\n }\n const tensor = tf.zeros(shape, dtype);\n // const res = await model.executeAsync(tensor); // fails with current tfjs\n try {\n const res = model.execute(tensor);\n compiledModels.push(modelName);\n if (Array.isArray(res)) res.forEach((t) => tf.dispose(t));\n else tf.dispose(res);\n } catch {\n log('compile fail model:', modelName);\n }\n tf.dispose(tensor);\n }\n const kernels = await webGLBackend.checkCompileCompletionAsync();\n webGLBackend.getUniformLocations();\n log('compile pass models:', compiledModels);\n log('compile pass kernels:', kernels.length);\n tf.env().set('ENGINE_COMPILE_ONLY', false);\n const numTensorsEnd = tf.engine().state.numTensors;\n if ((numTensorsEnd - numTensorsStart) > 0) log('tensor leak:', numTensorsEnd - numTensorsStart);\n}\n\n/** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used in browser environments for `webgl` and `humangl` backends\n * @param userConfig?: Config\n*/\nexport async function warmup(instance: Human, userConfig?: Partial): Promise {\n const t0 = now();\n instance.state = 'warmup';\n if (userConfig) instance.config = mergeDeep(instance.config, userConfig) as Config;\n if (!instance.config.warmup || instance.config.warmup.length === 0 || instance.config.warmup === 'none') {\n return { face: [], body: [], hand: [], gesture: [], object: [], performance: instance.performance, timestamp: now(), persons: [], error: null };\n }\n return new Promise(async (resolve) => {\n await runCompile(instance.models);\n const res = await runInference(instance);\n const t1 = now();\n if (instance.config.debug) log('warmup', instance.config.warmup, Math.round(t1 - t0), 'ms');\n instance.emit('warmup');\n resolve(res);\n });\n}\n", "/**\n * Human main module\n * @default Human Library\n * @summary \n * @author \n * @copyright \n * @license MIT\n */\n\n// module imports\nimport { log, now, mergeDeep, validate } from './util/util';\nimport { defaults } from './config';\nimport { env, Env } from './util/env';\nimport { setModelLoadOptions } from './tfjs/load';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as app from '../package.json';\nimport * as backend from './tfjs/backend';\nimport * as blazepose from './body/blazepose';\nimport * as centernet from './object/centernet';\nimport * as draw from './draw/draw';\nimport * as efficientpose from './body/efficientpose';\nimport * as face from './face/face';\nimport * as facemesh from './face/facemesh';\nimport * as faceres from './face/faceres';\nimport * as gesture from './gesture/gesture';\nimport * as handpose from './hand/handpose';\nimport * as handtrack from './hand/handtrack';\nimport * as humangl from './tfjs/humangl';\nimport * as image from './image/image';\nimport * as interpolate from './util/interpolate';\nimport * as match from './face/match';\nimport * as models from './models';\nimport * as movenet from './body/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as persons from './util/persons';\nimport * as posenet from './body/posenet';\nimport * as segmentation from './segmentation/segmentation';\nimport * as warmups from './warmup';\n// type definitions\nimport type { Input, Tensor, DrawOptions, Config, Result, FaceResult, HandResult, BodyResult, ObjectResult, GestureResult, PersonResult, AnyCanvas, ModelStats } from './exports';\n// type exports\nexport * from './exports';\n\n/** **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n *\n * @param userConfig - {@link Config}\n * @returns instance of {@link Human}\n */\nexport class Human {\n /** Current version of Human library in *semver* format */\n version: string;\n\n /** Current configuration\n * - Defaults: [config](https://github.com/vladmandic/human/blob/main/src/config.ts#L262)\n */\n config: Config;\n\n /** Last known result of detect run\n * - Can be accessed anytime after initial detection\n */\n result: Result;\n\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n * - Progresses through: 'config', 'check', 'backend', 'load', 'run:', 'idle'\n */\n state: string;\n\n /** currenty processed image tensor and canvas */\n process: { tensor: Tensor | null, canvas: AnyCanvas | null };\n\n /** Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n * [TFJS API](https://js.tensorflow.org/api/latest/)\n */\n tf;\n\n /** Object containing environment information used for diagnostics */\n env: Env;\n\n /** Draw helper classes that can draw detected objects on canvas using specified draw\n * - canvas: draws input to canvas\n * - options: are global settings for all draw operations, can be overriden for each draw method {@link DrawOptions}\n * - face, body, hand, gesture, object, person: draws detected results as overlays on canvas\n */\n draw: { canvas: typeof draw.canvas, face: typeof draw.face, body: typeof draw.body, hand: typeof draw.hand, gesture: typeof draw.gesture, object: typeof draw.object, person: typeof draw.person, all: typeof draw.all, options: DrawOptions };\n\n /** Currently loaded models\n * @internal\n * {@link Models}\n */\n models: models.Models;\n\n /** Container for events dispatched by Human\n * Possible events:\n * - `create`: triggered when Human object is instantiated\n * - `load`: triggered when models are loaded (explicitly or on-demand)\n * - `image`: triggered when input image is processed\n * - `result`: triggered when detection is complete\n * - `warmup`: triggered when warmup is complete\n * - `error`: triggered on some errors\n */\n events: EventTarget | undefined;\n /** Reference face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: number[];\n /** Refernce UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: [number, number][];\n /** Performance object that contains values for all recently performed operations */\n performance: Record; // perf members are dynamically defined as needed\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n /** WebGL debug info */\n gl: Record;\n // definition end\n\n /** Constructor for **Human** library that is futher used for all operations\n * @param userConfig - user configuration object {@link Config}\n */\n constructor(userConfig?: Partial) {\n this.env = env;\n /*\n defaults.wasmPath = tf.version['tfjs-core'].includes('-') // custom build or official build\n ? 'https://vladmandic.github.io/tfjs/dist/'\n : `https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${tf.version_core}/dist/`;\n */\n const tfVersion = (tf.version?.tfjs || tf.version_core).replace(/-(.*)/, '');\n defaults.wasmPath = `https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${tfVersion}/dist/`;\n defaults.modelBasePath = env.browser ? '../models/' : 'file://models/';\n defaults.backend = env.browser ? 'humangl' : 'tensorflow';\n this.version = app.version; // expose version property on instance of class\n Object.defineProperty(this, 'version', { value: app.version }); // expose version property directly on class itself\n this.config = JSON.parse(JSON.stringify(defaults));\n Object.seal(this.config);\n this.config.cacheModels = typeof indexedDB !== 'undefined';\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n setModelLoadOptions(this.config);\n this.tf = tf;\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.performance = {};\n this.events = (typeof EventTarget !== 'undefined') ? new EventTarget() : undefined;\n // object that contains all initialized models\n this.models = new models.Models();\n // reexport draw methods\n this.draw = {\n options: draw.options as DrawOptions,\n canvas: (input: AnyCanvas | HTMLImageElement | HTMLVideoElement, output: AnyCanvas) => draw.canvas(input, output),\n face: (output: AnyCanvas, result: FaceResult[], options?: Partial) => draw.face(output, result, options),\n body: (output: AnyCanvas, result: BodyResult[], options?: Partial) => draw.body(output, result, options),\n hand: (output: AnyCanvas, result: HandResult[], options?: Partial) => draw.hand(output, result, options),\n gesture: (output: AnyCanvas, result: GestureResult[], options?: Partial) => draw.gesture(output, result, options),\n object: (output: AnyCanvas, result: ObjectResult[], options?: Partial) => draw.object(output, result, options),\n person: (output: AnyCanvas, result: PersonResult[], options?: Partial) => draw.person(output, result, options),\n all: (output: AnyCanvas, result: Result, options?: Partial) => draw.all(output, result, options),\n };\n this.result = { face: [], body: [], hand: [], gesture: [], object: [], performance: {}, timestamp: 0, persons: [], error: null };\n // export access to image processing\n // @ts-ignore eslint-typescript cannot correctly infer type in anonymous function\n this.process = { tensor: null, canvas: null };\n // export raw access to underlying models\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // set gl info\n this.gl = humangl.config;\n // include platform info\n this.emit('create');\n }\n\n /** internal function to measure tensor leaks */\n analyze = (...msg: string[]) => {\n if (!this.#analyzeMemoryLeaks) return;\n const currentTensors = this.tf.engine().state.numTensors;\n const previousTensors = this.#numTensors;\n this.#numTensors = currentTensors;\n const leaked = currentTensors - previousTensors;\n if (leaked !== 0) log(...msg, leaked);\n };\n\n /** internal function for quick sanity check on inputs @hidden */\n #sanity = (input: Input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.env.node && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n };\n\n /** Reset configuration to default values */\n reset(): void {\n const currentBackend = this.config.backend; // save backend;\n this.config = JSON.parse(JSON.stringify(defaults));\n this.config.backend = currentBackend;\n }\n\n /** Validate current configuration schema */\n validate(userConfig?: Partial) {\n return validate(defaults, userConfig || this.config);\n }\n\n /** Exports face matching methods {@link match#similarity} */\n public similarity = match.similarity;\n /** Exports face matching methods {@link match#distance} */\n public distance = match.distance;\n /** Exports face matching methods {@link match#match} */\n public match = match.match;\n\n /** Utility wrapper for performance.now() */\n now(): number {\n return now();\n }\n\n /** Process input as return canvas and tensor\n *\n * @param input - any input {@link Input}\n * @param getTensor - should image processing also return tensor or just canvas\n * Returns object with `tensor` and `canvas`\n */\n image(input: Input, getTensor: boolean = true) {\n return image.process(input, this.config, getTensor);\n }\n\n /** Segmentation method takes any input and returns processed canvas with body segmentation\n * - Segmentation is not triggered as part of detect process\n * @param input - {@link Input}\n * @param background - {@link Input}\n * - Optional parameter background is used to fill the background with specific input\n * Returns:\n * - `data` as raw data array with per-pixel segmentation values\n * - `canvas` as canvas which is input image filtered with segementation data and optionally merged with background image. canvas alpha values are set to segmentation values for easy merging\n * - `alpha` as grayscale canvas that represents segmentation alpha values\n */\n async segmentation(input: Input, background?: Input): Promise<{ data: number[] | Tensor, canvas: AnyCanvas | null, alpha: AnyCanvas | null }> {\n return segmentation.process(input, background, this.config);\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n *\n * @param input - Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n // eslint-disable-next-line class-methods-use-this\n enhance(input: Tensor): Tensor | null {\n return faceres.enhance(input);\n }\n\n /** Compare two input tensors for pixel simmilarity\n * - use `human.image` to process any valid input and get a tensor that can be used for compare\n * - when passing manually generated tensors:\n * - both input tensors must be in format [1, height, width, 3]\n * - if resolution of tensors does not match, second tensor will be resized to match resolution of the first tensor\n * - return value is pixel similarity score normalized by input resolution and rgb channels\n */\n compare(firstImageTensor: Tensor, secondImageTensor: Tensor): Promise {\n return image.compare(this.config, firstImageTensor, secondImageTensor);\n }\n\n /** Explicit backend initialization\n * - Normally done implicitly during initial load phase\n * - Call to explictly register and initialize TFJS backend without any other operations\n * - Use when changing backend during runtime\n */\n async init(): Promise {\n await backend.check(this, true);\n await this.tf.ready();\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n *\n * @param userConfig - {@link Config}\n */\n async load(userConfig?: Partial): Promise {\n this.state = 'load';\n const timeStamp = now();\n const count = Object.values(this.models).filter((model) => model).length;\n if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;\n\n if (this.env.initial) { // print version info on first run and check for correct backend setup\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version['tfjs-core']}`);\n if (!await backend.check(this)) log('error: backend check failed');\n await tf.ready();\n if (this.env.browser) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('environment:', this.env);\n if (this.config.debug) log('tf flags:', this.tf.ENV['flags']);\n }\n }\n\n await models.load(this); // actually loads models\n if (this.env.initial && this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors'); // print memory stats on first run\n this.env.initial = false;\n\n const loaded = Object.values(this.models).filter((model) => model).length;\n if (loaded !== count) { // number of loaded models changed\n await models.validate(this); // validate kernel ops used by model against current backend\n this.emit('load');\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.performance.loadModels as number || 0)) this.performance.loadModels = this.env.perfadd ? (this.performance.loadModels || 0) + current : current;\n }\n\n /** emit event */\n emit = (event: string) => {\n if (this.events && this.events.dispatchEvent) this.events?.dispatchEvent(new Event(event));\n };\n\n /** Runs interpolation using last known result and returns smoothened result\n * Interpolation is based on time since last known result so can be called independently\n *\n * @param result - {@link Result} optional use specific result set to run interpolation on\n * @returns result - {@link Result}\n */\n next(result: Result = this.result): Result {\n return interpolate.calc(result, this.config) as Result;\n }\n\n /** get model loading/loaded stats */\n getModelStats(): ModelStats { return models.getModelStats(this); }\n\n /** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n * @param userConfig - {@link Config}\n * @returns result - {@link Result}\n */\n async warmup(userConfig?: Partial) {\n const t0 = now();\n const res = await warmups.warmup(this, userConfig);\n const t1 = now();\n this.performance.warmup = Math.trunc(t1 - t0);\n return res;\n }\n\n /** Run detect with tensorflow profiling\n * - result object will contain total exeuction time information for top-20 kernels\n * - actual detection object can be accessed via `human.result`\n */\n async profile(input: Input, userConfig?: Partial): Promise> {\n const profile = await this.tf.profile(() => this.detect(input, userConfig));\n const kernels: Record = {};\n for (const kernel of profile.kernels) { // sum kernel time values per kernel\n if (kernels[kernel.name]) kernels[kernel.name] += kernel.kernelTimeMs;\n else kernels[kernel.name] = kernel.kernelTimeMs;\n }\n const kernelArr: Array<{ name: string, ms: number }> = [];\n Object.entries(kernels).forEach((key) => kernelArr.push({ name: key[0], ms: key[1] as unknown as number })); // convert to array\n kernelArr.sort((a, b) => b.ms - a.ms); // sort\n kernelArr.length = 20; // crop\n const res: Record = {};\n for (const kernel of kernelArr) res[kernel.name] = kernel.ms; // create perf objects\n return res;\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n *\n * @param input - {@link Input}\n * @param userConfig - {@link Config}\n * @returns result - {@link Result}\n */\n async detect(input: Input, userConfig?: Partial): Promise {\n // detection happens inside a promise\n this.state = 'detect';\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig) as Config;\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n this.emit('error');\n resolve({ face: [], body: [], hand: [], gesture: [], object: [], performance: this.performance, timestamp: now(), persons: [], error });\n }\n\n const timeStart = now();\n\n // configure backend if needed\n await backend.check(this);\n\n // load models if enabled\n await this.load();\n\n timeStamp = now();\n this.state = 'image';\n const img = await image.process(input, this.config) as { canvas: AnyCanvas, tensor: Tensor };\n this.process = img;\n this.performance.inputProcess = this.env.perfadd ? (this.performance.inputProcess || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n if (!img.tensor) {\n if (this.config.debug) log('could not convert input to tensor');\n this.emit('error');\n resolve({ face: [], body: [], hand: [], gesture: [], object: [], performance: this.performance, timestamp: now(), persons: [], error: 'could not convert input to tensor' });\n return;\n }\n this.emit('image');\n\n timeStamp = now();\n this.config.skipAllowed = await image.skip(this.config, img.tensor);\n if (!this.performance.totalFrames) this.performance.totalFrames = 0;\n if (!this.performance.cachedFrames) this.performance.cachedFrames = 0;\n (this.performance.totalFrames as number)++;\n if (this.config.skipAllowed) this.performance.cachedFrames++;\n this.performance.cacheCheck = this.env.perfadd ? (this.performance.cacheCheck || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n this.analyze('Check Changed:');\n\n // prepare where to store model results\n // keep them with weak typing as it can be promise or not\n let faceRes: FaceResult[] | Promise | never[] = [];\n let bodyRes: BodyResult[] | Promise | never[] = [];\n let handRes: HandResult[] | Promise | never[] = [];\n let objectRes: ObjectResult[] | Promise | never[] = [];\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n this.state = 'detect:face';\n if (this.config.async) {\n faceRes = this.config.face.enabled ? face.detectFace(this, img.tensor) : [];\n if (this.performance.face) delete this.performance.face;\n } else {\n timeStamp = now();\n faceRes = this.config.face.enabled ? await face.detectFace(this, img.tensor) : [];\n this.performance.face = this.env.perfadd ? (this.performance.face || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n\n if (this.config.async && (this.config.body.maxDetected === -1 || this.config.hand.maxDetected === -1)) faceRes = await faceRes; // need face result for auto-detect number of hands or bodies\n\n // run body: can be posenet, blazepose, efficientpose, movenet\n this.analyze('Start Body:');\n this.state = 'detect:body';\n const bodyConfig = this.config.body.maxDetected === -1 ? mergeDeep(this.config, { body: { maxDetected: this.config.face.enabled ? 1 * (faceRes as FaceResult[]).length : 1 } }) : this.config; // autodetect number of bodies\n if (this.config.async) {\n if (this.config.body.modelPath?.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('movenet')) bodyRes = this.config.body.enabled ? movenet.predict(img.tensor, bodyConfig) : [];\n if (this.performance.body) delete this.performance.body;\n } else {\n timeStamp = now();\n if (this.config.body.modelPath?.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('movenet')) bodyRes = this.config.body.enabled ? await movenet.predict(img.tensor, bodyConfig) : [];\n this.performance.body = this.env.perfadd ? (this.performance.body || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n this.state = 'detect:hand';\n const handConfig = this.config.hand.maxDetected === -1 ? mergeDeep(this.config, { hand: { maxDetected: this.config.face.enabled ? 2 * (faceRes as FaceResult[]).length : 1 } }) : this.config; // autodetect number of hands\n if (this.config.async) {\n if (this.config.hand.detector?.modelPath?.includes('handdetect')) handRes = this.config.hand.enabled ? handpose.predict(img.tensor, handConfig) : [];\n else if (this.config.hand.detector?.modelPath?.includes('handtrack')) handRes = this.config.hand.enabled ? handtrack.predict(img.tensor, handConfig) : [];\n if (this.performance.hand) delete this.performance.hand;\n } else {\n timeStamp = now();\n if (this.config.hand.detector?.modelPath?.includes('handdetect')) handRes = this.config.hand.enabled ? await handpose.predict(img.tensor, handConfig) : [];\n else if (this.config.hand.detector?.modelPath?.includes('handtrack')) handRes = this.config.hand.enabled ? await handtrack.predict(img.tensor, handConfig) : [];\n this.performance.hand = this.env.perfadd ? (this.performance.hand || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Hand:');\n\n // run object detection\n this.analyze('Start Object:');\n this.state = 'detect:object';\n if (this.config.async) {\n if (this.config.object.modelPath?.includes('nanodet')) objectRes = this.config.object.enabled ? nanodet.predict(img.tensor, this.config) : [];\n else if (this.config.object.modelPath?.includes('centernet')) objectRes = this.config.object.enabled ? centernet.predict(img.tensor, this.config) : [];\n if (this.performance.object) delete this.performance.object;\n } else {\n timeStamp = now();\n if (this.config.object.modelPath?.includes('nanodet')) objectRes = this.config.object.enabled ? await nanodet.predict(img.tensor, this.config) : [];\n else if (this.config.object.modelPath?.includes('centernet')) objectRes = this.config.object.enabled ? await centernet.predict(img.tensor, this.config) : [];\n this.performance.object = this.env.perfadd ? (this.performance.object || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Object:');\n\n // if async wait for results\n this.state = 'detect:await';\n if (this.config.async) [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n\n // run gesture analysis last\n this.state = 'detect:gesture';\n let gestureRes: GestureResult[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes as FaceResult[]), ...gesture.body(bodyRes as BodyResult[]), ...gesture.hand(handRes as HandResult[]), ...gesture.iris(faceRes as FaceResult[])];\n if (!this.config.async) this.performance.gesture = this.env.perfadd ? (this.performance.gesture || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n else if (this.performance.gesture) delete this.performance.gesture;\n }\n\n this.performance.total = this.env.perfadd ? (this.performance.total || 0) + Math.trunc(now() - timeStart) : Math.trunc(now() - timeStart);\n const shape = this.process?.tensor?.shape || [];\n this.result = {\n face: faceRes as FaceResult[],\n body: bodyRes as BodyResult[],\n hand: handRes as HandResult[],\n gesture: gestureRes,\n object: objectRes as ObjectResult[],\n performance: this.performance,\n canvas: this.process.canvas,\n timestamp: Date.now(),\n error: null,\n get persons() { return persons.join(faceRes as FaceResult[], bodyRes as BodyResult[], handRes as HandResult[], gestureRes, shape); },\n };\n\n // finally dispose input tensor\n tf.dispose(img.tensor);\n\n // log('Result:', result);\n this.emit('detect');\n this.state = 'idle';\n resolve(this.result);\n });\n }\n}\n\n/** Class Human as default export */\n/* eslint no-restricted-exports: [\"off\", { \"restrictedNamedExports\": [\"default\"] }] */\nexport { Human as default, match, draw, models };\n"], "mappings": ";;;;;;m5BAOO,cAAgB,EAAW,CAChC,GAAM,GAAK,GAAI,MACT,EAAK,GAAG,EAAG,SAAS,EAAE,SAAS,EAAE,SAAS,EAAG,GAAG,KAAK,EAAG,WAAW,EAAE,SAAS,EAAE,SAAS,EAAG,GAAG,KAAK,EAAG,WAAW,EAAE,SAAS,EAAE,SAAS,EAAG,GAAG,KAAK,EAAG,gBAAgB,EAAE,SAAS,EAAE,SAAS,EAAG,GAAG,IAExM,AAAI,GAAK,QAAQ,IAAI,EAAI,SAAU,GAAG,CAAG,CAC3C,CAGO,YAAc,EAAgB,EAAsB,CACzD,GAAM,GAAY,EAAO,SAAS,GAAG,EAAI,GAAK,IAExC,EAAO,AADI,EAAK,WAAW,GAAG,GAAK,EAAK,WAAW,GAAG,GAAK,EAAK,WAAW,OAAO,GAAK,EAAK,WAAW,QAAQ,GAAK,EAAK,WAAW,OAAO,EACzH,GAAG,IAAS,GAAG,IAAS,IAAY,IAC5D,GAAI,CAAC,EAAK,kBAAkB,EAAE,SAAS,OAAO,EAAG,KAAM,IAAI,OAAM,yCAAyC,GAAM,EAChH,MAAO,EACT,CAGO,GAAM,GAAM,IACb,MAAO,cAAgB,YAAoB,YAAY,IAAI,EACxD,SAAU,QAAO,QAAQ,OAAO,OAAO,CAAC,EAAI,IAAO,KAAM,SAAS,CAAC,EAIrE,YAAkB,EAA2B,EAAyB,EAAS,SAAU,EAAoE,CAAC,EAAG,CACtK,OAAW,KAAO,QAAO,KAAK,CAAM,EAClC,GAAI,MAAO,GAAO,IAAS,SACzB,GAAS,EAAS,GAAM,EAAO,GAAM,EAAK,CAAI,MACzC,CACL,GAAM,GAAU,GAAa,MAAO,GAAS,IAAS,YACtD,AAAK,GAAS,EAAK,KAAK,CAAE,OAAQ,mBAAoB,MAAO,GAAG,KAAU,OAAS,EAAO,IAAO,CAAC,EAClG,GAAM,GAAO,GAAY,MAAO,GAAS,IAAS,MAAO,GAAO,GAChE,AAAI,GAAW,CAAC,GAAM,EAAK,KAAK,CAAE,OAAQ,yBAA0B,MAAO,GAAG,KAAU,OAAS,EAAO,KAAQ,SAAU,MAAO,GAAS,EAAK,CAAC,CAClJ,CAGF,MAAI,GAAO,OAAS,IAAW,UAAY,EAAK,OAAS,GAAG,EAAI,wBAAyB,CAAI,EACtF,CACT,CAGO,cAAsB,EAAS,CACpC,GAAM,GAAW,AAAC,GAAQ,GAAO,MAAO,IAAQ,SAChD,MAAO,GAAQ,OAAO,CAAC,EAAM,IAC3B,QAAO,KAAK,GAAO,CAAC,CAAC,EAAE,QAAQ,AAAC,GAAQ,CACtC,GAAM,GAAO,EAAK,GACZ,EAAO,EAAI,GACjB,AAAI,MAAM,QAAQ,CAAI,GAAK,MAAM,QAAQ,CAAI,EAAG,EAAK,GAAO,EAAK,OAAO,GAAG,CAAI,EAC1E,AAAI,EAAS,CAAI,GAAK,EAAS,CAAI,EAAG,EAAK,GAAO,EAAU,EAAM,CAAI,EACtE,EAAK,GAAO,CACnB,CAAC,EACM,GACN,CAAC,CAAC,CACP,CC6PA,GAAM,IAAiB,CACrB,QAAS,GACT,cAAe,GACf,YAAa,GACb,SAAU,GACV,kBAAmB,GACnB,MAAO,GACP,MAAO,GACP,OAAQ,OACR,iBAAkB,GAClB,YAAa,GACb,WAAY,GACZ,OAAQ,CACN,QAAS,GACT,aAAc,GACd,MAAO,EACP,OAAQ,EACR,KAAM,GACN,OAAQ,GACR,WAAY,EACZ,SAAU,EACV,UAAW,EACX,KAAM,EACN,WAAY,EACZ,IAAK,EACL,SAAU,GACV,MAAO,GACP,QAAS,GACT,WAAY,GACZ,YAAa,GACb,SAAU,GACV,SAAU,CACZ,EACA,QAAS,CACP,QAAS,EACX,EACA,KAAM,CACJ,QAAS,GACT,SAAU,CACR,UAAW,iBACX,SAAU,GACV,YAAa,EACb,WAAY,GACZ,SAAU,KACV,cAAe,GACf,aAAc,GACd,KAAM,GACN,OAAQ,EACV,EACA,KAAM,CACJ,QAAS,GACT,UAAW,gBACX,YAAa,EACf,EACA,UAAW,CACT,QAAS,GACT,UAAW,yBACb,EACA,KAAM,CACJ,QAAS,GACT,UAAW,WACb,EACA,QAAS,CACP,QAAS,GACT,cAAe,GACf,WAAY,GACZ,SAAU,KACV,UAAW,cACb,EACA,YAAa,CACX,QAAS,GACT,UAAW,eACX,WAAY,GACZ,SAAU,IACV,cAAe,EACjB,EACA,UAAW,CACT,QAAS,GACT,WAAY,GACZ,SAAU,IACV,UAAW,gBACb,EACA,SAAU,CACR,QAAS,GACT,WAAY,GACZ,SAAU,IACV,UAAW,eACb,CACF,EACA,KAAM,CACJ,QAAS,GACT,UAAW,yBACX,YAAa,GACb,cAAe,GACf,WAAY,EACZ,SAAU,GACZ,EACA,KAAM,CACJ,QAAS,GACT,SAAU,GACV,WAAY,GACZ,SAAU,IACV,cAAe,GACf,aAAc,GACd,YAAa,GACb,UAAW,GACX,SAAU,CACR,UAAW,gBACb,EACA,SAAU,CACR,UAAW,wBACb,CACF,EACA,OAAQ,CACN,QAAS,GACT,UAAW,qBACX,cAAe,GACf,aAAc,GACd,YAAa,GACb,WAAY,GACZ,SAAU,GACZ,EACA,aAAc,CACZ,QAAS,GACT,UAAW,cACX,KAAM,CACR,CACF,ECvbA,gEAMA,QAA4C,QAA5C,kDAA4C,gEAAkQ,yDAAwD,oEAAhQ,GAAI,IAAE,SAAS,GAAE,SAAS,GAAE,SAAS,GAAE,SAAS,GAAE,SAAS,GAAE,SAAS,GAAE,SAAS,GAAE,CAAC,KAAK,GAAE,YAAY,GAAE,YAAY,GAAE,cAAc,GAAE,iBAAiB,GAAE,qBAAqB,GAAE,oBAAoB,EAAC,ECNrS,GAAM,IAAiB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;EAqBvB,GAAM,IAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAcvB,GAA0B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAc1B,GAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAeX,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAyBP,GAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;EChF3B,GAAM,IAAU,CAAC,EAAQ,EAAQ,IAAe,CAC9C,GAAM,GAAI,GAAI,QAAO,MAAQ,EAAS,eAAgB,IAAI,EAC1D,EAAO,QAAQ,EAAG,CAAC,EAAO,IACxB,GAAW,GAAQ,EACZ,EACR,CACH,EAEM,GAAN,KAAgB,CAMd,YAAY,EAAI,EAAc,EAAgB,CAL9C,iBAAU,CAAC,GACX,mBAAY,CAAC,GACb,aACA,aA2BA,iBAAU,CAAC,EAAQ,IAA6B,CAC9C,GAAM,GAAS,KAAK,GAAG,aAAa,CAAI,EACxC,MAAK,GAIL,MAAK,GAAG,aAAa,EAAQ,CAAM,EACnC,KAAK,GAAG,cAAc,CAAM,EACxB,AAAC,KAAK,GAAG,mBAAmB,EAAQ,KAAK,GAAG,cAAc,EAIvD,EAHL,GAAI,8BAA8B,KAAK,GAAG,iBAAiB,CAAM,GAAG,EAC7D,OAPP,GAAI,iCAAiC,EAC9B,KASX,GArCE,KAAK,GAAK,EACV,GAAM,GAAe,KAAK,QAAQ,EAAc,KAAK,GAAG,aAAa,EAC/D,EAAiB,KAAK,QAAQ,EAAgB,KAAK,GAAG,eAAe,EAE3E,GADA,KAAK,GAAK,KAAK,GAAG,cAAc,EAC5B,GAAC,GAAgB,CAAC,GACtB,IAAI,CAAC,KAAK,GAAI,CACZ,EAAI,wCAAwC,EAC5C,MACF,CAIA,GAHA,KAAK,GAAG,aAAa,KAAK,GAAI,CAAY,EAC1C,KAAK,GAAG,aAAa,KAAK,GAAI,CAAc,EAC5C,KAAK,GAAG,YAAY,KAAK,EAAE,EACvB,CAAC,KAAK,GAAG,oBAAoB,KAAK,GAAI,KAAK,GAAG,WAAW,EAAG,CAC9D,EAAI,2BAA2B,KAAK,GAAG,kBAAkB,KAAK,EAAE,GAAG,EACnE,MACF,CACA,KAAK,GAAG,WAAW,KAAK,EAAE,EAC1B,GAAQ,EAAc,YAAa,KAAK,SAAS,EACjD,OAAW,KAAK,MAAK,UAAW,KAAK,UAAU,GAAK,KAAK,GAAG,kBAAkB,KAAK,GAAI,CAAC,EACxF,GAAQ,EAAc,UAAW,KAAK,OAAO,EAC7C,GAAQ,EAAgB,UAAW,KAAK,OAAO,EAC/C,OAAW,KAAK,MAAK,QAAS,KAAK,QAAQ,GAAK,KAAK,GAAG,mBAAmB,KAAK,GAAI,CAAC,EACvF,CAgBF,EAWO,aAAyB,CAC9B,GAAI,GAAY,EACZ,EAAqC,KACrC,EAAc,GACd,EAA0B,GAC1B,EAAoG,CAAC,KAAM,IAAI,EAC/G,EAAyC,CAAC,EAC1C,EAAmC,KACnC,EAAmC,KACjC,EAAW,GAAO,IAAK,GAAG,EAC1B,EAAqB,CAAE,EACvB,EAAO,CAAE,aAAc,CAAE,EACzB,EAAK,EAAS,WAAW,OAAO,EACtC,GAAI,CAAC,EAAI,CACP,EAAI,kCAAkC,EACtC,MACF,CAEA,KAAK,GAAK,EAEV,WAAgB,EAAO,EAAQ,CAC7B,GAAI,MAAU,EAAS,OAAS,IAAW,EAAS,QAGpD,IAFA,EAAS,MAAQ,EACjB,EAAS,OAAS,EACd,CAAC,EAAc,CACjB,GAAM,GAAW,GAAI,cAAa,CAAC,GAAI,GAAI,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,EAAG,EAAG,CAAC,CAAC,EAChH,EAAe,EAAG,aAAa,EAC/B,EAAG,WAAW,EAAG,aAAc,CAAY,EAC3C,EAAG,WAAW,EAAG,aAAc,EAAU,EAAG,WAAW,EACvD,EAAG,YAAY,EAAG,+BAAgC,EAAI,CACxD,CACA,EAAG,SAAS,EAAG,EAAG,EAAS,MAAO,EAAS,MAAM,EACjD,EAAmB,CAAC,KAAM,IAAI,EAChC,CAEA,WAAkC,EAAO,EAAQ,CAC/C,GAAM,GAAM,EAAG,kBAAkB,EACjC,EAAG,gBAAgB,EAAG,YAAa,CAAG,EACtC,GAAM,GAAe,EAAG,mBAAmB,EAC3C,EAAG,iBAAiB,EAAG,aAAc,CAAY,EACjD,GAAM,GAAU,EAAG,cAAc,EACjC,SAAG,YAAY,EAAG,WAAY,CAAO,EACrC,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAO,EAAQ,EAAG,EAAG,KAAM,EAAG,cAAe,IAAI,EAC1F,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,MAAM,EAChE,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,MAAM,EAChE,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,aAAa,EACnE,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,aAAa,EACnE,EAAG,qBAAqB,EAAG,YAAa,EAAG,kBAAmB,EAAG,WAAY,EAAS,CAAC,EACvF,EAAG,YAAY,EAAG,WAAY,IAAI,EAClC,EAAG,gBAAgB,EAAG,YAAa,IAAI,EAChC,CAAE,MAAK,SAAQ,CACxB,CAEA,WAA4B,EAAuE,CACjG,SAAiB,GAAS,EAAiB,IAAU,EAAyB,EAAS,MAAO,EAAS,MAAM,EACtG,EAAiB,EAC1B,CAEA,WAAc,EAAQ,EAAG,CACvB,GAAI,CAAC,EAAgB,OACrB,GAAI,GAA8B,KAC9B,EAAkC,KAClC,EAAQ,GACZ,AAAI,IAAc,EAAG,EAAS,EACzB,EAAS,EAAmB,CAAuB,EAAE,SAAW,KACrE,IACA,AAAI,GAAe,CAAE,GAAQ,EAAK,cAChC,GAAS,KACT,EAAQ,EAAY,IAAM,GAE1B,GAA2B,GAA0B,GAAK,EAC1D,EAAS,EAAmB,CAAuB,EAAE,KAAO,MAE9D,EAAG,YAAY,EAAG,WAAY,CAAM,EACpC,EAAG,gBAAgB,EAAG,YAAa,CAAM,EACzC,EAAG,UAAU,EAAe,QAAQ,MAAW,EAAQ,GAAK,CAAE,EAC9D,EAAG,WAAW,EAAG,UAAW,EAAG,CAAC,CAClC,CAEA,WAAuB,EAAkC,CACvD,GAAI,EAAmB,GACrB,SAAiB,EAAmB,GACpC,EAAG,WAAY,GAAiB,EAAe,GAAK,OAAS,IAAI,EAC1D,EAGT,GADA,EAAiB,GAAI,IAAU,EAAY,GAAgB,CAAc,EACrE,CAAC,EACH,SAAI,qCAAqC,EAClC,KAET,GAAM,GAAY,aAAa,kBACzB,EAAW,EAAI,EACrB,SAAG,wBAAwB,EAAe,UAAU,GAAM,EAC1D,EAAG,oBAAoB,EAAe,UAAU,IAAQ,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,CAAS,EACnG,EAAG,wBAAwB,EAAe,UAAU,EAAK,EACzD,EAAG,oBAAoB,EAAe,UAAU,GAAO,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,CAAS,EAClG,EAAmB,GAAkB,EAC9B,CACT,CAEA,GAAM,GAAS,CACb,YAAa,AAAC,GAAW,CACvB,GAAM,GAAI,GAAI,cAAa,CAAM,EACjC,EAAE,IAAM,IACR,EAAE,IAAM,IACR,EAAE,KAAO,IACT,EAAE,KAAO,IACT,GAAM,GAAU,EAAE,MAAQ,GAAK,EAAE,KAAO,GAAK,EAAE,KAAO,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,EACrH,GACA,GACN,EAAU,EAAc,CAAM,EACpC,AAAI,CAAC,GACL,GAAG,WAAW,EAAQ,QAAQ,EAAM,CAAC,EACrC,EAAK,EACP,EAEA,WAAY,AAAC,GAAe,CAC1B,GAAM,GAAK,IAAc,GAAK,EAC9B,EAAO,YAAY,CACjB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,WAAY,AAAC,GAAW,CACtB,GAAM,GAAK,IAAU,GAAK,EAAI,EAAI,EAC5B,EAAM,GAAI,GAAK,IACrB,EAAO,YAAY,CACjB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,WAAY,IAAM,CAChB,EAAO,WAAW,EAAE,CACtB,EAEA,SAAU,AAAC,GAAW,CACpB,GAAM,GAAK,IAAU,GAAK,EACpB,EAAI,KAAQ,GAAI,GACtB,EAAO,YAAY,CACjB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,SAAU,IAAM,CACd,EAAO,SAAS,EAAE,CACpB,EAEA,IAAK,AAAC,GAAa,CACjB,EAAY,IAAY,GAAK,IAAM,KAAK,GACxC,GAAM,GAAM,KAAK,IAAI,CAAQ,EACvB,EAAM,KAAK,IAAI,CAAQ,EACvB,EAAO,KACP,EAAO,KACP,EAAO,KACb,EAAO,YAAY,CACjB,EAAO,EAAO,GAAI,GAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,GAAI,GAAO,EAAG,EAC3H,EAAO,EAAO,CAAC,EAAQ,EAAO,KAAQ,EAAO,EAAO,GAAI,GAAQ,EAAO,IAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,MAAS,EAAG,EACzH,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAE,GAAI,GAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,EAAO,EAAO,EAAO,GAAI,GAAQ,EAAO,EAAO,EAAG,EAC5H,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,oBAAqB,IAAM,CACzB,EAAO,YAAY,CACjB,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,MAAO,IAAM,CACX,EAAO,YAAY,CACjB,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,QAAS,IAAM,CACb,EAAO,YAAY,CACjB,kBAAoB,mBAAqB,mBAAqB,EAAG,kBACjE,qBAAuB,kBAAoB,mBAAqB,EAAG,mBACnE,mBAAqB,oBAAsB,mBAAqB,EAAG,mBACnE,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,eAAgB,IAAM,CACpB,EAAO,YAAY,CACjB,kBAAoB,kBAAoB,oBAAsB,EAAG,kBACjE,mBAAqB,kBAAoB,mBAAqB,EAAG,kBACjE,kBAAoB,mBAAqB,kBAAoB,EAAG,kBAChE,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,WAAY,IAAM,CAChB,EAAO,YAAY,CACjB,mBAAoB,mBAAqB,oBAAsB,EAAG,kBAClE,oBAAsB,mBAAoB,oBAAsB,EAAG,mBACnE,oBAAsB,mBAAqB,mBAAoB,EAAG,kBAClE,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,YAAa,IAAM,CACjB,EAAO,YAAY,CACjB,mBAAoB,mBAAqB,oBAAsB,EAAG,mBAClE,mBAAqB,mBAAoB,oBAAsB,EAAG,mBAClE,kBAAoB,mBAAqB,kBAAmB,EAAG,mBAC/D,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,SAAU,IAAM,CACd,EAAO,YAAY,CACjB,MAAO,MAAQ,MAAQ,EAAG,EAC1B,MAAQ,MAAO,MAAQ,EAAG,EAC1B,MAAQ,MAAQ,MAAO,EAAG,EAC1B,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,WAAY,IAAM,CAChB,EAAO,YAAY,CACjB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,YAAa,AAAC,GAAW,CACvB,GAAM,GAAI,GAAI,cAAa,CAAM,EAC3B,EAAa,EAAI,EAAS,MAC1B,EAAa,EAAI,EAAS,OAC1B,EAAU,EAAsB,EAAW,EACjD,AAAI,CAAC,GACL,GAAG,WAAW,EAAQ,QAAQ,EAAM,CAAC,EACrC,EAAG,UAAU,EAAQ,QAAQ,GAAO,EAAY,CAAU,EAC1D,EAAK,EACP,EAEA,YAAa,IAAM,CAEjB,EAAO,YAAY,KAAK,KAAM,CAC5B,EAAG,EAAG,EACN,EAAG,GAAI,EACP,EAAG,EAAG,CACR,CAAC,CACH,EAEA,OAAQ,IAAM,CAEZ,EAAO,YAAY,KAAK,KAAM,CAC5B,GAAI,EAAG,EACP,GAAI,EAAG,EACP,GAAI,EAAG,CACT,CAAC,CACH,EAEA,OAAQ,IAAM,CAEZ,EAAO,YAAY,KAAK,KAAM,CAC5B,GAAI,GAAI,GACR,EAAG,EAAG,EACN,EAAG,EAAG,CACR,CAAC,CACH,EAEA,QAAS,AAAC,GAAW,CACnB,GAAM,GAAI,GAAU,EAEpB,EAAO,YAAY,KAAK,KAAM,CAC5B,EAAG,GAAK,EAAG,EACX,GAAK,EAAG,EAAI,EAAI,EAAG,GAAK,EACxB,EAAG,GAAK,EAAG,CACb,CAAC,CACH,EAEA,OAAQ,AAAC,GAAS,CAChB,GAAM,GAAI,GAAQ,EAElB,EAAO,YAAY,KAAK,KAAM,CAC5B,GAAK,EAAG,GAAK,EAAG,EAChB,GAAK,EAAG,EAAG,EAAI,EACf,EAAG,EAAI,EAAG,EAAI,CAChB,CAAC,CACH,EAEA,KAAM,AAAC,GAAS,CACd,GAAM,GAAa,EAAO,EAAK,EAAS,MAClC,EAAa,EAAO,EAAK,EAAS,OAClC,EAAU,EAAsB,EAAI,EAC1C,AAAI,CAAC,GAEL,GAAG,UAAU,EAAQ,QAAQ,GAAO,EAAG,CAAS,EAChD,EAAK,EAAK,YAAY,EAEtB,EAAG,UAAU,EAAQ,QAAQ,GAAO,EAAW,CAAC,EAChD,EAAK,EACP,EAEA,SAAU,AAAC,GAAS,CAClB,GAAM,GAAa,EAAQ,EAAS,MAC9B,EAAa,EAAQ,EAAS,OAC9B,EAAU,EAAsB,EAAQ,EAC9C,AAAI,CAAC,GACL,GAAG,UAAU,EAAQ,QAAQ,KAAS,EAAW,CAAS,EAC1D,EAAK,EACP,CACF,EAGA,KAAK,IAAM,SAAU,EAAM,CAEzB,GAAM,GAAO,MAAM,UAAU,MAAM,KAAK,UAAW,CAAC,EAC9C,EAAO,EAAO,GACpB,EAAY,KAAK,CAAE,OAAM,MAAK,CAAC,CACjC,EAGA,KAAK,MAAQ,UAAY,CACvB,EAAc,CAAC,CACjB,EAGA,KAAK,IAAM,UAAY,CACrB,MAAO,EACT,EAGA,KAAK,MAAQ,SAAU,EAAO,CAC5B,EAAO,EAAM,MAAO,EAAM,MAAM,EAChC,EAAY,EACP,GAAe,GAAgB,EAAG,cAAc,GACrD,EAAG,YAAY,EAAG,WAAY,CAAa,EAC3C,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,aAAa,EACnE,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,aAAa,EACnE,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,OAAO,EACjE,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,OAAO,EACjE,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAG,KAAM,EAAG,cAAe,CAAK,EACzE,OAAS,GAAI,EAAG,EAAI,EAAY,OAAQ,IAAK,CAC3C,EAAe,IAAM,EAAY,OAAS,EAC1C,GAAM,GAAI,EAAY,GAEtB,EAAE,KAAK,MAAM,KAAM,EAAE,MAAQ,CAAC,CAAC,CACjC,CACA,MAAO,EACT,EAGA,KAAK,KAAO,SAAU,EAAO,CAC3B,YAAK,IAAI,aAAc,CAAC,EACjB,KAAK,MAAM,CAAK,CACzB,CACF,CCjbA,kBAA4C,EAAqC,CAE/E,GAAM,GAAU,EAAW,MAAM,SAAW,EAAI,AAAG,UAAQ,CAAU,EAAI,EACnE,EAAW,AAAG,QAAM,EAAS,EAAG,CAAC,EACjC,EAAgB,CAAC,AAAG,MAAI,EAAS,EAAE,EAAG,AAAG,MAAI,EAAS,EAAE,EAAG,AAAG,MAAI,EAAS,EAAE,CAAC,EAC9E,EAAgB,CAAC,AAAG,MAAI,EAAS,EAAE,EAAG,AAAG,MAAI,EAAS,EAAE,EAAG,AAAG,MAAI,EAAS,EAAE,CAAC,EAC9E,EAAS,KAAM,SAAQ,IAAI,EAAI,IAAI,AAAC,GAAY,EAAQ,KAAK,CAAC,CAAC,EAC/D,EAAW,IAAO,KAAK,IAAI,EAAO,GAAG,GAAI,EAAO,GAAG,GAAI,EAAO,GAAG,EAAE,EACnE,EAAM,CAAC,AAAG,MAAI,EAAS,GAAI,EAAI,EAAE,EAAG,AAAG,MAAI,EAAS,GAAI,EAAI,EAAE,EAAG,AAAG,MAAI,EAAS,GAAI,EAAI,EAAE,CAAC,EAC5F,EAAQ,CAAC,AAAG,MAAI,EAAI,GAAI,EAAI,EAAE,EAAG,AAAG,MAAI,EAAI,GAAI,EAAI,EAAE,EAAG,AAAG,MAAI,EAAI,GAAI,EAAI,EAAE,CAAC,EAC/E,EAAO,CAAC,AAAG,MAAI,EAAU,EAAM,EAAE,EAAG,AAAG,MAAI,EAAU,EAAM,EAAE,EAAG,AAAG,MAAI,EAAU,EAAM,EAAE,CAAC,EAC1F,EAAM,CAAC,AAAG,MAAI,EAAI,GAAI,EAAK,EAAE,EAAG,AAAG,MAAI,EAAI,GAAI,EAAK,EAAE,EAAG,AAAG,MAAI,EAAI,GAAI,EAAK,EAAE,CAAC,EAChF,EAAM,AAAG,QAAM,CAAC,EAAI,GAAI,EAAI,GAAI,EAAI,EAAE,EAAG,CAAC,EAC1C,EAAU,AAAG,UAAQ,EAAK,CAAC,EAAG,EAAQ,MAAM,GAAI,EAAQ,MAAM,GAAI,CAAC,CAAC,EAC1E,MAAG,WAAQ,CAAC,GAAG,EAAU,GAAG,EAAK,GAAG,EAAK,GAAG,EAAK,GAAG,EAAO,GAAG,EAAM,GAAG,EAAK,EAAK,CAAO,CAAC,EAClF,CACT,CCZA,GAAM,IAAU,KAEZ,EAA6B,KAC7B,EAA8B,KAC9B,GAA8B,KAE9B,EAEE,GAAoG,CACxG,SAAU,EACV,UAAW,EACX,UAAW,EACX,YAAa,MACf,EAEO,YAAgB,EAAe,EAA2B,CAC/D,GAAI,GACJ,GAAI,EAAI,QACN,GAAI,EAAI,OAAQ,CACd,GAAI,MAAO,kBAAoB,YAAa,KAAM,IAAI,OAAM,mFAAmF,EAC/I,EAAI,GAAI,iBAAgB,EAAO,CAAM,CACvC,KAAO,CACL,GAAI,MAAO,WAAa,YAAa,KAAM,IAAI,OAAM,kEAAkE,EACvH,EAAI,SAAS,cAAc,QAAQ,EACnC,EAAE,MAAQ,EACV,EAAE,OAAS,CACb,KAGA,AAAI,OAAO,GAAI,QAAW,YAAa,EAAI,GAAI,GAAI,OAAO,EAAO,CAAM,EAC9D,MAAO,YAAW,QAAW,aAAa,GAAI,GAAI,YAAW,OAAO,EAAO,CAAM,GAG5F,MAAO,EACT,CAGO,YAAc,EAAkB,EAAoB,CACzD,GAAM,GAAe,GAAU,GAAO,EAAM,MAAO,EAAM,MAAM,EAE/D,MADY,GAAa,WAAW,IAAI,EACpC,UAAU,EAAO,EAAG,CAAC,EAClB,CACT,CAKA,kBAA8B,EAAc,EAAgB,EAAqB,GAAoE,CACnJ,GAAI,CAAC,EAEH,MAAI,GAAO,OAAO,EAAI,+BAA+B,EAC9C,CAAE,OAAQ,KAAM,OAAQ,IAAK,EAGtC,GACE,CAAE,aAAoB,MACnB,CAAE,OAAO,QAAU,aAAe,YAAiB,SACnD,CAAE,OAAO,GAAI,QAAW,aAAe,YAAiB,GAAI,SAC5D,CAAE,OAAO,YAAW,QAAW,aAAe,YAAiB,YAAW,SAC1E,CAAE,OAAO,YAAc,aAAe,YAAiB,aACvD,CAAE,OAAO,cAAgB,aAAe,YAAiB,eACzD,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,oBAAsB,aAAe,YAAiB,qBAC/D,CAAE,OAAO,kBAAoB,aAAe,YAAiB,kBAEhE,KAAM,IAAI,OAAM,qCAAqC,EAEvD,GAAI,YAAoB,IAAQ,CAC9B,GAAI,GAAwB,KAC5B,GAAK,EAAiB,mBAAuB,KAAM,IAAI,OAAM,yDAAyD,EACtH,GAAI,CAAE,EAAiB,MAAU,KAAM,IAAI,OAAM,sDAAsD,EACvG,GAAK,EAAiB,MAAM,SAAW,GACrC,GAAK,EAAiB,MAAM,KAAO,EACjC,EAAS,AAAG,aAAW,EAAO,CAAC,UACrB,EAAiB,MAAM,KAAO,EAAG,CAC3C,GAAM,GAAM,AAAG,UAAQ,EAAO,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,GAAI,GAAI,CAAC,CAAC,EACpD,EAAS,AAAG,aAAW,EAAK,CAAC,EAC7B,AAAG,UAAQ,CAAG,CAChB,MACK,AAAK,GAAiB,MAAM,SAAW,GAC5C,CAAK,EAAiB,MAAM,KAAO,EACjC,EAAS,AAAG,QAAM,CAAK,EACb,EAAiB,MAAM,KAAO,GACxC,GAAS,AAAG,UAAQ,EAAO,CAAC,EAAG,EAAG,EAAG,CAAC,EAAG,CAAC,GAAI,GAAI,GAAI,CAAC,CAAC,IAI5D,GAAI,GAAU,MAAQ,EAAO,MAAM,SAAW,GAAK,EAAO,MAAM,KAAO,GAAK,EAAO,MAAM,KAAO,EAAG,KAAM,IAAI,OAAM,iEAAiE,EAAM,OAAU,EACpM,GAAK,EAAkB,QAAU,QAAS,CACxC,GAAM,GAAO,AAAG,OAAK,EAAQ,SAAS,EACtC,AAAG,UAAQ,CAAM,EACjB,EAAS,CACX,CACA,MAAO,CAAE,SAAQ,OAAS,EAAO,OAAO,OAAS,EAAY,IAAM,CACrE,KAAO,CAEL,GAAI,MAAO,GAAM,YAAkB,aAAe,EAAM,YAAiB,EACvE,MAAI,GAAO,OAAO,EAAI,2BAA2B,EAC1C,CAAE,OAAQ,KAAM,OAAQ,CAAS,EAE1C,GAAM,GAAgB,EAAM,cAAmB,EAAM,YAAiB,EAAM,OAAa,EAAM,OAAa,EAAM,MAAS,GAAK,EAC1H,EAAiB,EAAM,eAAoB,EAAM,aAAkB,EAAM,QAAc,EAAM,OAAa,EAAM,MAAS,GAAK,EACpI,GAAI,CAAC,GAAiB,CAAC,EACrB,MAAI,GAAO,OAAO,EAAI,mCAAmC,EAClD,CAAE,OAAQ,KAAM,OAAQ,CAAS,EAE1C,GAAI,GAAc,EACd,EAAe,EAenB,GAdI,EAAc,IAChB,GAAc,GACd,EAAe,KAAK,MAAM,EAAc,EAAiB,CAAa,GAEpE,EAAe,IACjB,GAAe,GACf,EAAc,KAAK,MAAM,EAAe,EAAgB,CAAc,GAIxE,AAAK,GAAO,OAAO,OAAS,GAAK,EAAG,EAAc,EAAO,OAAO,MACtD,GAAO,OAAO,QAAU,GAAK,GAAG,GAAc,EAAkB,IAAO,OAAO,QAAU,GAAK,IACvG,AAAK,GAAO,OAAO,QAAU,GAAK,EAAG,EAAe,EAAO,OAAO,OACxD,GAAO,OAAO,OAAS,GAAK,GAAG,GAAe,EAAmB,IAAO,OAAO,OAAS,GAAK,IACnG,CAAC,GAAe,CAAC,EAAc,KAAM,IAAI,OAAM,yCAAyC,EAC5F,AAAI,EAAC,GAAa,kBAAU,SAAU,GAAiB,kBAAU,UAAW,IAAe,GAAW,GAAO,EAAa,CAAY,GAGtI,GAAM,GAAQ,EAAS,WAAW,IAAI,EAmDtC,GAlDA,AAAK,MAAO,YAAc,aAAiB,YAAiB,WAC1D,EAAM,aAAa,EAAO,EAAG,CAAC,EAE9B,AAAI,EAAO,OAAO,MAAQ,MAAO,GAAM,WAAc,YACnD,GAAM,UAAU,EAAe,CAAC,EAChC,EAAM,MAAM,GAAI,CAAC,EACjB,EAAM,UAAU,EAAoB,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,MAAM,EAChH,EAAM,aAAa,EAAG,EAAG,EAAG,EAAG,EAAG,CAAC,GAEnC,EAAM,UAAU,EAAoB,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,MAAM,EAIhH,EAAC,GAAc,EAAS,QAAU,EAAU,OAAW,kBAAU,UAAW,kBAAW,UAAS,GAAY,GAAO,EAAS,MAAO,EAAS,MAAM,GAGtJ,AAAI,EAAO,OAAO,SAAW,EAAI,MAAM,UAChC,IAAI,GAAK,EAAI,QAAU,GAAY,IAAkB,MAC1D,EAAI,OAAS,CAAC,CAAC,EACf,AAAI,CAAC,GAAM,CAAC,EAAG,IACT,GAAO,OAAO,EAAI,gDAAgD,EACtE,EAAI,MAAM,UAAY,GACtB,EAAO,OAAO,QAAU,GACxB,GAAK,EAAU,CAAS,GAGxB,GAAG,MAAM,EACL,EAAO,OAAO,aAAe,GAAG,EAAG,IAAI,aAAc,EAAO,OAAO,UAAU,EAC7E,EAAO,OAAO,WAAa,GAAG,EAAG,IAAI,WAAY,EAAO,OAAO,QAAQ,EACvE,EAAO,OAAO,YAAc,GAAG,EAAG,IAAI,UAAW,EAAO,OAAO,SAAS,EACxE,EAAO,OAAO,OAAS,GAAG,EAAG,IAAI,OAAQ,EAAO,OAAO,IAAI,EAC3D,EAAO,OAAO,aAAe,GAAG,EAAG,IAAI,aAAc,EAAO,OAAO,UAAU,EAC7E,EAAO,OAAO,MAAQ,GAAG,EAAG,IAAI,MAAO,EAAO,OAAO,GAAG,EACxD,EAAO,OAAO,UAAU,EAAG,IAAI,UAAU,EACzC,EAAO,OAAO,OAAO,EAAG,IAAI,OAAO,EACnC,EAAO,OAAO,SAAS,EAAG,IAAI,SAAS,EACvC,EAAO,OAAO,OAAO,EAAG,IAAI,OAAO,EACnC,EAAO,OAAO,YAAY,EAAG,IAAI,YAAY,EAC7C,EAAO,OAAO,aAAa,EAAG,IAAI,aAAa,EAC/C,EAAO,OAAO,UAAU,EAAG,IAAI,UAAU,EACzC,EAAO,OAAO,WAAa,GAAG,EAAG,IAAI,WAAY,EAAO,OAAO,QAAQ,EAC3E,AAAI,EAAG,IAAI,EAAI,EAAG,EAAY,EAAG,MAAM,CAAQ,EAC1C,EAAY,EAAG,KAAK,CAAQ,IAGnC,IAAK,EAAU,CAAS,EACpB,GAAI,GAAK,MACb,EAAI,OAAS,CAAC,CAAC,GAGb,CAAC,EAAW,MAAO,CAAE,OAAQ,KAAM,OAAQ,CAAU,EACzD,GAAI,CAAC,EAAW,KAAM,IAAI,OAAM,oCAAoC,EAGpE,GAAI,GACA,EAAQ,EACZ,GAAK,MAAO,YAAc,aAAe,YAAiB,YAAe,EAAM,MAAW,EAAM,OAAY,EAAM,OAChH,GAAI,EAAI,SAAc,UACpB,EAAS,AAAG,UAAU,AAAG,UAAQ,WAAW,CAAK,EAAI,SAChD,CACL,EAAQ,EAAM,KAAQ,OAAS,EAAM,OAAY,EAAM,MAEvD,GAAM,GAAM,GAAI,YAAW,EAAM,KAAQ,MAAS,EAClD,EAAS,AAAG,SAAO,EAAK,CAAC,EAAM,OAAW,EAAM,MAAU,CAAK,EAAG,OAAO,CAC3E,SAEI,EAAC,IAAc,EAAU,QAAU,GAAU,OAAW,EAAU,SAAW,GAAU,SAAS,IAAY,GAAO,EAAU,MAAO,EAAU,MAAM,GACpJ,AAAG,WAAW,EAAI,QACpB,AAAI,EAAO,UAAY,SAAW,EAAO,UAAY,WAAa,EAAO,UAAY,SACnF,EAAS,AAAG,UAAQ,WAAW,CAAS,EAExC,IAAY,GAAK,CAAS,EAC1B,EAAS,AAAG,UAAQ,WAAW,EAAS,OAErC,CAGL,GAAM,GAAW,AADD,AADG,GAAK,CAAS,EACN,WAAW,IAAI,EACjB,aAAa,EAAG,EAAG,EAAa,CAAY,EACrE,EAAQ,EAAS,KAAK,OAAS,EAAc,EAC7C,GAAM,GAAM,GAAI,YAAW,EAAS,KAAK,MAAM,EAC/C,EAAS,AAAG,SAAO,EAAK,CAAC,EAAa,EAAc,CAAK,CAAC,CAC5D,CAEF,GAAI,IAAU,EAAG,CACf,GAAM,GAAM,AAAG,UAAQ,EAAQ,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,GAAI,GAAI,CAAC,CAAC,EACrD,AAAG,UAAQ,CAAM,EACjB,EAAS,CACX,CACA,GAAI,CAAC,EAAQ,KAAM,IAAI,OAAM,mCAAmC,EAChE,GAAM,GAAS,AAAG,OAAK,EAAQ,SAAS,EAClC,EAAS,EAAO,OAAO,aAAe,KAAM,AAAQ,IAAsB,CAAM,EAAI,AAAG,aAAW,EAAQ,CAAC,EACjH,MAAG,WAAQ,CAAC,EAAQ,CAAM,CAAC,EACpB,CAAE,SAAQ,OAAS,EAAO,OAAO,OAAS,EAAY,IAAM,CACrE,CACF,CAgCA,kBAA2B,EAAyB,EAAe,CACjE,GAAI,GAAY,GAChB,GAAI,EAAO,mBAAqB,GAAK,CAAC,EAAM,OAAS,EAAM,MAAM,SAAW,GAAK,EAAM,MAAM,GAAK,MAAQ,EAAM,MAAM,GAAK,KAAM,MAAO,GAcxI,GAAI,CAAC,GAAK,YACR,GAAK,YAAc,AAAG,QAAM,CAAK,UACxB,GAAK,YAAY,MAAM,KAAO,EAAM,MAAM,IAAM,GAAK,YAAY,MAAM,KAAO,EAAM,MAAM,GACnG,AAAG,UAAQ,GAAK,WAAW,EAC3B,GAAK,YAAc,AAAG,QAAM,CAAK,MAC5B,CACL,GAAM,GAA4B,CAAC,EACnC,EAAE,KAAO,AAAG,MAAI,EAAO,GAAK,WAAW,EACvC,EAAE,QAAU,AAAG,MAAI,EAAE,KAAM,EAAE,IAAI,EACjC,EAAE,IAAM,AAAG,MAAI,EAAE,OAAO,EAExB,GAAM,GAAe,AADL,MAAM,GAAE,IAAI,KAAK,GACJ,GAAM,GAAM,MAAM,IAAM,GAAM,GAAM,MAAM,IAAM,GAAK,IAAM,EACxF,AAAG,UAAQ,CAAC,GAAK,YAAa,EAAE,KAAM,EAAE,QAAS,EAAE,GAAG,CAAC,EACvD,GAAK,YAAc,AAAG,QAAM,CAAK,EACjC,EAAY,GAAiB,GAAO,kBAAoB,EAC1D,CACA,MAAO,EACT,CAEA,kBAA8B,EAAyB,EAAgB,EAAiC,CACtG,GAAM,GAA4B,CAAC,EACnC,GAAI,CAAC,GAAU,CAAC,GAAU,EAAO,MAAM,SAAW,GAAK,EAAO,MAAM,SAAW,EAAO,MAAM,OAC1F,MAAK,GAAO,OAAO,EAAI,sDAAuD,EAAO,MAAO,EAAO,KAAK,EACjG,EAET,GAAI,EAAO,MAAM,KAAO,GAAK,EAAO,MAAM,KAAO,GAAK,EAAO,MAAM,KAAO,GAAK,EAAO,MAAM,KAAO,EACjG,MAAK,GAAO,OAAO,EAAI,wDAAyD,EAAO,MAAO,EAAO,KAAK,EACnG,EAET,EAAE,OAAS,AAAG,QAAM,CAAM,EAC1B,EAAE,OAAU,EAAO,MAAM,KAAO,EAAO,MAAM,IAAM,EAAO,MAAM,KAAO,EAAO,MAAM,GAAM,AAAG,QAAM,eAAe,EAAQ,CAAC,EAAO,MAAM,GAAI,EAAO,MAAM,EAAE,CAAC,EAAI,AAAG,QAAM,CAAM,EAC/K,EAAE,KAAO,AAAG,MAAI,EAAE,OAAQ,EAAE,MAAM,EAClC,EAAE,QAAU,AAAG,MAAI,EAAE,KAAM,EAAE,IAAI,EACjC,EAAE,IAAM,AAAG,MAAI,EAAE,OAAO,EAExB,GAAM,GAAe,AADL,MAAM,GAAE,IAAI,KAAK,GACJ,GAAM,GAAO,MAAM,IAAM,GAAM,GAAO,MAAM,IAAM,GAAK,IAAM,EAC1F,MAAG,WAAQ,CAAC,EAAE,OAAQ,EAAE,OAAQ,EAAE,KAAM,EAAE,QAAS,EAAE,GAAG,CAAC,EAClD,CACT,CC5TO,GAAM,IAAN,KAAU,CA4Ef,aAAc,CA1Ed,kBAEA,eAEA,iBAEA,kBAAmB,IAEnB,eAAgB,IAEhB,kBAAqB,CAAC,GAEtB,kBAEA,iBAEA,eAIA,oBAEA,iBAAmB,IAEnB,cAKI,CACA,UAAW,OACX,QAAS,OACT,KAAM,OACN,YAAa,MACf,GAEF,eAKI,CACA,UAAW,OACX,QAAS,OACT,QAAS,OACT,SAAU,MACZ,GAEF,gBAII,CACA,UAAW,OACX,QAAS,OACT,QAAS,MACX,GAEF,aAGI,CACA,MAAO,OACP,MAAO,CAAC,CACV,GAEF,iBAAoB,CAAC,GAErB,iBAEA,gBAEA,oBAUE,GAPA,KAAK,QAAU,MAAO,YAAc,YACpC,KAAK,KAAQ,MAAO,UAAY,aAAiB,MAAO,SAAQ,UAAa,aAAiB,MAAO,SAAQ,SAAS,MAAS,YAC/H,KAAK,KAAO,CAAE,QAAS,AAAG,GAAQ,YAAa,EAC/C,KAAK,UAAY,MAAO,kBAAoB,YAC5C,KAAK,QAAU,GAEf,KAAK,OAAS,KAAK,SAAW,KAAK,UAAa,MAAO,oBAAsB,YAAe,OACxF,MAAO,YAAc,YAAa,CACpC,GAAM,GAAM,UAAU,UAAU,MAAM,eAAe,EACrD,GAAI,GAAO,EAAI,GAAI,CACjB,GAAM,GAAgB,EAAI,GAAG,MAAM,eAAe,EAClD,KAAK,SAAY,GAAiB,EAAc,GAAM,EAAc,GAAG,QAAQ,SAAU,EAAE,EAAI,GAC/F,KAAK,MAAQ,UAAU,UAAU,QAAQ,EAAI,GAAI,EAAE,EAC/C,KAAK,SAAS,IAAI,MAAK,MAAQ,KAAK,MAAM,QAAQ,EAAI,GAAI,EAAE,GAChE,KAAK,MAAQ,KAAK,MAAM,QAAQ,MAAO,GAAG,CAU5C,CACF,KAAO,AAAI,OAAO,UAAY,aAC5B,MAAK,SAAW,GAAG,QAAQ,YAAY,QAAQ,OAC/C,KAAK,MAAQ,UAAU,QAAQ,UAEnC,CAGA,KAAM,gBAAgB,CAEpB,KAAK,SAAW,OAAO,KAAK,AAAG,SAAO,EAAE,eAAe,EACvD,KAAK,KAAK,UAAY,MAAO,cAAgB,YAC7C,KAAK,KAAK,QAAU,KAAK,SAAS,SAAS,MAAM,EAC7C,KAAK,KAAK,WAAa,KAAK,KAAK,SAAW,AAAG,aAAW,IAAM,QAClE,MAAK,KAAK,KAAO,KAAM,AAAG,OAAI,EAAE,SAAS,uBAAuB,EAChE,KAAK,KAAK,YAAc,KAAM,AAAG,OAAI,EAAE,SAAS,8BAA8B,GAEhF,GAAM,GAAI,AAAM,GAAO,IAAK,GAAG,EACzB,EAAM,EAAI,EAAE,WAAW,QAAQ,EAAI,OAIzC,GAFA,KAAK,MAAM,UAAY,MAAO,IAAQ,YACtC,KAAK,MAAM,QAAU,KAAK,SAAS,SAAS,OAAO,EAC/C,KAAK,MAAM,WAAa,KAAK,MAAM,SAAY,CAAG,aAAW,IAAM,SAAW,AAAG,aAAW,IAAM,WAAY,CAEhH,GAAM,GAAK,AAAG,UAAQ,EAAE,QAAU,YAAc,KAAM,AAAG,WAAQ,EAAE,gBAAgB,EAAE,GAAK,KAC1F,AAAI,GACF,MAAK,MAAM,QAAU,EAAG,aAAa,EAAG,OAAO,EAC/C,KAAK,MAAM,SAAW,EAAG,aAAa,EAAG,QAAQ,EAErD,CAEA,KAAK,OAAO,UAAY,KAAK,SAAW,MAAO,WAAU,KAAW,YACpE,KAAK,OAAO,QAAU,KAAK,SAAS,SAAS,QAAQ,EACrD,GAAI,CAEF,AAAI,KAAK,OAAO,WAAW,MAAK,OAAO,QAAW,MAAM,WAAU,IAAO,eAAe,GAAG,KAC7F,OAAQ,EAAN,CACA,KAAK,OAAO,UAAY,EAC1B,CACA,GAAI,CACF,KAAK,QAAU,AAAG,uBAAqB,AAAG,aAAW,CAAC,EAAE,IAAI,AAAC,GAAW,EAAO,WAAW,YAAY,CAAC,CACzG,OAAQ,EAAN,CAAa,CACjB,CAGA,KAAM,YAAY,CAChB,GAAM,GAAM,CAAE,MAAO,GAAI,MAAO,CAAC,CAAE,EACnC,AAAI,KAAK,MAAQ,KAAK,SAAS,WAAW,OAAO,EAYjD,AAAK,KAAK,IACL,KAAK,IAAS,EADD,OAAO,eAAe,KAAM,MAAO,CAAE,MAAO,CAAI,CAAC,CAErE,CACF,EAEa,EAAM,GAAI,olECnKvB,GAAM,IAAU,CACd,YAAa,GACb,eAAgB,GAChB,QAAS,GACT,MAAO,GACP,cAAe,EACjB,EAUa,GAAwC,CAAC,EAEtD,kBAA2B,EAAK,EAAiC,CAC/D,MAAI,IAAQ,OAAO,EAAI,oBAAqB,EAAK,CAAI,EAC9C,MAAM,EAAK,CAAI,CACxB,CAEO,YAA6B,EAAgB,CAClD,GAAQ,YAAc,EAAO,YAC7B,GAAQ,QAAU,EAAO,MACzB,GAAQ,cAAgB,EAAO,aACjC,CAEA,iBAAgC,EAAoD,CAnCpF,UAoCE,GAAI,GAAW,GAAK,GAAQ,cAAe,GAAa,EAAE,EAC1D,AAAK,EAAS,YAAY,EAAE,SAAS,OAAO,GAAG,IAAY,SAC3D,GAAM,GAAoB,EAAS,SAAS,GAAG,EAAI,EAAS,MAAM,GAAG,EAAI,EAAS,MAAM,IAAI,EACtF,EAAiB,EAAkB,EAAkB,OAAS,GAAG,QAAQ,QAAS,EAAE,EACpF,EAAkB,eAAiB,EACzC,GAAW,GAAkB,CAC3B,KAAM,EACN,iBAAkB,EAClB,kBAAmB,EACnB,YAAa,GAAW,GACxB,QAAS,EACX,EACA,GAAQ,eAAkB,MAAO,SAAW,aAAiB,MAAO,QAAO,cAAiB,aAAiB,MAAO,QAAO,WAAc,YACzI,GAAI,GAAe,CAAC,EACpB,GAAI,CACF,EAAgB,GAAQ,gBAAkB,GAAQ,YAAe,KAAM,AAAG,MAAG,WAAW,EAAI,CAAC,CAC/F,OAAQ,EAAN,CACA,GAAQ,eAAiB,EAC3B,CACA,GAAW,GAAgB,QAAW,GAAQ,gBAAkB,GAAQ,aAAgB,OAAO,KAAK,CAAY,EAAE,SAAS,CAAe,EAC1I,GAAM,GAAgB,MAAO,QAAU,YAAc,CAAC,EAAI,CAAE,UAAW,CAAC,EAAK,IAAU,GAAY,EAAK,CAAI,CAAE,EACxG,EAAoB,GAAO,IAAW,GAAW,GAAgB,QAAU,EAAkB,EAAU,CAAa,EACtH,EAAS,GACb,GAAI,CAEF,EAAM,cAAc,EAChB,GAAQ,OAAO,EAAI,sBAAuB,EAAM,OAAU,EAE9D,GAAM,GAAY,KAAM,GAAM,QAAQ,KAAK,EAC3C,GAAW,GAAgB,iBAAmB,qBAAW,aAAX,cAAuB,aAAc,EACnF,EAAM,SAAS,CAAS,EAExB,GAAW,GAAgB,kBAAoB,wBAAO,YAAP,cAAkB,aAAlB,cAA8B,aAAc,EACvF,GAAQ,SAAS,EAAI,cAAe,EAAM,SAAa,CAAE,MAAO,GAAW,GAAgB,iBAAkB,EAAG,EAAO,EAC3H,EAAS,EACX,OAAS,EAAP,CACA,EAAI,uBAAwB,EAAU,CAAG,CAC3C,CACA,GAAI,GAAU,GAAQ,aAAe,GAAQ,gBAAkB,CAAC,GAAW,GAAgB,QACzF,GAAI,CACF,GAAM,GAAa,KAAM,GAAM,KAAK,CAAe,EACnD,EAAI,eAAgB,EAAiB,CAAU,CACjD,OAAS,EAAP,CACA,EAAI,sBAAuB,EAAU,CAAG,CAC1C,CAEF,MAAO,EACT,gBCnFA,+FCeA,GAAI,IACE,GAAwB,CAAC,EACzB,GAAY,CAAC,QAAS,QAAS,QAAS,SAAU,OAAO,EACzD,GAAa,CAAC,GAAI,GAAI,GAAI,KAAM,KAAM,KAAM,EAAE,EAChD,GAAY,EACZ,GAAW,EACX,GAAU,OAAO,iBAGrB,kBAA2B,EAAgB,CAxB3C,MAyBE,MAAI,GAAI,SAAS,IAAQ,MACzB,AAAK,GACI,EAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,EADjD,GAAQ,KAAM,GAAU,KAAO,KAAK,OAAZ,cAAqB,SAAS,EAE3D,EACT,CAGA,kBAA8B,EAAe,EAAgB,EAAa,EAAkC,CAhC5G,QAiCE,GAAI,CAAC,GAAO,MAAO,CAAE,IAAK,EAAG,OAAQ,UAAW,YAAa,EAAG,KAAM,CAAC,CAAE,EACzE,GAAM,GAAY,GAAW,OAAO,KAAK,OAAZ,cAAqB,aAAc,GAC1D,EAAY,OAAO,KAAK,OAAZ,cAAqB,WAAY,GAAM,EAAI,EAAI,GACjE,MAAI,GAAO,aAAe,GAAY,GAAc,KAAc,GAAU,GAAK,GAC/E,MACO,GAAK,IAEd,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CAzCxC,QA0CI,GAAI,CAAC,cAAO,OAAO,GAAG,OAAO,OAC7B,GAAM,GAA4B,CAAC,EAE7B,EAAM,CAAC,CAAC,EAAK,GAAM,GAAM,EAAI,CAAC,EACpC,EAAE,OAAS,AAAG,QAAM,cAAc,EAAO,EAAK,CAAC,CAAC,EAAG,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,EAAE,CAAC,EACvG,GAAM,GAAgB,CAAE,IAAK,EAAG,OAAQ,UAAW,YAAa,EAAG,KAAM,CAAC,CAAE,EAC5E,AAAI,KAAO,KAAK,OAAZ,QAAqB,SAAS,EAAC,EAAE,IAAK,EAAE,OAAQ,EAAE,IAAI,EAAI,GAAM,QAAQ,EAAE,OAAQ,CAAC,aAAc,gBAAiB,aAAa,CAAC,GACpI,GAAM,GAAS,KAAM,GAAE,OAAO,KAAK,EACnC,EAAI,OAAS,EAAO,GAAK,EAAO,GAAK,OAAS,SAC9C,EAAI,YAAc,KAAK,MAAM,IAAO,GAAO,GAAK,EAAO,GAAK,EAAO,GAAK,EAAO,GAAG,EAAI,IACtF,GAAM,GAAO,KAAM,GAAE,KAAK,KAAK,EAC/B,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,AAAI,EAAK,GAAM,OAAO,KAAK,OAAZ,cAAqB,gBAAiB,KAAM,EAAI,KAAK,KAAK,CAAE,MAAO,KAAK,MAAM,IAAM,EAAK,EAAE,EAAI,IAAK,KAAM,GAAU,EAAW,CAAC,EAEjJ,EAAI,KAAK,KAAK,CAAC,EAAG,IAAM,EAAE,MAAQ,EAAE,KAAK,EAGzC,GAAM,GAAY,AADM,MAAM,KAAK,KAAM,GAAE,IAAI,KAAK,CAAC,EACnB,IAAI,CAAC,EAAG,IAAM,CAAC,GAAW,GAAI,CAAC,CAAC,EAAE,KAAK,CAAC,EAAG,IAAM,EAAE,GAAK,EAAE,EAAE,EAC1F,EAAM,EAAU,GAAG,GACvB,OAAS,GAAI,EAAG,EAAI,EAAU,OAAQ,IAAK,GAAO,EAAU,GAAG,GAAM,GAAU,GAAG,GAAK,GACvF,EAAI,IAAM,KAAK,MAAM,GAAK,CAAG,EAAI,GACjC,OAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACxD,GAAK,GAAO,EACZ,GAAY,EACZ,GAAW,EAAI,EACf,EAAQ,CAAG,CACb,CAAC,EACH,CClEO,GAAM,GAAwD,CACnE,MAAO,IACP,IAAK,EACL,IAAK,EACL,KAAM,GACN,MAAO,MACP,IAAK,CAAC,MAAQ,KAAQ,IAAM,CAC9B,EAEO,aAAgB,CACrB,EAAU,MAAQ,AAAG,SAAO,IAAK,SAAS,EAC1C,EAAU,IAAM,AAAG,SAAO,EAAG,SAAS,EACtC,EAAU,IAAM,AAAG,SAAO,EAAG,SAAS,EACtC,EAAU,KAAO,AAAG,SAAO,GAAK,SAAS,EACzC,EAAU,MAAQ,AAAG,SAAO,MAAO,SAAS,EAC5C,EAAU,IAAM,AAAG,WAAS,CAAC,MAAQ,KAAQ,IAAM,EAAG,SAAS,CACjE,CCLA,GAAI,IACE,GAA+B,CAAC,EAClC,GAAY,EACZ,GAAW,EACX,GAAU,OAAO,iBAGrB,kBAA2B,EAAgB,CACzC,MAAI,GAAI,SAAS,IAAQ,MACzB,AAAK,GACI,EAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,EADjD,GAAQ,KAAM,GAAU,EAAO,KAAK,OAAU,YAAY,EAE/D,EACT,CAGA,kBAA8B,EAAe,EAAgB,EAAa,EAAyC,CA7BnH,YA8BE,GAAI,CAAC,GAAO,MAAO,CAAE,IAAK,CAAE,EAC5B,GAAM,GAAY,GAAW,OAAO,KAAK,SAAZ,cAAuB,aAAc,GAC5D,EAAY,OAAO,KAAK,SAAZ,cAAuB,WAAY,GAAM,EAAI,EAAI,GACnE,MAAI,GAAO,aAAe,GAAa,GAAa,KAAc,GAAU,OAAK,KAAL,cAAW,MAAQ,OAAK,KAAL,cAAW,KAAM,EAC9G,MACO,GAAK,IAEd,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAI,CAAC,cAAO,SAAU,CAAC,GAAM,OAAO,IAAM,CAAC,GAAM,OAAO,GAAG,MAAO,OAClE,GAAM,GAA4B,CAAC,EACnC,EAAE,OAAS,AAAG,QAAM,eAAe,EAAO,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EACrG,EAAE,QAAU,AAAG,MAAI,EAAE,OAAQ,EAAU,KAAK,EAC5C,GAAM,GAAM,CAAE,IAAK,CAAE,EAErB,GADI,EAAO,KAAK,OAAU,SAAS,GAAE,IAAM,GAAM,QAAQ,EAAE,OAAO,GAC9D,EAAE,IAAK,CACT,GAAM,GAAO,KAAM,GAAE,IAAI,KAAK,EAC9B,EAAI,IAAM,KAAK,MAAM,GAAK,EAAK,EAAE,EAAI,EACvC,CACA,OAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACxD,GAAK,GAAO,EACZ,GAAY,EACZ,GAAW,EAAI,EACf,EAAQ,CAAG,CACb,CAAC,EACH,CCxCA,GAAI,IACE,GAAuD,CAAC,EAC1D,GAAY,EACZ,GAAW,EACX,GAAU,OAAO,iBAGf,GAAM,CAAC,MAAQ,KAAQ,IAAM,EAGnC,kBAA2B,EAAsB,CAC/C,MAAI,GAAI,SAAS,IAAQ,MACzB,AAAK,GACI,EAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,EADjD,GAAQ,KAAM,GAAU,EAAO,KAAK,OAAU,eAAe,EAElE,EACT,CAGA,kBAA8B,EAAe,EAAgB,EAAK,EAAyD,CAjC3H,YAkCE,GAAI,CAAC,GAAO,MAAO,CAAE,OAAQ,UAAW,YAAa,CAAE,EACvD,GAAM,GAAY,GAAW,OAAO,KAAK,SAAZ,cAAuB,aAAc,GAC5D,EAAY,OAAO,KAAK,SAAZ,cAAuB,WAAY,GAAM,EAAI,EAAI,GACnE,MAAI,GAAO,aAAe,GAAa,GAAa,KAAc,GAAU,OAAK,KAAL,cAAW,SAAW,OAAK,KAAL,cAAW,aAAc,EACzH,MACO,GAAK,IAEd,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAI,CAAC,cAAO,OAAO,GAAG,OAAO,OAC7B,GAAM,GAA4B,CAAC,EACnC,EAAE,OAAS,AAAG,QAAM,eAAe,EAAO,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EACrG,EAAE,QAAU,AAAG,OAAK,IAAM,CACxB,GAAM,CAAC,EAAK,EAAO,GAAQ,AAAG,QAAM,EAAE,OAAQ,EAAG,CAAC,EAC5C,EAAU,AAAG,MAAI,EAAK,GAAI,EAAE,EAC5B,EAAY,AAAG,MAAI,EAAO,GAAI,EAAE,EAChC,EAAW,AAAG,MAAI,EAAM,GAAI,EAAE,EAC9B,EAAY,AAAG,OAAK,CAAC,EAAS,EAAW,CAAQ,CAAC,EAExD,MADkB,AAAG,OAAI,AAAG,MAAI,EAAW,EAAU,IAAI,EAAG,CAAC,CAE/D,CAAC,EACD,GAAM,GAA+C,CAAE,OAAQ,UAAW,YAAa,CAAE,EACzF,AAAI,EAAO,KAAK,OAAU,SAAS,GAAE,OAAS,GAAM,QAAQ,EAAE,OAAO,GACrE,GAAM,GAAO,KAAM,GAAE,OAAO,KAAK,EACjC,EAAI,OAAS,EAAK,GAAK,EAAK,GAAK,SAAW,OAC5C,EAAI,YAAc,EAAK,GAAK,EAAK,GAAM,KAAK,MAAM,IAAM,EAAK,EAAE,EAAI,IAAQ,KAAK,MAAM,IAAM,EAAK,EAAE,EAAI,IACvG,OAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACxD,GAAK,GAAO,EACZ,GAAY,EACZ,GAAW,EAAI,EACf,EAAQ,CAAG,CACb,CAAC,EACH,CCvDA,GAAI,IACE,GAAwB,CAAC,EAC3B,GAAU,OAAO,iBACjB,GAAY,EACZ,GAAW,EAEf,kBAA2B,EAAqC,CAjBhE,MAkBE,MAAI,GAAI,SAAS,IAAQ,MACzB,AAAK,GACI,EAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,EADjD,GAAQ,KAAM,GAAU,KAAO,KAAK,YAAZ,cAAuB,SAAS,EAE7D,EACT,CAEA,kBAA8B,EAAe,EAAgB,EAAa,EAAgC,CAxB1G,QAyBE,GAAI,CAAC,GAAO,MAAO,GACnB,GAAM,GAAY,OAAO,KAAK,YAAZ,cAAuB,WAAY,GAAM,EAAI,EAAI,GAC7D,EAAY,GAAW,OAAO,KAAK,YAAZ,cAAuB,aAAc,GAClE,MAAI,GAAO,aAAe,GAAY,GAAc,KAAc,GAAU,GAAO,GACjF,MACO,GAAO,IAEhB,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,aAAO,OAAO,GAAG,MAAQ,GAAM,OAAO,GAAG,MAAM,GAAK,EAAG,aAAO,OAAO,GAAG,MAAQ,GAAM,OAAO,GAAG,MAAM,GAAK,CAAC,EAAG,EAAK,EAC7J,EAAM,mBAAO,QAAQ,GACrB,EAAO,MAAM,GAAI,KAAK,GAAG,GAC/B,GAAO,GAAO,KAAK,MAAM,IAAM,CAAG,EAAI,IACtC,GAAY,EACZ,GAAW,EAAI,EACf,AAAG,UAAQ,CAAC,EAAQ,CAAG,CAAC,EACxB,EAAQ,GAAO,EAAI,CACrB,CAAC,EACH,CCtCO,GAAM,IAA4C,CACvD,WAAY,CACV,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACvD,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GACpD,EAKA,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,GAAG,EACvD,eAAgB,CAAC,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAG,EAClE,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAG,EACxD,eAAgB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAG,EACjE,mBAAoB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAG,EACrE,mBAAoB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAG,EAC5D,mBAAoB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAG,EACrE,mBAAoB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAG,EAC5D,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAClD,eAAgB,CAAC,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EACzD,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAG,EAC7C,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAG,EACvD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAClD,eAAgB,CAAC,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC3D,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC5D,kBAAmB,CAAC,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GAAG,EACtD,kBAAmB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,EAAE,EAC3C,aAAc,CAAC,IAAK,IAAK,IAAK,IAAK,GAAG,EACtC,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EACjD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC3D,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EACjD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC3D,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EACjD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC3D,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC3D,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EACzD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC/C,YAAa,CAAC,IAAK,IAAK,IAAK,IAAK,GAAG,EACrC,kBAAmB,CAAC,GAAG,EACvB,QAAS,CAAC,CAAC,EACX,WAAY,CAAC,CAAC,EACd,gBAAiB,CAAC,EAAE,EACpB,eAAgB,CAAC,GAAG,EACpB,WAAY,CAAC,GAAG,EAChB,UAAW,CAAC,GAAG,CACjB,EAEa,GAAmD,CAC9D,MAAO,IACP,MAAO,GACP,aAAc,CAAC,GAAI,GAAgB,kBAAqB,EAAE,CAC5D,EAEa,GAAwD,CACnE,QAAS,EACT,SAAU,EACV,KAAM,EACN,MAAO,EACP,QAAS,EACT,SAAU,EACV,aAAc,CAAC,EAAG,CAAC,CACrB,EAEa,GAAyD,CACpE,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EACzD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EAC1D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EAC1D,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,CAAC,CAAE,EACzD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EAClE,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EAClE,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EAClE,CAAE,IAAK,eAAgB,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EACjE,CAAE,IAAK,eAAgB,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,CAC3D,EAEa,GAA4B,CACvC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,eAAgB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,eAAgB,EAClC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,cAAgB,gBAAiB,EAClC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,CACvC,EAEa,GAAwB,CACnC,IAAK,GAAI,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,EACtJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GACrJ,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAC7I,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAClJ,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GACrJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GACpJ,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GACjJ,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,EAAG,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,EAAG,IAC/I,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,GAAI,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GACtJ,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAClJ,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACnJ,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,IAClJ,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,EAAG,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GACnJ,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,EAAG,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,EAAG,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAClJ,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAChJ,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IACpJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GACrJ,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GACpJ,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EACpJ,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAC9I,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAC9I,IAAK,GAAI,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAwB1I,GAAM,IAAuB,CACtB,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/E,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC1C,IAAK,EAAG,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,IAChC,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAChD,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAC7C,EAEa,GAAuB,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAG,EAE5K,GAAsB,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,GAAG,EAEpD,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,EAAE,EAEhC,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,EAAE,EAEhC,GAAM,GAAK,IAAI,AAAC,GAAM,GAAM,EAAE,EAO3C,YAA8B,EAAwB,CACpD,GAAM,GAAU,EAAY,IAAI,AAAC,GAAe,EAAW,EAAE,EAC7D,SAAQ,KAAK,EAAY,EAAY,OAAS,GAAG,EAAE,EAC5C,CACT,CAEO,GAAM,IAAuB,CAClC,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,CAAC,EAAG,CAAC,EAAG,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAC3N,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAC7N,EAEa,GAA0B,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAEzN,GAA8B,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAE7H,GAA2B,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAE1E,GAA2B,CAAC,CAAC,GAAI,CAAC,EAAG,CAAC,EAAG,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAEpN,GAA+B,CAAC,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,CAAC,EAEjH,GAA4B,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAE3E,GAA8B,CACzC,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACpE,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACrE,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACrE,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACrE,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACjE,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,CAChE,EAEa,GAAmB,CAC9B,KAAM,GAAqB,EAAS,EACpC,QAAS,GAAqB,EAAY,EAC1C,YAAa,GAAqB,EAAgB,EAClD,SAAU,GAAqB,EAAa,EAC5C,SAAU,GAAqB,EAAa,EAC5C,aAAc,GAAqB,EAAiB,EACpD,UAAW,GAAqB,EAAc,EAC9C,SAAU,GAAqB,EAAgB,CACjD,ECrsBO,GAAM,IAAa,AAAC,GAA0B,CAAC,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,EAAE,EAAG,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,EAAE,CAAC,EAErI,GAAe,AAAC,GAAkC,CAAC,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAAG,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAAG,CAAC,EAElL,GAAW,CAAC,EAAK,IAAgB,EAAM,CAClD,KAAK,MAAM,KAAK,IAAI,EAAG,EAAI,WAAW,EAAE,CAAC,EACzC,KAAK,MAAM,KAAK,IAAI,EAAG,EAAI,WAAW,EAAE,CAAC,EACzC,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAI,SAAS,EAAE,EAAI,KAAK,IAAI,EAAG,EAAI,WAAW,EAAE,CAAC,EAC5F,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAI,SAAS,EAAE,EAAI,KAAK,IAAI,EAAG,EAAI,WAAW,EAAE,CAAC,CAC9F,EAAI,CAAC,EAAG,EAAG,EAAG,CAAC,EAEF,GAAY,CAAC,EAAK,IAAgB,EAAM,CACnD,EAAI,WAAW,GAAM,GAAM,MAAM,IAAM,GACvC,EAAI,WAAW,GAAM,GAAM,MAAM,IAAM,GACtC,GAAI,SAAS,GAAK,EAAI,WAAW,IAAO,GAAM,MAAM,IAAM,GAC1D,GAAI,SAAS,GAAK,EAAI,WAAW,IAAO,GAAM,MAAM,IAAM,EAC7D,EAAI,CAAC,EAAG,EAAG,EAAG,CAAC,EAEF,GAAsB,CAAC,EAAK,IAAW,CAClD,GAAM,GAAoB,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,EAAE,EACjF,EAAkB,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,EAAE,EACjF,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,UAAW,WAAY,EAAI,UAAW,CACtF,EAEa,GAAe,CAAC,EAAK,EAAO,IAAa,CACpD,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAS,CAAC,EAAI,WAAW,GAAK,EAAG,EAAI,WAAW,GAAK,EAAG,EAAI,SAAS,GAAK,EAAG,EAAI,SAAS,GAAK,CAAC,EAChG,EAAO,AAAG,QAAM,cAAc,EAAO,CAAC,CAAM,EAAG,CAAC,CAAC,EAAG,CAAQ,EAC5D,EAAO,AAAG,MAAI,EAAM,EAAU,KAAK,EACzC,MAAG,WAAQ,CAAI,EACR,CACT,EAEa,GAAa,CAAC,EAAK,IAAW,CACzC,GAAM,GAAS,GAAa,CAAG,EACzB,EAAO,GAAW,CAAG,EACrB,EAA6B,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,CAAC,EAC9E,MAAO,CAAE,WAAY,CAAC,EAAO,GAAK,EAAS,GAAI,EAAO,GAAK,EAAS,EAAE,EAAY,SAAU,CAAC,EAAO,GAAK,EAAS,GAAI,EAAO,GAAK,EAAS,EAAE,EAAY,UAAW,EAAI,UAAW,WAAY,EAAI,UAAW,CAChN,EAEa,GAAc,AAAC,GAAQ,CAClC,GAAM,GAAU,GAAa,CAAG,EAC1B,EAAO,GAAW,CAAG,EACrB,EAAW,KAAK,IAAI,GAAG,CAAI,EAAI,EACrC,MAAO,CAAE,WAAY,CAAC,KAAK,MAAM,EAAQ,GAAK,CAAQ,EAAG,KAAK,MAAM,EAAQ,GAAK,CAAQ,CAAC,EAAY,SAAU,CAAC,KAAK,MAAM,EAAQ,GAAK,CAAQ,EAAG,KAAK,MAAM,EAAQ,GAAK,CAAQ,CAAC,EAAY,UAAW,EAAI,UAAW,WAAY,EAAI,UAAW,CACxP,EAEa,GAAgC,AAAC,GAAc,CAC1D,GAAM,GAAI,EAAU,IAAI,AAAC,GAAM,EAAE,EAAE,EAC7B,EAAI,EAAU,IAAI,AAAC,GAAM,EAAE,EAAE,EACnC,MAAO,CAAE,WAAY,CAAC,KAAK,IAAI,GAAG,CAAC,EAAG,KAAK,IAAI,GAAG,CAAC,CAAC,EAAY,SAAU,CAAC,KAAK,IAAI,GAAG,CAAC,EAAG,KAAK,IAAI,GAAG,CAAC,CAAC,EAAY,WAAU,CACjI,EAEa,GAAsB,CAAC,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,EAEtD,GAAmB,AAAC,GAAU,EAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,GAAG,EAEhG,GAAkB,CAAC,EAAQ,IAAW,GAAiB,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,EAAE,CAAC,EAItI,GAAM,IAAyB,CAAC,EAAG,IAAM,CAAC,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,EAEnE,GAAM,CAAC,EAAc,IAAiB,CACjD,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAAK,GAAW,EAAG,GAAK,EAAG,GAC1D,MAAO,EACT,EAEa,GAAqB,CAAC,EAAK,IAAgB,CACtD,GAAM,GAAwB,CAAC,EAC/B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,EAAO,KAAK,EAAI,GAAG,EAAY,EACpE,MAAO,EACT,EAEa,GAA4B,CAAC,EAAM,IAAS,CACvD,GAAM,GAA2B,CAAC,EAC5B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,CAAC,CAAC,EACf,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,CAAG,CAAC,CAAC,CACtG,CACA,MAAO,EACT,EAEa,GAAsB,CAAC,EAAU,IAAW,CACvD,GAAM,GAAO,KAAK,IAAI,CAAQ,EACxB,EAAO,KAAK,IAAI,CAAQ,EACxB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,CAAC,EAAG,CAAC,EAAM,EAAM,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,EAC9D,EAAoB,GAAuB,EAAO,GAAI,EAAO,EAAE,EAC/D,EAA2B,GAA0B,EAAmB,CAAc,EACtF,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,EAAE,EAC/E,MAAO,IAA0B,EAA0B,CAAyB,CACtF,EAEa,GAAwB,AAAC,GAAW,CAC/C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,EAAE,EAAG,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,EAAE,CAAC,EAC/E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,EAAE,EAClD,EAAsB,CAAC,CAAC,GAAI,EAAkB,GAAI,CAAoB,EAAG,CAAC,GAAI,EAAkB,GAAI,CAAoB,CAAC,EAC/H,MAAO,CAAC,EAAkB,GAAG,OAAO,EAAoB,EAAE,EAAG,EAAkB,GAAG,OAAO,EAAoB,EAAE,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,CAC7H,EAEa,GAAc,CAAC,EAAuB,IAAmB,CAAC,GAAI,EAAuB,EAAe,EAAE,EAAG,GAAI,EAAuB,EAAe,EAAE,CAAC,EAI5J,YAAyB,EAAW,CACzC,GAAM,GAAO,IAAc,IACvB,CAAE,QAAS,CAAC,CAAC,EAAG,QAAS,CAAC,CAAC,CAAE,EAC7B,CAAE,QAAS,CAAC,EAAY,GAAI,EAAY,CAAC,EAAG,QAAS,CAAC,EAAG,CAAC,CAAE,EAC1D,EAAmC,CAAC,EAC1C,OAAS,GAAI,EAAG,EAAI,EAAK,QAAQ,OAAQ,IAAK,CAC5C,GAAM,GAAS,EAAK,QAAQ,GACtB,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,CAAM,EACvD,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,CAAM,EACvD,EAAa,EAAK,QAAQ,GAChC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAI,EAAG,EAAI,EAAY,IAAK,EAAQ,KAAK,CAAC,EAAS,CAAO,CAAC,CACtE,CACF,CACF,CACA,MAAO,EACT,CAEO,YAA4B,EAAW,EAAK,EAAO,EAAgB,EAAW,CACnF,GAAM,GAAU,GAAW,CAAG,EACxB,EAAe,EAAU,IAAI,AAAC,GAAW,CAC5C,EAAQ,GAAK,EAAc,GAAM,GAAM,EAAY,GACnD,EAAQ,GAAK,EAAc,GAAM,GAAM,EAAY,GACnD,EAAM,IAAM,CACf,CAAE,EACI,EAAa,GAAU,IAAU,GAAO,KAAK,IAAI,CAAK,EAAI,GAC1D,EAAuB,EAAa,GAAoB,EAAO,CAAC,EAAG,CAAC,CAAC,EAAI,GACzE,EAAgB,EAAa,EAAa,IAAI,AAAC,GAAW,CAAC,GAAG,GAAY,EAAO,CAAoB,EAAG,EAAM,EAAE,CAAE,EAAI,EACtH,EAAwB,EAAa,GAAsB,CAAc,EAAI,GAC7E,EAAY,GAAa,CAAG,EAC5B,EAAU,CAAC,GAAI,EAAW,EAAsB,EAAE,EAAG,GAAI,EAAW,EAAsB,EAAE,CAAC,EACnG,MAAO,GAAc,IAAI,AAAC,GAAW,CACnC,KAAK,MAAM,EAAM,GAAK,EAAQ,EAAE,EAChC,KAAK,MAAM,EAAM,GAAK,EAAQ,EAAE,EAChC,KAAK,MAAM,EAAM,IAAM,CAAC,CAC1B,CAAE,CACJ,CAEO,YAA6B,EAAQ,EAAK,EAAO,EAAW,CACjE,GAAM,GAAgB,EAAI,UAAU,QAAU,AAAO,GAAc,MAC/D,AAAO,GAAc,aACrB,AAAO,GAAmB,aAC1B,EAAQ,EACR,EAAiB,GACjB,EAEJ,GAAI,GAAU,EAAI,QAAQ,SAAS,kBAAkB,EAGnD,GAFA,EAAQ,GAAgB,EAAI,UAAU,EAAa,IAAK,EAAI,UAAU,EAAa,GAAG,EACnE,GAAU,IAAU,GAAO,KAAK,IAAI,CAAK,EAAI,GAChD,CACd,GAAM,GAAgB,GAAa,CAAG,EAChC,EAAmB,CAAC,EAAO,GAAK,EAAM,MAAM,GAAI,EAAO,GAAK,EAAM,MAAM,EAAE,EAC1E,EAAU,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,CAAS,EACpE,EAAiB,GAAoB,CAAC,EAAO,CAAM,EACnD,EAAO,GAAa,EAAK,EAAS,CAAC,EAAW,CAAS,CAAC,EACxD,AAAG,UAAQ,CAAO,CACpB,KACE,GAAO,GAAa,EAAK,EAAO,CAAC,EAAW,CAAS,CAAC,MAGxD,GAAO,GAAa,EAAK,EAAO,CAAC,EAAW,CAAS,CAAC,EAExD,MAAO,CAAC,EAAO,EAAgB,CAAI,CACrC,CAEO,GAAM,IAAiB,AAAC,GAAS,CACtC,GAAM,GAAI,EAAK,IAAI,AAAC,GAAM,EAAE,EAAE,EACxB,EAAI,EAAK,IAAI,AAAC,GAAM,EAAE,EAAE,EAO9B,MAAO,CAAC,KAAK,IAAI,GAAG,CAAC,EAAK,MAAK,IAAI,GAAG,CAAC,EAAI,KAAK,IAAI,GAAG,CAAC,GAAK,EAAG,KAAK,IAAI,GAAG,CAAC,EAAK,MAAK,IAAI,GAAG,CAAC,EAAI,KAAK,IAAI,GAAG,CAAC,GAAK,CAAC,CACxH,EAEa,GAAmB,CAAC,EAAM,IAAgB,CACrD,GAAM,GAAS,GAAe,CAAI,EAC5B,EAAU,GAAW,CAAW,EAKtC,MAJsB,CACpB,WAAY,CAAC,EAAO,GAAK,EAAQ,GAAK,EAAG,EAAO,GAAK,EAAQ,GAAK,CAAC,EACnE,SAAU,CAAC,EAAO,GAAK,EAAQ,GAAK,EAAG,EAAO,GAAK,EAAQ,GAAK,CAAC,CACnE,CAEF,ECnMA,GAAM,IAAiB,EACjB,GAAqB,IACvB,GACA,GAAyB,KACzB,GAAY,EACZ,GAA4B,KAInB,GAAO,IAAM,GAE1B,kBAA2B,EAAqC,CA1BhE,MA2BE,MAAI,GAAI,SAAS,IAAQ,MACzB,AAAK,GACI,EAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,EADjD,GAAQ,KAAM,GAAU,KAAO,KAAK,WAAZ,cAAsB,SAAS,EAEnE,GAAY,GAAM,OAAO,GAAG,MAAQ,GAAM,OAAO,GAAG,MAAM,GAAK,EAC/D,GAAa,AAAG,SAAO,GAAW,OAAO,EACzC,GAAU,AAAG,WAAS,AAAK,GAAgB,EAAS,CAAC,EAC9C,EACT,CAEA,YAAqB,EAAoB,CACvC,GAAM,GAA4B,CAAC,EACnC,EAAE,UAAY,AAAG,QAAM,EAAY,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EAClD,EAAE,QAAU,AAAG,MAAI,EAAE,UAAW,EAAO,EACvC,EAAE,SAAW,AAAG,QAAM,EAAY,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EACjD,EAAE,mBAAqB,AAAG,MAAI,EAAE,SAAU,EAAU,EACpD,EAAE,kBAAoB,AAAG,MAAI,EAAE,QAAS,EAAU,EAClD,EAAE,YAAc,AAAG,MAAI,EAAE,mBAAoB,EAAU,GAAG,EAC1D,EAAE,OAAS,AAAG,MAAI,EAAE,kBAAmB,EAAE,WAAW,EACpD,EAAE,KAAO,AAAG,MAAI,EAAE,kBAAmB,EAAE,WAAW,EAClD,EAAE,gBAAkB,AAAG,MAAI,EAAE,OAAQ,EAAU,EAC/C,EAAE,cAAgB,AAAG,MAAI,EAAE,KAAM,EAAU,EAC3C,GAAM,GAAQ,AAAG,WAAS,CAAC,EAAE,gBAAiB,EAAE,aAAa,EAAG,CAAC,EACjE,cAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACjD,CACT,CAEA,kBAA+B,EAAoB,EAAgB,CArDnE,YAuDE,GAAK,CAAC,GAAgB,EAAW,oBAA2B,EAAW,MAAM,SAAW,GAAO,EAAW,MAAM,GAAK,GAAO,EAAW,MAAM,GAAK,EAAI,MAAO,CAAC,EAC9J,GAAM,GAA4B,CAAC,EACnC,EAAE,QAAU,AAAG,QAAM,eAAe,EAAY,CAAC,GAAW,EAAS,CAAC,EACtE,EAAE,IAAM,AAAG,MAAI,EAAE,QAAS,EAAU,KAAK,EACzC,EAAE,WAAa,AAAG,MAAI,EAAE,IAAK,EAAU,IAAI,EAC3C,GAAM,GAAM,mBAAO,QAAQ,EAAE,YAC7B,GAAI,MAAM,QAAQ,CAAG,GAAK,EAAI,OAAS,EAAG,CACxC,GAAM,GAAS,EAAI,KAAK,CAAC,EAAG,IAAM,EAAE,KAAO,EAAE,IAAI,EACjD,EAAE,UAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,EAAE,EAAG,CAAC,EACjD,EAAE,UAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,EAAE,EAAG,CAAC,EACjD,EAAE,OAAS,AAAG,SAAO,CAAC,EAAE,UAAW,EAAE,SAAS,EAAG,CAAC,EAClD,EAAE,MAAQ,AAAG,UAAQ,EAAE,OAAQ,CAAC,CAClC,KAAO,AAAI,OAAM,QAAQ,CAAG,EAC1B,EAAE,MAAQ,AAAG,UAAQ,EAAI,EAAE,EAE3B,EAAE,MAAQ,AAAG,UAAQ,CAAG,EAE1B,AAAG,UAAQ,CAAG,EACd,EAAE,MAAQ,GAAY,EAAE,KAAK,EAC7B,EAAE,OAAS,AAAG,QAAM,EAAE,MAAO,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EAC5C,EAAE,QAAU,AAAG,UAAQ,EAAE,MAAM,EAC/B,EAAE,OAAS,AAAG,UAAQ,EAAE,OAAO,EAC/B,EAAE,IAAM,KAAM,AAAG,SAAM,uBAAuB,EAAE,MAAO,EAAE,OAAS,MAAO,KAAK,WAAZ,cAAsB,cAAe,EAAK,MAAO,KAAK,WAAZ,cAAsB,eAAgB,EAAK,MAAO,KAAK,WAAZ,cAAsB,gBAAiB,CAAE,EAChM,GAAM,GAAM,KAAM,GAAE,IAAI,MAAM,EACxB,EAA0B,CAAC,EAC3B,EAAS,KAAM,GAAE,OAAO,KAAK,EACnC,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAM,GAAa,EAAO,EAAI,IAC9B,GAAI,EAAc,OAAO,KAAK,WAAZ,cAAsB,gBAAiB,GAAI,CAC3D,GAAM,GAA4B,CAAC,EACnC,EAAE,KAAO,AAAG,QAAM,EAAE,MAAO,CAAC,EAAI,GAAI,CAAC,EAAG,CAAC,EAAG,EAAE,CAAC,EAC/C,EAAE,MAAQ,AAAG,QAAM,EAAE,MAAO,CAAC,EAAI,GAAI,GAAiB,CAAC,EAAG,CAAC,EAAG,EAAE,CAAC,EACjE,EAAE,QAAU,AAAG,UAAQ,EAAE,KAAK,EAC9B,EAAE,UAAY,AAAG,UAAQ,EAAE,QAAS,CAAC,GAAgB,EAAE,CAAC,EACxD,GAAM,GAAS,KAAM,GAAE,KAAK,KAAK,EAC3B,EAAS,CACb,WAAY,CAAC,EAAO,GAAI,EAAO,EAAE,EACjC,SAAU,CAAC,EAAO,GAAI,EAAO,EAAE,EAC/B,UAAY,KAAM,GAAE,UAAU,MAAM,EACpC,YACF,EACM,EAAY,AAAK,GAAoB,EAAQ,CAAE,GAAW,MAAM,IAAM,GAAK,GAAY,GAAW,MAAM,IAAM,GAAK,EAAS,CAAC,EAC7H,EAAc,AAAK,GAAW,EAAW,EAAO,KAAK,OAAY,EAAkB,EACnF,EAAa,AAAK,GAAY,CAAW,EAC/C,EAAM,KAAK,CAAU,EACrB,OAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,CAC1D,CACF,CACA,cAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACjD,CACT,CCzGA,+CAEO,GAAM,IAAqB,CAChC,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,YACA,aACA,YACA,aACA,YACA,aACA,YACA,aACA,UACA,WACA,WACA,YACA,YACA,aACA,WACA,YACA,WACA,YACA,aACA,UACA,WACA,WACA,YACA,WACF,EAEa,GAAsC,CACjD,UAAW,CAAC,eAAgB,eAAe,EAC3C,KAAM,CAAC,WAAY,SAAS,EAC5B,MAAO,CAAC,YAAa,YAAY,EACjC,aAAc,CAAC,UAAW,UAAU,EACpC,aAAc,CAAC,WAAY,WAAW,EACtC,SAAU,CAAC,YAAa,WAAY,UAAU,EAC9C,UAAW,CAAC,eAAgB,SAAS,EACrC,aAAc,CAAC,eAAgB,WAAW,EAC1C,aAAc,CAAC,YAAa,WAAW,EACvC,SAAU,CAAC,YAAa,UAAU,EAClC,cAAe,CAAC,WAAY,WAAW,EACvC,cAAe,CAAC,WAAY,WAAW,EACvC,cAAe,CAAC,WAAY,WAAW,EACvC,eAAgB,CAAC,gBAAiB,gBAAgB,EAClD,cAAe,CAAC,WAAY,WAAW,EACvC,cAAe,CAAC,YAAa,YAAY,EACzC,UAAW,CAAC,aAAc,YAAa,WAAW,EAClD,WAAY,CAAC,gBAAiB,UAAU,EACxC,cAAe,CAAC,gBAAiB,YAAY,EAC7C,cAAe,CAAC,aAAc,YAAY,EAC1C,UAAW,CAAC,aAAc,WAAW,EACrC,eAAgB,CAAC,YAAa,YAAY,EAC1C,eAAgB,CAAC,YAAa,YAAY,EAC1C,eAAgB,CAAC,YAAa,YAAY,EAC1C,gBAAiB,CAAC,iBAAkB,iBAAiB,CACvD,EC/DA,GAAM,IAAY,IACd,GACE,GAAY,EACZ,GAAU,CAAC,EAAG,GAAI,GAAI,GAAI,EAAE,EAElC,mBAAsC,CACpC,GAAM,GAA2C,CAAC,EAC9C,EAAU,EACd,KAAO,EAAU,IAAW,CAC1B,GAAI,GAAc,EACd,EAAsB,EAC1B,KAAO,EAAsB,GAAQ,QAAU,GAAQ,KAAyB,GAAQ,IACtF,GAAe,EACf,IAEF,GAAM,GAAS,GAAQ,GACjB,EAAmB,KAAK,KAAK,GAAY,CAAM,EAC/C,EAAkB,KAAK,KAAK,GAAY,CAAM,EACpD,OAAS,GAAI,EAAG,EAAI,EAAkB,EAAE,EACtC,OAAS,GAAI,EAAG,EAAI,EAAiB,EAAE,EACrC,OAAS,GAAW,EAAG,EAAW,EAAa,EAAE,EAC/C,EAAQ,KAAK,CAAE,EAAI,GAAI,IAAO,EAAiB,EAAI,GAAI,IAAO,CAAiB,CAAC,EAItF,EAAU,CACZ,CACA,GAAe,CAAE,EAAG,AAAG,WAAS,EAAQ,IAAI,AAAC,GAAM,EAAE,CAAC,CAAC,EAAG,EAAG,AAAG,WAAS,EAAQ,IAAI,AAAC,GAAM,EAAE,CAAC,CAAC,CAAE,CACpG,CCjCO,YAAc,EAAyB,EAA+B,CAAC,EAAG,CAAC,EAAG,CACnF,GAAM,GAAS,CAAC,EAAU,IAAI,AAAC,GAAO,EAAG,EAAE,EAAG,EAAU,IAAI,AAAC,GAAO,EAAG,EAAE,CAAC,EACpE,EAAM,CAAC,KAAK,IAAI,GAAG,EAAO,EAAE,EAAG,KAAK,IAAI,GAAG,EAAO,EAAE,CAAC,EACrD,EAAM,CAAC,KAAK,IAAI,GAAG,EAAO,EAAE,EAAG,KAAK,IAAI,GAAG,EAAO,EAAE,CAAC,EACrD,EAAW,CAAC,EAAI,GAAI,EAAI,GAAI,EAAI,GAAK,EAAI,GAAI,EAAI,GAAK,EAAI,EAAE,EAC5D,EAAc,CAAC,EAAI,GAAK,EAAW,GAAI,EAAI,GAAK,EAAW,GAAI,EAAI,GAAK,EAAW,GAAI,EAAI,GAAK,EAAW,EAAE,EACnH,MAAO,CAAE,MAAK,QAAO,CACvB,CAEO,YAAgB,EAAyB,EAA+B,CAAC,EAAG,CAAC,EAAG,CACrF,GAAM,GAAS,CAAC,EAAU,IAAI,AAAC,GAAO,EAAG,EAAE,EAAG,EAAU,IAAI,AAAC,GAAO,EAAG,EAAE,CAAC,EACpE,EAAM,CAAC,KAAK,IAAI,GAAG,EAAO,EAAE,EAAG,KAAK,IAAI,GAAG,EAAO,EAAE,CAAC,EACrD,EAAM,CAAC,KAAK,IAAI,GAAG,EAAO,EAAE,EAAG,KAAK,IAAI,GAAG,EAAO,EAAE,CAAC,EACrD,EAAS,CAAE,GAAI,GAAK,EAAI,IAAM,EAAI,GAAI,GAAK,EAAI,IAAM,CAAC,EACtD,EAAO,KAAK,IAAI,EAAO,GAAK,EAAI,GAAI,EAAO,GAAK,EAAI,GAAI,CAAC,EAAO,GAAK,EAAI,GAAI,CAAC,EAAO,GAAK,EAAI,EAAE,EAChG,EAAW,CAAC,KAAK,MAAM,EAAO,GAAK,CAAI,EAAG,KAAK,MAAM,EAAO,GAAK,CAAI,EAAG,KAAK,MAAM,EAAI,CAAI,EAAG,KAAK,MAAM,EAAI,CAAI,CAAC,EAClH,EAAc,CAAC,EAAI,GAAK,EAAW,GAAI,EAAI,GAAK,EAAW,GAAI,EAAI,GAAK,EAAW,GAAI,EAAI,GAAK,EAAW,EAAE,EACnH,MAAO,CAAE,MAAK,QAAO,CACvB,CAEO,YAAe,EAAU,EAAmB,CACjD,GAAM,GAAO,CAAC,EAAI,GAAK,EAAW,EAAI,GAAK,CAAS,EAOpD,MANoB,CAClB,EAAI,GAAM,GAAK,GAAK,EAAI,IAAM,EAC9B,EAAI,GAAM,GAAK,GAAK,EAAI,IAAM,EAC9B,EAAK,GACL,EAAK,EACP,CAEF,CChBA,GAAM,IAAM,CAAE,QAAS,EAAK,EAEtB,GAAwE,CAAE,SAAU,KAAM,UAAW,IAAK,EAC1G,GAAyE,CAAE,SAAU,CAAC,IAAK,GAAG,EAAG,UAAW,CAAC,IAAK,GAAG,CAAE,EACzH,GAAU,OAAO,iBACf,GAA2D,CAC/D,UAAW,CAAC,QAAS,0BAA2B,qBAAsB,WAAY,iBAAiB,EACnG,SAAU,CAAC,CACb,EAEI,GAA2B,KAC3B,GACA,GAA8B,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,EAC7D,GAAW,EAET,GAAU,AAAC,GAAO,EAAK,EAAK,GAAI,KAAK,IAAI,CAAC,GAEhD,kBAAiC,EAAqC,CAEpE,GADI,GAAI,SAAS,IAAO,SAAW,MAC/B,CAAC,GAAO,UAAY,EAAO,KAAK,UAAe,EAAO,KAAK,SAAY,UAAoB,CAC7F,GAAO,SAAW,KAAM,GAAU,EAAO,KAAK,SAAY,SAAY,EACtE,GAAM,GAAS,OAAO,OAAO,GAAO,SAAS,eAAe,MAAS,EACrE,GAAU,SAAS,GAAK,MAAM,QAAQ,CAAM,EAAI,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,EAC9F,GAAU,SAAS,GAAK,MAAM,QAAQ,CAAM,EAAI,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CAChG,KAAO,AAAI,GAAO,OAAS,GAAO,UAAU,EAAI,gBAAiB,GAAO,SAAS,QAAW,EAC5F,YAAM,AAAO,IAAc,EACpB,GAAO,QAChB,CAEA,kBAA+B,EAAqC,CAElE,GADI,GAAI,SAAS,IAAO,UAAY,MAC/B,GAAO,UAKL,AAAI,EAAO,OAAO,EAAI,gBAAiB,GAAO,UAAU,QAAW,MALnD,CACrB,GAAO,UAAY,KAAM,GAAU,EAAO,KAAK,SAAS,EACxD,GAAM,GAAS,OAAO,OAAO,GAAO,UAAU,eAAe,MAAS,EACtE,GAAU,UAAU,GAAK,MAAM,QAAQ,CAAM,EAAI,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,EAC/F,GAAU,UAAU,GAAK,MAAM,QAAQ,CAAM,EAAI,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CACjG,CACA,MAAO,IAAO,SAChB,CAQA,kBAA4B,EAAe,EAA+B,CACxE,GAAM,GAA4B,CAAC,EACnC,GAAI,CAAC,EAAM,OAAS,CAAC,EAAM,MAAM,IAAM,CAAC,EAAM,MAAM,GAAI,MAAO,GAC/D,GAAI,GAIJ,GAHI,IACF,GAAE,QAAU,AAAG,QAAM,cAAc,EAAO,CAAC,EAAO,EAAG,CAAC,CAAC,EAAG,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,EAAE,CAAC,GAExF,EAAM,MAAM,KAAO,EAAM,MAAM,GAAI,CACrC,GAAM,GAA2B,CAC/B,EAAM,MAAM,GAAK,EAAM,MAAM,GAAK,KAAK,MAAO,GAAM,MAAM,GAAK,EAAM,MAAM,IAAM,CAAC,EAAI,EACtF,EAAM,MAAM,GAAK,EAAM,MAAM,GAAK,KAAK,MAAO,GAAM,MAAM,GAAK,EAAM,MAAM,IAAM,CAAC,EAAI,CACxF,EACM,EAA0B,CAC9B,EAAM,MAAM,GAAK,EAAM,MAAM,GAAK,KAAK,MAAO,GAAM,MAAM,GAAK,EAAM,MAAM,IAAM,CAAC,EAAI,EACtF,EAAM,MAAM,GAAK,EAAM,MAAM,GAAK,KAAK,MAAO,GAAM,MAAM,GAAK,EAAM,MAAM,IAAM,CAAC,EAAI,CACxF,EACA,GAAU,CACR,CAAC,EAAG,CAAC,EACL,EACA,EACA,CAAC,EAAG,CAAC,CACP,EACA,EAAE,IAAM,AAAG,MAAI,EAAE,SAAW,EAAO,EAAO,EAC1C,EAAE,OAAS,AAAG,QAAM,eAAe,EAAE,IAAK,CAAC,EAAM,CAAI,CAAC,EACtD,EAAQ,AAAG,MAAI,EAAE,OAAQ,EAAU,KAAK,CAC1C,KAAO,AAAI,GAAM,MAAM,KAAO,EAC5B,GAAE,OAAS,AAAG,QAAM,eAAe,EAAE,SAAW,EAAO,CAAC,EAAM,CAAI,CAAC,EACnE,EAAQ,AAAG,MAAI,EAAE,OAAQ,EAAU,KAAK,GAExC,EAAQ,AAAG,MAAI,EAAE,SAAW,EAAO,EAAU,KAAK,EAEpD,cAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACjD,CACT,CAEA,YAA0B,EAAgC,EAAmD,CAC3G,OAAW,KAAO,GAChB,EAAI,SAAW,CACb,KAAK,MAAM,EAAI,SAAS,GAAM,GAAW,GAAK,GAAQ,GAAG,GAAK,GAAQ,GAAG,IAAM,EAAW,GAAK,GAAQ,GAAG,EAAE,EAC5G,KAAK,MAAM,EAAI,SAAS,GAAM,GAAW,GAAK,GAAQ,GAAG,GAAK,GAAQ,GAAG,IAAM,EAAW,GAAK,GAAQ,GAAG,EAAE,EAC5G,EAAI,SAAS,EACf,EACA,EAAI,YAAc,CAAC,EAAI,SAAS,GAAK,EAAW,GAAI,EAAI,SAAS,GAAK,EAAW,GAAI,EAAK,EAAI,SAAS,GAAiB,GAAW,GAAK,EAAW,GAAG,EAExJ,GAAI,GACF,OAAW,KAAO,GAChB,EAAI,YAAc,CAChB,EAAI,YAAY,GAAK,GAAQ,GAC7B,EAAI,YAAY,GAAK,GAAQ,GAC7B,EAAI,YAAY,EAClB,EACA,EAAI,SAAW,CACb,KAAK,MAAM,EAAI,YAAY,GAAK,EAAW,EAAE,EAC7C,KAAK,MAAM,EAAI,YAAY,GAAK,EAAW,EAAE,EAC7C,EAAI,YAAY,EAClB,EAGJ,MAAO,EACT,CAEA,kBAA4B,EAAgC,CAE1D,GAAM,GAAW,EAAU,KAAK,AAAC,GAAM,EAAE,OAAS,UAAU,EACtD,EAAY,EAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAAW,EACxD,EAAY,EAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAAW,EAC9D,EAAS,SAAS,GAAO,IAAU,SAAS,IAAM,GAAM,GAAU,SAAS,IAAM,IAAM,EACvF,GAAM,GAAY,EAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAAW,EACxD,EAAa,EAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAAY,EAC1D,EAAa,EAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAAY,EAChE,EAAU,SAAS,GAAO,IAAW,SAAS,IAAM,GAAM,GAAW,SAAS,IAAM,IAAM,CAC5F,CAEA,kBAA+B,EAAe,EAAgB,EAA0D,CAtIxH,MA8IE,GAAM,GAA4B,CAAC,EACnC,CAAC,EAAE,GAAqB,EAAE,aAA+B,EAAE,QAAyB,EAAE,MAAwB,EAAE,QAAiB,EAAI,MAAO,YAAP,cAAkB,QAAQ,EAAO,GAAY,WAClL,GAAM,GAAa,MAAM,GAAE,SAAS,KAAK,GAAG,GACtC,EAAS,KAAM,GAAE,GAAG,KAAK,EACzB,EAAY,KAAM,GAAE,MAAM,KAAK,EACrC,OAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACxD,GAAM,GAAyC,CAAC,EAC1C,EAAQ,EACd,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAO,IAAK,CAC9C,GAAM,GAAQ,GAAQ,EAAO,EAAQ,EAAI,EAAE,EACrC,EAAW,GAAQ,EAAO,EAAQ,EAAI,EAAE,EACxC,EAAW,KAAK,MAAM,IAAM,EAAQ,EAAW,CAAS,EAAI,IAC5D,EAAqB,CAAC,EAAO,EAAQ,EAAI,GAAK,GAAU,UAAU,GAAI,EAAO,EAAQ,EAAI,GAAK,GAAU,UAAU,GAAI,EAAO,EAAQ,EAAI,GAAK,CAAC,EAC/I,EAAkB,CAAC,KAAK,MAAM,EAAW,GAAK,EAAY,EAAE,EAAG,KAAK,MAAM,EAAW,GAAK,EAAY,EAAE,EAAG,EAAY,EAAY,EACnI,EAAkB,CAAC,EAAU,EAAQ,EAAI,GAAI,EAAU,EAAQ,EAAI,GAAI,EAAU,EAAQ,EAAI,GAAK,CAAC,EACzG,EAAkB,KAAK,CAAE,KAAM,AAAO,GAAI,GAAoB,cAAa,WAAU,WAAU,MAAO,CAAS,CAAC,CAClH,CACA,GAAI,EAAa,GAAO,KAAK,eAAiB,GAAI,MAAO,MACzD,GAAa,CAAiB,EAC9B,GAAM,GAAiC,GAAiB,EAAmB,CAAU,EAC/E,EAAO,EAAU,IAAI,AAAC,GAAM,EAAE,QAAQ,EACtC,EAAQ,AAAI,GAAK,EAAM,CAAC,EAAW,GAAI,EAAW,EAAE,CAAC,EACrD,EAAiD,CAAC,EACxD,OAAW,CAAC,EAAM,IAAY,QAAO,QAAe,EAAS,EAAG,CAC9D,GAAM,GAAqB,CAAC,EAC5B,OAAS,GAAI,EAAG,EAAI,EAAQ,OAAS,EAAG,IAAK,CAC3C,GAAM,GAAM,EAAU,KAAK,AAAC,GAAQ,EAAI,OAAS,EAAQ,EAAE,EACrD,EAAM,EAAU,KAAK,AAAC,GAAQ,EAAI,OAAS,EAAQ,EAAI,EAAE,EAC/D,AAAI,GAAO,GAAK,EAAG,KAAK,CAAC,EAAI,SAAU,EAAI,QAAQ,CAAC,CACtD,CACA,EAAY,GAAQ,CACtB,CAEA,MADa,CAAE,GAAI,EAAG,MAAO,KAAK,MAAM,IAAM,CAAS,EAAI,IAAK,IAAK,EAAM,IAAK,OAAQ,EAAM,OAAQ,YAAW,aAAY,CAE/H,CAgCA,kBAA8B,EAAe,EAAuC,CAClF,GAAM,GAA+B,CAAC,EAAM,MAAM,IAAM,EAAG,EAAM,MAAM,IAAM,CAAC,EACxE,EAAY,GAAO,KAAK,UAAY,GAAM,EAAI,EAAI,GAClD,EAAY,GAAW,GAAO,KAAK,YAAc,GACvD,GAAI,EAAO,aAAe,GAAY,GAAa,KAAU,KAC3D,SACK,CACL,GAAM,GAA4B,CAAC,EAOnC,EAAE,UAAY,KAAM,IAAa,EAAO,GAAG,EAC3C,GAAQ,KAAM,IAAgB,EAAE,UAAW,EAAQ,CAAU,EAe7D,OAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACxD,GAAW,EAAI,EACf,GAAU,CACZ,CACA,MAAO,IAAQ,CAAC,EAAK,EAAI,CAAC,CAC5B,CChPO,GAAM,IAAS,CACpB,CAAE,MAAO,EAAG,MAAO,QAAS,EAC5B,CAAE,MAAO,EAAG,MAAO,SAAU,EAC7B,CAAE,MAAO,EAAG,MAAO,KAAM,EACzB,CAAE,MAAO,EAAG,MAAO,YAAa,EAChC,CAAE,MAAO,EAAG,MAAO,UAAW,EAC9B,CAAE,MAAO,EAAG,MAAO,KAAM,EACzB,CAAE,MAAO,EAAG,MAAO,OAAQ,EAC3B,CAAE,MAAO,EAAG,MAAO,OAAQ,EAC3B,CAAE,MAAO,EAAG,MAAO,MAAO,EAC1B,CAAE,MAAO,GAAI,MAAO,eAAgB,EACpC,CAAE,MAAO,GAAI,MAAO,cAAe,EACnC,CAAE,MAAO,GAAI,MAAO,WAAY,EAChC,CAAE,MAAO,GAAI,MAAO,eAAgB,EACpC,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,SAAU,EAC9B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,SAAU,EAC9B,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,SAAU,EAC9B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,WAAY,EAChC,CAAE,MAAO,GAAI,MAAO,aAAc,EAClC,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,cAAe,EACnC,CAAE,MAAO,GAAI,MAAO,gBAAiB,EACrC,CAAE,MAAO,GAAI,MAAO,YAAa,EACjC,CAAE,MAAO,GAAI,MAAO,WAAY,EAChC,CAAE,MAAO,GAAI,MAAO,eAAgB,EACpC,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,YAAa,EACjC,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,SAAU,EAC9B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,cAAe,EACnC,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,cAAe,EACnC,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,IAAK,EACzB,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,YAAa,EACjC,CAAE,MAAO,GAAI,MAAO,WAAY,EAChC,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,SAAU,EAC9B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,cAAe,EACnC,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,YAAa,EACjC,CAAE,MAAO,GAAI,MAAO,YAAa,EACjC,CAAE,MAAO,GAAI,MAAO,YAAa,CACnC,ECrEA,GAAI,IACA,GAAY,EACZ,GAAuB,CAAC,EACxB,GAAW,EACX,GAAU,OAAO,iBAErB,kBAA2B,EAAqC,CAE9D,GADI,EAAI,SAAS,IAAQ,MACpB,GAKE,AAAI,EAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,MALnD,CAEV,GAAQ,KAAM,GAAU,EAAO,OAAO,SAAS,EAC/C,GAAM,GAAS,OAAO,OAAO,GAAM,eAAe,MAAS,EAC3D,GAAY,MAAM,QAAQ,CAAM,EAAI,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CACpF,CACA,MAAO,GACT,CAEA,kBAAuB,EAAoB,EAA+B,EAAgB,CACxF,GAAI,CAAC,EAAK,MAAO,CAAC,EAClB,GAAM,GAA4B,CAAC,EAC7B,EAA+B,CAAC,EAChC,EAAa,KAAM,GAAI,MAAM,EACnC,EAAE,QAAU,AAAG,UAAQ,CAAG,EAC1B,GAAM,GAAM,AAAG,QAAM,EAAE,QAAS,EAAG,CAAC,EACpC,EAAE,MAAQ,AAAG,QAAM,CAAC,EAAI,GAAI,EAAI,GAAI,EAAI,GAAI,EAAI,EAAE,EAAG,CAAC,EACtD,EAAE,MAAQ,AAAG,UAAQ,EAAE,KAAK,EAC5B,EAAE,OAAS,AAAG,UAAQ,EAAI,EAAE,EAC5B,EAAE,QAAU,AAAG,UAAQ,EAAI,EAAE,EAC7B,AAAG,UAAQ,CAAC,EAAK,GAAG,CAAG,CAAC,EACxB,EAAE,IAAM,KAAM,AAAG,SAAM,uBAAuB,EAAE,MAAO,EAAE,OAAQ,EAAO,OAAO,YAAa,EAAO,OAAO,aAAe,EAAO,OAAO,eAAiB,CAAE,EAC1J,GAAM,GAAM,KAAM,GAAE,IAAI,KAAK,EACzB,EAAI,EACR,OAAW,KAAM,OAAM,KAAK,CAAG,EAAG,CAChC,GAAM,GAAQ,KAAK,MAAM,IAAM,EAAW,GAAG,GAAI,EAAE,EAAI,IACjD,EAAW,EAAW,GAAG,GAAI,GAC7B,EAAQ,GAAO,GAAU,MACzB,CAAC,EAAG,GAAK,CACb,EAAW,GAAG,GAAI,GAAK,GACvB,EAAW,GAAG,GAAI,GAAK,EACzB,EACM,EAAc,CAClB,EACA,EACA,EAAW,GAAG,GAAI,GAAK,GAAY,EACnC,EAAW,GAAG,GAAI,GAAK,GAAY,CACrC,EACM,EAAW,CACf,KAAK,MAAM,EAAO,GAAK,EAAY,EAAE,EACrC,KAAK,MAAM,EAAO,GAAK,EAAY,EAAE,EACrC,KAAK,MAAM,EAAO,GAAK,EAAY,EAAE,EACrC,KAAK,MAAM,EAAO,GAAK,EAAY,EAAE,CACvC,EACA,EAAQ,KAAK,CAAE,GAAI,IAAK,QAAO,MAAO,EAAU,QAAO,MAAK,QAAO,CAAC,CACtE,CACA,cAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACjD,CACT,CAEA,kBAA8B,EAAe,EAAyC,CACpF,GAAM,GAAY,GAAO,OAAO,UAAY,GAAM,EAAI,EAAI,GACpD,EAAY,GAAW,GAAO,OAAO,YAAc,GACzD,MAAI,GAAO,aAAe,GAAY,GAAc,GAAK,OAAS,EAChE,MACO,IAET,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAa,CAAC,EAAM,MAAM,IAAM,EAAG,EAAM,MAAM,IAAM,CAAC,EACtD,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,GAAW,EAAS,CAAC,EAC9D,EAAU,EAAO,OAAO,QAAU,mBAAO,QAAQ,EAAQ,CAAC,oBAAoB,GAAe,KACnG,GAAW,EAAI,EACf,AAAG,UAAQ,CAAM,EAEjB,GAAM,GAAM,KAAM,IAAQ,EAAS,EAAY,CAAM,EACrD,GAAO,EAEP,EAAQ,CAAG,CACb,CAAC,EACH,CC7FA,+CAAO,GAAM,IAAqB,CAChC,OACA,OACA,gBACA,aACA,aACA,QACA,eACA,YACA,YACA,aACA,WACA,YACA,aACA,UACA,WACA,WACF,EAEa,GAAsC,CACjD,QAAS,CAAC,UAAW,WAAY,WAAW,EAC5C,SAAU,CAAC,WAAY,YAAa,YAAY,EAChD,MAAO,CAAC,eAAgB,gBAAiB,WAAY,UAAW,cAAc,EAC9E,QAAS,CAAC,eAAgB,YAAa,WAAW,EAClD,SAAU,CAAC,gBAAiB,aAAc,YAAY,EACtD,KAAM,CAAC,CACT,ECVA,GAAI,IACA,GAAW,EACT,GAAoB,CAAE,GAAI,EAAG,UAAW,CAAC,EAAG,IAAK,CAAC,EAAG,EAAG,EAAG,CAAC,EAAG,OAAQ,CAAC,EAAG,EAAG,EAAG,CAAC,EAAG,MAAO,EAAG,YAAa,CAAC,CAAuC,EAMtJ,GAAU,OAAO,iBAErB,kBAA2B,EAAqC,CAC9D,MAAI,GAAI,SAAS,IAAQ,MACzB,AAAK,GACI,EAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,EADjD,GAAQ,KAAM,GAAU,EAAO,KAAK,SAAS,EAElD,EACT,CAGA,kBAAqB,EAAQ,EAAU,CACrC,GAAM,CAAC,EAAO,GAAU,EAAO,MACzB,EAAW,AAAG,UAAQ,EAAQ,CAAC,EAAS,CAAK,CAAC,EAC9C,EAAM,AAAG,MAAI,EAAU,CAAC,EACxB,EAAY,MAAM,GAAI,KAAK,GAAG,GAEpC,GADA,AAAG,UAAQ,CAAC,EAAU,CAAG,CAAC,EACtB,EAAW,EAAU,CACvB,GAAM,GAAc,AAAG,SAAO,EAAU,CAAC,EACnC,EAAM,AAAG,MAAI,EAAa,CAAK,EAC/B,EAAK,MAAM,GAAI,KAAK,GAAG,GACvB,EAAM,AAAG,MAAI,EAAa,AAAG,SAAO,EAAO,OAAO,CAAC,EACnD,EAAK,MAAM,GAAI,KAAK,GAAG,GAC7B,MAAG,WAAQ,CAAC,EAAK,CAAG,CAAC,EACd,CAAC,EAAG,EAAG,CAAQ,CACxB,CACA,MAAO,CAAC,EAAG,EAAG,CAAQ,CACxB,CAEA,kBAA8B,EAAe,EAAuC,CAClF,GAAM,GAAY,GAAO,KAAK,UAAY,GAAM,EAAI,EAAI,GAClD,EAAY,GAAW,GAAO,KAAK,YAAc,GACvD,MAAI,GAAO,aAAe,GAAY,GAAa,OAAO,KAAK,GAAM,SAAS,EAAE,OAAS,EACvF,MACO,CAAC,EAAK,GAEf,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CA5DxC,MA6DI,GAAM,GAAS,AAAG,OAAK,IAAM,CAC3B,GAAI,CAAC,cAAO,OAAO,GAAG,OAAO,MAAO,MACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EACnG,EAAU,AAAG,MAAI,EAAQ,EAAU,GAAG,EAE5C,MADa,AAAG,OAAI,EAAS,EAAU,GAAG,CAE5C,CAAC,EAEG,EAKJ,GAJI,EAAO,KAAK,SAAS,GAAO,mBAAO,QAAQ,IAC/C,GAAW,EAAI,EACf,AAAG,UAAQ,CAAM,EAEb,EAAM,CACR,GAAM,UAAU,OAAS,EACzB,GAAM,GAAU,EAAK,QAAQ,EAC7B,AAAG,UAAQ,CAAI,EAEf,GAAM,GAAQ,EAAQ,QAAQ,CAAC,EAC/B,AAAG,UAAQ,CAAO,EAElB,OAAS,GAAK,EAAG,EAAK,EAAM,OAAQ,IAAM,CAExC,GAAM,CAAC,EAAG,EAAG,GAAa,KAAM,IAAM,EAAM,GAAK,EAAO,KAAK,aAAa,EAC1E,AAAI,EAAa,OAAO,OAAP,cAAa,gBAAiB,IAC7C,GAAM,UAAU,KAAK,CACnB,MAAO,KAAK,MAAM,IAAM,CAAS,EAAI,IACrC,KAAM,AAAO,GAAI,GACjB,YAAa,CAEX,EAAI,GAAM,OAAO,GAAG,MAAM,GAAI,EAAI,GAAM,OAAO,GAAG,MAAM,EAC1D,EACA,SAAU,CAER,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,GAAM,OAAO,GAAG,MAAM,EAAE,CACrH,CACF,CAAC,CAEL,CACA,EAAM,QAAQ,AAAC,GAAM,AAAG,UAAQ,CAAC,CAAC,CACpC,CACA,GAAM,MAAQ,GAAM,UAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,CAAC,EAC/F,GAAM,GAAI,GAAM,UAAU,IAAI,AAAC,GAAM,EAAE,SAAS,EAAE,EAC5C,EAAI,GAAM,UAAU,IAAI,AAAC,GAAM,EAAE,SAAS,EAAE,EAClD,GAAM,IAAM,CACV,KAAK,IAAI,GAAG,CAAC,EACb,KAAK,IAAI,GAAG,CAAC,EACb,KAAK,IAAI,GAAG,CAAC,EAAI,KAAK,IAAI,GAAG,CAAC,EAC9B,KAAK,IAAI,GAAG,CAAC,EAAI,KAAK,IAAI,GAAG,CAAC,CAChC,EACA,GAAM,GAAO,GAAM,UAAU,IAAI,AAAC,GAAM,EAAE,YAAY,EAAE,EAClD,EAAO,GAAM,UAAU,IAAI,AAAC,GAAM,EAAE,YAAY,EAAE,EACxD,GAAM,OAAS,CACb,KAAK,IAAI,GAAG,CAAI,EAChB,KAAK,IAAI,GAAG,CAAI,EAChB,KAAK,IAAI,GAAG,CAAI,EAAI,KAAK,IAAI,GAAG,CAAI,EACpC,KAAK,IAAI,GAAG,CAAI,EAAI,KAAK,IAAI,GAAG,CAAI,CACtC,EACA,OAAW,CAAC,EAAM,IAAY,QAAO,QAAe,EAAS,EAAG,CAC9D,GAAM,GAAqB,CAAC,EAC5B,OAAS,GAAI,EAAG,EAAI,EAAQ,OAAS,EAAG,IAAK,CAC3C,GAAM,GAAM,GAAM,UAAU,KAAK,AAAC,GAAQ,EAAI,OAAS,EAAQ,EAAE,EAC3D,EAAM,GAAM,UAAU,KAAK,AAAC,GAAQ,EAAI,OAAS,EAAQ,EAAI,EAAE,EACrE,AAAI,GAAO,GAAO,EAAI,MAAS,GAAO,KAAK,eAAiB,IAAM,EAAI,MAAS,GAAO,KAAK,eAAiB,IAAI,EAAG,KAAK,CAAC,EAAI,SAAU,EAAI,QAAQ,CAAC,CACtJ,CACA,GAAM,YAAY,GAAQ,CAC5B,CACA,EAAQ,CAAC,EAAK,CAAC,CACjB,CAAC,EACH,CCnHA,GAAM,IAAc,CAAC,QAAS,UAAW,OAAQ,QAAS,MAAO,WAAY,SAAS,EAClF,GACE,GAA0D,CAAC,EAC7D,GAAY,EACZ,GAAW,EACX,GAAU,OAAO,iBAErB,kBAA2B,EAAqC,CAtBhE,MAuBE,MAAI,GAAI,SAAS,IAAQ,MACzB,AAAK,GACI,EAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,EADjD,GAAQ,KAAM,GAAU,KAAO,KAAK,UAAZ,cAAqB,SAAS,EAE3D,EACT,CAEA,kBAA8B,EAAe,EAAgB,EAAa,EAAoE,CA7B9I,QA8BE,GAAI,CAAC,GAAO,MAAO,CAAC,EACpB,GAAM,GAAY,GAAW,OAAO,KAAK,UAAZ,cAAqB,aAAc,GAC1D,EAAY,OAAO,KAAK,UAAZ,cAAqB,WAAY,GAAM,EAAI,EAAI,GACjE,MAAI,GAAO,aAAe,GAAY,GAAc,KAAc,GAAU,GAAK,IAAS,GAAK,GAAK,OAAS,EAC3G,MACO,GAAK,IAEd,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CAtCxC,QAuCI,GAAM,GAAkD,CAAC,EACzD,GAAI,KAAO,KAAK,UAAZ,QAAqB,QAAS,CAChC,GAAM,GAA4B,CAAC,EAC7B,EAAY,aAAO,OAAO,GAAG,MAAQ,GAAM,OAAO,GAAG,MAAM,GAAK,EACtE,EAAE,OAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAW,CAAS,EAAG,EAAK,EASvE,EAAE,SAAW,AAAG,MAAI,EAAE,OAAQ,EAAU,GAAG,EAC3C,EAAE,UAAY,AAAG,MAAI,EAAE,SAAU,EAAG,EAAI,EACxC,EAAE,aAAe,AAAG,MAAI,EAAE,UAAW,EAAU,IAAI,EACnD,EAAE,aAAe,AAAG,MAAI,EAAE,aAAc,EAAU,GAAG,EACrD,EAAE,QAAU,mBAAO,QAAQ,EAAE,cAC7B,GAAW,EAAI,EACf,GAAM,GAAO,KAAM,GAAE,QAAQ,KAAK,EAClC,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,AAAI,EAAK,GAAM,OAAO,KAAK,UAAZ,cAAqB,gBAAiB,IAAI,EAAI,KAAK,CAAE,MAAO,KAAK,IAAI,IAAM,KAAK,MAAM,IAAM,EAAK,EAAE,EAAI,GAAG,EAAG,QAAS,GAAY,EAAc,CAAC,EAElK,EAAI,KAAK,CAAC,EAAG,IAAM,EAAE,MAAQ,EAAE,KAAK,EACpC,OAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,CAC1D,CACA,GAAK,GAAO,EACZ,GAAY,EACZ,EAAQ,CAAG,CACb,CAAC,EACH,CCtDA,GAAI,IACE,GAAwB,CAAC,EAC3B,GAAY,EACZ,GAAW,EACX,GAAU,OAAO,iBAErB,kBAA2B,EAAqC,CAC9D,MAAI,GAAI,SAAS,IAAQ,MACzB,AAAK,GACI,EAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,EADjD,GAAQ,KAAM,GAAU,EAAO,KAAK,cAAiB,SAAS,EAEnE,EACT,CAoBA,kBAA8B,EAAe,EAAgB,EAAK,EAA0B,CA9C5F,QA+CE,GAAI,CAAC,GAAO,MAAO,CAAC,EACpB,GAAM,GAAY,GAAW,OAAO,KAAK,YAAZ,cAA0B,aAAc,GAC/D,EAAY,OAAO,KAAK,YAAZ,cAA0B,WAAY,GAAM,EAAI,EAAI,GACtE,MAAI,GAAO,aAAe,GAAY,GAAc,KAAc,GAAU,GAAK,GAC/E,MACO,GAAK,IAEP,GAAI,SAAQ,KAAO,IAAY,CAtDxC,MAuDI,GAAI,GAAsB,CAAC,EAC3B,GAAI,MAAO,KAAK,YAAZ,cAA0B,UAAW,oBAAO,OAAO,GAAG,OAAO,CAC/D,GAAM,GAA4B,CAAC,EACnC,EAAE,KAAO,AAAG,QAAM,eAAe,EAAO,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EAInG,EAAE,KAAO,mBAAO,QAAQ,EAAE,MAa1B,GAAM,GAAS,KAAM,GAAE,KAAK,KAAK,EACjC,EAAO,MAAM,KAAK,CAAM,CAC1B,CACA,GAAK,GAAO,EACZ,GAAY,EACZ,GAAW,EAAI,EACf,EAAQ,CAAI,CACd,CAAC,CACH,CCzEA,GAAI,IACA,GAAY,EAEV,GAAc,IAEd,GAAc,AAAO,GAAgB,cACrC,GAAe,AAAO,GAAgB,eAEtC,GAAe,CACnB,WAAY,CAAC,GAAY,GAAI,GAAY,GAAY,OAAS,EAAE,EAChE,YAAa,CAAC,GAAa,GAAI,GAAa,GAAa,OAAS,EAAE,CACtE,EAEM,GAAgB,CACpB,YAAa,EACb,YAAa,EACb,MAAO,GACP,eAAgB,EAClB,EAEA,kBAA2B,EAAqC,CA9BhE,MA+BE,MAAI,GAAI,SAAS,IAAQ,MACzB,AAAK,GACI,EAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,EADjD,GAAQ,KAAM,GAAU,KAAO,KAAK,OAAZ,cAAkB,SAAS,EAE/D,GAAY,GAAM,OAAO,GAAG,MAAQ,GAAM,OAAO,GAAG,MAAM,GAAK,EAC3D,KAAc,IAAI,IAAY,IAC3B,EACT,CAGO,YAA2B,EAAW,EAAW,EAAQ,EAAM,CACpE,OAAS,GAAI,EAAG,EAAI,AAAO,GAAY,OAAQ,IAAK,CAClD,GAAM,CAAE,MAAK,WAAY,AAAO,GAAY,GACtC,EAAkB,AAAO,GAAgB,GAAG,IAAS,KAC3D,GAAI,CAAC,GAAQ,EAAK,SAAS,CAAG,EAC5B,OAAS,GAAI,EAAG,EAAI,EAAQ,OAAQ,IAAK,CACvC,GAAM,GAAQ,EAAQ,GACtB,EAAU,EAAgB,IAAM,CAC9B,EAAU,GAAO,GACjB,EAAU,GAAO,GAChB,GAAU,GAAO,GAAK,EAAU,EAAgB,IAAI,IAAM,CAC7D,CACF,CAEJ,CACF,CAEO,GAAM,IAAmC,AAAC,GAAc,CAC7D,GAAM,GAAW,EAAU,GAAa,WAAW,IAAI,GACjD,EAAY,EAAU,GAAa,YAAY,IAAI,GACzD,MAAO,GAAW,CACpB,EAGa,GAAY,CAAC,EAAW,EAAM,EAAqB,EAAqB,EAAU,EAAO,KAAU,CAC9G,GAAM,GAAM,AAAK,GAAY,AAAK,GAAW,AAAK,GAA8B,CAAC,EAAU,GAAsB,EAAU,EAAoB,CAAC,EAAG,EAAW,CAAC,EACzJ,EAAU,AAAK,GAAW,CAAG,EAC/B,EAAO,AAAG,QAAM,cAAc,EAAM,CAAC,CACvC,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EAAU,EAAI,SAAS,GAAK,EAChD,EAAI,SAAS,GAAK,CACpB,CAAC,EAAG,CAAC,CAAC,EAAG,CAAC,GAAW,EAAS,CAAC,EAC/B,GAAI,GAAQ,EAAI,QAAQ,SAAS,eAAe,EAAG,CACjD,GAAM,GAAU,AAAG,QAAM,cAAc,CAAI,EAC3C,AAAG,UAAQ,CAAI,EACf,EAAO,CACT,CACA,MAAO,CAAE,MAAK,UAAS,MAAK,CAC9B,EAGa,GAAe,CAAC,EAAS,EAAQ,EAAY,EAAO,KAAU,CACzE,GAAM,GAA6B,CAAC,EACpC,OAAS,GAAI,EAAG,EAAI,GAAc,eAAgB,IAAK,CACrD,GAAM,GAAI,EAAQ,EAAI,GAChB,EAAI,EAAQ,EAAI,EAAI,GACpB,EAAI,EAAQ,EAAI,EAAI,GAC1B,EAAa,KAAK,CACf,GAAQ,EAAK,EAAI,GAAe,EAAI,IAAc,EAAW,GAAK,EAAO,WAAW,GACpF,EAAI,GAAa,EAAW,GAAK,EAAO,WAAW,GAAI,CAC1D,CAAC,CACH,CACA,MAAO,CAAE,UAAW,EAAc,KAAM,EAAa,MAAM,GAAc,KAAK,CAAE,CAClF,EAGa,GAAwB,CAAC,EAAW,EAAY,IAAc,CACzE,GAAM,GAAe,EAAU,AAAO,GAAgB,GAAG,cAAsB,GAAc,cAAc,GACrG,EAAe,EAAU,AAAO,GAAgB,GAAG,cAAsB,GAAc,cAAc,GACrG,EAAY,GAAe,GAAgB,EAEjD,MAAO,GAAW,IAAI,CAAC,EAAO,IAAM,CAClC,GAAI,GAAI,EACR,MAAI,KAAM,EACR,EAAI,EACK,IAAM,GACf,GAAI,GAEC,CAAC,EAAM,GAAI,EAAM,GAAI,CAAC,CAC/B,CAAC,CACH,EAEA,kBAAkC,EAAW,EAAM,EAAQ,EAAU,CACnE,GAAI,CAAC,GACH,MAAI,GAAO,OAAO,EAAI,6DAA6D,EAC5E,EAET,GAAM,CAAE,IAAK,EAAY,QAAS,EAAgB,KAAM,GAAgB,GAAU,EAAW,EAAM,GAAa,WAAW,GAAI,GAAa,WAAW,GAAI,EAAU,EAAI,EACnK,CAAE,IAAK,EAAa,QAAS,EAAiB,KAAM,GAAiB,GAAU,EAAW,EAAM,GAAa,YAAY,GAAI,GAAa,YAAY,GAAI,EAAU,EAAI,EACxK,EAAW,AAAG,SAAO,CAAC,EAAa,CAAY,CAAC,EACtD,AAAG,UAAQ,CAAW,EACtB,AAAG,UAAQ,CAAY,EACvB,GAAM,GAAiB,GAAM,QAAQ,CAAQ,EAC7C,AAAG,UAAQ,CAAQ,EACnB,GAAM,GAAqB,KAAM,GAAe,KAAK,EACrD,AAAG,UAAQ,CAAc,EACzB,GAAM,GAAc,EAAmB,MAAM,EAAG,GAAc,eAAiB,CAAC,EAC1E,CAAE,UAAW,EAAkB,KAAM,GAAsB,GAAa,EAAa,EAAY,EAAgB,EAAI,EACrH,EAAe,EAAmB,MAAM,GAAc,eAAiB,CAAC,EACxE,CAAE,UAAW,EAAmB,KAAM,GAAuB,GAAa,EAAc,EAAa,EAAiB,EAAK,EAC3H,EAAgC,GAAiC,CAAS,EAChF,AAAI,KAAK,IAAI,CAA6B,EAAI,GAC5C,IAAkB,EAAW,EAAkB,OAAQ,IAAI,EAC3D,GAAkB,EAAW,EAAmB,QAAS,IAAI,GAExD,AAAI,EAAgC,EACzC,GAAkB,EAAW,EAAkB,OAAQ,CAAC,YAAa,WAAW,CAAC,EAEjF,GAAkB,EAAW,EAAmB,QAAS,CAAC,YAAa,WAAW,CAAC,EAErF,GAAM,GAAyB,GAAsB,EAAW,EAAmB,MAAM,EACnF,EAA0B,GAAsB,EAAW,EAAoB,OAAO,EAE5F,MADkB,GAAU,OAAO,CAAsB,EAAE,OAAO,CAAuB,CAE3F,CC3IA,GAAM,IAA8B,CAClC,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,CAAC,EAAG,CAAC,EAAG,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAC3N,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAC7N,EAEM,GAAkC,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAEjO,GAAsC,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAErI,GAAmC,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAElF,GAAmC,CAAC,CAAC,GAAI,CAAC,EAAG,CAAC,EAAG,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAE5N,GAAuC,CAAC,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,CAAC,EAEzH,GAAoC,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAEnF,GAAmC,CACvC,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACpN,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,CAC5M,EAmJA,YAA8B,EAAwB,CACpD,GAAM,GAAU,EAAY,IAAI,AAAC,GAAe,EAAW,EAAE,EAC7D,SAAQ,KAAK,EAAY,EAAY,OAAS,GAAG,EAAE,EAC5C,CACT,CAEO,GAAM,IAA2C,CACtD,KAAM,GAAqB,EAAgB,EAC3C,QAAS,GAAqB,EAAoB,EAClD,YAAa,GAAqB,EAAwB,EAC1D,SAAU,GAAqB,EAAqB,EACpD,SAAU,GAAqB,EAAqB,EACpD,aAAc,GAAqB,EAAyB,EAC5D,UAAW,GAAqB,EAAsB,EACtD,SAAU,GAAqB,EAAqB,CACtD,EAEM,GAA2C,OAAO,QAAQ,EAAwC,EACrG,IAAI,CAAC,CAAC,EAAO,KAAa,EAAQ,IAAI,AAAC,GAAU,CAAC,EAAO,CAAK,CAAqB,CAAC,EACpF,KAAK,EAEK,GAAgC,GAAI,KAAI,EAAe,EAQvD,GAAmC,CAC9C,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC9C,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IACnC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC7C,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACpC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC7C,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACpC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC7C,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GACtC,EAEa,GAAuC,CAClD,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACrC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC9B,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IACnC,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IACzB,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACvC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC9B,GAAI,IAAK,GAAI,GAAI,GAAI,GACrB,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACxC,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GACjC,EAEa,GAAwC,CACnD,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACxC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC9B,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACxC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC9B,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACxC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC9B,IAAK,IAAK,IAAK,IAAK,IAAK,IACzB,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACxC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GACrC,ECvOA,kBAA8B,EAAW,EAAmB,CAC1D,GAAM,GAAkC,CAGtC,KAAM,KAAM,GAAQ,OAAO,AAAC,GAAM,EAAE,OAAS,GAAG,EAAE,GAAG,KAAK,EAC1D,MAAO,KAAM,GAAQ,OAAO,AAAC,GAAM,EAAE,OAAS,EAAE,EAAE,GAAG,KAAK,EAC1D,KAAM,KAAM,GAAQ,OAAO,AAAC,GAAM,EAAE,OAAS,GAAG,EAAE,GAAG,KAAK,EAC1D,MAAO,KAAM,GAAQ,OAAO,AAAC,GAAM,EAAE,OAAS,EAAE,EAAE,GAAG,KAAK,EAC1D,KAAM,KAAM,GAAQ,OAAO,AAAC,GAAM,EAAE,OAAS,GAAG,EAAE,GAAG,KAAK,CAC5D,EAGM,EAAa,AAAU,GAAqC,OAAO,CAAC,EAAM,IAAS,GAAQ,EAAU,GAAM,GAAI,CAAC,EAAI,AAAU,GAAqC,OACzK,OAAS,GAAI,EAAG,EAAI,EAAE,MAAM,OAAS,EAAG,IAAK,EAAU,KAAK,CAAC,EAAE,MAAM,EAAI,EAAI,GAAI,EAAE,MAAM,EAAI,EAAI,GAAI,CAAU,CAAC,EAChH,GAAM,GAAa,AAAU,GAAsC,OAAO,CAAC,EAAM,IAAS,GAAQ,EAAU,GAAM,GAAI,CAAC,EAAI,AAAU,GAAsC,OAC3K,OAAS,GAAI,EAAG,EAAI,EAAE,MAAM,OAAS,EAAG,IAAK,EAAU,KAAK,CAAC,EAAE,MAAM,EAAI,EAAI,GAAI,EAAE,MAAM,EAAI,EAAI,GAAI,CAAU,CAAC,EAGhH,OAAS,GAAI,EAAG,EAAI,EAAE,KAAK,OAAS,EAAG,IAAK,EAAU,AAAU,GAAqC,IAAM,CAAC,EAAE,KAAK,EAAI,EAAI,GAAI,EAAE,KAAK,EAAI,EAAI,GAAI,EAAU,AAAU,GAAqC,IAAI,EAAE,EACjN,OAAS,GAAI,EAAG,EAAI,EAAE,KAAK,OAAS,EAAG,IAAK,EAAU,AAAU,GAAsC,IAAM,CAAC,EAAE,KAAK,EAAI,EAAI,GAAI,EAAE,KAAK,EAAI,EAAI,GAAI,EAAU,AAAU,GAAsC,IAAI,EAAE,EAGnN,OAAS,GAAI,EAAG,EAAI,EAAE,KAAK,OAAS,EAAG,IAAK,EAAU,AAAU,GAAiC,IAAM,CAAC,EAAE,KAAK,EAAI,EAAI,GAAI,EAAE,KAAK,EAAI,EAAI,GAAI,EAAU,AAAU,GAAiC,IAAI,EAAE,EAEzM,MAAO,EACT,CCHA,GAAM,IAAQ,CACZ,MAAO,CAAC,EACR,QAAS,OAAO,iBAChB,UAAW,CACb,EAEI,GAA2B,KAC3B,GAAY,EAEhB,kBAA8B,EAAe,EAAuC,CAlCpF,0BAoCE,GAAM,GAAY,OAAO,KAAK,WAAZ,cAAsB,WAAY,GAAM,EAAI,EAAI,GAAM,UAClE,EAAY,GAAM,QAAW,OAAO,KAAK,WAAZ,cAAsB,aAAc,GACvE,AAAI,CAAC,EAAO,aAAe,CAAC,GAAY,CAAC,GAAa,GAAM,MAAM,SAAW,EAC3E,IAAM,MAAQ,KAAM,AAAU,IAAS,EAAO,CAAM,EACpD,GAAM,UAAY,EAAI,EACtB,GAAM,QAAU,GAEhB,GAAM,UAER,GAAM,GAA2B,CAAC,EAC5B,EAA6B,CAAC,EAChC,EAAK,EACT,OAAS,GAAI,EAAG,EAAI,GAAM,MAAM,OAAQ,IAAK,CAC3C,GAAM,GAAM,GAAM,MAAM,GACpB,EAAQ,EACR,EACE,EAAmB,CACvB,GAAI,IACJ,KAAM,CAAC,EACP,QAAS,CAAC,EACV,IAAK,CAAC,EAAG,EAAG,EAAG,CAAC,EAChB,OAAQ,CAAC,EAAG,EAAG,EAAG,CAAC,EACnB,MAAO,EACP,SAAU,EACV,UAAW,EAGX,YAAa,CAAC,CAChB,EAIA,GADA,CAAC,EAAO,EAAgB,EAAK,MAAM,EAAI,AAAK,GAAoB,KAAO,KAAK,WAAZ,cAAsB,SAAU,EAAK,EAAO,KAAO,KAAK,OAAZ,QAAkB,QAAU,GAAY,AAAU,GAAK,CAAC,EAChK,oBAAQ,SAAR,QAAgB,aAAc,CAChC,GAAM,GAAY,KAAM,IAAsB,EAAK,MAAgB,EACnE,AAAG,UAAQ,EAAK,MAAM,EACtB,EAAK,OAAS,CAChB,CAEA,GADA,EAAK,SAAW,KAAK,MAAM,IAAM,EAAI,UAAU,EAAI,IAC9C,KAAO,KAAK,OAAZ,QAAkB,QAYhB,GAAI,CAAC,GACV,AAAI,EAAO,OAAO,EAAI,wDAAwD,MACzE,CACL,GAAM,GAAU,GAAM,QAAQ,EAAK,MAAgB,EAE7C,EAAiB,KAAM,AADT,GAAQ,KAAK,AAAC,GAAM,EAAE,MAAM,EAAE,MAAM,OAAS,KAAO,CAAC,EAChC,KAAK,EAG9C,GAFA,EAAK,UAAY,KAAK,MAAM,IAAM,EAAe,EAAE,EAAI,IAEnD,EAAK,UAAa,OAAO,KAAK,WAAZ,cAAsB,gBAAiB,IAE3D,GADA,EAAI,WAAa,EAAK,UAClB,KAAO,KAAK,OAAZ,QAAkB,YAAa,CACjC,EAAK,IAAM,AAAK,GAAS,EAAK,CAAK,EACnC,EAAK,OAAS,AAAK,GAAU,EAAK,CAAK,EACvC,EAAK,MAAQ,EAAK,SAClB,EAAK,KAAO,EAAI,UAAU,IAAI,AAAC,GAAO,CAClC,GAAI,WAAW,GAAK,EAAI,SAAS,IAAO,EAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAAG,GAAK,AAAU,GAAK,EAC5G,GAAI,WAAW,GAAK,EAAI,SAAS,IAAO,EAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAAG,GAAK,AAAU,GAAK,CAChH,CAAC,EACD,EAAK,QAAU,EAAK,KAAK,IAAI,AAAC,GAAO,CAAC,EAAG,GAAM,GAAM,MAAM,IAAM,GAAI,EAAG,GAAM,GAAM,MAAM,IAAM,GAAK,GAAG,IAAM,GAAK,EAAS,CAAC,EAC7H,OAAW,KAAO,QAAO,KAAY,EAAkB,EACrD,EAAK,YAAY,GAAO,CAAC,EAAK,KAAK,AAAO,GAAmB,GAAe,CAEhF,MACK,CACL,GAAM,GAAQ,EAAQ,KAAK,AAAC,GAAM,EAAE,MAAM,EAAE,MAAM,OAAS,KAAO,IAAI,EAChE,EAAiB,AAAG,UAAQ,EAAO,CAAC,GAAI,CAAC,CAAC,EAC5C,EAAY,KAAM,GAAe,MAAM,EAC3C,AAAG,UAAQ,CAAc,EACzB,AAAI,KAAO,KAAK,YAAZ,QAAuB,QACzB,EAAY,KAAM,AAAU,IAAQ,EAAW,CAAO,EAC7C,KAAO,KAAK,OAAZ,QAAkB,SAC3B,GAAY,KAAM,AAAK,IAAY,EAAW,EAAK,OAAQ,EAAQ,EAAS,GAE9E,EAAK,KAAO,AAAK,GAAmB,EAAW,EAAK,EAAO,EAAgB,EAAS,EACpF,EAAK,QAAU,EAAK,KAAK,IAAI,AAAC,GAAO,CAAC,EAAG,GAAM,GAAM,MAAM,IAAM,GAAI,EAAG,GAAM,GAAM,MAAM,IAAM,GAAK,GAAG,IAAM,GAAK,EAAS,CAAC,EAC7H,OAAW,KAAO,QAAO,KAAY,EAAe,EAAG,EAAK,YAAY,GAAO,AAAO,GAAgB,GAAK,IAAI,AAAC,IAAU,EAAK,KAAK,GAAM,EAC1I,EAAK,MAAQ,EAAK,UAClB,GAAM,IAAgB,CAAE,GAAG,AAAK,GAAiB,EAAK,KAAM,CAAG,EAAG,WAAY,EAAI,WAAY,UAAW,EAAI,SAAU,EACvH,EAAK,IAAM,AAAK,GAAS,GAAe,CAAK,EAC7C,EAAK,OAAS,AAAK,GAAU,GAAe,CAAK,EAQjD,EAAS,KAAK,EAAa,CAC7B,CACA,AAAG,UAAQ,CAAO,CACpB,KA9DgC,CAC9B,EAAK,IAAM,AAAK,GAAS,EAAK,CAAK,EACnC,EAAK,OAAS,AAAK,GAAU,EAAK,CAAK,EACvC,EAAK,MAAQ,EAAK,SAClB,EAAK,KAAO,EAAI,UAAU,IAAI,AAAC,GAAO,CAClC,GAAI,WAAW,GAAK,EAAI,SAAS,IAAO,EAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAAG,GAAK,AAAU,GAAK,EAC5G,GAAI,WAAW,GAAK,EAAI,SAAS,IAAO,EAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAAG,GAAK,AAAU,GAAK,CAChH,CAAC,EACD,EAAK,QAAU,EAAK,KAAK,IAAI,AAAC,GAAO,CAAC,EAAG,GAAM,GAAM,MAAM,IAAM,GAAI,EAAG,GAAM,GAAM,MAAM,IAAM,GAAK,GAAG,IAAM,GAAK,EAAS,CAAC,EAC7H,OAAW,KAAO,QAAO,KAAY,EAAkB,EACrD,EAAK,YAAY,GAAO,CAAC,EAAK,KAAK,AAAO,GAAmB,GAAe,CAEhF,CAmDA,AAAI,EAAK,MAAS,OAAO,KAAK,WAAZ,cAAsB,gBAAiB,GAAI,EAAM,KAAK,CAAI,EACvE,AAAG,UAAQ,EAAK,MAAM,CAC7B,CACA,UAAM,MAAQ,EACP,CACT,CAEA,kBAA2B,EAAqC,CAhJhE,gBAiJE,MAAI,GAAI,SAAS,IAAQ,MAErB,wBAAQ,OAAR,cAAc,YAAd,cAAyB,UAAW,oBAAO,YAEzC,OAAO,KAAK,uBAAO,YAAP,cAAkB,UAAW,CAAC,CAAC,EAAE,OAAS,GAAG,IAAQ,MAEvE,AAAK,GAGM,EAAO,OAChB,EAAI,gBAAiB,GAAM,QAAW,EAHtC,AAAI,KAAO,KAAK,YAAZ,QAAuB,QAAS,GAAQ,KAAM,GAAU,KAAO,KAAK,YAAZ,cAAuB,SAAS,EACvF,GAAQ,KAAM,GAAU,KAAO,KAAK,OAAZ,cAAkB,SAAS,EAI1D,GAAY,GAAM,OAAO,GAAG,MAAQ,GAAM,OAAO,GAAG,MAAM,GAAK,EACxD,EACT,CAEO,GAAM,IAAuB,GACvB,GAAe,GC9I5B,GAAI,IACE,GAKD,CAAC,EAEF,GAAW,EACX,GAAY,EACZ,GAAU,OAAO,iBAErB,kBAA2B,EAAqC,CAhChE,MAiCE,MAAI,GAAI,SAAS,IAAQ,MACzB,AAAK,GACI,EAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,EADjD,GAAQ,KAAM,GAAU,KAAO,KAAK,cAAZ,cAAyB,SAAS,EAE/D,EACT,CAEO,YAAiB,EAAe,CACrC,GAAM,GAAU,EAAM,OAAS,EAAM,QAAU,EAC/C,GAAI,CAAC,cAAO,OAAO,GAAG,OAAO,MAAO,GACpC,GAAM,GAAO,AAAG,QAAM,eAAe,EAAQ,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EAClG,EAAO,AAAG,MAAI,EAAM,EAAU,KAAK,EACzC,MAAG,WAAQ,CAAI,EACR,CAkBT,CAEA,kBAA8B,EAAe,EAAgB,EAAa,EAAiC,CAjE3G,YAkEE,GAAI,CAAC,GAAO,MAAO,CAAE,IAAK,EAAG,OAAQ,UAAW,YAAa,EAAG,WAAY,CAAC,CAAE,EAC/E,GAAM,GAAY,GAAW,OAAO,KAAK,cAAZ,cAAyB,aAAc,GAC9D,EAAY,OAAO,KAAK,cAAZ,cAAyB,WAAY,GAAM,EAAI,EAAI,GACrE,MAAI,GAAO,aAAe,GAAa,GAAa,KAAc,GAAU,OAAK,KAAL,cAAW,MAAQ,OAAK,KAAL,cAAW,KAAM,EAC9G,MACO,GAAK,IAEd,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CA1ExC,QA2EI,GAAM,GAAM,CACV,IAAa,EACb,OAAgB,UAChB,YAAqB,EACrB,WAAsB,CAAC,CACzB,EAEA,GAAI,KAAO,KAAK,cAAZ,QAAyB,QAAS,CACpC,GAAM,GAAW,GAAQ,CAAK,EACxB,EAAO,mBAAO,QAAQ,GAC5B,GAAW,EAAI,EACf,AAAG,UAAQ,CAAQ,EAEnB,GAAM,GAAS,KAAM,AADL,MAAM,GAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,CAAC,GAC1B,KAAK,EAC5B,EAAa,KAAK,MAAM,IAAM,KAAK,IAAK,EAAO,GAAK,EAAI,CAAC,EAAI,IACnE,AAAI,EAAc,OAAO,KAAK,cAAZ,cAAyB,gBAAiB,IAC1D,GAAI,OAAS,EAAO,IAAM,GAAM,SAAW,OAC3C,EAAI,YAAc,KAAK,IAAI,IAAM,CAAU,GAE7C,GAAM,GAAS,AAAG,SAAO,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,GAAG,EAAG,CAAC,EAC1D,EAAO,MAAM,GAAO,KAAK,GAAG,GAClC,AAAG,UAAQ,CAAM,EAEjB,GAAM,GAAM,KAAM,AADL,GAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,GAAG,EACzB,KAAK,EAC5B,EAAI,IAAM,KAAK,MAAM,EAAI,EAAM,GAAK,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,EAAE,EAAI,GAEpH,GAAM,GAAO,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,IAAI,EAG3C,EAAa,EAAO,KAAM,GAAK,KAAK,EAAc,CAAC,EACzD,EAAI,WAAa,MAAM,KAAK,CAAU,EACtC,EAAK,QAAQ,AAAC,GAAM,AAAG,UAAQ,CAAC,CAAC,CACnC,CACA,GAAK,GAAO,EACZ,GAAY,EACZ,EAAQ,CAAG,CACb,CAAC,EACH,CC7GO,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,EAAE,EAC5C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,EAAE,CAC9C,CACF,CAEO,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,CAC9D,CACF,CAEO,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,CACpB,CAAC,EACD,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,CAAC,EAAG,CAAQ,CAC3D,CAEO,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,EAAE,EAC1E,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,EAAE,EACpE,EAAgB,EAAI,cAAc,IAAI,AAAC,GACvB,CAAC,EAAM,GAAK,EAAO,GAAI,EAAM,GAAK,EAAO,EAAE,CAEhE,EACD,MAAO,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAI,UAAW,CAC3E,CAEO,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,CAAG,EACzB,EAAO,GAAW,CAAG,EACrB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,CAAC,EACzD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,EAAE,EACpE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,EAAE,EACxE,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,aAAc,CAClE,CAEO,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,CAAG,EAC1B,EAAO,GAAW,CAAG,EAErB,EAAW,AADD,KAAK,IAAI,GAAG,CAAI,EACL,EACrB,EAAa,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,CAAQ,EAC1D,EAAW,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,CAAQ,EAC9D,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,aAAc,CAClE,CAaO,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,GAAG,CAC3E,CAEO,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,EAAE,EACxF,MAAO,IAAiB,CAAO,CACjC,CAEO,GAAM,IAAyB,CAAC,EAAG,IAAM,CAAC,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,EAEzE,YAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,EACT,CAEO,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,CAAC,EAC/B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,EAAY,EAEjC,MAAO,EACT,CAEO,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,CAAC,EAC5B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,CAAC,CAAC,EACf,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,CAAG,CAAC,CAAC,CAEnE,CACA,MAAO,EACT,CAEO,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,CAAQ,EACxB,EAAO,KAAK,IAAI,CAAQ,EACxB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,CAAC,EAAG,CAAC,EAAM,EAAM,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,EAC9D,EAAoB,GAAuB,EAAO,GAAI,EAAO,EAAE,EAC/D,EAA2B,GAA0B,EAAmB,CAAc,EACtF,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,EAAE,EAC/E,MAAO,IAA0B,EAA0B,CAAyB,CACtF,CAEO,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,EAAE,EAAG,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,EAAE,CAAC,EAC/E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,EAAE,EAClD,EAAsB,CAC1B,CAAC,GAAI,EAAkB,GAAI,CAAoB,EAC/C,CAAC,GAAI,EAAkB,GAAI,CAAoB,CACjD,EACA,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,EAAE,EAClD,EAAkB,GAAG,OAAO,EAAoB,EAAE,EAClD,CAAC,EAAG,EAAG,CAAC,CACV,CACF,CAEO,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,GAAI,EAAuB,EAAe,EAAE,EAC5C,GAAI,EAAuB,EAAe,EAAE,CAC9C,CACF,CCpIO,GAAM,IAAU,CACrB,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,CACzB,EC13FO,GAAM,IAAN,KAAmB,CAQxB,YAAY,EAAO,CAPnB,gBACA,kBACA,wBACA,oBACA,0BACA,gCAGE,KAAK,MAAQ,EACb,KAAK,QAAU,AAAQ,GAAQ,IAAI,AAAC,GAAW,CAAC,EAAO,EAAG,EAAO,CAAC,CAAC,EACnE,KAAK,cAAgB,AAAG,WAAS,KAAK,OAAO,EAC7C,KAAK,UAAa,KAAK,OAAS,KAAK,MAAM,QAAU,KAAK,MAAM,OAAO,GAAG,MAAS,KAAK,MAAM,OAAO,GAAG,MAAM,GAAK,EACnH,KAAK,gBAAkB,AAAG,WAAS,CAAC,KAAK,UAAW,KAAK,SAAS,CAAC,EACnE,KAAK,sBAAwB,AAAG,WAAS,CAAC,KAAK,UAAY,EAAG,KAAK,UAAY,CAAC,CAAC,CACnF,CAEA,eAAe,EAAO,CACpB,GAAM,GAA4B,CAAC,EACnC,EAAE,WAAa,AAAG,QAAM,EAAO,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EAC9C,EAAE,SAAW,AAAG,QAAM,EAAO,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EAC5C,EAAE,IAAM,AAAG,MAAI,EAAE,WAAY,KAAK,eAAe,EACjD,EAAE,gBAAkB,AAAG,MAAI,EAAE,IAAK,KAAK,aAAa,EACpD,EAAE,aAAe,AAAG,MAAI,EAAE,SAAU,KAAK,qBAAqB,EAC9D,EAAE,IAAM,AAAG,MAAI,EAAE,gBAAiB,EAAE,YAAY,EAChD,EAAE,YAAc,AAAG,MAAI,EAAE,IAAK,KAAK,eAAe,EAClD,EAAE,IAAM,AAAG,MAAI,EAAE,gBAAiB,EAAE,YAAY,EAChD,EAAE,UAAY,AAAG,MAAI,EAAE,IAAK,KAAK,eAAe,EAChD,GAAM,GAAM,AAAG,WAAS,CAAC,EAAE,YAAa,EAAE,SAAS,EAAG,CAAC,EACvD,cAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACjD,CACT,CAEA,mBAAmB,EAAkB,EAAO,CAC1C,GAAM,GAA4B,CAAC,EACnC,EAAE,QAAU,AAAG,UAAQ,EAAkB,CAAC,GAAI,EAAG,CAAC,CAAC,EACnD,EAAE,IAAM,AAAG,MAAI,EAAE,QAAS,KAAK,eAAe,EAC9C,EAAE,UAAY,AAAG,MAAI,EAAE,IAAK,KAAK,QAAQ,EAAM,EAC/C,GAAM,GAAM,AAAG,MAAI,EAAE,UAAW,KAAK,eAAe,EACpD,cAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACjD,CACT,CAEA,KAAM,SAAQ,EAAO,EAAuG,CAC1H,GAAM,GAA4B,CAAC,EACnC,EAAE,OAAS,AAAG,QAAM,eAAe,EAAO,CAAC,KAAK,UAAW,KAAK,SAAS,CAAC,EAC1E,EAAE,IAAM,AAAG,MAAI,EAAE,OAAQ,EAAU,KAAK,EACxC,EAAE,MAAQ,AAAG,MAAI,EAAE,IAAK,EAAU,GAAG,EACrC,EAAE,QAAU,KAAK,MAAM,QAAQ,EAAE,KAAK,EACtC,EAAE,YAAc,AAAG,UAAQ,EAAE,OAAO,EACpC,EAAE,MAAQ,AAAG,QAAM,EAAE,YAAa,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EACjD,EAAE,QAAU,AAAG,UAAQ,EAAE,KAAK,EAC9B,EAAE,OAAS,AAAG,UAAQ,EAAE,OAAO,EAC/B,GAAM,GAAS,KAAM,GAAE,OAAO,KAAK,EACnC,EAAE,MAAQ,AAAG,QAAM,EAAE,YAAa,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EACjD,EAAE,KAAO,KAAK,eAAe,EAAE,KAAK,EAEpC,EAAE,IAAM,KAAM,AAAG,SAAM,uBAAuB,EAAE,KAAM,EAAE,OAAQ,EAAI,EAAO,KAAK,YAAa,EAAO,KAAK,aAAc,EAAO,KAAK,aAAa,EAChJ,GAAM,GAAM,KAAM,GAAE,IAAI,MAAM,EACxB,EAAmG,CAAC,EAC1G,OAAW,KAAS,GAAK,CACvB,GAAM,GAA4B,CAAC,EACnC,EAAE,IAAM,AAAG,QAAM,EAAE,KAAM,CAAC,EAAO,CAAC,EAAG,CAAC,EAAG,EAAE,CAAC,EAC5C,EAAE,MAAQ,AAAG,QAAM,EAAE,YAAa,CAAC,EAAO,CAAC,EAAG,CAAC,EAAG,EAAE,CAAC,EACrD,EAAE,KAAO,KAAK,mBAAmB,EAAE,MAAO,CAAK,EAC/C,EAAE,cAAgB,AAAG,UAAQ,EAAE,KAAM,CAAC,GAAI,CAAC,CAAC,EAC5C,GAAM,GAAM,KAAM,GAAE,IAAI,KAAK,EACvB,EAAa,EAAI,MAAM,EAAG,CAAC,EAC3B,EAAW,EAAI,MAAM,EAAG,CAAC,EACzB,EAAgB,KAAM,GAAE,cAAc,MAAM,EAC5C,EAAO,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAO,EAAO,EACxE,EAAS,AAAK,GAAoB,EAAM,CAAC,EAAM,MAAM,GAAK,KAAK,UAAW,EAAM,MAAM,GAAK,KAAK,SAAS,CAAC,EAChH,EAAM,KAAK,CAAM,EACjB,OAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,CAC1D,CACA,cAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACjD,CACT,CACF,EC5EA,GAAM,IAAuB,EACvB,GAAuB,KACvB,GAAkB,CAAC,EAAG,EAAG,EAAG,GAAI,GAAI,EAAG,CAAC,EACxC,GAAwB,EACxB,GAAgC,EAClC,GAAW,EAEF,GAAN,KAAmB,CAQxB,YAAY,EAAc,EAAe,CAPzC,uBACA,wBACA,oBACA,sBACA,kBACA,wBAGE,KAAK,aAAe,EACpB,KAAK,cAAgB,EACrB,KAAK,UAAY,KAAK,eAAiB,KAAK,cAAc,OAAO,GAAG,MAAQ,KAAK,cAAc,OAAO,GAAG,MAAM,GAAK,EACpH,KAAK,YAAc,CAAC,EACpB,KAAK,QAAU,OAAO,iBACtB,KAAK,cAAgB,CACvB,CAGA,8BAA8B,EAAW,CACvC,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,EAAE,EAC9B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,EAAE,EAC9B,EAAa,CAAC,KAAK,IAAI,GAAG,CAAE,EAAG,KAAK,IAAI,GAAG,CAAE,CAAC,EAC9C,EAAW,CAAC,KAAK,IAAI,GAAG,CAAE,EAAG,KAAK,IAAI,GAAG,CAAE,CAAC,EAClD,MAAO,CAAE,aAAY,UAAS,CAChC,CAEA,uBAAuB,EAAe,EAAgB,CACpD,GAAM,GAAuB,EAAc,IAAI,AAAC,GAAU,AAAK,GAAY,CAAC,GAAG,EAAO,CAAC,EAAG,CAAc,CAAC,EACnG,EAAgB,KAAK,8BAA8B,CAAoB,EAC7E,MAAO,AAAK,IAAW,AAAK,GAAY,CAAa,EAAG,EAAoB,CAC9E,CAEA,uBAAuB,EAAW,CAChC,GAAM,GAAc,KAAK,8BAA8B,CAAS,EAC1D,EAAgB,AAAK,GAAW,AAAK,GAAY,CAAW,EAAG,EAAoB,EACzF,EAAc,cAAgB,CAAC,EAC/B,OAAS,GAAI,EAAG,EAAI,GAAgB,OAAQ,IAC1C,EAAc,cAAc,KAAK,EAAU,GAAgB,IAAI,MAAM,EAAG,CAAC,CAAC,EAE5E,MAAO,EACT,CAEA,mBAAmB,EAAW,EAAM,EAAO,EAAgB,CACzD,GAAM,GAAU,AAAK,GAAW,CAAI,EAC9B,EAAc,CAAC,EAAQ,GAAK,KAAK,UAAW,EAAQ,GAAK,KAAK,UAAY,GAAQ,GAAK,EAAQ,IAAM,KAAK,UAAY,CAAC,EACvH,EAAe,EAAU,IAAI,AAAC,GAAU,CAC5C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAK,EAAM,EACzB,CAAC,EACK,EAAuB,AAAK,GAAoB,EAAO,CAAC,EAAG,CAAC,CAAC,EAC7D,EAAgB,EAAa,IAAI,AAAC,GAE/B,CAAC,GADQ,AAAK,GAAY,EAAO,CAAoB,EACxC,EAAM,EAAE,CAC7B,EACK,EAAwB,AAAK,GAAsB,CAAc,EACjE,EAAY,CAAC,GAAG,AAAK,GAAa,CAAI,EAAG,CAAC,EAC1C,EAAoB,CACxB,AAAK,GAAI,EAAW,EAAsB,EAAE,EAC5C,AAAK,GAAI,EAAW,EAAsB,EAAE,CAC9C,EACA,MAAO,GAAc,IAAI,AAAC,GAAU,CAClC,KAAK,MAAM,EAAM,GAAK,EAAkB,EAAE,EAC1C,KAAK,MAAM,EAAM,GAAK,EAAkB,EAAE,EAC1C,KAAK,MAAM,EAAM,EAAE,CACrB,CAAC,CACH,CAEA,KAAM,eAAc,EAAO,EAAQ,CACjC,GAAI,GAAc,GAGd,EACE,EAAY,GAAO,KAAK,UAAY,GAAM,EAAI,EAAI,GAClD,EAAY,KAAK,QAAW,GAAO,KAAK,YAAc,GAC5D,AAAI,EAAO,aAAe,GAAY,GACpC,GAAQ,KAAM,MAAK,aAAa,QAAQ,EAAO,CAAM,EACrD,KAAK,QAAU,GAEb,EAAO,aAAa,KAAK,UAGzB,GAAU,EAAM,OAAS,GAAQ,GAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,aAAgB,CAAC,EAAO,KAAK,YAC5I,MAAK,cAAgB,EACrB,KAAK,YAAc,CAAC,GAAG,CAAK,EAExB,KAAK,YAAY,OAAS,GAAG,GAAc,KAEjD,GAAM,GAAyJ,CAAC,EAGhK,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAa,KAAK,YAAY,GACpC,GAAI,EAAC,EACL,GAAI,EAAO,KAAK,UAAW,CACzB,GAAM,GAAQ,EAAO,KAAK,SAAW,AAAK,GAAgB,EAAW,cAAc,IAAwB,EAAW,cAAc,GAA8B,EAAI,EAChK,EAAa,AAAK,GAAa,CAAU,EACzC,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,EAAE,EACtF,EAAe,EAAO,KAAK,UAAY,EAAI,QAAQ,SAAS,kBAAkB,EAAI,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,CAAoB,EAAI,EAAM,MAAM,EACjK,EAAiB,AAAK,GAAoB,CAAC,EAAO,CAAU,EAC5D,EAAS,EAAc,KAAK,uBAAuB,EAAW,cAAe,CAAc,EAAI,EAC/F,EAAe,AAAK,GAAyB,EAAQ,EAAc,CAAC,KAAK,UAAW,KAAK,SAAS,CAAC,EACnG,EAAY,AAAG,MAAI,EAAc,EAAU,KAAK,EACtD,AAAG,UAAQ,CAAY,EACvB,AAAG,UAAQ,CAAY,EACvB,GAAM,CAAC,EAAa,GAAa,KAAK,cAAc,QAAQ,CAAS,EACrE,GAAW,EAAI,EACf,AAAG,UAAQ,CAAS,EACpB,GAAM,GAAc,MAAM,GAAY,KAAK,GAAG,GAE9C,GADA,AAAG,UAAQ,CAAW,EAClB,GAAc,EAAO,KAAK,cAAgB,EAAG,CAC/C,GAAM,GAAoB,AAAG,UAAQ,EAAW,CAAC,GAAI,CAAC,CAAC,EACjD,EAAY,KAAM,GAAkB,MAAM,EAChD,AAAG,UAAQ,CAAS,EACpB,AAAG,UAAQ,CAAiB,EAC5B,GAAM,GAAS,KAAK,mBAAmB,EAAW,EAAQ,EAAO,CAAc,EACzE,EAAkB,KAAK,uBAAuB,CAAM,EAC1D,KAAK,YAAY,GAAK,CAAE,GAAG,EAAiB,YAAW,EACvD,GAAM,GAAS,CACb,UAAW,EACX,aACA,cAAe,EAAW,WAC1B,iBAAkB,EAClB,IAAK,CAAE,QAAS,EAAgB,WAAY,YAAa,EAAgB,QAAS,CACpF,EACA,EAAM,KAAK,CAAM,CACnB,KACE,MAAK,YAAY,GAAK,KAExB,AAAG,UAAQ,CAAS,CACtB,KAAO,CAEL,GAAM,GAAW,AAAK,GAAW,AAAK,GAAY,CAAU,EAAG,EAAoB,EAC7E,EAAS,CACb,WAAY,EAAW,WACvB,cAAe,EAAW,WAC1B,iBAAkB,EAClB,IAAK,CAAE,QAAS,EAAS,WAAY,YAAa,EAAS,QAAS,EACpE,UAAW,CAAC,CACd,EACA,EAAM,KAAK,CAAM,CACnB,CACF,CACA,YAAK,YAAc,KAAK,YAAY,OAAO,AAAC,GAAM,IAAM,IAAI,EAC5D,KAAK,cAAgB,EAAM,OACvB,EAAM,OAAS,EAAO,KAAK,aAAa,GAAM,OAAS,EAAO,KAAK,aAChE,CACT,CACF,ECpKO,GAAM,IAAS,CACpB,MAAO,EACP,MAAO,EACP,OAAQ,EACR,KAAM,EACN,MAAO,EACP,IAAK,CAAC,EAAG,EAAG,EAAG,EAAG,CAAC,EACnB,YAAa,CAAE,EAAG,QAAS,EAAG,QAAS,EAAG,SAAU,EAAG,OAAQ,EAAG,OAAQ,EAQ1E,cAAe,CACb,EAAG,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,EAClC,EAAG,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,EAClC,EAAG,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,CAAC,EACvC,EAAG,CAAC,CAAC,EAAG,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,CAAC,EACzC,EAAG,CAAC,CAAC,EAAG,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,CAAC,CAC3C,EACA,QAAS,AAAC,GAAU,GAAO,YAAY,GACvC,UAAW,AAAC,GAAU,GAAO,cAAc,EAC7C,EAEa,GAAa,CACxB,KAAM,EACN,KAAM,EACN,KAAM,EACN,YAAa,CAAE,EAAG,OAAQ,EAAG,OAAQ,EAAG,MAAO,EAC/C,QAAS,AAAC,GAAU,GAAW,YAAY,EAC7C,EAEa,EAAkB,CAC7B,WAAY,EACZ,aAAc,EACd,eAAgB,EAChB,gBAAiB,EACjB,gBAAiB,EACjB,eAAgB,EAChB,kBAAmB,EACnB,iBAAkB,EAClB,YAAa,CAAE,EAAG,aAAc,EAAG,eAAgB,EAAG,iBAAkB,EAAG,kBAAmB,EAAG,kBAAmB,EAAG,iBAAkB,EAAG,oBAAqB,EAAG,kBAAmB,EACvL,QAAS,AAAC,GAAU,EAAgB,YAAY,EAClD,EAEa,GAAN,KAAoB,CAOzB,YAAY,EAAM,CANlB,eACA,gBACA,qBACA,kBACA,0BAIE,KAAK,KAAO,EACZ,KAAK,MAAQ,CAAC,EACd,KAAK,WAAa,CAAC,EACnB,KAAK,QAAU,CAAC,EAAK,EAAK,EAAK,EAAK,CAAG,EACvC,KAAK,gBAAkB,CAAC,EAAK,EAAK,EAAK,EAAK,CAAG,CACjD,CAEA,KAAK,EAAQ,EAAM,EAAY,CAC7B,AAAI,MAAO,MAAK,MAAM,IAAY,aAAa,MAAK,MAAM,GAAU,CAAC,GACrE,KAAK,MAAM,GAAQ,KAAK,CAAC,EAAM,CAAU,CAAC,CAC5C,CAEA,UAAU,EAAQ,EAAU,EAAY,CACtC,AAAK,KAAK,WAAW,IAAS,MAAK,WAAW,GAAU,CAAC,GACzD,KAAK,WAAW,GAAQ,KAAK,CAAC,EAAU,CAAU,CAAC,CACrD,CAEA,OAAO,EAAQ,EAAQ,CACrB,KAAK,QAAQ,GAAU,EAEvB,GAAM,GAAQ,KAAK,QAAQ,OAAO,CAAC,EAAG,IAAM,EAAI,EAAG,CAAC,EACpD,KAAK,gBAAkB,KAAK,QAAQ,IAAI,AAAC,GAAO,EAAK,EAAI,CAAK,CAChE,CAEA,aAAa,EAAe,EAAoB,CAC9C,GAAI,GAAa,EAGjB,OAAW,KAAa,GAAe,CACrC,GAAM,GAAe,EAAc,GAC7B,EAAgB,KAAK,MAAM,GACjC,GAAI,MAAO,IAAkB,YAAa,CAGxC,GAAc,KAAK,gBAAgB,GACnC,QACF,CAEA,OAAW,CAAC,EAAc,IAAU,GAClC,GAAI,IAAiB,EAAc,CACjC,GAAc,EAAQ,KAAK,gBAAgB,GAC3C,KACF,CAEJ,CAEA,OAAW,KAAa,GAAoB,CAC1C,GAAM,GAAoB,EAAmB,GACvC,EAAqB,KAAK,WAAW,GAC3C,GAAI,MAAO,IAAuB,YAAa,CAG7C,GAAc,KAAK,gBAAgB,GACnC,QACF,CAEA,OAAW,CAAC,EAAmB,IAAU,GACvC,GAAI,IAAsB,EAAmB,CAC3C,GAAc,EAAQ,KAAK,gBAAgB,GAC3C,KACF,CAEJ,CACA,MAAO,GAAa,EACtB,CACF,ECtHO,GAAM,CAAE,SAAO,SAAO,UAAQ,QAAM,UAAU,GAExC,CAAE,QAAM,QAAM,SAAS,GAEvB,CAAE,cAAY,gBAAc,kBAAgB,mBAAiB,mBAAiB,kBAAgB,qBAAmB,qBAAqB,EAG7I,GAAW,GAAI,IAAc,WAAW,EAC9C,GAAS,KAAK,GAAO,GAAM,CAAG,EAC9B,GAAS,UAAU,GAAO,GAAY,CAAG,EACzC,GAAS,UAAU,GAAO,GAAgB,GAAI,EAC9C,GAAS,UAAU,GAAO,GAAiB,GAAI,EAC/C,OAAW,KAAU,CAAC,GAAO,MAAO,GAAO,OAAQ,GAAO,KAAM,GAAO,KAAK,EAC1E,GAAS,KAAK,EAAQ,GAAM,CAAG,EAC/B,GAAS,UAAU,EAAQ,GAAgB,CAAG,EAC9C,GAAS,UAAU,EAAQ,GAAiB,CAAG,EAIjD,GAAM,IAAU,GAAI,IAAc,SAAS,EAC3C,GAAQ,KAAK,GAAO,GAAM,EAAG,EAC7B,GAAQ,KAAK,GAAO,GAAM,EAAG,EAC7B,GAAQ,UAAU,GAAO,GAAY,CAAG,EACxC,GAAQ,UAAU,GAAO,GAAgB,CAAG,EAC5C,GAAQ,KAAK,GAAO,GAAM,CAAG,EAC7B,GAAQ,UAAU,GAAO,GAAY,GAAI,EACzC,GAAQ,UAAU,GAAO,GAAgB,CAAG,EAC5C,GAAQ,KAAK,GAAQ,GAAM,CAAG,EAC9B,GAAQ,UAAU,GAAQ,GAAY,CAAG,EACzC,GAAQ,UAAU,GAAQ,GAAgB,GAAI,EAC9C,GAAQ,KAAK,GAAM,GAAM,CAAG,EAC5B,GAAQ,UAAU,GAAM,GAAY,EAAG,EACvC,GAAQ,UAAU,GAAM,GAAgB,CAAG,EAC3C,GAAQ,UAAU,GAAM,GAAgB,EAAG,EAC3C,GAAQ,KAAK,GAAO,GAAM,CAAG,EAC7B,GAAQ,UAAU,GAAO,GAAY,EAAG,EACxC,GAAQ,UAAU,GAAO,GAAgB,CAAG,EAC5C,GAAQ,UAAU,GAAO,GAAgB,EAAG,EAC5C,GAAQ,OAAO,GAAO,CAAC,EACvB,GAAQ,OAAO,GAAQ,CAAC,EAGxB,GAAM,IAAQ,GAAI,IAAc,OAAO,EACvC,GAAM,KAAK,GAAO,GAAM,CAAG,EAC3B,GAAM,KAAK,GAAO,GAAM,EAAG,EAC3B,GAAM,KAAK,GAAQ,GAAM,EAAG,EAC5B,GAAM,KAAK,GAAM,GAAM,EAAG,EAC1B,GAAM,KAAK,GAAO,GAAM,EAAG,EAC3B,GAAM,OAAO,GAAO,CAAC,EACrB,GAAM,OAAO,GAAQ,CAAC,EAGtB,GAAM,IAAe,GAAI,IAAc,eAAe,EACtD,GAAa,KAAK,GAAO,GAAM,CAAG,EAClC,GAAa,KAAK,GAAO,GAAM,EAAG,EAClC,GAAa,KAAK,GAAQ,GAAM,EAAG,EACnC,GAAa,KAAK,GAAM,GAAM,EAAG,EACjC,GAAa,KAAK,GAAO,GAAM,EAAG,EAClC,GAAa,OAAO,GAAO,CAAC,EAC5B,GAAa,OAAO,GAAQ,CAAC,EAG7B,GAAM,IAAW,GAAI,IAAc,WAAW,EAC9C,GAAS,KAAK,GAAO,GAAM,GAAI,EAC/B,GAAS,KAAK,GAAO,GAAM,GAAI,EAC/B,GAAS,KAAK,GAAQ,GAAM,GAAI,EAChC,GAAS,KAAK,GAAM,GAAM,GAAI,EAC9B,GAAS,KAAK,GAAO,GAAM,GAAI,EAE/B,GAAO,IAAQ,CAAC,GAAU,GAAS,GAAO,GAAc,EAAQ,ECpEhE,GAAM,IAAgB,GAChB,GAAU,CAEd,sBAAuB,GACvB,oBAAqB,IAErB,oBAAqB,IACrB,wBAAyB,GACzB,uBAAwB,GAC1B,EAEA,YAAwB,EAAS,EAAS,EAAS,EAAS,CAC1D,GAAM,GAAS,GAAU,GAAY,GAAU,GAC3C,EAAQ,KAAK,KAAK,CAAK,EAAI,IAAM,KAAK,GAC1C,MAAI,IAAS,EAAG,EAAQ,CAAC,EAChB,EAAQ,GAAG,GAAQ,IAAM,GAC3B,CACT,CAIA,YAAmB,EAAQ,EAAQ,CACjC,GAAI,CAAC,GAAU,CAAC,EAAQ,MAAO,CAAC,EAAG,CAAC,EACpC,GAAM,GAAU,GAAe,EAAO,GAAI,EAAO,GAAI,EAAO,GAAI,EAAO,EAAE,EACzE,GAAI,EAAO,SAAW,EAAG,MAAO,GAChC,GAAM,GAAU,GAAe,EAAO,GAAI,EAAO,GAAI,EAAO,GAAI,EAAO,EAAE,EACzE,MAAO,CAAC,EAAS,CAAO,CAC1B,CAEA,YAA4B,EAAO,EAAc,EAAK,CACpD,GAAI,GAAa,EACb,EAAa,EACb,EAAe,EACnB,MAAI,IAAS,IAAQ,GAAS,IAAO,EAAa,EAAI,EACjD,AAAI,GAAS,IAAQ,GAAS,IAAO,EAAa,EAAI,EACtD,EAAe,EAAI,EACjB,CAAC,EAAY,EAAY,CAAY,CAC9C,CAEA,YAA4B,EAAY,EAAU,EAAU,CAC1D,GAAM,GAAmB,EAAW,GAAK,EAAS,GAC5C,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAiB,EAAS,GAAK,EAAS,GACxC,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAiB,EAAS,GAAK,EAAS,GACxC,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAiB,EAAS,GAAK,EAAS,GACxC,EAAiB,KAAK,KAAK,EAAmB,EAAmB,EAAmB,EAAmB,EAAmB,CAAgB,EAC1I,EAAiB,KAAK,KAAK,EAAmB,EAAmB,EAAmB,EAAmB,EAAmB,CAAgB,EAC1I,EAAe,KAAK,KAAK,EAAiB,EAAiB,EAAiB,EAAiB,EAAiB,CAAc,EAC9H,EAAU,GAAe,EAAe,EAAiB,EAAiB,EAAiB,GAAmB,GAAI,EAAe,GACrI,AAAI,EAAS,EAAK,EAAS,EAClB,EAAS,IAAM,GAAS,IACjC,GAAI,GAAe,KAAK,KAAK,CAAM,EACnC,EAAgB,QAAU,EAAgB,IAC1C,GAAI,GACJ,MAAI,GAAe,GAAQ,oBAAqB,EAAa,GAAW,KACnE,AAAI,EAAe,GAAQ,sBAAuB,EAAa,GAAW,KAC1E,EAAa,GAAW,KACtB,CACT,CAEA,YAAqC,EAAkB,EAAkB,EAAgB,EAAY,CACnG,GAAI,GACJ,MAAI,KAAe,KAAK,IAAI,CAAgB,EAC1C,AAAI,EAAmB,EAAG,EAAqB,EAAgB,eAC1D,EAAqB,EAAgB,gBACrC,AAAI,IAAe,KAAK,IAAI,CAAgB,EACjD,AAAI,EAAmB,EAAG,EAAqB,EAAgB,eAC1D,EAAqB,EAAgB,gBAE1C,AAAI,EAAiB,EAAG,EAAqB,EAAgB,eACxD,EAAqB,EAAgB,gBAErC,CACT,CAEA,YAAmC,EAAkB,EAAkB,EAAgB,EAAY,CACjG,GAAI,GACJ,MAAI,KAAe,KAAK,IAAI,CAAgB,EAC1C,AAAI,EAAmB,EAAG,EAAqB,EAAgB,aAC1D,EAAqB,EAAgB,WACrC,AAAI,IAAe,KAAK,IAAI,CAAgB,EACjD,AAAI,EAAmB,EAAG,EAAqB,EAAgB,aAC1D,EAAqB,EAAgB,WAE1C,AAAI,EAAiB,EAAG,EAAqB,EAAgB,aACxD,EAAqB,EAAgB,WAErC,CACT,CAEA,YAAmC,EAAkB,EAAkB,EAAgB,EAAY,EAAkB,EAAkB,EAAgB,EAAY,CACjK,GAAI,GACE,EAA0B,GAA0B,EAAkB,EAAkB,EAAgB,CAAU,EAClH,EAA4B,GAA4B,EAAkB,EAAkB,EAAgB,CAAU,EAC5H,MAAI,KAA4B,EAAgB,WAC9C,AAAI,IAA8B,EAAgB,eAAgB,EAAqB,EAAgB,eAClG,EAAqB,EAAgB,gBAE1C,AAAI,IAA8B,EAAgB,eAAgB,EAAqB,EAAgB,iBAClG,EAAqB,EAAgB,kBAErC,CACT,CAEA,YAAkC,EAAY,EAAU,EAAU,EAAc,CAC9E,GAAM,GAAmB,EAAW,GAAK,EAAS,GAC5C,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAiB,EAAS,GAAK,EAAS,GACxC,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAiB,EAAS,GAAK,EAAS,GACxC,EAAa,KAAK,IAAI,KAAK,IAAI,CAAgB,EAAG,KAAK,IAAI,CAAgB,EAAG,KAAK,IAAI,CAAc,CAAC,EACtG,EAAa,KAAK,IAAI,KAAK,IAAI,CAAgB,EAAG,KAAK,IAAI,CAAgB,EAAG,KAAK,IAAI,CAAc,CAAC,EACxG,EAAe,EACf,EAAe,EACf,EAAiB,EACf,EAA2B,EAAc,GAAa,MAC5D,AAAI,EAA2B,IAAK,GAAgB,GAAQ,oBACvD,AAAI,EAA2B,IAAM,GAAgB,GAAQ,oBAC7D,GAAkB,GAAQ,oBAC/B,GAAM,GAAiB,KAAK,KAAK,EAAmB,EAAmB,EAAmB,CAAgB,EACpG,EAAiB,KAAK,KAAK,EAAmB,EAAmB,EAAmB,CAAgB,EACpG,EAAe,KAAK,KAAK,EAAiB,EAAiB,EAAiB,CAAc,EAC1F,EAAW,KAAK,IAAI,EAAgB,EAAgB,CAAY,EAClE,EAAqB,EAAW,GAChC,EAAqB,EAAW,GAChC,EAAmB,EAAS,GAC5B,EAAmB,EAAS,GAChC,AAAI,IAAa,EACf,GAAmB,EAAS,GAC5B,EAAmB,EAAS,IACnB,IAAa,GACtB,GAAqB,EAAS,GAC9B,EAAqB,EAAS,IAIhC,GAAM,GAAa,GAFI,CAAC,EAAoB,CAAkB,EACzC,CAAC,EAAkB,CAAgB,CACC,EACnD,EAAQ,GAAmB,EAAY,GAAQ,sBAAsB,EAC3E,GAAgB,EAAM,GACtB,GAAgB,EAAM,GACtB,GAAkB,EAAM,GACxB,OAAW,MAAe,GAAc,CACtC,GAAM,GAAc,GAAmB,GAAa,GAAQ,uBAAuB,EACnF,GAAgB,EAAY,GAC5B,GAAgB,EAAY,GAC5B,GAAkB,EAAY,EAChC,CAGA,GAAI,GACJ,MAAI,KAAiB,KAAK,IAAI,EAAc,EAAc,CAAc,EACtE,EAAqB,GAA0B,EAAkB,EAAkB,EAAgB,CAAU,EACxG,AAAI,IAAmB,KAAK,IAAI,EAAc,CAAc,EACjE,EAAqB,GAA4B,EAAkB,EAAkB,EAAgB,CAAU,EAE/G,EAAqB,GAA0B,EAAkB,EAAkB,EAAgB,EAAY,EAAkB,EAAkB,EAAgB,CAAU,EAExK,CACT,CAEA,YAAkB,EAAW,CAE3B,GAAM,GAA4B,CAAC,EAC7B,EAA4B,CAAC,EAC7B,EAA6B,CAAC,EAC9B,EAAkC,CAAC,EACzC,GAAI,CAAC,EAAW,MAAO,CAAE,MAAO,EAAa,WAAY,CAAiB,EAG1E,OAAW,KAAU,IAAO,IAAK,CAC/B,GAAM,GAAS,GAAO,UAAU,CAAM,EAChC,EAA2B,CAAC,EAC5B,EAA2B,CAAC,EAClC,OAAW,KAAS,GAAQ,CAC1B,GAAM,GAAS,EAAU,EAAM,IACzB,EAAS,EAAU,EAAM,IAEzB,EAAS,GAAU,EAAQ,CAAM,EACjC,EAAU,EAAO,GACjB,EAAU,EAAO,GACvB,EAAU,KAAK,CAAO,EACtB,EAAU,KAAK,CAAO,CACxB,CACA,EAAS,KAAK,CAAS,EACvB,EAAS,KAAK,CAAS,CACzB,CAGA,OAAW,KAAU,IAAO,IAAK,CAE/B,GAAM,GAAgB,IAAW,GAAO,MAAS,EAAI,EAC/C,EAAiB,GAAO,UAAU,CAAM,EACxC,EAAa,EAAU,EAAe,GAAc,IACpD,EAAW,EAAU,EAAe,EAAe,GAAG,IACtD,EAAW,EAAU,EAAe,GAAG,IAEvC,EAAe,GAAmB,EAAY,EAAU,CAAQ,EAChE,EAAiB,GAAyB,EAAY,EAAU,EAAU,EAAS,GAAQ,MAAM,CAAY,CAAC,EACpH,EAAY,GAAU,EACtB,EAAiB,GAAU,CAC7B,CACA,MAAO,CAAE,MAAO,EAAa,WAAY,CAAiB,CAC5D,CAEO,YAAiB,EAAW,CACjC,GAAI,CAAC,GAAa,EAAU,SAAW,EAAG,MAAO,MACjD,GAAM,GAAe,GAAS,CAAS,EACjC,EAAY,CAAC,EACnB,OAAW,KAAa,IAAO,IAC7B,EAAU,GAAO,QAAQ,CAAS,GAAK,CACrC,KAAM,GAAW,QAAQ,EAAa,MAAM,EAAU,EACtD,UAAW,EAAgB,QAAQ,EAAa,WAAW,EAAU,CACvE,EAEF,MAAO,EACT,CAEO,YAAe,EAAW,CAC/B,GAAM,GAAqD,CAAC,EAC5D,GAAI,CAAC,GAAa,EAAU,SAAW,EAAG,MAAO,GACjD,GAAM,GAAe,GAAS,CAAS,EACvC,OAAW,KAAW,IAAU,CAC9B,GAAM,GAAa,EAAQ,aAAa,EAAa,MAAO,EAAa,UAAU,EACnF,AAAI,GAAc,IAAe,EAAM,KAAK,CAAE,KAAM,EAAQ,KAAM,YAAW,CAAC,CAChF,CACA,MAAO,EACT,CChOA,GAAM,IAAkB,CACtB,MAAO,CAAC,EAAG,EAAG,EAAG,CAAC,EAClB,MAAO,CAAC,EAAG,EAAG,EAAG,CAAC,EAClB,OAAQ,CAAC,EAAG,GAAI,GAAI,EAAE,EACtB,KAAM,CAAC,GAAI,GAAI,GAAI,EAAE,EACrB,MAAO,CAAC,GAAI,GAAI,GAAI,EAAE,EACtB,KAAM,CAAC,CAAC,CACV,EAEI,GACA,GACA,GAEJ,kBAA8B,EAAe,EAAuC,CAClF,GAAM,GAAc,KAAM,IAAa,cAAc,EAAO,CAAM,EAClE,GAAI,CAAC,EAAa,MAAO,CAAC,EAC1B,GAAM,GAA2B,CAAC,EAClC,OAAS,GAAI,EAAG,EAAI,EAAY,OAAQ,IAAK,CAC3C,GAAM,GAAc,CAAC,EACrB,GAAI,EAAY,GAAG,UACjB,OAAW,KAAO,QAAO,KAAK,EAAe,EAC3C,EAAY,GAAO,GAAgB,GAAK,IAAI,AAAC,GAAU,EAAY,GAAG,UAAU,EAAM,EAG1F,GAAM,GAAY,EAAY,GAAG,UAC7B,EAAW,CAAC,OAAO,iBAAkB,OAAO,iBAAkB,EAAG,CAAC,EAClE,EAAc,CAAC,EAAG,EAAG,EAAG,CAAC,EAC7B,GAAI,GAAa,EAAU,OAAS,EAAG,CACrC,OAAW,KAAM,GACf,AAAI,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAElC,EAAI,IAAM,EAAI,GACd,EAAI,IAAM,EAAI,GACd,EAAS,CAAC,EAAI,GAAM,GAAM,MAAM,IAAM,GAAI,EAAI,GAAM,GAAM,MAAM,IAAM,GAAI,EAAI,GAAM,GAAM,MAAM,IAAM,GAAI,EAAI,GAAM,GAAM,MAAM,IAAM,EAAE,CAC1I,KACE,GAAM,EAAY,GAAG,IAAM,CACzB,KAAK,MAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,EAAE,CAAC,EACrD,KAAK,MAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,EAAE,CAAC,EACrD,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAY,GAAG,IAAI,YAAY,EAAE,EAAI,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,EAAE,CAAC,EAC1H,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAY,GAAG,IAAI,YAAY,EAAE,EAAI,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,EAAE,CAAC,CAC5H,EAAI,CAAC,EAAG,EAAG,EAAG,CAAC,EACf,EAAS,CACN,EAAY,GAAG,IAAI,QAAQ,GAAO,GAAM,MAAM,IAAM,GACpD,EAAY,GAAG,IAAI,QAAQ,GAAO,GAAM,MAAM,IAAM,GACpD,GAAY,GAAG,IAAI,YAAY,GAAK,EAAY,GAAG,IAAI,QAAQ,IAAO,GAAM,MAAM,IAAM,GACxF,GAAY,GAAG,IAAI,YAAY,GAAK,EAAY,GAAG,IAAI,QAAQ,IAAO,GAAM,MAAM,IAAM,EAC3F,EAEF,GAAM,GAAY,AAAW,GAAQ,CAAS,EAC9C,EAAM,KAAK,CACT,GAAI,EACJ,MAAO,KAAK,MAAM,IAAM,EAAY,GAAG,UAAU,EAAI,IACrD,SAAU,KAAK,MAAM,IAAM,EAAY,GAAG,aAAa,EAAI,IAC3D,YAAa,KAAK,MAAM,IAAM,EAAY,GAAG,gBAAgB,EAAI,IACjE,MAAO,OACP,MACA,SACA,YACA,YAAa,EACb,UAAW,CACb,CAAC,CACH,CACA,MAAO,EACT,CAEA,kBAA2B,EAAiE,CApF5F,QAqFE,AAAI,EAAI,SACN,IAAoB,KACpB,GAAgB,MAElB,AAAI,CAAC,IAAqB,CAAC,GACzB,CAAC,GAAmB,EAAa,EAAI,KAAM,SAAQ,IAAI,CACrD,EAAO,KAAK,QAAU,EAAU,KAAO,KAAK,WAAZ,cAAsB,SAAS,EAAI,KACnE,EAAO,KAAK,UAAY,EAAU,KAAO,KAAK,WAAZ,cAAsB,SAAS,EAAI,IACvE,CAAC,EAEG,GAAO,OAAO,EAAI,gBAAiB,GAAkB,QAAW,EAChE,EAAO,OAAO,EAAI,gBAAiB,GAAc,QAAW,GAElE,GAAM,GAAe,GAAiB,IAAa,EAAiB,EACpE,UAAe,GAAiB,IAAa,EAAc,EAAa,EACjE,CAAC,GAAmB,EAAa,CAC1C,CCjFA,GAAM,IAAiD,CAAC,KAAM,IAAI,EAC5D,GAAmB,CAAC,8CAA+C,oDAAoD,EAEvH,GAAY,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,EAE3B,GAAU,CAAC,OAAQ,OAAQ,QAAS,QAAS,OAAQ,MAAO,UAAU,EACtE,GAAY,EAEZ,GAAgB,IAChB,GAAwB,IACxB,GAAqB,IAEvB,GAAU,OAAO,iBACjB,GAAW,EACX,GAA+B,CAAC,EAAG,CAAC,EAUlC,EAGF,CACF,MAAO,CAAC,EACR,MAAO,CAAC,CACV,EAEM,GAAY,CAShB,MAAO,CAAC,EAAG,EAAG,EAAG,CAAC,EAClB,MAAO,CAAC,EAAG,EAAG,EAAG,CAAC,EAClB,OAAQ,CAAC,EAAG,GAAI,GAAI,EAAE,EACtB,KAAM,CAAC,GAAI,GAAI,GAAI,EAAE,EACrB,MAAO,CAAC,GAAI,GAAI,GAAI,EAAE,EACtB,KAAM,CAAC,CAAC,EACR,KAAM,CAAC,EAAG,GAAI,GAAI,EAAG,EAAG,EAAG,CAAC,CAC9B,EAEA,kBAAiC,EAAqC,CAtEtE,MAyEE,GADI,EAAI,SAAS,IAAO,GAAK,MACxB,GAAO,GAQL,AAAI,EAAO,OAAO,EAAI,gBAAiB,GAAO,GAAG,QAAW,MARnD,CAGd,GAAQ,CAAC,oBAAqB,QAAS,uBAAwB,QAAS,WAAY,SAAU,OAAQ,kBAAmB,gBAAiB,oBAAqB,oBAAqB,aAAc,QAAS,QAAS,OAAO,EAAG,CAAM,EACpO,GAAO,GAAK,KAAM,GAAU,KAAO,KAAK,WAAZ,cAAsB,SAAS,EAC3D,GAAM,GAAS,OAAO,OAAO,GAAO,GAAG,eAAe,MAAS,EAC/D,GAAU,GAAG,GAAK,MAAM,QAAQ,CAAM,EAAI,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,EACxF,GAAU,GAAG,GAAK,MAAM,QAAQ,CAAM,EAAI,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CAC1F,CACA,MAAO,IAAO,EAChB,CAEA,kBAAmC,EAAqC,CArFxE,MAuFE,GADI,EAAI,SAAS,IAAO,GAAK,MACxB,GAAO,GAKL,AAAI,EAAO,OAAO,EAAI,gBAAiB,GAAO,GAAG,QAAW,MALnD,CACd,GAAO,GAAK,KAAM,GAAU,KAAO,KAAK,WAAZ,cAAsB,SAAS,EAC3D,GAAM,GAAS,OAAO,OAAO,GAAO,GAAG,eAAe,MAAS,EAC/D,GAAU,GAAG,GAAK,MAAM,QAAQ,CAAM,EAAI,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,EACxF,GAAU,GAAG,GAAK,MAAM,QAAQ,CAAM,EAAI,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CAC1F,CACA,MAAO,IAAO,EAChB,CAQA,kBAA2B,EAAe,EAA6C,CACrF,GAAM,GAA4B,CAAC,EACnC,GAAI,CAAC,GAAS,CAAC,GAAO,GAAI,MAAO,GACjC,GAAM,GAA4B,CAAC,EAC7B,EAAS,GAAM,MAAM,IAAM,GAAM,GAAM,MAAM,IAAM,GACnD,EAAS,KAAK,IAAI,KAAK,MAAO,GAAM,MAAM,IAAM,GAAK,CAAC,EAAI,EAAG,EAAqB,EAClF,EAAQ,KAAK,MAAM,EAAS,EAAQ,CAAC,EAAI,EAC/C,EAAE,OAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAQ,CAAK,CAAC,EACzD,EAAE,KAAO,AAAG,OAAK,EAAE,OAAQ,OAAO,EAClC,CAAC,EAAE,UAAW,EAAE,QAAQ,EAAI,KAAM,IAAO,GAAG,aAAa,EAAE,KAAM,EAAgB,EACjF,EAAE,MAAQ,AAAG,UAAQ,EAAE,SAAU,CAAC,EAAG,CAAC,CAAC,EACvC,EAAE,OAAS,AAAG,UAAQ,EAAE,UAAW,CAAC,CAAC,CAAC,EACtC,GAAM,GAA6B,AAAG,UAAQ,EAAE,OAAQ,CAAC,EACzD,AAAG,UAAQ,EAAY,GAAU,EACjC,EAAY,OAAO,GAAW,CAAC,EAC/B,EAAE,SAAW,AAAG,QAAM,EAAa,CAAC,EACpC,AAAG,UAAQ,CAAW,EAEtB,EAAE,IAAM,AAAG,MAAI,EAAE,SAAU,CAAC,EAC5B,EAAE,OAAS,AAAG,SAAO,EAAE,SAAU,CAAC,EAClC,GAAI,GAAK,EACT,EAAE,IAAM,KAAM,AAAG,SAAM,uBAAuB,EAAE,MAAO,EAAE,IAAM,GAAO,KAAK,aAAe,GAAK,EAAG,EAAO,KAAK,cAAgB,EAAG,EAAO,KAAK,eAAiB,CAAC,EAC/J,GAAM,GAAM,KAAM,GAAE,IAAI,KAAK,EACvB,EAAS,KAAM,GAAE,IAAI,KAAK,EAC1B,EAAW,KAAM,GAAE,OAAO,KAAK,EACrC,OAAW,KAAY,OAAM,KAAK,CAAG,EAAG,CACtC,GAAM,GAAW,AAAG,QAAM,EAAE,MAAO,EAAU,CAAC,EACxC,EAAQ,KAAM,GAAS,KAAK,EAClC,AAAG,UAAQ,CAAQ,EACnB,GAAM,GAAe,CAAC,EAAM,GAAI,EAAM,GAAI,EAAM,GAAK,EAAM,GAAI,EAAM,GAAK,EAAM,EAAE,EAC5E,EAAc,AAAI,GAAM,EAAS,EAAkB,EACnD,EAAe,CAAC,KAAK,MAAM,EAAQ,GAAK,GAAW,EAAE,EAAG,KAAK,MAAM,EAAQ,GAAK,GAAW,EAAE,EAAG,KAAK,MAAM,EAAQ,GAAK,GAAW,EAAE,EAAG,KAAK,MAAM,EAAQ,GAAK,GAAW,EAAE,CAAC,EAC9K,EAAQ,EAAO,GACf,EAAQ,GAAQ,EAAS,IACzB,EAAyB,CAAE,GAAI,IAAM,QAAO,IAAK,EAAS,SAAQ,OAAM,EAC9E,EAAM,KAAK,CAAI,CACjB,CACA,cAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACxD,EAAM,KAAK,CAAC,EAAG,IAAM,EAAE,MAAQ,EAAE,KAAK,EAClC,EAAM,OAAU,GAAO,KAAK,aAAe,IAAI,GAAM,OAAU,EAAO,KAAK,aAAe,GACvF,CACT,CAEA,kBAA6B,EAAe,EAAqB,EAAqC,CACpG,GAAM,GAAmB,CACvB,GAAI,EAAE,GACN,MAAO,KAAK,MAAM,IAAM,EAAE,KAAK,EAAI,IACnC,SAAU,KAAK,MAAM,IAAM,EAAE,KAAK,EAAI,IACtC,YAAa,EACb,IAAK,EAAE,IACP,OAAQ,EAAE,OACV,MAAO,EAAE,MACT,UAAW,CAAC,EACZ,UAAW,CAAC,EACZ,YAAa,CAAC,CAChB,EACA,GAAI,GAAS,GAAO,IAAM,EAAO,KAAK,WAAa,EAAE,MAAS,GAAO,KAAK,eAAiB,GAAI,CAC7F,GAAM,GAA4B,CAAC,EAC7B,EAAU,CAAC,EAAE,OAAO,GAAI,EAAE,OAAO,GAAI,EAAE,OAAO,GAAK,EAAE,OAAO,GAAI,EAAE,OAAO,GAAK,EAAE,OAAO,EAAE,EAC/F,EAAE,KAAO,AAAG,QAAM,cAAc,EAAO,CAAC,CAAO,EAAG,CAAC,CAAC,EAAG,CAAC,GAAU,GAAG,GAAI,GAAU,GAAG,EAAE,EAAG,UAAU,EACrG,EAAE,IAAM,AAAG,MAAI,EAAE,KAAM,EAAU,KAAK,EACtC,CAAC,EAAE,MAAO,EAAE,SAAS,EAAI,GAAO,GAAG,QAAQ,EAAE,IAAK,CAAC,aAAc,UAAU,CAAC,EAC5E,GAAM,GAAY,MAAM,GAAE,MAAM,KAAK,GAAG,GAClC,EAAS,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,CAAQ,EAAE,GAAK,IACnE,GAAI,GAAU,GAAO,KAAK,eAAiB,GAAI,CAC7C,EAAK,YAAc,EACnB,EAAE,SAAW,AAAG,UAAQ,EAAE,UAAW,CAAC,GAAI,CAAC,CAAC,EAG5C,GAAM,GAAsB,AADD,AADC,MAAM,GAAE,SAAS,MAAM,GACb,IAAI,AAAC,GAAQ,CAAC,EAAI,GAAK,GAAU,GAAG,GAAI,EAAI,GAAK,GAAU,GAAG,GAAK,EAAI,IAAM,CAAE,CAAC,EAChF,IAAI,AAAC,GAAQ,CAAC,EAAI,GAAK,EAAE,OAAO,GAAI,EAAI,GAAK,EAAE,OAAO,GAAK,EAAI,IAAM,CAAE,CAAC,EAC9G,EAAK,UAAa,EAAY,IAAI,AAAC,GAAQ,CAAC,GAAW,GAAM,GAAI,GAAK,EAAE,OAAO,IAAK,GAAW,GAAM,GAAI,GAAK,EAAE,OAAO,IAAM,EAAI,IAAM,CAAE,CAAC,EAC1I,EAAK,UAAY,AAAW,GAAQ,EAAK,SAAS,EAClD,OAAW,KAAO,QAAO,KAAK,EAAS,EACrC,EAAK,YAAY,GAAO,GAAU,GAAK,IAAI,AAAC,GAAmB,EAAK,WAAa,EAAK,UAAU,GAAS,EAAK,UAAU,GAAS,IAAK,CAE1I,CACA,OAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,CAC1D,CACA,MAAO,EACT,CAEA,kBAA8B,EAAe,EAAuC,CAvLpF,QAwLE,GAAI,CAAC,GAAO,IAAM,CAAC,GAAO,IAAM,CAAC,OAAO,KAAP,QAAW,OAAO,GAAG,QAAS,CAAC,OAAO,KAAP,QAAW,OAAO,GAAG,OAAO,MAAO,CAAC,EACpG,GAAa,CAAC,EAAM,MAAM,IAAM,EAAG,EAAM,MAAM,IAAM,CAAC,EACtD,KACA,GAAM,GAAY,GAAO,KAAK,UAAY,GAAM,EAAI,EAAI,GAClD,EAAY,GAAW,GAAO,KAAK,YAAc,GACvD,MAAI,GAAO,aAAe,GAAY,EAC7B,EAAM,MAER,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAmB,EAAK,GAAO,KAAK,UAAY,GAAM,EAAI,EAAI,GAC9D,EAAoB,GAAU,EAAK,GAAO,KAAK,YAAc,GACnE,AAAI,EAAO,aAAe,EAAM,MAAM,SAAW,EAAO,KAAK,YAC3D,EAAM,MAAQ,KAAM,SAAQ,IAAI,EAAM,MAAM,IAAI,AAAC,GAAY,GAAc,EAAO,EAAS,CAAM,CAAC,CAAC,EAC9F,AAAI,EAAO,aAAe,GAAoB,GAAqB,EAAM,MAAM,OAAS,EAC7F,EAAM,MAAQ,KAAM,SAAQ,IAAI,EAAM,MAAM,IAAI,AAAC,GAAY,GAAc,EAAO,EAAS,CAAM,CAAC,CAAC,EAEnG,GAAM,MAAQ,KAAM,IAAY,EAAO,CAAM,EAC7C,GAAW,EAAI,EACf,EAAM,MAAQ,KAAM,SAAQ,IAAI,EAAM,MAAM,IAAI,AAAC,GAAY,GAAc,EAAO,EAAS,CAAM,CAAC,CAAC,EACnG,GAAU,GAGZ,GAAM,GAAW,CAAC,GAAG,EAAM,KAAK,EAEhC,GADA,EAAM,MAAM,OAAS,EACjB,EAAO,iBAAmB,EAC5B,OAAS,GAAI,EAAG,EAAI,EAAM,MAAM,OAAQ,IAAK,CAC3C,GAAM,GAAS,AAAI,GAAO,EAAM,MAAM,GAAG,UAAW,EAAU,EAC9D,GAAI,EAAO,IAAI,GAAM,GAAM,MAAM,IAAM,GAAK,KAAQ,EAAO,IAAI,GAAM,GAAM,MAAM,IAAM,GAAK,KAAQ,EAAM,MAAM,GAAG,aAAe,EAAM,MAAM,GAAG,YAAe,GAAO,KAAK,eAAiB,GAAI,CAC/L,GAAM,GAAW,AAAI,GAAM,EAAO,IAAK,EAAa,EAC9C,EAAc,AAAI,GAAM,EAAO,OAAQ,EAAa,EAE1D,EAAM,MAAM,KAAK,CAAE,GAAG,EAAS,GAAI,IAAK,EAAU,OAAQ,CAAY,CAAC,CACzE,CACF,CAEF,OAAS,GAAI,EAAG,EAAI,EAAM,MAAM,OAAQ,IAAK,CAC3C,GAAM,GAAO,AAAI,GAAK,EAAM,MAAM,GAAG,UAAW,EAAU,EAC1D,EAAM,MAAM,GAAG,IAAM,EAAK,IAC1B,EAAM,MAAM,GAAG,OAAS,EAAK,MAC/B,CACA,EAAQ,EAAM,KAAK,CACrB,CAAC,CACH,CCvNA,GAAI,IACE,GAAwB,CAAC,EAC3B,GAAU,OAAO,iBACjB,GAAY,EACZ,GAAW,EAEf,kBAA2B,EAAqC,CAjBhE,MAkBE,MAAI,GAAI,SAAS,IAAQ,MACzB,AAAK,GACI,EAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,EADjD,GAAQ,KAAM,GAAU,KAAO,KAAK,WAAZ,cAAsB,SAAS,EAE5D,EACT,CAEA,kBAA8B,EAAe,EAAgB,EAAa,EAAgC,CAxB1G,QAyBE,GAAI,CAAC,GAAO,MAAO,GACnB,GAAM,GAAY,OAAO,KAAK,WAAZ,cAAsB,WAAY,GAAM,EAAI,EAAI,GAC5D,EAAY,GAAW,OAAO,KAAK,WAAZ,cAAsB,aAAc,GACjE,MAAI,GAAO,aAAe,GAAY,GAAc,KAAc,GAAU,GAAO,GACjF,MACO,GAAO,IAEhB,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,aAAO,OAAO,GAAG,MAAQ,GAAM,OAAO,GAAG,MAAM,GAAK,EAAG,aAAO,OAAO,GAAG,MAAQ,GAAM,OAAO,GAAG,MAAM,GAAK,CAAC,EAAG,EAAK,EAC7J,EAAM,mBAAO,QAAQ,GACrB,EAAO,MAAM,GAAI,KAAK,GAAG,GAC/B,GAAO,GAAO,KAAK,MAAM,IAAM,CAAG,EAAI,IACtC,GAAY,EACZ,GAAW,EAAI,EACf,AAAG,UAAQ,CAAC,EAAQ,CAAG,CAAC,EACxB,EAAQ,GAAO,EAAI,CACrB,CAAC,EACH,CC3CA,iGAAO,GAAM,IAAqB,CAChC,OACA,UACA,WACA,UACA,WACA,eACA,gBACA,YACA,aACA,YACA,aACA,UACA,WACA,WACA,YACA,YACA,YACF,EAEa,GAA8B,CACzC,CAAC,UAAW,UAAU,EACtB,CAAC,UAAW,UAAU,EACtB,CAAC,eAAgB,eAAe,EAChC,CAAC,YAAa,YAAY,EAC1B,CAAC,YAAa,YAAY,EAC1B,CAAC,UAAW,UAAU,EACtB,CAAC,WAAY,WAAW,EACxB,CAAC,YAAa,YAAY,CAC5B,EAEa,GAA4B,CACvC,CAAC,WAAY,cAAc,EAC3B,CAAC,YAAa,eAAe,EAC7B,CAAC,YAAa,UAAU,EACxB,CAAC,aAAc,WAAW,CAC5B,EAEa,GAA8B,CACzC,CAAC,CAAC,UAAW,UAAU,EAAG,CAAC,eAAgB,eAAe,CAAC,EAC3D,CAAC,CAAC,YAAa,YAAY,EAAG,CAAC,eAAgB,eAAe,CAAC,CACjE,EAEa,GAAsC,CACjD,QAAS,CAAC,UAAW,WAAY,WAAW,EAC5C,SAAU,CAAC,WAAY,YAAa,YAAY,EAChD,MAAO,CAAC,eAAgB,gBAAiB,WAAY,UAAW,cAAc,EAC9E,QAAS,CAAC,eAAgB,YAAa,WAAW,EAClD,SAAU,CAAC,gBAAiB,aAAc,YAAY,EACtD,KAAM,CAAC,CACT,EC5CA,GAAM,IAAY,KAEZ,GAGF,CACF,UAAW,CAAC,EACZ,QAAS,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,CAC1C,EAEO,YAAmB,EAAkB,CAC1C,OAAW,KAAe,IAAY,CACpC,GAAM,GAAO,EAAK,UAAU,UAAU,AAAC,GAAO,EAAG,OAAS,EAAK,EAAE,EAC3D,EAAQ,EAAK,UAAU,UAAU,AAAC,GAAO,EAAG,OAAS,EAAK,EAAE,EAClE,GAAI,EAAK,UAAU,IAAS,EAAK,UAAU,IACrC,EAAK,UAAU,GAAM,SAAS,GAAK,EAAK,UAAU,GAAO,SAAS,GAAI,CACxE,GAAM,GAAM,EAAK,UAAU,GAC3B,EAAK,UAAU,GAAQ,EAAK,UAAU,GACtC,EAAK,UAAU,GAAS,CAC1B,CAEJ,CACA,OAAW,KAAe,IAAU,CAClC,GAAM,GAAQ,EAAK,UAAU,UAAU,AAAC,GAAQ,GAAM,EAAG,OAAS,EAAK,EAAG,EACpE,EAAS,EAAK,UAAU,UAAU,AAAC,GAAQ,GAAM,EAAG,OAAS,EAAK,EAAG,EAC3E,AAAI,EAAK,UAAU,IAAU,EAAK,UAAU,IACtC,EAAK,UAAU,GAAO,SAAS,GAAK,EAAK,UAAU,GAAQ,SAAS,IACtE,EAAK,UAAU,OAAO,EAAO,CAAC,CAGpC,CACA,OAAW,CAAC,EAAM,IAAmB,IAAU,CAC7C,GAAM,GAAO,EAAK,UAAU,UAAU,AAAC,GAAQ,GAAM,EAAG,OAAS,EAAK,EAAG,EACnE,EAAQ,EAAK,UAAU,UAAU,AAAC,GAAQ,GAAM,EAAG,OAAS,EAAK,EAAG,EACpE,EAAS,EAAK,UAAU,UAAU,AAAC,GAAQ,GAAM,EAAG,OAAS,EAAQ,EAAG,EACxE,EAAU,EAAK,UAAU,UAAU,AAAC,GAAQ,GAAM,EAAG,OAAS,EAAQ,EAAG,EAC/E,GAAI,CAAC,EAAK,UAAU,IAAW,CAAC,EAAK,UAAU,GAAU,SACzD,GAAM,GAAe,EAAK,UAAU,GAAQ,CAC1C,KAAK,IAAI,EAAK,UAAU,GAAQ,SAAS,GAAK,EAAK,UAAU,GAAM,SAAS,EAAE,EAC9E,KAAK,IAAI,EAAK,UAAU,GAAS,SAAS,GAAK,EAAK,UAAU,GAAM,SAAS,EAAE,CACjF,EAAI,CAAC,EAAG,CAAC,EACH,EAAgB,EAAK,UAAU,GAAS,CAC5C,KAAK,IAAI,EAAK,UAAU,GAAS,SAAS,GAAK,EAAK,UAAU,GAAO,SAAS,EAAE,EAChF,KAAK,IAAI,EAAK,UAAU,GAAQ,SAAS,GAAK,EAAK,UAAU,GAAO,SAAS,EAAE,CACjF,EAAI,CAAC,EAAG,CAAC,EACT,GAAI,EAAa,GAAK,EAAa,IAAM,EAAc,GAAK,EAAc,GAAI,CAC5E,GAAM,GAAM,EAAK,UAAU,GAC3B,EAAK,UAAU,GAAQ,EAAK,UAAU,GACtC,EAAK,UAAU,GAAS,CAC1B,CACF,CACF,CAEO,YAAgB,EAAqD,CAC1E,OAAS,GAAI,EAAG,EAAI,EAAU,OAAQ,IACpC,GAAI,EAAU,IAAM,GAAM,UAAU,GAAI,CACtC,GAAM,GAAO,CAAC,KAAK,IAAI,EAAU,GAAG,YAAY,GAAK,GAAM,UAAU,GAAG,YAAY,EAAE,EAAG,KAAK,IAAI,EAAU,GAAG,YAAY,GAAK,GAAM,UAAU,GAAG,YAAY,EAAE,CAAC,EAClK,AAAI,EAAK,GAAK,IAAa,EAAK,GAAK,GACnC,EAAU,GAAK,GAAM,UAAU,GAE/B,GAAM,UAAU,GAAK,EAAU,EAEnC,KACE,IAAM,UAAU,GAAK,EAAU,GAGnC,MAAO,EACT,CAEO,YAAkB,EAAe,EAA2B,CACjE,GAAM,GAA4B,CAAC,EACnC,GAAI,CAAC,EAAM,OAAS,CAAC,EAAM,MAAM,IAAM,CAAC,EAAM,MAAM,GAAI,MAAO,GAC/D,GAAM,QAAU,CACd,CAAC,EAAG,CAAC,EACL,CAAC,EAAM,MAAM,GAAK,EAAM,MAAM,GAAK,KAAK,MAAO,GAAM,MAAM,GAAK,EAAM,MAAM,IAAM,CAAC,EAAI,EAAG,EAAM,MAAM,GAAK,EAAM,MAAM,GAAK,KAAK,MAAO,GAAM,MAAM,GAAK,EAAM,MAAM,IAAM,CAAC,EAAI,CAAC,EACjL,CAAC,EAAM,MAAM,GAAK,EAAM,MAAM,GAAK,KAAK,MAAO,GAAM,MAAM,GAAK,EAAM,MAAM,IAAM,CAAC,EAAI,EAAG,EAAM,MAAM,GAAK,EAAM,MAAM,GAAK,KAAK,MAAO,GAAM,MAAM,GAAK,EAAM,MAAM,IAAM,CAAC,EAAI,CAAC,EACjL,CAAC,EAAG,CAAC,CACP,EACA,EAAE,IAAM,AAAG,MAAI,EAAO,GAAM,OAAO,EACnC,EAAE,OAAS,AAAG,QAAM,eAAe,EAAE,IAAK,CAAC,EAAW,CAAS,CAAC,EAChE,GAAM,GAAQ,AAAG,OAAK,EAAE,OAAQ,OAAO,EACvC,cAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACjD,CACT,CAEO,YAAqB,EAAkB,EAA0C,CACtF,EAAK,UAAY,EAAK,UAAU,OAAO,AAAC,GAAQ,GAAO,EAAI,QAAQ,EACnE,OAAW,KAAO,GAAK,UACrB,EAAI,SAAW,CACb,EAAI,SAAS,GAAM,GAAW,GAAK,GAAM,QAAQ,GAAG,GAAK,GAAM,QAAQ,GAAG,IAAM,EAAW,GAAK,GAAM,QAAQ,GAAG,GACjH,EAAI,SAAS,GAAM,GAAW,GAAK,GAAM,QAAQ,GAAG,GAAK,GAAM,QAAQ,GAAG,IAAM,EAAW,GAAK,GAAM,QAAQ,GAAG,EACnH,EACA,EAAI,YAAc,CAChB,EAAI,SAAS,GAAK,EAAW,GAAI,EAAI,SAAS,GAAK,EAAW,EAChE,EAEF,GAAM,GAAgB,AAAI,GAAK,EAAK,UAAU,IAAI,AAAC,GAAO,EAAG,QAAQ,EAAG,CAAU,EAClF,SAAK,IAAM,EAAc,IACzB,EAAK,OAAS,EAAc,OACrB,CACT,CCxFA,GAAI,IACA,GAAY,EACZ,GAAU,OAAO,iBAGf,GAIF,CACF,MAAO,CAAC,EACR,OAAQ,CAAC,EACT,KAAM,CACR,EAEA,kBAA2B,EAAqC,CAC9D,MAAI,GAAI,SAAS,IAAQ,MACzB,AAAK,GAGM,EAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,EAF7D,IAAQ,CAAC,MAAM,EAAG,CAAM,EACxB,GAAQ,KAAM,GAAU,EAAO,KAAK,SAAS,GAE/C,GAAY,GAAM,OAAO,GAAG,MAAQ,GAAM,OAAO,GAAG,MAAM,GAAK,EAC3D,GAAY,IAAI,IAAY,KACzB,EACT,CAEA,kBAA+B,EAAK,EAAQ,EAAO,CACjD,GAAM,GAAM,EAAI,GAAG,GACb,EAAiC,CAAC,EACpC,EAAQ,EACZ,OAAS,GAAK,EAAG,EAAK,EAAI,OAAQ,IAEhC,GADA,EAAQ,EAAI,GAAI,GACZ,EAAQ,EAAO,KAAK,cAAe,CACrC,GAAM,GAAqB,CAAC,EAAI,GAAI,GAAI,EAAI,GAAI,EAAE,EAClD,EAAU,KAAK,CACb,MAAO,KAAK,MAAM,IAAM,CAAK,EAAI,IACjC,KAAM,AAAO,GAAI,GACjB,cACA,SAAU,CACR,KAAK,MAAO,GAAM,MAAM,IAAM,GAAK,EAAY,EAAE,EACjD,KAAK,MAAO,GAAM,MAAM,IAAM,GAAK,EAAY,EAAE,CACnD,CACF,CAAC,CACH,CAEF,EAAQ,EAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,CAAC,EACnF,GAAM,GAA4B,CAAC,EAC7B,EAAS,AAAI,GAAK,EAAU,IAAI,AAAC,GAAO,EAAG,QAAQ,EAAG,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,EAAE,CAAC,EACtF,EAAyC,CAAC,EAChD,OAAW,CAAC,EAAM,IAAY,QAAO,QAAe,EAAS,EAAG,CAC9D,GAAM,GAAqB,CAAC,EAC5B,OAAS,GAAI,EAAG,EAAI,EAAQ,OAAS,EAAG,IAAK,CAC3C,GAAM,GAAM,EAAU,KAAK,AAAC,GAAO,EAAG,OAAS,EAAQ,EAAE,EACnD,EAAM,EAAU,KAAK,AAAC,GAAO,EAAG,OAAS,EAAQ,EAAI,EAAE,EAC7D,AAAI,GAAO,GAAO,EAAI,MAAS,GAAO,KAAK,eAAiB,IAAM,EAAI,MAAS,GAAO,KAAK,eAAiB,IAAI,EAAG,KAAK,CAAC,EAAI,SAAU,EAAI,QAAQ,CAAC,CACtJ,CACA,EAAY,GAAQ,CACtB,CACA,GAAM,GAAmB,CAAE,GAAI,EAAG,QAAO,IAAK,EAAO,IAAK,OAAQ,EAAO,OAAQ,YAAW,aAAY,EACxG,MAAI,IAAU,CAAI,EAClB,EAAO,KAAK,CAAI,EACT,CACT,CAEA,kBAA8B,EAAK,EAAQ,EAAO,CAChD,GAAM,GAA4B,CAAC,EACnC,OAAS,GAAK,EAAG,EAAK,EAAI,GAAG,OAAQ,IAAM,CACzC,GAAM,GAAM,EAAI,GAAG,GACb,EAAa,KAAK,MAAM,IAAM,EAAI,GAAK,EAAE,EAAI,IACnD,GAAI,EAAa,EAAO,KAAK,cAAe,CAC1C,GAAM,GAAiC,CAAC,EACxC,OAAS,GAAI,EAAG,EAAI,GAAI,IAAK,CAC3B,GAAM,GAAQ,EAAI,EAAI,EAAI,GAC1B,GAAI,EAAQ,EAAO,KAAK,cAAe,CACrC,GAAM,GAAqB,CAAC,EAAI,EAAI,EAAI,GAAI,EAAI,EAAI,EAAI,EAAE,EAC1D,EAAU,KAAK,CACb,KAAM,AAAO,GAAI,GACjB,MAAO,KAAK,MAAM,IAAM,CAAK,EAAI,IACjC,cACA,SAAU,CAAC,KAAK,MAAO,GAAM,MAAM,IAAM,GAAK,EAAY,EAAE,EAAG,KAAK,MAAO,GAAM,MAAM,IAAM,GAAK,EAAY,EAAE,CAAC,CACnH,CAAC,CACH,CACF,CACA,GAAM,GAAS,AAAI,GAAK,EAAU,IAAI,AAAC,GAAO,EAAG,QAAQ,EAAG,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,EAAE,CAAC,EAItF,EAAiD,CAAC,EACxD,OAAW,CAAC,EAAM,IAAY,QAAO,QAAe,EAAS,EAAG,CAC9D,GAAM,GAAqB,CAAC,EAC5B,OAAS,GAAI,EAAG,EAAI,EAAQ,OAAS,EAAG,IAAK,CAC3C,GAAM,GAAM,EAAU,KAAK,AAAC,GAAO,EAAG,OAAS,EAAQ,EAAE,EACnD,EAAM,EAAU,KAAK,AAAC,GAAO,EAAG,OAAS,EAAQ,EAAI,EAAE,EAC7D,AAAI,GAAO,GAAO,EAAI,MAAS,GAAO,KAAK,eAAiB,IAAM,EAAI,MAAS,GAAO,KAAK,eAAiB,IAAI,EAAG,KAAK,CAAC,EAAI,SAAU,EAAI,QAAQ,CAAC,CACtJ,CACA,EAAY,GAAQ,CACtB,CACA,GAAM,GAAmB,CAAE,KAAI,MAAO,EAAY,IAAK,EAAO,IAAK,OAAQ,EAAO,OAAQ,UAAW,CAAC,GAAG,CAAS,EAAG,aAAY,EACjI,AAAI,GAAU,CAAI,EAClB,EAAO,KAAK,CAAI,CAClB,CACF,CACA,SAAO,KAAK,CAAC,EAAG,IAAM,EAAE,MAAQ,EAAE,KAAK,EACnC,EAAO,OAAS,EAAO,KAAK,aAAa,GAAO,OAAS,EAAO,KAAK,aAClE,CACT,CAEA,kBAA8B,EAAe,EAAuC,CAClF,GAAI,CAAC,IAAS,CAAC,cAAO,OAAO,GAAG,OAAO,MAAO,CAAC,EAC/C,AAAK,EAAO,aAAa,IAAM,MAAM,OAAS,GAC9C,KACA,GAAM,GAAY,GAAO,KAAK,UAAY,GAAM,EAAI,EAAI,GAAM,KACxD,EAAY,GAAW,GAAO,KAAK,YAAc,GACvD,MAAI,GAAO,aAAe,GAAY,EAC7B,GAAM,OAER,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAA4B,CAAC,EACnC,GAAU,EAmCV,EAAE,MAAQ,AAAI,GAAS,EAAO,EAAS,EACvC,EAAE,IAAM,mBAAO,QAAQ,EAAE,OACzB,GAAM,KAAO,EAAI,EACjB,GAAM,GAAM,KAAM,GAAE,IAAI,MAAM,EAC9B,GAAM,OAAU,EAAE,IAAI,MAAM,KAAO,GAC/B,KAAM,IAAgB,EAAK,EAAQ,CAAK,EACxC,KAAM,IAAe,EAAK,EAAQ,CAAK,EAC3C,OAAW,KAAQ,IAAM,OACvB,AAAI,GAAY,EAAM,CAAC,EAAM,MAAM,IAAM,EAAG,EAAM,MAAM,IAAM,CAAC,CAAC,EAChE,AAAI,GAAO,EAAK,SAAS,EAE3B,OAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EAExD,EAAQ,GAAM,MAAM,CACtB,CAAC,CACH,CC1KA,GAAI,IACA,GAA4B,CAAC,EAC7B,GAAW,EACX,GAAU,OAAO,iBACjB,GAAY,EAEV,GAAW,IAEjB,kBAA2B,EAAqC,CAC9D,GAAI,CAAC,IAAS,EAAI,QAAS,CACzB,GAAQ,KAAM,GAAU,EAAO,OAAO,SAAS,EAC/C,GAAM,GAAS,OAAO,OAAO,GAAM,eAAe,MAAS,EAC3D,GAAY,MAAM,QAAQ,CAAM,EAAI,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CACpF,KAAO,AAAI,GAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,EAC/D,MAAO,GACT,CAEA,kBAAuB,EAAe,EAA+B,EAAgB,CACnF,GAAI,GAAK,EACL,EAA+B,CAAC,EACpC,OAAW,KAAc,CAAC,EAAG,EAAG,CAAC,EAE/B,AAAG,OAAK,SAAY,CAClB,GAAM,GAAW,EAAa,GAExB,EAAU,AAAG,UAAQ,EAAI,KAAK,AAAC,GAAe,EAAE,MAAM,KAAQ,GAAY,GAAO,GAAE,MAAM,IAAM,KAAO,GAAO,MAAO,CAAC,EACrH,EAAY,AAAG,UAAQ,EAAI,KAAK,AAAC,GAAe,EAAE,MAAM,KAAQ,GAAY,GAAO,GAAE,MAAM,IAAM,GAAK,GAAO,MAAO,CAAC,EAErH,EAAS,KAAM,AADJ,GAAU,QAAQ,CAAC,GAAI,EAAG,EAAU,MAAM,GAAK,CAAC,CAAC,EACpC,OAAO,CAAC,EAAE,MAAM,EACxC,EAAS,KAAM,GAAQ,MAAM,EACnC,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IACpC,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IAAK,CACzC,GAAM,GAAQ,EAAO,GAAG,GACxB,GAAI,EAAS,GAAO,OAAO,eAAiB,IAAM,IAAM,GAAI,CAC1D,GAAM,GAAM,IAAM,KAAK,MAAM,EAAI,CAAQ,GAAK,EACxC,EAAM,IAAM,KAAK,MAAM,EAAI,CAAQ,GAAK,EACxC,EAAY,EAAO,GAAG,IAAI,AAAC,GAAc,EAAK,GAAW,EAAa,GAAU,EAChF,CAAC,EAAG,GAAK,CACb,EAAM,GAAW,EAAa,EAAU,GACxC,EAAM,GAAW,EAAa,EAAU,EAC1C,EACM,CAAC,EAAG,GAAK,CACb,EAAM,GAAW,EAAa,EAAU,GAAM,EAC9C,EAAM,GAAW,EAAa,EAAU,GAAM,CAChD,EACI,EAAc,CAAC,EAAG,EAAG,EAAG,CAAC,EAC7B,EAAS,EAAO,IAAI,AAAC,GAAM,KAAK,IAAI,EAAG,KAAK,IAAI,EAAG,CAAC,CAAC,CAAC,EACtD,GAAM,GAAM,CACV,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,EAC1B,EACM,EAAS,CACb,GAAI,IAEJ,MAAO,KAAK,MAAM,IAAM,CAAK,EAAI,IACjC,MAAO,EAAI,EACX,MAAO,GAAO,GAAG,MAGjB,IAAK,EAAI,IAAI,AAAC,GAAM,KAAK,MAAM,CAAC,CAAC,EACjC,QACF,EACA,EAAQ,KAAK,CAAM,CACrB,CACF,CAEJ,CAAC,EAGH,EAAI,QAAQ,AAAC,GAAM,AAAG,UAAQ,CAAC,CAAC,EAIhC,GAAM,GAAW,EAAQ,IAAI,AAAC,GAAM,CAAC,EAAE,OAAO,GAAI,EAAE,OAAO,GAAI,EAAE,OAAO,GAAI,EAAE,OAAO,EAAE,CAAC,EAClF,EAAY,EAAQ,IAAI,AAAC,GAAM,EAAE,KAAK,EACxC,EAAwB,CAAC,EAC7B,GAAI,GAAY,EAAS,OAAS,EAAG,CACnC,GAAM,GAAM,KAAM,AAAG,SAAM,uBAAuB,EAAU,EAAW,EAAO,OAAO,YAAa,EAAO,OAAO,aAAc,EAAO,OAAO,aAAa,EACzJ,EAAS,KAAM,GAAI,KAAK,EACxB,AAAG,UAAQ,CAAG,CAChB,CAGA,SAAU,EACP,OAAO,CAAC,EAAM,IAAQ,EAAO,SAAS,CAAG,CAAC,EAC1C,KAAK,CAAC,EAAG,IAAO,EAAE,MAAQ,EAAE,KAAM,EAE9B,CACT,CAEA,kBAA8B,EAAe,EAAyC,CACpF,GAAM,GAAY,GAAO,OAAO,UAAY,GAAM,EAAI,EAAI,GACpD,EAAY,GAAW,GAAO,OAAO,YAAc,GACzD,MAAI,GAAO,aAAe,GAAY,GAAc,GAAK,OAAS,EAChE,MACO,IAET,IAAU,EACN,CAAC,EAAI,QAAQ,SAAS,KAAK,GAAK,CAAC,EAAI,QAAQ,SAAS,eAAe,EAAU,GAC5E,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAa,CAAC,EAAM,MAAM,IAAM,EAAG,EAAM,MAAM,IAAM,CAAC,EACtD,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,GAAW,EAAS,EAAG,EAAK,EACrE,EAAO,AAAG,MAAI,EAAQ,EAAU,KAAK,EACrC,EAAY,EAAK,UAAU,CAAC,EAAG,EAAG,EAAG,CAAC,CAAC,EAC7C,AAAG,UAAQ,CAAI,EACf,AAAG,UAAQ,CAAM,EAEjB,GAAI,GACJ,AAAI,EAAO,OAAO,SAAS,GAAU,GAAM,QAAQ,CAAS,GAC5D,GAAW,EAAI,EACf,AAAG,UAAQ,CAAS,EAEpB,GAAM,GAAM,KAAM,IAAQ,EAAqB,EAAgC,CAAM,EACrF,GAAO,EACP,EAAQ,CAAG,CACb,CAAC,EACH,CC/HO,GAAM,IAAY,CACvB,OAAQ,UAAW,WAAY,UAAW,WAAY,eACtD,gBAAiB,YAAa,aAAc,YAAa,aACzD,UAAW,WAAY,WAAY,YAAa,YAAa,YAC/D,EAEa,GAAQ,GAAU,OAElB,GAAU,GAAU,OAAO,CAAC,EAAQ,EAAW,IAC1D,GAAO,GAAa,EACb,GACN,CAAC,CAAC,EAEC,GAAqB,CACzB,CAAC,UAAW,cAAc,EAAG,CAAC,YAAa,cAAc,EACzD,CAAC,YAAa,WAAW,EAAG,CAAC,UAAW,UAAU,EAClD,CAAC,WAAY,WAAW,EAAG,CAAC,WAAY,eAAe,EACvD,CAAC,aAAc,eAAe,EAAG,CAAC,aAAc,YAAY,EAC5D,CAAC,WAAY,WAAW,EAAG,CAAC,YAAa,YAAY,EACrD,CAAC,eAAgB,eAAe,EAAG,CAAC,UAAW,UAAU,CAC3D,EACa,GAAuB,GAAmB,IAAI,CAAC,CAAC,EAAY,KAAiB,CAAC,GAAQ,GAAa,GAAQ,EAAW,CAAE,EAExH,GAAY,CACvB,CAAC,OAAQ,SAAS,EAAG,CAAC,UAAW,SAAS,EAAG,CAAC,OAAQ,UAAU,EAChE,CAAC,WAAY,UAAU,EAAG,CAAC,OAAQ,cAAc,EACjD,CAAC,eAAgB,WAAW,EAAG,CAAC,YAAa,WAAW,EACxD,CAAC,eAAgB,SAAS,EAAG,CAAC,UAAW,UAAU,EACnD,CAAC,WAAY,WAAW,EAAG,CAAC,OAAQ,eAAe,EACnD,CAAC,gBAAiB,YAAY,EAAG,CAAC,aAAc,YAAY,EAC5D,CAAC,gBAAiB,UAAU,EAAG,CAAC,WAAY,WAAW,EACvD,CAAC,YAAa,YAAY,CAC5B,EAgBO,YAAwB,EAA6C,CAC1E,GAAM,GAAQ,EAAU,OAAO,CAAC,CAAE,OAAM,OAAM,OAAM,QAAQ,CAAE,SAAU,CAAE,IAAG,QAAW,EACtF,KAAM,KAAK,IAAI,EAAM,CAAC,EACtB,KAAM,KAAK,IAAI,EAAM,CAAC,EACtB,KAAM,KAAK,IAAI,EAAM,CAAC,EACtB,KAAM,KAAK,IAAI,EAAM,CAAC,CACxB,GAAI,CACF,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,iBACf,CAAC,EACD,MAAO,CAAC,EAAM,KAAM,EAAM,KAAM,EAAM,KAAO,EAAM,KAAM,EAAM,KAAO,EAAM,IAAI,CAClF,CAEO,YAAoB,EAAO,CAAC,EAAQ,GAAQ,CAAC,EAAuB,GAA0C,CACnH,GAAM,GAAS,EAAS,EAClB,EAAS,EAAQ,EACjB,EAAY,CAAC,EAAM,IAAmB,EAC1C,GAAI,EACJ,MAAO,EAAK,MACZ,OAAQ,CAAC,EAAK,IAAI,GAAK,EAAsB,EAAK,IAAI,GAAK,EAAuB,EAAK,IAAI,GAAK,EAAsB,EAAK,IAAI,GAAK,CAAqB,EACzJ,IAAK,CAAC,KAAK,MAAM,EAAK,IAAI,GAAK,CAAM,EAAG,KAAK,MAAM,EAAK,IAAI,GAAK,CAAM,EAAG,KAAK,MAAM,EAAK,IAAI,GAAK,CAAM,EAAG,KAAK,MAAM,EAAK,IAAI,GAAK,CAAM,CAAC,EAC5I,UAAW,EAAK,UAAU,IAAI,CAAC,CAAE,QAAO,OAAM,cAAgB,EAC5D,MAAO,EACP,KAAM,EACN,SAAU,CAAC,KAAK,MAAM,EAAS,EAAI,CAAM,EAAG,KAAK,MAAM,EAAS,EAAI,CAAM,CAAC,EAC3E,YAAa,CAAC,EAAS,EAAI,EAAuB,EAAS,EAAI,CAAqB,CACtF,EAAE,EACF,YAAa,CAAC,CAChB,GAEA,MADoB,GAAM,IAAI,CAAC,EAAM,IAAM,EAAU,EAAM,CAAC,CAAC,CAE/D,CAGO,GAAM,IAAN,KAAc,CAKnB,YAAY,EAAS,EAAiB,CAJtC,wBACA,2BACA,0BAGE,KAAK,cAAgB,GAAI,OAAM,CAAO,EACtC,KAAK,iBAAmB,GACxB,KAAK,gBAAkB,CACzB,CAEA,QAAQ,EAAG,CACT,KAAK,cAAc,EAAE,KAAK,kBAAoB,EAC9C,KAAK,KAAK,KAAK,gBAAgB,CACjC,CAEA,SAAU,CACR,GAAM,GAAM,KAAK,cAAc,GAC/B,YAAK,SAAS,EAAG,KAAK,kBAAkB,EACxC,KAAK,KAAK,CAAC,EACX,KAAK,cAAc,KAAK,iBAAmB,GAAK,KACzC,CACT,CAEA,OAAQ,CAAE,MAAO,MAAK,mBAAqB,EAAI,CAE/C,MAAO,CAAE,MAAO,MAAK,iBAAmB,CAAG,CAE3C,KAAM,CAAE,MAAO,MAAK,cAAc,MAAM,EAAG,KAAK,iBAAmB,CAAC,CAAG,CAEvE,KAAM,CAAE,MAAO,MAAK,cAAc,EAAI,CAEtC,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,KAAK,KAAK,MAAM,EAAI,CAAC,EAAG,CAAC,GAC5C,KAAK,SAAS,EAAG,KAAK,MAAM,EAAI,CAAC,CAAC,EAClC,EAAI,KAAK,MAAM,EAAI,CAAC,CAExB,CAEA,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,kBAAkB,CACrC,GAAI,GAAI,EAAI,EAEZ,GADI,EAAI,KAAK,kBAAoB,KAAK,KAAK,EAAG,EAAI,CAAC,GAAG,IAClD,CAAC,KAAK,KAAK,EAAG,CAAC,EAAG,MACtB,KAAK,SAAS,EAAG,CAAC,EAClB,EAAI,CACN,CACF,CAEA,WAAW,EAAG,CAEZ,MAAO,MAAK,gBAAgB,KAAK,cAAc,EAAE,CACnD,CAEA,KAAK,EAAG,EAAG,CACT,MAAO,MAAK,WAAW,CAAC,EAAI,KAAK,WAAW,CAAC,CAC/C,CAEA,SAAS,EAAG,EAAG,CACb,GAAM,GAAI,KAAK,cAAc,GAC7B,KAAK,cAAc,GAAK,KAAK,cAAc,GAC3C,KAAK,cAAc,GAAK,CAC1B,CACF,EAEO,YAAwB,EAAG,EAAG,EAAU,EAAS,CACtD,MAAO,CACL,EAAG,EAAQ,IAAI,EAAG,EAAG,CAAQ,EAC7B,EAAG,EAAQ,IAAI,EAAG,EAAG,EAAW,EAAK,CACvC,CACF,CAEO,YAAwB,EAAM,EAAc,EAAS,CAC1D,GAAM,CAAE,WAAU,WAAU,GAAI,GAAa,EACvC,CAAE,IAAG,KAAM,GAAe,EAAU,EAAU,EAAU,CAAO,EACrE,MAAO,CACL,EAAG,EAAK,SAAW,EAAe,EAClC,EAAG,EAAK,SAAW,EAAe,CACpC,CACF,CAUO,YAAe,EAAG,EAAK,EAAK,CACjC,MAAI,GAAI,EAAY,EAChB,EAAI,EAAY,EACb,CACT,CAEO,YAAyB,EAAI,EAAI,EAAI,EAAI,CAC9C,GAAM,GAAK,EAAK,EACV,EAAK,EAAK,EAChB,MAAO,GAAK,EAAK,EAAK,CACxB,CAEO,YAAoB,EAAG,EAAG,CAC/B,MAAO,CAAE,EAAG,EAAE,EAAI,EAAE,EAAG,EAAG,EAAE,EAAI,EAAE,CAAE,CACtC,CCnLA,GAAI,IACE,GAAiB,CAAC,+BAA6C,gCAAoD,yCAA+D,wCAA6D,EAC/O,GAAqB,EACrB,GAAe,GACf,GAAmB,IAAM,EAE/B,YAAkB,EAAQ,EAAgB,EAAU,EAAQ,EAAS,EAAe,EAAmB,EAAG,CACxG,GAAM,GAAkB,AAAC,GAAW,EAClC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAG,CAAM,EAC7C,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAI,EAAc,MAAM,GAAK,EAAK,CAAM,CAC9E,GACM,EAA2B,CAAC,EAAO,EAAQ,IAAW,EAC1D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,EAAY,EAAG,EAAG,EAAS,CAAC,EAChE,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,EAAY,EAAG,EAAG,EAAQ,CAAC,CACjE,GAEM,CAAC,EAAQ,GAAS,EAAO,MAEzB,EAAwB,EAAyB,EAAe,SAAU,EAAQ,CAAK,EACvF,EAAe,EAAgB,CAAqB,EAEtD,EADmB,AAAM,GAAW,EAAe,SAAU,CAAY,EAE7E,OAAS,GAAI,EAAG,EAAI,EAAkB,IAAK,CACzC,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,CAAK,EAC9E,EAAc,AAAM,GAAe,EAAsB,EAAG,EAAsB,EAAG,EAAU,CAAO,EAC5G,EAAiB,AAAM,GACrB,CAAE,EAAG,EAAsB,EAAI,GAAc,EAAG,EAAsB,EAAI,EAAa,EACvF,CAAE,EAAG,EAAY,EAAG,EAAG,EAAY,CAAE,CACvC,CACF,CACA,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,CAAK,EAC9E,EAAQ,EAAO,IAAI,EAAsB,EAAG,EAAsB,EAAG,CAAQ,EACnF,MAAO,CAAE,SAAU,EAAgB,KAAM,AAAM,GAAU,GAAW,OAAM,CAC5E,CAEO,YAAoB,EAAM,EAAQ,EAAS,EAAkB,EAAkB,CACpF,GAAM,GAAS,AAAM,GAAU,IAAI,CAAC,CAAC,EAAgB,KAAoB,CAAC,AAAM,GAAQ,GAAiB,AAAM,GAAQ,EAAc,CAAE,EACjI,EAAW,EAAO,IAAI,CAAC,CAAC,CAAE,KAAkB,CAAY,EACxD,EAAW,EAAO,IAAI,CAAC,CAAC,KAAmB,CAAa,EACxD,EAAW,EAAO,MAAM,GACxB,EAAW,EAAS,OACpB,EAAY,GAAI,OAAM,CAAQ,EAE9B,EAAY,AAAM,GAAe,EAAK,KAAM,GAAc,CAAO,EACvE,EAAU,EAAK,KAAK,IAAM,CACxB,MAAO,EAAK,MACZ,KAAM,AAAM,GAAU,EAAK,KAAK,IAChC,SAAU,CACZ,EAEA,OAAS,GAAO,EAAW,EAAG,GAAQ,EAAG,EAAE,EAAM,CAC/C,GAAM,GAAW,EAAS,GACpB,EAAW,EAAS,GAC1B,AAAI,EAAU,IAAa,CAAC,EAAU,IACpC,GAAU,GAAY,GAAS,EAAM,EAAU,GAAW,EAAU,EAAQ,EAAS,CAAgB,EAEzG,CAEA,OAAS,GAAO,EAAG,EAAO,EAAU,EAAE,EAAM,CAC1C,GAAM,GAAW,EAAS,GACpB,EAAW,EAAS,GAC1B,AAAI,EAAU,IAAa,CAAC,EAAU,IACpC,GAAU,GAAY,GAAS,EAAM,EAAU,GAAW,EAAU,EAAQ,EAAS,CAAgB,EAEzG,CACA,MAAO,EACT,CAEA,YAAqC,EAAY,EAAO,EAAU,EAAU,EAAQ,CAClF,GAAM,CAAC,EAAQ,GAAS,EAAO,MAC3B,EAAe,GACb,EAAS,KAAK,IAAI,EAAW,GAAoB,CAAC,EAClD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,CAAM,EAC/D,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAAU,CACvD,GAAM,GAAS,KAAK,IAAI,EAAW,GAAoB,CAAC,EAClD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,CAAK,EAC9D,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAC7C,GAAI,EAAO,IAAI,EAAU,EAAU,CAAU,EAAI,EAAO,CACtD,EAAe,GACf,KACF,CAEF,GAAI,CAAC,EAAc,KACrB,CACA,MAAO,EACT,CAEO,YAAiC,EAAe,EAAQ,CAC7D,GAAM,CAAC,EAAQ,EAAO,GAAgB,EAAO,MACvC,EAAQ,GAAU,IAAQ,EAAS,EAAQ,EAAc,CAAC,CAAE,WAAY,CAAK,EACnF,OAAS,GAAW,EAAG,EAAW,EAAQ,EAAE,EAC1C,OAAS,GAAW,EAAG,EAAW,EAAO,EAAE,EACzC,OAAS,GAAa,EAAG,EAAa,EAAc,EAAE,EAAY,CAChE,GAAM,GAAQ,EAAO,IAAI,EAAU,EAAU,CAAU,EAEvD,AAAI,EAAQ,GAER,GAA4B,EAAY,EAAO,EAAU,EAAU,CAAM,GAAG,EAAM,QAAQ,CAAE,QAAO,KAAM,CAAE,WAAU,WAAU,GAAI,CAAW,CAAE,CAAC,CACvJ,CAGJ,MAAO,EACT,CAEA,YAAsB,EAAO,CAAE,IAAG,KAAK,EAAY,CACjD,MAAO,GAAM,KAAK,CAAC,CAAE,eAAgB,CAxHvC,MAyHI,GAAM,GAAwB,KAAU,KAAV,cAAuB,SACrD,MAAK,GACE,AAAM,GAAgB,EAAG,EAAG,EAAsB,EAAG,EAAsB,CAAC,GAAK,GADrD,EAErC,CAAC,CACH,CAEA,YAA0B,EAAe,EAAW,CAKlD,MAAO,AAJ6B,GAAU,OAAO,CAAC,EAAQ,CAAE,WAAU,SAAS,IAC5E,IAAa,EAAe,EAAU,CAAU,GAAG,IAAU,GAC3D,GACN,CAAG,EAC+B,EAAU,MACjD,CAEO,YAAgB,EAAS,EAAQ,EAAkB,EAAkB,EAAa,EAAe,CACtG,GAAM,GAAuD,CAAC,EACxD,EAAQ,GAAwB,EAAe,CAAM,EAE3D,KAAO,EAAM,OAAS,GAAe,CAAC,EAAM,MAAM,GAAG,CAEnD,GAAM,GAAO,EAAM,QAAQ,EAGrB,EAAkB,AAAM,GAAe,EAAK,KAAM,GAAc,CAAO,EAE7E,GAAI,GAAa,EAAO,EAAiB,EAAK,KAAK,EAAE,EAAG,SAExD,GAAI,GAAY,GAAW,EAAM,EAAQ,EAAS,EAAkB,CAAgB,EACpF,EAAY,EAAU,OAAO,AAAC,GAAM,EAAE,MAAQ,CAAa,EAC3D,GAAM,GAAQ,GAAiB,EAAO,CAAS,EACzC,EAAM,AAAM,GAAe,CAAS,EAC1C,AAAI,EAAQ,GAAe,EAAM,KAAK,CAAE,YAAW,MAAK,MAAO,KAAK,MAAM,IAAM,CAAK,EAAI,GAAI,CAAC,CAChG,CACA,MAAO,EACT,CAEA,kBAA8B,EAAe,EAAuC,CAIlF,GAAM,GAAM,AAAG,OAAK,IAAM,CACxB,GAAI,CAAC,GAAM,OAAO,GAAG,MAAO,MAAO,CAAC,EACpC,GAAM,GAAU,AAAG,QAAM,eAAe,EAAO,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,EAAE,CAAC,EAC7F,EAAa,AAAG,MAAI,AAAG,MAAI,AAAG,OAAK,EAAS,SAAS,EAAG,KAAK,EAAG,CAAG,EAEnE,EAAY,AADa,GAAM,QAAQ,EAAY,EAAc,EAC7C,IAAI,AAAC,GAAM,AAAG,UAAQ,EAAG,CAAC,CAAC,CAAC,CAAC,EACvD,SAAU,GAAK,AAAG,UAAQ,EAAU,EAAE,EAC/B,CACT,CAAC,EAEK,EAAU,KAAM,SAAQ,IAAI,EAAI,IAAI,AAAC,GAAmB,EAAO,OAAO,CAAC,CAAC,EAC9E,OAAW,KAAK,GAAK,AAAG,UAAQ,CAAC,EAEjC,GAAM,GAAU,KAAM,IAAO,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAO,KAAK,YAAa,EAAO,KAAK,aAAa,EAC/H,MAAK,IAAM,OAAO,GAAG,MACN,AAAM,GAAW,EAAS,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,EAAE,EAAG,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,EAAE,CAAC,EAD5F,CAAC,CAGtC,CAEA,kBAA2B,EAAqC,CAC9D,MAAI,CAAC,IAAS,EAAI,QAAS,GAAQ,KAAM,GAAU,EAAO,KAAK,SAAS,EAC/D,EAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,EACtD,EACT,CCtKA,GAAI,IACA,GAAO,GAEX,kBAA2B,EAAqC,CAC9D,MAAI,CAAC,IAAS,EAAI,QAAS,GAAQ,KAAM,GAAU,EAAO,aAAa,SAAS,EACvE,EAAO,OAAO,EAAI,gBAAiB,GAAM,QAAW,EACtD,EACT,CAEA,kBAA8B,EAAc,EAA+B,EACoB,CA5B/F,QA6BE,GAAI,GAAM,MAAO,CAAE,KAAM,CAAC,EAAG,OAAQ,KAAM,MAAO,IAAK,EACvD,GAAO,GACF,IAAO,KAAM,IAAK,CAAM,EAC7B,GAAM,GAAa,KAAM,AAAM,IAAQ,EAAO,CAAM,EAC9C,EAAQ,MAAW,SAAX,cAAmB,MAAM,KAAM,EACvC,EAAS,MAAW,SAAX,cAAmB,MAAM,KAAM,EAC9C,GAAI,CAAC,EAAW,OAAQ,MAAO,CAAE,KAAM,CAAC,EAAG,OAAQ,KAAM,MAAO,IAAK,EACrE,GAAM,GAA4B,CAAC,EAEnC,EAAE,OAAS,AAAG,QAAM,eAAe,EAAW,OAAQ,CAAC,GAAM,OAAO,GAAG,MAAQ,GAAM,OAAO,GAAG,MAAM,GAAK,EAAG,GAAM,OAAO,GAAG,MAAQ,GAAM,OAAO,GAAG,MAAM,GAAK,CAAC,EAAG,EAAK,EACzK,AAAG,UAAQ,EAAW,MAAM,EAC5B,EAAE,KAAO,AAAG,MAAI,EAAE,OAAQ,EAAU,KAAK,EACzC,EAAE,IAAM,GAAM,QAAQ,EAAE,IAAI,EAE5B,EAAE,QAAU,AAAG,UAAQ,EAAE,IAAK,CAAC,EAC/B,AAAI,EAAE,QAAQ,MAAM,KAAO,EACzB,GAAE,QAAU,AAAG,UAAQ,EAAE,OAAO,EAChC,CAAC,EAAE,GAAI,EAAE,EAAE,EAAI,AAAG,UAAQ,EAAE,QAAS,CAAC,EACtC,EAAE,OAAS,AAAG,aAAW,EAAE,GAAI,CAAC,EAChC,EAAE,IAAM,AAAG,aAAW,EAAE,OAAQ,CAAC,EACjC,EAAE,KAAO,AAAG,QAAM,cAAc,EAAE,IAAK,CAAC,CAAC,EAAG,EAAG,GAAK,EAAG,CAAC,EAAG,CAAC,CAAC,EAAG,CAAC,EAAO,CAAM,CAAC,EAI/E,EAAE,KAAO,AAAG,UAAQ,EAAE,KAAM,CAAC,GAE7B,EAAE,KAAO,AAAG,QAAM,eAAe,EAAE,QAAS,CAAC,EAAQ,CAAK,CAAC,EAE7D,GAAM,GAAO,MAAM,KAAK,KAAM,GAAE,KAAK,KAAK,CAAC,EAE3C,GAAI,EAAI,MAAQ,CAAC,EAAI,QAAW,MAAO,YAAc,YACnD,MAAI,GAAO,OAAO,EAAI,wBAAwB,EAC9C,OAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACjD,CAAE,OAAM,OAAQ,KAAM,MAAO,IAAK,EAG3C,GAAM,GAAc,AAAM,GAAO,EAAO,CAAM,EAE9C,AAAO,WAAS,KAAM,AAAG,WAAQ,SAAS,EAAE,KAAM,CAAW,EAC7D,GAAM,GAAW,EAAY,WAAW,IAAI,EAC5C,AAAI,EAAO,aAAa,MAAQ,EAAO,aAAa,KAAO,GAAG,GAAS,OAAS,QAAQ,EAAO,aAAa,WAC5G,GAAM,GAAY,EAAS,aAAa,EAAG,EAAG,EAAO,CAAM,EAErD,EAAkB,AAAM,GAAO,EAAO,CAAM,EAC5C,EAAe,EAAgB,WAAW,IAAI,EACpD,AAAI,EAAW,QAAQ,EAAa,UAAU,EAAW,OAAQ,EAAG,CAAC,EACrE,EAAa,yBAA2B,SACpC,EAAO,aAAa,MAAQ,EAAO,aAAa,KAAO,GAAG,GAAa,OAAS,QAAQ,EAAO,aAAa,WAChH,EAAa,UAAU,EAAa,EAAG,CAAC,EACxC,EAAa,yBAA2B,cACxC,EAAa,OAAS,OACtB,GAAM,GAAgB,EAAa,aAAa,EAAG,EAAG,EAAO,CAAM,EACnE,OAAS,GAAI,EAAG,EAAI,EAAQ,EAAQ,IAAK,EAAc,KAAK,EAAI,EAAI,GAAK,EAAU,KAAK,EAAI,EAAI,GAChG,EAAa,aAAa,EAAe,EAAG,CAAC,EAE7C,GAAI,GAAiC,KACrC,GAAI,GAAc,EAAiB,CACjC,EAAe,AAAM,GAAO,EAAO,CAAM,EACzC,GAAM,GAAU,KAAM,AAAM,IAAQ,EAAY,CAAM,EACtD,AAAG,UAAQ,EAAQ,MAAM,EACzB,GAAM,GAAW,EAAa,WAAW,IAAI,EAC7C,EAAS,UAAU,EAAQ,OAA6B,EAAG,EAAG,EAAa,MAAO,EAAa,MAAM,EACrG,EAAS,UAAU,EAAiB,EAAG,CAAC,CAC1C,CAEA,cAAO,KAAK,CAAC,EAAE,QAAQ,AAAC,GAAW,AAAG,UAAQ,EAAE,EAAO,CAAC,EACxD,GAAO,GAEA,CAAE,OAAM,OAAQ,EAAiB,MAAO,CAAY,CAC7D,CxC9DO,GAAM,IAAN,KAAa,CAAb,cACL,mBAAqD,MACrD,cAAgD,MAChD,yBAA2D,MAC3D,mBAAqD,MACrD,mBAAqD,MACrD,uBAAyD,MACzD,uBAAyD,MACzD,iBAAmD,MACnD,oBAAsD,MACtD,kBAAoD,MACpD,kBAAoD,MACpD,iBAAmD,MACnD,sBAAwD,MACxD,kBAAoD,MACpD,sBAAwD,MACxD,mBAAqD,MACrD,kBAAoD,MACpD,iBAAmD,MACnD,iBAAmD,MACnD,iBAAmD,MACnD,sBAAwD,MACxD,mBAAqD,MACvD,EAca,GAAgB,AAAC,GAAgC,CAC5D,GAAI,GAAwB,EACxB,EAAmB,EACnB,EAAmB,EACvB,OAAW,KAAK,QAAO,OAAO,EAAU,EACtC,GAAyB,EAAE,iBAC3B,GAAoB,EAAE,kBACtB,GAAoB,EAAE,YAExB,GAAM,GAAmB,EAAmB,EAAI,EAAmB,EAAmB,EACtF,MAAO,CACL,gBAAiB,OAAO,OAAO,EAAU,EAAE,OAC3C,iBAAkB,OAClB,iBAAkB,OAAO,KAAK,EAAS,MAAM,EAAE,OAC/C,mBACA,wBACA,mBACA,mBACA,iBAAkB,OAClB,WAAY,OAAO,OAAO,EAAU,CACtC,CACF,EAEO,YAAe,EAAuB,CAE3C,OAAW,KAAS,QAAO,KAAK,EAAS,MAAM,EAAG,EAAS,OAAO,GAAyB,IAC7F,CAGA,kBAA2B,EAAgC,CAtG3D,oEAuGE,AAAI,EAAI,SAAS,GAAM,CAAQ,EAC3B,EAAS,OAAO,KAAK,SACnB,EAAC,EAAS,OAAO,UAAY,SAAS,OAAO,KAAK,WAArB,cAA+B,YAA/B,cAA0C,SAAS,gBAClF,EAAC,EAAS,OAAO,SAAU,EAAS,OAAO,YAAY,EAAI,KAAM,AAAS,IAAK,EAAS,MAAM,GAE5F,CAAC,EAAS,OAAO,cAAgB,EAAS,OAAO,KAAK,WAAa,SAAS,OAAO,KAAK,WAArB,cAA+B,YAA/B,cAA0C,SAAS,gBACxH,EAAC,EAAS,OAAO,SAAU,EAAS,OAAO,YAAY,EAAI,KAAM,AAAS,IAAK,EAAS,MAAM,IAG9F,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,WAAa,SAAS,OAAO,OAAhB,cAAsB,YAAtB,cAAiC,SAAS,eAAc,GAAS,OAAO,UAAY,AAAU,GAAS,EAAS,MAAM,GAEpL,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,iBAAmB,EAAS,OAAO,KAAK,UAAe,EAAS,OAAO,KAAK,SAAY,WAAc,GAAS,OAAO,gBAAkB,AAAU,GAAW,EAAS,MAAM,GAC7N,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,eAAiB,SAAS,OAAO,OAAhB,cAAsB,YAAtB,cAAiC,SAAS,mBAAkB,GAAS,OAAO,cAAgB,AAAc,GAAK,EAAS,MAAM,GAChM,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,SAAW,SAAS,OAAO,OAAhB,cAAsB,YAAtB,cAAiC,SAAS,aAAY,GAAS,OAAO,QAAU,AAAQ,GAAK,EAAS,MAAM,GACxK,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,SAAW,SAAS,OAAO,OAAhB,cAAsB,YAAtB,cAAiC,SAAS,aAAY,GAAS,OAAO,QAAU,AAAQ,GAAK,EAAS,MAAM,GACxK,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,YAAY,GAAS,OAAO,WAAa,AAAU,GAAK,EAAS,MAAM,GACxH,EAAS,OAAO,KAAK,SAAW,MAAS,OAAO,KAAK,YAArB,cAAgC,UAAW,CAAC,EAAS,OAAO,WAAW,GAAS,OAAO,UAAY,AAAU,GAAK,EAAS,MAAM,GACjK,EAAS,OAAO,KAAK,SAAW,MAAS,OAAO,KAAK,WAArB,cAA+B,UAAW,CAAC,EAAS,OAAO,UAAU,GAAS,OAAO,SAAW,AAAS,GAAK,EAAS,MAAM,GAC7J,EAAS,OAAO,KAAK,SAAW,MAAS,OAAO,KAAK,cAArB,cAAkC,UAAW,CAAC,EAAS,OAAO,SAAS,GAAS,OAAO,QAAU,AAAQ,GAAK,EAAS,MAAM,GAC7J,EAAS,OAAO,KAAK,SAAW,MAAS,OAAO,KAAK,UAArB,cAA8B,UAAW,CAAC,EAAS,OAAO,SAAS,GAAS,OAAO,QAAU,AAAQ,GAAK,EAAS,MAAM,GACzJ,EAAS,OAAO,KAAK,SAAW,MAAS,OAAO,KAAK,OAArB,cAA2B,UAAW,CAAC,MAAS,OAAO,KAAK,YAArB,QAAgC,UAAW,CAAC,EAAS,OAAO,UAAU,GAAS,OAAO,SAAW,AAAK,GAAK,EAAS,MAAM,GACjM,EAAS,OAAO,KAAK,SAAW,MAAS,OAAO,KAAK,OAArB,cAA2B,UAAW,CAAC,EAAS,OAAO,UAAU,GAAS,OAAO,SAAW,AAAS,GAAK,EAAS,MAAM,GAEzJ,EAAS,OAAO,KAAK,SAAW,MAAS,OAAO,KAAK,OAArB,cAA8B,UAAW,CAAC,EAAS,OAAO,MAAM,GAAS,OAAO,KAAO,AAAK,GAAK,EAAS,MAAM,GAEhJ,EAAS,OAAO,KAAK,SAAW,MAAS,OAAO,KAAK,SAArB,cAAgC,UAAW,CAAC,EAAS,OAAO,WAAW,GAAS,OAAO,UAAY,AAAU,GAAK,EAAS,MAAM,GAEjK,EAAS,OAAO,KAAK,SAAW,MAAS,OAAO,KAAK,SAArB,cAAgC,UAAW,CAAC,EAAS,OAAO,cAAc,GAAS,OAAO,aAAe,AAAa,GAAK,EAAS,MAAM,GAE1K,EAAS,OAAO,KAAK,SAAW,MAAS,OAAO,KAAK,gBAArB,cAAuC,UAAW,CAAC,EAAS,OAAO,eAAe,GAAS,OAAO,cAAgB,AAAc,GAAK,EAAS,MAAM,GACpL,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,WAAa,SAAS,OAAO,KAAK,WAArB,cAA+B,YAA/B,cAA0C,SAAS,eAAc,GAAS,OAAO,UAAY,AAAU,GAAW,EAAS,MAAM,GAC/L,EAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,WAAa,CAAC,EAAS,OAAO,cAAgB,SAAS,OAAO,KAAK,WAArB,cAA+B,YAA/B,cAA0C,SAAS,eAAc,GAAS,OAAO,aAAe,AAAU,GAAa,EAAS,MAAM,GACzO,EAAS,OAAO,OAAO,SAAW,CAAC,EAAS,OAAO,WAAa,UAAS,OAAO,SAAhB,cAAwB,YAAxB,eAAmC,SAAS,eAAc,GAAS,OAAO,UAAY,AAAU,GAAK,EAAS,MAAM,GACpL,EAAS,OAAO,OAAO,SAAW,CAAC,EAAS,OAAO,SAAW,UAAS,OAAO,SAAhB,cAAwB,YAAxB,eAAmC,SAAS,aAAY,GAAS,OAAO,QAAU,AAAQ,GAAK,EAAS,MAAM,GAC5K,EAAS,OAAO,aAAa,SAAW,CAAC,EAAS,OAAO,cAAc,GAAS,OAAO,aAAe,AAAa,GAAK,EAAS,MAAM,GAG3I,aAAiB,MAAS,QAAO,KAAK,EAAS,MAAM,EACnD,AAAI,EAAS,OAAO,KAA0B,MAAO,GAAS,OAAO,KAA2B,aAC9F,GAAS,OAAO,IAAyB,KAAM,GAAS,OAAO,IAGrE,CAEA,kBAA+B,EAAgC,CAE7D,GAAM,GAAY,CAAC,QAAS,cAAe,OAAQ,MAAO,UAAW,MAAO,MAAO,MAAO,KAAK,EAC/F,OAAW,KAAW,QAAO,KAAK,EAAS,MAAM,EAAG,CAClD,GAAM,GAA2B,EAAS,OAAO,GACjD,GAAI,CAAC,EAAO,SACZ,GAAM,GAAgB,CAAC,EAEjB,EAAW,iBAAO,SACxB,GAAI,GAAY,EAAS,MAAM,MAC7B,OAAW,KAAU,QAAO,OAAO,EAAS,MAAM,KAAK,EAAG,CACxD,GAAM,GAAM,EAAc,GAAG,YAAY,EACzC,AAAK,EAAI,SAAS,CAAE,GAAG,EAAI,KAAK,CAAE,CACpC,KAEA,AAAI,CAAC,GAAY,EAAS,OAAO,OAAO,EAAI,kCAAmC,CAAO,EAExF,GAAM,GAAoB,CAAC,EAC3B,OAAW,KAAM,GACf,AAAI,CAAC,EAAU,SAAS,CAAE,GACrB,CAAC,EAAS,IAAI,QAAQ,SAAS,CAAE,GACjC,CAAC,EAAS,IAAI,QAAQ,SAAS,EAAG,QAAQ,IAAK,EAAE,CAAC,GAClD,CAAC,EAAS,IAAI,QAAQ,SAAS,EAAG,QAAQ,SAAU,EAAE,CAAC,GACvD,CAAC,EAAS,IAAI,QAAQ,SAAS,EAAG,QAAQ,KAAM,EAAE,CAAC,GACtD,EAAQ,KAAK,CAAE,EAInB,AAAI,EAAS,OAAO,OAAS,EAAQ,OAAS,GAAG,EAAI,2BAA4B,EAAS,CAAO,CACnG,CACF,CyCvKO,GAAM,GAAS,CACpB,KAAM,UACN,SAAU,IACV,OAA0B,KAC1B,GAAmC,KACnC,WAAuB,CAAC,EACxB,UAAW,CACT,MAAO,GACP,UAAW,GACX,mBAAoB,GACpB,sBAAuB,GACvB,MAAO,GACP,QAAS,GACT,6BAA8B,GAC9B,eAAgB,EAClB,CACF,EAEA,aAA4B,CAK1B,GAAM,GAAK,EAAO,GAClB,AAAI,CAAC,GACL,GAAO,WAAa,EAAG,uBAAuB,EAEhD,CAOA,kBAA+B,EAAgC,CA5C/D,MA8CE,GAAI,EAAS,OAAO,UAAY,WAC3B,GAAO,OAAQ,AAAG,UAAO,EAAE,UAAc,EAAC,EAAO,IAAM,CAAC,EAAO,GAAG,aAAa,EAAO,GAAG,OAAO,IACnG,GAAI,wCAAwC,EAC5C,AAAO,GAAM,CAAQ,GAOnB,CAAC,AAAG,cAAY,EAAO,IAAI,GAAG,CAChC,GAAI,CACF,EAAO,OAAS,KAAM,AAAM,IAAO,IAAK,GAAG,CAC7C,OAAS,EAAP,CACA,EAAI,+BAAgC,CAAG,EACvC,MACF,CACA,GAAI,CAGF,GAFA,EAAO,GAAK,KAAO,SAAP,cAAe,WAAW,SAAU,EAAO,WAEnD,CADS,EAAO,GAAG,aAAa,EAAO,GAAG,OAAO,EAAE,SAAS,KAAK,EAC1D,CACT,EAAI,qEAAqE,EACzE,EAAS,OAAO,QAAU,QAC1B,MACF,CACA,AAAI,EAAO,QACT,GAAO,OAAO,iBAAiB,mBAAoB,KAAO,IAAM,CAC9D,QAAI,kBAAmB,EAAE,IAAI,EAC7B,EAAI,0FAA0F,EAC9F,EAAS,KAAK,OAAO,EACf,GAAI,OAAM,mCAAmC,CAMrD,CAAC,EACD,EAAO,OAAO,iBAAiB,uBAAwB,AAAC,GAAM,CAC5D,EAAI,mCAAoC,CAAC,CAC3C,CAAC,EACD,EAAO,OAAO,iBAAiB,4BAA6B,AAAC,GAAM,CACjE,EAAI,iCAAkC,CAAC,CACzC,CAAC,EAEL,OAAS,EAAP,CACA,EAAI,mCAAoC,CAAG,EAC3C,MACF,CACA,GAAI,CACF,AAAG,kBAAgB,EAAG,EAAO,EAAE,CACjC,OAAS,EAAP,CACA,EAAI,mCAAoC,CAAG,EAC3C,MACF,CACA,GAAI,CACF,GAAM,GAAM,GAAO,gBAAa,EAAO,EAAE,EACzC,AAAG,kBAAgB,EAAO,KAAM,IAAM,GAAO,oBAAiB,CAAG,EAAG,EAAO,QAAQ,CACrF,OAAS,EAAP,CACA,EAAI,wCAAyC,CAAG,EAChD,MACF,CACA,GAAI,CAEF,AADgB,AAAG,uBAAqB,OAAO,EACvC,QAAQ,AAAC,GAAiB,CAChC,GAAM,GAAkB,CAAE,GAAG,EAAc,YAAa,EAAO,IAAK,EACpE,AAAG,iBAAe,CAAe,CACnC,CAAC,CACH,OAAS,EAAP,CACA,EAAI,mDAAoD,CAAG,EAC3D,MACF,CACA,GAAM,GAAU,AAAG,UAAQ,EAAE,gBAAkB,AAAG,UAAQ,EAAE,gBAAgB,EAAE,GAAK,KACnF,GAAI,EACF,EAAI,yBAAyB,EAAQ,aAAa,EAAQ,OAAO,cAAc,EAAQ,aAAa,EAAQ,QAAQ,GAAG,MAClH,CACL,EAAI,gCAAiC,EAAS,EAAO,EAAE,EACvD,MACF,CACA,GAAI,CACF,AAAG,MAAI,IAAI,gBAAiB,CAAC,CAC/B,OAAS,EAAP,CACA,EAAI,yCAA0C,CAAG,EACjD,MACF,CACA,GAAW,EACX,EAAI,sBAAuB,EAAO,IAAI,CACxC,CACF,CC5HA,aAA6B,CAC3B,GAAI,CAAC,EAAI,QAAQ,SAAS,KAAK,EAAG,CAChC,GAAM,GAAY,CAChB,WAAY,MACZ,YAAa,AAAG,aAAW,EAC3B,WAAY,AAAC,GAAO,AAAG,OAAK,IAAM,AAAG,MAAI,EAAG,OAAO,EAAG,AAAG,MAAI,AAAG,MAAI,EAAG,OAAO,EAAG,EAAG,OAAO,CAAC,EAAG,EAAG,OAAO,CAAC,CAAC,CAAC,CAC9G,EACA,AAAG,iBAAe,CAAS,EAC3B,EAAI,QAAQ,KAAK,KAAK,CACxB,CACA,GAAI,CAAC,EAAI,QAAQ,SAAS,UAAU,EAAG,CACrC,GAAM,GAAY,CAChB,WAAY,WACZ,YAAa,AAAG,aAAW,EAC3B,WAAY,AAAC,GAAO,AAAG,OAAK,IAAM,AAAG,WAAS,EAAG,OAAO,EAAI,EAAG,OAAO,CAAC,EAAI,EAAG,OAAO,EAAI,AAAG,MAAI,EAAG,OAAO,EAAG,EAAG,OAAO,CAAC,CAAC,CAC3H,EACA,AAAG,iBAAe,CAAS,EAC3B,EAAI,QAAQ,KAAK,UAAU,CAC7B,CACF,CAEA,kBAA4B,EAAiB,EAAQ,GAAO,CAE1D,GADA,EAAS,MAAQ,UACb,GAAS,EAAI,SAAY,EAAS,OAAO,SAAY,EAAS,OAAO,QAAQ,OAAS,GAAO,AAAG,aAAW,IAAM,EAAS,OAAO,QAAW,CAC9I,GAAM,GAAY,EAAI,EAEtB,GAAI,EAAS,OAAO,SAAW,EAAS,OAAO,QAAQ,OAAS,EAAG,CAkBjE,GAfI,MAAO,SAAW,aAAe,MAAO,oBAAsB,aAAe,EAAS,OAAO,OAC3F,EAAS,OAAO,OAAO,EAAI,2BAA2B,EAIxD,EAAI,SAAW,EAAS,OAAO,UAAY,cACzC,GAAS,OAAO,OAAO,EAAI,8DAA8D,EAC7F,EAAS,OAAO,QAAU,WAExB,EAAI,MAAS,GAAS,OAAO,UAAY,SAAW,EAAS,OAAO,UAAY,YAC9E,GAAS,OAAO,OAAO,EAAI,4BAA4B,EAAS,OAAO,iCAAiC,EAC5G,EAAS,OAAO,QAAU,cAIxB,EAAI,SAAW,EAAS,OAAO,UAAY,SAC7C,GAAI,MAAO,YAAc,aAAe,MAAO,WAAU,KAAW,YAClE,EAAI,qEAAqE,EACzE,EAAS,OAAO,QAAU,cACrB,CACL,GAAM,GAAU,KAAM,WAAU,IAAO,eAAe,EAEtD,GADI,EAAS,OAAO,OAAO,EAAI,6BAA8B,CAAO,EAChE,CAAC,EACH,EAAI,sEAAsE,EAC1E,EAAS,OAAO,QAAU,cACrB,CAGL,GAAM,GAAc,sBAAwB,GAAU,KAAO,GAAuB,mBAAmB,EAAI,OAE3G,EAAI,uBAAwB,CAAW,CACzC,CACF,CAIF,AAAI,EAAS,OAAO,UAAY,WAAW,KAAM,AAAQ,IAAS,CAAQ,EAC1E,GAAM,GAAY,OAAO,KAAK,AAAG,SAAO,EAAE,eAAe,EAYzD,GAXI,EAAS,OAAO,OAAO,EAAI,sBAAuB,CAAS,EAE1D,EAAU,SAAS,EAAS,OAAO,OAAO,GAC7C,GAAI,kBAAkB,EAAS,OAAO,+BAA+B,EACrE,EAAS,OAAO,QAAU,EAAI,KAAO,aAAe,QAChD,EAAS,OAAO,OAAO,EAAI,6BAA6B,EAAS,OAAO,SAAS,GAGnF,EAAS,OAAO,OAAO,EAAI,mBAAoB,EAAS,OAAO,OAAO,EAGtE,EAAS,OAAO,UAAY,OAAQ,CACtC,GAAI,CACF,AAAG,MAAI,EAAE,IAAI,gCAAiC,EAAI,CACpD,OAAQ,EAAN,CAAa,CAEf,GADI,EAAS,OAAO,OAAO,EAAI,aAAc,EAAS,OAAO,QAAQ,EACjE,MAAO,kBAAI,eAAiB,YAAa,KAAM,AAAG,gBAAa,EAAS,OAAO,SAAU,EAAS,OAAO,iBAAiB,MACzH,MAAM,IAAI,OAAM,wEAAwE,EAC7F,GAAM,GAAO,KAAM,AAAG,OAAI,EAAE,SAAS,uBAAuB,EACtD,EAAK,KAAM,AAAG,OAAI,EAAE,SAAS,8BAA8B,EACjE,AAAI,EAAS,OAAO,OAAO,EAAI,mBAAmB,EAAO,OAAS,aAAa,EAAK,gBAAkB,kBAAkB,EACpH,EAAS,OAAO,OAAS,CAAC,GAAM,EAAI,2CAA2C,CACrF,CAEA,GAAI,CACF,KAAM,AAAG,cAAW,EAAS,OAAO,OAAO,EAC3C,KAAM,AAAG,SAAM,EACf,AAAU,GAAK,CACjB,OAAS,EAAP,CACA,SAAI,6BAA8B,EAAS,OAAO,QAAS,CAAG,EACvD,EACT,CACF,CAGA,GAAI,AAAG,aAAW,IAAM,WACtB,CAAG,MAAI,IAAI,+BAAgC,EAAK,EAChD,AAAG,MAAI,IAAI,oBAAqB,EAAI,EAEpC,AAAG,MAAI,IAAI,4BAA6B,EAAI,EAC5C,AAAG,MAAI,IAAI,6BAA8B,GAAG,EAExC,MAAO,GAAS,OAAO,YAAkB,aAAe,EAAS,OAAO,YAC1E,GAAI,kDAAmD,EAAI,EAC3D,AAAG,MAAI,IAAI,iCAAkC,CAAC,GAE5C,AAAG,UAAQ,EAAE,iBAAiB,CAChC,GAAM,GAAK,KAAM,AAAG,WAAQ,EAAE,gBAAgB,EAAE,GAChD,AAAI,EAAS,OAAO,OAAO,EAAI,cAAc,EAAG,aAAa,EAAG,OAAO,cAAc,EAAG,aAAa,EAAG,QAAQ,GAAG,CACrH,CAIF,AAAI,AAAG,aAAW,EAOlB,AAAG,iBAAe,EAClB,KAAM,AAAG,SAAM,EAEf,EAAS,YAAY,YAAc,KAAK,MAAM,EAAI,EAAI,CAAS,EAC/D,EAAS,OAAO,QAAU,AAAG,aAAW,EAExC,KAAM,GAAI,cAAc,EACxB,GAAkB,CAEpB,CACA,MAAO,EACT,CAGO,YAAiB,EAA4B,EAAQ,CAE1D,OAAW,KAAc,GAAa,CACpC,GAAM,GAAe,CACnB,aACA,YAAa,EAAO,QACpB,WAAY,IAAM,CAAE,AAAI,EAAO,OAAO,EAAI,aAAc,EAAY,EAAO,OAAO,CAAG,CAGvF,EACA,AAAG,iBAAe,CAAY,CAChC,CACA,EAAI,QAAU,AAAG,uBAAqB,AAAG,aAAW,CAAC,EAAE,IAAI,AAAC,GAAW,EAAO,WAAW,YAAY,CAAC,CACxG,CCnKA,0ICKO,GAAM,IAAmB,AAAC,GAAqB,CACpD,GAAI,CAAC,EAAO,EAAI,4BAA4B,UACnC,CAAC,EAAM,WAAY,EAAI,wCAAwC,MACnE,CACH,GAAM,GAAM,EAAM,WAAW,IAAI,EACjC,GAAI,CAAC,EAAK,EAAI,uCAAuC,MAChD,OAAO,EACd,CACA,MAAO,KACT,EAEa,GAAU,AAAC,GAAkB,KAAK,MAAO,EAAQ,IAAO,KAAK,EAAE,EAE/D,GAAa,CAAC,EAAuB,IAA6B,CAC7E,GAAI,CAAC,EAAI,UAAY,MAAO,IAAM,YAAa,MAAO,GAAI,MAC1D,GAAM,GAAM,kBAAkB,KAAK,CAAC,IAAO,EAAI,EAAI,IAAO,EAAI,EAAI,GAAG,CAAC,EAEtE,MADc,QAAQ,EAAI,OAAO,EAAI,OAAO,EAAI,OAAO,EAAI,QAE7D,EAEO,YAAe,EAAmE,EAAW,EAAW,EAAuB,EAA2B,CAC/J,EAAI,UAAY,GAAW,EAAG,CAAY,EAC1C,EAAI,UAAU,EACd,EAAI,IAAI,EAAG,EAAG,EAAa,UAAW,EAAG,EAAI,KAAK,EAAE,EACpD,EAAI,KAAK,CACX,CAEO,YAAc,EAAmE,EAAW,EAAW,EAAe,EAAgB,EAA2B,CAGtK,GAFA,EAAI,UAAU,EACd,EAAI,UAAY,EAAa,UACzB,EAAa,UAAW,CAC1B,GAAM,GAAM,GAAI,EAAI,GAAS,EACvB,EAAM,GAAI,EAAI,GAAU,EAC9B,EAAI,QAAQ,EAAI,EAAI,EAAQ,EAAG,EAAS,EAAG,EAAG,EAAG,EAAI,KAAK,EAAE,CAC9D,KACE,GAAI,OAAO,EAAI,EAAa,UAAW,CAAC,EACxC,EAAI,OAAO,EAAI,EAAQ,EAAa,UAAW,CAAC,EAChD,EAAI,iBAAiB,EAAI,EAAO,EAAG,EAAI,EAAO,EAAI,EAAa,SAAS,EACxE,EAAI,OAAO,EAAI,EAAO,EAAI,EAAS,EAAa,SAAS,EACzD,EAAI,iBAAiB,EAAI,EAAO,EAAI,EAAQ,EAAI,EAAQ,EAAa,UAAW,EAAI,CAAM,EAC1F,EAAI,OAAO,EAAI,EAAa,UAAW,EAAI,CAAM,EACjD,EAAI,iBAAiB,EAAG,EAAI,EAAQ,EAAG,EAAI,EAAS,EAAa,SAAS,EAC1E,EAAI,OAAO,EAAG,EAAI,EAAa,SAAS,EACxC,EAAI,iBAAiB,EAAG,EAAG,EAAI,EAAa,UAAW,CAAC,EACxD,EAAI,UAAU,EAEhB,EAAI,OAAO,CACb,CAEO,YAAe,EAAmE,EAAiB,EAA2B,CACnI,GAAI,IAAO,OAAS,GACpB,GAAI,UAAU,EACd,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,EAAE,EACrC,OAAW,KAAM,GACf,EAAI,YAAc,GAAW,EAAG,IAAM,EAAG,CAAY,EACrD,EAAI,OAAO,KAAK,MAAM,EAAG,EAAE,EAAG,KAAK,MAAM,EAAG,EAAE,CAAC,EAEjD,EAAI,OAAO,EACP,EAAa,cACf,GAAI,UAAU,EACd,EAAI,KAAK,GAEb,CAEO,YAAgB,EAAmE,EAAiB,EAA2B,CACpI,GAAI,IAAO,OAAS,GAEpB,IADA,EAAI,UAAY,EAAa,UACzB,CAAC,EAAa,WAAa,EAAO,QAAU,EAAG,CACjD,GAAM,EAAK,EAAQ,CAAY,EAC/B,MACF,CACA,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,EAAE,EACrC,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAG,IAAK,CAC1C,GAAM,GAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EACzC,EAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EAC/C,EAAI,iBAAiB,EAAO,GAAG,GAAI,EAAO,GAAG,GAAI,EAAI,CAAE,CACzD,CACA,EAAI,iBAAiB,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,EAAE,EAC3I,EAAI,OAAO,EACP,EAAa,cACf,GAAI,UAAU,EACd,EAAI,KAAK,GAEb,CAEO,YAAe,EAAmE,EAAa,EAAW,EAAS,EAAG,CAC3H,GAAI,GACA,EACA,EACJ,EAAI,UAAU,EACd,EAAI,OAAO,EAAK,GAAI,EAAK,EAAE,EAC3B,EAAI,OAAO,EAAG,GAAI,EAAG,EAAE,EACvB,EAAQ,KAAK,MAAM,EAAG,GAAK,EAAK,GAAI,EAAG,GAAK,EAAK,EAAE,EACnD,EAAI,EAAS,KAAK,IAAI,CAAK,EAAI,EAAG,GAClC,EAAI,EAAS,KAAK,IAAI,CAAK,EAAI,EAAG,GAClC,EAAI,OAAO,EAAG,CAAC,EACf,GAAU,EAAM,EAAQ,GAAI,KAAK,IACjC,EAAI,EAAS,KAAK,IAAI,CAAK,EAAI,EAAG,GAClC,EAAI,EAAS,KAAK,IAAI,CAAK,EAAI,EAAG,GAClC,EAAI,OAAO,EAAG,CAAC,EACf,GAAU,EAAM,EAAQ,GAAI,KAAK,IACjC,EAAI,EAAS,KAAK,IAAI,CAAK,EAAI,EAAG,GAClC,EAAI,EAAS,KAAK,IAAI,CAAK,EAAI,EAAG,GAClC,EAAI,OAAO,EAAG,CAAC,EACf,EAAI,UAAU,EACd,EAAI,OAAO,EACX,EAAI,KAAK,CACX,CCnEO,GAAM,IAAuB,CAClC,MAAe,2BACf,WAAoB,yBACpB,YAAqB,QACrB,MAAO,GACP,KAAc,6BACd,WAAoB,GACpB,UAAmB,EACnB,UAAmB,EACnB,UAAmB,EACnB,WAAqB,GACrB,WAAqB,GACrB,UAAoB,GACpB,cAAwB,GACxB,aAAuB,GACvB,aAAuB,GACvB,SAAmB,GACnB,aAAuB,GACvB,SAAmB,GACnB,UAAoB,EACtB,ECzDA,GAAI,GAEJ,YAAoB,EAAe,EAAmE,CACpG,GAAI,EAAI,WAAY,CAElB,GAAM,GAAkB,CAAC,EAOzB,GANA,EAAO,KAAK,SAAS,KAAK,MAAM,IAAM,EAAE,KAAK,IAAI,EAC7C,EAAE,aAAa,EAAO,KAAK,GAAG,EAAE,QAAU,MAAM,KAAK,MAAM,IAAM,EAAE,WAAW,IAAI,EAClF,EAAE,KAAK,EAAO,KAAK,QAAQ,EAAE,KAAO,IAAI,EACxC,EAAE,MAAM,EAAO,KAAK,aAAa,EAAE,MAAM,EACzC,EAAE,MAAM,EAAO,KAAK,SAAS,KAAK,MAAM,IAAM,EAAE,IAAI,IAAI,EACxD,EAAE,MAAM,EAAO,KAAK,SAAS,KAAK,MAAM,IAAM,EAAE,IAAI,IAAI,EACxD,EAAE,SAAW,EAAE,QAAQ,OAAS,EAAG,CACrC,GAAM,GAAU,EAAE,QAAQ,IAAI,AAAC,GAAM,GAAG,KAAK,MAAM,IAAM,EAAE,KAAK,MAAM,EAAE,SAAS,EACjF,AAAI,EAAQ,OAAS,GAAG,GAAQ,OAAS,GACzC,EAAO,KAAK,EAAQ,KAAK,GAAG,CAAC,CAC/B,CACA,AAAI,EAAE,UAAY,EAAE,SAAS,OAAS,EAAE,SAAS,MAC3C,GAAE,SAAS,MAAM,MAAM,EAAO,KAAK,SAAS,GAAQ,EAAE,SAAS,MAAM,IAAI,aAAU,GAAQ,EAAE,SAAS,MAAM,GAAG,eAAY,GAAQ,EAAE,SAAS,MAAM,KAAK,OAAI,EAC7J,EAAE,SAAS,KAAK,SAAS,EAAO,KAAK,SAAS,GAAQ,EAAE,SAAS,KAAK,OAAO,OAAI,GAEnF,EAAO,SAAW,GAAG,EAAO,KAAK,MAAM,EAC3C,EAAI,UAAY,EAAI,MACpB,OAAS,GAAI,EAAO,OAAS,EAAG,GAAK,EAAG,IAAK,CAC3C,GAAM,GAAI,KAAK,IAAI,EAAE,IAAI,GAAI,CAAC,EACxB,EAAI,EAAI,EAAI,WAAa,EAAE,IAAI,GACrC,AAAI,EAAI,aAAe,EAAI,cAAgB,IACzC,GAAI,UAAY,EAAI,YACpB,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,EAAE,GAEvC,EAAI,UAAY,EAAI,WACpB,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,EAAE,CACvC,CACF,CACF,CAEA,YAAwB,EAAe,EAAmE,CAExG,GAAI,EAAE,aAAe,EAAE,YAAY,aAAkB,EAAE,YAAY,YAAe,GAAI,CACpF,EAAI,YAAc,EAAI,SAAW,2BAA6B,EAAI,MAClE,EAAI,UAAU,EACd,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,YAAe,GAAG,GAAK,EAAE,YAAY,YAAe,GAAG,EAAE,EAAI,EAC5F,EAAQ,KAAK,IAAI,EAAE,YAAY,YAAe,GAAG,GAAK,EAAE,YAAY,YAAe,GAAG,EAAE,EAAI,EAClG,EAAI,QAAQ,EAAE,YAAY,YAAe,GAAG,GAAI,EAAE,YAAY,YAAe,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,EAAE,EACnH,EAAI,OAAO,EACP,EAAI,cACN,GAAI,UAAY,EAAI,SAAW,2BAA6B,EAAI,MAChE,EAAI,KAAK,EAEb,CACA,GAAI,EAAE,aAAe,EAAE,YAAY,cAAmB,EAAE,YAAY,aAAgB,GAAI,CACtF,EAAI,YAAc,EAAI,SAAW,2BAA6B,EAAI,MAClE,EAAI,UAAU,EACd,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,aAAgB,GAAG,GAAK,EAAE,YAAY,aAAgB,GAAG,EAAE,EAAI,EAC9F,EAAQ,KAAK,IAAI,EAAE,YAAY,aAAgB,GAAG,GAAK,EAAE,YAAY,aAAgB,GAAG,EAAE,EAAI,EACpG,EAAI,QAAQ,EAAE,YAAY,aAAgB,GAAG,GAAI,EAAE,YAAY,aAAgB,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,EAAE,EACrH,EAAI,OAAO,EACP,EAAI,cACN,GAAI,UAAY,EAAI,SAAW,2BAA6B,EAAI,MAChE,EAAI,KAAK,EAEb,CACF,CAEA,YAAyB,EAAe,EAAmE,CAxE3G,MAyEE,GAAI,EAAI,UAAY,MAAE,WAAF,cAAY,QAAS,MAAO,SAAW,YAAa,CACtE,EAAI,YAAc,OAClB,GAAM,GAAQ,EAAE,IAAI,GAAK,EAAE,IAAI,GAAK,EAAM,EAAE,IAAI,GAAK,GAAQ,EAAE,SAAS,MAAM,GAAG,EAAI,GAC/E,EAAQ,EAAE,IAAI,GAAK,EAAE,IAAI,GAAK,EAAM,EAAE,IAAI,GAAK,GAAQ,EAAE,SAAS,MAAM,KAAK,EAAI,GACjF,EAAQ,GAAI,QAAO;AAAA,UACnB,EAAE,IAAI,GAAK,EAAE,IAAI,GAAK,KAAK,EAAE,IAAI;AAAA;AAAA,UAEjC,KAAQ,EAAE,IAAI;AAAA,UACd,KAAQ,EAAE,IAAI,GAAK,EAAE,IAAI;AAAA,UACzB,EAAE,IAAI,GAAK,EAAE,IAAI,GAAK,KAAK,EAAE,IAAI,GAAK,EAAE,IAAI;AAAA,KACjD,EACK,EAAQ,GAAI,QAAO;AAAA,UACnB,EAAE,IAAI,MAAM,EAAE,IAAI,GAAK,EAAE,IAAI,GAAK;AAAA;AAAA,UAElC,EAAE,IAAI,MAAM;AAAA,UACZ,EAAE,IAAI,GAAK,EAAE,IAAI,MAAM;AAAA,UACvB,EAAE,IAAI,GAAK,EAAE,IAAI,MAAM,EAAE,IAAI,GAAK,EAAE,IAAI,GAAK;AAAA,KAClD,EACD,EAAI,OAAO,CAAK,EAChB,EAAI,OAAO,CAAK,CAClB,CACF,CAEA,YAAwB,EAAe,EAAmE,CAhG1G,YAiGE,GAAI,EAAI,UAAY,SAAE,WAAF,cAAY,OAAZ,cAAkB,WAAY,SAAE,WAAF,cAAY,OAAZ,cAAkB,UAAW,EAAE,YAAY,aAAkB,EAAE,YAAY,cAAmB,EAAE,YAAY,YAAe,IAAM,EAAE,YAAY,aAAgB,GAAI,CACnN,EAAI,YAAc,OAClB,EAAI,UAAY,OAChB,GAAM,GAAW,CACf,EAAE,YAAY,YAAe,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,OAAO,EAAI,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,GAC3G,EAAE,YAAY,YAAe,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,OAAO,EAAI,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,EAC7G,EACA,GAAM,EAAK,CAAC,EAAE,YAAY,YAAe,GAAG,GAAI,EAAE,YAAY,YAAe,GAAG,EAAE,EAAG,CAAC,EAAS,GAAI,EAAS,EAAE,EAAG,CAAC,EAClH,GAAM,GAAY,CAChB,EAAE,YAAY,aAAgB,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,OAAO,EAAI,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,GAC5G,EAAE,YAAY,aAAgB,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,OAAO,EAAI,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,EAC9G,EACA,GAAM,EAAK,CAAC,EAAE,YAAY,aAAgB,GAAG,GAAI,EAAE,YAAY,aAAgB,GAAG,EAAE,EAAG,CAAC,EAAU,GAAI,EAAU,EAAE,EAAG,CAAC,CACxH,CACF,CAEA,YAA0B,EAAe,EAAmE,CAC1G,GAAI,EAAI,cAAgB,EAAE,KAAK,QAAU,IAAK,CAC5C,EAAI,UAAY,EAChB,OAAS,GAAI,EAAG,EAAI,GAAc,OAAS,EAAG,IAAK,CACjD,GAAM,GAAS,CAAC,GAAc,EAAI,EAAI,GAAI,GAAc,EAAI,EAAI,GAAI,GAAc,EAAI,EAAI,EAAE,EAAE,IAAI,AAAC,GAAU,EAAE,KAAK,EAAM,EAC1H,GAAM,EAAK,EAAQ,CAAG,CACxB,CACA,GAAe,EAAG,CAAG,CACvB,CAQF,CAEA,YAAwB,EAAe,EAAmE,CACxG,GAAI,EAAI,YAAc,EAAE,KAAK,QAAU,IACrC,OAAS,GAAI,EAAG,EAAI,EAAE,KAAK,OAAQ,IACjC,GAAM,EAAK,EAAE,KAAK,GAAG,GAAI,EAAE,KAAK,GAAG,GAAI,EAAE,KAAK,GAAG,GAAI,CAAG,EACpD,EAAI,eACF,CAAkB,GAAiC,SAAS,CAAC,GAAG,GAAM,EAAK,EAAE,KAAK,GAAG,GAAI,EAAE,KAAK,GAAG,GAAK,EAAE,KAAK,GAAG,GAAgB,IAAK,CAAG,EAC1I,AAAkB,GAAqC,SAAS,CAAC,GAAG,GAAM,EAAK,EAAE,KAAK,GAAG,GAAI,EAAE,KAAK,GAAG,GAAK,EAAE,KAAK,GAAG,GAAgB,IAAK,CAAG,EAC9I,AAAkB,GAAsC,SAAS,CAAC,GAAG,GAAM,EAAK,EAAE,KAAK,GAAG,GAAI,EAAE,KAAK,GAAG,GAAK,EAAE,KAAK,GAAG,GAAgB,IAAK,CAAG,EAI3J,CAEA,YAAuB,EAAe,EAAK,CACzC,AAAI,EAAI,WACN,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,CAAG,CAEzD,CAGA,kBAA2B,EAAqB,EAA2B,EAAoC,CAE7G,GADA,EAAM,EAAU,GAAS,CAAW,EAChC,CAAC,GAAU,CAAC,EAAU,OAC1B,GAAM,GAAM,GAAiB,CAAQ,EACrC,GAAI,EAAC,EACL,GAAI,KAAO,EAAI,KACf,EAAI,YAAc,EAAI,MACtB,EAAI,UAAY,EAAI,MACpB,OAAW,KAAK,GACd,GAAc,EAAG,CAAG,EACpB,GAAW,EAAG,CAAG,EACb,EAAE,MAAQ,EAAE,KAAK,OAAS,GAC5B,IAAe,EAAG,CAAG,EACrB,GAAiB,EAAG,CAAG,EACvB,GAAgB,EAAG,CAAG,EACtB,GAAe,EAAG,CAAG,GAG3B,CClKA,kBAA2B,EAAqB,EAA2B,EAAoC,CAP/G,MAQE,GAAM,GAAe,EAAU,GAAS,CAAW,EACnD,GAAI,CAAC,GAAU,CAAC,EAAU,OAC1B,GAAM,GAAM,GAAiB,CAAQ,EACrC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CAgBtC,GAfA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,EAAI,UAAY,EAAa,UAC7B,EAAI,KAAO,EAAa,KACpB,EAAa,WAAa,EAAO,GAAG,KAAO,MAAO,GAAG,MAAV,cAAe,UAAW,GACvE,IAAK,EAAK,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,CAAY,EAC1F,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,EAAE,GAEvI,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,EAAE,IAGrI,EAAa,YAAc,EAAO,GAAG,UACvC,OAAS,GAAK,EAAG,EAAK,EAAO,GAAG,UAAU,OAAQ,IAChD,AAAI,CAAC,EAAO,GAAG,UAAU,GAAI,OAAU,EAAO,GAAG,UAAU,GAAI,QAAU,GACzE,GAAI,UAAY,GAAW,EAAO,GAAG,UAAU,GAAI,SAAS,GAAI,CAAY,EAC5E,GAAM,EAAK,EAAO,GAAG,UAAU,GAAI,SAAS,GAAI,EAAO,GAAG,UAAU,GAAI,SAAS,GAAI,EAAG,CAAY,GAGxG,GAAI,EAAa,YAAc,EAAO,GAAG,UAAW,CAClD,EAAI,KAAO,EAAa,KACxB,OAAW,KAAM,GAAO,GAAG,UACzB,AAAI,CAAC,EAAG,OAAU,EAAG,QAAU,GAC/B,GAAI,UAAY,GAAW,EAAG,SAAS,GAAI,CAAY,EACvD,EAAI,SAAS,GAAG,EAAG,QAAQ,KAAK,MAAM,IAAM,EAAG,KAAK,KAAM,EAAG,SAAS,GAAK,EAAG,EAAG,SAAS,GAAK,CAAC,EAEpG,CACA,GAAI,EAAa,cAAgB,EAAO,GAAG,WAAa,EAAO,GAAG,YAChE,OAAW,KAAQ,QAAO,OAAO,EAAO,GAAG,WAAW,EACpD,OAAW,KAAa,GAAM,GAAO,EAAK,EAAW,CAAY,CAGvE,EACF,CC3CA,kBAA2B,EAAqB,EAA2B,EAAoC,CAC7G,GAAM,GAAe,EAAU,GAAS,CAAW,EACnD,GAAI,CAAC,GAAU,CAAC,EAAU,OAC1B,GAAM,GAAM,GAAiB,CAAQ,EACrC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GAAQ,CAetB,GAdI,EAAa,WACf,GAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,CAAY,EAC1D,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,QAAQ,KAAK,MAAM,IAAM,EAAE,KAAK,KAAM,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,EAAE,GAEnH,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,QAAQ,KAAK,MAAM,IAAM,EAAE,KAAK,KAAM,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,EAAE,GAEnH,EAAI,OAAO,GAET,EAAa,YACX,EAAE,WAAa,EAAE,UAAU,OAAS,EACtC,OAAW,KAAM,GAAE,UACjB,EAAI,UAAY,GAAW,EAAG,GAAI,CAAY,EAC9C,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,CAAY,EAI9C,GAAI,EAAa,YAAc,EAAE,YAAa,CAC5C,GAAM,GAAe,CAAC,EAAoB,IAAkB,CAC1D,GAAI,CAAC,GAAQ,EAAK,SAAW,GAAK,CAAC,EAAK,GAAI,OAC5C,GAAM,GAAI,EAAK,EAAK,OAAS,GAAG,IAAM,KACtC,EAAI,UAAY,GAAW,EAAG,CAAY,EAC1C,EAAI,SAAS,EAAO,EAAK,EAAK,OAAS,GAAG,GAAK,EAAG,EAAK,EAAK,OAAS,GAAG,GAAK,CAAC,CAChF,EACA,EAAI,KAAO,EAAa,KACxB,EAAa,EAAE,YAAY,MAAU,OAAO,EAC5C,EAAa,EAAE,YAAY,OAAW,QAAQ,EAC9C,EAAa,EAAE,YAAY,KAAS,MAAM,EAC1C,EAAa,EAAE,YAAY,MAAU,OAAO,EAC5C,EAAa,EAAE,YAAY,MAAU,OAAO,EAC5C,EAAa,EAAE,YAAY,KAAS,MAAM,CAC5C,CACA,GAAI,EAAa,cAAgB,EAAE,YAAa,CAC9C,GAAM,GAAc,AAAC,GAAuB,CAC1C,GAAI,GAAC,GAAQ,EAAK,SAAW,GAAK,CAAC,EAAK,IACxC,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAAK,CACpC,EAAI,UAAU,EACd,GAAM,GAAI,EAAK,GAAG,IAAM,EACxB,EAAI,YAAc,GAAW,EAAI,EAAG,CAAY,EAChD,EAAI,OAAO,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,GAAI,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,EAAE,EACjE,EAAI,OAAO,EAAK,GAAG,GAAI,EAAK,GAAG,EAAE,EACjC,EAAI,OAAO,CACb,CACF,EACA,EAAI,UAAY,EAAa,UAC7B,EAAY,EAAE,YAAY,KAAQ,EAClC,EAAY,EAAE,YAAY,MAAS,EACnC,EAAY,EAAE,YAAY,IAAO,EACjC,EAAY,EAAE,YAAY,KAAQ,EAClC,EAAY,EAAE,YAAY,KAAQ,CAEpC,CACF,EACF,CClEA,kBAA6B,EAAqB,EAA6B,EAAoC,CACjH,GAAM,GAAe,EAAU,GAAS,CAAW,EACnD,GAAI,CAAC,GAAU,CAAC,EAAU,OAC1B,GAAM,GAAM,GAAiB,CAAQ,EACrC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GACd,GAAI,EAAa,UAAW,CAI1B,GAHA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,CAAY,EAC1D,EAAa,WAAY,CAC3B,GAAM,GAAQ,GAAG,EAAE,SAAS,KAAK,MAAM,IAAM,EAAE,KAAK,KACpD,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,EAAE,GAEpF,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,EAAE,CACpF,CACA,EAAI,OAAO,CACb,EAEJ,CCxBA,kBAA8B,EAAqB,EAA8B,EAAoC,CACnH,GAAM,GAAe,EAAU,GAAS,CAAW,EACnD,GAAI,GAAC,GAAU,CAAC,IACZ,EAAa,aAAc,CAC7B,GAAM,GAAM,GAAiB,CAAQ,EACrC,GAAI,CAAC,EAAK,OACV,EAAI,KAAO,EAAa,KACxB,EAAI,UAAY,EAAa,MAC7B,GAAI,GAAI,EACR,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CACtC,GAAI,GAAmB,CAAC,EACpB,EAAkB,CAAC,EAEvB,GADA,CAAC,EAAO,CAAI,EAAI,OAAO,QAAQ,EAAO,EAAE,EACnC,EAAK,OAAS,GAAQ,EAAK,GAAc,OAAS,EAAI,CACzD,GAAM,GAAM,EAAM,GAAe,EAAI,IAAI,EAAM,KAAO,GAChD,EAAQ,GAAG,EAAM,MAAM,MAAQ,EAAK,KAC1C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,UAAW,GAE1D,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,UAAW,EACxD,GAAK,CACP,CACF,CACF,CACF,CPjBA,GAAI,IAAW,EAUf,kBAA6B,EAAqB,EAA6B,EAAoC,CACjH,GAAM,GAAe,EAAU,GAAS,CAAW,EACnD,GAAI,CAAC,GAAU,CAAC,EAAU,OAC1B,GAAM,GAAM,GAAiB,CAAQ,EACrC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KAExB,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IACjC,GAAI,EAAa,UAAW,CAI1B,GAHA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAK,EAAK,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,CAAY,EAC1F,EAAa,WAAY,CAC3B,GAAM,GAAQ,WAAW,IACzB,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,EAAE,GAE5G,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,EAAE,CAC5G,CACA,EAAI,OAAO,CACb,EAEJ,CAGA,kBAA6B,EAAwD,EAAmB,CACtG,GAAI,CAAC,GAAS,CAAC,EAAQ,OACvB,GAAM,GAAM,GAAiB,CAAM,EACnC,AAAI,CAAC,GACL,EAAI,UAAU,EAAO,EAAG,CAAC,CAC3B,CAGA,kBAA0B,EAAqB,EAAgB,EAAoC,CACjG,GAAI,CAAC,GAAU,CAAC,EAAO,aAAe,CAAC,GAAU,CAAC,EAAU,MAAO,MACnE,GAAM,GAAY,EAAI,EAChB,EAAe,EAAU,GAAS,CAAW,EAC7C,EAAU,QAAQ,IAAI,CAC1B,GAAK,EAAU,EAAO,KAAM,CAAY,EACxC,GAAK,EAAU,EAAO,KAAM,CAAY,EACxC,GAAK,EAAU,EAAO,KAAM,CAAY,EACxC,GAAO,EAAU,EAAO,OAAQ,CAAY,EAC5C,GAAQ,EAAU,EAAO,QAAS,CAAY,CAEhD,CAAC,EACD,UAAW,EAAI,QAAU,GAAW,KAAK,MAAM,EAAI,EAAI,CAAS,EAAI,KAAK,MAAM,EAAI,EAAI,CAAS,EAChG,EAAO,YAAY,KAAO,GACnB,CACT,CQxEA,GAAM,IAAa,GACb,GAAQ,GAGd,YAAoB,EAAW,EAAW,EAAmD,CAC3F,GAAI,GAAS,GACT,EAAI,EAAQ,OAAS,EACzB,OAAS,GAAI,EAAG,EAAI,EAAQ,OAAQ,EAAI,IACtC,AAAM,EAAQ,GAAG,EAAI,GAAQ,EAAQ,GAAG,EAAI,GAAQ,EAAK,GAAQ,GAAG,EAAI,EAAQ,GAAG,GAAM,GAAI,EAAQ,GAAG,GAAM,GAAQ,GAAG,EAAI,EAAQ,GAAG,GAAK,EAAQ,GAAG,GAAI,GAAS,CAAC,GAExK,MAAO,EACT,CAEA,kBAA2B,EAA+C,CAExE,GADI,CAAC,EAAK,QACN,CAAC,EAAK,MAAQ,EAAK,KAAK,OAAS,IAAK,MAAO,GAAK,OACtD,GAAM,GAAQ,EAAK,OAAO,MAAM,IAAM,EAChC,EAAS,EAAK,OAAO,MAAM,IAAM,EACjC,EAAS,KAAM,GAAK,OAAO,OAAO,EACpC,EAA8C,CAAC,EACnD,OAAW,KAAM,IAAgB,WAAY,EAAW,KAAK,CAAE,EAAI,GAAK,KAAK,GAAI,GAAK,EAAK,IAAI,IAAM,EAAK,IAAI,GAAI,EAAI,GAAK,KAAK,GAAI,GAAK,EAAK,IAAI,IAAM,EAAK,IAAI,EAAG,CAAC,EACrK,AAAI,IAAc,GAAa,GAAG,GAAa,EAAW,IAAI,AAAC,GAAQ,EAAE,EAAG,EAAG,EAAI,GAAM,EAAG,EAAI,GAAa,EAAG,EAAI,GAAY,EAAG,EAAG,EAAI,GAAM,EAAG,EAAI,GAAa,EAAG,EAAI,EAAW,EAAE,GACxL,OAAS,GAAI,EAAG,EAAI,EAAO,IACzB,OAAS,GAAI,EAAG,EAAI,EAAQ,IAE1B,AAAK,AADU,GAAW,EAAI,EAAO,EAAI,EAAO,CAAU,GAExD,GAAO,IAAI,GAAQ,EAAO,IAAI,EAAG,EAAG,EAAG,CAAC,EAAG,EAAG,EAAG,EAAG,CAAC,EACrD,EAAO,IAAI,GAAQ,EAAO,IAAI,EAAG,EAAG,EAAG,CAAC,EAAG,EAAG,EAAG,EAAG,CAAC,EACrD,EAAO,IAAI,GAAQ,EAAO,IAAI,EAAG,EAAG,EAAG,CAAC,EAAG,EAAG,EAAG,EAAG,CAAC,GAI3D,GAAM,GAAS,EAAO,SAAS,EAC/B,MAAG,WAAQ,CAAM,EACV,CACT,CCpCA,GAAM,IAAgB,AAAC,GAA4D,CACjF,GAAM,GAAU,CAAC,EAAY,IAAe,KAAK,MAAM,EAAI,GAAK,EAAI,GAAI,EAAI,GAAK,EAAI,EAAE,EACvF,GAAI,CAAC,EAAK,YAAY,cAAmB,CAAC,EAAK,YAAY,YAAgB,MAAO,CAAE,QAAS,EAAG,SAAU,CAAE,EAE5G,GAAM,GAAa,CAAC,EAAG,GAAI,EACrB,EAAW,EAEX,EAAQ,GAAK,KAAK,IAAI,IAAM,GAAM,GAAK,KAAK,KAAK,IAAM,GACvD,EAAa,EAAO,EAAK,KAAK,KAAO,EAAK,KAAK,KAC/C,EAAY,EACd,CAAE,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,IAAI,IAAM,EAAI,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,IAAI,IAAM,CAAC,EACvF,CAAE,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,IAAM,EAAI,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,IAAM,CAAC,EACvF,EAAU,EACZ,CAAC,EAAK,KAAK,KAAK,GAAK,EAAK,KAAK,IAAI,GAAI,EAAK,KAAK,IAAI,GAAK,EAAK,KAAK,IAAI,EAAE,EAC1E,CAAC,EAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,GAAI,EAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,EAAE,EAC3E,EAAiB,CACpB,GAAU,GAAK,EAAW,IAAM,EAAQ,GAAK,EAAW,GACzD,EAAY,GAAW,GAAK,EAAU,IAAM,EAAQ,GAAK,EAAW,EACtE,EACI,EAAW,KAAK,KAAM,EAAQ,GAAK,EAAQ,GAAO,EAAQ,GAAK,EAAQ,EAAG,EAC9E,SAAW,KAAK,IAAI,EAAU,EAAK,OAAO,GAAK,EAAG,EAAK,OAAO,GAAK,CAAC,EAE7D,CAAE,QADQ,GAAQ,CAAC,EAAG,CAAC,EAAG,CAAO,EAAK,KAAK,GAAK,GAAM,KAAK,GAChD,UAAS,CAC7B,EAEa,GAAqB,CAAC,EAAkB,IAIhD,CAEH,GAAM,GAAY,AAAC,GAAsB,CACvC,GAAM,GAAS,KAAK,KAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,EAAE,EAChE,SAAE,IAAM,EACR,EAAE,IAAM,EACR,EAAE,IAAM,EACD,CACT,EACM,EAAa,CAAC,EAAW,IAAsB,CACnD,GAAM,GAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACnB,MAAO,CAAC,EAAG,EAAG,CAAC,CACjB,EACM,EAAe,CAAC,EAAW,IAAsB,CACrD,GAAM,GAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GACjC,MAAO,CAAC,EAAG,EAAG,CAAC,CACjB,EAEM,EAA6B,AAAC,GAA8D,CAEhG,GAAM,CAAC,EAAK,EAAM,EAAM,EAAK,EAAK,EAAK,EAAK,EAAK,GAAO,EACpD,EACA,EACA,EACJ,MAAI,GAAM,EACR,AAAI,EAAM,GACR,GAAS,KAAK,KAAK,CAAG,EACtB,EAAS,KAAK,MAAM,CAAC,EAAK,CAAG,EAC7B,EAAS,KAAK,MAAM,CAAC,EAAK,CAAG,GAE7B,GAAS,CAAC,KAAK,GAAK,EACpB,EAAS,CAAC,KAAK,MAAM,EAAK,CAAG,EAC7B,EAAS,GAGX,GAAS,KAAK,GAAK,EACnB,EAAS,KAAK,MAAM,EAAK,CAAG,EAC5B,EAAS,GAEP,MAAM,CAAM,GAAG,GAAS,GACxB,MAAM,CAAM,GAAG,GAAS,GACxB,MAAM,CAAM,GAAG,GAAS,GACrB,CAAE,MAAO,EAAI,CAAC,EAAQ,IAAK,EAAI,CAAC,EAAQ,KAAM,EAAI,CAAC,CAAO,CACnE,EAcM,EAAO,EAAK,QAClB,GAAI,CAAC,GAAQ,EAAK,OAAS,IAAK,MAAO,CAAE,MAAO,CAAE,MAAO,EAAG,IAAK,EAAG,KAAM,CAAE,EAAG,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,CAAC,EAAG,KAAM,CAAE,QAAS,EAAG,SAAU,CAAE,CAAE,EAEtJ,GAAM,GAAO,KAAK,IAAI,EAAK,OAAO,GAAK,EAAU,GAAI,EAAK,OAAO,GAAK,EAAU,EAAE,EAAI,IAEhF,EAAe,CAAC,EAAK,IAAK,EAAK,KAAM,EAAK,KAAM,EAAK,IAAI,EAAE,IAAI,AAAC,GAAO,CAAC,EAAG,GAAK,EAAU,GAAK,EAAM,EAAG,GAAK,EAAU,GAAK,EAAM,EAAG,EAAE,CAAU,EAEjJ,EAAS,EAAU,EAAW,EAAI,GAAc,EAAI,EAAY,CAAC,EACnE,EAAS,EAAU,EAAW,EAAI,GAAc,EAAI,EAAY,CAAC,EAC/D,EAAS,EAAU,EAAa,EAAQ,CAAM,CAAC,EAErD,EAAS,EAAa,EAAQ,CAAM,EAIpC,GAAM,GAAmF,CACvF,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,EAC/B,EACM,EAAQ,EAA2B,CAAM,EAIzC,EAAO,EAAK,SAAW,IAAM,GAAc,CAAI,EAAI,CAAE,QAAS,EAAG,SAAU,CAAE,EAEnF,MAAO,CAAE,QAAO,SAAQ,MAAK,CAC/B,EChGO,GAAM,IAAa,MAAO,EAAyC,IAAyC,CAzBnH,oDA4BE,GAAI,GAAoB,EAAI,EACxB,EACA,EACA,EACA,EACA,EACA,EACA,EACA,EAEE,EAA6B,CAAC,EACpC,EAAS,MAAQ,WAEjB,GAAM,GAAQ,KAAM,AAAS,IAAQ,EAAO,EAAS,MAAM,EAE3D,GADA,EAAS,YAAY,KAAO,EAAI,QAAW,GAAS,YAAY,MAAQ,GAAK,KAAK,MAAM,EAAI,EAAI,CAAS,EAAI,KAAK,MAAM,EAAI,EAAI,CAAS,EACrI,CAAC,EAAM,OAAS,EAAM,MAAM,SAAW,EAAG,MAAO,CAAC,EACtD,GAAI,CAAC,EAAO,MAAO,CAAC,EAEpB,OAAS,GAAI,EAAG,EAAI,EAAM,OAAQ,IAAK,CAKrC,GAJA,EAAS,QAAQ,UAAU,EAIvB,CAAC,EAAM,GAAG,QAAU,EAAM,GAAG,OAAO,mBAAuB,CAC7D,EAAI,2BAA4B,EAAM,GAAG,MAAM,EAC/C,QACF,CAGA,GAAI,KAAS,OAAO,KAAK,WAArB,QAA+B,KAAM,CACvC,GAAM,GAAS,KAAM,AAAK,IAAK,EAAM,EAAE,EACvC,AAAG,UAAQ,EAAM,GAAG,MAAM,EAC1B,EAAM,GAAG,OAAS,CACpB,CAGA,GAAM,GAAW,EAAM,GAAG,MAAS,EAAM,GAAG,KAAK,OAAS,IAAO,GAAmB,EAAM,GAAI,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,EAAE,CAAC,EAAI,KAGlI,EAAS,QAAQ,gBAAgB,EACjC,AAAI,EAAS,OAAO,MAClB,EAAa,KAAS,OAAO,KAAK,UAArB,QAA8B,QAAU,AAAQ,GAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,CAAC,EAE5I,GAAS,MAAQ,cACjB,EAAY,EAAI,EAChB,EAAa,KAAS,OAAO,KAAK,UAArB,QAA8B,QAAU,KAAM,AAAQ,IAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,CAAC,EAClJ,EAAS,YAAY,QAAU,EAAI,QAAW,GAAS,YAAY,SAAW,GAAK,KAAK,MAAM,EAAI,EAAI,CAAS,EAAI,KAAK,MAAM,EAAI,EAAI,CAAS,GAEjJ,EAAS,QAAQ,cAAc,EAG/B,EAAS,QAAQ,kBAAkB,EACnC,AAAI,EAAS,OAAO,MAClB,EAAe,KAAS,OAAO,KAAK,YAArB,QAAgC,QAAU,AAAU,GAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,EAEjJ,GAAS,MAAQ,gBACjB,EAAY,EAAI,EAChB,EAAe,KAAS,OAAO,KAAK,YAArB,QAAgC,QAAU,KAAM,AAAU,IAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,EACvJ,EAAS,YAAY,UAAY,EAAI,QAAW,GAAS,YAAY,WAAa,GAAK,KAAK,MAAM,EAAI,EAAI,CAAS,EAAI,KAAK,MAAM,EAAI,EAAI,CAAS,GAErJ,EAAS,QAAQ,gBAAgB,EAGjC,EAAS,QAAQ,iBAAiB,EAClC,AAAI,EAAS,OAAO,MAClB,EAAc,KAAS,OAAO,KAAK,WAArB,QAA+B,QAAU,AAAS,GAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,EAE9I,GAAS,MAAQ,eACjB,EAAY,EAAI,EAChB,EAAc,KAAS,OAAO,KAAK,WAArB,QAA+B,QAAU,KAAM,AAAS,IAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,EACpJ,EAAS,YAAY,SAAW,EAAI,QAAW,GAAS,YAAY,WAAa,GAAK,KAAK,MAAM,EAAI,EAAI,CAAS,EAAI,KAAK,MAAM,EAAI,EAAI,CAAS,GAEpJ,EAAS,QAAQ,eAAe,EAGhC,EAAS,QAAQ,aAAa,EAC9B,AAAI,EAAS,OAAO,MAClB,EAAU,KAAS,OAAO,KAAK,OAArB,QAA8B,QAAU,AAAK,GAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,KAErI,GAAS,MAAQ,WACjB,EAAY,EAAI,EAChB,EAAU,KAAS,OAAO,KAAK,OAArB,QAA8B,QAAU,KAAM,AAAK,IAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,KAC3I,EAAS,YAAY,KAAO,KAAK,MAAM,EAAI,EAAI,CAAS,GAE1D,EAAS,QAAQ,WAAW,EAG5B,EAAS,QAAQ,eAAe,EAChC,AAAI,EAAS,OAAO,MAClB,GAAS,KAAS,OAAO,KAAK,SAArB,QAAgC,QAAU,AAAU,GAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,KAC3I,EAAY,KAAS,OAAO,KAAK,SAArB,QAAgC,QAAU,AAAa,GAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,MAEjJ,GAAS,MAAQ,aACjB,EAAY,EAAI,EAChB,EAAS,KAAS,OAAO,KAAK,SAArB,QAAgC,QAAU,KAAM,AAAU,IAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,KACjJ,EAAY,KAAS,OAAO,KAAK,SAArB,QAAgC,QAAU,KAAM,AAAa,IAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,KACvJ,EAAS,YAAY,OAAS,KAAK,MAAM,EAAI,EAAI,CAAS,GAE5D,EAAS,QAAQ,aAAa,EAG9B,EAAS,QAAQ,sBAAsB,EACvC,AAAI,EAAS,OAAO,MAClB,EAAmB,KAAS,OAAO,KAAK,gBAArB,QAAuC,QAAU,AAAc,GAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,KAEhK,GAAS,MAAQ,oBACjB,EAAY,EAAI,EAChB,EAAmB,KAAS,OAAO,KAAK,gBAArB,QAAuC,QAAU,KAAM,AAAc,IAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,KACtK,EAAS,YAAY,cAAgB,KAAK,MAAM,EAAI,EAAI,CAAS,GAEnE,EAAS,QAAQ,oBAAoB,EAGrC,EAAS,QAAQ,oBAAoB,EACrC,AAAI,EAAS,OAAO,MAClB,EAAU,KAAS,OAAO,KAAK,cAArB,QAAkC,QAAU,AAAQ,GAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,KAE5I,GAAS,MAAQ,kBACjB,EAAY,EAAI,EAChB,EAAU,MAAS,OAAO,KAAK,cAArB,SAAkC,QAAU,KAAM,AAAQ,IAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,CAAC,CAAC,EAAG,EAAS,OAAQ,EAAG,EAAM,MAAM,EAAI,KAClJ,EAAS,YAAY,YAAc,EAAI,QAAW,GAAS,YAAY,aAAe,GAAK,KAAK,MAAM,EAAI,EAAI,CAAS,EAAI,KAAK,MAAM,EAAI,EAAI,CAAS,GAEzJ,EAAS,QAAQ,kBAAkB,EAG/B,EAAS,OAAO,OAClB,EAAC,EAAQ,EAAW,EAAY,EAAkB,EAAS,EAAS,EAAc,CAAW,EAAI,KAAM,SAAQ,IAAI,CAAC,EAAQ,EAAW,EAAY,EAAkB,EAAS,EAAS,EAAc,CAAW,CAAC,GAEnN,EAAS,QAAQ,cAAc,EAE3B,MAAS,OAAO,KAAK,SAArB,cAAgC,UAAW,GAAU,GACvD,GAAU,CACR,GAAI,EACJ,IAAM,EAA0B,IAChC,OAAS,EAAsD,OAC/D,YAAc,EAAsD,WACtE,GAEE,OAAS,OAAO,KAAK,OAArB,eAA8B,UAAW,GAC3C,GAAU,CACR,GAAI,EACJ,IAAM,EAA0B,IAChC,OAAS,EAA0B,OACnC,YAAc,EAA0B,YACxC,KAAO,EAA0B,IACnC,GAEE,OAAS,OAAO,KAAK,gBAArB,eAAuC,UAAW,GACnD,GAAoB,WAAa,GAK/B,KAAS,OAAO,KAAK,OAArB,QAA2B,QAIhC,GAAM,GAAY,EAAM,GAAG,aAAe,EAAM,GAAG,YAAY,aAAe,EAAM,GAAG,YAAY,YAAY,IAAM,EAAM,GAAG,YAAY,cAAgB,EAAM,GAAG,YAAY,aAAa,IACtL,EAAM,GAAG,YAAY,YAAY,OAAS,GAAO,EAAM,GAAG,YAAY,aAAa,OAAS,GAC5F,EAAM,GAAG,YAAY,YAAY,KAAO,MAAU,EAAM,GAAG,YAAY,aAAa,KAAO,KAC7F,KAAK,IAAI,KAAK,IAAI,EAAM,GAAG,YAAY,YAAY,GAAG,GAAK,EAAM,GAAG,YAAY,YAAY,GAAG,EAAE,EAAG,KAAK,IAAI,EAAM,GAAG,YAAY,aAAa,GAAG,GAAK,EAAM,GAAG,YAAY,aAAa,GAAG,EAAE,CAAC,EAAI,EAAM,MAAM,GAC/M,EAGE,GAAS,MAAS,OAAO,KAAK,WAArB,SAA+B,OAAS,AAAG,UAAQ,EAAM,GAAG,MAAM,EAAI,KAErF,AAAG,UAAQ,EAAM,GAAG,MAAM,EAEtB,EAAM,GAAG,QAAQ,MAAO,GAAM,GAAG,OAErC,GAAM,GAAkB,CACtB,GAAG,EAAM,GACT,GAAI,CACN,EACA,AAAK,WAAqB,KAAK,GAAI,IAAO,EAAoB,KACzD,WAAqB,QAAQ,GAAI,OAAU,EAAoB,QAC/D,WAAqB,aAAa,GAAI,YAAe,iBAAqB,aAC1E,WAAqB,YAAY,GAAI,UAAa,iBAAqB,YACvE,WAAqB,MAAM,GAAI,KAAQ,iBAAqB,MAC7D,GAAY,GAAI,QAAU,GAC1B,GAAc,GAAI,KAAO,GACzB,GAAa,GAAI,KAAO,GACxB,GAAY,IAAa,GAAG,GAAI,KAAO,KAAK,MAAM,IAAM,EAAW,IAAI,EAAI,KAC3E,GAAU,GAAI,SAAW,GACzB,IAAQ,GAAI,OAAS,IACzB,EAAQ,KAAK,CAAG,EAChB,EAAS,QAAQ,UAAU,CAC7B,CACA,SAAS,QAAQ,eAAe,EAC5B,EAAS,OAAO,OACd,GAAS,YAAY,MAAM,MAAO,GAAS,YAAY,KACvD,EAAS,YAAY,KAAK,MAAO,GAAS,YAAY,IACtD,EAAS,YAAY,QAAQ,MAAO,GAAS,YAAY,OACzD,EAAS,YAAY,SAAS,MAAO,GAAS,YAAY,SAEzD,CACT,EC/LO,GAAM,IAAO,AAAC,GAAuC,CAC1D,GAAI,CAAC,EAAK,MAAO,CAAC,EAClB,GAAM,GAA0D,CAAC,EACjE,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CAEnC,GAAM,GAAY,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,WAAY,EACjE,EAAa,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,YAAa,EACnE,EAAO,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,MAAO,EAC7D,AAAI,GAAQ,GAAa,GAAe,EAAU,SAAS,GAAK,EAAK,SAAS,IAAQ,EAAW,SAAS,GAAK,EAAK,SAAS,GAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,WAAY,CAAC,EAC5K,AAAI,GAAQ,GAAc,EAAU,SAAS,GAAK,EAAK,SAAS,GAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBAAkB,CAAC,EACtH,GAAQ,GAAe,EAAW,SAAS,GAAK,EAAK,SAAS,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAAmB,CAAC,EAGlI,GAAM,GAAe,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,cAAe,EACvE,EAAgB,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,eAAgB,EAC/E,AAAI,GAAgB,GAAiB,KAAK,IAAI,EAAa,YAAY,GAAK,EAAc,YAAY,EAAE,EAAI,IAC1G,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,WAAY,EAAa,SAAS,GAAK,EAAc,SAAS,GAAM,OAAS,SAAU,CAAC,CAE9H,CACA,MAAO,EACT,EAEa,GAAO,AAAC,GAAuC,CAC1D,GAAI,CAAC,EAAK,MAAO,CAAC,EAClB,GAAM,GAA0D,CAAC,EACjE,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,GAAI,EAAI,GAAG,MAAQ,EAAI,GAAG,KAAK,OAAS,IAAK,CAC3C,GAAM,GAAS,GAAI,GAAG,KAAK,IAAI,IAAM,GAAM,GAAI,GAAG,KAAK,KAAK,IAAM,GAC5D,EAAQ,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,GACpD,AAAI,KAAK,IAAI,EAAQ,CAAK,GAAK,IAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,eAAgB,CAAC,EACnF,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,UAAU,EAAQ,EAAI,OAAS,SAAU,CAAC,EAE7E,AADa,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,EAAE,EAAI,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,EAAE,EAC1G,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,gBAAiB,CAAC,EAEpE,AADc,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,EAAE,EAAI,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,EAAE,EAC1G,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBAAkB,CAAC,EAC1E,GAAM,GAAY,KAAK,IAAI,IAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,IAAI,EAAE,EAAI,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,EAAE,CAAC,EAC5I,AAAI,EAAY,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,SAAS,KAAK,MAAM,CAAS,SAAU,CAAC,EAC9F,GAAM,GAAY,EAAI,GAAG,KAAK,KAAK,IAAM,EACzC,AAAI,KAAK,IAAI,CAAS,EAAI,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,QAAQ,EAAY,EAAI,KAAO,QAAS,CAAC,CAC3G,CAEF,MAAO,EACT,EAEa,GAAO,AAAC,GAAuC,CAC1D,GAAI,CAAC,EAAK,MAAO,CAAC,EAClB,GAAM,GAA0D,CAAC,EACjE,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAI,CAAC,EAAI,GAAG,aAAe,CAAC,EAAI,GAAG,YAAY,aAAe,CAAC,EAAI,GAAG,YAAY,YAAY,IAAM,CAAC,EAAI,GAAG,YAAY,cAAgB,CAAC,EAAI,GAAG,YAAY,aAAa,GAAI,SAC7K,GAAM,GAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAW,KAAK,IAAI,EAAY,CAAS,EAEzC,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAY,KAAK,IAAI,EAAa,CAAU,EAE9C,EAAS,GAEb,AAAI,AADe,KAAK,IAAI,EAAW,CAAS,EAAI,KAAK,IAAI,EAAU,CAAS,EAC/D,KACf,GAAS,GACT,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,eAAgB,CAAC,GAGrD,GAAM,GAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,EAAE,EAAI,EAAI,GAAG,IAAI,GACpG,EAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,EAAE,EAAI,EAAI,GAAG,IAAI,GAC3G,AAAI,GAAkB,KAAQ,EAAmB,MAAM,GAAS,IAChE,AAAI,EAAkB,EAChB,EAAkB,KAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,eAAgB,CAAC,EAE3E,EAAmB,KAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,cAAe,CAAC,EAGjF,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,EAAE,EAAI,EAAI,GAAG,IAAI,GACtG,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,EAAE,EAAI,EAAI,GAAG,IAAI,GAC1G,AAAI,GAAkB,KAAQ,EAAmB,KAAQ,EAAkB,MAAS,EAAmB,OAAO,GAAS,IACnH,GAAkB,KAAQ,EAAmB,MAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,cAAe,CAAC,EACrG,GAAkB,MAAS,EAAmB,OAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,YAAa,CAAC,EAGrG,GAAQ,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,gBAAiB,CAAC,CAClE,CACA,MAAO,EACT,EAEa,GAAO,AAAC,GAAuC,CAC1D,GAAI,CAAC,EAAK,MAAO,CAAC,EAClB,GAAM,GAA0D,CAAC,EACjE,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAM,GAAoD,CAAC,EAC3D,GAAI,EAAI,GAAG,YACT,OAAW,CAAC,EAAQ,IAAQ,QAAO,QAAQ,EAAI,GAAG,WAAc,EAC9D,AAAI,IAAW,YAAc,MAAM,QAAQ,CAAG,GAAK,EAAI,IAAI,EAAQ,KAAK,CAAE,KAAM,EAAO,YAAY,EAAG,SAAU,EAAI,EAAG,CAAC,EAG5H,GAAI,GAAW,EAAQ,OAAS,EAAG,CACjC,GAAM,GAAU,EAAQ,OAAO,CAAC,EAAM,IAAQ,GAAK,SAAS,IAAM,GAAM,GAAE,SAAS,IAAM,GAAK,EAAO,CAAE,EACvG,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,GAAG,EAAQ,cAA8B,CAAC,EAC5E,GAAM,GAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,CAAE,EACzF,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,GAAG,EAAQ,SAAyB,CAAC,CACzE,CACA,GAAI,EAAI,GAAG,UAAc,CACvB,GAAM,GAAQ,AAAW,GAAM,EAAI,GAAG,SAAY,EAClD,OAAW,KAAQ,GAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,EAAK,IAAoB,CAAC,CACxF,CACF,CACA,MAAO,EACT,EC/HA,GAAM,GAAyB,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,QAAS,CAAC,EAAG,YAAa,CAAC,EAAG,UAAW,EAAG,MAAO,IAAK,EAC5I,GAAkB,EAEf,YAAc,EAAmB,EAAwB,CAhBhE,6DAiBE,GAAM,GAAK,EAAI,EACf,GAAI,CAAC,EAAW,MAAO,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,QAAS,CAAC,EAAG,YAAa,CAAC,EAAG,UAAW,EAAG,MAAO,IAAK,EAKxI,GAAM,GAAU,KAAK,IAAI,EAAI,EAAU,UAQjC,EAAiB,EAAU,IAAO,EAAI,KAAK,IAAI,EAAU,CAAC,EAAI,EAMpE,GAJI,EAAU,QAAQ,GAAe,OAAS,EAAU,QACpD,EAAU,OAAO,GAAe,MAAQ,EAAU,OAGlD,CAAC,EAAe,MAAS,EAAU,KAAK,SAAW,EAAe,KAAK,OACzE,EAAe,KAAO,KAAK,MAAM,KAAK,UAAU,EAAU,IAAoB,CAAC,MAE/E,QAAS,GAAI,EAAG,EAAI,EAAU,KAAK,OAAQ,IAAK,CAC9C,GAAM,IAAM,EAAU,KAAK,GAAG,IAC3B,IAAI,CAAC,EAAa,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,IAAI,GAAK,GAAe,CAAc,EAC1G,EAAS,EAAU,KAAK,GAAG,OAC9B,IAAI,CAAC,EAAa,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,OAAO,GAAK,GAAe,CAAc,EAC7G,EAAa,EAAU,KAAK,GAAG,UAClC,IAAI,CAAC,EAAQ,IAAG,CA9CzB,+BA8C6B,OACnB,MAAO,EAAO,MACd,KAAM,EAAO,KACb,SAAU,CACR,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAM,GAAe,KAAK,GAAG,UAAU,GAAG,SAAS,IAAM,GAAM,GAAO,SAAS,IAAM,IAAM,EAAiB,EAAO,SAAS,GACrL,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAM,GAAe,KAAK,GAAG,UAAU,GAAG,SAAS,IAAM,GAAM,GAAO,SAAS,IAAM,IAAM,EAAiB,EAAO,SAAS,GACrL,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAM,GAAe,KAAK,GAAG,UAAU,GAAG,SAAS,IAAM,GAAM,GAAO,SAAS,IAAM,IAAM,EAAiB,EAAO,SAAS,EACvL,EACA,YAAa,CACX,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAM,GAAe,KAAK,GAAG,UAAU,GAAG,YAAY,IAAM,GAAM,GAAO,YAAY,IAAM,IAAM,EAAiB,EAAO,YAAY,GAC9L,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAM,GAAe,KAAK,GAAG,UAAU,GAAG,YAAY,IAAM,GAAM,GAAO,YAAY,IAAM,IAAM,EAAiB,EAAO,YAAY,GAC9L,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAM,GAAe,KAAK,GAAG,UAAU,GAAG,YAAY,IAAM,GAAM,GAAO,YAAY,IAAM,IAAM,EAAiB,EAAO,YAAY,EAChM,EACA,SAAU,CACR,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAM,QAAe,KAAK,GAAG,UAAU,GAAG,WAApC,eAA+C,KAAM,GAAM,QAAO,WAAP,eAAkB,KAAM,IAAM,EAAiB,MAAO,WAAP,eAAkB,GAC3L,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAM,QAAe,KAAK,GAAG,UAAU,GAAG,WAApC,eAA+C,KAAM,GAAM,QAAO,WAAP,eAAkB,KAAM,IAAM,EAAiB,MAAO,WAAP,eAAkB,GAC3L,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAM,QAAe,KAAK,GAAG,UAAU,GAAG,WAApC,eAA+C,KAAM,GAAM,QAAO,WAAP,eAAkB,KAAM,IAAM,EAAiB,MAAO,WAAP,eAAkB,EAC7L,CACF,EAAE,EAEE,EAAiD,CAAC,EACpD,GAAS,CAAE,UAAW,CAAC,CAAE,EAC7B,AAAI,QAAO,OAAP,cAAa,YAAb,QAAwB,SAAS,iBAAkB,GAAS,GAC3D,AAAI,QAAO,OAAP,cAAa,YAAb,QAAwB,SAAS,aAAc,GAAS,GACxD,QAAO,OAAP,cAAa,YAAb,QAAwB,SAAS,YAAY,IAAS,IAC/D,OAAW,CAAC,EAAM,IAAY,QAAO,QAAQ,GAAO,SAAqC,EAAG,CAC1F,GAAM,IAAqB,CAAC,EAC5B,OAAS,IAAI,EAAG,GAAI,EAAQ,OAAS,EAAG,KAAK,CAC3C,GAAM,IAAM,EAAU,KAAK,AAAC,IAAO,GAAG,OAAS,EAAQ,GAAE,EACnD,GAAM,EAAU,KAAK,AAAC,IAAO,GAAG,OAAS,EAAQ,GAAI,EAAE,EAE7D,AAAI,IAAO,IAAK,GAAG,KAAK,CAAC,GAAI,SAAU,GAAI,QAAQ,CAAC,CACtD,CACA,EAAY,GAAQ,EACtB,CACA,EAAe,KAAK,GAAK,CAAE,GAAG,EAAU,KAAK,GAAI,OAAK,SAAQ,YAAW,YAAa,CAAyC,CACjI,CAIF,GAAI,CAAC,EAAe,MAAS,EAAU,KAAK,SAAW,EAAe,KAAK,OACzE,EAAe,KAAO,KAAK,MAAM,KAAK,UAAU,EAAU,IAAoB,CAAC,MAE/E,QAAS,GAAI,EAAG,EAAI,EAAU,KAAK,OAAQ,IAAK,CAC9C,GAAM,IAAO,EAAU,KAAK,GAAG,IAC5B,IAAI,CAAC,GAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,IAAI,GAAK,IAAK,CAAc,EACtF,EAAU,EAAU,KAAK,GAAG,OAC/B,IAAI,CAAC,GAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,OAAO,GAAK,IAAK,CAAc,EAC/F,AAAI,EAAe,KAAK,GAAG,UAAU,SAAW,EAAU,KAAK,GAAG,UAAU,QAAQ,GAAe,KAAK,GAAG,UAAY,EAAU,KAAK,GAAG,WACzI,GAAM,GAAY,EAAU,KAAK,GAAG,WAAa,EAAU,KAAK,GAAG,UAAU,OAAS,EAAI,EAAU,KAAK,GAAG,UACzG,IAAI,CAAC,GAAU,IAAM,GACnB,IAAI,CAAC,EAAO,KAAS,IAAiB,GAAM,GAAe,KAAK,GAAG,UAAU,GAAG,KAAM,GAAM,IAAS,IAAM,CAAe,CAAU,EACrI,CAAC,EACD,EAAc,CAAC,EACnB,GAAI,OAAO,KAAK,EAAe,KAAK,GAAG,WAAW,EAAE,SAAW,OAAO,KAAK,EAAU,KAAK,GAAG,WAAW,EAAE,OACxG,EAAe,KAAK,GAAG,YAAc,EAAU,KAAK,GAAG,YACvD,EAAc,EAAe,KAAK,GAAG,oBAC5B,EAAU,KAAK,GAAG,YAC3B,OAAW,MAAO,QAAO,KAAK,EAAU,KAAK,GAAG,WAAW,EACzD,EAAY,IAAO,EAAU,KAAK,GAAG,YAAY,KAAQ,EAAU,KAAK,GAAG,YAAY,IAAK,GACxF,EAAU,KAAK,GAAG,YAAY,IAC7B,IAAI,CAAC,EAAK,IAAc,EACtB,IAAI,CAAC,GAAe,KAAgB,IAAiB,GAAK,EAAe,KAAK,GAAG,YAAY,IAAK,GAAG,IAAK,IAAS,CAAc,CAAC,EACrI,KAGR,EAAe,KAAK,GAAK,CAAE,GAAG,EAAU,KAAK,GAAI,OAAK,SAAQ,YAAW,YAAa,CAAyC,CACjI,CAIF,GAAI,CAAC,EAAe,MAAS,EAAU,KAAK,SAAW,EAAe,KAAK,OACzE,EAAe,KAAO,KAAK,MAAM,KAAK,UAAU,EAAU,IAAoB,CAAC,MAE/E,QAAS,GAAI,EAAG,EAAI,EAAU,KAAK,OAAQ,IAAK,CAC9C,GAAM,IAAO,EAAU,KAAK,GAAG,IAC5B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,IAAI,GAAK,GAAK,CAAc,EACtF,EAAU,EAAU,KAAK,GAAG,OAC/B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,OAAO,GAAK,GAAK,CAAc,EAC/F,GAAI,EAAU,KAAK,GAAG,SAAU,CAC9B,GAAM,GAIF,CAAE,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,CAAC,EAAG,MAAO,CAAE,KAAM,EAAG,IAAK,EAAG,MAAO,CAAE,EAAG,KAAM,CAAE,QAAS,EAAG,SAAU,CAAE,CAAE,EACnH,EAAS,OAAS,KAAU,KAAK,GAAG,WAAlB,cAA4B,OAC9C,EAAS,MAAQ,CACf,KAAQ,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,QAAjC,cAAwC,OAAQ,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,QAA5B,cAAmC,OAAQ,IAAM,EACtI,IAAO,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,QAAjC,cAAwC,MAAO,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,QAA5B,cAAmC,MAAO,IAAM,EACnI,MAAS,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,QAAjC,cAAwC,QAAS,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,QAA5B,cAAmC,QAAS,IAAM,CAC3I,EACA,EAAS,KAAO,CAEd,QAAW,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,OAAjC,cAAuC,UAAW,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,OAA5B,cAAkC,UAAW,IAAM,EAC7I,SAAY,IAAiB,GAAM,WAAe,KAAK,GAAG,WAAvB,eAAiC,OAAjC,cAAuC,WAAY,GAAM,YAAU,KAAK,GAAG,WAAlB,eAA4B,OAA5B,eAAkC,WAAY,IAAM,CAClJ,EACA,EAAe,KAAK,GAAK,CAAE,GAAG,EAAU,KAAK,GAAI,WAAU,OAAK,QAAO,CACzE,CACA,EAAe,KAAK,GAAK,CAAE,GAAG,EAAU,KAAK,GAAI,OAAK,QAAO,CAC/D,CAIF,GAAI,CAAC,EAAe,QAAW,EAAU,OAAO,SAAW,EAAe,OAAO,OAC/E,EAAe,OAAS,KAAK,MAAM,KAAK,UAAU,EAAU,MAAwB,CAAC,MAErF,QAAS,GAAI,EAAG,EAAI,EAAU,OAAO,OAAQ,IAAK,CAChD,GAAM,IAAO,EAAU,OAAO,GAAG,IAC9B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,OAAO,GAAG,IAAI,GAAK,GAAK,CAAc,EACxF,EAAU,EAAU,OAAO,GAAG,OACjC,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,OAAO,GAAG,OAAO,GAAK,GAAK,CAAc,EACjG,EAAe,OAAO,GAAK,CAAE,GAAG,EAAU,OAAO,GAAI,OAAK,QAAO,CACnE,CAIF,GAAI,EAAU,QAAS,CACrB,GAAM,GAAa,EAAU,QAC7B,GAAI,CAAC,EAAe,SAAY,EAAW,SAAW,EAAe,QAAQ,OAC3E,EAAe,QAAU,KAAK,MAAM,KAAK,UAAU,CAA4B,CAAC,MAEhF,QAAS,IAAI,EAAG,GAAI,EAAW,OAAQ,KACrC,EAAe,QAAQ,IAAG,IAAO,EAAW,IAAG,IAC5C,IAAI,CAAC,EAAK,IAAQ,IAAiB,GAAK,EAAe,QAAQ,IAAG,IAAI,GAAK,GAAO,CAAc,CAGzG,CAGA,AAAI,EAAU,SAAS,GAAe,QAAU,EAAU,SAG1D,GAAM,GAAK,EAAI,EACf,UAAkB,EAAI,QAAU,GAAkB,KAAK,MAAM,EAAK,CAAE,EAAI,KAAK,MAAM,EAAK,CAAE,EACtF,EAAU,aAAa,GAAe,YAAc,CAAE,GAAG,EAAU,YAAa,YAAa,EAAgB,GAE1G,CACT,CCvLA,kEAWO,YAAkB,EAAyB,EAAyB,EAAwB,CAAE,MAAO,EAAG,WAAY,EAAG,EAAG,CAE/H,GAAI,GAAM,EACV,OAAS,GAAI,EAAG,EAAI,EAAY,OAAQ,IAAK,CAC3C,GAAM,GAAQ,CAAC,EAAQ,OAAS,EAAQ,QAAU,EAAM,EAAY,GAAK,EAAY,GAAO,KAAK,IAAI,EAAY,GAAK,EAAY,EAAE,EACpI,GAAQ,CAAC,EAAQ,OAAS,EAAQ,QAAU,EAAM,EAAO,EAAS,GAAQ,EAAQ,KACpF,CACA,MAAQ,GAAQ,YAAc,IAAM,CACtC,CAGA,GAAM,IAAoB,CAAC,EAAM,EAAO,EAAK,IAAQ,CACnD,GAAI,IAAS,EAAG,MAAO,GACvB,GAAM,GAAO,IAAU,EAAI,KAAK,KAAK,CAAI,EAAI,GAAS,GAAI,GACpD,EAAQ,GAAK,EAAO,IAAO,GAAQ,GAAM,GAE/C,MADc,MAAK,IAAI,KAAK,IAAI,EAAM,CAAC,EAAG,CAAC,CAE7C,EAaO,YAAoB,EAAyB,EAAyB,EAAwB,CAAE,MAAO,EAAG,WAAY,GAAI,IAAK,GAAK,IAAK,EAAI,EAAG,CACrJ,GAAM,GAAO,GAAS,EAAa,EAAa,CAAO,EACvD,MAAO,IAAkB,EAAM,EAAQ,OAAS,EAAG,EAAQ,KAAO,EAAG,EAAQ,KAAO,CAAC,CACvF,CAWO,YAAe,EAAwB,EAAgC,EAAwB,CAAE,MAAO,EAAG,WAAY,GAAI,UAAW,EAAG,IAAK,GAAK,IAAK,EAAI,EAAG,CACpK,GAAI,CAAC,MAAM,QAAQ,CAAU,GAAK,CAAC,MAAM,QAAQ,CAAW,GAAK,EAAW,OAAS,IAAM,EAAY,SAAW,GAAK,EAAW,SAAW,EAAY,GAAG,OAC1J,MAAO,CAAE,MAAO,GAAI,SAAU,OAAO,kBAAmB,WAAY,CAAE,EAExE,GAAI,GAAiB,OAAO,iBACxB,EAAQ,GACZ,OAAS,GAAI,EAAG,EAAI,EAAY,OAAQ,IAAK,CAC3C,GAAM,GAAM,GAAS,EAAY,EAAY,GAAI,CAAO,EAKxD,GAJI,EAAM,GACR,GAAiB,EACjB,EAAQ,GAEN,EAAkB,GAAQ,WAAa,GAAI,KACjD,CACA,GAAM,GAAuB,GAAkB,EAAgB,EAAQ,OAAS,EAAG,EAAQ,KAAO,EAAG,EAAQ,KAAO,CAAC,EACrH,MAAO,CAAE,QAAO,SAAU,EAAgB,WAAY,CAAqB,CAC7E,CCjEO,YAAc,EAA0B,EAA2B,EAA0B,EAAgC,EAAuD,CAN3L,oCAOE,GAAI,GAAK,EACH,EAA+B,CAAC,EACtC,OAAW,KAAQ,GAAO,CACxB,GAAM,GAAuB,CAAE,GAAI,IAAM,OAAM,KAAM,KAAM,MAAO,CAAE,KAAM,KAAM,MAAO,IAAK,EAAG,SAAU,CAAC,EAAG,IAAK,CAAC,EAAG,EAAG,EAAG,CAAC,CAAE,EAC/H,OAAW,KAAQ,GACjB,AAAI,EAAK,IAAI,GAAK,EAAK,IAAI,IACtB,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,IACrC,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,IACrC,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,IACtD,GAAO,KAAO,GAGlB,GAAI,EAAO,KACT,OAAW,KAAQ,GACjB,AAAI,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC3C,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IACjE,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC5C,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAChE,EAAO,OAAO,GAAO,MAAM,KAAO,GAEpC,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAClD,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC9B,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC5C,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAChE,EAAO,OAAO,GAAO,MAAM,MAAQ,GAI7C,OAAW,KAAW,GACpB,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,EAAK,GAAI,KAAO,WAAP,QAAiB,KAAK,GACnF,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,EAAK,GAAI,KAAO,WAAP,QAAiB,KAAK,GACxF,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,MAAO,OAAP,cAAa,IAAI,KAAO,WAAP,QAAiB,KAAK,GAChG,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,SAAO,QAAP,cAAc,OAAd,cAAoB,IAAI,KAAO,WAAP,QAAiB,KAAK,GACnG,EAAQ,OAAY,QAAa,EAAQ,OAAY,SAAO,QAAP,cAAc,QAAd,cAAqB,KAAI,MAAO,WAAP,QAAiB,KAAK,IAI/G,GAAM,GAAc,CAAC,EACf,EAAc,CAAC,EACf,EAAY,AAAC,GAAyB,CAC1C,AAAI,GAAO,EAAI,SAAW,GACxB,GAAE,KAAK,EAAI,GAAI,EAAI,GAAK,EAAI,EAAE,EAC9B,EAAE,KAAK,EAAI,GAAI,EAAI,GAAK,EAAI,EAAE,EAElC,EACA,EAAU,KAAO,OAAP,cAAa,GAAG,EAC1B,EAAU,KAAO,OAAP,cAAa,GAAG,EAC1B,EAAU,QAAO,QAAP,cAAc,OAAd,cAAoB,GAAG,EACjC,EAAU,QAAO,QAAP,cAAc,QAAd,cAAqB,GAAG,EAClC,GAAM,GAAO,KAAK,IAAI,GAAG,CAAC,EACpB,GAAO,KAAK,IAAI,GAAG,CAAC,EAC1B,EAAO,IAAM,CAAC,EAAM,GAAM,KAAK,IAAI,GAAG,CAAC,EAAI,EAAM,KAAK,IAAI,GAAG,CAAC,EAAI,EAAI,EAGlE,GAAS,EAAM,IAAM,EAAM,IAAI,GAAO,OAAS,CAAC,EAAO,IAAI,GAAK,EAAM,GAAI,EAAO,IAAI,GAAK,EAAM,GAAI,EAAO,IAAI,GAAK,EAAM,GAAI,EAAO,IAAI,GAAK,EAAM,EAAE,GAE1J,EAAQ,KAAK,CAAM,CACrB,CACA,MAAO,EACT,CC7DO,GAAM,IAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kEA0JP,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;MCjJpB,kBAA4B,EAA8C,CACxE,GAAM,GAAY,CAAC,EAAgB,EAAO,6BAA+B,MAAM,QAAQ,YAAe,GAAQ,EAAE,KAAK,AAAC,GAAQ,EAAI,KAAK,CAAC,EACpI,EACA,EACJ,OAAQ,EAAS,OAAO,YACjB,OAAQ,EAAO,KAAM,GAAiB,EAAI,EAAG,UAC7C,WACA,OAAQ,EAAO,KAAM,GAAiB,EAAI,EAAG,cACzC,EAAO,KAElB,GAAI,EAAM,CACR,GAAM,GAAS,KAAM,mBAAkB,CAAI,EAC3C,EAAM,KAAM,GAAS,OAAO,EAAQ,EAAS,MAAM,EACnD,EAAO,MAAM,CACf,CACA,MAAO,EACT,CAEA,kBAA4B,EAA8C,CACxE,MAAO,IAAI,SAAQ,AAAC,GAAY,CAC9B,GAAI,GAEJ,OAAQ,EAAS,OAAO,YACjB,OAEH,EAAM,0BAAmC,GACzC,UACG,WACA,OAEH,EAAM,0BAAmC,GACzC,cAEA,EAAM,KAGV,GAAI,GACJ,GAAI,MAAO,QAAU,YAAa,EAAM,GAAI,eAEnC,EAAI,MAAO,EAAM,GAAI,GAAI,UAC7B,QACL,EAAI,OAAS,SAAY,CACvB,GAAM,GAAS,AAAM,GAAO,EAAI,aAAc,EAAI,aAAa,EAC/D,GAAI,CAAC,EACH,EAAI,0BAA0B,EAC9B,EAAQ,MAAS,MACZ,CACL,GAAM,GAAM,EAAO,WAAW,IAAI,EAClC,AAAI,GAAK,EAAI,UAAU,EAAK,EAAG,CAAC,EAEhC,GAAM,GAAS,KAAM,GAAS,MAAM,CAAM,EACpC,EAAM,KAAM,GAAS,OAAO,EAAO,OAAkB,EAAS,MAAM,EAC1E,EAAQ,CAAG,CACb,CACF,EACA,AAAI,EAAK,EAAI,IAAM,EACd,EAAQ,MAAS,CACxB,CAAC,CACH,CAEA,kBAA0B,EAA8C,CACtE,GAAM,GAAO,AAAC,GAAgB,OAAO,KAAK,EAAK,QAAQ,EACnD,EACJ,AAAI,EAAS,OAAO,SAAW,OAAQ,EAAM,EAAY,EAAI,EACxD,EAAM,EAAY,EAAI,EAC3B,GAAI,GACJ,GAAI,QAAU,GAAI,CAEhB,GAAM,GAAO,AAAG,OAAQ,WAAW,CAAG,EAChC,EAAW,EAAK,WAAW,CAAC,EAClC,EAAS,GAAG,QAAQ,CAAI,EAExB,EAAM,KAAM,GAAS,OAAO,EAAU,EAAS,MAAM,EACrD,EAAS,GAAG,QAAQ,CAAQ,CAC9B,KACE,AAAI,GAAS,OAAO,OAAO,EAAI,6BAA6B,EAS9D,MAAO,EACT,CAEA,kBAA4B,EAAiB,CAC3C,GAAI,GACJ,MAAI,OAAO,oBAAsB,WAAY,EAAM,KAAM,IAAa,CAAQ,EACzE,AAAI,MAAO,QAAU,aAAe,EAAI,SAAW,OAAW,EAAM,KAAM,IAAa,CAAQ,EAC/F,EAAM,KAAM,IAAW,CAAQ,EAC7B,CACT,CAGA,kBAAiC,EAAmB,CAClD,GAAM,GAAc,AAAG,aAAW,EAC5B,EAAe,AAAG,UAAQ,EAChC,GAAK,IAAgB,SAAW,IAAgB,WAAe,CAAC,GAAgB,CAAC,EAAa,uBAE5F,OAEF,AAAG,MAAI,EAAE,IAAI,sBAAuB,EAAI,EACxC,GAAM,GAAkB,AAAG,SAAO,EAAE,MAAM,WACpC,EAA2B,CAAC,EAClC,OAAW,CAAC,EAAW,IAAU,QAAO,QAAQ,CAAS,EAAE,OAAO,CAAC,CAAC,EAAK,KAAU,IAAQ,MAAQ,IAAQ,IAAK,EAAG,CACjH,GAAM,GAAS,EAAM,QAAU,EAAM,OAAO,IAAM,EAAM,OAAO,GAAG,MAAS,CAAC,GAAG,EAAM,OAAO,GAAG,KAAK,EAAI,CAAC,EAAG,GAAI,GAAI,CAAC,EAC/G,EAAS,EAAM,QAAU,EAAM,OAAO,IAAM,EAAM,OAAO,GAAG,MAAS,EAAM,OAAO,GAAG,MAAQ,UACnG,OAAS,GAAM,EAAG,EAAM,EAAM,OAAQ,IACpC,AAAI,EAAM,KAAS,IAAI,GAAM,GAAO,IAAQ,EAAI,EAAI,IAEtD,GAAM,GAAS,AAAG,QAAM,EAAO,CAAK,EAEpC,GAAI,CACF,GAAM,GAAM,EAAM,QAAQ,CAAM,EAChC,EAAe,KAAK,CAAS,EAC7B,AAAI,MAAM,QAAQ,CAAG,EAAG,EAAI,QAAQ,AAAC,GAAM,AAAG,UAAQ,CAAC,CAAC,EACnD,AAAG,UAAQ,CAAG,CACrB,OAAQ,EAAN,CACA,EAAI,sBAAuB,CAAS,CACtC,CACA,AAAG,UAAQ,CAAM,CACnB,CACA,GAAM,GAAU,KAAM,GAAa,4BAA4B,EAC/D,EAAa,oBAAoB,EACjC,EAAI,uBAAwB,CAAc,EAC1C,EAAI,wBAAyB,EAAQ,MAAM,EAC3C,AAAG,MAAI,EAAE,IAAI,sBAAuB,EAAK,EACzC,GAAM,GAAgB,AAAG,SAAO,EAAE,MAAM,WACxC,AAAK,EAAgB,EAAmB,GAAG,EAAI,eAAgB,EAAgB,CAAe,CAChG,CAOA,kBAA6B,EAAiB,EAA2D,CACvG,GAAM,GAAK,EAAI,EAGf,MAFA,GAAS,MAAQ,SACb,GAAY,GAAS,OAAS,EAAU,EAAS,OAAQ,CAAU,GACnE,CAAC,EAAS,OAAO,QAAU,EAAS,OAAO,OAAO,SAAW,GAAK,EAAS,OAAO,SAAW,OACxF,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,YAAa,EAAS,YAAa,UAAW,EAAI,EAAG,QAAS,CAAC,EAAG,MAAO,IAAK,EAEzI,GAAI,SAAQ,KAAO,IAAY,CACpC,KAAM,IAAW,EAAS,MAAM,EAChC,GAAM,GAAM,KAAM,IAAa,CAAQ,EACjC,EAAK,EAAI,EACf,AAAI,EAAS,OAAO,OAAO,EAAI,SAAU,EAAS,OAAO,OAAQ,KAAK,MAAM,EAAK,CAAE,EAAG,IAAI,EAC1F,EAAS,KAAK,QAAQ,EACtB,EAAQ,CAAG,CACb,CAAC,CACH,CCvKA,gBAsDa,GAAN,KAAY,CAuEjB,YAAY,EAA8B,CArE1C,kBAKA,iBAKA,iBAMA,gBAGA,kBAMA,aAGA,cAOA,eAMA,iBAWA,iBAEA,4BAEA,oBAEA,sBACA,mBACA,mBACA,mBAEA,aA2DA,iBAAU,IAAI,IAAkB,CAC9B,GAAI,CAAC,QAAK,IAAqB,OAC/B,GAAM,GAAiB,KAAK,GAAG,OAAO,EAAE,MAAM,WACxC,EAAkB,QAAK,IAC7B,QAAK,GAAc,GACnB,GAAM,GAAS,EAAiB,EAChC,AAAI,IAAW,GAAG,EAAI,GAAG,EAAK,CAAM,CACtC,GAGA,WAAU,AAAC,GAAgC,CACzC,GAAI,CAAC,QAAK,IAAc,MAAO,MAC/B,GAAI,CAAC,EAAO,MAAO,uBACnB,GAAI,KAAK,IAAI,MAAQ,CAAE,aAAoB,KAAS,MAAO,yBAC3D,GAAI,CACF,KAAK,GAAG,WAAW,CACrB,OAAQ,EAAN,CACA,MAAO,oBACT,CACA,MAAO,KACT,GAeA,OAAO,aAAmB,IAE1B,OAAO,WAAiB,IAExB,OAAO,QAAc,IAoGrB,cAAO,AAAC,GAAkB,CA7T5B,MA8TI,AAAI,KAAK,QAAU,KAAK,OAAO,eAAe,SAAK,SAAL,QAAa,cAAc,GAAI,OAAM,CAAK,GAC1F,GA/TF,MA8HI,KAAK,IAAM,EAMX,GAAM,GAAa,KAAG,KAAH,cAAY,OAAW,gBAAc,QAAQ,QAAS,EAAE,EAC3E,GAAS,SAAW,8DAA8D,UAClF,GAAS,cAAgB,EAAI,QAAU,aAAe,iBACtD,GAAS,QAAU,EAAI,QAAU,UAAY,aAC7C,KAAK,QAAc,GACnB,OAAO,eAAe,KAAM,UAAW,CAAE,MAAW,EAAQ,CAAC,EAC7D,KAAK,OAAS,KAAK,MAAM,KAAK,UAAU,EAAQ,CAAC,EACjD,OAAO,KAAK,KAAK,MAAM,EACvB,KAAK,OAAO,YAAc,MAAO,YAAc,YAC3C,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,CAAU,GAC/D,GAAoB,KAAK,MAAM,EAC/B,KAAK,GAAK,EACV,KAAK,MAAQ,OACb,QAAK,GAAc,GACnB,QAAK,GAAsB,IAC3B,QAAK,GAAe,IACpB,KAAK,YAAc,CAAC,EACpB,KAAK,OAAU,MAAO,cAAgB,YAAe,GAAI,aAAgB,OAEzE,KAAK,OAAS,GAAW,IAEzB,KAAK,KAAO,CACV,QAAc,GACd,OAAQ,CAAC,EAAwD,IAAsB,AAAK,GAAO,EAAO,CAAM,EAChH,KAAM,CAAC,EAAmB,EAAsB,IAAmC,AAAK,GAAK,EAAQ,EAAQ,CAAO,EACpH,KAAM,CAAC,EAAmB,EAAsB,IAAmC,AAAK,GAAK,EAAQ,EAAQ,CAAO,EACpH,KAAM,CAAC,EAAmB,EAAsB,IAAmC,AAAK,GAAK,EAAQ,EAAQ,CAAO,EACpH,QAAS,CAAC,EAAmB,EAAyB,IAAmC,AAAK,GAAQ,EAAQ,EAAQ,CAAO,EAC7H,OAAQ,CAAC,EAAmB,EAAwB,IAAmC,AAAK,GAAO,EAAQ,EAAQ,CAAO,EAC1H,OAAQ,CAAC,EAAmB,EAAwB,IAAmC,AAAK,GAAO,EAAQ,EAAQ,CAAO,EAC1H,IAAK,CAAC,EAAmB,EAAgB,IAAmC,AAAK,GAAI,EAAQ,EAAQ,CAAO,CAC9G,EACA,KAAK,OAAS,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,YAAa,CAAC,EAAG,UAAW,EAAG,QAAS,CAAC,EAAG,MAAO,IAAK,EAG/H,KAAK,QAAU,CAAE,OAAQ,KAAM,OAAQ,IAAK,EAE5C,KAAK,kBAA6B,GAClC,KAAK,UAAqB,GAE1B,KAAK,GAAa,EAElB,KAAK,KAAK,QAAQ,CACpB,CA0BA,OAAc,CACZ,GAAM,GAAiB,KAAK,OAAO,QACnC,KAAK,OAAS,KAAK,MAAM,KAAK,UAAU,EAAQ,CAAC,EACjD,KAAK,OAAO,QAAU,CACxB,CAGA,SAAS,EAA8B,CACrC,MAAO,IAAS,GAAU,GAAc,KAAK,MAAM,CACrD,CAUA,KAAc,CACZ,MAAO,GAAI,CACb,CAQA,MAAM,EAAc,EAAqB,GAAM,CAC7C,MAAO,AAAM,IAAQ,EAAO,KAAK,OAAQ,CAAS,CACpD,CAYA,KAAM,cAAa,EAAc,EAA6G,CAC5I,MAAO,AAAa,IAAQ,EAAO,EAAY,KAAK,MAAM,CAC5D,CAQA,QAAQ,EAA8B,CACpC,MAAO,AAAQ,IAAQ,CAAK,CAC9B,CASA,QAAQ,EAA0B,EAA4C,CAC5E,MAAO,AAAM,IAAQ,KAAK,OAAQ,EAAkB,CAAiB,CACvE,CAOA,KAAM,OAAsB,CAC1B,KAAM,AAAQ,IAAM,KAAM,EAAI,EAC9B,KAAM,MAAK,GAAG,MAAM,CACtB,CAOA,KAAM,MAAK,EAA6C,CACtD,KAAK,MAAQ,OACb,GAAM,GAAY,EAAI,EAChB,EAAQ,OAAO,OAAO,KAAK,MAAM,EAAE,OAAO,AAAC,GAAU,CAAK,EAAE,OAClE,AAAI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,CAAU,GAE3D,KAAK,IAAI,SACP,MAAK,OAAO,OAAO,EAAI,YAAY,KAAK,SAAS,EACjD,KAAK,OAAO,OAAO,EAAI,iBAAiB,KAAK,GAAG,QAAQ,cAAc,EACrE,KAAM,AAAQ,IAAM,IAAI,GAAG,EAAI,6BAA6B,EACjE,KAAM,AAAG,SAAM,EACX,KAAK,IAAI,SACP,MAAK,OAAO,OAAO,EAAI,iBAAkB,KAAK,MAAM,EACpD,KAAK,OAAO,OAAO,EAAI,eAAgB,KAAK,GAAG,EAC/C,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,GAAG,IAAI,KAAQ,IAIhE,KAAM,AAAO,IAAK,IAAI,EAClB,KAAK,IAAI,SAAW,KAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,GAAG,OAAO,EAAE,MAAM,SAAU,QAAS,KAAK,GAAG,OAAO,EAAE,MAAM,WAAY,SAAS,EACzJ,KAAK,IAAI,QAAU,GAGf,AADW,OAAO,OAAO,KAAK,MAAM,EAAE,OAAO,AAAC,GAAU,CAAK,EAAE,SACpD,GACb,MAAM,AAAO,IAAS,IAAI,EAC1B,KAAK,KAAK,MAAM,GAGlB,GAAM,GAAU,KAAK,MAAM,EAAI,EAAI,CAAS,EAC5C,AAAI,EAAW,MAAK,YAAY,YAAwB,IAAI,MAAK,YAAY,WAAa,KAAK,IAAI,QAAW,MAAK,YAAY,YAAc,GAAK,EAAU,EAC9J,CAaA,KAAK,EAAiB,KAAK,OAAgB,CACzC,MAAO,AAAY,IAAK,EAAQ,KAAK,MAAM,CAC7C,CAGA,eAA4B,CAAE,MAAO,AAAO,IAAc,IAAI,CAAG,CAQjE,KAAM,QAAO,EAA8B,CACzC,GAAM,GAAK,EAAI,EACT,EAAM,KAAM,AAAQ,IAAO,KAAM,CAAU,EAC3C,EAAK,EAAI,EACf,YAAK,YAAY,OAAS,KAAK,MAAM,EAAK,CAAE,EACrC,CACT,CAMA,KAAM,SAAQ,EAAc,EAA+D,CACzF,GAAM,GAAU,KAAM,MAAK,GAAG,QAAQ,IAAM,KAAK,OAAO,EAAO,CAAU,CAAC,EACpE,EAAkC,CAAC,EACzC,OAAW,KAAU,GAAQ,QAC3B,AAAI,EAAQ,EAAO,MAAO,EAAQ,EAAO,OAAS,EAAO,aACpD,EAAQ,EAAO,MAAQ,EAAO,aAErC,GAAM,GAAiD,CAAC,EACxD,OAAO,QAAQ,CAAO,EAAE,QAAQ,AAAC,GAAQ,EAAU,KAAK,CAAE,KAAM,EAAI,GAAI,GAAI,EAAI,EAAwB,CAAC,CAAC,EAC1G,EAAU,KAAK,CAAC,EAAG,IAAM,EAAE,GAAK,EAAE,EAAE,EACpC,EAAU,OAAS,GACnB,GAAM,GAA8B,CAAC,EACrC,OAAW,KAAU,GAAW,EAAI,EAAO,MAAQ,EAAO,GAC1D,MAAO,EACT,CAYA,KAAM,QAAO,EAAc,EAA+C,CAExE,YAAK,MAAQ,SACN,GAAI,SAAQ,KAAO,IAAY,CA7X1C,oDA8XM,KAAK,MAAQ,SACb,GAAI,GAGJ,KAAK,OAAS,EAAU,KAAK,OAAQ,CAAU,EAG/C,KAAK,MAAQ,QACb,GAAM,GAAQ,QAAK,IAAL,UAAa,GAC3B,AAAI,GACF,GAAI,EAAO,CAAK,EAChB,KAAK,KAAK,OAAO,EACjB,EAAQ,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,YAAa,KAAK,YAAa,UAAW,EAAI,EAAG,QAAS,CAAC,EAAG,OAAM,CAAC,GAGxI,GAAM,GAAY,EAAI,EAGtB,KAAM,AAAQ,IAAM,IAAI,EAGxB,KAAM,MAAK,KAAK,EAEhB,EAAY,EAAI,EAChB,KAAK,MAAQ,QACb,GAAM,GAAM,KAAM,AAAM,IAAQ,EAAO,KAAK,MAAM,EAKlD,GAJA,KAAK,QAAU,EACf,KAAK,YAAY,aAAe,KAAK,IAAI,QAAW,MAAK,YAAY,cAAgB,GAAK,KAAK,MAAM,EAAI,EAAI,CAAS,EAAI,KAAK,MAAM,EAAI,EAAI,CAAS,EACtJ,KAAK,QAAQ,YAAY,EAErB,CAAC,EAAI,OAAQ,CACf,AAAI,KAAK,OAAO,OAAO,EAAI,mCAAmC,EAC9D,KAAK,KAAK,OAAO,EACjB,EAAQ,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,YAAa,KAAK,YAAa,UAAW,EAAI,EAAG,QAAS,CAAC,EAAG,MAAO,mCAAoC,CAAC,EAC3K,MACF,CACA,KAAK,KAAK,OAAO,EAEjB,EAAY,EAAI,EAChB,KAAK,OAAO,YAAc,KAAM,AAAM,IAAK,KAAK,OAAQ,EAAI,MAAM,EAC7D,KAAK,YAAY,aAAa,MAAK,YAAY,YAAc,GAC7D,KAAK,YAAY,cAAc,MAAK,YAAY,aAAe,GACnE,KAAK,YAAY,cACd,KAAK,OAAO,aAAa,KAAK,YAAY,eAC9C,KAAK,YAAY,WAAa,KAAK,IAAI,QAAW,MAAK,YAAY,YAAc,GAAK,KAAK,MAAM,EAAI,EAAI,CAAS,EAAI,KAAK,MAAM,EAAI,EAAI,CAAS,EAClJ,KAAK,QAAQ,gBAAgB,EAI7B,GAAI,GAA0D,CAAC,EAC3D,EAA0D,CAAC,EAC3D,EAA0D,CAAC,EAC3D,EAAgE,CAAC,EAGrE,KAAK,MAAQ,cACb,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,AAAK,GAAW,KAAM,EAAI,MAAM,EAAI,CAAC,EACtE,KAAK,YAAY,MAAM,MAAO,MAAK,YAAY,MAEnD,GAAY,EAAI,EAChB,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAK,IAAW,KAAM,EAAI,MAAM,EAAI,CAAC,EAChF,KAAK,YAAY,KAAO,KAAK,IAAI,QAAW,MAAK,YAAY,MAAQ,GAAK,KAAK,MAAM,EAAI,EAAI,CAAS,EAAI,KAAK,MAAM,EAAI,EAAI,CAAS,GAGpI,KAAK,OAAO,OAAU,MAAK,OAAO,KAAK,cAAgB,IAAM,KAAK,OAAO,KAAK,cAAgB,KAAK,GAAU,KAAM,IAGvH,KAAK,QAAQ,aAAa,EAC1B,KAAK,MAAQ,cACb,GAAM,GAAa,KAAK,OAAO,KAAK,cAAgB,GAAK,EAAU,KAAK,OAAQ,CAAE,KAAM,CAAE,YAAa,KAAK,OAAO,KAAK,QAAU,EAAK,EAAyB,OAAS,CAAE,CAAE,CAAC,EAAI,KAAK,OACvL,AAAI,KAAK,OAAO,MACd,CAAI,QAAK,OAAO,KAAK,YAAjB,QAA4B,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAQ,EAAI,OAAQ,CAAU,EAAI,CAAC,EAChI,AAAI,QAAK,OAAO,KAAK,YAAjB,QAA4B,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,AAAU,GAAQ,EAAI,OAAQ,CAAU,EAAI,CAAC,EACzI,AAAI,QAAK,OAAO,KAAK,YAAjB,QAA4B,SAAS,iBAAkB,EAAU,KAAK,OAAO,KAAK,QAAU,AAAc,GAAQ,EAAI,OAAQ,CAAU,EAAI,CAAC,EAC7I,QAAK,OAAO,KAAK,YAAjB,QAA4B,SAAS,YAAY,GAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAQ,EAAI,OAAQ,CAAU,EAAI,CAAC,GACtI,KAAK,YAAY,MAAM,MAAO,MAAK,YAAY,MAEnD,GAAY,EAAI,EAChB,AAAI,QAAK,OAAO,KAAK,YAAjB,QAA4B,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAQ,EAAI,OAAQ,CAAU,EAAI,CAAC,EACtI,AAAI,QAAK,OAAO,KAAK,YAAjB,QAA4B,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAU,IAAQ,EAAI,OAAQ,CAAU,EAAI,CAAC,EAC/I,AAAI,QAAK,OAAO,KAAK,YAAjB,QAA4B,SAAS,iBAAkB,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAc,IAAQ,EAAI,OAAQ,CAAU,EAAI,CAAC,EACnJ,QAAK,OAAO,KAAK,YAAjB,QAA4B,SAAS,YAAY,GAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAQ,EAAI,OAAQ,CAAU,EAAI,CAAC,GAChJ,KAAK,YAAY,KAAO,KAAK,IAAI,QAAW,MAAK,YAAY,MAAQ,GAAK,KAAK,MAAM,EAAI,EAAI,CAAS,EAAI,KAAK,MAAM,EAAI,EAAI,CAAS,GAExI,KAAK,QAAQ,WAAW,EAGxB,KAAK,QAAQ,aAAa,EAC1B,KAAK,MAAQ,cACb,GAAM,GAAa,KAAK,OAAO,KAAK,cAAgB,GAAK,EAAU,KAAK,OAAQ,CAAE,KAAM,CAAE,YAAa,KAAK,OAAO,KAAK,QAAU,EAAK,EAAyB,OAAS,CAAE,CAAE,CAAC,EAAI,KAAK,OACvL,AAAI,KAAK,OAAO,MACd,CAAI,WAAK,OAAO,KAAK,WAAjB,cAA2B,YAA3B,QAAsC,SAAS,cAAe,EAAU,KAAK,OAAO,KAAK,QAAU,AAAS,GAAQ,EAAI,OAAQ,CAAU,EAAI,CAAC,EAC1I,WAAK,OAAO,KAAK,WAAjB,cAA2B,YAA3B,QAAsC,SAAS,cAAc,GAAU,KAAK,OAAO,KAAK,QAAU,AAAU,GAAQ,EAAI,OAAQ,CAAU,EAAI,CAAC,GACpJ,KAAK,YAAY,MAAM,MAAO,MAAK,YAAY,MAEnD,GAAY,EAAI,EAChB,AAAI,YAAK,OAAO,KAAK,WAAjB,cAA2B,YAA3B,SAAsC,SAAS,cAAe,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAS,IAAQ,EAAI,OAAQ,CAAU,EAAI,CAAC,EAChJ,YAAK,OAAO,KAAK,WAAjB,cAA2B,YAA3B,SAAsC,SAAS,cAAc,GAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAU,IAAQ,EAAI,OAAQ,CAAU,EAAI,CAAC,GAC9J,KAAK,YAAY,KAAO,KAAK,IAAI,QAAW,MAAK,YAAY,MAAQ,GAAK,KAAK,MAAM,EAAI,EAAI,CAAS,EAAI,KAAK,MAAM,EAAI,EAAI,CAAS,GAExI,KAAK,QAAQ,WAAW,EAGxB,KAAK,QAAQ,eAAe,EAC5B,KAAK,MAAQ,gBACb,AAAI,KAAK,OAAO,MACd,CAAI,SAAK,OAAO,OAAO,YAAnB,SAA8B,SAAS,WAAY,EAAY,KAAK,OAAO,OAAO,QAAU,AAAQ,GAAQ,EAAI,OAAQ,KAAK,MAAM,EAAI,CAAC,EACnI,QAAK,OAAO,OAAO,YAAnB,QAA8B,SAAS,cAAc,GAAY,KAAK,OAAO,OAAO,QAAU,AAAU,GAAQ,EAAI,OAAQ,KAAK,MAAM,EAAI,CAAC,GACjJ,KAAK,YAAY,QAAQ,MAAO,MAAK,YAAY,QAErD,GAAY,EAAI,EAChB,AAAI,SAAK,OAAO,OAAO,YAAnB,SAA8B,SAAS,WAAY,EAAY,KAAK,OAAO,OAAO,QAAU,KAAM,AAAQ,IAAQ,EAAI,OAAQ,KAAK,MAAM,EAAI,CAAC,EACzI,QAAK,OAAO,OAAO,YAAnB,QAA8B,SAAS,cAAc,GAAY,KAAK,OAAO,OAAO,QAAU,KAAM,AAAU,IAAQ,EAAI,OAAQ,KAAK,MAAM,EAAI,CAAC,GAC3J,KAAK,YAAY,OAAS,KAAK,IAAI,QAAW,MAAK,YAAY,QAAU,GAAK,KAAK,MAAM,EAAI,EAAI,CAAS,EAAI,KAAK,MAAM,EAAI,EAAI,CAAS,GAE5I,KAAK,QAAQ,aAAa,EAG1B,KAAK,MAAQ,eACT,KAAK,OAAO,OAAO,EAAC,EAAS,EAAS,EAAS,CAAS,EAAI,KAAM,SAAQ,IAAI,CAAC,EAAS,EAAS,EAAS,CAAS,CAAC,GAGxH,KAAK,MAAQ,iBACb,GAAI,GAA8B,CAAC,EACnC,AAAI,KAAK,OAAO,QAAQ,SACtB,GAAY,EAAI,EAChB,EAAa,CAAC,GAAG,AAAQ,GAAK,CAAuB,EAAG,GAAG,AAAQ,GAAK,CAAuB,EAAG,GAAG,AAAQ,GAAK,CAAuB,EAAG,GAAG,AAAQ,GAAK,CAAuB,CAAC,EACpL,AAAK,KAAK,OAAO,MACR,KAAK,YAAY,SAAS,MAAO,MAAK,YAAY,QADnC,KAAK,YAAY,QAAU,KAAK,IAAI,QAAW,MAAK,YAAY,SAAW,GAAK,KAAK,MAAM,EAAI,EAAI,CAAS,EAAI,KAAK,MAAM,EAAI,EAAI,CAAS,GAItK,KAAK,YAAY,MAAQ,KAAK,IAAI,QAAW,MAAK,YAAY,OAAS,GAAK,KAAK,MAAM,EAAI,EAAI,CAAS,EAAI,KAAK,MAAM,EAAI,EAAI,CAAS,EACxI,GAAM,GAAQ,YAAK,UAAL,cAAc,SAAd,cAAsB,QAAS,CAAC,EAC9C,KAAK,OAAS,CACZ,KAAM,EACN,KAAM,EACN,KAAM,EACN,QAAS,EACT,OAAQ,EACR,YAAa,KAAK,YAClB,OAAQ,KAAK,QAAQ,OACrB,UAAW,KAAK,IAAI,EACpB,MAAO,KACP,GAAI,UAAU,CAAE,MAAO,AAAQ,IAAK,EAAyB,EAAyB,EAAyB,EAAY,CAAK,CAAG,CACrI,EAGA,AAAG,UAAQ,EAAI,MAAM,EAGrB,KAAK,KAAK,QAAQ,EAClB,KAAK,MAAQ,OACb,EAAQ,KAAK,MAAM,CACrB,CAAC,CACH,CACF,EAvaE,eACA,eACA,eAuEA", "names": [] } diff --git a/dist/human.esm.d.ts b/dist/human.esm.d.ts index fed34cea..4f1e9723 100644 --- a/dist/human.esm.d.ts +++ b/dist/human.esm.d.ts @@ -849,6 +849,8 @@ export declare class GraphModel im private initializer; private resourceManager; private signature; + private structuredOutputKeys; + private readonly io; readonly modelVersion: string; readonly inputNodes: string[]; readonly outputNodes: string[]; @@ -857,6 +859,7 @@ export declare class GraphModel im readonly weights: NamedTensorsMap; readonly metadata: {}; readonly modelSignature: {}; + readonly modelStructuredOutputKeys: {}; /** * @param modelUrl url for the model, or an `io.IOHandler`. * @param weightManifestUrl url for the weight file generated by @@ -866,7 +869,7 @@ export declare class GraphModel im * @param onProgress Optional, progress callback function, fired periodically * before the load is completed. */ - constructor(modelUrl: ModelURL, loadOptions?: io.LoadOptions); + constructor(modelUrl: ModelURL, loadOptions?: io.LoadOptions, tfio?: typeof io); private findIOHandler; /** * Loads the model and weight files, construct the in memory weight map and @@ -953,13 +956,14 @@ export declare class GraphModel im * If we are provide a batched data of 100 images, the input tensor should be * in the shape of [100, 244, 244, 3]. * - * @param config Prediction configuration for specifying the batch size and - * output node names. Currently the batch size option is ignored for graph - * model. + * @param config Prediction configuration for specifying the batch size. + * Currently the batch size option is ignored for graph model. * - * @returns Inference result tensors. The output would be single `tf.Tensor` - * if model has single output node, otherwise Tensor[] or NamedTensorMap[] - * will be returned for model with multiple outputs. + * @returns Inference result tensors. If the model is converted and it + * originally had structured_outputs in tensorflow, then a NamedTensorMap + * will be returned matching the structured_outputs. If no structured_outputs + * are present, the output will be single `tf.Tensor` if the model has single + * output node, otherwise Tensor[]. * * @doc {heading: 'Models', subheading: 'Classes'} */ @@ -1456,8 +1460,15 @@ declare interface IOHandler { load?: LoadHandler; } +/** + * Interface for a synchronous model import/export handler. + * + * The `save` and `load` handlers are both optional, in order to allow handlers + * that support only saving or loading. + */ declare type IOHandlerSync = { - [K in keyof IOHandler]: Syncify; + save?: SaveHandlerSync; + load?: LoadHandlerSync; }; declare type IORouter = (url: string | string[], loadOptions?: LoadOptions) => IOHandler; @@ -1514,6 +1525,11 @@ declare function load(instance: Human): Promise; */ declare type LoadHandler = () => Promise; +/** + * Type definition for handlers of synchronous loading operations. + */ +declare type LoadHandlerSync = () => ModelArtifacts; + /** @innamespace io */ declare interface LoadOptions { /** @@ -2048,8 +2064,6 @@ export declare interface PersonResult { /** generic point as [x, y, z?] */ export declare type Point = [number, number, number?]; -declare type PromiseFunction = (...args: unknown[]) => Promise; - export declare type Race = 'white' | 'black' | 'asian' | 'indian' | 'other'; export declare enum Rank { @@ -2168,6 +2182,11 @@ declare interface SaveConfig { */ declare type SaveHandler = (modelArtifact: ModelArtifacts) => Promise; +/** + * Type definition for handlers of synchronous saving operations. + */ +declare type SaveHandlerSync = (modelArtifact: ModelArtifacts) => SaveResult; + /** * Result of a saving operation. */ @@ -2247,8 +2266,6 @@ declare interface SingleValueMap { string: string; } -declare type Syncify = T extends (...args: infer Args) => Promise ? (...args: Args) => R : never; - export declare namespace Tensor { } /** diff --git a/dist/human.esm.js b/dist/human.esm.js index 73d93c0b..a9251051 100644 --- a/dist/human.esm.js +++ b/dist/human.esm.js @@ -327,6 +327,7 @@ __export(tfjs_esm_exports, { LogicalAnd: () => LogicalAnd, LogicalNot: () => LogicalNot, LogicalOr: () => LogicalOr, + LogicalXor: () => LogicalXor, LowerBound: () => LowerBound, MathBackendWebGL: () => MathBackendWebGL, Max: () => Max, @@ -610,6 +611,7 @@ __export(tfjs_esm_exports, { rand: () => rand, randomGamma: () => randomGamma, randomNormal: () => randomNormal, + randomStandardNormal: () => randomStandardNormal, randomUniform: () => randomUniform, range: () => range, ready: () => ready, @@ -1575,646 +1577,6 @@ var require_util = __commonJS({ } }); var require_alea = __commonJS({ - "node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(exports, module) { - (function(global2, module2, define2) { - function Alea(seed) { - var me = this, mash = Mash(); - me.next = function() { - var t2 = 2091639 * me.s0 + me.c * 23283064365386963e-26; - me.s0 = me.s1; - me.s1 = me.s2; - return me.s2 = t2 - (me.c = t2 | 0); - }; - me.c = 1; - me.s0 = mash(" "); - me.s1 = mash(" "); - me.s2 = mash(" "); - me.s0 -= mash(seed); - if (me.s0 < 0) { - me.s0 += 1; - } - me.s1 -= mash(seed); - if (me.s1 < 0) { - me.s1 += 1; - } - me.s2 -= mash(seed); - if (me.s2 < 0) { - me.s2 += 1; - } - mash = null; - } - function copy2(f, t2) { - t2.c = f.c; - t2.s0 = f.s0; - t2.s1 = f.s1; - t2.s2 = f.s2; - return t2; - } - function impl(seed, opts) { - var xg = new Alea(seed), state = opts && opts.state, prng = xg.next; - prng.int32 = function() { - return xg.next() * 4294967296 | 0; - }; - prng.double = function() { - return prng() + (prng() * 2097152 | 0) * 11102230246251565e-32; - }; - prng.quick = prng; - if (state) { - if (typeof state == "object") - copy2(state, xg); - prng.state = function() { - return copy2(xg, {}); - }; - } - return prng; - } - function Mash() { - var n = 4022871197; - var mash = function(data) { - data = data.toString(); - for (var i2 = 0; i2 < data.length; i2++) { - n += data.charCodeAt(i2); - var h = 0.02519603282416938 * n; - n = h >>> 0; - h -= n; - h *= n; - n = h >>> 0; - h -= n; - n += h * 4294967296; - } - return (n >>> 0) * 23283064365386963e-26; - }; - return mash; - } - if (module2 && module2.exports) { - module2.exports = impl; - } else if (define2 && define2.amd) { - define2(function() { - return impl; - }); - } else { - this.alea = impl; - } - })(exports, typeof module == "object" && module, typeof define == "function" && define); - } -}); -var require_xor128 = __commonJS({ - "node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(exports, module) { - (function(global2, module2, define2) { - function XorGen(seed) { - var me = this, strseed = ""; - me.x = 0; - me.y = 0; - me.z = 0; - me.w = 0; - me.next = function() { - var t2 = me.x ^ me.x << 11; - me.x = me.y; - me.y = me.z; - me.z = me.w; - return me.w ^= me.w >>> 19 ^ t2 ^ t2 >>> 8; - }; - if (seed === (seed | 0)) { - me.x = seed; - } else { - strseed += seed; - } - for (var k = 0; k < strseed.length + 64; k++) { - me.x ^= strseed.charCodeAt(k) | 0; - me.next(); - } - } - function copy2(f, t2) { - t2.x = f.x; - t2.y = f.y; - t2.z = f.z; - t2.w = f.w; - return t2; - } - function impl(seed, opts) { - var xg = new XorGen(seed), state = opts && opts.state, prng = function() { - return (xg.next() >>> 0) / 4294967296; - }; - prng.double = function() { - do { - var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); - } while (result === 0); - return result; - }; - prng.int32 = xg.next; - prng.quick = prng; - if (state) { - if (typeof state == "object") - copy2(state, xg); - prng.state = function() { - return copy2(xg, {}); - }; - } - return prng; - } - if (module2 && module2.exports) { - module2.exports = impl; - } else if (define2 && define2.amd) { - define2(function() { - return impl; - }); - } else { - this.xor128 = impl; - } - })(exports, typeof module == "object" && module, typeof define == "function" && define); - } -}); -var require_xorwow = __commonJS({ - "node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(exports, module) { - (function(global2, module2, define2) { - function XorGen(seed) { - var me = this, strseed = ""; - me.next = function() { - var t2 = me.x ^ me.x >>> 2; - me.x = me.y; - me.y = me.z; - me.z = me.w; - me.w = me.v; - return (me.d = me.d + 362437 | 0) + (me.v = me.v ^ me.v << 4 ^ (t2 ^ t2 << 1)) | 0; - }; - me.x = 0; - me.y = 0; - me.z = 0; - me.w = 0; - me.v = 0; - if (seed === (seed | 0)) { - me.x = seed; - } else { - strseed += seed; - } - for (var k = 0; k < strseed.length + 64; k++) { - me.x ^= strseed.charCodeAt(k) | 0; - if (k == strseed.length) { - me.d = me.x << 10 ^ me.x >>> 4; - } - me.next(); - } - } - function copy2(f, t2) { - t2.x = f.x; - t2.y = f.y; - t2.z = f.z; - t2.w = f.w; - t2.v = f.v; - t2.d = f.d; - return t2; - } - function impl(seed, opts) { - var xg = new XorGen(seed), state = opts && opts.state, prng = function() { - return (xg.next() >>> 0) / 4294967296; - }; - prng.double = function() { - do { - var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); - } while (result === 0); - return result; - }; - prng.int32 = xg.next; - prng.quick = prng; - if (state) { - if (typeof state == "object") - copy2(state, xg); - prng.state = function() { - return copy2(xg, {}); - }; - } - return prng; - } - if (module2 && module2.exports) { - module2.exports = impl; - } else if (define2 && define2.amd) { - define2(function() { - return impl; - }); - } else { - this.xorwow = impl; - } - })(exports, typeof module == "object" && module, typeof define == "function" && define); - } -}); -var require_xorshift7 = __commonJS({ - "node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(exports, module) { - (function(global2, module2, define2) { - function XorGen(seed) { - var me = this; - me.next = function() { - var X = me.x, i2 = me.i, t2, v, w; - t2 = X[i2]; - t2 ^= t2 >>> 7; - v = t2 ^ t2 << 24; - t2 = X[i2 + 1 & 7]; - v ^= t2 ^ t2 >>> 10; - t2 = X[i2 + 3 & 7]; - v ^= t2 ^ t2 >>> 3; - t2 = X[i2 + 4 & 7]; - v ^= t2 ^ t2 << 7; - t2 = X[i2 + 7 & 7]; - t2 = t2 ^ t2 << 13; - v ^= t2 ^ t2 << 9; - X[i2] = v; - me.i = i2 + 1 & 7; - return v; - }; - function init22(me2, seed2) { - var j, w, X = []; - if (seed2 === (seed2 | 0)) { - w = X[0] = seed2; - } else { - seed2 = "" + seed2; - for (j = 0; j < seed2.length; ++j) { - X[j & 7] = X[j & 7] << 15 ^ seed2.charCodeAt(j) + X[j + 1 & 7] << 13; - } - } - while (X.length < 8) - X.push(0); - for (j = 0; j < 8 && X[j] === 0; ++j) - ; - if (j == 8) - w = X[7] = -1; - else - w = X[j]; - me2.x = X; - me2.i = 0; - for (j = 256; j > 0; --j) { - me2.next(); - } - } - init22(me, seed); - } - function copy2(f, t2) { - t2.x = f.x.slice(); - t2.i = f.i; - return t2; - } - function impl(seed, opts) { - if (seed == null) - seed = +new Date(); - var xg = new XorGen(seed), state = opts && opts.state, prng = function() { - return (xg.next() >>> 0) / 4294967296; - }; - prng.double = function() { - do { - var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); - } while (result === 0); - return result; - }; - prng.int32 = xg.next; - prng.quick = prng; - if (state) { - if (state.x) - copy2(state, xg); - prng.state = function() { - return copy2(xg, {}); - }; - } - return prng; - } - if (module2 && module2.exports) { - module2.exports = impl; - } else if (define2 && define2.amd) { - define2(function() { - return impl; - }); - } else { - this.xorshift7 = impl; - } - })(exports, typeof module == "object" && module, typeof define == "function" && define); - } -}); -var require_xor4096 = __commonJS({ - "node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(exports, module) { - (function(global2, module2, define2) { - function XorGen(seed) { - var me = this; - me.next = function() { - var w = me.w, X = me.X, i2 = me.i, t2, v; - me.w = w = w + 1640531527 | 0; - v = X[i2 + 34 & 127]; - t2 = X[i2 = i2 + 1 & 127]; - v ^= v << 13; - t2 ^= t2 << 17; - v ^= v >>> 15; - t2 ^= t2 >>> 12; - v = X[i2] = v ^ t2; - me.i = i2; - return v + (w ^ w >>> 16) | 0; - }; - function init22(me2, seed2) { - var t2, v, i2, j, w, X = [], limit = 128; - if (seed2 === (seed2 | 0)) { - v = seed2; - seed2 = null; - } else { - seed2 = seed2 + "\0"; - v = 0; - limit = Math.max(limit, seed2.length); - } - for (i2 = 0, j = -32; j < limit; ++j) { - if (seed2) - v ^= seed2.charCodeAt((j + 32) % seed2.length); - if (j === 0) - w = v; - v ^= v << 10; - v ^= v >>> 15; - v ^= v << 4; - v ^= v >>> 13; - if (j >= 0) { - w = w + 1640531527 | 0; - t2 = X[j & 127] ^= v + w; - i2 = 0 == t2 ? i2 + 1 : 0; - } - } - if (i2 >= 128) { - X[(seed2 && seed2.length || 0) & 127] = -1; - } - i2 = 127; - for (j = 4 * 128; j > 0; --j) { - v = X[i2 + 34 & 127]; - t2 = X[i2 = i2 + 1 & 127]; - v ^= v << 13; - t2 ^= t2 << 17; - v ^= v >>> 15; - t2 ^= t2 >>> 12; - X[i2] = v ^ t2; - } - me2.w = w; - me2.X = X; - me2.i = i2; - } - init22(me, seed); - } - function copy2(f, t2) { - t2.i = f.i; - t2.w = f.w; - t2.X = f.X.slice(); - return t2; - } - ; - function impl(seed, opts) { - if (seed == null) - seed = +new Date(); - var xg = new XorGen(seed), state = opts && opts.state, prng = function() { - return (xg.next() >>> 0) / 4294967296; - }; - prng.double = function() { - do { - var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); - } while (result === 0); - return result; - }; - prng.int32 = xg.next; - prng.quick = prng; - if (state) { - if (state.X) - copy2(state, xg); - prng.state = function() { - return copy2(xg, {}); - }; - } - return prng; - } - if (module2 && module2.exports) { - module2.exports = impl; - } else if (define2 && define2.amd) { - define2(function() { - return impl; - }); - } else { - this.xor4096 = impl; - } - })(exports, typeof module == "object" && module, typeof define == "function" && define); - } -}); -var require_tychei = __commonJS({ - "node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(exports, module) { - (function(global2, module2, define2) { - function XorGen(seed) { - var me = this, strseed = ""; - me.next = function() { - var b = me.b, c = me.c, d = me.d, a6 = me.a; - b = b << 25 ^ b >>> 7 ^ c; - c = c - d | 0; - d = d << 24 ^ d >>> 8 ^ a6; - a6 = a6 - b | 0; - me.b = b = b << 20 ^ b >>> 12 ^ c; - me.c = c = c - d | 0; - me.d = d << 16 ^ c >>> 16 ^ a6; - return me.a = a6 - b | 0; - }; - me.a = 0; - me.b = 0; - me.c = 2654435769 | 0; - me.d = 1367130551; - if (seed === Math.floor(seed)) { - me.a = seed / 4294967296 | 0; - me.b = seed | 0; - } else { - strseed += seed; - } - for (var k = 0; k < strseed.length + 20; k++) { - me.b ^= strseed.charCodeAt(k) | 0; - me.next(); - } - } - function copy2(f, t2) { - t2.a = f.a; - t2.b = f.b; - t2.c = f.c; - t2.d = f.d; - return t2; - } - ; - function impl(seed, opts) { - var xg = new XorGen(seed), state = opts && opts.state, prng = function() { - return (xg.next() >>> 0) / 4294967296; - }; - prng.double = function() { - do { - var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); - } while (result === 0); - return result; - }; - prng.int32 = xg.next; - prng.quick = prng; - if (state) { - if (typeof state == "object") - copy2(state, xg); - prng.state = function() { - return copy2(xg, {}); - }; - } - return prng; - } - if (module2 && module2.exports) { - module2.exports = impl; - } else if (define2 && define2.amd) { - define2(function() { - return impl; - }); - } else { - this.tychei = impl; - } - })(exports, typeof module == "object" && module, typeof define == "function" && define); - } -}); -var require_crypto = __commonJS({ - "(disabled):crypto"() { - } -}); -var require_seedrandom = __commonJS({ - "node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(exports, module) { - (function(pool3, math) { - var global2 = this, width = 256, chunks = 6, digits = 52, rngname = "random", startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask2 = width - 1, nodecrypto; - function seedrandom5(seed, options4, callback) { - var key = []; - options4 = options4 == true ? { entropy: true } : options4 || {}; - var shortseed = mixkey(flatten4(options4.entropy ? [seed, tostring(pool3)] : seed == null ? autoseed() : seed, 3), key); - var arc4 = new ARC4(key); - var prng = function() { - var n = arc4.g(chunks), d = startdenom, x = 0; - while (n < significance) { - n = (n + x) * width; - d *= width; - x = arc4.g(1); - } - while (n >= overflow) { - n /= 2; - d /= 2; - x >>>= 1; - } - return (n + x) / d; - }; - prng.int32 = function() { - return arc4.g(4) | 0; - }; - prng.quick = function() { - return arc4.g(4) / 4294967296; - }; - prng.double = prng; - mixkey(tostring(arc4.S), pool3); - return (options4.pass || callback || function(prng2, seed2, is_math_call, state) { - if (state) { - if (state.S) { - copy2(state, arc4); - } - prng2.state = function() { - return copy2(arc4, {}); - }; - } - if (is_math_call) { - math[rngname] = prng2; - return seed2; - } else - return prng2; - })(prng, shortseed, "global" in options4 ? options4.global : this == math, options4.state); - } - math["seed" + rngname] = seedrandom5; - function ARC4(key) { - var t2, keylen = key.length, me = this, i2 = 0, j = me.i = me.j = 0, s2 = me.S = []; - if (!keylen) { - key = [keylen++]; - } - while (i2 < width) { - s2[i2] = i2++; - } - for (i2 = 0; i2 < width; i2++) { - s2[i2] = s2[j = mask2 & j + key[i2 % keylen] + (t2 = s2[i2])]; - s2[j] = t2; - } - (me.g = function(count22) { - var t3, r2 = 0, i3 = me.i, j2 = me.j, s3 = me.S; - while (count22--) { - t3 = s3[i3 = mask2 & i3 + 1]; - r2 = r2 * width + s3[mask2 & (s3[i3] = s3[j2 = mask2 & j2 + t3]) + (s3[j2] = t3)]; - } - me.i = i3; - me.j = j2; - return r2; - })(width); - } - function copy2(f, t2) { - t2.i = f.i; - t2.j = f.j; - t2.S = f.S.slice(); - return t2; - } - ; - function flatten4(obj, depth) { - var result = [], typ = typeof obj, prop; - if (depth && typ == "object") { - for (prop in obj) { - try { - result.push(flatten4(obj[prop], depth - 1)); - } catch (e2) { - } - } - } - return result.length ? result : typ == "string" ? obj : obj + "\0"; - } - function mixkey(seed, key) { - var stringseed = seed + "", smear, j = 0; - while (j < stringseed.length) { - key[mask2 & j] = mask2 & (smear ^= key[mask2 & j] * 19) + stringseed.charCodeAt(j++); - } - return tostring(key); - } - function autoseed() { - try { - var out; - if (nodecrypto && (out = nodecrypto.randomBytes)) { - out = out(width); - } else { - out = new Uint8Array(width); - (global2.crypto || global2.msCrypto).getRandomValues(out); - } - return tostring(out); - } catch (e2) { - var browser = global2.navigator, plugins = browser && browser.plugins; - return [+new Date(), global2, plugins, global2.screen, tostring(pool3)]; - } - } - function tostring(a6) { - return String.fromCharCode.apply(0, a6); - } - mixkey(math.random(), pool3); - if (typeof module == "object" && module.exports) { - module.exports = seedrandom5; - try { - nodecrypto = require_crypto(); - } catch (ex) { - } - } else if (typeof define == "function" && define.amd) { - define(function() { - return seedrandom5; - }); - } - })([], Math); - } -}); -var require_seedrandom2 = __commonJS({ - "node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js"(exports, module) { - var alea5 = require_alea(); - var xor128 = require_xor128(); - var xorwow = require_xorwow(); - var xorshift7 = require_xorshift7(); - var xor4096 = require_xor4096(); - var tychei = require_tychei(); - var sr = require_seedrandom(); - sr.alea = alea5; - sr.xor128 = xor128; - sr.xorwow = xorwow; - sr.xorshift7 = xorshift7; - sr.xor4096 = xor4096; - sr.tychei = tychei; - module.exports = sr; - } -}); -var require_alea2 = __commonJS({ "node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(exports, module) { (function(global2, module2, define2) { function Alea(seed) { @@ -2269,20 +1631,20 @@ var require_alea2 = __commonJS({ return prng; } function Mash() { - var n = 4022871197; + var n2 = 4022871197; var mash = function(data) { data = String(data); for (var i2 = 0; i2 < data.length; i2++) { - n += data.charCodeAt(i2); - var h = 0.02519603282416938 * n; - n = h >>> 0; - h -= n; - h *= n; - n = h >>> 0; - h -= n; - n += h * 4294967296; + n2 += data.charCodeAt(i2); + var h = 0.02519603282416938 * n2; + n2 = h >>> 0; + h -= n2; + h *= n2; + n2 = h >>> 0; + h -= n2; + n2 += h * 4294967296; } - return (n >>> 0) * 23283064365386963e-26; + return (n2 >>> 0) * 23283064365386963e-26; }; return mash; } @@ -2298,7 +1660,7 @@ var require_alea2 = __commonJS({ })(exports, typeof module == "object" && module, typeof define == "function" && define); } }); -var require_xor1282 = __commonJS({ +var require_xor128 = __commonJS({ "node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(exports, module) { (function(global2, module2, define2) { function XorGen(seed) { @@ -2364,7 +1726,7 @@ var require_xor1282 = __commonJS({ })(exports, typeof module == "object" && module, typeof define == "function" && define); } }); -var require_xorwow2 = __commonJS({ +var require_xorwow = __commonJS({ "node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(exports, module) { (function(global2, module2, define2) { function XorGen(seed) { @@ -2437,7 +1799,7 @@ var require_xorwow2 = __commonJS({ })(exports, typeof module == "object" && module, typeof define == "function" && define); } }); -var require_xorshift72 = __commonJS({ +var require_xorshift7 = __commonJS({ "node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(exports, module) { (function(global2, module2, define2) { function XorGen(seed) { @@ -2526,7 +1888,7 @@ var require_xorshift72 = __commonJS({ })(exports, typeof module == "object" && module, typeof define == "function" && define); } }); -var require_xor40962 = __commonJS({ +var require_xor4096 = __commonJS({ "node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(exports, module) { (function(global2, module2, define2) { function XorGen(seed) { @@ -2630,21 +1992,21 @@ var require_xor40962 = __commonJS({ })(exports, typeof module == "object" && module, typeof define == "function" && define); } }); -var require_tychei2 = __commonJS({ +var require_tychei = __commonJS({ "node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(exports, module) { (function(global2, module2, define2) { function XorGen(seed) { var me = this, strseed = ""; me.next = function() { - var b = me.b, c = me.c, d = me.d, a6 = me.a; + var b = me.b, c = me.c, d = me.d, a = me.a; b = b << 25 ^ b >>> 7 ^ c; c = c - d | 0; - d = d << 24 ^ d >>> 8 ^ a6; - a6 = a6 - b | 0; + d = d << 24 ^ d >>> 8 ^ a; + a = a - b | 0; me.b = b = b << 20 ^ b >>> 12 ^ c; me.c = c = c - d | 0; - me.d = d << 16 ^ c >>> 16 ^ a6; - return me.a = a6 - b | 0; + me.d = d << 16 ^ c >>> 16 ^ a; + return me.a = a - b | 0; }; me.a = 0; me.b = 0; @@ -2702,7 +2064,11 @@ var require_tychei2 = __commonJS({ })(exports, typeof module == "object" && module, typeof define == "function" && define); } }); -var require_seedrandom3 = __commonJS({ +var require_crypto = __commonJS({ + "(disabled):crypto"() { + } +}); +var require_seedrandom = __commonJS({ "node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(exports, module) { (function(global2, pool3, math) { var width = 256, chunks = 6, digits = 52, rngname = "random", startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask2 = width - 1, nodecrypto; @@ -2712,18 +2078,18 @@ var require_seedrandom3 = __commonJS({ var shortseed = mixkey(flatten4(options4.entropy ? [seed, tostring(pool3)] : seed == null ? autoseed() : seed, 3), key); var arc4 = new ARC4(key); var prng = function() { - var n = arc4.g(chunks), d = startdenom, x = 0; - while (n < significance) { - n = (n + x) * width; + var n2 = arc4.g(chunks), d = startdenom, x = 0; + while (n2 < significance) { + n2 = (n2 + x) * width; d *= width; x = arc4.g(1); } - while (n >= overflow) { - n /= 2; + while (n2 >= overflow) { + n2 /= 2; d /= 2; x >>>= 1; } - return (n + x) / d; + return (n2 + x) / d; }; prng.int32 = function() { return arc4.g(4) | 0; @@ -2813,8 +2179,8 @@ var require_seedrandom3 = __commonJS({ return [+new Date(), global2, plugins, global2.screen, tostring(pool3)]; } } - function tostring(a6) { - return String.fromCharCode.apply(0, a6); + function tostring(a) { + return String.fromCharCode.apply(0, a); } mixkey(math.random(), pool3); if (typeof module == "object" && module.exports) { @@ -2833,15 +2199,15 @@ var require_seedrandom3 = __commonJS({ })(typeof self !== "undefined" ? self : exports, [], Math); } }); -var require_seedrandom4 = __commonJS({ +var require_seedrandom2 = __commonJS({ "node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(exports, module) { - var alea5 = require_alea2(); - var xor128 = require_xor1282(); - var xorwow = require_xorwow2(); - var xorshift7 = require_xorshift72(); - var xor4096 = require_xor40962(); - var tychei = require_tychei2(); - var sr = require_seedrandom3(); + var alea5 = require_alea(); + var xor128 = require_xor128(); + var xorwow = require_xorwow(); + var xorshift7 = require_xorshift7(); + var xor4096 = require_xor4096(); + var tychei = require_tychei(); + var sr = require_seedrandom(); sr.alea = alea5; sr.xor128 = xor128; sr.xorwow = xorwow; @@ -2852,7 +2218,7 @@ var require_seedrandom4 = __commonJS({ } }); var require_string_decoder = __commonJS({ - "(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js"() { + "(disabled):node_modules/.pnpm/string_decoder@1.3.0/node_modules/string_decoder/lib/string_decoder.js"() { } }); var require_fs = __commonJS({ @@ -2876,7 +2242,7 @@ var require_os = __commonJS({ } }); var require_tfjs_backend_wasm_threaded_simd = __commonJS({ - "node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.18.0_br26fteayl44zj43fz4bazb7oq/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(exports, module) { + "node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.19.0_hek32lflchivueqv5i4vgonghu/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(exports, module) { var WasmBackendModuleThreadedSimd2 = (() => { var _scriptDir = typeof document !== "undefined" && document.currentScript ? document.currentScript.src : void 0; if (typeof __filename !== "undefined") @@ -4263,8 +3629,8 @@ var require_tfjs_backend_wasm_threaded_simd = __commonJS({ function __webgl_enable_WEBGL_draw_buffers(ctx) { var ext = ctx.getExtension("WEBGL_draw_buffers"); if (ext) { - ctx["drawBuffers"] = function(n, bufs) { - ext["drawBuffersWEBGL"](n, bufs); + ctx["drawBuffers"] = function(n2, bufs) { + ext["drawBuffersWEBGL"](n2, bufs); }; return 1; } @@ -4351,9 +3717,9 @@ var require_tfjs_backend_wasm_threaded_simd = __commonJS({ } }; var __emscripten_webgl_power_preferences = ["default", "low-power", "high-performance"]; function _emscripten_webgl_do_create_context(target, attributes) { - var a6 = attributes >> 2; - var powerPreference = GROWABLE_HEAP_I32()[a6 + (24 >> 2)]; - var contextAttributes = { "alpha": !!GROWABLE_HEAP_I32()[a6 + (0 >> 2)], "depth": !!GROWABLE_HEAP_I32()[a6 + (4 >> 2)], "stencil": !!GROWABLE_HEAP_I32()[a6 + (8 >> 2)], "antialias": !!GROWABLE_HEAP_I32()[a6 + (12 >> 2)], "premultipliedAlpha": !!GROWABLE_HEAP_I32()[a6 + (16 >> 2)], "preserveDrawingBuffer": !!GROWABLE_HEAP_I32()[a6 + (20 >> 2)], "powerPreference": __emscripten_webgl_power_preferences[powerPreference], "failIfMajorPerformanceCaveat": !!GROWABLE_HEAP_I32()[a6 + (28 >> 2)], majorVersion: GROWABLE_HEAP_I32()[a6 + (32 >> 2)], minorVersion: GROWABLE_HEAP_I32()[a6 + (36 >> 2)], enableExtensionsByDefault: GROWABLE_HEAP_I32()[a6 + (40 >> 2)], explicitSwapControl: GROWABLE_HEAP_I32()[a6 + (44 >> 2)], proxyContextToMainThread: GROWABLE_HEAP_I32()[a6 + (48 >> 2)], renderViaOffscreenBackBuffer: GROWABLE_HEAP_I32()[a6 + (52 >> 2)] }; + var a = attributes >> 2; + var powerPreference = GROWABLE_HEAP_I32()[a + (24 >> 2)]; + var contextAttributes = { "alpha": !!GROWABLE_HEAP_I32()[a + (0 >> 2)], "depth": !!GROWABLE_HEAP_I32()[a + (4 >> 2)], "stencil": !!GROWABLE_HEAP_I32()[a + (8 >> 2)], "antialias": !!GROWABLE_HEAP_I32()[a + (12 >> 2)], "premultipliedAlpha": !!GROWABLE_HEAP_I32()[a + (16 >> 2)], "preserveDrawingBuffer": !!GROWABLE_HEAP_I32()[a + (20 >> 2)], "powerPreference": __emscripten_webgl_power_preferences[powerPreference], "failIfMajorPerformanceCaveat": !!GROWABLE_HEAP_I32()[a + (28 >> 2)], majorVersion: GROWABLE_HEAP_I32()[a + (32 >> 2)], minorVersion: GROWABLE_HEAP_I32()[a + (36 >> 2)], enableExtensionsByDefault: GROWABLE_HEAP_I32()[a + (40 >> 2)], explicitSwapControl: GROWABLE_HEAP_I32()[a + (44 >> 2)], proxyContextToMainThread: GROWABLE_HEAP_I32()[a + (48 >> 2)], renderViaOffscreenBackBuffer: GROWABLE_HEAP_I32()[a + (52 >> 2)] }; var canvas3 = findCanvasEventTarget(target); if (!canvas3) { return 0; @@ -4551,6 +3917,15 @@ var require_tfjs_backend_wasm_threaded_simd = __commonJS({ var _LogicalAnd = Module["_LogicalAnd"] = function() { return (_LogicalAnd = Module["_LogicalAnd"] = Module["asm"]["LogicalAnd"]).apply(null, arguments); }; + var _LogicalNot = Module["_LogicalNot"] = function() { + return (_LogicalNot = Module["_LogicalNot"] = Module["asm"]["LogicalNot"]).apply(null, arguments); + }; + var _LogicalOr = Module["_LogicalOr"] = function() { + return (_LogicalOr = Module["_LogicalOr"] = Module["asm"]["LogicalOr"]).apply(null, arguments); + }; + var _LogicalXor = Module["_LogicalXor"] = function() { + return (_LogicalXor = Module["_LogicalXor"] = Module["asm"]["LogicalXor"]).apply(null, arguments); + }; var _Max = Module["_Max"] = function() { return (_Max = Module["_Max"] = Module["asm"]["Max"]).apply(null, arguments); }; @@ -4617,6 +3992,9 @@ var require_tfjs_backend_wasm_threaded_simd = __commonJS({ var _ResizeBilinear = Module["_ResizeBilinear"] = function() { return (_ResizeBilinear = Module["_ResizeBilinear"] = Module["asm"]["ResizeBilinear"]).apply(null, arguments); }; + var _ResizeNearestNeighbor = Module["_ResizeNearestNeighbor"] = function() { + return (_ResizeNearestNeighbor = Module["_ResizeNearestNeighbor"] = Module["asm"]["ResizeNearestNeighbor"]).apply(null, arguments); + }; var _Reverse = Module["_Reverse"] = function() { return (_Reverse = Module["_Reverse"] = Module["asm"]["Reverse"]).apply(null, arguments); }; @@ -4764,7 +4142,7 @@ var require_tfjs_backend_wasm_threaded_simd = __commonJS({ var dynCall_jiji = Module["dynCall_jiji"] = function() { return (dynCall_jiji = Module["dynCall_jiji"] = Module["asm"]["dynCall_jiji"]).apply(null, arguments); }; - var __emscripten_allow_main_runtime_queued_calls = Module["__emscripten_allow_main_runtime_queued_calls"] = 21464; + var __emscripten_allow_main_runtime_queued_calls = Module["__emscripten_allow_main_runtime_queued_calls"] = 21672; Module["cwrap"] = cwrap; Module["keepRuntimeAlive"] = keepRuntimeAlive; Module["PThread"] = PThread; @@ -4898,8 +4276,14 @@ var require_tfjs_backend_wasm_threaded_simd = __commonJS({ exports["WasmBackendModuleThreadedSimd"] = WasmBackendModuleThreadedSimd2; } }); +var require_tfjs_backend_wasm_threaded_simd_worker = __commonJS({ + "node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.19.0_hek32lflchivueqv5i4vgonghu/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js"(exports, module) { + module.exports.wasmWorkerContents = `"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+" +");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`; + } +}); var require_tfjs_backend_wasm = __commonJS({ - "node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.18.0_br26fteayl44zj43fz4bazb7oq/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(exports, module) { + "node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.19.0_hek32lflchivueqv5i4vgonghu/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(exports, module) { var WasmBackendModule2 = (() => { var _scriptDir = typeof document !== "undefined" && document.currentScript ? document.currentScript.src : void 0; if (typeof __filename !== "undefined") @@ -5789,6 +5173,15 @@ var require_tfjs_backend_wasm = __commonJS({ var _LogicalAnd = Module["_LogicalAnd"] = function() { return (_LogicalAnd = Module["_LogicalAnd"] = Module["asm"]["LogicalAnd"]).apply(null, arguments); }; + var _LogicalNot = Module["_LogicalNot"] = function() { + return (_LogicalNot = Module["_LogicalNot"] = Module["asm"]["LogicalNot"]).apply(null, arguments); + }; + var _LogicalOr = Module["_LogicalOr"] = function() { + return (_LogicalOr = Module["_LogicalOr"] = Module["asm"]["LogicalOr"]).apply(null, arguments); + }; + var _LogicalXor = Module["_LogicalXor"] = function() { + return (_LogicalXor = Module["_LogicalXor"] = Module["asm"]["LogicalXor"]).apply(null, arguments); + }; var _Max = Module["_Max"] = function() { return (_Max = Module["_Max"] = Module["asm"]["Max"]).apply(null, arguments); }; @@ -5855,6 +5248,9 @@ var require_tfjs_backend_wasm = __commonJS({ var _ResizeBilinear = Module["_ResizeBilinear"] = function() { return (_ResizeBilinear = Module["_ResizeBilinear"] = Module["asm"]["ResizeBilinear"]).apply(null, arguments); }; + var _ResizeNearestNeighbor = Module["_ResizeNearestNeighbor"] = function() { + return (_ResizeNearestNeighbor = Module["_ResizeNearestNeighbor"] = Module["asm"]["ResizeNearestNeighbor"]).apply(null, arguments); + }; var _Reverse = Module["_Reverse"] = function() { return (_Reverse = Module["_Reverse"] = Module["asm"]["Reverse"]).apply(null, arguments); }; @@ -6186,14 +5582,14 @@ function sum(arr) { } return sum7; } -function randUniform(a6, b) { +function randUniform(a, b) { const r2 = Math.random(); - return b * r2 + (1 - r2) * a6; + return b * r2 + (1 - r2) * a; } -function distSquared(a6, b) { +function distSquared(a, b) { let result = 0; - for (let i2 = 0; i2 < a6.length; i2++) { - const diff = Number(a6[i2]) - Number(b[i2]); + for (let i2 = 0; i2 < a.length; i2++) { + const diff = Number(a[i2]) - Number(b[i2]); result += diff * diff; } return result; @@ -6206,8 +5602,8 @@ function assert(expr, msg) { function assertShapesMatch(shapeA, shapeB, errorMessagePrefix = "") { assert(arraysEqual(shapeA, shapeB), () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`); } -function assertNonNull(a6) { - assert(a6 != null, () => `The input to the tensor constructor must be a non-null value.`); +function assertNonNull(a) { + assert(a != null, () => `The input to the tensor constructor must be a non-null value.`); } function flatten(arr, result = [], skipTypedArray = false) { if (result == null) { @@ -6252,8 +5648,8 @@ function arraysEqual(n1, n2) { } return true; } -function isInt(a6) { - return a6 % 1 === 0; +function isInt(a) { + return a % 1 === 0; } function tanh(x) { if (Math.tanh != null) { @@ -6272,19 +5668,19 @@ function sizeToSquarishShape(size2) { const width = Math.ceil(Math.sqrt(size2)); return [width, Math.ceil(size2 / width)]; } -function createShuffledIndices(n) { - const shuffledIndices = new Uint32Array(n); - for (let i2 = 0; i2 < n; ++i2) { +function createShuffledIndices(n2) { + const shuffledIndices = new Uint32Array(n2); + for (let i2 = 0; i2 < n2; ++i2) { shuffledIndices[i2] = i2; } shuffle(shuffledIndices); return shuffledIndices; } -function rightPad(a6, size2) { - if (size2 <= a6.length) { - return a6; +function rightPad(a, size2) { + if (size2 <= a.length) { + return a; } - return a6 + " ".repeat(size2 - a6.length); + return a + " ".repeat(size2 - a.length); } function repeatedTry(checkFn, delayFn = (counter) => 0, maxCounter) { return new Promise((resolve, reject) => { @@ -6341,7 +5737,7 @@ function parseAxisParam(axis, shape) { axis = axis == null ? shape.map((s2, i2) => i2) : [].concat(axis); assert(axis.every((ax) => ax >= -rank && ax < rank), () => `All values in axis param must be in range [-${rank}, ${rank}) but got axis ${axis}`); assert(axis.every((ax) => isInt(ax)), () => `All values in axis param must be integers but got axis ${axis}`); - return axis.map((a6) => a6 < 0 ? rank + a6 : a6); + return axis.map((a) => a < 0 ? rank + a : a); } function squeezeShape(shape, axis) { const newShape = []; @@ -6423,8 +5819,8 @@ function hasEncodingLoss(oldType, newType) { } return true; } -function isTypedArray(a6) { - return a6 instanceof Float32Array || a6 instanceof Int32Array || a6 instanceof Uint8Array || a6 instanceof Uint8ClampedArray; +function isTypedArray(a) { + return a instanceof Float32Array || a instanceof Int32Array || a instanceof Uint8Array || a instanceof Uint8ClampedArray; } function bytesPerElement(dtype) { if (dtype === "float32" || dtype === "int32") { @@ -6494,35 +5890,35 @@ function computeStrides(shape) { } return strides2; } -function createNestedArray(offset, shape, a6, isComplex = false) { +function createNestedArray(offset, shape, a, isComplex = false) { const ret = new Array(); if (shape.length === 1) { const d = shape[0] * (isComplex ? 2 : 1); for (let i2 = 0; i2 < d; i2++) { - ret[i2] = a6[offset + i2]; + ret[i2] = a[offset + i2]; } } else { const d = shape[0]; const rest = shape.slice(1); const len = rest.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1); for (let i2 = 0; i2 < d; i2++) { - ret[i2] = createNestedArray(offset + i2 * len, rest, a6, isComplex); + ret[i2] = createNestedArray(offset + i2 * len, rest, a, isComplex); } } return ret; } -function toNestedArray(shape, a6, isComplex = false) { +function toNestedArray(shape, a, isComplex = false) { if (shape.length === 0) { - return a6[0]; + return a[0]; } const size2 = shape.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1); if (size2 === 0) { return []; } - if (size2 !== a6.length) { - throw new Error(`[${shape}] does not match the input size ${a6.length}${isComplex ? " for a complex tensor" : ""}.`); + if (size2 !== a.length) { + throw new Error(`[${shape}] does not match the input size ${a.length}${isComplex ? " for a complex tensor" : ""}.`); } - return createNestedArray(0, shape, a6, isComplex); + return createNestedArray(0, shape, a, isComplex); } function makeOnesTypedArray(size2, dtype) { const array2 = makeZerosTypedArray(size2, dtype); @@ -6830,6 +6226,7 @@ var Log1p = "Log1p"; var LogicalAnd = "LogicalAnd"; var LogicalNot = "LogicalNot"; var LogicalOr = "LogicalOr"; +var LogicalXor = "LogicalXor"; var LogSoftmax = "LogSoftmax"; var LowerBound = "LowerBound"; var LRN = "LRN"; @@ -7076,44 +6473,44 @@ function rotate64(val, shift) { return shift === 0 ? val : val.shru(shift).or(val.shl(64 - shift)); } function hashLen16(u, v, mul2 = hexToLong("9ddfea08eb382d69")) { - let a6 = u.xor(v).mul(mul2); - a6 = a6.xor(a6.shru(47)); - let b = v.xor(a6).mul(mul2); + let a = u.xor(v).mul(mul2); + a = a.xor(a.shru(47)); + let b = v.xor(a).mul(mul2); b = b.xor(b.shru(47)); b = b.mul(mul2); return b; } -function weakHashLen32WithSeeds(w, x, y, z, a6, b) { - a6 = a6.add(w); - b = rotate64(b.add(a6).add(z), 21); - const c = a6; - a6 = a6.add(x); - a6 = a6.add(y); - b = b.add(rotate64(a6, 44)); - return [a6.add(z), b.add(c)]; +function weakHashLen32WithSeeds(w, x, y, z, a, b) { + a = a.add(w); + b = rotate64(b.add(a).add(z), 21); + const c = a; + a = a.add(x); + a = a.add(y); + b = b.add(rotate64(a, 44)); + return [a.add(z), b.add(c)]; } -function weakHashLen32WithSeedsStr(s2, offset, a6, b) { - return weakHashLen32WithSeeds(fetch64(s2, offset), fetch64(s2, offset + 8), fetch64(s2, offset + 16), fetch64(s2, offset + 24), a6, b); +function weakHashLen32WithSeedsStr(s2, offset, a, b) { + return weakHashLen32WithSeeds(fetch64(s2, offset), fetch64(s2, offset + 8), fetch64(s2, offset + 16), fetch64(s2, offset + 24), a, b); } function hashLen0to16(s2, len = s2.length) { if (len >= 8) { const mul2 = k2.add(len * 2); - const a6 = fetch64(s2, 0).add(k2); + const a = fetch64(s2, 0).add(k2); const b = fetch64(s2, len - 8); - const c = rotate64(b, 37).mul(mul2).add(a6); - const d = rotate64(a6, 25).add(b).mul(mul2); + const c = rotate64(b, 37).mul(mul2).add(a); + const d = rotate64(a, 25).add(b).mul(mul2); return hashLen16(c, d, mul2); } if (len >= 4) { const mul2 = k2.add(len * 2); - const a6 = fetch32(s2, 0); - return hashLen16(a6.shl(3).add(len), fetch32(s2, len - 4), mul2); + const a = fetch32(s2, 0); + return hashLen16(a.shl(3).add(len), fetch32(s2, len - 4), mul2); } if (len > 0) { - const a6 = s2[0]; + const a = s2[0]; const b = s2[len >> 1]; const c = s2[len - 1]; - const y = a6 + (b << 8); + const y = a + (b << 8); const z = len + (c << 2); return shiftMix(k2.mul(y).xor(k0.mul(z))).mul(k2); } @@ -7121,25 +6518,25 @@ function hashLen0to16(s2, len = s2.length) { } function hashLen17to32(s2, len = s2.length) { const mul2 = k2.add(len * 2); - const a6 = fetch64(s2, 0).mul(k1); + const a = fetch64(s2, 0).mul(k1); const b = fetch64(s2, 8); const c = fetch64(s2, len - 8).mul(mul2); const d = fetch64(s2, len - 16).mul(k2); - return hashLen16(rotate64(a6.add(b), 43).add(rotate64(c, 30)).add(d), a6.add(rotate64(b.add(k2), 18)).add(c), mul2); + return hashLen16(rotate64(a.add(b), 43).add(rotate64(c, 30)).add(d), a.add(rotate64(b.add(k2), 18)).add(c), mul2); } function hashLen33to64(s2, len = s2.length) { const mul2 = k2.add(len * 2); - const a6 = fetch64(s2, 0).mul(k2); + const a = fetch64(s2, 0).mul(k2); const b = fetch64(s2, 8); const c = fetch64(s2, len - 8).mul(mul2); const d = fetch64(s2, len - 16).mul(k2); - const y = rotate64(a6.add(b), 43).add(rotate64(c, 30)).add(d); - const z = hashLen16(y, a6.add(rotate64(b.add(k2), 18)).add(c), mul2); + const y = rotate64(a.add(b), 43).add(rotate64(c, 30)).add(d); + const z = hashLen16(y, a.add(rotate64(b.add(k2), 18)).add(c), mul2); const e2 = fetch64(s2, 16).mul(mul2); const f = fetch64(s2, 24); const g = y.add(fetch64(s2, len - 32)).mul(mul2); const h = z.add(fetch64(s2, len - 24)).mul(mul2); - return hashLen16(rotate64(e2.add(f), 43).add(rotate64(g, 30)).add(h), e2.add(rotate64(f.add(a6), 18)).add(g), mul2); + return hashLen16(rotate64(e2.add(f), 43).add(rotate64(g, 30)).add(h), e2.add(rotate64(f.add(a), 18)).add(g), mul2); } function fingerPrint64(s2, len = s2.length) { const seed = Long.fromNumber(81, true); @@ -7193,30 +6590,30 @@ function createScalarValue(value, dtype) { } return toTypedArray([value], dtype); } -function noConversionNeeded(a6, dtype) { - return a6 instanceof Float32Array && dtype === "float32" || a6 instanceof Int32Array && dtype === "int32" || a6 instanceof Uint8Array && dtype === "bool"; +function noConversionNeeded(a, dtype) { + return a instanceof Float32Array && dtype === "float32" || a instanceof Int32Array && dtype === "int32" || a instanceof Uint8Array && dtype === "bool"; } -function toTypedArray(a6, dtype) { +function toTypedArray(a, dtype) { if (dtype === "string") { throw new Error("Cannot convert a string[] to a TypedArray"); } - if (Array.isArray(a6)) { - a6 = flatten(a6); + if (Array.isArray(a)) { + a = flatten(a); } if (env().getBool("DEBUG")) { - checkConversionForErrors(a6, dtype); + checkConversionForErrors(a, dtype); } - if (noConversionNeeded(a6, dtype)) { - return a6; + if (noConversionNeeded(a, dtype)) { + return a; } if (dtype == null || dtype === "float32" || dtype === "complex64") { - return new Float32Array(a6); + return new Float32Array(a); } else if (dtype === "int32") { - return new Int32Array(a6); + return new Int32Array(a); } else if (dtype === "bool") { - const bool = new Uint8Array(a6.length); + const bool = new Uint8Array(a.length); for (let i2 = 0; i2 < bool.length; ++i2) { - if (Math.round(a6[i2]) !== 0) { + if (Math.round(a[i2]) !== 0) { bool[i2] = 1; } } @@ -7438,13 +6835,13 @@ function tensorToString(vals, shape, dtype, verbose) { return lines2.join("\n"); } function computeMaxSizePerColumn(vals, shape, dtype, strides2) { - const n = sizeFromShape(shape); + const n2 = sizeFromShape(shape); const numCols = strides2[strides2.length - 1]; const padPerCol = new Array(numCols).fill(0); const rank = shape.length; const valuesOrTuples = dtype === "complex64" ? createComplexTuples(vals) : vals; if (rank > 1) { - for (let row = 0; row < n / numCols; row++) { + for (let row = 0; row < n2 / numCols; row++) { const offset = row * numCols; for (let j = 0; j < numCols; j++) { padPerCol[j] = Math.max(padPerCol[j], valToString(valuesOrTuples[offset + j], 0, dtype).length); @@ -7549,8 +6946,8 @@ var TensorBuffer = class { this.shape = shape.slice(); this.size = sizeFromShape(shape); if (values != null) { - const n = values.length; - assert(n === this.size, () => `Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`); + const n2 = values.length; + assert(n2 === this.size, () => `Length of values '${n2}' does not match the size inferred by the shape '${this.size}'.`); } if (dtype === "complex64") { throw new Error(`complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).`); @@ -7832,15 +7229,15 @@ function upcastType(typeA, typeB) { function sumOutType(type) { return upcastType(type, "int32"); } -function makeTypesMatch(a6, b) { - if (a6.dtype === b.dtype) { - return [a6, b]; +function makeTypesMatch(a, b) { + if (a.dtype === b.dtype) { + return [a, b]; } - const dtype = upcastType(a6.dtype, b.dtype); - return [a6.cast(dtype), b.cast(dtype)]; + const dtype = upcastType(a.dtype, b.dtype); + return [a.cast(dtype), b.cast(dtype)]; } -function assertTypesMatch(a6, b) { - assert(a6.dtype === b.dtype, () => `The dtypes of the first(${a6.dtype}) and second(${b.dtype}) input must match`); +function assertTypesMatch(a, b) { + assert(a.dtype === b.dtype, () => `The dtypes of the first(${a.dtype}) and second(${b.dtype}) input must match`); } function isTensorInList(tensor2, tensorList) { return tensorList.some((x) => x.id === tensor2.id); @@ -8073,8 +7470,8 @@ var Engine = class { if (Object.keys(this.registryFactory).length === 0) { throw new Error("No backend found in registry."); } - return Object.keys(this.registryFactory).sort((a6, b) => { - return this.registryFactory[b].priority - this.registryFactory[a6].priority; + return Object.keys(this.registryFactory).sort((a, b) => { + return this.registryFactory[b].priority - this.registryFactory[a].priority; }); } initializeBackendsAndReturnBest() { @@ -8339,32 +7736,32 @@ var Engine = class { this.incRef(v, this.backend); return v; } - trackTensor(a6, backend2) { + trackTensor(a, backend2) { this.state.numTensors++; - if (a6.dtype === "string") { + if (a.dtype === "string") { this.state.numStringTensors++; } let bytes = 0; - if (a6.dtype !== "complex64" && a6.dtype !== "string") { - bytes = a6.size * bytesPerElement(a6.dtype); + if (a.dtype !== "complex64" && a.dtype !== "string") { + bytes = a.size * bytesPerElement(a.dtype); } this.state.numBytes += bytes; - if (!this.state.tensorInfo.has(a6.dataId)) { + if (!this.state.tensorInfo.has(a.dataId)) { this.state.numDataBuffers++; - this.state.tensorInfo.set(a6.dataId, { + this.state.tensorInfo.set(a.dataId, { backend: backend2 || this.backend, - dtype: a6.dtype, - shape: a6.shape, + dtype: a.dtype, + shape: a.shape, bytes }); } - if (!(a6 instanceof Variable)) { - this.track(a6); + if (!(a instanceof Variable)) { + this.track(a); } } - incRef(a6, backend2) { - this.trackTensor(a6, backend2); - this.backend.incRef(a6.dataId); + incRef(a, backend2) { + this.trackTensor(a, backend2); + this.backend.incRef(a.dataId); } removeDataId(dataId, backend2) { if (this.state.tensorInfo.has(dataId) && this.state.tensorInfo.get(dataId).backend === backend2) { @@ -8372,22 +7769,22 @@ var Engine = class { this.state.numDataBuffers--; } } - disposeTensor(a6) { - if (!this.state.tensorInfo.has(a6.dataId)) { + disposeTensor(a) { + if (!this.state.tensorInfo.has(a.dataId)) { return; } - const info = this.state.tensorInfo.get(a6.dataId); + const info = this.state.tensorInfo.get(a.dataId); this.state.numTensors--; - if (a6.dtype === "string") { + if (a.dtype === "string") { this.state.numStringTensors--; this.state.numBytes -= info.bytes; } - if (a6.dtype !== "complex64" && a6.dtype !== "string") { - const bytes = a6.size * bytesPerElement(a6.dtype); + if (a.dtype !== "complex64" && a.dtype !== "string") { + const bytes = a.size * bytesPerElement(a.dtype); this.state.numBytes -= bytes; } - if (info.backend.disposeData(a6.dataId)) { - this.removeDataId(a6.dataId, info.backend); + if (info.backend.disposeData(a.dataId)) { + this.removeDataId(a.dataId, info.backend); } } disposeVariables() { @@ -8618,8 +8015,8 @@ function getOrMakeEngine() { return ns._tfengine; } var ENGINE = getOrMakeEngine(); -function add(a6, b) { - const inputs = { a: a6, b }; +function add(a, b) { + const inputs = { a, b }; return ENGINE.runKernel(Add, inputs); } var device_util_exports = {}; @@ -8646,12 +8043,12 @@ function isMobile(nav) { if (nav.product === "ReactNative") { return true; } - const a6 = nav.userAgent || nav.vendor || (typeof window !== "undefined" ? window.opera : ""); - if (!a6) { + const a = nav.userAgent || nav.vendor || (typeof window !== "undefined" ? window.opera : ""); + if (!a) { const navAny = nav; return navAny.userAgentData && navAny.userAgentData.mobile; } - return /(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(a6) || /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a6.substr(0, 4)); + return /(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(a) || /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0, 4)); } return false; } @@ -9583,14 +8980,14 @@ var ModelStoreManagerRegistry = class { registry.managers[scheme] = manager; } static getManager(scheme) { - const manager = this.getInstance().managers[scheme]; + const manager = ModelStoreManagerRegistry.getInstance().managers[scheme]; if (manager == null) { throw new Error(`Cannot find model manager for scheme '${scheme}'`); } return manager; } static getSchemes() { - return Object.keys(this.getInstance().managers); + return Object.keys(ModelStoreManagerRegistry.getInstance().managers); } }; function parseURL(url) { @@ -10255,8 +9652,8 @@ var math_exports = {}; __export2(math_exports, { confusionMatrix: () => confusionMatrix }); -function matMul_(a6, b, transposeA = false, transposeB = false) { - let $a = convertToTensor(a6, "a", "matMul"); +function matMul_(a, b, transposeA = false, transposeB = false) { + let $a = convertToTensor(a, "a", "matMul"); let $b = convertToTensor(b, "b", "matMul"); [$a, $b] = makeTypesMatch($a, $b); const inputs = { a: $a, b: $b }; @@ -10415,9 +9812,9 @@ function getBroadcastDims(inShape, outShape) { const dims = []; for (let i2 = 0; i2 < inRank; i2++) { const dim = inRank - 1 - i2; - const a6 = inShape[dim] || 1; + const a = inShape[dim] || 1; const b = outShape[outShape.length - 1 - i2] || 1; - if (b > 1 && a6 === 1) { + if (b > 1 && a === 1) { dims.unshift(dim); } } @@ -10439,23 +9836,23 @@ function assertAndGetBroadcastShape(shapeA, shapeB) { const result = []; const l3 = Math.max(shapeA.length, shapeB.length); for (let i2 = 0; i2 < l3; i2++) { - let a6 = shapeA[shapeA.length - i2 - 1]; - if (a6 == null) { - a6 = 1; + let a = shapeA[shapeA.length - i2 - 1]; + if (a == null) { + a = 1; } let b = shapeB[shapeB.length - i2 - 1]; if (b == null) { b = 1; } - if (a6 === 1) { + if (a === 1) { result.unshift(b); } else if (b === 1) { - result.unshift(a6); - } else if (a6 !== b) { + result.unshift(a); + } else if (a !== b) { const errMsg = `Operands could not be broadcast together with shapes ${shapeA} and ${shapeB}.`; throw Error(errMsg); } else { - result.unshift(a6); + result.unshift(a); } } return result; @@ -10539,7 +9936,7 @@ function fromPixels_(pixels, numChannels = 3) { throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported."); } } else { - fromPixels2DContext = document.createElement("canvas").getContext("2d"); + fromPixels2DContext = document.createElement("canvas").getContext("2d", { willReadFrequently: true }); } } fromPixels2DContext.canvas.width = width; @@ -11257,7 +10654,7 @@ function expectArraysClose(actual, expected, epsilon3) { if (epsilon3 == null) { epsilon3 = testEpsilon(); } - return expectArraysPredicate(actual, expected, (a6, b) => areClose(a6, b, epsilon3)); + return expectArraysPredicate(actual, expected, (a, b) => areClose(a, b, epsilon3)); } function testEpsilon() { return ENGINE.backend.floatPrecision() === 32 ? TEST_EPSILON_FLOAT32 : TEST_EPSILON_FLOAT16; @@ -11292,10 +10689,10 @@ Actual: ${actualFlat}. Expected: ${expectedFlat}.`); } for (let i2 = 0; i2 < expectedFlat.length; ++i2) { - const a6 = actualFlat[i2]; + const a = actualFlat[i2]; const e2 = expectedFlat[i2]; - if (!predicate(a6, e2)) { - throw new Error(`Arrays differ: actual[${i2}] = ${a6}, expected[${i2}] = ${e2}. + if (!predicate(a, e2)) { + throw new Error(`Arrays differ: actual[${i2}] = ${a}, expected[${i2}] = ${e2}. Actual: ${actualFlat}. Expected: ${expectedFlat}.`); } @@ -11307,23 +10704,23 @@ function expectPromiseToFail(fn, done) { function expectArraysEqual(actual, expected) { const exp5 = typeof expected === "string" || typeof expected === "number" || typeof expected === "boolean" ? [expected] : expected; if (isString(actual) || isString(actual[0]) || isString(expected) || isString(expected[0])) { - return expectArraysPredicate(actual, exp5, (a6, b) => a6 == b); + return expectArraysPredicate(actual, exp5, (a, b) => a == b); } - return expectArraysPredicate(actual, expected, (a6, b) => areClose(a6, b, 0)); + return expectArraysPredicate(actual, expected, (a, b) => areClose(a, b, 0)); } -function expectNumbersClose(a6, e2, epsilon3) { +function expectNumbersClose(a, e2, epsilon3) { if (epsilon3 == null) { epsilon3 = testEpsilon(); } - if (!areClose(a6, e2, epsilon3)) { - throw new Error(`Numbers differ: actual === ${a6}, expected === ${e2}`); + if (!areClose(a, e2, epsilon3)) { + throw new Error(`Numbers differ: actual === ${a}, expected === ${e2}`); } } -function areClose(a6, e2, epsilon3) { - if (!isFinite(a6) && !isFinite(e2)) { +function areClose(a, e2, epsilon3) { + if (!isFinite(a) && !isFinite(e2)) { return true; } - if (isNaN(a6) || isNaN(e2) || Math.abs(a6 - e2) > epsilon3) { + if (isNaN(a) || isNaN(e2) || Math.abs(a - e2) > epsilon3) { return false; } return true; @@ -11347,36 +10744,36 @@ function expectArrayBuffersEqual(actual, expected) { } } } -function encodeStrings(a6) { - for (let i2 = 0; i2 < a6.length; i2++) { - const val = a6[i2]; +function encodeStrings(a) { + for (let i2 = 0; i2 < a.length; i2++) { + const val = a[i2]; if (Array.isArray(val)) { encodeStrings(val); } else { - a6[i2] = encodeString(val); + a[i2] = encodeString(val); } } - return a6; + return a; } -var version = "3.18.0"; -function add_(a6, b) { - let $a = convertToTensor(a6, "a", "add"); +var version = "3.19.0"; +function add_(a, b) { + let $a = convertToTensor(a, "a", "add"); let $b = convertToTensor(b, "b", "add"); [$a, $b] = makeTypesMatch($a, $b); const inputs = { a: $a, b: $b }; return ENGINE.runKernel(Add, inputs); } var add2 = op({ add_ }); -function floorDiv_(a6, b) { - let $a = convertToTensor(a6, "a", "floorDiv"); +function floorDiv_(a, b) { + let $a = convertToTensor(a, "a", "floorDiv"); let $b = convertToTensor(b, "b", "floorDiv"); [$a, $b] = makeTypesMatch($a, $b); const inputs = { a: $a, b: $b }; return ENGINE.runKernel(FloorDiv, inputs); } var floorDiv = op({ floorDiv_ }); -function div_(a6, b) { - let $a = convertToTensor(a6, "a", "div"); +function div_(a, b) { + let $a = convertToTensor(a, "a", "div"); let $b = convertToTensor(b, "b", "div"); [$a, $b] = makeTypesMatch($a, $b); if ($a.dtype === "int32" && $b.dtype === "int32") { @@ -11387,8 +10784,8 @@ function div_(a6, b) { return ENGINE.runKernel(RealDiv, inputs, attrs); } var div = op({ div_ }); -function mul_(a6, b) { - let $a = convertToTensor(a6, "a", "mul"); +function mul_(a, b) { + let $a = convertToTensor(a, "a", "mul"); let $b = convertToTensor(b, "b", "mul"); [$a, $b] = makeTypesMatch($a, $b); const inputs = { a: $a, b: $b }; @@ -11483,8 +10880,8 @@ function atan_(x) { return ENGINE.runKernel(Atan, inputs); } var atan = op({ atan_ }); -function atan2_(a6, b) { - let $a = convertToTensor(a6, "a", "atan2"); +function atan2_(a, b) { + let $a = convertToTensor(a, "a", "atan2"); let $b = convertToTensor(b, "b", "atan2"); [$a, $b] = makeTypesMatch($a, $b); const inputs = { a: $a, b: $b }; @@ -11924,7 +11321,7 @@ function basicLSTMCell_(forgetBias, lstmKernel, lstmBias, data, c, h) { var basicLSTMCell = op({ basicLSTMCell_ }); function batchToSpaceND_(x, blockShape, crops) { const $x = convertToTensor(x, "x", "batchToSpaceND"); - const prod6 = blockShape.reduce((a6, b) => a6 * b); + const prod6 = blockShape.reduce((a, b) => a * b); assert($x.rank >= 1 + blockShape.length, () => `input rank is ${$x.rank} but should be > than blockShape.length ${blockShape.length}`); assert(crops.length === blockShape.length, () => `crops.length is ${crops.length} but should be equal to blockShape.length ${blockShape.length}`); assert($x.shape[0] % prod6 === 0, () => `input tensor batch is ${$x.shape[0]} but is not divisible by the product of the elements of blockShape ${blockShape.join(" * ")} === ${prod6}`); @@ -12098,7 +11495,7 @@ function broadcastTo_(x, shape) { throw new Error(`broadcastTo(): [${xShape}] cannot be broadcast to [${shape}].`); } } - const axes = reps.map((n, i2) => n > 1 ? i2 : -1).filter((i2) => i2 >= 0); + const axes = reps.map((n2, i2) => n2 > 1 ? i2 : -1).filter((i2) => i2 >= 0); if (axes.length === 0) { return clone(input2); } @@ -12343,7 +11740,8 @@ function depthwiseConv2d_(x, filter, strides2, pad3, dataFormat = "NHWC", dilati } assert(x4D.rank === 4, () => `Error in depthwiseConv2d: input must be rank 4, but got rank ${x4D.rank}.`); assert($filter.rank === 4, () => `Error in depthwiseConv2d: filter must be rank 4, but got rank ${$filter.rank}.`); - assert(x4D.shape[3] === $filter.shape[2], () => `Error in depthwiseConv2d: number of input channels (${x4D.shape[3]}) must match the inChannels dimension in filter ${$filter.shape[2]}.`); + const inChannels = dataFormat === "NHWC" ? x4D.shape[3] : x4D.shape[1]; + assert(inChannels === $filter.shape[2], () => `Error in depthwiseConv2d: number of input channels (${inChannels}) must match the inChannels dimension in filter ${$filter.shape[2]}.`); checkPadOnDimRoundingMode("depthwiseConv2d", pad3, dimRoundingMode); const inputs = { x: x4D, filter: $filter }; const attrs = { strides: strides2, pad: pad3, dataFormat, dilations, dimRoundingMode }; @@ -12381,8 +11779,8 @@ function dilation2d_(x, filter, strides2, pad3, dilations = [1, 1], dataFormat = return res; } var dilation2d = op({ dilation2d_ }); -function equal_(a6, b) { - let $a = convertToTensor(a6, "a", "equal", "string_or_numeric"); +function equal_(a, b) { + let $a = convertToTensor(a, "a", "equal", "string_or_numeric"); let $b = convertToTensor(b, "b", "equal", "string_or_numeric"); [$a, $b] = makeTypesMatch($a, $b); assertAndGetBroadcastShape($a.shape, $b.shape); @@ -12390,8 +11788,8 @@ function equal_(a6, b) { return ENGINE.runKernel(Equal, inputs); } var equal = op({ equal_ }); -function where_(condition, a6, b) { - const $a = convertToTensor(a6, "a", "where"); +function where_(condition, a, b) { + const $a = convertToTensor(a, "a", "where"); const $b = convertToTensor(b, "b", "where"); const $condition = convertToTensor(condition, "condition", "where", "bool"); const broadcastShape = assertAndGetBroadcastShape(assertAndGetBroadcastShape($condition.shape, $a.shape), $b.shape); @@ -12412,8 +11810,8 @@ function zerosLike_(x) { return ENGINE.runKernel(ZerosLike, inputs); } var zerosLike = op({ zerosLike_ }); -function divNoNan_(a6, b) { - let $a = convertToTensor(a6, "a", "div"); +function divNoNan_(a, b) { + let $a = convertToTensor(a, "a", "div"); let $b = convertToTensor(b, "b", "div"); [$a, $b] = makeTypesMatch($a, $b); const divResult = div($a, $b); @@ -12526,7 +11924,7 @@ function getAxesPermutation(axes, rank) { return result; } function getUndoAxesPermutation(axes) { - return axes.map((axis, i2) => [i2, axis]).sort((a6, b) => a6[1] - b[1]).map((x) => x[0]); + return axes.map((axis, i2) => [i2, axis]).sort((a, b) => a[1] - b[1]).map((x) => x[0]); } function getInnerMostAxes(numAxes, rank) { const res = []; @@ -12677,8 +12075,8 @@ function eye_(numRows, numColumns, batchShape, dtype = "float32") { numColumns = numRows; } const buff = buffer([numRows, numColumns], dtype); - const n = numRows <= numColumns ? numRows : numColumns; - for (let i2 = 0; i2 < n; ++i2) { + const n2 = numRows <= numColumns ? numRows : numColumns; + for (let i2 = 0; i2 < n2; ++i2) { buff.set(1, i2, i2); } const out = reshape(buff.toTensor(), [numRows, numColumns]); @@ -12721,8 +12119,8 @@ function gather_(x, indices, axis = 0, batchDims = 0) { return ENGINE.runKernel(GatherV2, inputs, attrs); } var gather = op({ gather_ }); -function greater_(a6, b) { - let $a = convertToTensor(a6, "a", "greater", "string_or_numeric"); +function greater_(a, b) { + let $a = convertToTensor(a, "a", "greater", "string_or_numeric"); let $b = convertToTensor(b, "b", "greater", "string_or_numeric"); [$a, $b] = makeTypesMatch($a, $b); assertAndGetBroadcastShape($a.shape, $b.shape); @@ -12730,8 +12128,8 @@ function greater_(a6, b) { return ENGINE.runKernel(Greater, inputs); } var greater = op({ greater_ }); -function greaterEqual_(a6, b) { - let $a = convertToTensor(a6, "a", "greaterEqual", "string_or_numeric"); +function greaterEqual_(a, b) { + let $a = convertToTensor(a, "a", "greaterEqual", "string_or_numeric"); let $b = convertToTensor(b, "b", "greaterEqual", "string_or_numeric"); [$a, $b] = makeTypesMatch($a, $b); assertAndGetBroadcastShape($a.shape, $b.shape); @@ -12764,8 +12162,8 @@ function leakyRelu_(x, alpha2 = 0.2) { return ENGINE.runKernel(LeakyRelu, inputs, attrs); } var leakyRelu = op({ leakyRelu_ }); -function less_(a6, b) { - let $a = convertToTensor(a6, "a", "less", "string_or_numeric"); +function less_(a, b) { + let $a = convertToTensor(a, "a", "less", "string_or_numeric"); let $b = convertToTensor(b, "b", "less", "string_or_numeric"); [$a, $b] = makeTypesMatch($a, $b); assertAndGetBroadcastShape($a.shape, $b.shape); @@ -12773,8 +12171,8 @@ function less_(a6, b) { return ENGINE.runKernel(Less, inputs); } var less = op({ less_ }); -function lessEqual_(a6, b) { - let $a = convertToTensor(a6, "a", "lessEqual", "string_or_numeric"); +function lessEqual_(a, b) { + let $a = convertToTensor(a, "a", "lessEqual", "string_or_numeric"); let $b = convertToTensor(b, "b", "lessEqual", "string_or_numeric"); [$a, $b] = makeTypesMatch($a, $b); assertAndGetBroadcastShape($a.shape, $b.shape); @@ -12934,8 +12332,8 @@ function logSigmoid_(x) { return customOp($x); } var logSigmoid = op({ logSigmoid_ }); -function sub_(a6, b) { - let $a = convertToTensor(a6, "a", "sub"); +function sub_(a, b) { + let $a = convertToTensor(a, "a", "sub"); let $b = convertToTensor(b, "b", "sub"); [$a, $b] = makeTypesMatch($a, $b); const inputs = { a: $a, b: $b }; @@ -12971,8 +12369,8 @@ function logSumExp_(x, axis = null, keepDims = false) { const $x = convertToTensor(x, "x", "logSumExp"); const axes = parseAxisParam(axis, $x.shape); const xMax = max($x, axes, true); - const a6 = sub($x, xMax); - const b = exp(a6); + const a = sub($x, xMax); + const b = exp(a); const c = sum2(b, axes); const d = log22(c); const res = add2(reshape(xMax, d.shape), d); @@ -12983,8 +12381,8 @@ function logSumExp_(x, axis = null, keepDims = false) { return res; } var logSumExp = op({ logSumExp_ }); -function logicalAnd_(a6, b) { - const $a = convertToTensor(a6, "a", "logicalAnd", "bool"); +function logicalAnd_(a, b) { + const $a = convertToTensor(a, "a", "logicalAnd", "bool"); const $b = convertToTensor(b, "b", "logicalAnd", "bool"); assertAndGetBroadcastShape($a.shape, $b.shape); const inputs = { a: $a, b: $b }; @@ -12997,19 +12395,19 @@ function logicalNot_(x) { return ENGINE.runKernel(LogicalNot, inputs); } var logicalNot = op({ logicalNot_ }); -function logicalOr_(a6, b) { - const $a = convertToTensor(a6, "a", "logicalOr", "bool"); +function logicalOr_(a, b) { + const $a = convertToTensor(a, "a", "logicalOr", "bool"); const $b = convertToTensor(b, "b", "logicalOr", "bool"); assertAndGetBroadcastShape($a.shape, $b.shape); const inputs = { a: $a, b: $b }; return ENGINE.runKernel(LogicalOr, inputs); } var logicalOr = op({ logicalOr_ }); -function logicalXor_(a6, b) { - const $a = convertToTensor(a6, "a", "logicalXor", "bool"); +function logicalXor_(a, b) { + const $a = convertToTensor(a, "a", "logicalXor", "bool"); const $b = convertToTensor(b, "b", "logicalXor", "bool"); assertAndGetBroadcastShape($a.shape, $b.shape); - return logicalAnd(logicalOr(a6, b), logicalNot(logicalAnd(a6, b))); + return logicalAnd(logicalOr(a, b), logicalNot(logicalAnd(a, b))); } var logicalXor = op({ logicalXor_ }); var INT32_MAX = 2147483648; @@ -13092,8 +12490,8 @@ function maxPoolWithArgmax_(x, filterSize, strides2, pad3, includeBatchInIndex = return { result: result[0], indexes: result[1] }; } var maxPoolWithArgmax = op({ maxPoolWithArgmax_ }); -function maximum_(a6, b) { - let $a = convertToTensor(a6, "a", "maximum"); +function maximum_(a, b) { + let $a = convertToTensor(a, "a", "maximum"); let $b = convertToTensor(b, "b", "maximum"); [$a, $b] = makeTypesMatch($a, $b); if ($a.dtype === "bool") { @@ -13159,8 +12557,8 @@ function meshgrid(x, y, { indexing = "xy" } = {}) { matMul(ones2([w, 1], $y.dtype), $y) ]; } -function minimum_(a6, b) { - let $a = convertToTensor(a6, "a", "minimum"); +function minimum_(a, b) { + let $a = convertToTensor(a, "a", "minimum"); let $b = convertToTensor(b, "b", "minimum"); [$a, $b] = makeTypesMatch($a, $b); if ($a.dtype === "bool") { @@ -13189,8 +12587,8 @@ function mirrorPad_(x, paddings, mode) { return ENGINE.runKernel(MirrorPad, inputs, attrs); } var mirrorPad = op({ mirrorPad_ }); -function mod_(a6, b) { - let $a = convertToTensor(a6, "a", "mod"); +function mod_(a, b) { + let $a = convertToTensor(a, "a", "mod"); let $b = convertToTensor(b, "b", "mod"); [$a, $b] = makeTypesMatch($a, $b); const inputs = { a: $a, b: $b }; @@ -13249,8 +12647,8 @@ function multinomial_(logits, numSamples, seed, normalized = false) { return origRank === 1 ? reshape(res, [res.size]) : res; } var multinomial = op({ multinomial_ }); -function notEqual_(a6, b) { - let $a = convertToTensor(a6, "a", "notEqual", "string_or_numeric"); +function notEqual_(a, b) { + let $a = convertToTensor(a, "a", "notEqual", "string_or_numeric"); let $b = convertToTensor(b, "b", "notEqual", "string_or_numeric"); [$a, $b] = makeTypesMatch($a, $b); assertAndGetBroadcastShape($a.shape, $b.shape); @@ -13307,11 +12705,11 @@ function spaceToBatchND_(x, blockShape, paddings) { const $x = convertToTensor(x, "x", "spaceToBatchND"); assert($x.rank >= 1 + blockShape.length, () => `input rank ${$x.rank} should be > than [blockShape] ${blockShape.length}`); assert(paddings.length === blockShape.length, () => `paddings.shape[0] ${paddings.length} must be equal to [blockShape] ${blockShape.length}`); - assert($x.shape.reduce((a6, b, i2) => { + assert($x.shape.reduce((a, b, i2) => { if (i2 > 0 && i2 <= blockShape.length) { - return a6 && (b + paddings[i2 - 1][0] + paddings[i2 - 1][1]) % blockShape[i2 - 1] === 0; + return a && (b + paddings[i2 - 1][0] + paddings[i2 - 1][1]) % blockShape[i2 - 1] === 0; } - return a6; + return a; }, true), () => `input spatial dimensions ${$x.shape.slice(1)} with paddings ${paddings.toString()} must be divisible by blockShapes ${blockShape.toString()}`); const inputs = { x: $x }; const attrs = { blockShape, paddings }; @@ -13566,6 +12964,13 @@ function randomNormal_(shape, mean5 = 0, stdDev = 1, dtype, seed) { return res.toTensor(); } var randomNormal = op({ randomNormal_ }); +function randomStandardNormal_(shape, dtype, seed) { + if (dtype != null && dtype === "bool") { + throw new Error(`Unsupported data type ${dtype}`); + } + return randomNormal(shape, 0, 1, dtype, seed); +} +var randomStandardNormal = op({ randomStandardNormal_ }); function randomUniform_(shape, minval = 0, maxval = 1, dtype = "float32", seed) { const res = buffer(shape, dtype); const random = new UniformRandom(minval, maxval, null, seed); @@ -13840,8 +13245,8 @@ function rfft_(input2, fftLength) { return reshape(complex(realComplexConjugate[0], imagComplexConjugate[0]), outputShape); } var rfft = op({ rfft_ }); -function squaredDifference_(a6, b) { - let $a = convertToTensor(a6, "a", "squaredDifference"); +function squaredDifference_(a, b) { + let $a = convertToTensor(a, "a", "squaredDifference"); let $b = convertToTensor(b, "b", "squaredDifference"); [$a, $b] = makeTypesMatch($a, $b); assertAndGetBroadcastShape($a.shape, $b.shape); @@ -13851,7 +13256,7 @@ function squaredDifference_(a6, b) { } var squaredDifference = op({ squaredDifference_ }); function squeeze_(x, axis) { - const $x = convertToTensor(x, "x", "squeeze"); + const $x = convertToTensor(x, "x", "squeeze", "string_or_numeric"); return reshape($x, squeezeShape($x.shape, axis).newShape); } var squeeze = op({ squeeze_ }); @@ -14183,12 +13588,12 @@ var dropout = op({ dropout_ }); function enclosingPowerOfTwo(value) { return Math.floor(Math.pow(2, Math.ceil(Math.log(value) / Math.log(2)))); } -function cosineWindow(windowLength, a6, b) { +function cosineWindow(windowLength, a, b) { const even = 1 - windowLength % 2; const newValues = new Float32Array(windowLength); for (let i2 = 0; i2 < windowLength; ++i2) { const cosArg = 2 * Math.PI * i2 / (windowLength + even - 1); - newValues[i2] = a6 - b * Math.cos(cosArg); + newValues[i2] = a - b * Math.cos(cosArg); } return tensor1d(newValues, "float32"); } @@ -14211,7 +13616,7 @@ async function inTopKAsync_(predictions, targets, k = 1) { for (let i2 = 0; i2 < vals.length; i2++) { valAndInd.push({ value: vals[i2], index: i2 }); } - valAndInd.sort((a6, b2) => b2.value - a6.value); + valAndInd.sort((a, b2) => b2.value - a.value); precision3[b] = 0; for (let i2 = 0; i2 < k; i2++) { if (valAndInd[i2].index === targetsVals[b]) { @@ -14515,15 +13920,15 @@ function fusedDepthwiseConv2d_({ x, filter, strides: strides2, pad: pad3, dataFo } } var depthwiseConv2d2 = op({ fusedDepthwiseConv2d_ }); -function fusedMatMul_({ a: a6, b, transposeA = false, transposeB = false, bias, activation: activation2 = "linear", preluActivationWeights, leakyreluAlpha }) { +function fusedMatMul_({ a, b, transposeA = false, transposeB = false, bias, activation: activation2 = "linear", preluActivationWeights, leakyreluAlpha = 0.2 }) { if (shouldFuse(ENGINE.state.gradientDepth, activation2) === false) { - let result = matMul(a6, b, transposeA, transposeB); + let result = matMul(a, b, transposeA, transposeB); if (bias != null) { result = add2(result, bias); } return applyActivation(result, activation2, preluActivationWeights, leakyreluAlpha); } - let $a = convertToTensor(a6, "a", "fused matMul"); + let $a = convertToTensor(a, "a", "fused matMul"); let $b = convertToTensor(b, "b", "fused matMul"); [$a, $b] = makeTypesMatch($a, $b); const innerShapeA = transposeA ? $a.shape[$a.rank - 2] : $a.shape[$a.rank - 1]; @@ -14724,8 +14129,8 @@ function binaryInsert(arr, element, comparator) { function binarySearch(arr, target, comparator) { return binarySearch_(arr, target, comparator || defaultComparator); } -function defaultComparator(a6, b) { - return a6 > b ? 1 : a6 < b ? -1 : 0; +function defaultComparator(a, b) { + return a > b ? 1 : a < b ? -1 : 0; } function binarySearch_(arr, target, comparator) { let left = 0; @@ -15044,10 +14449,10 @@ function transform_(image2, transforms, interpolation = "nearest", fillMode = "c return ENGINE.runKernel(Transform, inputs, attrs); } var transform = op({ transform_ }); -function bandPart_(a6, numLower, numUpper) { +function bandPart_(a, numLower, numUpper) { assert(numLower % 1 === 0, () => `bandPart(): numLower must be an integer, got ${numLower}.`); assert(numUpper % 1 === 0, () => `bandPart(): numUpper must be an integer, got ${numUpper}.`); - const $a = convertToTensor(a6, "a", "bandPart"); + const $a = convertToTensor(a, "a", "bandPart"); assert($a.rank >= 2, () => `bandPart(): Rank must be at least 2, got ${$a.rank}.`); const shape = $a.shape; const [M, N] = $a.shape.slice(-2); @@ -15133,12 +14538,12 @@ function qr2d(x, fullMatrices = false) { return ENGINE.tidy(() => { assert(x.shape.length === 2, () => `qr2d() requires a 2D Tensor, but got a ${x.shape.length}D Tensor.`); const m = x.shape[0]; - const n = x.shape[1]; + const n2 = x.shape[1]; let q = eye(m); let r2 = clone(x); const one2D = tensor2d([[1]], [1, 1]); let w = clone(one2D); - const iters = m >= n ? n : m; + const iters = m >= n2 ? n2 : m; for (let j = 0; j < iters; ++j) { const rTemp = r2; const wTemp = w; @@ -15159,14 +14564,14 @@ function qr2d(x, fullMatrices = false) { ], 0); } const tau = neg(div(matMul(s2, u1), normX)); - const rjEndAll = slice(r2, [j, 0], [m - j, n]); + const rjEndAll = slice(r2, [j, 0], [m - j, n2]); const tauTimesW = mul(tau, w); const wT = transpose(w); if (j === 0) { r2 = sub(rjEndAll, matMul(tauTimesW, matMul(wT, rjEndAll))); } else { const rTimesTau = sub(rjEndAll, matMul(tauTimesW, matMul(wT, rjEndAll))); - r2 = concat([slice(r2, [0, 0], [j, n]), rTimesTau], 0); + r2 = concat([slice(r2, [0, 0], [j, n2]), rTimesTau], 0); } const tawTimesWT = transpose(tauTimesW); const qAllJEnd = slice(q, [0, j], [m, q.shape[1] - j]); @@ -15180,9 +14585,9 @@ function qr2d(x, fullMatrices = false) { }); dispose([rTemp, wTemp, qTemp]); } - if (!fullMatrices && m > n) { - q = slice(q, [0, 0], [m, n]); - r2 = slice(r2, [0, 0], [n, n]); + if (!fullMatrices && m > n2) { + q = slice(q, [0, 0], [m, n2]); + r2 = slice(r2, [0, 0], [n2, n2]); } return [q, r2]; }); @@ -16514,18 +15919,18 @@ function assignToTypedArray(data, real5, imag5, index2) { data[index2 * 2] = real5; data[index2 * 2 + 1] = imag5; } -function exponents(n, inverse) { - const real5 = new Float32Array(n / 2); - const imag5 = new Float32Array(n / 2); - for (let i2 = 0; i2 < Math.ceil(n / 2); i2++) { - const x = (inverse ? 2 : -2) * Math.PI * (i2 / n); +function exponents(n2, inverse) { + const real5 = new Float32Array(n2 / 2); + const imag5 = new Float32Array(n2 / 2); + for (let i2 = 0; i2 < Math.ceil(n2 / 2); i2++) { + const x = (inverse ? 2 : -2) * Math.PI * (i2 / n2); real5[i2] = Math.cos(x); imag5[i2] = Math.sin(x); } return { real: real5, imag: imag5 }; } -function exponent(k, n, inverse) { - const x = (inverse ? 2 : -2) * Math.PI * (k / n); +function exponent(k, n2, inverse) { + const x = (inverse ? 2 : -2) * Math.PI * (k / n2); const real5 = Math.cos(x); const imag5 = Math.sin(x); return { real: real5, imag: imag5 }; @@ -16665,10 +16070,10 @@ function prepareSplitSize(x, numOrSizeSplits, axis = 0) { assert(numOfNegs <= 1, () => "There should be only one negative value in split array."); const negIndex = numOrSizeSplits.indexOf(-1); if (negIndex !== -1) { - const total = numOrSizeSplits.reduce((a6, b) => b > 0 ? a6 + b : a6); + const total = numOrSizeSplits.reduce((a, b) => b > 0 ? a + b : a); numOrSizeSplits[negIndex] = x.shape[axis] - total; } - assert(x.shape[axis] === numOrSizeSplits.reduce((a6, b) => a6 + b), () => "The sum of sizes must match the size of the axis dimension."); + assert(x.shape[axis] === numOrSizeSplits.reduce((a, b) => a + b), () => "The sum of sizes must match the size of the axis dimension."); splitSizes = numOrSizeSplits; } return splitSizes; @@ -16828,8 +16233,8 @@ var acosGradConfig = { const [x] = saved; return { x: () => { - const a6 = square(cast(x, "float32")); - const b = sqrt(sub(scalar(1), a6)); + const a = square(cast(x, "float32")); + const b = sqrt(sub(scalar(1), a)); return neg(div(dy, b)); } }; @@ -16842,8 +16247,8 @@ var acoshGradConfig = { const [x] = saved; return { x: () => { - const a6 = sqrt(sub(square(cast(x, "float32")), 1)); - return div(dy, a6); + const a = sqrt(sub(square(cast(x, "float32")), 1)); + return div(dy, a); } }; } @@ -16852,15 +16257,15 @@ var addGradConfig = { kernelName: Add, inputsToSave: ["a", "b"], gradFunc: (dy, saved) => { - const [a6, b] = saved; - const outShape = assertAndGetBroadcastShape(a6.shape, b.shape); + const [a, b] = saved; + const outShape = assertAndGetBroadcastShape(a.shape, b.shape); const derA = () => { let res = dy; - const reduceAxes = getReductionAxes(a6.shape, outShape); + const reduceAxes = getReductionAxes(a.shape, outShape); if (reduceAxes.length > 0) { res = sum2(res, reduceAxes); } - return reshape(res, a6.shape); + return reshape(res, a.shape); }; const derB = () => { let res = dy; @@ -16915,8 +16320,8 @@ var asinhGradConfig = { const [x] = saved; return { x: () => { - const a6 = sqrt(add2(scalar(1), square(cast(x, "float32")))); - return div(dy, a6); + const a = sqrt(add2(scalar(1), square(cast(x, "float32")))); + return div(dy, a); } }; } @@ -16925,20 +16330,20 @@ var atan2GradConfig = { kernelName: Atan2, inputsToSave: ["a", "b"], gradFunc: (dy, saved) => { - const [a6, b] = saved; - const outShape = assertAndGetBroadcastShape(a6.shape, b.shape); + const [a, b] = saved; + const outShape = assertAndGetBroadcastShape(a.shape, b.shape); const derA = () => { - const d = add2(square(a6), square(b)); + const d = add2(square(a), square(b)); let res = mul(dy, div(b, d)); - const reduceAxes = getReductionAxes(a6.shape, outShape); + const reduceAxes = getReductionAxes(a.shape, outShape); if (reduceAxes.length > 0) { res = sum2(res, reduceAxes); } - return reshape(res, a6.shape); + return reshape(res, a.shape); }; const derB = () => { - const d = add2(square(a6), square(b)); - let res = neg(mul(dy, div(a6, d))); + const d = add2(square(a), square(b)); + let res = neg(mul(dy, div(a, d))); const reduceAxes = getReductionAxes(b.shape, outShape); if (reduceAxes.length > 0) { res = sum2(res, reduceAxes); @@ -17040,27 +16445,27 @@ var batchMatMulGradConfig = { kernelName: BatchMatMul, inputsToSave: ["a", "b"], gradFunc: (dy, saved, attrs) => { - const [a6, b] = saved; + const [a, b] = saved; const { transposeA, transposeB } = attrs; if (!transposeA && !transposeB) { return { a: () => matMul(dy, b, false, true), - b: () => matMul(a6, dy, true, false) + b: () => matMul(a, dy, true, false) }; } else if (!transposeA && transposeB) { return { a: () => matMul(dy, b, false, false), - b: () => matMul(dy, a6, true, false) + b: () => matMul(dy, a, true, false) }; } else if (transposeA && !transposeB) { return { a: () => matMul(b, dy, false, true), - b: () => matMul(a6, dy, false, false) + b: () => matMul(a, dy, false, false) }; } else { return { a: () => matMul(b, dy, true, true), - b: () => matMul(dy, a6, true, true) + b: () => matMul(dy, a, true, true) }; } } @@ -17272,8 +16677,8 @@ var erfGradConfig = { inputsToSave: ["x"], gradFunc: (dy, saved) => { const [x] = saved; - const a6 = mul(exp(neg(square(x))), 2 / Math.sqrt(Math.PI)); - return { x: () => mul(dy, a6) }; + const a = mul(exp(neg(square(x))), 2 / Math.sqrt(Math.PI)); + return { x: () => mul(dy, a) }; } }; var expGradConfig = { @@ -17310,18 +16715,18 @@ var floorDivGradConfig = { kernelName: FloorDiv, inputsToSave: ["a", "b"], gradFunc: (dy, saved) => { - const [a6, b] = saved; - const outShape = assertAndGetBroadcastShape(a6.shape, b.shape); + const [a, b] = saved; + const outShape = assertAndGetBroadcastShape(a.shape, b.shape); const derA = () => { const res = div(dy, cast(b, "float32")); - const reduceAxes = getReductionAxes(a6.shape, outShape); + const reduceAxes = getReductionAxes(a.shape, outShape); if (reduceAxes.length > 0) { - return reshape(sum2(res, reduceAxes), a6.shape); + return reshape(sum2(res, reduceAxes), a.shape); } return res; }; const derB = () => { - let res = mul(dy, cast(a6, "float32")); + let res = mul(dy, cast(a, "float32")); const reduceAxes = getReductionAxes(b.shape, outShape); if (reduceAxes.length > 0) { res = reshape(sum2(res, reduceAxes), b.shape); @@ -17445,8 +16850,8 @@ var greaterEqualGradConfig = { kernelName: GreaterEqual, inputsToSave: ["a", "b"], gradFunc: (dy, saved) => { - const [a6, b] = saved; - return { a: () => zerosLike(a6), b: () => zerosLike(b) }; + const [a, b] = saved; + return { a: () => zerosLike(a), b: () => zerosLike(b) }; } }; var identityGradConfig = { @@ -17569,9 +16974,9 @@ var maximumGradConfig = { kernelName: Maximum, inputsToSave: ["a", "b"], gradFunc: (dy, saved) => { - const [a6, b] = saved; - const derA = () => mul(dy, cast(greaterEqual(a6, b), "float32")); - const derB = () => mul(dy, cast(less(a6, b), "float32")); + const [a, b] = saved; + const derA = () => mul(dy, cast(greaterEqual(a, b), "float32")); + const derB = () => mul(dy, cast(less(a, b), "float32")); return { a: derA, b: derB }; } }; @@ -17694,9 +17099,9 @@ var minimumGradConfig = { kernelName: Minimum, inputsToSave: ["a", "b"], gradFunc: (dy, saved) => { - const [a6, b] = saved; - const derA = () => mul(dy, cast(lessEqual(a6, b), "float32")); - const derB = () => mul(dy, cast(greater(a6, b), "float32")); + const [a, b] = saved; + const derA = () => mul(dy, cast(lessEqual(a, b), "float32")); + const derB = () => mul(dy, cast(greater(a, b), "float32")); return { a: derA, b: derB }; } }; @@ -17714,17 +17119,17 @@ var modGradConfig = { kernelName: Mod, inputsToSave: ["a", "b"], gradFunc: (dy, saved) => { - const [a6, b] = saved; - const outShape = assertAndGetBroadcastShape(a6.shape, b.shape); + const [a, b] = saved; + const outShape = assertAndGetBroadcastShape(a.shape, b.shape); const derA = () => { - const reduceAxes = getReductionAxes(a6.shape, outShape); + const reduceAxes = getReductionAxes(a.shape, outShape); if (reduceAxes.length > 0) { - return reshape(sum2(dy, reduceAxes), a6.shape); + return reshape(sum2(dy, reduceAxes), a.shape); } return dy; }; const derB = () => { - const res = mul(dy, neg(floor(div(a6, b)))); + const res = mul(dy, neg(floor(div(a, b)))); const reduceAxes = getReductionAxes(b.shape, outShape); if (reduceAxes.length > 0) { return reshape(sum2(res, reduceAxes), b.shape); @@ -17738,18 +17143,18 @@ var multiplyGradConfig = { kernelName: Multiply, inputsToSave: ["a", "b"], gradFunc: (dy, saved) => { - const [a6, b] = saved; - const outShape = assertAndGetBroadcastShape(a6.shape, b.shape); + const [a, b] = saved; + const outShape = assertAndGetBroadcastShape(a.shape, b.shape); const derA = () => { const res = mul(dy, cast(b, "float32")); - const reduceAxes = getReductionAxes(a6.shape, outShape); + const reduceAxes = getReductionAxes(a.shape, outShape); if (reduceAxes.length > 0) { - return reshape(sum2(res, reduceAxes), a6.shape); + return reshape(sum2(res, reduceAxes), a.shape); } return res; }; const derB = () => { - const res = mul(dy, cast(a6, "float32")); + const res = mul(dy, cast(a, "float32")); const reduceAxes = getReductionAxes(b.shape, outShape); if (reduceAxes.length > 0) { return reshape(sum2(res, reduceAxes), b.shape); @@ -17803,8 +17208,8 @@ var powGradConfig = { inputsToSave: ["a", "b"], outputsToSave: [true], gradFunc: (dy, saved) => { - const [a6, b, y] = saved; - const base = a6; + const [a, b, y] = saved; + const base = a; const exp5 = b; const outShape = assertAndGetBroadcastShape(base.shape, exp5.shape); const derBase = () => { @@ -17899,18 +17304,18 @@ var divGradConfig = { kernelName: RealDiv, inputsToSave: ["a", "b"], gradFunc: (dy, saved) => { - const [a6, b] = saved; - const outShape = assertAndGetBroadcastShape(a6.shape, b.shape); + const [a, b] = saved; + const outShape = assertAndGetBroadcastShape(a.shape, b.shape); const derA = () => { const res = div(dy, cast(b, "float32")); - const reduceAxes = getReductionAxes(a6.shape, outShape); + const reduceAxes = getReductionAxes(a.shape, outShape); if (reduceAxes.length > 0) { - return reshape(sum2(res, reduceAxes), a6.shape); + return reshape(sum2(res, reduceAxes), a.shape); } return res; }; const derB = () => { - let res = mul(dy, cast(a6, "float32")); + let res = mul(dy, cast(a, "float32")); const reduceAxes = getReductionAxes(b.shape, outShape); if (reduceAxes.length > 0) { res = reshape(sum2(res, reduceAxes), b.shape); @@ -18125,10 +17530,10 @@ var squaredDifferenceGradConfig = { kernelName: SquaredDifference, inputsToSave: ["a", "b"], gradFunc: (dy, saved) => { - const [a6, b] = saved; + const [a, b] = saved; const two = scalar(2); - const derA = () => mul(dy, mul(two, sub(a6, b))); - const derB = () => mul(dy, mul(two, sub(b, a6))); + const derA = () => mul(dy, mul(two, sub(a, b))); + const derB = () => mul(dy, mul(two, sub(b, a))); return { a: derA, b: derB }; } }; @@ -18142,15 +17547,15 @@ var subGradConfig = { kernelName: Sub, inputsToSave: ["a", "b"], gradFunc: (dy, saved) => { - const [a6, b] = saved; - const outShape = assertAndGetBroadcastShape(a6.shape, b.shape); + const [a, b] = saved; + const outShape = assertAndGetBroadcastShape(a.shape, b.shape); const derA = () => { let res = dy; - const reduceAxes = getReductionAxes(a6.shape, outShape); + const reduceAxes = getReductionAxes(a.shape, outShape); if (reduceAxes.length > 0) { res = sum2(res, reduceAxes); } - return reshape(res, a6.shape); + return reshape(res, a.shape); }; const derB = () => { let res = dy; @@ -19176,11 +18581,11 @@ function deserializeKerasObject(identifier, moduleObjects = {}, customObjects = } } } -function numberCompare(a6, b) { - return a6 < b ? -1 : a6 > b ? 1 : 0; +function numberCompare(a, b) { + return a < b ? -1 : a > b ? 1 : 0; } -function reverseNumberCompare(a6, b) { - return -1 * numberCompare(a6, b); +function reverseNumberCompare(a, b) { + return -1 * numberCompare(a, b); } function unique2(xs) { if (xs == null) { @@ -19413,13 +18818,13 @@ function expandDims2(x, axis = -1) { outShape.splice(axis, 0, 1); return reshape(x, outShape); } -function repeat(x, n) { +function repeat(x, n2) { return tidy(() => { if (x.shape.length !== 2) { throw new ValueError(`repeat() expects a rank-2 tensor, but received a rank-${x.shape.length} tensor.`); } const y = expandDims2(x, 1); - return tile2(y, [1, n, 1]); + return tile2(y, [1, n2, 1]); }); } function flatten2(x) { @@ -19540,58 +18945,58 @@ function concatenate(tensors, axis = -1) { } return concat(tensors, axis); } -function concatAlongFirstAxis(a6, b) { - switch (a6.rank) { +function concatAlongFirstAxis(a, b) { + switch (a.rank) { case 1: - return concat1d([a6, b]); + return concat1d([a, b]); case 2: - return concat2d([a6, b], 0); + return concat2d([a, b], 0); case 3: - return concat3d([a6, b], 0); + return concat3d([a, b], 0); case 4: - return concat4d([a6, b], 0); + return concat4d([a, b], 0); default: - throw new ValueError(`concatAlongFirstAxis() received an unsupported tensor rank: ${a6.rank}`); + throw new ValueError(`concatAlongFirstAxis() received an unsupported tensor rank: ${a.rank}`); } } -function tile2(x, n) { - if (!Array.isArray(n)) { - n = [n]; +function tile2(x, n2) { + if (!Array.isArray(n2)) { + n2 = [n2]; } - if (x.rank !== n.length) { - throw new ValueError(`The length of input n (${n.length}) does not match the number of dimensions in input x (${x.rank})`); + if (x.rank !== n2.length) { + throw new ValueError(`The length of input n (${n2.length}) does not match the number of dimensions in input x (${x.rank})`); } - return tile(x, n); + return tile(x, n2); } function randomNormal2(shape, mean5 = 0, stddev = 1, dtype, seed) { return randomNormal(shape, mean5, stddev, dtype, seed); } -function dot2(a6, b, activation2, bias) { - if (a6.rank < 2 || b.rank < 2) { - throw new NotImplementedError(`dot requires both inputs to be rank >= 2 but got x shape = ${a6.shape} and y shape = ${b.shape}`); +function dot2(a, b, activation2, bias) { + if (a.rank < 2 || b.rank < 2) { + throw new NotImplementedError(`dot requires both inputs to be rank >= 2 but got x shape = ${a.shape} and y shape = ${b.shape}`); } if (b.rank >= 3) { - const xLastDim = a6.shape.slice(-1)[0]; + const xLastDim = a.shape.slice(-1)[0]; const ySecondLastDim = b.shape.slice(-2)[0]; if (xLastDim !== ySecondLastDim) { - throw new NotImplementedError(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${a6.shape} and y shape = ${b.shape}`); + throw new NotImplementedError(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${a.shape} and y shape = ${b.shape}`); } } - if (a6.rank === 2 && b.rank === 2) { + if (a.rank === 2 && b.rank === 2) { const transposeA = false; const transposeB = false; return fused_ops_exports.matMul({ - a: a6, + a, b, transposeA, transposeB, - bias: bias ? reshapeBias(a6.rank, bias, imageDataFormat()) : null, + bias: bias ? reshapeBias(a.rank, bias, imageDataFormat()) : null, activation: activation2 }); } else { - const aFirstDims = a6.shape.slice(); + const aFirstDims = a.shape.slice(); const aLastDim = aFirstDims.pop(); - a6 = reshape(a6, [-1, aLastDim]); + a = reshape(a, [-1, aLastDim]); const bShape = b.shape.slice(); const bLastDim = bShape.pop(); const ySecondLastDim = bShape.pop(); @@ -19609,11 +19014,11 @@ function dot2(a6, b, activation2, bias) { const transposeA = false; const transposeB = false; return reshape(fused_ops_exports.matMul({ - a: a6, + a, b, transposeA, transposeB, - bias: bias ? reshapeBias(a6.rank, bias, imageDataFormat()) : null, + bias: bias ? reshapeBias(a.rank, bias, imageDataFormat()) : null, activation: activation2 }), outputShape); } @@ -20028,8 +19433,8 @@ var Orthogonal = class extends Initializer { console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${shape[0] * shape[1]}) elements: Slowness may result.`); } const normalizedShape = shape[0] > shape[1] ? [shape[1], shape[0]] : shape; - const a6 = randomNormal2(normalizedShape, 0, 1, "float32"); - let q = linalg.gramSchmidt(a6); + const a = randomNormal2(normalizedShape, 0, 1, "float32"); + let q = linalg.gramSchmidt(a); if (shape[0] > shape[1]) { q = transpose(q); } @@ -20137,7 +19542,7 @@ function countParamsInWeights(weights) { if (weight.shape.length === 0) { count22 += 1; } else { - count22 += weight.shape.reduce((a6, b) => a6 * b); + count22 += weight.shape.reduce((a, b) => a * b); } } return count22; @@ -21668,10 +21073,10 @@ var History = class extends BaseCallback { } } const values = await Promise.all(promises); - for (let n = 0; n < values.length; ++n) { - const tensorToDispose = this.history[keys[n]][indices[n]]; + for (let n2 = 0; n2 < values.length; ++n2) { + const tensorToDispose = this.history[keys[n2]][indices[n2]]; tensorToDispose.dispose(); - this.history[keys[n]][indices[n]] = values[n][0]; + this.history[keys[n2]][indices[n2]] = values[n2][0]; } } }; @@ -22389,7 +21794,7 @@ function convertTsToPythonic(tsConfig, key) { return pyDict; } } -var version2 = "3.18.0"; +var version2 = "3.19.0"; var Container = class extends Layer { constructor(args) { super({}); @@ -22548,8 +21953,8 @@ var Container = class extends Layer { this.layers = []; for (const depth of depthKeys) { const layersForDepth = layersByDepth[depth]; - layersForDepth.sort((a6, b) => { - const aIndex = layerIndices[a6.id]; + layersForDepth.sort((a, b) => { + const aIndex = layerIndices[a.id]; const bIndex = layerIndices[b.id]; if (aIndex < bIndex) { return -1; @@ -23258,7 +22663,7 @@ async function fitDataset(model22, dataset, args) { const outLabels = model22.getDedupedMetricsNames(); let callbackMetrics; if (doValidation) { - callbackMetrics = outLabels.slice().concat(outLabels.map((n) => "val_" + n)); + callbackMetrics = outLabels.slice().concat(outLabels.map((n2) => "val_" + n2)); } else { callbackMetrics = outLabels.slice(); } @@ -23609,7 +23014,7 @@ async function fitTensors(model22, x, y, args = {}) { if (doValidation) { model22.makeTestFunction(); valFunction = model22.testFunction; - callbackMetrics = outLabels.slice().concat(outLabels.map((n) => "val_" + n)); + callbackMetrics = outLabels.slice().concat(outLabels.map((n2) => "val_" + n2)); } else { valFunction = null; valIns = []; @@ -25293,17 +24698,17 @@ var Softmax3 = class extends Layer { }; Softmax3.className = "Softmax"; serialization_exports.registerClass(Softmax3); -function normalizeArray(value, n, name) { +function normalizeArray(value, n2, name) { if (typeof value === "number") { - return pyListRepeat(value, n); + return pyListRepeat(value, n2); } else { - if (value.length !== n) { - throw new ValueError(`The ${name} argument must be an integer or tuple of ${n} integers. Received: ${value.length} elements.`); + if (value.length !== n2) { + throw new ValueError(`The ${name} argument must be an integer or tuple of ${n2} integers. Received: ${value.length} elements.`); } - for (let i2 = 0; i2 < n; ++i2) { + for (let i2 = 0; i2 < n2; ++i2) { const singleValue = value[i2]; if (!isInteger(singleValue)) { - throw new ValueError(`The ${name} argument must be an integer or tuple of ${n} integers. Received: ${JSON.stringify(value)} including a non-integer number ${singleValue}`); + throw new ValueError(`The ${name} argument must be an integer or tuple of ${n2} integers. Received: ${JSON.stringify(value)} including a non-integer number ${singleValue}`); } } return value; @@ -28578,10 +27983,10 @@ var AlphaDropout = class extends Layer { const alphaP = -alpha2 * scale22; let keptIdx = greaterEqual(randomUniform(noiseShape), this.rate); keptIdx = cast2(keptIdx, "float32"); - const a6 = ((1 - this.rate) * (1 + this.rate * alphaP ** 2)) ** -0.5; - const b = -a6 * alphaP * this.rate; + const a = ((1 - this.rate) * (1 + this.rate * alphaP ** 2)) ** -0.5; + const b = -a * alphaP * this.rate; const x = add2(mul(input2, keptIdx), mul(add2(keptIdx, -1), alphaP)); - return add2(mul(x, a6), b); + return add2(mul(x, a), b); }; return inTrainPhase(droppedInputs, () => getExactlyOneTensor(inputs), kwargs["training"] || false); } @@ -32804,7 +32209,8 @@ var json4 = [ { "tfName": "leakyrelu_alpha", "name": "leakyreluAlpha", - "type": "number" + "type": "number", + "defaultValue": 0.2 } ] }, @@ -33231,6 +32637,43 @@ var json5 = [ } ] }, + { + "tfOpName": "RandomStandardNormal", + "category": "creation", + "inputs": [ + { + "start": 0, + "name": "shape", + "type": "number[]" + } + ], + "attrs": [ + { + "tfName": "seed", + "name": "seed", + "type": "number", + "defaultValue": 0 + }, + { + "tfName": "seed2", + "name": "seed2", + "type": "number", + "defaultValue": 0, + "notSupported": true + }, + { + "tfName": "dtype", + "name": "dtype", + "type": "dtype" + }, + { + "tfName": "T", + "name": "T", + "type": "number", + "notSupported": true + } + ] + }, { "tfOpName": "RandomUniform", "category": "creation", @@ -34617,6 +34060,12 @@ var json12 = [ "type": "bool", "defaultValue": false }, + { + "tfName": "leakyrelu_alpha", + "name": "leakyreluAlpha", + "type": "number", + "defaultValue": 0.2 + }, { "tfName": "T", "name": "dtype", @@ -36764,147 +36213,360 @@ var NodeValueImpl = class { return defaultValue; } }; -var executeOp = (node2, tensorMap, context) => { +var ops_for_converter_exports = {}; +__export2(ops_for_converter_exports, { + OP_SCOPE_SUFFIX: () => OP_SCOPE_SUFFIX, + abs: () => abs, + acos: () => acos, + acosh: () => acosh, + add: () => add2, + addN: () => addN, + all: () => all, + any: () => any, + argMax: () => argMax, + argMin: () => argMin, + asin: () => asin, + asinh: () => asinh, + atan: () => atan, + atan2: () => atan2, + atanh: () => atanh, + avgPool: () => avgPool, + avgPool3d: () => avgPool3d, + basicLSTMCell: () => basicLSTMCell, + batchNorm: () => batchNorm, + batchNorm2d: () => batchNorm2d, + batchNorm3d: () => batchNorm3d, + batchNorm4d: () => batchNorm4d, + batchToSpaceND: () => batchToSpaceND, + bincount: () => bincount, + booleanMaskAsync: () => booleanMaskAsync, + broadcastArgs: () => broadcastArgs, + broadcastTo: () => broadcastTo, + buffer: () => buffer, + cast: () => cast, + ceil: () => ceil, + clipByValue: () => clipByValue, + clone: () => clone, + complex: () => complex, + concat: () => concat, + concat1d: () => concat1d, + concat2d: () => concat2d, + concat3d: () => concat3d, + concat4d: () => concat4d, + conv1d: () => conv1d, + conv2d: () => conv2d, + conv2dTranspose: () => conv2dTranspose, + conv3d: () => conv3d, + conv3dTranspose: () => conv3dTranspose, + cos: () => cos, + cosh: () => cosh, + cosineWindow: () => cosineWindow, + cumprod: () => cumprod, + cumsum: () => cumsum, + denseBincount: () => denseBincount, + depthToSpace: () => depthToSpace, + depthwiseConv2d: () => depthwiseConv2d, + diag: () => diag, + dilation2d: () => dilation2d, + div: () => div, + divNoNan: () => divNoNan, + dot: () => dot, + dropout: () => dropout, + einsum: () => einsum, + elu: () => elu, + enclosingPowerOfTwo: () => enclosingPowerOfTwo, + equal: () => equal, + erf: () => erf, + euclideanNorm: () => euclideanNorm, + exp: () => exp, + expandDims: () => expandDims, + expm1: () => expm1, + eye: () => eye, + fft: () => fft, + fill: () => fill, + floor: () => floor, + floorDiv: () => floorDiv, + fused: () => fused_ops_exports, + gather: () => gather, + gatherND: () => gatherND, + greater: () => greater, + greaterEqual: () => greaterEqual, + ifft: () => ifft, + imag: () => imag, + image: () => image, + inTopKAsync: () => inTopKAsync, + irfft: () => irfft, + isFinite: () => isFinite2, + isInf: () => isInf, + isNaN: () => isNaN2, + leakyRelu: () => leakyRelu, + less: () => less, + lessEqual: () => lessEqual, + linalg: () => linalg, + linspace: () => linspace, + localResponseNormalization: () => localResponseNormalization, + log: () => log22, + log1p: () => log1p, + logSigmoid: () => logSigmoid, + logSoftmax: () => logSoftmax, + logSumExp: () => logSumExp, + logicalAnd: () => logicalAnd, + logicalNot: () => logicalNot, + logicalOr: () => logicalOr, + logicalXor: () => logicalXor, + losses: () => losses, + lowerBound: () => lowerBound, + matMul: () => matMul, + max: () => max, + maxPool: () => maxPool, + maxPool3d: () => maxPool3d, + maxPoolWithArgmax: () => maxPoolWithArgmax, + maximum: () => maximum, + mean: () => mean, + meshgrid: () => meshgrid, + min: () => min, + minimum: () => minimum, + mirrorPad: () => mirrorPad, + mod: () => mod, + moments: () => moments, + movingAverage: () => movingAverage, + mul: () => mul, + multiRNNCell: () => multiRNNCell, + multinomial: () => multinomial, + neg: () => neg, + norm: () => norm, + notEqual: () => notEqual, + oneHot: () => oneHot, + ones: () => ones2, + onesLike: () => onesLike, + op: () => op, + outerProduct: () => outerProduct, + pad: () => pad, + pad1d: () => pad1d, + pad2d: () => pad2d, + pad3d: () => pad3d, + pad4d: () => pad4d, + pool: () => pool, + pow: () => pow, + prelu: () => prelu, + print: () => print, + prod: () => prod, + rand: () => rand, + randomGamma: () => randomGamma, + randomNormal: () => randomNormal, + randomStandardNormal: () => randomStandardNormal, + randomUniform: () => randomUniform, + range: () => range, + real: () => real, + reciprocal: () => reciprocal, + relu: () => relu, + relu6: () => relu6, + reshape: () => reshape, + reverse: () => reverse, + reverse1d: () => reverse1d, + reverse2d: () => reverse2d, + reverse3d: () => reverse3d, + reverse4d: () => reverse4d, + rfft: () => rfft, + round: () => round2, + rsqrt: () => rsqrt, + scalar: () => scalar, + scatterND: () => scatterND, + searchSorted: () => searchSorted, + selu: () => selu, + separableConv2d: () => separableConv2d, + setdiff1dAsync: () => setdiff1dAsync, + sigmoid: () => sigmoid, + sign: () => sign, + signal: () => signal, + sin: () => sin, + sinh: () => sinh, + slice: () => slice, + slice1d: () => slice1d, + slice2d: () => slice2d, + slice3d: () => slice3d, + slice4d: () => slice4d, + softmax: () => softmax, + softplus: () => softplus, + spaceToBatchND: () => spaceToBatchND, + sparse: () => sparse, + sparseToDense: () => sparseToDense, + spectral: () => spectral, + split: () => split, + sqrt: () => sqrt, + square: () => square, + squaredDifference: () => squaredDifference, + squeeze: () => squeeze, + stack: () => stack, + step: () => step, + stridedSlice: () => stridedSlice, + string: () => string, + sub: () => sub, + sum: () => sum2, + tan: () => tan, + tanh: () => tanh2, + tensor: () => tensor, + tensor1d: () => tensor1d, + tensor2d: () => tensor2d, + tensor3d: () => tensor3d, + tensor4d: () => tensor4d, + tensor5d: () => tensor5d, + tensor6d: () => tensor6d, + tile: () => tile, + topk: () => topk, + transpose: () => transpose, + truncatedNormal: () => truncatedNormal, + unique: () => unique, + unsortedSegmentSum: () => unsortedSegmentSum, + unstack: () => unstack, + upperBound: () => upperBound, + variable: () => variable, + where: () => where, + whereAsync: () => whereAsync, + zeros: () => zeros, + zerosLike: () => zerosLike +}); +var executeOp = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "BiasAdd": case "AddV2": case "Add": { - return [add2(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.add(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "AddN": { - return [addN(getParamValue("tensors", node2, tensorMap, context))]; + return [ops.addN(getParamValue("tensors", node2, tensorMap, context))]; } case "FloorMod": case "Mod": - return [mod(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.mod(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; case "Mul": - return [mul(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.mul(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; case "RealDiv": case "Div": { - return [div(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.div(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "DivNoNan": { - return [divNoNan(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.divNoNan(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "FloorDiv": { - return [floorDiv(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.floorDiv(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "Sub": { - return [sub(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.sub(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "Minimum": { - return [minimum(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.minimum(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "Maximum": { - return [maximum(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.maximum(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "Pow": { - return [pow(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.pow(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "SquaredDifference": { - return [squaredDifference(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.squaredDifference(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } default: throw TypeError(`Node type ${node2.op} is not implemented`); } }; -var executeOp2 = (node2, tensorMap, context) => { +var executeOp2 = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "Abs": case "ComplexAbs": - return [abs(getParamValue("x", node2, tensorMap, context))]; + return [ops.abs(getParamValue("x", node2, tensorMap, context))]; case "Acos": - return [acos(getParamValue("x", node2, tensorMap, context))]; + return [ops.acos(getParamValue("x", node2, tensorMap, context))]; case "Acosh": - return [acosh(getParamValue("x", node2, tensorMap, context))]; + return [ops.acosh(getParamValue("x", node2, tensorMap, context))]; case "Asin": - return [asin(getParamValue("x", node2, tensorMap, context))]; + return [ops.asin(getParamValue("x", node2, tensorMap, context))]; case "Asinh": - return [asinh(getParamValue("x", node2, tensorMap, context))]; + return [ops.asinh(getParamValue("x", node2, tensorMap, context))]; case "Atan": - return [atan(getParamValue("x", node2, tensorMap, context))]; + return [ops.atan(getParamValue("x", node2, tensorMap, context))]; case "Atan2": - return [atan2(getParamValue("x", node2, tensorMap, context), getParamValue("y", node2, tensorMap, context))]; + return [ops.atan2(getParamValue("x", node2, tensorMap, context), getParamValue("y", node2, tensorMap, context))]; case "Atanh": - return [atanh(getParamValue("x", node2, tensorMap, context))]; + return [ops.atanh(getParamValue("x", node2, tensorMap, context))]; case "Ceil": - return [ceil(getParamValue("x", node2, tensorMap, context))]; + return [ops.ceil(getParamValue("x", node2, tensorMap, context))]; case "Complex": - return [complex(getParamValue("real", node2, tensorMap, context), getParamValue("imag", node2, tensorMap, context))]; + return [ops.complex(getParamValue("real", node2, tensorMap, context), getParamValue("imag", node2, tensorMap, context))]; case "Cos": - return [cos(getParamValue("x", node2, tensorMap, context))]; + return [ops.cos(getParamValue("x", node2, tensorMap, context))]; case "Cosh": - return [cosh(getParamValue("x", node2, tensorMap, context))]; + return [ops.cosh(getParamValue("x", node2, tensorMap, context))]; case "Elu": - return [elu(getParamValue("x", node2, tensorMap, context))]; + return [ops.elu(getParamValue("x", node2, tensorMap, context))]; case "Erf": - return [erf(getParamValue("x", node2, tensorMap, context))]; + return [ops.erf(getParamValue("x", node2, tensorMap, context))]; case "Exp": - return [exp(getParamValue("x", node2, tensorMap, context))]; + return [ops.exp(getParamValue("x", node2, tensorMap, context))]; case "Expm1": { - return [expm1(getParamValue("x", node2, tensorMap, context))]; + return [ops.expm1(getParamValue("x", node2, tensorMap, context))]; } case "Floor": - return [floor(getParamValue("x", node2, tensorMap, context))]; + return [ops.floor(getParamValue("x", node2, tensorMap, context))]; case "Log": - return [log22(getParamValue("x", node2, tensorMap, context))]; + return [ops.log(getParamValue("x", node2, tensorMap, context))]; case "Log1p": { - return [log1p(getParamValue("x", node2, tensorMap, context))]; + return [ops.log1p(getParamValue("x", node2, tensorMap, context))]; } case "Imag": - return [imag(getParamValue("x", node2, tensorMap, context))]; + return [ops.imag(getParamValue("x", node2, tensorMap, context))]; case "Neg": - return [neg(getParamValue("x", node2, tensorMap, context))]; + return [ops.neg(getParamValue("x", node2, tensorMap, context))]; case "Reciprocal": { - return [reciprocal(getParamValue("x", node2, tensorMap, context))]; + return [ops.reciprocal(getParamValue("x", node2, tensorMap, context))]; } case "Real": - return [real(getParamValue("x", node2, tensorMap, context))]; + return [ops.real(getParamValue("x", node2, tensorMap, context))]; case "Relu": - return [relu(getParamValue("x", node2, tensorMap, context))]; + return [ops.relu(getParamValue("x", node2, tensorMap, context))]; case "Round": { - return [round2(getParamValue("x", node2, tensorMap, context))]; + return [ops.round(getParamValue("x", node2, tensorMap, context))]; } case "Selu": - return [selu(getParamValue("x", node2, tensorMap, context))]; + return [ops.selu(getParamValue("x", node2, tensorMap, context))]; case "Sigmoid": - return [sigmoid(getParamValue("x", node2, tensorMap, context))]; + return [ops.sigmoid(getParamValue("x", node2, tensorMap, context))]; case "Sin": - return [sin(getParamValue("x", node2, tensorMap, context))]; + return [ops.sin(getParamValue("x", node2, tensorMap, context))]; case "Sign": { - return [sign(getParamValue("x", node2, tensorMap, context))]; + return [ops.sign(getParamValue("x", node2, tensorMap, context))]; } case "Sinh": { - return [sinh(getParamValue("x", node2, tensorMap, context))]; + return [ops.sinh(getParamValue("x", node2, tensorMap, context))]; } case "Softplus": { - return [softplus(getParamValue("x", node2, tensorMap, context))]; + return [ops.softplus(getParamValue("x", node2, tensorMap, context))]; } case "Sqrt": { - return [sqrt(getParamValue("x", node2, tensorMap, context))]; + return [ops.sqrt(getParamValue("x", node2, tensorMap, context))]; } case "Square": { - return [square(getParamValue("x", node2, tensorMap, context))]; + return [ops.square(getParamValue("x", node2, tensorMap, context))]; } case "Tanh": { - return [tanh2(getParamValue("x", node2, tensorMap, context))]; + return [ops.tanh(getParamValue("x", node2, tensorMap, context))]; } case "Tan": - return [tan(getParamValue("x", node2, tensorMap, context))]; + return [ops.tan(getParamValue("x", node2, tensorMap, context))]; case "ClipByValue": - return [clipByValue(getParamValue("x", node2, tensorMap, context), getParamValue("clipValueMin", node2, tensorMap, context), getParamValue("clipValueMax", node2, tensorMap, context))]; + return [ops.clipByValue(getParamValue("x", node2, tensorMap, context), getParamValue("clipValueMin", node2, tensorMap, context), getParamValue("clipValueMax", node2, tensorMap, context))]; case "Relu6": - return [relu6(getParamValue("x", node2, tensorMap, context))]; + return [ops.relu6(getParamValue("x", node2, tensorMap, context))]; case "Rsqrt": - return [rsqrt(getTensor(node2.inputNames[0], tensorMap, context))]; + return [ops.rsqrt(getTensor(node2.inputNames[0], tensorMap, context))]; case "Prod": - return [prod(getParamValue("x", node2, tensorMap, context), getParamValue("axes", node2, tensorMap, context))]; + return [ops.prod(getParamValue("x", node2, tensorMap, context), getParamValue("axes", node2, tensorMap, context))]; case "LeakyRelu": - return [leakyRelu(getParamValue("x", node2, tensorMap, context), getParamValue("alpha", node2, tensorMap, context))]; + return [ops.leakyRelu(getParamValue("x", node2, tensorMap, context), getParamValue("alpha", node2, tensorMap, context))]; case "Prelu": - return [prelu(getParamValue("x", node2, tensorMap, context), getParamValue("alpha", node2, tensorMap, context))]; + return [ops.prelu(getParamValue("x", node2, tensorMap, context), getParamValue("alpha", node2, tensorMap, context))]; case "IsNan": - return [isNaN2(getTensor(node2.inputNames[0], tensorMap, context))]; + return [ops.isNaN(getTensor(node2.inputNames[0], tensorMap, context))]; default: throw TypeError(`Node type ${node2.op} is not implemented`); } @@ -37287,8 +36949,8 @@ function fromTensor(tensor2, elementShape, elementDtype) { const tensorList = unstack(tensor2); return new TensorList(tensorList, elementShape, dtype); } -function reserve(elementShape, elementDtype, numElements) { - return new TensorList([], elementShape, elementDtype, numElements); +function reserve(elementShape, elementDtype, numElements, maxNumElements) { + return new TensorList([], elementShape, elementDtype, maxNumElements); } function scatter(tensor2, indices, elementShape, numElements) { if (indices.length !== tensor2.shape[0]) { @@ -37524,7 +37186,8 @@ var executeOp3 = async (node2, tensorMap, context) => { numElementsParam = "maxNumElements"; } const numElements = getParamValue(numElementsParam, node2, tensorMap, context); - const tensorList = reserve(elementShape, elementDtype, numElements); + const maxNumElements = node2.op === "TensorListReserve" ? -1 : numElements; + const tensorList = reserve(elementShape, elementDtype, numElements, maxNumElements); context.addTensorList(tensorList); return [tensorList.idTensor]; } @@ -37638,25 +37301,25 @@ function fusedConvAndDepthWiseParams(node2, tensorMap, context) { leakyreluAlpha }; } -var executeOp4 = (node2, tensorMap, context) => { +var executeOp4 = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "Conv1D": { const stride = getParamValue("stride", node2, tensorMap, context); const pad3 = getParamValue("pad", node2, tensorMap, context); const dataFormat = getParamValue("dataFormat", node2, tensorMap, context).toUpperCase(); const dilation = getParamValue("dilation", node2, tensorMap, context); - return [conv1d(getParamValue("x", node2, tensorMap, context), getParamValue("filter", node2, tensorMap, context), stride, pad3, dataFormat, dilation)]; + return [ops.conv1d(getParamValue("x", node2, tensorMap, context), getParamValue("filter", node2, tensorMap, context), stride, pad3, dataFormat, dilation)]; } case "Conv2D": { const stride = getParamValue("strides", node2, tensorMap, context); const pad3 = getPadding(node2, tensorMap, context); const dataFormat = getParamValue("dataFormat", node2, tensorMap, context).toUpperCase(); const dilations = getParamValue("dilations", node2, tensorMap, context); - return [conv2d(getParamValue("x", node2, tensorMap, context), getParamValue("filter", node2, tensorMap, context), [stride[1], stride[2]], pad3, dataFormat, [dilations[1], dilations[2]])]; + return [ops.conv2d(getParamValue("x", node2, tensorMap, context), getParamValue("filter", node2, tensorMap, context), [stride[1], stride[2]], pad3, dataFormat, [dilations[1], dilations[2]])]; } case "_FusedConv2D": { const { stride, pad: pad3, dataFormat, dilations, biasArg, preluArg, activationFunc, leakyreluAlpha } = fusedConvAndDepthWiseParams(node2, tensorMap, context); - return [fused_ops_exports.conv2d({ + return [ops.fused.conv2d({ x: getParamValue("x", node2, tensorMap, context), filter: getParamValue("filter", node2, tensorMap, context), strides: [stride[1], stride[2]], @@ -37671,7 +37334,7 @@ var executeOp4 = (node2, tensorMap, context) => { } case "FusedDepthwiseConv2dNative": { const { stride, pad: pad3, dataFormat, dilations, biasArg, preluArg, activationFunc, leakyreluAlpha } = fusedConvAndDepthWiseParams(node2, tensorMap, context); - return [fused_ops_exports.depthwiseConv2d({ + return [ops.fused.depthwiseConv2d({ x: getParamValue("x", node2, tensorMap, context), filter: getParamValue("filter", node2, tensorMap, context), strides: [stride[1], stride[2]], @@ -37689,7 +37352,7 @@ var executeOp4 = (node2, tensorMap, context) => { const shape = getParamValue("outputShape", node2, tensorMap, context); const stride = getParamValue("strides", node2, tensorMap, context); const pad3 = getPadding(node2, tensorMap, context); - return [conv2dTranspose(getParamValue("x", node2, tensorMap, context), getParamValue("filter", node2, tensorMap, context), shape, [stride[1], stride[2]], pad3)]; + return [ops.conv2dTranspose(getParamValue("x", node2, tensorMap, context), getParamValue("filter", node2, tensorMap, context), shape, [stride[1], stride[2]], pad3)]; } case "DepthwiseConv2dNative": case "DepthwiseConv2d": { @@ -37697,46 +37360,46 @@ var executeOp4 = (node2, tensorMap, context) => { const pad3 = getPadding(node2, tensorMap, context); const dilations = getParamValue("dilations", node2, tensorMap, context); const dataFormat = getParamValue("dataFormat", node2, tensorMap, context).toUpperCase(); - return [depthwiseConv2d(getParamValue("input", node2, tensorMap, context), getParamValue("filter", node2, tensorMap, context), [stride[1], stride[2]], pad3, dataFormat, [dilations[1], dilations[2]])]; + return [ops.depthwiseConv2d(getParamValue("input", node2, tensorMap, context), getParamValue("filter", node2, tensorMap, context), [stride[1], stride[2]], pad3, dataFormat, [dilations[1], dilations[2]])]; } case "Conv3D": { const stride = getParamValue("strides", node2, tensorMap, context); const pad3 = getParamValue("pad", node2, tensorMap, context); const dataFormat = getParamValue("dataFormat", node2, tensorMap, context).toUpperCase(); const dilations = getParamValue("dilations", node2, tensorMap, context); - return [conv3d(getParamValue("x", node2, tensorMap, context), getParamValue("filter", node2, tensorMap, context), [stride[1], stride[2], stride[3]], pad3, dataFormat, [dilations[1], dilations[2], dilations[3]])]; + return [ops.conv3d(getParamValue("x", node2, tensorMap, context), getParamValue("filter", node2, tensorMap, context), [stride[1], stride[2], stride[3]], pad3, dataFormat, [dilations[1], dilations[2], dilations[3]])]; } case "AvgPool": { const stride = getParamValue("strides", node2, tensorMap, context); const pad3 = getParamValue("pad", node2, tensorMap, context); const kernelSize = getParamValue("kernelSize", node2, tensorMap, context); - return [avgPool(getParamValue("x", node2, tensorMap, context), [kernelSize[1], kernelSize[2]], [stride[1], stride[2]], pad3)]; + return [ops.avgPool(getParamValue("x", node2, tensorMap, context), [kernelSize[1], kernelSize[2]], [stride[1], stride[2]], pad3)]; } case "MaxPool": { const stride = getParamValue("strides", node2, tensorMap, context); const pad3 = getParamValue("pad", node2, tensorMap, context); const kernelSize = getParamValue("kernelSize", node2, tensorMap, context); - return [maxPool(getParamValue("x", node2, tensorMap, context), [kernelSize[1], kernelSize[2]], [stride[1], stride[2]], pad3)]; + return [ops.maxPool(getParamValue("x", node2, tensorMap, context), [kernelSize[1], kernelSize[2]], [stride[1], stride[2]], pad3)]; } case "MaxPoolWithArgmax": { const stride = getParamValue("strides", node2, tensorMap, context); const pad3 = getParamValue("pad", node2, tensorMap, context); const kernelSize = getParamValue("kernelSize", node2, tensorMap, context); const includeBatchInIndex = getParamValue("includeBatchInIndex", node2, tensorMap, context); - const { result, indexes } = maxPoolWithArgmax(getParamValue("x", node2, tensorMap, context), [kernelSize[1], kernelSize[2]], [stride[1], stride[2]], pad3, includeBatchInIndex); + const { result, indexes } = ops.maxPoolWithArgmax(getParamValue("x", node2, tensorMap, context), [kernelSize[1], kernelSize[2]], [stride[1], stride[2]], pad3, includeBatchInIndex); return [result, indexes]; } case "AvgPool3D": { const stride = getParamValue("strides", node2, tensorMap, context); const pad3 = getParamValue("pad", node2, tensorMap, context); const kernelSize = getParamValue("kernelSize", node2, tensorMap, context); - return [avgPool3d(getParamValue("x", node2, tensorMap, context), [kernelSize[1], kernelSize[2], kernelSize[3]], [stride[1], stride[2], stride[3]], pad3)]; + return [ops.avgPool3d(getParamValue("x", node2, tensorMap, context), [kernelSize[1], kernelSize[2], kernelSize[3]], [stride[1], stride[2], stride[3]], pad3)]; } case "MaxPool3D": { const stride = getParamValue("strides", node2, tensorMap, context); const pad3 = getParamValue("pad", node2, tensorMap, context); const kernelSize = getParamValue("kernelSize", node2, tensorMap, context); - return [maxPool3d(getParamValue("x", node2, tensorMap, context), [kernelSize[1], kernelSize[2], kernelSize[3]], [stride[1], stride[2], stride[3]], pad3)]; + return [ops.maxPool3d(getParamValue("x", node2, tensorMap, context), [kernelSize[1], kernelSize[2], kernelSize[3]], [stride[1], stride[2], stride[3]], pad3)]; } case "Dilation2D": { const strides2 = getParamValue("strides", node2, tensorMap, context); @@ -37746,66 +37409,69 @@ var executeOp4 = (node2, tensorMap, context) => { const strideWidth = strides2[2]; const dilationHeight = dilations[1]; const dilationWidth = dilations[2]; - return [dilation2d(getParamValue("x", node2, tensorMap, context), getParamValue("filter", node2, tensorMap, context), [strideHeight, strideWidth], pad3, [dilationHeight, dilationWidth], "NHWC")]; + return [ops.dilation2d(getParamValue("x", node2, tensorMap, context), getParamValue("filter", node2, tensorMap, context), [strideHeight, strideWidth], pad3, [dilationHeight, dilationWidth], "NHWC")]; } default: throw TypeError(`Node type ${node2.op} is not implemented`); } }; -var executeOp5 = (node2, tensorMap, context) => { +var executeOp5 = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "Fill": { const shape = getParamValue("shape", node2, tensorMap, context); const dtype = getParamValue("dtype", node2, tensorMap, context); const value = getParamValue("value", node2, tensorMap, context); - return [fill(shape, value, dtype)]; + return [ops.fill(shape, value, dtype)]; } case "LinSpace": { const start = getParamValue("start", node2, tensorMap, context); const stop = getParamValue("stop", node2, tensorMap, context); const num = getParamValue("num", node2, tensorMap, context); - return [linspace(start, stop, num)]; + return [ops.linspace(start, stop, num)]; } case "Multinomial": { const logits = getParamValue("logits", node2, tensorMap, context); const numSamples = getParamValue("numSamples", node2, tensorMap, context); const seed = getParamValue("seed", node2, tensorMap, context); - return [multinomial(logits, numSamples, seed)]; + return [ops.multinomial(logits, numSamples, seed)]; } case "OneHot": { const indices = getParamValue("indices", node2, tensorMap, context); const depth = getParamValue("depth", node2, tensorMap, context); const onValue = getParamValue("onValue", node2, tensorMap, context); const offValue = getParamValue("offValue", node2, tensorMap, context); - return [oneHot(indices, depth, onValue, offValue)]; + return [ops.oneHot(indices, depth, onValue, offValue)]; } case "Ones": { - return [ones2(getParamValue("shape", node2, tensorMap, context), getParamValue("dtype", node2, tensorMap, context))]; + return [ops.ones(getParamValue("shape", node2, tensorMap, context), getParamValue("dtype", node2, tensorMap, context))]; } case "OnesLike": { - return [onesLike(getParamValue("x", node2, tensorMap, context))]; + return [ops.onesLike(getParamValue("x", node2, tensorMap, context))]; + } + case "RandomStandardNormal": { + return [ops.randomStandardNormal(getParamValue("shape", node2, tensorMap, context), getParamValue("dtype", node2, tensorMap, context), getParamValue("seed", node2, tensorMap, context))]; } case "RandomUniform": { - return [randomUniform(getParamValue("shape", node2, tensorMap, context), getParamValue("minval", node2, tensorMap, context), getParamValue("maxval", node2, tensorMap, context), getParamValue("dtype", node2, tensorMap, context))]; + return [ops.randomUniform(getParamValue("shape", node2, tensorMap, context), getParamValue("minval", node2, tensorMap, context), getParamValue("maxval", node2, tensorMap, context), getParamValue("dtype", node2, tensorMap, context))]; } case "Range": { const start = getParamValue("start", node2, tensorMap, context); const stop = getParamValue("stop", node2, tensorMap, context); const step5 = getParamValue("step", node2, tensorMap, context); - return [range(start, stop, step5, getParamValue("dtype", node2, tensorMap, context))]; + return [ops.range(start, stop, step5, getParamValue("dtype", node2, tensorMap, context))]; } case "TruncatedNormal": { const shape = getParamValue("shape", node2, tensorMap, context); const mean5 = getParamValue("mean", node2, tensorMap, context); const stdDev = getParamValue("stdDev", node2, tensorMap, context); const seed = getParamValue("seed", node2, tensorMap, context); - return [truncatedNormal(shape, mean5, stdDev, getParamValue("dtype", node2, tensorMap, context), seed)]; + return [ops.truncatedNormal(shape, mean5, stdDev, getParamValue("dtype", node2, tensorMap, context), seed)]; } case "Zeros": { - return [zeros(getParamValue("shape", node2, tensorMap, context), getParamValue("dtype", node2, tensorMap, context))]; + return [ops.zeros(getParamValue("shape", node2, tensorMap, context), getParamValue("dtype", node2, tensorMap, context))]; } case "ZerosLike": { - return [zerosLike(getParamValue("x", node2, tensorMap, context))]; + return [ops.zerosLike(getParamValue("x", node2, tensorMap, context))]; } default: throw TypeError(`Node type ${node2.op} is not implemented`); @@ -37827,72 +37493,72 @@ function nmsParams(node2, tensorMap, context) { softNmsSigma }; } -var executeOp6 = async (node2, tensorMap, context) => { +var executeOp6 = async (node2, tensorMap, context, resourceManager, ops = ops_for_converter_exports) => { switch (node2.op) { case "NonMaxSuppressionV5": { const { boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma } = nmsParams(node2, tensorMap, context); - const result = await image.nonMaxSuppressionWithScoreAsync(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma); + const result = await ops.image.nonMaxSuppressionWithScoreAsync(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma); return [result.selectedIndices, result.selectedScores]; } case "NonMaxSuppressionV4": { const { boxes, scores, maxOutputSize, iouThreshold, scoreThreshold } = nmsParams(node2, tensorMap, context); const padToMaxOutputSize = getParamValue("padToMaxOutputSize", node2, tensorMap, context); - const result = await image.nonMaxSuppressionPaddedAsync(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize); + const result = await ops.image.nonMaxSuppressionPaddedAsync(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize); return [result.selectedIndices, result.validOutputs]; } case "NonMaxSuppressionV3": case "NonMaxSuppressionV2": { const { boxes, scores, maxOutputSize, iouThreshold, scoreThreshold } = nmsParams(node2, tensorMap, context); - return [await image.nonMaxSuppressionAsync(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold)]; + return [await ops.image.nonMaxSuppressionAsync(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold)]; } case "Where": { - const condition = cast(getParamValue("condition", node2, tensorMap, context), "bool"); - const result = [await whereAsync(condition)]; + const condition = ops.cast(getParamValue("condition", node2, tensorMap, context), "bool"); + const result = [await ops.whereAsync(condition)]; condition.dispose(); return result; } case "ListDiff": { - return setdiff1dAsync(getParamValue("x", node2, tensorMap, context), getParamValue("y", node2, tensorMap, context)); + return ops.setdiff1dAsync(getParamValue("x", node2, tensorMap, context), getParamValue("y", node2, tensorMap, context)); } default: throw TypeError(`Node type ${node2.op} is not implemented`); } }; -var executeOp7 = (node2, tensorMap, context) => { +var executeOp7 = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "LowerBound": { const sortedSequence = getParamValue("sortedSequence", node2, tensorMap, context); const values = getParamValue("values", node2, tensorMap, context); - return [lowerBound(sortedSequence, values)]; + return [ops.lowerBound(sortedSequence, values)]; } case "TopKV2": { const x = getParamValue("x", node2, tensorMap, context); const k = getParamValue("k", node2, tensorMap, context); const sorted = getParamValue("sorted", node2, tensorMap, context); - const result = topk(x, k, sorted); + const result = ops.topk(x, k, sorted); return [result.values, result.indices]; } case "UpperBound": { const sortedSequence = getParamValue("sortedSequence", node2, tensorMap, context); const values = getParamValue("values", node2, tensorMap, context); - return [upperBound(sortedSequence, values)]; + return [ops.upperBound(sortedSequence, values)]; } case "Unique": { const x = getParamValue("x", node2, tensorMap, context); - const result = unique(x); + const result = ops.unique(x); return [result.values, result.indices]; } case "UniqueV2": { const x = getParamValue("x", node2, tensorMap, context); const axis = getParamValue("axis", node2, tensorMap, context); - const result = unique(x, axis); + const result = ops.unique(x, axis); return [result.values, result.indices]; } default: throw TypeError(`Node type ${node2.op} is not implemented`); } }; -var executeOp8 = (node2, tensorMap, context) => { +var executeOp8 = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "Const": { return tensorMap[node2.name]; @@ -37914,15 +37580,15 @@ var executeOp8 = (node2, tensorMap, context) => { const snapshot = getParamValue("x", node2, tensorMap, context); return [cloneTensor(snapshot)]; case "Shape": - return [tensor1d(getParamValue("x", node2, tensorMap, context).shape, "int32")]; + return [ops.tensor1d(getParamValue("x", node2, tensorMap, context).shape, "int32")]; case "ShapeN": - return getParamValue("x", node2, tensorMap, context).map((t2) => tensor1d(t2.shape)); + return getParamValue("x", node2, tensorMap, context).map((t2) => ops.tensor1d(t2.shape)); case "Size": - return [scalar(getParamValue("x", node2, tensorMap, context).size, "int32")]; + return [ops.scalar(getParamValue("x", node2, tensorMap, context).size, "int32")]; case "Rank": - return [scalar(getParamValue("x", node2, tensorMap, context).rank, "int32")]; + return [ops.scalar(getParamValue("x", node2, tensorMap, context).rank, "int32")]; case "NoOp": - return [scalar(1)]; + return [ops.scalar(1)]; case "Print": const input2 = getParamValue("x", node2, tensorMap, context); const data = getParamValue("data", node2, tensorMap, context); @@ -38041,21 +37707,21 @@ var executeOp9 = async (node2, tensorMap, context, resourceManager) => { throw TypeError(`Node type ${node2.op} is not implemented`); } }; -var executeOp10 = (node2, tensorMap, context) => { +var executeOp10 = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "ResizeBilinear": { const images = getParamValue("images", node2, tensorMap, context); const size2 = getParamValue("size", node2, tensorMap, context); const alignCorners = getParamValue("alignCorners", node2, tensorMap, context); const halfPixelCenters = getParamValue("halfPixelCenters", node2, tensorMap, context); - return [image.resizeBilinear(images, [size2[0], size2[1]], alignCorners, halfPixelCenters)]; + return [ops.image.resizeBilinear(images, [size2[0], size2[1]], alignCorners, halfPixelCenters)]; } case "ResizeNearestNeighbor": { const images = getParamValue("images", node2, tensorMap, context); const size2 = getParamValue("size", node2, tensorMap, context); const alignCorners = getParamValue("alignCorners", node2, tensorMap, context); const halfPixelCenters = getParamValue("halfPixelCenters", node2, tensorMap, context); - return [image.resizeNearestNeighbor(images, [size2[0], size2[1]], alignCorners, halfPixelCenters)]; + return [ops.image.resizeNearestNeighbor(images, [size2[0], size2[1]], alignCorners, halfPixelCenters)]; } case "CropAndResize": { const image2 = getParamValue("image", node2, tensorMap, context); @@ -38064,7 +37730,7 @@ var executeOp10 = (node2, tensorMap, context) => { const cropSize = getParamValue("cropSize", node2, tensorMap, context); const method = getParamValue("method", node2, tensorMap, context); const extrapolationValue = getParamValue("extrapolationValue", node2, tensorMap, context); - return [image.cropAndResize(image2, boxes, boxInd, cropSize, method, extrapolationValue)]; + return [ops.image.cropAndResize(image2, boxes, boxInd, cropSize, method, extrapolationValue)]; } case "ImageProjectiveTransformV3": { const images = getParamValue("images", node2, tensorMap, context); @@ -38073,59 +37739,59 @@ var executeOp10 = (node2, tensorMap, context) => { const fillValue = getParamValue("fillValue", node2, tensorMap, context); const interpolation = getParamValue("interpolation", node2, tensorMap, context); const fillMode = getParamValue("fillMode", node2, tensorMap, context); - return [image.transform(images, transforms, interpolation.toLowerCase(), fillMode.toLowerCase(), fillValue, outputShape)]; + return [ops.image.transform(images, transforms, interpolation.toLowerCase(), fillMode.toLowerCase(), fillValue, outputShape)]; } default: throw TypeError(`Node type ${node2.op} is not implemented`); } }; -var executeOp11 = (node2, tensorMap, context) => { +var executeOp11 = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "Equal": { - return [equal(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.equal(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "NotEqual": { - return [notEqual(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.notEqual(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "Greater": { - return [greater(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.greater(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "GreaterEqual": { - return [greaterEqual(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.greaterEqual(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "Less": { - return [less(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.less(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "LessEqual": { - return [lessEqual(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.lessEqual(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "LogicalAnd": { - return [logicalAnd(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.logicalAnd(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "LogicalNot": { - return [logicalNot(getParamValue("a", node2, tensorMap, context))]; + return [ops.logicalNot(getParamValue("a", node2, tensorMap, context))]; } case "LogicalOr": { - return [logicalOr(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.logicalOr(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } case "Select": case "SelectV2": { - return [where(getParamValue("condition", node2, tensorMap, context), getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; + return [ops.where(getParamValue("condition", node2, tensorMap, context), getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context))]; } default: throw TypeError(`Node type ${node2.op} is not implemented`); } }; -var executeOp12 = (node2, tensorMap, context) => { +var executeOp12 = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "BatchMatMul": case "BatchMatMulV2": case "MatMul": - return [matMul(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context), getParamValue("transposeA", node2, tensorMap, context), getParamValue("transposeB", node2, tensorMap, context))]; + return [ops.matMul(getParamValue("a", node2, tensorMap, context), getParamValue("b", node2, tensorMap, context), getParamValue("transposeA", node2, tensorMap, context), getParamValue("transposeB", node2, tensorMap, context))]; case "Einsum": - return [einsum(getParamValue("equation", node2, tensorMap, context), ...getParamValue("tensors", node2, tensorMap, context))]; + return [ops.einsum(getParamValue("equation", node2, tensorMap, context), ...getParamValue("tensors", node2, tensorMap, context))]; case "Transpose": - return [transpose(getParamValue("x", node2, tensorMap, context), getParamValue("perm", node2, tensorMap, context))]; + return [ops.transpose(getParamValue("x", node2, tensorMap, context), getParamValue("perm", node2, tensorMap, context))]; case "_FusedMatMul": const [extraOp, activationFunc] = getParamValue("fusedOps", node2, tensorMap, context); const isBiasAdd = extraOp === "biasadd"; @@ -38141,7 +37807,7 @@ var executeOp12 = (node2, tensorMap, context) => { } } const [biasArg, preluArg] = getParamValue("args", node2, tensorMap, context); - return [fused_ops_exports.matMul({ + return [ops.fused.matMul({ a: getParamValue("a", node2, tensorMap, context), b: getParamValue("b", node2, tensorMap, context), transposeA: getParamValue("transposeA", node2, tensorMap, context), @@ -38155,127 +37821,127 @@ var executeOp12 = (node2, tensorMap, context) => { throw TypeError(`Node type ${node2.op} is not implemented`); } }; -var executeOp13 = (node2, tensorMap, context) => { +var executeOp13 = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "EuclideanNorm": - return [euclideanNorm(getParamValue("x", node2, tensorMap, context), getParamValue("axis", node2, tensorMap, context), getParamValue("keepDims", node2, tensorMap, context))]; + return [ops.euclideanNorm(getParamValue("x", node2, tensorMap, context), getParamValue("axis", node2, tensorMap, context), getParamValue("keepDims", node2, tensorMap, context))]; case "FusedBatchNorm": case "FusedBatchNormV2": { - return [batchNorm(getParamValue("x", node2, tensorMap, context), getParamValue("mean", node2, tensorMap, context), getParamValue("variance", node2, tensorMap, context), getParamValue("offset", node2, tensorMap, context), getParamValue("scale", node2, tensorMap, context), getParamValue("epsilon", node2, tensorMap, context))]; + return [ops.batchNorm(getParamValue("x", node2, tensorMap, context), getParamValue("mean", node2, tensorMap, context), getParamValue("variance", node2, tensorMap, context), getParamValue("offset", node2, tensorMap, context), getParamValue("scale", node2, tensorMap, context), getParamValue("epsilon", node2, tensorMap, context))]; } case "FusedBatchNormV3": { - return [batchNorm(getParamValue("x", node2, tensorMap, context), getParamValue("mean", node2, tensorMap, context), getParamValue("variance", node2, tensorMap, context), getParamValue("offset", node2, tensorMap, context), getParamValue("scale", node2, tensorMap, context), getParamValue("epsilon", node2, tensorMap, context))]; + return [ops.batchNorm(getParamValue("x", node2, tensorMap, context), getParamValue("mean", node2, tensorMap, context), getParamValue("variance", node2, tensorMap, context), getParamValue("offset", node2, tensorMap, context), getParamValue("scale", node2, tensorMap, context), getParamValue("epsilon", node2, tensorMap, context))]; } case "LRN": { - return [localResponseNormalization(getParamValue("x", node2, tensorMap, context), getParamValue("radius", node2, tensorMap, context), getParamValue("bias", node2, tensorMap, context), getParamValue("alpha", node2, tensorMap, context), getParamValue("beta", node2, tensorMap, context))]; + return [ops.localResponseNormalization(getParamValue("x", node2, tensorMap, context), getParamValue("radius", node2, tensorMap, context), getParamValue("bias", node2, tensorMap, context), getParamValue("alpha", node2, tensorMap, context), getParamValue("beta", node2, tensorMap, context))]; } case "Softmax": { - return [softmax(getParamValue("x", node2, tensorMap, context))]; + return [ops.softmax(getParamValue("x", node2, tensorMap, context))]; } case "LogSoftmax": { - return [logSoftmax(getParamValue("x", node2, tensorMap, context))]; + return [ops.logSoftmax(getParamValue("x", node2, tensorMap, context))]; } case "SparseToDense": { - return [sparseToDense(getParamValue("sparseIndices", node2, tensorMap, context), getParamValue("outputShape", node2, tensorMap, context), getParamValue("sparseValues", node2, tensorMap, context), getParamValue("defaultValue", node2, tensorMap, context))]; + return [ops.sparseToDense(getParamValue("sparseIndices", node2, tensorMap, context), getParamValue("outputShape", node2, tensorMap, context), getParamValue("sparseValues", node2, tensorMap, context), getParamValue("defaultValue", node2, tensorMap, context))]; } default: throw TypeError(`Node type ${node2.op} is not implemented`); } }; -var executeOp14 = (node2, tensorMap, context) => { +var executeOp14 = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "Max": { const axis = getParamValue("axis", node2, tensorMap, context); const keepDims = getParamValue("keepDims", node2, tensorMap, context); - return [max(getParamValue("x", node2, tensorMap, context), axis, keepDims)]; + return [ops.max(getParamValue("x", node2, tensorMap, context), axis, keepDims)]; } case "Mean": { const axis = getParamValue("axis", node2, tensorMap, context); const keepDims = getParamValue("keepDims", node2, tensorMap, context); - return [mean(getParamValue("x", node2, tensorMap, context), axis, keepDims)]; + return [ops.mean(getParamValue("x", node2, tensorMap, context), axis, keepDims)]; } case "Min": { const axis = getParamValue("axis", node2, tensorMap, context); const keepDims = getParamValue("keepDims", node2, tensorMap, context); - return [min(getParamValue("x", node2, tensorMap, context), axis, keepDims)]; + return [ops.min(getParamValue("x", node2, tensorMap, context), axis, keepDims)]; } case "Sum": { const axis = getParamValue("axis", node2, tensorMap, context); const keepDims = getParamValue("keepDims", node2, tensorMap, context); - return [sum2(getParamValue("x", node2, tensorMap, context), axis, keepDims)]; + return [ops.sum(getParamValue("x", node2, tensorMap, context), axis, keepDims)]; } case "All": { const axis = getParamValue("axis", node2, tensorMap, context); const keepDims = getParamValue("keepDims", node2, tensorMap, context); - return [all(getParamValue("x", node2, tensorMap, context), axis, keepDims)]; + return [ops.all(getParamValue("x", node2, tensorMap, context), axis, keepDims)]; } case "Any": { const axis = getParamValue("axis", node2, tensorMap, context); const keepDims = getParamValue("keepDims", node2, tensorMap, context); - return [any(getParamValue("x", node2, tensorMap, context), axis, keepDims)]; + return [ops.any(getParamValue("x", node2, tensorMap, context), axis, keepDims)]; } case "ArgMax": { const axis = getParamValue("axis", node2, tensorMap, context); - return [argMax(getParamValue("x", node2, tensorMap, context), axis)]; + return [ops.argMax(getParamValue("x", node2, tensorMap, context), axis)]; } case "ArgMin": { const axis = getParamValue("axis", node2, tensorMap, context); - return [argMin(getParamValue("x", node2, tensorMap, context), axis)]; + return [ops.argMin(getParamValue("x", node2, tensorMap, context), axis)]; } case "Prod": { const axis = getParamValue("axis", node2, tensorMap, context); const keepDims = getParamValue("keepDims", node2, tensorMap, context); - return [prod(getParamValue("x", node2, tensorMap, context), axis, keepDims)]; + return [ops.prod(getParamValue("x", node2, tensorMap, context), axis, keepDims)]; } case "Cumprod": { const axis = getParamValue("axis", node2, tensorMap, context); const exclusive = getParamValue("exclusive", node2, tensorMap, context); const reverse5 = getParamValue("reverse", node2, tensorMap, context); - return [cumprod(getParamValue("x", node2, tensorMap, context), axis, exclusive, reverse5)]; + return [ops.cumprod(getParamValue("x", node2, tensorMap, context), axis, exclusive, reverse5)]; } case "Cumsum": { const axis = getParamValue("axis", node2, tensorMap, context); const exclusive = getParamValue("exclusive", node2, tensorMap, context); const reverse5 = getParamValue("reverse", node2, tensorMap, context); - return [cumsum(getParamValue("x", node2, tensorMap, context), axis, exclusive, reverse5)]; + return [ops.cumsum(getParamValue("x", node2, tensorMap, context), axis, exclusive, reverse5)]; } case "Bincount": const x = getParamValue("x", node2, tensorMap, context); const weights = getParamValue("weights", node2, tensorMap, context); const size2 = getParamValue("size", node2, tensorMap, context); - return [bincount(x, weights, size2)]; + return [ops.bincount(x, weights, size2)]; case "DenseBincount": { const x2 = getParamValue("x", node2, tensorMap, context); const weights2 = getParamValue("weights", node2, tensorMap, context); const size22 = getParamValue("size", node2, tensorMap, context); const binaryOutput = getParamValue("binaryOutput", node2, tensorMap, context); - return [denseBincount(x2, weights2, size22, binaryOutput)]; + return [ops.denseBincount(x2, weights2, size22, binaryOutput)]; } default: throw TypeError(`Node type ${node2.op} is not implemented`); } }; -var executeOp15 = (node2, tensorMap, context) => { +var executeOp15 = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "ConcatV2": case "Concat": { - const n = getParamValue("n", node2, tensorMap, context); + const n2 = getParamValue("n", node2, tensorMap, context); const axis = getParamValue("axis", node2, tensorMap, context); let inputs = getParamValue("tensors", node2, tensorMap, context); - inputs = inputs.slice(0, n); - return [concat(inputs, axis)]; + inputs = inputs.slice(0, n2); + return [ops.concat(inputs, axis)]; } case "Gather": { const input2 = getParamValue("x", node2, tensorMap, context); const indices = getParamValue("indices", node2, tensorMap, context); - return [gather(input2, cast(indices, "int32"), 0)]; + return [ops.gather(input2, ops.cast(indices, "int32"), 0)]; } case "GatherV2": { const axis = getParamValue("axis", node2, tensorMap, context); const batchDims = getParamValue("batchDims", node2, tensorMap, context); const input2 = getParamValue("x", node2, tensorMap, context); const indices = getParamValue("indices", node2, tensorMap, context); - return [gather(input2, cast(indices, "int32"), axis, batchDims)]; + return [ops.gather(input2, ops.cast(indices, "int32"), axis, batchDims)]; } case "Reverse": { const dims = getParamValue("dims", node2, tensorMap, context); @@ -38286,17 +37952,17 @@ var executeOp15 = (node2, tensorMap, context) => { } } const input2 = getParamValue("x", node2, tensorMap, context); - return [reverse(input2, axis)]; + return [ops.reverse(input2, axis)]; } case "ReverseV2": { const axis = getParamValue("axis", node2, tensorMap, context); const input2 = getParamValue("x", node2, tensorMap, context); - return [reverse(input2, axis)]; + return [ops.reverse(input2, axis)]; } case "Slice": { const begin = getParamValue("begin", node2, tensorMap, context); const size2 = getParamValue("size", node2, tensorMap, context); - return [slice(getParamValue("x", node2, tensorMap, context), begin, size2)]; + return [ops.slice(getParamValue("x", node2, tensorMap, context), begin, size2)]; } case "StridedSlice": { const begin = getParamValue("begin", node2, tensorMap, context); @@ -38308,66 +37974,66 @@ var executeOp15 = (node2, tensorMap, context) => { const newAxisMask = getParamValue("newAxisMask", node2, tensorMap, context); const shrinkAxisMask = getParamValue("shrinkAxisMask", node2, tensorMap, context); const tensor2 = getParamValue("x", node2, tensorMap, context); - return [stridedSlice(tensor2, begin, end, strides2, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask)]; + return [ops.stridedSlice(tensor2, begin, end, strides2, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask)]; } case "Pack": { return tidy(() => { const axis = getParamValue("axis", node2, tensorMap, context); const tensors = getParamValue("tensors", node2, tensorMap, context); const shape = tensors[0].shape; - const squeezedShape = squeeze(tensors[0]).shape; + const squeezedShape = ops.squeeze(tensors[0]).shape; const mapped = tensors.map((tensor2) => { const sameShape = util_exports.arraysEqual(tensor2.shape, shape); - if (!sameShape && !util_exports.arraysEqual(squeeze(tensor2).shape, squeezedShape)) { + if (!sameShape && !util_exports.arraysEqual(ops.squeeze(tensor2).shape, squeezedShape)) { throw new Error("the input tensors shape does not match"); } - return sameShape ? tensor2 : reshape(tensor2, shape); + return sameShape ? tensor2 : ops.reshape(tensor2, shape); }); - return [stack(mapped, axis)]; + return [ops.stack(mapped, axis)]; }); } case "Unpack": { const axis = getParamValue("axis", node2, tensorMap, context); const tensor2 = getParamValue("tensor", node2, tensorMap, context); - return unstack(tensor2, axis); + return ops.unstack(tensor2, axis); } case "Tile": { const reps = getParamValue("reps", node2, tensorMap, context); - return [tile(getParamValue("x", node2, tensorMap, context), reps)]; + return [ops.tile(getParamValue("x", node2, tensorMap, context), reps)]; } case "Split": case "SplitV": { const axis = getParamValue("axis", node2, tensorMap, context); const numOrSizeSplits = getParamValue("numOrSizeSplits", node2, tensorMap, context); const tensor2 = getParamValue("x", node2, tensorMap, context); - return split(tensor2, numOrSizeSplits, axis); + return ops.split(tensor2, numOrSizeSplits, axis); } case "ScatterNd": { const indices = getParamValue("indices", node2, tensorMap, context); const values = getParamValue("values", node2, tensorMap, context); const shape = getParamValue("shape", node2, tensorMap, context); - return [scatterND(indices, values, shape)]; + return [ops.scatterND(indices, values, shape)]; } case "GatherNd": { const x = getParamValue("x", node2, tensorMap, context); const indices = getParamValue("indices", node2, tensorMap, context); - return [gatherND(x, indices)]; + return [ops.gatherND(x, indices)]; } case "SparseToDense": { const indices = getParamValue("sparseIndices", node2, tensorMap, context); const shape = getParamValue("outputShape", node2, tensorMap, context); const sparseValues = getParamValue("sparseValues", node2, tensorMap, context); const defaultValue = getParamValue("defaultValue", node2, tensorMap, context); - return [sparseToDense(indices, sparseValues, shape, sparseValues.dtype === defaultValue.dtype ? defaultValue : cast(defaultValue, sparseValues.dtype))]; + return [ops.sparseToDense(indices, sparseValues, shape, sparseValues.dtype === defaultValue.dtype ? defaultValue : ops.cast(defaultValue, sparseValues.dtype))]; } default: throw TypeError(`Node type ${node2.op} is not implemented`); } }; -var executeOp16 = (node2, tensorMap, context) => { +var executeOp16 = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "SparseFillEmptyRows": { - const { outputIndices, outputValues, emptyRowIndicator, reverseIndexMap } = sparse.sparseFillEmptyRows(getParamValue("indices", node2, tensorMap, context), getParamValue("values", node2, tensorMap, context), getParamValue("denseShape", node2, tensorMap, context), getParamValue("defaultValue", node2, tensorMap, context)); + const { outputIndices, outputValues, emptyRowIndicator, reverseIndexMap } = ops.sparse.sparseFillEmptyRows(getParamValue("indices", node2, tensorMap, context), getParamValue("values", node2, tensorMap, context), getParamValue("denseShape", node2, tensorMap, context), getParamValue("defaultValue", node2, tensorMap, context)); return [ outputIndices, outputValues, @@ -38376,144 +38042,144 @@ var executeOp16 = (node2, tensorMap, context) => { ]; } case "SparseReshape": { - const { outputIndices, outputShape } = sparse.sparseReshape(getParamValue("inputIndices", node2, tensorMap, context), getParamValue("inputShape", node2, tensorMap, context), getParamValue("newShape", node2, tensorMap, context)); + const { outputIndices, outputShape } = ops.sparse.sparseReshape(getParamValue("inputIndices", node2, tensorMap, context), getParamValue("inputShape", node2, tensorMap, context), getParamValue("newShape", node2, tensorMap, context)); return [outputIndices, outputShape]; } case "SparseSegmentMean": { - const outputData = sparse.sparseSegmentMean(getParamValue("data", node2, tensorMap, context), getParamValue("indices", node2, tensorMap, context), getParamValue("segmentIds", node2, tensorMap, context)); + const outputData = ops.sparse.sparseSegmentMean(getParamValue("data", node2, tensorMap, context), getParamValue("indices", node2, tensorMap, context), getParamValue("segmentIds", node2, tensorMap, context)); return [outputData]; } case "SparseSegmentSum": { - const outputData = sparse.sparseSegmentSum(getParamValue("data", node2, tensorMap, context), getParamValue("indices", node2, tensorMap, context), getParamValue("segmentIds", node2, tensorMap, context)); + const outputData = ops.sparse.sparseSegmentSum(getParamValue("data", node2, tensorMap, context), getParamValue("indices", node2, tensorMap, context), getParamValue("segmentIds", node2, tensorMap, context)); return [outputData]; } default: throw TypeError(`Node type ${node2.op} is not implemented`); } }; -var executeOp17 = (node2, tensorMap, context) => { +var executeOp17 = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "FFT": { - return [fft(getParamValue("x", node2, tensorMap, context))]; + return [ops.fft(getParamValue("x", node2, tensorMap, context))]; } case "IFFT": { - return [ifft(getParamValue("x", node2, tensorMap, context))]; + return [ops.ifft(getParamValue("x", node2, tensorMap, context))]; } case "RFFT": { - return [rfft(getParamValue("x", node2, tensorMap, context))]; + return [ops.rfft(getParamValue("x", node2, tensorMap, context))]; } case "IRFFT": { - return [irfft(getParamValue("x", node2, tensorMap, context))]; + return [ops.irfft(getParamValue("x", node2, tensorMap, context))]; } default: throw TypeError(`Node type ${node2.op} is not implemented`); } }; -var executeOp18 = (node2, tensorMap, context) => { +var executeOp18 = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "StringNGrams": { - const { nGrams, nGramsSplits } = string.stringNGrams(getParamValue("data", node2, tensorMap, context), getParamValue("dataSplits", node2, tensorMap, context), getParamValue("separator", node2, tensorMap, context), getParamValue("nGramWidths", node2, tensorMap, context), getParamValue("leftPad", node2, tensorMap, context), getParamValue("rightPad", node2, tensorMap, context), getParamValue("padWidth", node2, tensorMap, context), getParamValue("preserveShortSequences", node2, tensorMap, context)); + const { nGrams, nGramsSplits } = ops.string.stringNGrams(getParamValue("data", node2, tensorMap, context), getParamValue("dataSplits", node2, tensorMap, context), getParamValue("separator", node2, tensorMap, context), getParamValue("nGramWidths", node2, tensorMap, context), getParamValue("leftPad", node2, tensorMap, context), getParamValue("rightPad", node2, tensorMap, context), getParamValue("padWidth", node2, tensorMap, context), getParamValue("preserveShortSequences", node2, tensorMap, context)); return [nGrams, nGramsSplits]; } case "StringSplit": { - const { indices, values, shape } = string.stringSplit(getParamValue("input", node2, tensorMap, context), getParamValue("delimiter", node2, tensorMap, context), getParamValue("skipEmpty", node2, tensorMap, context)); + const { indices, values, shape } = ops.string.stringSplit(getParamValue("input", node2, tensorMap, context), getParamValue("delimiter", node2, tensorMap, context), getParamValue("skipEmpty", node2, tensorMap, context)); return [indices, values, shape]; } case "StringToHashBucketFast": { - const output = string.stringToHashBucketFast(getParamValue("input", node2, tensorMap, context), getParamValue("numBuckets", node2, tensorMap, context)); + const output = ops.string.stringToHashBucketFast(getParamValue("input", node2, tensorMap, context), getParamValue("numBuckets", node2, tensorMap, context)); return [output]; } default: throw TypeError(`Node type ${node2.op} is not implemented`); } }; -var executeOp19 = (node2, tensorMap, context) => { +var executeOp19 = (node2, tensorMap, context, ops = ops_for_converter_exports) => { switch (node2.op) { case "Cast": { - return [cast(getParamValue("x", node2, tensorMap, context), getParamValue("dtype", node2, tensorMap, context))]; + return [ops.cast(getParamValue("x", node2, tensorMap, context), getParamValue("dtype", node2, tensorMap, context))]; } case "ExpandDims": { const axis = getParamValue("axis", node2, tensorMap, context); - return [expandDims(getParamValue("x", node2, tensorMap, context), axis)]; + return [ops.expandDims(getParamValue("x", node2, tensorMap, context), axis)]; } case "Squeeze": { const axis = getParamValue("axis", node2, tensorMap, context); - return [squeeze(getParamValue("x", node2, tensorMap, context), axis)]; + return [ops.squeeze(getParamValue("x", node2, tensorMap, context), axis)]; } case "Reshape": { - return [reshape(getParamValue("x", node2, tensorMap, context), getParamValue("shape", node2, tensorMap, context))]; + return [ops.reshape(getParamValue("x", node2, tensorMap, context), getParamValue("shape", node2, tensorMap, context))]; } case "MirrorPad": { - return [mirrorPad(getParamValue("x", node2, tensorMap, context), getParamValue("padding", node2, tensorMap, context), getParamValue("mode", node2, tensorMap, context))]; + return [ops.mirrorPad(getParamValue("x", node2, tensorMap, context), getParamValue("padding", node2, tensorMap, context), getParamValue("mode", node2, tensorMap, context))]; } case "PadV2": case "Pad": { - return [pad(getParamValue("x", node2, tensorMap, context), getParamValue("padding", node2, tensorMap, context), getParamValue("constantValue", node2, tensorMap, context))]; + return [ops.pad(getParamValue("x", node2, tensorMap, context), getParamValue("padding", node2, tensorMap, context), getParamValue("constantValue", node2, tensorMap, context))]; } case "SpaceToBatchND": { const blockShape = getParamValue("blockShape", node2, tensorMap, context); const paddings = getParamValue("paddings", node2, tensorMap, context); - return [spaceToBatchND(getParamValue("x", node2, tensorMap, context), blockShape, paddings)]; + return [ops.spaceToBatchND(getParamValue("x", node2, tensorMap, context), blockShape, paddings)]; } case "BatchToSpaceND": { const blockShape = getParamValue("blockShape", node2, tensorMap, context); const crops = getParamValue("crops", node2, tensorMap, context); - return [batchToSpaceND(getParamValue("x", node2, tensorMap, context), blockShape, crops)]; + return [ops.batchToSpaceND(getParamValue("x", node2, tensorMap, context), blockShape, crops)]; } case "DepthToSpace": { const blockSize = getParamValue("blockSize", node2, tensorMap, context); const dataFormat = getParamValue("dataFormat", node2, tensorMap, context).toUpperCase(); - return [depthToSpace(getParamValue("x", node2, tensorMap, context), blockSize, dataFormat)]; + return [ops.depthToSpace(getParamValue("x", node2, tensorMap, context), blockSize, dataFormat)]; } case "BroadcastTo": { - return [broadcastTo(getParamValue("x", node2, tensorMap, context), getParamValue("shape", node2, tensorMap, context))]; + return [ops.broadcastTo(getParamValue("x", node2, tensorMap, context), getParamValue("shape", node2, tensorMap, context))]; } case "BroadcastArgs": { - return [broadcastArgs(getParamValue("s0", node2, tensorMap, context), getParamValue("s1", node2, tensorMap, context))]; + return [ops.broadcastArgs(getParamValue("s0", node2, tensorMap, context), getParamValue("s1", node2, tensorMap, context))]; } default: throw TypeError(`Node type ${node2.op} is not implemented`); } }; -function executeOp20(node2, tensorMap, context, resourceManager) { +function executeOp20(node2, tensorMap, context, resourceManager, tidy2 = tidy) { const value = ((node22, tensorMap2, context2) => { switch (node22.category) { case "arithmetic": - return tidy(() => executeOp(node22, tensorMap2, context2)); + return tidy2(() => executeOp(node22, tensorMap2, context2)); case "basic_math": - return tidy(() => executeOp2(node22, tensorMap2, context2)); + return tidy2(() => executeOp2(node22, tensorMap2, context2)); case "control": return executeOp3(node22, tensorMap2, context2); case "convolution": - return tidy(() => executeOp4(node22, tensorMap2, context2)); + return tidy2(() => executeOp4(node22, tensorMap2, context2)); case "creation": - return tidy(() => executeOp5(node22, tensorMap2, context2)); + return tidy2(() => executeOp5(node22, tensorMap2, context2)); case "dynamic": return executeOp6(node22, tensorMap2, context2); case "evaluation": - return tidy(() => executeOp7(node22, tensorMap2, context2)); + return tidy2(() => executeOp7(node22, tensorMap2, context2)); case "image": - return tidy(() => executeOp10(node22, tensorMap2, context2)); + return tidy2(() => executeOp10(node22, tensorMap2, context2)); case "graph": - return tidy(() => executeOp8(node22, tensorMap2, context2)); + return tidy2(() => executeOp8(node22, tensorMap2, context2)); case "logical": - return tidy(() => executeOp11(node22, tensorMap2, context2)); + return tidy2(() => executeOp11(node22, tensorMap2, context2)); case "matrices": - return tidy(() => executeOp12(node22, tensorMap2, context2)); + return tidy2(() => executeOp12(node22, tensorMap2, context2)); case "normalization": - return tidy(() => executeOp13(node22, tensorMap2, context2)); + return tidy2(() => executeOp13(node22, tensorMap2, context2)); case "reduction": - return tidy(() => executeOp14(node22, tensorMap2, context2)); + return tidy2(() => executeOp14(node22, tensorMap2, context2)); case "slice_join": - return tidy(() => executeOp15(node22, tensorMap2, context2)); + return tidy2(() => executeOp15(node22, tensorMap2, context2)); case "sparse": - return tidy(() => executeOp16(node22, tensorMap2, context2)); + return tidy2(() => executeOp16(node22, tensorMap2, context2)); case "spectral": - return tidy(() => executeOp17(node22, tensorMap2, context2)); + return tidy2(() => executeOp17(node22, tensorMap2, context2)); case "string": - return tidy(() => executeOp18(node22, tensorMap2, context2)); + return tidy2(() => executeOp18(node22, tensorMap2, context2)); case "transformation": - return tidy(() => executeOp19(node22, tensorMap2, context2)); + return tidy2(() => executeOp19(node22, tensorMap2, context2)); case "hash_table": return executeOp9(node22, tensorMap2, context2, resourceManager); case "custom": @@ -38829,7 +38495,7 @@ var GraphExecutor = class { throw new Error(`This execution contains the node '${dynamicNode.name}', which has the dynamic op '${dynamicNode.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${syncInputs}]`); } if (missingInputs.length > 0) { - const outNames = outputs.map((n) => n.name); + const outNames = outputs.map((n2) => n2.name); const inNames = Object.keys(inputs); throw new Error(`Cannot compute the outputs [${outNames}] from the provided inputs [${inNames}]. Missing the following inputs: [${missingInputs}]`); } @@ -39178,10 +38844,11 @@ var ResourceManager = class { var TFHUB_SEARCH_PARAM = "?tfjs-format=file"; var DEFAULT_MODEL_NAME = "model.json"; var GraphModel = class { - constructor(modelUrl, loadOptions = {}) { + constructor(modelUrl, loadOptions = {}, tfio = io_exports) { this.modelUrl = modelUrl; this.loadOptions = loadOptions; this.version = "n/a"; + this.io = tfio; if (loadOptions == null) { this.loadOptions = {}; } @@ -39211,16 +38878,19 @@ var GraphModel = class { get modelSignature() { return this.signature; } + get modelStructuredOutputKeys() { + return this.structuredOutputKeys; + } findIOHandler() { const path = this.modelUrl; if (path.load != null) { this.handler = path; } else if (this.loadOptions.requestInit != null) { - this.handler = io_exports.browserHTTPRequest(path, this.loadOptions); + this.handler = this.io.browserHTTPRequest(path, this.loadOptions); } else { - const handlers = io_exports.getLoadHandlers(path, this.loadOptions); + const handlers = this.io.getLoadHandlers(path, this.loadOptions); if (handlers.length === 0) { - handlers.push(io_exports.browserHTTPRequest(path, this.loadOptions)); + handlers.push(this.io.browserHTTPRequest(path, this.loadOptions)); } else if (handlers.length > 1) { throw new Error(`Found more than one (${handlers.length}) load handlers for URL '${[path]}'`); } @@ -39241,15 +38911,19 @@ var GraphModel = class { loadSync(artifacts) { this.artifacts = artifacts; const graph = this.artifacts.modelTopology; - let signature; - if (this.artifacts.userDefinedMetadata != null && this.artifacts.userDefinedMetadata.signature != null) { - signature = this.artifacts.userDefinedMetadata.signature; - } else { - signature = this.artifacts.signature; + let signature = this.artifacts.signature; + if (this.artifacts.userDefinedMetadata != null) { + const metadata = this.artifacts.userDefinedMetadata; + if (metadata.signature != null) { + signature = metadata.signature; + } + if (metadata.structuredOutputKeys != null) { + this.structuredOutputKeys = metadata.structuredOutputKeys; + } } this.signature = signature; this.version = `${graph.versions.producer}.${graph.versions.minConsumer}`; - const weightMap = io_exports.decodeWeights(this.artifacts.weightData, this.artifacts.weightSpecs); + const weightMap = this.io.decodeWeights(this.artifacts.weightData, this.artifacts.weightSpecs); this.executor = new GraphExecutor(OperationMapper.Instance.transformGraph(graph, this.signature)); this.executor.weightMap = this.convertTensorMapToTensorsMap(weightMap); this.executor.resourceManager = this.resourceManager; @@ -39264,7 +38938,7 @@ var GraphModel = class { } async save(handlerOrURL, config3) { if (typeof handlerOrURL === "string") { - const handlers = io_exports.getSaveHandlers(handlerOrURL); + const handlers = this.io.getSaveHandlers(handlerOrURL); if (handlers.length === 0) { throw new Error(`Cannot find any save handlers for URL '${handlerOrURL}'`); } else if (handlers.length > 1) { @@ -39278,7 +38952,14 @@ var GraphModel = class { return handlerOrURL.save(this.artifacts); } predict(inputs, config3) { - return this.execute(inputs, this.outputNodes); + const outputTensors = this.execute(inputs, this.outputNodes); + if (this.structuredOutputKeys) { + const outputTensorsArray = outputTensors instanceof Tensor ? [outputTensors] : outputTensors; + const outputTensorMap = {}; + outputTensorsArray.forEach((outputTensor, i2) => outputTensorMap[this.structuredOutputKeys[i2]] = outputTensor); + return outputTensorMap; + } + return outputTensors; } normalizeInputs(inputs) { if (!(inputs instanceof Tensor) && !Array.isArray(inputs)) { @@ -39329,7 +39010,7 @@ var GraphModel = class { this.resourceManager.dispose(); } }; -async function loadGraphModel(modelUrl, options4 = {}) { +async function loadGraphModel(modelUrl, options4 = {}, tfio = io_exports) { if (modelUrl == null) { throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model"); } @@ -39339,7 +39020,7 @@ async function loadGraphModel(modelUrl, options4 = {}) { if (options4.fromTFHub && typeof modelUrl === "string") { modelUrl = getTFHubUrl(modelUrl); } - const model22 = new GraphModel(modelUrl, options4); + const model22 = new GraphModel(modelUrl, options4, tfio); await model22.load(); return model22; } @@ -39360,7 +39041,7 @@ function getTFHubUrl(modelUrl) { } return `${modelUrl}${DEFAULT_MODEL_NAME}${TFHUB_SEARCH_PARAM}`; } -var version3 = "3.18.0"; +var version3 = "3.19.0"; var dist_exports2 = {}; __export2(dist_exports2, { CSVDataset: () => CSVDataset, @@ -39377,8 +39058,8 @@ __export2(dist_exports2, { webcam: () => webcam, zip: () => zip }); -var seedrandom3 = __toESM(require_seedrandom4()); -var seedrandom2 = __toESM(require_seedrandom4()); +var seedrandom3 = __toESM(require_seedrandom2()); +var seedrandom2 = __toESM(require_seedrandom2()); function deepMap(input2, mapFn) { return deepMapInternal(input2, mapFn); } @@ -41095,7 +40776,7 @@ async function webcam(webcamVideoElement, webcamConfig) { async function microphone(microphoneConfig) { return MicrophoneIterator.create(microphoneConfig); } -var version4 = "3.18.0"; +var version4 = "3.19.0"; function assertNotComplex(tensor2, opName) { if (!Array.isArray(tensor2)) { tensor2 = [tensor2]; @@ -41416,7 +41097,7 @@ function cast3(args) { if (dtype === "bool") { const xVals = backend2.data.get(x.dataId).values; const zero = util_exports.toTypedArray([0], x.dtype); - const [resultData, resultShape] = createSimpleBinaryKernelImpl((a6, b) => a6 !== b ? 1 : 0)(x.shape, [], xVals, zero, "bool"); + const [resultData, resultShape] = createSimpleBinaryKernelImpl((a, b) => a !== b ? 1 : 0)(x.shape, [], xVals, zero, "bool"); return backend2.makeTensorInfo(resultShape, "bool", resultData); } throw new Error(`Error in Cast: failed to cast ${x.dtype} to ${dtype}`); @@ -41429,23 +41110,23 @@ var castConfig = { function binaryKernelFunc(name, simpleImpl, complexImpl, dtype) { if (complexImpl == null) { return ({ inputs, backend: backend2 }) => { - const { a: a6, b } = inputs; + const { a, b } = inputs; const cpuBackend = backend2; - assertNotComplex([a6, b], name); - const aVals = cpuBackend.data.get(a6.dataId).values; + assertNotComplex([a, b], name); + const aVals = cpuBackend.data.get(a.dataId).values; const bVals = cpuBackend.data.get(b.dataId).values; - const decodedAVals = a6.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(aVals) : aVals; - const decodedBVals = a6.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(bVals) : bVals; - const $dtype = dtype || a6.dtype; - const [resultData, resultShape] = simpleImpl(a6.shape, b.shape, decodedAVals, decodedBVals, $dtype); + const decodedAVals = a.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(aVals) : aVals; + const decodedBVals = a.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(bVals) : bVals; + const $dtype = dtype || a.dtype; + const [resultData, resultShape] = simpleImpl(a.shape, b.shape, decodedAVals, decodedBVals, $dtype); return cpuBackend.makeTensorInfo(resultShape, $dtype, resultData); }; } return ({ inputs, backend: backend2 }) => { - const { a: a6, b } = inputs; + const { a, b } = inputs; const cpuBackend = backend2; - if (a6.dtype === "complex64" || b.dtype === "complex64") { - const $aComplex = cast3({ inputs: { x: a6 }, backend: cpuBackend, attrs: { dtype: "complex64" } }); + if (a.dtype === "complex64" || b.dtype === "complex64") { + const $aComplex = cast3({ inputs: { x: a }, backend: cpuBackend, attrs: { dtype: "complex64" } }); const $aComplexVals = cpuBackend.data.get($aComplex.dataId); const aReal = $aComplexVals.complexTensorInfos.real; const aImag = $aComplexVals.complexTensorInfos.imag; @@ -41457,7 +41138,7 @@ function binaryKernelFunc(name, simpleImpl, complexImpl, dtype) { const bImag = $bComplexVals.complexTensorInfos.imag; const bRealVals = cpuBackend.data.get(bReal.dataId).values; const bImagVals = cpuBackend.data.get(bImag.dataId).values; - const [resultRealData, resultImagData, resultShape] = complexImpl(a6.shape, b.shape, aRealVals, aImagVals, bRealVals, bImagVals); + const [resultRealData, resultImagData, resultShape] = complexImpl(a.shape, b.shape, aRealVals, aImagVals, bRealVals, bImagVals); const resultReal = cpuBackend.makeTensorInfo(resultShape, "float32", resultRealData); const resultImag = cpuBackend.makeTensorInfo(resultShape, "float32", resultImagData); const result = complex2({ inputs: { real: resultReal, imag: resultImag }, backend: cpuBackend }); @@ -41467,10 +41148,10 @@ function binaryKernelFunc(name, simpleImpl, complexImpl, dtype) { cpuBackend.disposeIntermediateTensorInfo(resultImag); return result; } else { - const aVals = cpuBackend.data.get(a6.dataId).values; + const aVals = cpuBackend.data.get(a.dataId).values; const bVals = cpuBackend.data.get(b.dataId).values; - const $dtype = dtype || a6.dtype; - const [resultData, resultShape] = simpleImpl(a6.shape, b.shape, aVals, bVals, $dtype); + const $dtype = dtype || a.dtype; + const [resultData, resultShape] = simpleImpl(a.shape, b.shape, aVals, bVals, $dtype); return cpuBackend.makeTensorInfo(resultShape, $dtype, resultData); } }; @@ -41516,7 +41197,7 @@ function createComplexBinaryKernelImpl(op2) { return [resultRealVals, resultImagVals, resultShape]; }; } -var addImpl = createSimpleBinaryKernelImpl((a6, b) => a6 + b); +var addImpl = createSimpleBinaryKernelImpl((a, b) => a + b); var addComplexImpl = createComplexBinaryKernelImpl((aReal, aImag, bReal, bImag) => { return { real: aReal + bReal, imag: aImag + bImag }; }); @@ -41644,7 +41325,7 @@ function concatImpl(inputs, outShape, dtype, simplyConcat) { } return outVals; } -var equalImpl = createSimpleBinaryKernelImpl((a6, b) => a6 === b ? 1 : 0); +var equalImpl = createSimpleBinaryKernelImpl((a, b) => a === b ? 1 : 0); var equal2 = binaryKernelFunc(Equal, equalImpl, null, "bool"); var equalConfig = { kernelName: Equal, @@ -41707,28 +41388,28 @@ function gatherV2Impl(xBuf, indicesBuf, flattenOutputShape) { } return outBuf; } -var greaterImpl = createSimpleBinaryKernelImpl((a6, b) => a6 > b ? 1 : 0); +var greaterImpl = createSimpleBinaryKernelImpl((a, b) => a > b ? 1 : 0); var greater3 = binaryKernelFunc(Greater, greaterImpl, null, "bool"); var greaterConfig = { kernelName: Greater, backendName: "cpu", kernelFunc: greater3 }; -var greaterEqualImpl = createSimpleBinaryKernelImpl((a6, b) => a6 >= b ? 1 : 0); +var greaterEqualImpl = createSimpleBinaryKernelImpl((a, b) => a >= b ? 1 : 0); var greaterEqual2 = binaryKernelFunc(GreaterEqual, greaterEqualImpl, null, "bool"); var greaterEqualConfig = { kernelName: GreaterEqual, backendName: "cpu", kernelFunc: greaterEqual2 }; -var lessImpl = createSimpleBinaryKernelImpl((a6, b) => a6 < b ? 1 : 0); +var lessImpl = createSimpleBinaryKernelImpl((a, b) => a < b ? 1 : 0); var less3 = binaryKernelFunc(Less, lessImpl, null, "bool"); var lessConfig = { kernelName: Less, backendName: "cpu", kernelFunc: less3 }; -var lessEqualImpl = createSimpleBinaryKernelImpl((a6, b) => a6 <= b ? 1 : 0); +var lessEqualImpl = createSimpleBinaryKernelImpl((a, b) => a <= b ? 1 : 0); var lessEqual2 = binaryKernelFunc(LessEqual, lessEqualImpl, null, "bool"); var lessEqualConfig = { kernelName: LessEqual, @@ -41810,7 +41491,7 @@ var negConfig = { backendName: "cpu", kernelFunc: neg2 }; -var notEqualImpl = createSimpleBinaryKernelImpl((a6, b) => a6 !== b ? 1 : 0); +var notEqualImpl = createSimpleBinaryKernelImpl((a, b) => a !== b ? 1 : 0); var notEqual2 = binaryKernelFunc(NotEqual, notEqualImpl, null, "bool"); var notEqualConfig = { kernelName: NotEqual, @@ -42243,8 +41924,8 @@ var sqrtConfig = { backendName: "cpu", kernelFunc: sqrt2 }; -var squaredDifferenceImpl = createSimpleBinaryKernelImpl((a6, b) => { - const diff = a6 - b; +var squaredDifferenceImpl = createSimpleBinaryKernelImpl((a, b) => { + const diff = a - b; return diff * diff; }); var squaredDifference2 = binaryKernelFunc(SquaredDifference, squaredDifferenceImpl); @@ -42290,8 +41971,8 @@ var StringNGramsOp = class { const dataStartIndex = splitIndex + (leftPadding > 0 ? 0 : nGramIndex - padWidth); let nGramSize = 0; nGramSize += leftPadding * this.leftPad.length; - for (let n = 0; n < numTokens; ++n) { - nGramSize += data[dataStartIndex + n].length; + for (let n2 = 0; n2 < numTokens; ++n2) { + nGramSize += data[dataStartIndex + n2].length; } nGramSize += rightPadding * this.rightPad.length; const numSeparators = leftPadding + rightPadding + numTokens - 1; @@ -42300,22 +41981,22 @@ var StringNGramsOp = class { const nGram = output[outputStartIndex + nGramIndex]; let nextNGramIndex = 0; const appendToNGram = (str) => str.forEach((value) => nGram[nextNGramIndex++] = value); - for (let n = 0; n < leftPadding; ++n) { + for (let n2 = 0; n2 < leftPadding; ++n2) { appendToNGram(this.leftPad); appendToNGram(this.separator); } - for (let n = 0; n < numTokens - 1; ++n) { - appendToNGram(data[dataStartIndex + n]); + for (let n2 = 0; n2 < numTokens - 1; ++n2) { + appendToNGram(data[dataStartIndex + n2]); appendToNGram(this.separator); } if (numTokens > 0) { appendToNGram(data[dataStartIndex + numTokens - 1]); - for (let n = 0; n < rightPadding; ++n) { + for (let n2 = 0; n2 < rightPadding; ++n2) { appendToNGram(this.separator); appendToNGram(this.rightPad); } } else { - for (let n = 0; n < rightPadding - 1; ++n) { + for (let n2 = 0; n2 < rightPadding - 1; ++n2) { appendToNGram(this.rightPad); appendToNGram(this.separator); } @@ -42489,20 +42170,20 @@ function tileImpl(xBuf, reps) { } return result; } -var comparePair = (a6, b) => { - const valueDiff = b.value - a6.value; - return valueDiff === 0 ? a6.index - b.index : valueDiff; +var comparePair = (a, b) => { + const valueDiff = b.value - a.value; + return valueDiff === 0 ? a.index - b.index : valueDiff; }; function select(array2, k, left = 0, right = array2.length - 1) { while (right > left) { if (right - left > 600) { - const n = right - left + 1; + const n2 = right - left + 1; const i3 = k - left + 1; - const z = Math.log(n); + const z = Math.log(n2); const s2 = 0.5 * Math.exp(2 * z / 3); - const sd = 0.5 * Math.sqrt(z * s2 * (n - s2) / n) * Math.sign(i3 - n / 2); - const newLeft = Math.max(left, Math.floor(k - i3 * s2 / n + sd)); - const newRight = Math.min(right, Math.floor(k + (n - i3) * s2 / n + sd)); + const sd = 0.5 * Math.sqrt(z * s2 * (n2 - s2) / n2) * Math.sign(i3 - n2 / 2); + const newLeft = Math.max(left, Math.floor(k - i3 * s2 / n2 + sd)); + const newRight = Math.min(right, Math.floor(k + (n2 - i3) * s2 / n2 + sd)); select(array2, k, newLeft, newRight); } const t2 = array2[k]; @@ -42591,8 +42272,8 @@ function uniqueImpl(values, axis, shape, dtype) { } else { const axisValues = []; for (let m = 0; m < newShape[0]; m++) { - for (let n = 0; n < newShape[2]; n++) { - axisValues.push(inputBuffer.get(m, i2, n)); + for (let n2 = 0; n2 < newShape[2]; n2++) { + axisValues.push(inputBuffer.get(m, i2, n2)); } } element = axisValues.join(","); @@ -42611,8 +42292,8 @@ function uniqueImpl(values, axis, shape, dtype) { const outputBuffer = new TensorBuffer(outputTmpShape, dtype); uniqueIndices.forEach((uniqueElementIndex, i2) => { for (let m = 0; m < newShape[0]; m++) { - for (let n = 0; n < newShape[2]; n++) { - outputBuffer.set(inputBuffer.get(m, uniqueElementIndex, n), m, i2, n); + for (let n2 = 0; n2 < newShape[2]; n2++) { + outputBuffer.set(inputBuffer.get(m, uniqueElementIndex, n2), m, i2, n2); } } }); @@ -42719,25 +42400,25 @@ var reshapeConfig = { }; function batchMatMul(args) { const { inputs, backend: backend2, attrs } = args; - const { a: a6, b } = inputs; + const { a, b } = inputs; const { transposeA, transposeB } = attrs; - assertNotComplex([a6, b], "matMul"); - const aRank = a6.shape.length; + assertNotComplex([a, b], "matMul"); + const aRank = a.shape.length; const bRank = b.shape.length; - const innerShapeA = transposeA ? a6.shape[aRank - 2] : a6.shape[aRank - 1]; + const innerShapeA = transposeA ? a.shape[aRank - 2] : a.shape[aRank - 1]; const innerShapeB = transposeB ? b.shape[bRank - 1] : b.shape[bRank - 2]; - const outerShapeA = transposeA ? a6.shape[aRank - 1] : a6.shape[aRank - 2]; + const outerShapeA = transposeA ? a.shape[aRank - 1] : a.shape[aRank - 2]; const outerShapeB = transposeB ? b.shape[bRank - 2] : b.shape[bRank - 1]; - const outerDimsA = a6.shape.slice(0, -2); + const outerDimsA = a.shape.slice(0, -2); const outerDimsB = b.shape.slice(0, -2); const batchDimA = util_exports.sizeFromShape(outerDimsA); const batchDimB = util_exports.sizeFromShape(outerDimsB); - const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a6.shape.slice(0, -2), b.shape.slice(0, -2)); + const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2)); const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]); - util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a6.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`); + util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`); const a3dShape = transposeA ? [batchDimA, innerShapeA, outerShapeA] : [batchDimA, outerShapeA, innerShapeA]; const b3dShape = transposeB ? [batchDimB, outerShapeB, innerShapeB] : [batchDimB, innerShapeB, outerShapeB]; - const a3d = reshape3({ inputs: { x: a6 }, backend: backend2, attrs: { shape: a3dShape } }); + const a3d = reshape3({ inputs: { x: a }, backend: backend2, attrs: { shape: a3dShape } }); const b3d = reshape3({ inputs: { x: b }, backend: backend2, attrs: { shape: b3dShape } }); const sharedDim = transposeA ? a3d.shape[1] : a3d.shape[2]; const leftDim = transposeA ? a3d.shape[2] : a3d.shape[1]; @@ -42788,13 +42469,13 @@ var batchMatMulConfig = { }; function _fusedMatMul(args) { const { inputs, backend: backend2, attrs } = args; - const { a: a6, b, bias, preluActivationWeights } = inputs; + const { a, b, bias, preluActivationWeights } = inputs; const { transposeA, transposeB, activation: activation2, leakyreluAlpha } = attrs; let current; let addRes; let activationRes; const intermediates = []; - const matMulRes = batchMatMul({ inputs: { a: a6, b }, attrs: { transposeA, transposeB }, backend: backend2 }); + const matMulRes = batchMatMul({ inputs: { a, b }, attrs: { transposeA, transposeB }, backend: backend2 }); current = matMulRes; if (bias) { addRes = add4({ inputs: { a: current, b: bias }, backend: backend2 }); @@ -43514,7 +43195,7 @@ function batchToSpaceND2(args) { const { x } = inputs; const { blockShape, crops } = attrs; assertNotComplex([x], "batchToSpaceND"); - const prod6 = blockShape.reduce((a6, b) => a6 * b); + const prod6 = blockShape.reduce((a, b) => a * b); const reshaped = backend_util_exports.getReshaped(x.shape, blockShape, prod6); const permuted = backend_util_exports.getPermuted(reshaped.length, blockShape.length); const reshapedPermuted = backend_util_exports.getReshapedPermuted(x.shape, blockShape, prod6); @@ -44807,7 +44488,7 @@ var expandDimsConfig = { backendName: "cpu", kernelFunc: expandDims3 }; -var realDivImpl = createSimpleBinaryKernelImpl((a6, b) => a6 / b); +var realDivImpl = createSimpleBinaryKernelImpl((a, b) => a / b); var div2 = binaryKernelFunc(RealDiv, realDivImpl); var realDivConfig = { kernelName: RealDiv, @@ -45077,7 +44758,7 @@ var flipLeftRightConfig = { return { dataId, shape: image2.shape, dtype: image2.dtype }; } }; -var floorDivImpl = createSimpleBinaryKernelImpl((a6, b) => Math.floor(a6 / b)); +var floorDivImpl = createSimpleBinaryKernelImpl((a, b) => Math.floor(a / b)); var floorDiv2 = binaryKernelFunc(FloorDiv, floorDivImpl, null, "int32"); var floorDivConfig = { kernelName: FloorDiv, @@ -45282,7 +44963,7 @@ var log1pConfig = { backendName: "cpu", kernelFunc: log1p2 }; -var logicalAndImpl = createSimpleBinaryKernelImpl((a6, b) => a6 && b); +var logicalAndImpl = createSimpleBinaryKernelImpl((a, b) => a && b); var logicalAnd2 = binaryKernelFunc(LogicalAnd, logicalAndImpl, null, "bool"); var logicalAndConfig = { kernelName: LogicalAnd, @@ -45295,7 +44976,7 @@ var logicalNotConfig = { backendName: "cpu", kernelFunc: logicalNot2 }; -var logicalOrImpl = createSimpleBinaryKernelImpl((a6, b) => a6 || b); +var logicalOrImpl = createSimpleBinaryKernelImpl((a, b) => a || b); var logicalOr2 = binaryKernelFunc(LogicalOr, logicalOrImpl, null, "bool"); var logicalOrConfig = { kernelName: LogicalOr, @@ -45745,14 +45426,14 @@ function softmax3(args) { }); const expandedShape = backend_util_exports.expandShapeToKeepDim(maxLogit.shape, axes); const maxLogitReshaped = reshape3({ inputs: { x: maxLogit }, backend: backend2, attrs: { shape: expandedShape } }); - const a6 = sub2({ inputs: { a: logits, b: maxLogitReshaped }, backend: backend2 }); - const b = exp2({ inputs: { x: a6 }, backend: backend2 }); + const a = sub2({ inputs: { a: logits, b: maxLogitReshaped }, backend: backend2 }); + const b = exp2({ inputs: { x: a }, backend: backend2 }); const sumExp = sum3({ inputs: { x: b }, backend: backend2, attrs: { axis: axes, keepDims: false } }); const sumReshaped = reshape3({ inputs: { x: sumExp }, backend: backend2, attrs: { shape: expandedShape } }); const result = div2({ inputs: { a: b, b: sumReshaped }, backend: backend2 }); backend2.disposeIntermediateTensorInfo(maxLogit); backend2.disposeIntermediateTensorInfo(maxLogitReshaped); - backend2.disposeIntermediateTensorInfo(a6); + backend2.disposeIntermediateTensorInfo(a); backend2.disposeIntermediateTensorInfo(b); backend2.disposeIntermediateTensorInfo(sumExp); backend2.disposeIntermediateTensorInfo(sumReshaped); @@ -45992,7 +45673,7 @@ var padV2Config = { backendName: "cpu", kernelFunc: padV2 }; -var powImpl = createSimpleBinaryKernelImpl((a6, b) => Math.pow(a6, b)); +var powImpl = createSimpleBinaryKernelImpl((a, b) => Math.pow(a, b)); var pow2 = binaryKernelFunc(Pow, powImpl); var powConfig = { kernelName: Pow, @@ -47788,8 +47469,8 @@ function getTextureShapeFromLogicalShape(logShape, isPacked = false) { return util_exports.sizeToSquarishShape(size2); } } -function isEven(n) { - return n % 2 === 0; +function isEven(n2) { + return n2 % 2 === 0; } function isReshapeFree(shape1, shape2) { shape1 = shape1.slice(-2); @@ -50916,7 +50597,7 @@ var PackProgram = class { const channels = getChannels("rc", this.rank); const dtype = getCoordsDataType(this.rank); const outOfBoundsCondition = this.getOutOfBoundsCondition(channels); - const setup50 = this.getSetup(channels); + const setup51 = this.getSetup(channels); const output = this.getOutput(channels); this.userCode = ` void main() { @@ -50925,7 +50606,7 @@ var PackProgram = class { if(${outOfBoundsCondition}) { setOutput(vec4(0)); } else { - ${setup50} + ${setup51} setOutput(vec4(${output})); } @@ -52143,20 +51824,20 @@ var MathBackendWebGL = class extends KernelBackend { } }; MathBackendWebGL.nextDataId = 0; -function float32ToTypedArray(a6, dtype) { +function float32ToTypedArray(a, dtype) { if (dtype === "float32" || dtype === "complex64") { - return a6; + return a; } else if (dtype === "int32" || dtype === "bool") { - const result = dtype === "int32" ? new Int32Array(a6.length) : new Uint8Array(a6.length); + const result = dtype === "int32" ? new Int32Array(a.length) : new Uint8Array(a.length); for (let i2 = 0; i2 < result.length; ++i2) { - result[i2] = Math.round(a6[i2]); + result[i2] = Math.round(a[i2]); } return result; } else { throw new Error(`Unknown dtype ${dtype}`); } } -var version6 = "3.18.0"; +var version6 = "3.19.0"; function forceHalfFloat() { env().set("WEBGL_FORCE_F16_TEXTURES", true); } @@ -52366,10 +52047,10 @@ function unaryKernelFunc2({ opSnippet, packedOpSnippet, cpuKernelImpl, dtype }) } function binaryKernelFunc2({ opSnippet, packedOpSnippet, checkOutOfBounds = false, supportsComplex = false, cpuKernelImpl, dtype }) { return ({ inputs, backend: backend2 }) => { - const { a: a6, b } = inputs; + const { a, b } = inputs; const webglBackend = backend2; - if (supportsComplex && a6.dtype === "complex64") { - const aData = webglBackend.texData.get(a6.dataId); + if (supportsComplex && a.dtype === "complex64") { + const aData = webglBackend.texData.get(a.dataId); const bData = webglBackend.texData.get(b.dataId); const [real5, imag5] = [ [aData.complexTensorInfos.real, bData.complexTensorInfos.real], @@ -52379,14 +52060,14 @@ function binaryKernelFunc2({ opSnippet, packedOpSnippet, checkOutOfBounds = fals const aHandle = { dataId: aPart.dataId, dtype: aPart.dtype, - shape: a6.shape + shape: a.shape }; const bHandle = { dataId: bPart.dataId, dtype: bPart.dtype, shape: b.shape }; - const program2 = new BinaryOpProgram(opSnippet, a6.shape, b.shape); + const program2 = new BinaryOpProgram(opSnippet, a.shape, b.shape); return webglBackend.runWebGLProgram(program2, [aHandle, bHandle], upcastType(aPart.dtype, bPart.dtype)); }); const complexOutput = complex3({ inputs: { real: real5, imag: imag5 }, backend: webglBackend }); @@ -52394,13 +52075,13 @@ function binaryKernelFunc2({ opSnippet, packedOpSnippet, checkOutOfBounds = fals webglBackend.disposeIntermediateTensorInfo(imag5); return complexOutput; } - const $dtype = dtype || upcastType(a6.dtype, b.dtype); - if ((a6.dtype === "string" || b.dtype === "string" || webglBackend.shouldExecuteOnCPU([a6, b])) && cpuKernelImpl != null) { - const aVals = webglBackend.texData.get(a6.dataId).values; + const $dtype = dtype || upcastType(a.dtype, b.dtype); + if ((a.dtype === "string" || b.dtype === "string" || webglBackend.shouldExecuteOnCPU([a, b])) && cpuKernelImpl != null) { + const aVals = webglBackend.texData.get(a.dataId).values; const bVals = webglBackend.texData.get(b.dataId).values; - const decodedAVals = a6.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(aVals) : aVals; - const decodedBVals = a6.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(bVals) : bVals; - const [outValues, outShape] = cpuKernelImpl(a6.shape, b.shape, decodedAVals, decodedBVals, $dtype); + const decodedAVals = a.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(aVals) : aVals; + const decodedBVals = a.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(bVals) : bVals; + const [outValues, outShape] = cpuKernelImpl(a.shape, b.shape, decodedAVals, decodedBVals, $dtype); const out = webglBackend.makeTensorInfo(outShape, $dtype); const outData = webglBackend.texData.get(out.dataId); outData.values = outValues; @@ -52409,11 +52090,11 @@ function binaryKernelFunc2({ opSnippet, packedOpSnippet, checkOutOfBounds = fals const shouldUsePackedProgram = env().getBool("WEBGL_PACK_BINARY_OPERATIONS") && packedOpSnippet != null; let program; if (shouldUsePackedProgram) { - program = new BinaryOpPackedProgram(packedOpSnippet, a6.shape, b.shape, checkOutOfBounds); + program = new BinaryOpPackedProgram(packedOpSnippet, a.shape, b.shape, checkOutOfBounds); } else { - program = new BinaryOpProgram(opSnippet, a6.shape, b.shape); + program = new BinaryOpProgram(opSnippet, a.shape, b.shape); } - return webglBackend.runWebGLProgram(program, [a6, b], $dtype); + return webglBackend.runWebGLProgram(program, [a, b], $dtype); }; } function mapActivationToShaderProgram(activation2, packed = false) { @@ -52565,23 +52246,23 @@ var BinaryOpComplexProgram = class { var MUL = "return a * b;"; function multiply3(args) { const { inputs, backend: backend2 } = args; - const { a: a6, b } = inputs; - const dtype = backend_util_exports.upcastType(a6.dtype, b.dtype); - if (a6.dtype === "complex64") { - const aData = backend2.texData.get(a6.dataId); + const { a, b } = inputs; + const dtype = backend_util_exports.upcastType(a.dtype, b.dtype); + if (a.dtype === "complex64") { + const aData = backend2.texData.get(a.dataId); const bData = backend2.texData.get(b.dataId); - const realProgram = new BinaryOpComplexProgram(COMPLEX_MULTIPLY.REAL, a6.shape, b.shape); - const imagProgram = new BinaryOpComplexProgram(COMPLEX_MULTIPLY.IMAG, a6.shape, b.shape); + const realProgram = new BinaryOpComplexProgram(COMPLEX_MULTIPLY.REAL, a.shape, b.shape); + const imagProgram = new BinaryOpComplexProgram(COMPLEX_MULTIPLY.IMAG, a.shape, b.shape); const inputs2 = [ { dataId: aData.complexTensorInfos.real.dataId, dtype: aData.complexTensorInfos.real.dtype, - shape: a6.shape + shape: a.shape }, { dataId: aData.complexTensorInfos.imag.dataId, dtype: aData.complexTensorInfos.imag.dtype, - shape: a6.shape + shape: a.shape }, { dataId: bData.complexTensorInfos.real.dataId, @@ -52601,10 +52282,10 @@ function multiply3(args) { backend2.disposeIntermediateTensorInfo(imagPart); return complexOutput; } - if (backend2.shouldExecuteOnCPU([a6, b])) { - const aData = backend2.texData.get(a6.dataId); + if (backend2.shouldExecuteOnCPU([a, b])) { + const aData = backend2.texData.get(a.dataId); const bData = backend2.texData.get(b.dataId); - const [outValues, outShape] = multiplyImplCPU(a6.shape, b.shape, aData.values, bData.values, dtype); + const [outValues, outShape] = multiplyImplCPU(a.shape, b.shape, aData.values, bData.values, dtype); const out = backend2.makeTensorInfo(outShape, dtype); const outData = backend2.texData.get(out.dataId); outData.values = outValues; @@ -52612,11 +52293,11 @@ function multiply3(args) { } let program; if (env().getBool("WEBGL_PACK_BINARY_OPERATIONS")) { - program = new BinaryOpPackedProgram(MUL, a6.shape, b.shape); + program = new BinaryOpPackedProgram(MUL, a.shape, b.shape); } else { - program = new BinaryOpProgram(MUL, a6.shape, b.shape); + program = new BinaryOpProgram(MUL, a.shape, b.shape); } - return backend2.runWebGLProgram(program, [a6, b], dtype); + return backend2.runWebGLProgram(program, [a, b], dtype); } var multiplyConfig2 = { kernelName: Multiply, @@ -53057,23 +52738,23 @@ var transposeConfig2 = { kernelFunc: transpose3 }; var MATMUL_SHARED_DIM_THRESHOLD = 1e3; -function batchMatMulImpl({ a: a6, b, transposeA, transposeB, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) { - const aRank = a6.shape.length; +function batchMatMulImpl({ a, b, transposeA, transposeB, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) { + const aRank = a.shape.length; const bRank = b.shape.length; - const innerShapeA = transposeA ? a6.shape[aRank - 2] : a6.shape[aRank - 1]; + const innerShapeA = transposeA ? a.shape[aRank - 2] : a.shape[aRank - 1]; const innerShapeB = transposeB ? b.shape[bRank - 1] : b.shape[bRank - 2]; - const outerShapeA = transposeA ? a6.shape[aRank - 1] : a6.shape[aRank - 2]; + const outerShapeA = transposeA ? a.shape[aRank - 1] : a.shape[aRank - 2]; const outerShapeB = transposeB ? b.shape[bRank - 2] : b.shape[bRank - 1]; - const outerDimsA = a6.shape.slice(0, -2); + const outerDimsA = a.shape.slice(0, -2); const outerDimsB = b.shape.slice(0, -2); const batchDimA = util_exports.sizeFromShape(outerDimsA); const batchDimB = util_exports.sizeFromShape(outerDimsB); - const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a6.shape.slice(0, -2), b.shape.slice(0, -2)); + const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2)); const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]); - util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a6.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`); + util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`); const a3dShape = transposeA ? [batchDimA, innerShapeA, outerShapeA] : [batchDimA, outerShapeA, innerShapeA]; const b3dShape = transposeB ? [batchDimB, outerShapeB, innerShapeB] : [batchDimB, innerShapeB, outerShapeB]; - const a3d = reshape4({ inputs: { x: a6 }, backend: backend2, attrs: { shape: a3dShape } }); + const a3d = reshape4({ inputs: { x: a }, backend: backend2, attrs: { shape: a3dShape } }); const b3d = reshape4({ inputs: { x: b }, backend: backend2, attrs: { shape: b3dShape } }); const intermediates = [a3d, b3d]; const batchDim = Math.max(batchDimA, batchDimB); @@ -53120,7 +52801,7 @@ function batchMatMulImpl({ a: a6, b, transposeA, transposeB, backend: backend2, out = sum4({ inputs: { x: product }, backend: backend2, attrs: { axis, keepDims: true } }); intermediates.push(product); } else { - const dtype = upcastType(a6.dtype, b.dtype); + const dtype = upcastType(a.dtype, b.dtype); const program = new MatMulPackedProgram(a3dShape, b3dShape, [batchDim, outerShapeA, outerShapeB], transposeA, transposeB, hasBias, fusedActivation, hasPreluActivationWeights, hasLeakyreluAlpha); const inputs = [a3d, b3d]; if (bias != null) { @@ -53145,10 +52826,10 @@ function batchMatMulImpl({ a: a6, b, transposeA, transposeB, backend: backend2, } function _fusedMatMul2(args) { const { inputs, backend: backend2, attrs } = args; - const { a: a6, b, bias, preluActivationWeights } = inputs; + const { a, b, bias, preluActivationWeights } = inputs; const { transposeA, transposeB, activation: activation2, leakyreluAlpha } = attrs; return batchMatMulImpl({ - a: a6, + a, b, transposeA, transposeB, @@ -54246,9 +53927,9 @@ var avgPoolGradConfig3 = { }; function batchMatMul2(args) { const { inputs, backend: backend2, attrs } = args; - const { a: a6, b } = inputs; + const { a, b } = inputs; const { transposeA, transposeB } = attrs; - return batchMatMulImpl({ a: a6, b, transposeA, transposeB, backend: backend2 }); + return batchMatMulImpl({ a, b, transposeA, transposeB, backend: backend2 }); } var batchMatMulConfig2 = { kernelName: BatchMatMul, @@ -54488,7 +54169,7 @@ var batchToSpaceND3 = (args) => { const { x } = inputs; const { blockShape, crops } = attrs; util_exports.assert(x.shape.length <= 4, () => "batchToSpaceND for rank > 4 with a WebGL backend not implemented yet"); - const prod6 = blockShape.reduce((a6, b) => a6 * b); + const prod6 = blockShape.reduce((a, b) => a * b); const reshaped = backend_util_exports.getReshaped(x.shape, blockShape, prod6); const permuted = backend_util_exports.getPermuted(reshaped.length, blockShape.length); const reshapedPermuted = backend_util_exports.getReshapedPermuted(x.shape, blockShape, prod6); @@ -54879,13 +54560,17 @@ function concatImpl2(inputs, axis, backend2) { tensors2D2.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2)); return outInfo; } - if (inputs.length > env().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")) { - const midIndex = Math.floor(inputs.length / 2); - const leftSide = concatImpl2(inputs.slice(0, midIndex), axis, backend2); - const rightSide = concatImpl2(inputs.slice(midIndex), axis, backend2); - const result2 = concatImpl2([leftSide, rightSide], axis, backend2); - backend2.disposeIntermediateTensorInfo(leftSide); - backend2.disposeIntermediateTensorInfo(rightSide); + const maxTexturesInShader = env().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER"); + if (inputs.length > maxTexturesInShader) { + const reducedInputs = []; + for (let i2 = 0; i2 < inputs.length; i2 += maxTexturesInShader) { + const subArray = inputs.slice(i2, i2 + maxTexturesInShader); + reducedInputs.push(concatImpl2(subArray, axis, backend2)); + } + const result2 = concatImpl2(reducedInputs, axis, backend2); + for (const i2 of reducedInputs) { + backend2.disposeIntermediateTensorInfo(i2); + } return result2; } if (env().getBool("WEBGL_PACK_ARRAY_OPERATIONS") && inputs[0].shape.length > 1) { @@ -55221,7 +54906,7 @@ var Im2ColPackedProgram = class { this.packedInputs = true; this.packedOutput = true; this.customUniforms = [ - { name: "inputShape", type: "ivec3" }, + { name: "inputShape", type: "ivec4" }, { name: "pad", type: "ivec2" }, { name: "stride", type: "ivec2" }, { name: "dilation", type: "ivec2" }, @@ -55234,15 +54919,15 @@ var Im2ColPackedProgram = class { const { dataFormat } = convInfo; const glsl = getGlslDifferences(); const isChannelsLast = dataFormat === "channelsLast"; - const rowDim = isChannelsLast ? 0 : 1; - const colDim = isChannelsLast ? 1 : 2; - const boundsCheckingSnippet = this.enableShapeUniforms ? "if(blockIndex < outShape[1] && pos < outShape[0]) {" : `if(blockIndex < ${outputShape[1]} && pos < ${outputShape[0]}) {`; + const rowDim = isChannelsLast ? 1 : 2; + const colDim = isChannelsLast ? 2 : 3; + const boundsCheckingSnippet = this.enableShapeUniforms ? "if(blockIndex < outShape[2] && pos < outShape[1]) {" : `if(blockIndex < ${outputShape[2]} && pos < ${outputShape[1]}) {`; let unrolled = ``; for (let row = 0; row <= 1; row++) { for (let col = 0; col <= 1; col++) { unrolled += ` - blockIndex = rc.y + ${col}; - pos = rc.x + ${row}; + blockIndex = rc.z + ${col}; + pos = rc.y + ${row}; ${boundsCheckingSnippet} offsetY = int(blockIndex / outWidth) * stride[0] - pad[0]; @@ -55263,12 +54948,12 @@ var Im2ColPackedProgram = class { if (${isChannelsLast}) { innerDims = vec2(d1, ch); result[${row * 2 + col}] = getChannel( - getA(d0, int(innerDims.x), + getA(rc.x, d0, int(innerDims.x), int(innerDims.y)), innerDims); } else { innerDims = vec2(d0, d1); result[${row * 2 + col}] = getChannel( - getA(ch, int(innerDims.x), + getA(rc.x, ch, int(innerDims.x), int(innerDims.y)), innerDims); } } @@ -55279,7 +54964,7 @@ var Im2ColPackedProgram = class { } this.userCode = ` void main() { - ivec2 rc = getOutputCoords(); + ivec3 rc = getOutputCoords(); vec4 result = vec4(0); @@ -55293,6 +54978,24 @@ var Im2ColPackedProgram = class { `; } }; +function getShapeForBatchMatMul(shape, isChannelsLast) { + const length = shape.length; + if (length >= 3) { + return isChannelsLast ? [ + ...shape.slice(0, -3), + shape[length - 3] * shape[length - 2], + shape[length - 1] + ] : [ + ...shape.slice(0, -3), + shape[length - 3], + shape[length - 2] * shape[length - 1] + ]; + } else if (!isChannelsLast && length === 1 && shape[0] > 1) { + return [shape[0], 1]; + } else { + return null; + } +} function conv2dByMatMul({ x, filter, convInfo, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) { const xShape = x.shape; const xTexData = backend2.texData.get(x.dataId); @@ -55304,14 +55007,23 @@ function conv2dByMatMul({ x, filter, convInfo, backend: backend2, bias = null, p const transposeB = false; let out; const intermediates = []; - if (preluActivationWeights != null && !isChannelsLast && preluActivationWeights.shape.length === 3) { - const preluActivationWeightsInNhwcFormat = transpose3({ - inputs: { x: preluActivationWeights }, - backend: backend2, - attrs: { perm: [1, 2, 0] } - }); - intermediates.push(preluActivationWeightsInNhwcFormat); - preluActivationWeights = preluActivationWeightsInNhwcFormat; + if (preluActivationWeights != null) { + const targetShape = getShapeForBatchMatMul(preluActivationWeights.shape, isChannelsLast); + if (targetShape != null) { + preluActivationWeights = reshape4({ + inputs: { x: preluActivationWeights }, + backend: backend2, + attrs: { shape: targetShape } + }); + intermediates.push(preluActivationWeights); + } + } + if (bias != null) { + const targetShape = getShapeForBatchMatMul(bias.shape, isChannelsLast); + if (targetShape != null) { + bias = reshape4({ inputs: { x: bias }, backend: backend2, attrs: { shape: targetShape } }); + intermediates.push(bias); + } } const batchMatMulWillBeUnpacked = (outerShapeX === 1 || outerShapeFilter === 1) && sharedMatMulDim > MATMUL_SHARED_DIM_THRESHOLD; const canOptimize = !batchMatMulWillBeUnpacked && xTexData.isPacked && isChannelsLast && xTexData.texture != null && xShape[2] % 2 !== 0 && util_exports.arraysEqual(xTexData.shape.slice(-3), xShape.slice(-3)); @@ -55351,13 +55063,13 @@ function conv2dByMatMul({ x, filter, convInfo, backend: backend2, bias = null, p out.shape = convInfo.outShape; intermediates.push(pointwiseConv); } else { - const xInNhwcFormat = isChannelsLast ? x : transpose3({ inputs: { x }, backend: backend2, attrs: { perm: [0, 2, 3, 1] } }); - const xInNhwcFormatShape = xInNhwcFormat.shape; - const targetShape = xInNhwcFormatShape[0] * xInNhwcFormatShape[1] * xInNhwcFormatShape[2]; + const numCols = convInfo.outHeight * convInfo.outWidth; const xReshaped = reshape4({ - inputs: { x: xInNhwcFormat }, + inputs: { x }, backend: backend2, - attrs: { shape: [1, targetShape, convInfo.inChannels] } + attrs: { + shape: isChannelsLast ? [convInfo.batchSize, numCols, convInfo.inChannels] : [convInfo.batchSize, convInfo.inChannels, numCols] + } }); const filterReshaped = reshape4({ inputs: { x: filter }, @@ -55365,9 +55077,9 @@ function conv2dByMatMul({ x, filter, convInfo, backend: backend2, bias = null, p attrs: { shape: [1, convInfo.inChannels, convInfo.outChannels] } }); const result = batchMatMulImpl({ - a: xReshaped, - b: filterReshaped, - transposeA, + a: isChannelsLast ? xReshaped : filterReshaped, + b: isChannelsLast ? filterReshaped : xReshaped, + transposeA: !isChannelsLast, transposeB, backend: backend2, bias, @@ -55375,22 +55087,7 @@ function conv2dByMatMul({ x, filter, convInfo, backend: backend2, bias = null, p preluActivationWeights, leakyreluAlpha }); - const outInNHWCFormatShape = [ - convInfo.batchSize, - convInfo.outHeight, - convInfo.outWidth, - convInfo.outChannels - ]; - const outInNHWCFormat = reshape4({ inputs: { x: result }, backend: backend2, attrs: { shape: outInNHWCFormatShape } }); - out = isChannelsLast ? outInNHWCFormat : transpose3({ - inputs: { x: outInNHWCFormat }, - backend: backend2, - attrs: { perm: [0, 3, 1, 2] } - }); - if (!isChannelsLast) { - intermediates.push(xInNhwcFormat); - intermediates.push(outInNHWCFormat); - } + out = reshape4({ inputs: { x: result }, backend: backend2, attrs: { shape: convInfo.outShape } }); intermediates.push(xReshaped); intermediates.push(filterReshaped); intermediates.push(result); @@ -55405,30 +55102,37 @@ function conv2dWithIm2Row({ x, filter, convInfo, backend: backend2, bias = null, const isChannelsLast = dataFormat === "channelsLast"; const sharedDim = filterWidth * filterHeight * inChannels; const numCols = outHeight * outWidth; - const x2ColShape = [sharedDim, numCols]; + const x2ColShape = [convInfo.batchSize, sharedDim, numCols]; const transposeA = true; const transposeB = false; const intermediates = []; - if (preluActivationWeights != null && !isChannelsLast && preluActivationWeights.shape.length === 3) { - const preluActivationWeightsInNhwcFormat = transpose3({ - inputs: { x: preluActivationWeights }, - backend: backend2, - attrs: { perm: [1, 2, 0] } - }); - intermediates.push(preluActivationWeightsInNhwcFormat); - preluActivationWeights = preluActivationWeightsInNhwcFormat; + if (preluActivationWeights != null) { + const targetShape = getShapeForBatchMatMul(preluActivationWeights.shape, isChannelsLast); + if (targetShape != null) { + preluActivationWeights = reshape4({ + inputs: { x: preluActivationWeights }, + backend: backend2, + attrs: { shape: targetShape } + }); + intermediates.push(preluActivationWeights); + } + } + if (bias != null) { + const targetShape = getShapeForBatchMatMul(bias.shape, isChannelsLast); + if (targetShape != null) { + bias = reshape4({ inputs: { x: bias }, backend: backend2, attrs: { shape: targetShape } }); + intermediates.push(bias); + } } - const xSqueezed = reshape4({ inputs: { x }, backend: backend2, attrs: { shape: x.shape.slice(1) } }); const w2Row = reshape4({ inputs: { x: filter }, backend: backend2, attrs: { shape: [1, sharedDim, util_exports.sizeFromShape(filter.shape) / sharedDim] } }); - intermediates.push(xSqueezed); intermediates.push(w2Row); const im2ColProgram = new Im2ColPackedProgram(x2ColShape, convInfo); const customValues = [ - xSqueezed.shape, + x.shape, [convInfo.padInfo.top, convInfo.padInfo.left], [convInfo.strideHeight, convInfo.strideWidth], [convInfo.dilationHeight, convInfo.dilationWidth], @@ -55436,20 +55140,16 @@ function conv2dWithIm2Row({ x, filter, convInfo, backend: backend2, bias = null, [convInfo.filterWidth * convInfo.inChannels], [convInfo.outWidth] ]; - const im2Col = backend2.runWebGLProgram(im2ColProgram, [xSqueezed], "float32", customValues); - const im2ColReshaped = reshape4({ - inputs: { x: im2Col }, - backend: backend2, - attrs: { shape: [1, x2ColShape[0], x2ColShape[1]] } - }); + const im2Col = backend2.runWebGLProgram(im2ColProgram, [x], "float32", customValues); + const im2ColReshaped = reshape4({ inputs: { x: im2Col }, backend: backend2, attrs: { shape: x2ColShape } }); intermediates.push(im2Col); intermediates.push(im2ColReshaped); const hasBias = bias != null; const hasPreluActivationWeights = preluActivationWeights != null; const hasLeakyreluAlpha = activation2 === "leakyrelu"; const fusedActivation = activation2 ? mapActivationToShaderProgram(activation2, true) : null; - const matmulProgram = new MatMulPackedProgram(im2ColReshaped.shape, w2Row.shape, [1, numCols, convInfo.outChannels], transposeA, transposeB, hasBias, fusedActivation, hasPreluActivationWeights, hasLeakyreluAlpha); - const inputs = [im2ColReshaped, w2Row]; + const matmulProgram = new MatMulPackedProgram(isChannelsLast ? im2ColReshaped.shape : w2Row.shape, isChannelsLast ? w2Row.shape : im2ColReshaped.shape, isChannelsLast ? [convInfo.batchSize, numCols, convInfo.outChannels] : [convInfo.batchSize, convInfo.outChannels, numCols], transposeA, transposeB, hasBias, fusedActivation, hasPreluActivationWeights, hasLeakyreluAlpha); + const inputs = isChannelsLast ? [im2ColReshaped, w2Row] : [w2Row, im2ColReshaped]; if (bias) { inputs.push(bias); } @@ -55462,12 +55162,7 @@ function conv2dWithIm2Row({ x, filter, convInfo, backend: backend2, bias = null, intermediates.push($leakyreluAlpha); } const product = backend2.runWebGLProgram(matmulProgram, inputs, "float32"); - const outInNHWCFormatShape = [1, outHeight, outWidth, convInfo.outChannels]; - const outInNHWCFormat = reshape4({ inputs: { x: product }, backend: backend2, attrs: { shape: outInNHWCFormatShape } }); - const out = isChannelsLast ? outInNHWCFormat : transpose3({ inputs: { x: outInNHWCFormat }, backend: backend2, attrs: { perm: [0, 3, 1, 2] } }); - if (!isChannelsLast) { - intermediates.push(outInNHWCFormat); - } + const out = reshape4({ inputs: { x: product }, backend: backend2, attrs: { shape: convInfo.outShape } }); intermediates.push(product); for (const i2 of intermediates) { backend2.disposeIntermediateTensorInfo(i2); @@ -55483,7 +55178,7 @@ function conv2d4(args) { let out; if (convInfo.filterHeight === 1 && convInfo.filterWidth === 1 && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && (convInfo.padInfo.type === "SAME" || convInfo.padInfo.type === "VALID")) { out = conv2dByMatMul({ x, filter, convInfo, backend: backend2 }); - } else if (env().getBool("WEBGL_CONV_IM2COL") && x.shape[0] === 1) { + } else if (env().getBool("WEBGL_CONV_IM2COL")) { out = conv2dWithIm2Row({ x, filter, convInfo, backend: backend2 }); } else { const program = new Conv2DProgram(convInfo); @@ -57332,7 +57027,7 @@ function fusedConv2d(args) { preluActivationWeights, leakyreluAlpha }); - } else if (env().getBool("WEBGL_CONV_IM2COL") && x.shape[0] === 1) { + } else if (env().getBool("WEBGL_CONV_IM2COL")) { out = conv2dWithIm2Row({ x, filter, @@ -57435,24 +57130,31 @@ var fusedDepthwiseConv2DConfig2 = { kernelFunc: fusedDepthwiseConv2D2 }; var GatherNDProgram = class { - constructor(sliceDim, strides2, shape) { + constructor(sliceDim, strides2, shape, paramsShape) { this.sliceDim = sliceDim; this.strides = strides2; + this.paramsShape = paramsShape; this.variableNames = ["x", "indices"]; this.outputShape = shape; const stridesType = getCoordsDataType(strides2.length); const dtype = getCoordsDataType(shape.length); const strideString = this.sliceDim > 1 ? "strides[j]" : "strides"; + const paramsShapeType = getCoordsDataType(paramsShape.length); + const paramsShapeString = paramsShape.length > 1 ? "paramsShape[j]" : "paramsShape"; this.userCode = ` ${stridesType} strides = ${stridesType}(${this.strides}); + ${paramsShapeType} paramsShape = ${paramsShapeType}(${this.paramsShape}); void main() { ${dtype} coords = getOutputCoords(); int flattenIndex = 0; + bool out_of_bounds = false; for (int j = 0; j < ${this.sliceDim}; j++) { int index = round(getIndices(coords[0], j)); + out_of_bounds = out_of_bounds || index < 0; + out_of_bounds = out_of_bounds || index >= ${paramsShapeString}; flattenIndex += index * ${strideString}; } - setOutput(getX(flattenIndex, coords[1])); + setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1])); } `; } @@ -57476,7 +57178,7 @@ function gatherNd2(args) { const outValue = gatherNdImplCPU(indicesData, paramsBuf, params.dtype, numSlices, sliceRank, sliceSize, strides2, params.shape, paramsSize); return backend2.makeTensorInfo(resultShape, params.dtype, outValue.values); } - const program = new GatherNDProgram(sliceRank, strides2, [numSlices, sliceSize]); + const program = new GatherNDProgram(sliceRank, strides2, [numSlices, sliceSize], params.shape); const res = backend2.runWebGLProgram(program, [flattenX, flattenIndices], flattenX.dtype); const reshaped = reshape4({ inputs: { x: res }, backend: backend2, attrs: { shape: resultShape } }); backend2.disposeIntermediateTensorInfo(flattenIndices); @@ -58632,14 +58334,14 @@ function softmax4(args) { }); const expandedShape = backend_util_exports.expandShapeToKeepDim(maxLogit.shape, axes); const maxLogitsReshaped = reshape4({ inputs: { x: maxLogit }, backend: backend2, attrs: { shape: expandedShape } }); - const a6 = sub3({ inputs: { a: logits, b: maxLogitsReshaped }, backend: backend2 }); - const b = exp3({ inputs: { x: a6 }, backend: backend2 }); + const a = sub3({ inputs: { a: logits, b: maxLogitsReshaped }, backend: backend2 }); + const b = exp3({ inputs: { x: a }, backend: backend2 }); const sumExp = sum4({ inputs: { x: b }, backend: backend2, attrs: { axis: axes, keepDims: false } }); const sumExpReshaped = reshape4({ inputs: { x: sumExp }, backend: backend2, attrs: { shape: expandedShape } }); const res = realDiv({ inputs: { a: b, b: sumExpReshaped }, backend: backend2 }); backend2.disposeIntermediateTensorInfo(maxLogit); backend2.disposeIntermediateTensorInfo(maxLogitsReshaped); - backend2.disposeIntermediateTensorInfo(a6); + backend2.disposeIntermediateTensorInfo(a); backend2.disposeIntermediateTensorInfo(b); backend2.disposeIntermediateTensorInfo(sumExp); backend2.disposeIntermediateTensorInfo(sumExpReshaped); @@ -60124,7 +59826,7 @@ var spaceToBatchND3 = (args) => { const { x } = inputs; const { blockShape, paddings } = attrs; util_exports.assert(x.shape.length <= 4, () => "spaceToBatchND for rank > 4 with a WebGL backend not implemented yet"); - const prod6 = blockShape.reduce((a6, b) => a6 * b); + const prod6 = blockShape.reduce((a, b) => a * b); const completePaddings = [[0, 0]]; completePaddings.push(...paddings); for (let i2 = 1 + blockShape.length; i2 < x.shape.length; ++i2) { @@ -61361,12 +61063,12 @@ function setup(backend2) { } function fusedBatchMatMul(args) { const { inputs, backend: backend2, attrs } = args; - const { a: a6, b, bias, preluActivationWeights } = inputs; - if (a6.dtype !== "float32" || b.dtype !== "float32") { + const { a, b, bias, preluActivationWeights } = inputs; + if (a.dtype !== "float32" || b.dtype !== "float32") { throw new Error(`_FusedMatMul for non non-float32 tensors not yet supported.`); } const { transposeA, transposeB, activation: activation2, leakyreluAlpha } = attrs; - const aId = backend2.dataIdMap.get(a6.dataId).id; + const aId = backend2.dataIdMap.get(a.dataId).id; const bId = backend2.dataIdMap.get(b.dataId).id; let biasId = 0; if (bias != null) { @@ -61381,14 +61083,14 @@ function fusedBatchMatMul(args) { if (fusedActivation == null) { throw new Error(`${activation2} activation not yet supported for FusedConv2D in the wasm backend.`); } - const leftDim = transposeA ? a6.shape[2] : a6.shape[1]; + const leftDim = transposeA ? a.shape[2] : a.shape[1]; const rightDim = transposeB ? b.shape[1] : b.shape[2]; - const batchDims = broadcast_util_exports.assertAndGetBroadcastShape(a6.shape.slice(0, -2), b.shape.slice(0, -2)); - const out = backend2.makeOutput([...batchDims, leftDim, rightDim], a6.dtype); + const batchDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2)); + const out = backend2.makeOutput([...batchDims, leftDim, rightDim], a.dtype); const outId = backend2.dataIdMap.get(out.dataId).id; - const aShapeBytes = new Uint8Array(new Int32Array(a6.shape).buffer); + const aShapeBytes = new Uint8Array(new Int32Array(a.shape).buffer); const bShapeBytes = new Uint8Array(new Int32Array(b.shape).buffer); - wasmFusedMatMul(aId, aShapeBytes, a6.shape.length, bId, bShapeBytes, b.shape.length, transposeA, transposeB, fusedActivation, biasId, preluActivationWeightsId, leakyreluAlpha || 0, outId); + wasmFusedMatMul(aId, aShapeBytes, a.shape.length, bId, bShapeBytes, b.shape.length, transposeA, transposeB, fusedActivation, biasId, preluActivationWeightsId, leakyreluAlpha || 0, outId); return out; } var _fusedMatMulConfig3 = { @@ -61420,7 +61122,7 @@ function createUnaryKernelConfig(kernelName, outType) { return { kernelName, backendName: "wasm", setupFunc: setupFunc3, kernelFunc: kernelFunc3 }; } var absConfig3 = createUnaryKernelConfig(Abs); -function createBinaryKernelConfig(kernelName, supportsFullBroadcast17, dtype) { +function createBinaryKernelConfig(kernelName, supportsFullBroadcast19, dtype) { let wasmFunc9; function setupFunc3(backend2) { wasmFunc9 = backend2.wasm.cwrap(kernelName, null, [ @@ -61436,19 +61138,19 @@ function createBinaryKernelConfig(kernelName, supportsFullBroadcast17, dtype) { } function kernelFunc3(args) { const { backend: backend2, inputs } = args; - const { a: a6, b } = inputs; - const aId = backend2.dataIdMap.get(a6.dataId).id; + const { a, b } = inputs; + const aId = backend2.dataIdMap.get(a.dataId).id; const bId = backend2.dataIdMap.get(b.dataId).id; - const outputType = dtype != null ? dtype : a6.dtype; - const newShape = backend_util_exports.assertAndGetBroadcastShape(a6.shape, b.shape); + const outputType = dtype != null ? dtype : a.dtype; + const newShape = backend_util_exports.assertAndGetBroadcastShape(a.shape, b.shape); const out = backend2.makeOutput(newShape, outputType); if (util_exports.sizeFromShape(newShape) === 0) { return out; } - const aShapeBytes = new Uint8Array(new Int32Array(a6.shape).buffer); + const aShapeBytes = new Uint8Array(new Int32Array(a.shape).buffer); const bShapeBytes = new Uint8Array(new Int32Array(b.shape).buffer); const outId = backend2.dataIdMap.get(out.dataId).id; - const kernelFunc4 = () => wasmFunc9(aId, aShapeBytes, a6.shape.length, bId, bShapeBytes, b.shape.length, CppDType[a6.dtype], outId); + const kernelFunc4 = () => wasmFunc9(aId, aShapeBytes, a.shape.length, bId, bShapeBytes, b.shape.length, CppDType[a.dtype], outId); kernelFunc4(); return out; } @@ -61800,27 +61502,27 @@ function setup7(backend2) { } function batchMatMul3(args) { const { inputs, backend: backend2, attrs } = args; - const { a: a6, b } = inputs; + const { a, b } = inputs; const { transposeA, transposeB } = attrs; - if (a6.dtype !== "float32" || b.dtype !== "float32") { + if (a.dtype !== "float32" || b.dtype !== "float32") { throw new Error(`BatchMatMul for non non-float32 tensors not yet supported.`); } - const aRank = a6.shape.length; + const aRank = a.shape.length; const bRank = b.shape.length; - const innerShapeA = transposeA ? a6.shape[aRank - 2] : a6.shape[aRank - 1]; + const innerShapeA = transposeA ? a.shape[aRank - 2] : a.shape[aRank - 1]; const innerShapeB = transposeB ? b.shape[bRank - 1] : b.shape[bRank - 2]; - const outerShapeA = transposeA ? a6.shape[aRank - 1] : a6.shape[aRank - 2]; + const outerShapeA = transposeA ? a.shape[aRank - 1] : a.shape[aRank - 2]; const outerShapeB = transposeB ? b.shape[bRank - 2] : b.shape[bRank - 1]; - const outerDimsA = a6.shape.slice(0, -2); + const outerDimsA = a.shape.slice(0, -2); const outerDimsB = b.shape.slice(0, -2); const batchDimA = util_exports.sizeFromShape(outerDimsA); const batchDimB = util_exports.sizeFromShape(outerDimsB); - const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a6.shape.slice(0, -2), b.shape.slice(0, -2)); + const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2)); const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]); - util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a6.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`); + util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`); const a3dShape = transposeA ? [batchDimA, innerShapeA, outerShapeA] : [batchDimA, outerShapeA, innerShapeA]; const b3dShape = transposeB ? [batchDimB, outerShapeB, innerShapeB] : [batchDimB, innerShapeB, outerShapeB]; - const a3d = reshape5({ inputs: { x: a6 }, backend: backend2, attrs: { shape: a3dShape } }); + const a3d = reshape5({ inputs: { x: a }, backend: backend2, attrs: { shape: a3dShape } }); const b3d = reshape5({ inputs: { x: b }, backend: backend2, attrs: { shape: b3dShape } }); const a3dId = backend2.dataIdMap.get(a3d.dataId).id; const b3dId = backend2.dataIdMap.get(b3d.dataId).id; @@ -61934,7 +61636,7 @@ function batchToSpaceND4(args) { const { inputs, backend: backend2, attrs } = args; const { x } = inputs; const { blockShape, crops } = attrs; - const prod6 = blockShape.reduce((a6, b) => a6 * b); + const prod6 = blockShape.reduce((a, b) => a * b); const reshaped = backend_util_exports.getReshaped(x.shape, blockShape, prod6); const permuted = backend_util_exports.getPermuted(reshaped.length, blockShape.length); const reshapedPermuted = backend_util_exports.getReshapedPermuted(x.shape, blockShape, prod6); @@ -62826,6 +62528,11 @@ var lessEqualConfig3 = createBinaryKernelConfig(LessEqual, supportsFullBroadcast var logConfig3 = createUnaryKernelConfig(Log); var supportsFullBroadcast8 = false; var logicalAndConfig3 = createBinaryKernelConfig(LogicalAnd, supportsFullBroadcast8, "bool"); +var logicalNotConfig3 = createUnaryKernelConfig(LogicalNot); +var supportsFullBroadcast9 = false; +var logicalOrConfig3 = createBinaryKernelConfig(LogicalOr, supportsFullBroadcast9, "bool"); +var supportsFullBroadcast10 = false; +var logicalXorConfig = createBinaryKernelConfig(LogicalXor, supportsFullBroadcast10, "bool"); var wasmMax; function setup22(backend2) { wasmMax = backend2.wasm.cwrap(Max, null, [ @@ -62872,8 +62579,8 @@ var maxConfig3 = { setupFunc: setup22, kernelFunc: max5 }; -var supportsFullBroadcast9 = false; -var maximumConfig3 = createBinaryKernelConfig(Maximum, supportsFullBroadcast9); +var supportsFullBroadcast11 = false; +var maximumConfig3 = createBinaryKernelConfig(Maximum, supportsFullBroadcast11); var wasmMaxPool; function setup23(backend2) { wasmMaxPool = backend2.wasm.cwrap(MaxPool, null, [ @@ -63029,8 +62736,8 @@ var minConfig3 = { setupFunc: setup25, kernelFunc: min5 }; -var supportsFullBroadcast10 = false; -var minimumConfig3 = createBinaryKernelConfig(Minimum, supportsFullBroadcast10); +var supportsFullBroadcast12 = false; +var minimumConfig3 = createBinaryKernelConfig(Minimum, supportsFullBroadcast12); var MirrorPaddingMode; (function(MirrorPaddingMode2) { MirrorPaddingMode2[MirrorPaddingMode2["reflect"] = 0] = "reflect"; @@ -63069,8 +62776,8 @@ var mirrorPadConfig3 = { kernelFunc: mirrorPad3, setupFunc: setup26 }; -var supportsFullBroadcast11 = true; -var multiplyConfig3 = createBinaryKernelConfig(Multiply, supportsFullBroadcast11); +var supportsFullBroadcast13 = true; +var multiplyConfig3 = createBinaryKernelConfig(Multiply, supportsFullBroadcast13); var negConfig3 = createUnaryKernelConfig(Neg); function parseResultStruct(backend2, resOffset) { const result = new Int32Array(backend2.wasm.HEAPU8.buffer, resOffset, 4); @@ -63170,8 +62877,8 @@ var nonMaxSuppressionV5Config3 = { setupFunc: setup29, kernelFunc: kernelFunc2 }; -var supportsFullBroadcast12 = false; -var notEqualConfig3 = createBinaryKernelConfig(NotEqual, supportsFullBroadcast12, "bool"); +var supportsFullBroadcast14 = false; +var notEqualConfig3 = createBinaryKernelConfig(NotEqual, supportsFullBroadcast14, "bool"); var wasmOneHot; function setup30(backend2) { wasmOneHot = backend2.wasm.cwrap(OneHot, null, [ @@ -63278,8 +62985,8 @@ var padV2Config3 = { kernelFunc: pad2, setupFunc: setup31 }; -var supportsFullBroadcast13 = false; -var powConfig3 = createBinaryKernelConfig(Pow, supportsFullBroadcast13); +var supportsFullBroadcast15 = false; +var powConfig3 = createBinaryKernelConfig(Pow, supportsFullBroadcast15); var wasmPrelu; function setup32(backend2) { wasmPrelu = backend2.wasm.cwrap(Prelu, null, [ @@ -63377,8 +63084,8 @@ var rangeConfig3 = { backendName: "wasm", kernelFunc: range5 }; -var supportsFullBroadcast14 = true; -var realDivConfig3 = createBinaryKernelConfig(RealDiv, supportsFullBroadcast14); +var supportsFullBroadcast16 = true; +var realDivConfig3 = createBinaryKernelConfig(RealDiv, supportsFullBroadcast16); var reluConfig3 = createUnaryKernelConfig(Relu); var relu6Config3 = createUnaryKernelConfig(Relu6); var wasmResizeBilinear; @@ -63427,8 +63134,58 @@ var resizeBilinearConfig3 = { setupFunc: setup34, kernelFunc: resizeBilinear4 }; -var wasmReverse; +var wasmResizeNearestNeighbor; function setup35(backend2) { + wasmResizeNearestNeighbor = backend2.wasm.cwrap(ResizeNearestNeighbor, null, [ + "number", + "number", + "number", + "number", + "number", + "number", + "number", + "number", + "number", + "number" + ]); +} +function resizeNearestNeighbor4(args) { + const { backend: backend2, inputs, attrs } = args; + const { images } = inputs; + const { alignCorners, halfPixelCenters, size: size2 } = attrs; + const [newHeight, newWidth] = size2; + const [batch, oldHeight, oldWidth, numChannels] = images.shape; + const outShape = [batch, newHeight, newWidth, numChannels]; + const out = backend2.makeOutput(outShape, "float32"); + if (util_exports.sizeFromShape(images.shape) === 0) { + return out; + } + let xData = backend2.dataIdMap.get(images.dataId); + let castedData; + if (xData.dtype !== "float32") { + castedData = cast5({ + backend: backend2, + inputs: { x: images }, + attrs: { dtype: "float32" } + }); + xData = backend2.dataIdMap.get(castedData.dataId); + } + const xId = xData.id; + const outId = backend2.dataIdMap.get(out.dataId).id; + wasmResizeNearestNeighbor(xId, batch, oldHeight, oldWidth, numChannels, newHeight, newWidth, alignCorners ? 1 : 0, halfPixelCenters ? 1 : 0, outId); + if (castedData != null) { + backend2.disposeData(castedData.dataId); + } + return out; +} +var resizeNearestNeighborConfig3 = { + kernelName: ResizeNearestNeighbor, + backendName: "wasm", + setupFunc: setup35, + kernelFunc: resizeNearestNeighbor4 +}; +var wasmReverse; +function setup36(backend2) { wasmReverse = backend2.wasm.cwrap(Reverse, null, [ "number", "array", @@ -63460,10 +63217,10 @@ var reverseConfig3 = { kernelName: Reverse, backendName: "wasm", kernelFunc: reverse4, - setupFunc: setup35 + setupFunc: setup36 }; var wasmRotate; -function setup36(backend2) { +function setup37(backend2) { wasmRotate = backend2.wasm.cwrap(RotateWithOffset, null, [ "number", "number", @@ -63498,12 +63255,12 @@ var rotateWithOffsetConfig3 = { kernelName: RotateWithOffset, backendName: "wasm", kernelFunc: rotateWithOffset2, - setupFunc: setup36 + setupFunc: setup37 }; var roundConfig3 = createUnaryKernelConfig(Round); var rsqrtConfig3 = createUnaryKernelConfig(Rsqrt); var wasmScatterNd; -function setup37(backend2) { +function setup38(backend2) { wasmScatterNd = backend2.wasm.cwrap(ScatterNd, null, [ "number", "number", @@ -63537,11 +63294,11 @@ function scatterNd3(args) { var scatterNdConfig3 = { kernelName: ScatterNd, backendName: "wasm", - setupFunc: setup37, + setupFunc: setup38, kernelFunc: scatterNd3 }; var wasmSelect; -function setup38(backend2) { +function setup39(backend2) { wasmSelect = backend2.wasm.cwrap("SelectV2", null, [ "number", "number", @@ -63568,10 +63325,10 @@ var selectConfig3 = { kernelName: Select, backendName: "wasm", kernelFunc: select4, - setupFunc: setup38 + setupFunc: setup39 }; var wasmFunc7; -function setup39(backend2) { +function setup40(backend2) { wasmFunc7 = backend2.wasm.cwrap(Sigmoid, null, ["number", "number"]); } function sigmoid4(args) { @@ -63588,12 +63345,12 @@ function sigmoid4(args) { var sigmoidConfig3 = { kernelName: "Sigmoid", backendName: "wasm", - setupFunc: setup39, + setupFunc: setup40, kernelFunc: sigmoid4 }; var sinConfig3 = createUnaryKernelConfig(Sin); var wasmFunc8; -function setup40(backend2) { +function setup41(backend2) { wasmFunc8 = backend2.wasm.cwrap(Softmax, null, [ "number", "number", @@ -63617,7 +63374,7 @@ function softmax5(args) { var softmaxConfig3 = { kernelName: Softmax, backendName: "wasm", - setupFunc: setup40, + setupFunc: setup41, kernelFunc: softmax5 }; function spaceToBatchND4(args) { @@ -63658,7 +63415,7 @@ var spaceToBatchNDConfig3 = { kernelFunc: spaceToBatchND4 }; var wasmSparseFillEmptyRows; -function setup41(backend2) { +function setup42(backend2) { wasmSparseFillEmptyRows = backend2.wasm.cwrap("SparseFillEmptyRows", "number", [ "number", "number", @@ -63741,11 +63498,11 @@ function sparseFillEmptyRows4(args) { var sparseFillEmptyRowsConfig3 = { kernelName: SparseFillEmptyRows, backendName: "wasm", - setupFunc: setup41, + setupFunc: setup42, kernelFunc: sparseFillEmptyRows4 }; var wasmSparseReshape; -function setup42(backend2) { +function setup43(backend2) { wasmSparseReshape = backend2.wasm.cwrap(SparseReshape, null, [ "number", "number", @@ -63820,11 +63577,11 @@ function sparseReshape4(args) { var sparseReshapeConfig3 = { kernelName: SparseReshape, backendName: "wasm", - setupFunc: setup42, + setupFunc: setup43, kernelFunc: sparseReshape4 }; var wasmSparseSegmentReduction; -function setup43(backend2) { +function setup44(backend2) { wasmSparseSegmentReduction = backend2.wasm.cwrap("SparseSegmentReduction", null, [ "number", "number", @@ -63890,7 +63647,7 @@ function sparseSegmentMean4(args) { var sparseSegmentMeanConfig3 = { kernelName: SparseSegmentMean, backendName: "wasm", - setupFunc: setup43, + setupFunc: setup44, kernelFunc: sparseSegmentMean4 }; function sparseSegmentSum4(args) { @@ -63899,7 +63656,7 @@ function sparseSegmentSum4(args) { var sparseSegmentSumConfig3 = { kernelName: SparseSegmentSum, backendName: "wasm", - setupFunc: setup43, + setupFunc: setup44, kernelFunc: sparseSegmentSum4 }; function splitV3(args) { @@ -63925,10 +63682,10 @@ var splitVConfig3 = { }; var sqrtConfig3 = createUnaryKernelConfig(Sqrt); var squareConfig3 = createUnaryKernelConfig(Square); -var supportsFullBroadcast15 = true; -var squaredDifferenceConfig3 = createBinaryKernelConfig(SquaredDifference, supportsFullBroadcast15); +var supportsFullBroadcast17 = true; +var squaredDifferenceConfig3 = createBinaryKernelConfig(SquaredDifference, supportsFullBroadcast17); var wasmStep; -function setup44(backend2) { +function setup45(backend2) { wasmStep = backend2.wasm.cwrap(Step, null, [ "number", "number", @@ -63949,11 +63706,11 @@ function step4(args) { var stepConfig3 = { kernelName: Step, backendName: "wasm", - setupFunc: setup44, + setupFunc: setup45, kernelFunc: step4 }; var wasmStridedSlice; -function setup45(backend2) { +function setup46(backend2) { wasmStridedSlice = backend2.wasm.cwrap(StridedSlice, null, [ "number", "array", @@ -64000,13 +63757,73 @@ function stridedSlice4(args) { var stridedSliceConfig3 = { kernelName: StridedSlice, backendName: "wasm", - setupFunc: setup45, + setupFunc: setup46, kernelFunc: stridedSlice4 }; -var supportsFullBroadcast16 = true; -var subConfig3 = createBinaryKernelConfig(Sub, supportsFullBroadcast16); +function stringNGrams4(args) { + const { backend: backend2, inputs, attrs } = args; + const { data, dataSplits } = inputs; + const { separator, nGramWidths, leftPad, rightPad: rightPad2, padWidth, preserveShortSequences } = attrs; + const $data = backend2.readSync(data.dataId); + const $dataSplits = backend2.readSync(dataSplits.dataId); + const [nGrams, nGramsSplits] = stringNGramsImpl($data, $dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences); + const nGramsOut = backend2.makeOutput([nGrams.length], "string"); + const nGramsOutData = backend2.dataIdMap.get(nGramsOut.dataId); + nGramsOutData.stringBytes = nGrams; + const nGramsSplitsOut = backend2.makeOutput(dataSplits.shape, "int32"); + const nGramsSplitsOutVals = backend2.typedArrayFromHeap(nGramsSplitsOut); + nGramsSplitsOutVals.set(nGramsSplits); + return [nGramsOut, nGramsSplitsOut]; +} +var stringNGramsConfig3 = { + kernelName: StringNGrams, + backendName: "wasm", + kernelFunc: stringNGrams4 +}; +function stringSplit4(args) { + const { backend: backend2, inputs, attrs } = args; + const { input: input2, delimiter } = inputs; + const { skipEmpty } = attrs; + const inputVals = backend2.readSync(input2.dataId); + const delimiterVals = backend2.readSync(delimiter.dataId); + const [indices, values, shape] = stringSplitImpl(inputVals, delimiterVals[0], skipEmpty); + const outputSize2 = values.length; + const indicesOut = backend2.makeOutput([outputSize2, 2], "int32"); + const indicesOutVals = backend2.typedArrayFromHeap(indicesOut); + indicesOutVals.set(indices); + const valuesOut = backend2.makeOutput([outputSize2], "string"); + const valuesOutData = backend2.dataIdMap.get(valuesOut.dataId); + valuesOutData.stringBytes = values; + const shapeOut = backend2.makeOutput([2], "int32"); + const shapeOutVals = backend2.typedArrayFromHeap(shapeOut); + shapeOutVals.set(shape); + return [indicesOut, valuesOut, shapeOut]; +} +var stringSplitConfig3 = { + kernelName: StringSplit, + backendName: "wasm", + kernelFunc: stringSplit4 +}; +function stringToHashBucketFast4(args) { + const { backend: backend2, inputs, attrs } = args; + const { input: input2 } = inputs; + const { numBuckets } = attrs; + const inputVals = backend2.readSync(input2.dataId); + const values = stringToHashBucketFastImpl(inputVals, numBuckets); + const out = backend2.makeOutput(input2.shape, "int32"); + const outVals = backend2.typedArrayFromHeap(out); + outVals.set(values); + return out; +} +var stringToHashBucketFastConfig3 = { + kernelName: StringToHashBucketFast, + backendName: "wasm", + kernelFunc: stringToHashBucketFast4 +}; +var supportsFullBroadcast18 = true; +var subConfig3 = createBinaryKernelConfig(Sub, supportsFullBroadcast18); var wasmSum; -function setup46(backend2) { +function setup47(backend2) { wasmSum = backend2.wasm.cwrap(Sum, null, [ "number", "number", @@ -64051,13 +63868,13 @@ function sum5(args) { var sumConfig3 = { kernelName: Sum, backendName: "wasm", - setupFunc: setup46, + setupFunc: setup47, kernelFunc: sum5 }; var tanConfig3 = createUnaryKernelConfig(Tan); var tanhConfig3 = createUnaryKernelConfig(Tanh); var wasmTile; -function setup47(backend2) { +function setup48(backend2) { wasmTile = backend2.wasm.cwrap(Tile, null, [ "number", "array", @@ -64086,11 +63903,11 @@ function tile5(args) { var tileConfig3 = { kernelName: Tile, backendName: "wasm", - setupFunc: setup47, + setupFunc: setup48, kernelFunc: tile5 }; var wasmTopK; -function setup48(backend2) { +function setup49(backend2) { wasmTopK = backend2.wasm.cwrap(TopK, null, [ "number", "array", @@ -64119,11 +63936,11 @@ var topk2 = ({ inputs, backend: backend2, attrs }) => { var topKConfig3 = { kernelName: TopK, backendName: "wasm", - setupFunc: setup48, + setupFunc: setup49, kernelFunc: topk2 }; var wasmTransform; -function setup49(backend2) { +function setup50(backend2) { wasmTransform = backend2.wasm.cwrap(Transform, null, [ "number", "number", @@ -64186,7 +64003,7 @@ function transform4(args) { var transformConfig3 = { kernelName: Transform, backendName: "wasm", - setupFunc: setup49, + setupFunc: setup50, kernelFunc: transform4 }; function unpack3(args) { @@ -64277,6 +64094,9 @@ var kernelConfigs3 = [ lessEqualConfig3, logConfig3, logicalAndConfig3, + logicalNotConfig3, + logicalOrConfig3, + logicalXorConfig, maxConfig3, maximumConfig3, maxPoolConfig3, @@ -64303,6 +64123,7 @@ var kernelConfigs3 = [ relu6Config3, reshapeConfig3, resizeBilinearConfig3, + resizeNearestNeighborConfig3, reverseConfig3, rotateWithOffsetConfig3, roundConfig3, @@ -64324,6 +64145,9 @@ var kernelConfigs3 = [ squaredDifferenceConfig3, stepConfig3, stridedSliceConfig3, + stringNGramsConfig3, + stringSplitConfig3, + stringToHashBucketFastConfig3, subConfig3, sumConfig3, tanConfig3, @@ -64419,9 +64243,11 @@ ENV6.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT", async () => { return false; } }); -var import_tfjs_backend_wasm_threaded_simd = __toESM(require_tfjs_backend_wasm_threaded_simd()); -var wasmWorkerContents = '"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"\n");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});'; -var import_tfjs_backend_wasm = __toESM(require_tfjs_backend_wasm()); +var wasmFactoryThreadedSimd_import = __toESM(require_tfjs_backend_wasm_threaded_simd()); +var import_tfjs_backend_wasm_threaded_simd_worker = __toESM(require_tfjs_backend_wasm_threaded_simd_worker()); +var wasmFactory_import = __toESM(require_tfjs_backend_wasm()); +var wasmFactoryThreadedSimd = wasmFactoryThreadedSimd_import.default || wasmFactoryThreadedSimd_import; +var wasmFactory = wasmFactory_import.default || wasmFactory_import; var BackendWasm = class extends KernelBackend { constructor(wasm) { super(); @@ -64590,7 +64416,7 @@ async function init() { const factoryConfig = {}; factoryConfig.locateFile = (path, prefix) => { if (path.endsWith(".worker.js")) { - const response = wasmWorkerContents.replace(/\n/g, "\\n"); + const response = import_tfjs_backend_wasm_threaded_simd_worker.wasmWorkerContents.replace(/\n/g, "\\n"); const blob = new Blob([response], { type: "application/javascript" }); return URL.createObjectURL(blob); } @@ -64616,10 +64442,10 @@ async function init() { }; let wasm; if (threadsSupported && simdSupported && wasmPath == null) { - factoryConfig.mainScriptUrlOrBlob = new Blob([`var WasmBackendModuleThreadedSimd = ` + import_tfjs_backend_wasm_threaded_simd.default.toString()], { type: "text/javascript" }); - wasm = (0, import_tfjs_backend_wasm_threaded_simd.default)(factoryConfig); + factoryConfig.mainScriptUrlOrBlob = new Blob([`var WasmBackendModuleThreadedSimd = ` + wasmFactoryThreadedSimd.toString()], { type: "text/javascript" }); + wasm = wasmFactoryThreadedSimd(factoryConfig); } else { - wasm = (0, import_tfjs_backend_wasm.default)(factoryConfig); + wasm = wasmFactory(factoryConfig); } wasm.then((module) => { initialized = true; @@ -64638,7 +64464,7 @@ async function init() { dispose: module.cwrap("dispose", voidReturnType, []) }; resolve({ wasm: module }); - }); + }).catch(reject); }); } function typedArrayFromBuffer(buffer2, dtype) { @@ -64697,7 +64523,7 @@ function getThreadsCount() { } return actualThreadsCount; } -var version8 = "3.18.0"; +var version8 = "3.19.0"; var WASM_PRIORITY = 2; registerBackend("wasm", async () => { const { wasm } = await init(); @@ -64707,11 +64533,12 @@ var ENV7 = env(); ENV7.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE", () => 15); ENV7.registerFlag("WEBGPU_CPU_FORWARD", () => true); ENV7.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD", () => 4); +ENV7.registerFlag("WEBGPU_MATMUL_PROGRAM_TYPE", () => -1); ENV7.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE", () => false); ENV7.registerFlag("WEBGPU_USE_LOW_POWER_GPU", () => false); ENV7.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD", () => 1e3); ENV7.registerFlag("WEBGPU_USE_PROFILE_TOOL", () => false); -ENV7.registerFlag("WEBGPU_USE_IMPORT", () => false); +ENV7.registerFlag("WEBGPU_IMPORT_EXTERNAL_TEXTURE", () => false); var BinaryOpType; (function(BinaryOpType2) { BinaryOpType2[BinaryOpType2["MUL"] = 0] = "MUL"; @@ -65033,25 +64860,64 @@ function getUnaryOpString(type, useVec4) { throw new Error(`BinaryType ${type} is not implemented!`); } } -function mapActivationToShaderProgram2(activation2, packed = false) { - if (activation2 === null) { - return null; - } else if (activation2 === "linear") { - return getUnaryOpString(UnaryOpType.LINEAR); - } else if (activation2 === "relu") { - return getUnaryOpString(UnaryOpType.RELU, packed); - } else if (activation2 === "elu") { - return getUnaryOpString(UnaryOpType.ELU, packed); - } else if (activation2 === "relu6") { - return getUnaryOpString(UnaryOpType.RELU6, packed); - } else if (activation2 === "prelu") { - return getBinaryOpString(BinaryOpType.PRELU, packed); - } else if (activation2 === "sigmoid") { - return getUnaryOpString(UnaryOpType.SIGMOID, packed); - } else if (activation2 === "leakyrelu") { - return getUnaryOpString(UnaryOpType.LEAKYRELU, packed); +var typeSnippet = (component) => { + switch (component) { + case 1: + return "f32"; + case 2: + return "vec2"; + case 3: + return "vec3"; + case 4: + return "vec4"; + default: + throw new Error(`${component}-component is not supported.`); } - throw new Error(`Activation ${activation2} has not been implemented for the WebGPU backend.`); +}; +function activationFnSnippet(activation2, hasPreluActivationWeights = false, packed = false, coordsLength = 3) { + if (activation2 === null) { + return ""; + } + let activationOpSnippet = ""; + if (activation2 === "linear") { + activationOpSnippet = getUnaryOpString(UnaryOpType.LINEAR); + } else if (activation2 === "relu") { + activationOpSnippet = getUnaryOpString(UnaryOpType.RELU, packed); + } else if (activation2 === "elu") { + activationOpSnippet = getUnaryOpString(UnaryOpType.ELU, packed); + } else if (activation2 === "relu6") { + activationOpSnippet = getUnaryOpString(UnaryOpType.RELU6, packed); + } else if (activation2 === "prelu") { + activationOpSnippet = getBinaryOpString(BinaryOpType.PRELU, packed); + } else if (activation2 === "sigmoid") { + activationOpSnippet = getUnaryOpString(UnaryOpType.SIGMOID, packed); + } else if (activation2 === "leakyrelu") { + activationOpSnippet = getUnaryOpString(UnaryOpType.LEAKYRELU, packed); + } else { + throw new Error(`Activation ${activation2} has not been implemented for the WebGPU backend.`); + } + const elementSize = packed ? 4 : 1; + const dataType = typeSnippet(elementSize); + let activationFnSnippet2 = ""; + if (hasPreluActivationWeights) { + activationFnSnippet2 = ` + fn activation(a : ${dataType}, coords : vec${coordsLength}) -> ${dataType} { + let b = getPreluActivationWeightsByOutputCoords(coords); + ${activationOpSnippet} + }`; + } else { + activationFnSnippet2 = ` + fn activation(a : ${dataType}, coords : vec${coordsLength}) -> ${dataType} { + ${activationOpSnippet} + }`; + } + return activationFnSnippet2; +} +function biasActivationSnippet(hasBias, activation2) { + return ` + ${hasBias ? "value = value + getBiasByOutputCoords(coords);" : ""} + ${activation2 ? "value = activation(value, coords);" : ""} + `; } function symbolicallyComputeStrides2(indicesArr, variableName) { if (Math.max(...indicesArr) > 3) { @@ -65066,6 +64932,17 @@ function symbolicallyComputeStrides2(indicesArr, variableName) { } return strides2; } +var compileProgram2 = (device, program, inputsData, output) => { + const outputData = { dtype: output.dtype, shape: output.shape }; + const source = makeShader2(inputsData, outputData, program); + const module = device.createShaderModule({ code: source, label: program.constructor.name }); + const pipeline = device.createComputePipeline({ + compute: { module, entryPoint: "main" }, + label: program.constructor.name, + layout: "auto" + }); + return pipeline; +}; function getCoordsDataType2(rank) { if (rank <= 1) { return "i32"; @@ -65100,19 +64977,10 @@ function getCoordsXYZ(index2) { throw Error(`Index ${index2} is not yet supported`); } } -function mapToWgslTypes(type, isVec4) { - if (type === "float32") { - return isVec4 ? "vec4" : "f32"; - } else if (type === "int32") { - return isVec4 ? "vec4" : "i32"; - } else if (type === "bool") { - return isVec4 ? "vec4" : "i32"; - } - return type; -} -function getWorkGroupSizeString() { +function getMainHeaderAndGlobalIndexString() { return ` - @stage(compute) @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ) + ${getMainHeaderString()} + let index = getGlobalIndex(); `; } function getMainHeaderString() { @@ -65126,52 +64994,47 @@ function getMainHeaderString() { numWorkgroups = NumWorkgroups; `; } -function getMainHeaderAndGlobalIndexString() { +function getWorkGroupSizeString() { return ` - ${getMainHeaderString()} - let index = getGlobalIndex(); + @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ) `; } -function makeShader2(inputInfo, outputData, program, isFromPixel = false) { +function makeShader2(inputInfo, outputData, program) { const prefixSnippets = []; prefixSnippets.push(` - let workGroupSizeX = ${program.workGroupSize[0]}u; - let workGroupSizeY = ${program.workGroupSize[1]}u; - let workGroupSizeZ = ${program.workGroupSize[2]}u; + const workGroupSizeX = ${program.workGroupSize[0]}u; + const workGroupSizeY = ${program.workGroupSize[1]}u; + const workGroupSizeZ = ${program.workGroupSize[2]}u; - var localId: vec3; - var globalId: vec3; - var numWorkgroups: vec3; + var localId: vec3; + var globalId: vec3; + var numWorkgroups: vec3; - // Only used when the y/z dimension of workgroup size is 1. - fn getGlobalIndex() -> i32 { - if (numWorkgroups.y == 1u && numWorkgroups.z == 1u) { - return i32(globalId.x); + // Only used when the y/z dimension of workgroup size is 1. + fn getGlobalIndex() -> i32 { + ${isFlatDispatch(program) ? ` return i32(globalId.x);` : ` let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY + + localId.y * workGroupSizeX + localId.x; + let workGroupID = (globalId - localId)/vec3( + workGroupSizeX, workGroupSizeY, workGroupSizeZ); + + return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y + + workGroupID.y * numWorkgroups.x + workGroupID.x) * + (workGroupSizeX * workGroupSizeY * workGroupSizeZ) + + localInvocationIndex); + `} } - - let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY + - localId.y * workGroupSizeX + localId.x; - let workGroupID = (globalId - localId)/vec3( - workGroupSizeX, workGroupSizeY, workGroupSizeZ); - - return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y + - workGroupID.y * numWorkgroups.x + workGroupID.x) * - (workGroupSizeX * workGroupSizeY * workGroupSizeZ) + - localInvocationIndex); - } - `); - if (isFromPixel === true) { - prefixSnippets.push(` - struct Uniform { - size : i32, - numChannels : i32, - outShapeStrides : vec2, - dispatchSize : vec3, - }; - - @group(0) @binding(0) var result: array<${mapToWgslTypes(outputData.dtype, program.isVec4)}>; - @group(0) @binding(2) var uniforms: Uniform; `); + if (program.isFromPixels) { + prefixSnippets.push(` + struct Uniform { + size : i32, + numChannels : i32, + outShapeStrides : vec2, + }; + + @group(0) @binding(0) var result: array<${mapToWgslTypes(outputData.dtype, program.isVec4)}>; + @group(0) @binding(2) var uniforms: Uniform; + `); return [ commonSnippet, prefixSnippets.join("\n"), @@ -65208,7 +65071,7 @@ function makeShader2(inputInfo, outputData, program, isFromPixel = false) { } preMemberIsStruct = currentMemberIsStruct; uniformDeclaration += ` - outShapeStrides: ${stridesDataType}, `; + outShapeStrides: ${stridesDataType}, `; if (program.size) { if (preMemberIsStruct) { uniformDeclaration += `@align(16) `; @@ -65226,24 +65089,24 @@ function makeShader2(inputInfo, outputData, program, isFromPixel = false) { prefixSnippets.push(uniformDeclaration); if (program.atomic) { prefixSnippets.push(` - @group(0) @binding(0) var result: array>; - `); + @group(0) @binding(0) var result: array>; + `); } else { prefixSnippets.push(` - @group(0) @binding(0) var result: array<${mapToWgslTypes(outputData.dtype, program.isVec4)}>; - `); + @group(0) @binding(0) var result: array<${mapToWgslTypes(outputData.dtype, program.isVec4)}>; + `); } program.variableNames.forEach((x, i2) => { prefixSnippets.push(` - @group(0) @binding(${1 + i2}) var ${x}: array<${program.variableTypes ? program.variableTypes[i2] : mapToWgslTypes(inputInfo[i2].dtype, program.isVec4)}>; - `); + @group(0) @binding(${1 + i2}) var ${x}: array<${program.variableTypes ? program.variableTypes[i2] : mapToWgslTypes(inputInfo[i2].dtype, program.isVec4)}>; + `); }); if (uniformDeclaration !== "") { prefixSnippets.push(` - @group(0) @binding(${1 + program.variableNames.length}) var uniforms: Uniforms; - `); + @group(0) @binding(${1 + program.variableNames.length}) var uniforms: Uniforms; + `); } - const [coordsSnippet, dispatchLayoutRank] = getOutputCoordsSnippet(outputData.shape, program.dispatchLayout); + const coordsSnippet = getOutputCoordsSnippet(outputData.shape, program.dispatchLayout); const sources = [ commonSnippet, prefixSnippets.join("\n"), @@ -65254,14 +65117,25 @@ function makeShader2(inputInfo, outputData, program, isFromPixel = false) { if (!program.atomic) { sources.push(setOutputSnippet(outputData.shape, outputData.dtype, program.isVec4)); } - if (dispatchLayoutRank === outputData.shape.length) { - const inputSnippet = inputInfo.map((x, i2) => getInputSnippet(x, outputData.shape, program.variableTypes ? program.variableTypes[i2] === "vec4" : program.isVec4, program.dispatchLayout.x.length === outputData.shape.length)).join("\n"); - sources.push(inputSnippet); - } + const inputSnippet = inputInfo.map((x, i2) => getInputSnippet(x, outputData.shape, program.variableTypes ? program.variableTypes[i2] === "vec4" : program.isVec4, program.dispatchLayout.x.length === outputData.shape.length)).join("\n"); + sources.push(inputSnippet); sources.push(program.getUserCode()); const source = sources.join("\n"); return source; } +function makeShaderKey2(program, shapes, inputsData, output) { + let key = program.shaderKey; + if (program.isFromPixels) { + return key; + } + const types = inputsData.map((d) => d.dtype).concat(output.dtype); + const broadcastDims = inputsData.map((d) => backend_util_exports.getBroadcastDims(d.shape, output.shape)); + const inputShapesEqualsOutShape = inputsData.map((d) => util_exports.arraysEqual(d.shape, output.shape)).join("_"); + const broadcastDimsKey = broadcastDims.map((d) => d.join("_")).join(";"); + const flatDispatchString = isFlatDispatch(program) ? "flatDispatch" : ""; + key += "_" + (program.workGroupSize ? program.workGroupSize.join(",") : "") + shapes.map((shape) => shape.length).join(",") + types.join(",") + program.variableNames.join(",") + broadcastDimsKey + inputShapesEqualsOutShape + flatDispatchString; + return key; +} var commonSnippet = ` struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32}; struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32}; @@ -65321,6 +65195,240 @@ var commonSnippet = ` return vec4(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3])); } `; +function getCoordsFromIndexSnippet(shape) { + const rank = shape.length; + if (rank <= 1) { + return `fn getCoordsFromIndex(index : i32) -> i32 { return index; }`; + } + const strides2 = util_exports.computeStrides(shape); + const dtype = getCoordsDataType2(rank); + const coords3 = []; + for (let i2 = 0; i2 < rank; i2++) { + coords3.push(`d${i2}`); + } + if (strides2.length === 1) { + return ` fn getCoordsFromIndex(index : i32) -> vec2 { + let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides; + return vec2(d0, d1); + }`; + } + let snippet; + snippet = "var index2 = index;" + strides2.map((_, i2) => { + const line1 = `let ${coords3[i2]} = index2 / uniforms.outShapeStrides.${getCoordsXYZ(i2)}`; + const line2 = i2 === strides2.length - 1 ? `let ${coords3[i2 + 1]} = index2 - ${coords3[i2]} * uniforms.outShapeStrides.${getCoordsXYZ(i2)}` : `index2 = index2 - ${coords3[i2]} * uniforms.outShapeStrides.${getCoordsXYZ(i2)}`; + return `${line1}; ${line2};`; + }).join(""); + return ` + fn getCoordsFromIndex(index : i32) -> ${dtype} { + ${snippet} + return ${dtype}(${coords3.join(",")}); + } + `; +} +function getInputAtCoordsSnippet(inputInfo, isVec4) { + const texName = inputInfo.name; + const rank = inputInfo.shape.length; + const type = getCoordsDataType2(rank); + const funcName = "get" + texName.charAt(0).toUpperCase() + texName.slice(1); + const dims = ["d0", "d1", "d2", "d3", "d4", "d5"].slice(0, rank); + const inputs = dims.map((d) => `${d} : i32`).join(", "); + if (rank < 1) { + if (isVec4) { + return ` + fn ${funcName}() -> vec4 { + return vec4(${texName}[0]); + } + `; + } + return ` + fn ${funcName}() ->f32 { + return f32(${texName}[0]); + } + `; + } + const shapeStr = `uniforms.${texName.charAt(0).toLowerCase() + texName.slice(1)}Shape`; + let rankStr = `${rank}D`; + if (rank === 0) { + rankStr = "1D"; + } + if (isVec4) { + return ` + fn ${funcName}(${inputs}) -> vec4 { + return vec4(${texName}[getIndexFromCoords${rankStr}(${type}(${dims.join(",")}), + ${shapeStr}) / 4]); + } + `; + } + return ` + fn ${funcName}(${inputs}) -> f32 { + return f32(${texName}[getIndexFromCoords${rankStr}(${type}(${dims.join(",")}), + ${shapeStr})]); + } + `; +} +function getInputByOutputSnippet(inputInfo, outShape, isVec4, isFlatDispatchLayout) { + const texName = inputInfo.name; + const texFuncSnippet = texName.charAt(0).toUpperCase() + texName.slice(1); + const funcName = "get" + texFuncSnippet + "ByOutput"; + const inRank = inputInfo.shape.length; + const outRank = outShape.length; + const type = getCoordsDataType2(outRank); + if (util_exports.arraysEqual(inputInfo.shape, outShape) && isFlatDispatchLayout) { + if (isVec4) { + return ` + fn ${funcName}Index(globalIndex : i32) -> vec4 { + return vec4(${texName}[globalIndex]); + } + + fn ${funcName}Coords(coords : ${type}) -> vec4 { + return vec4(${texName}[${outRank > 1 ? "getOutputIndexFromCoords(coords)" : "coords"} / 4]); + } + `; + } else { + return ` + fn ${funcName}Index(globalIndex : i32) -> f32 { + return f32(${texName}[globalIndex]); + } + + fn ${funcName}Coords(coords : ${type}) -> f32 { + return f32(${texName}[${outRank > 1 ? "getOutputIndexFromCoords(coords)" : "coords"}]); + } + `; + } + } + const broadcastDims = backend_util_exports.getBroadcastDims(inputInfo.shape, outShape); + const rankDiff = outRank - inRank; + let coordsSnippet = ""; + if (inRank === 0) { + if (isVec4) { + return ` + fn ${funcName}Index(globalIndex : i32) -> vec4 { + return get${texFuncSnippet}(); + } + + fn ${funcName}Coords(coords : ${type}) -> vec4 { + return get${texFuncSnippet}(); + } + `; + } + return ` + fn ${funcName}Index(globalIndex : i32) -> f32{ + return get${texFuncSnippet}(); + } + + fn ${funcName}Coords(coords : ${type}) -> f32{ + return get${texFuncSnippet}(); + } + `; + } else { + if (outRank < 2 && broadcastDims.length >= 1) { + coordsSnippet = "coords = 0;"; + } else { + coordsSnippet = broadcastDims.map((d) => `coords.${getCoordsXYZ(d + rankDiff)} = 0;`).join("\n"); + } + } + let unpackedCoordsSnippet = ""; + if (outRank < 2 && inRank > 0) { + unpackedCoordsSnippet = "coords"; + } else { + if (outRank > 1) { + const coordsType = getCoordsDataType2(inRank); + const coordsValues = inputInfo.shape.map((s2, i2) => `coords.${getCoordsXYZ(i2 + rankDiff)}`).join(", "); + unpackedCoordsSnippet = `${coordsType}(${coordsValues})`; + } else { + unpackedCoordsSnippet = "coords"; + } + } + const shapeStr = `uniforms.${texName.charAt(0).toLowerCase() + texName.slice(1)}Shape`; + const rankStr = `${inRank}D`; + if (isVec4) { + return ` + fn ${funcName}Index(globalIndex : i32) -> vec4 { + var coords = getCoordsFromIndex(globalIndex); + ${coordsSnippet} + return ${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr}) / 4]; + } + + fn ${funcName}Coords(coordsIn : ${type}) -> vec4 { + var coords = coordsIn; + ${coordsSnippet} + return ${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr}) / 4]; + } + `; + } + return ` + fn ${funcName}Index(globalIndex : i32) -> f32 { + var coords = getCoordsFromIndex(globalIndex); + ${coordsSnippet} + return f32(${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr})]); + } + + fn ${funcName}Coords(coordsIn : ${type}) -> f32 { + var coords = coordsIn; + ${coordsSnippet} + return f32(${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr})]); + } +`; +} +function getInputSnippet(inputInfo, outShape, isVec4, isFlatDispatchLayout) { + let res = getInputAtCoordsSnippet(inputInfo, isVec4); + const inShape = inputInfo.shape; + if (inShape.length <= outShape.length) { + res += getInputByOutputSnippet(inputInfo, outShape, isVec4, isFlatDispatchLayout); + } + return res; +} +function getOutputCoordsSnippet(outShape, dispatchLayout) { + const { x, y = [], z = [] } = dispatchLayout; + const outRank = outShape.length; + if (x.length === outRank) { + const dtype2 = getCoordsDataType2(outRank); + const snippet2 = `fn getOutputCoords() -> ${dtype2}{ + let globalIndex = getGlobalIndex(); + return getCoordsFromIndex(globalIndex); + } + `; + return snippet2; + } + let gatherDimensionsStr = ""; + const dims = [x, y, z]; + let rank = 0; + for (let i2 = 0; i2 < dims.length; i2++) { + const arr = dims[i2]; + if (arr.length === 0) { + continue; + } + rank += arr.length; + if (arr.length === 1) { + gatherDimensionsStr += `let d${arr[0]} = i32(globalId[${i2}]);`; + } else { + const strides2 = symbolicallyComputeStrides2(arr, "uniforms.outShape"); + gatherDimensionsStr += `var index${i2} = i32(globalId[${i2}]);`; + for (let j = 0; j < strides2.length; j++) { + gatherDimensionsStr += `let d${arr[j]} = index${i2} / ${strides2[j]};`; + if (j === strides2.length - 1) { + gatherDimensionsStr += `let d${arr[j + 1]} = index${i2} - d${arr[j]} * ${strides2[j]};`; + } else { + gatherDimensionsStr += `index${i2} = index${i2} - d${arr[j]} * ${strides2[j]};`; + } + } + } + } + const dimensions = []; + for (let i2 = 0; i2 < rank; i2++) { + dimensions.push(`d${i2}`); + } + const dtype = getCoordsDataType2(rank); + let snippet = `fn getOutputCoords() -> ${dtype} { + ${gatherDimensionsStr} +`; + if (dimensions.length === 0) { + snippet += `return ${dtype}(0); }`; + } else { + snippet += `return ${dtype}(${dimensions.join(",")}); }`; + } + return snippet; +} function getOutputIndexFromCoordsSnippet(outRank) { let snippet = ""; switch (outRank) { @@ -65383,6 +65491,19 @@ function getOutputIndexFromCoordsSnippet(outRank) { } return snippet; } +function isFlatDispatch(program) { + return program.dispatch[1] === 1 && program.dispatch[2] === 1; +} +function mapToWgslTypes(type, isVec4) { + if (type === "float32") { + return isVec4 ? "vec4" : "f32"; + } else if (type === "int32") { + return isVec4 ? "vec4" : "i32"; + } else if (type === "bool") { + return isVec4 ? "vec4" : "i32"; + } + return type; +} function setOutputSnippet(outShape, outBufferType, isVec4) { const outRank = outShape.length; const wgslType = mapToWgslTypes(outBufferType, isVec4); @@ -65431,244 +65552,11 @@ function setOutputSnippet(outShape, outBufferType, isVec4) { } return snippet; } -function getInputSnippet(inputInfo, outShape, isVec4, isFlatDispatchLayout) { - let res = getInputAtCoordsSnippet(inputInfo, isVec4); - const inShape = inputInfo.shape; - if (inShape.length <= outShape.length) { - res += getInputByOutputSnippet(inputInfo, outShape, isVec4, isFlatDispatchLayout); - } - return res; -} -function getInputAtCoordsSnippet(inputInfo, isVec4) { - const texName = inputInfo.name; - const rank = inputInfo.shape.length; - const type = getCoordsDataType2(rank); - const funcName = "get" + texName.charAt(0).toUpperCase() + texName.slice(1); - const dims = ["d0", "d1", "d2", "d3", "d4", "d5"].slice(0, rank); - const inputs = dims.map((d) => `${d} : i32`).join(", "); - if (rank < 1) { - if (isVec4) { - return ` - fn ${funcName}() -> vec4 { - return vec4(${texName}[0]); - } - `; - } - return ` - fn ${funcName}() ->f32 { - return f32(${texName}[0]); - } - `; - } - const shapeStr = `uniforms.${texName.charAt(0).toLowerCase() + texName.slice(1)}Shape`; - let rankStr = `${rank}D`; - if (rank === 0) { - rankStr = "1D"; - } - if (isVec4) { - return ` - fn ${funcName}(${inputs}) -> vec4 { - return vec4(${texName}[getIndexFromCoords${rankStr}(${type}(${dims.join(",")}), - ${shapeStr}) / 4]); - } - `; - } - return ` - fn ${funcName}(${inputs}) -> f32 { - return f32(${texName}[getIndexFromCoords${rankStr}(${type}(${dims.join(",")}), - ${shapeStr})]); - } - `; -} -function getInputByOutputSnippet(inputInfo, outShape, isVec4, isFlatDispatchLayout) { - const texName = inputInfo.name; - const texFuncSnippet = texName.charAt(0).toUpperCase() + texName.slice(1); - const funcName = "get" + texFuncSnippet + "ByOutput"; - const inRank = inputInfo.shape.length; - const outRank = outShape.length; - const type = getCoordsDataType2(outRank); - if (util_exports.arraysEqual(inputInfo.shape, outShape) && isFlatDispatchLayout) { - if (isVec4) { - return ` - fn ${funcName}Index(globalIndex : i32) -> vec4 { - return vec4(${texName}[globalIndex]); - } - - fn ${funcName}Coords(coords : ${type}) -> vec4 { - return vec4(${texName}[${outRank > 1 ? "getOutputIndexFromCoords(coords)" : "coords"} / 4]); - } - `; - } else { - return ` - fn ${funcName}Index(globalIndex : i32) -> f32 { - return f32(${texName}[globalIndex]); - } - - fn ${funcName}Coords(coords : ${type}) -> f32 { - return f32(${texName}[${outRank > 1 ? "getOutputIndexFromCoords(coords)" : "coords"}]); - } - `; - } - } - const broadcastDims = backend_util_exports.getBroadcastDims(inputInfo.shape, outShape); - const rankDiff = outRank - inRank; - let coordsSnippet = ""; - if (inRank === 0) { - if (isVec4) { - return ` - fn ${funcName}Index(globalIndex : i32) -> vec4 { - return get${texFuncSnippet}(); - } - - fn ${funcName}Coords(coords : ${type}) -> vec4 { - return get${texFuncSnippet}(); - } - `; - } - return ` - fn ${funcName}Index(globalIndex : i32) -> f32{ - return get${texFuncSnippet}(); - } - - fn ${funcName}Coords(coords : ${type}) -> f32{ - return get${texFuncSnippet}(); - } - `; - } else { - if (outRank < 2 && broadcastDims.length >= 1) { - coordsSnippet = "coords = 0;"; - } else { - coordsSnippet = broadcastDims.map((d) => `coords.${getCoordsXYZ(d + rankDiff)} = 0;`).join("\n"); - } - } - let unpackedCoordsSnippet = ""; - if (outRank < 2 && inRank > 0) { - unpackedCoordsSnippet = "coords"; - } else { - if (outRank > 1) { - const coordsType = getCoordsDataType2(inRank); - const coordsValues = inputInfo.shape.map((s2, i2) => `coords.${getCoordsXYZ(i2 + rankDiff)}`).join(", "); - unpackedCoordsSnippet = `${coordsType}(${coordsValues})`; - } else { - unpackedCoordsSnippet = "coords"; - } - } - const shapeStr = `uniforms.${texName.charAt(0).toLowerCase() + texName.slice(1)}Shape`; - const rankStr = `${inRank}D`; - if (isVec4) { - return ` - fn ${funcName}Index(globalIndex : i32) -> vec4 { - var coords = getCoordsFromIndex(globalIndex); - ${coordsSnippet} - return ${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr}) / 4]; - } - - fn ${funcName}Coords(coordsIn : ${type}) -> vec4 { - var coords = coordsIn; - ${coordsSnippet} - return ${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr}) / 4]; - } - `; - } - return ` - fn ${funcName}Index(globalIndex : i32) -> f32 { - var coords = getCoordsFromIndex(globalIndex); - ${coordsSnippet} - return f32(${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr})]); - } - - fn ${funcName}Coords(coordsIn : ${type}) -> f32 { - var coords = coordsIn; - ${coordsSnippet} - return f32(${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr})]); - } - `; -} -function getOutputCoordsSnippet(outShape, dispatchLayout) { - const { x, y = [], z = [] } = dispatchLayout; - const outRank = outShape.length; - if (x.length === outRank) { - const dtype2 = getCoordsDataType2(outRank); - const snippet2 = `fn getOutputCoords() -> ${dtype2}{ - let globalIndex = getGlobalIndex(); - return getCoordsFromIndex(globalIndex); - } - `; - return [snippet2, outRank]; - } - let gatherDimensionsStr = ""; - const dims = [x, y, z]; - let rank = 0; - for (let i2 = 0; i2 < dims.length; i2++) { - const arr = dims[i2]; - if (arr.length === 0) { - continue; - } - rank += arr.length; - if (arr.length === 1) { - gatherDimensionsStr += `let d${arr[0]} = i32(globalId[${i2}]);`; - } else { - const strides2 = symbolicallyComputeStrides2(arr, "uniforms.outShape"); - gatherDimensionsStr += `var index${i2} = i32(globalId[${i2}]);`; - for (let j = 0; j < strides2.length; j++) { - gatherDimensionsStr += `let d${arr[j]} = index${i2} / ${strides2[j]};`; - if (j === strides2.length - 1) { - gatherDimensionsStr += `let d${arr[j + 1]} = index${i2} - d${arr[j]} * ${strides2[j]};`; - } else { - gatherDimensionsStr += `index${i2} = index${i2} - d${arr[j]} * ${strides2[j]};`; - } - } - } - } - const dimensions = []; - for (let i2 = 0; i2 < rank; i2++) { - dimensions.push(`d${i2}`); - } - const dtype = getCoordsDataType2(rank); - let snippet = `fn getOutputCoords() -> ${dtype} { - ${gatherDimensionsStr} - `; - if (dimensions.length === 0) { - snippet += `return ${dtype}(0); }`; - } else { - snippet += `return ${dtype}(${dimensions.join(",")}); }`; - } - return [snippet, rank]; -} -function getCoordsFromIndexSnippet(shape) { - const rank = shape.length; - if (rank <= 1) { - return `fn getCoordsFromIndex(index : i32) -> i32 { return index; }`; - } - const strides2 = util_exports.computeStrides(shape); - const dtype = getCoordsDataType2(rank); - const coords3 = []; - for (let i2 = 0; i2 < rank; i2++) { - coords3.push(`d${i2}`); - } - if (strides2.length === 1) { - return ` fn getCoordsFromIndex(index : i32) -> vec2 { - let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides; - return vec2(d0, d1); - }`; - } - let snippet; - snippet = "var index2 = index;" + strides2.map((_, i2) => { - const line1 = `let ${coords3[i2]} = index2 / uniforms.outShapeStrides.${getCoordsXYZ(i2)}`; - const line2 = i2 === strides2.length - 1 ? `let ${coords3[i2 + 1]} = index2 - ${coords3[i2]} * uniforms.outShapeStrides.${getCoordsXYZ(i2)}` : `index2 = index2 - ${coords3[i2]} * uniforms.outShapeStrides.${getCoordsXYZ(i2)}`; - return `${line1}; ${line2};`; - }).join(""); - return ` - fn getCoordsFromIndex(index : i32) -> ${dtype} { - ${snippet} - return ${dtype}(${coords3.join(",")}); - } - `; -} var webgpu_util_exports = {}; __export2(webgpu_util_exports, { ArrayBufferToTypedArray: () => ArrayBufferToTypedArray, GPUBytesPerElement: () => GPUBytesPerElement, + MatMulProgramType: () => MatMulProgramType, computeDispatch: () => computeDispatch, computeWorkGroupSizeForConv2d: () => computeWorkGroupSizeForConv2d, computeWorkGroupSizeForMatMul: () => computeWorkGroupSizeForMatMul, @@ -65698,7 +65586,10 @@ function computeDispatch(layout, outputShape, workGroupSize = [1, 1, 1], element ]; return [dispatchX, dispatchY, dispatchZ]; } -function computeWorkGroupSizeForConv2d(layout, outputShape) { +function computeWorkGroupSizeForConv2d(layout, outputShape, isVec4 = false) { + if (isVec4) { + return [8, 8, 1]; + } const dim0 = arrayProduct(layout.x.map((d) => outputShape[d])); const dim1 = arrayProduct(layout.y.map((d) => outputShape[d])); if (dim0 <= 4) { @@ -65717,7 +65608,10 @@ function computeWorkGroupSizeForMatMul(dimAOuter, dimInner, dimBOuter) { } return [8, 8, 1]; } -function computeWorkPerThreadForConv2d(layout, outputShape) { +function computeWorkPerThreadForConv2d(layout, outputShape, isVec4 = false) { + if (isVec4) { + return [4, 4, 1]; + } const dim0 = arrayProduct(layout.x.map((d) => outputShape[d])); const dim1 = arrayProduct(layout.y.map((d) => outputShape[d])); if (dim0 <= 4) { @@ -65754,258 +65648,166 @@ function ArrayBufferToTypedArray(data, dtype) { function isWebGPUSupported() { return (typeof window !== "undefined" || typeof WorkerGlobalScope !== "undefined") && !!navigator.gpu; } -function makeMatMulPackedVec4Source(workPerThread, tileAOuter, tileBOuter, tileInner, innerElementSize = 4) { - util_exports.assert((tileInner % 4 === 0 || tileInner % 3 === 0) && workPerThread[0] === 4 && (innerElementSize === 3 || innerElementSize === 4), () => `tileInner must be divisible by 4|3. ColPerThread must be 4. - innerElementSize must be 3|4.`); - return ` - var mm_Asub : array, ${tileInner / innerElementSize}>, ${tileAOuter}>; - var mm_Bsub : array, ${tileBOuter / workPerThread[0]}>, ${tileInner}>; +var MatMulProgramType; +(function(MatMulProgramType2) { + MatMulProgramType2[MatMulProgramType2["MatMulPackedVec4Program"] = 0] = "MatMulPackedVec4Program"; + MatMulProgramType2[MatMulProgramType2["MatMulReduceProgram"] = 1] = "MatMulReduceProgram"; + MatMulProgramType2[MatMulProgramType2["MatMulSplitKProgram"] = 2] = "MatMulSplitKProgram"; + MatMulProgramType2[MatMulProgramType2["MatMulSmallOutputSizeProgram"] = 3] = "MatMulSmallOutputSizeProgram"; + MatMulProgramType2[MatMulProgramType2["MatMulPackedProgram"] = 4] = "MatMulPackedProgram"; + MatMulProgramType2[MatMulProgramType2["MatMulMax"] = 5] = "MatMulMax"; +})(MatMulProgramType || (MatMulProgramType = {})); +function matMulReadFnSource(batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter = false, fitBOuter = false, fitInner = false, component = 1) { + util_exports.assert(transposeA && component === 1 || !transposeA, () => `transposeA ${transposeA} is not compatible with component size ${component}`); + const sampleA = ` + let batch = ${batchAEqualOne ? "0" : "batchIn"}; + let batchASize = uniforms.aShape[1] * uniforms.aShape[2]; + ${transposeA ? `value = A[(batch * batchASize + col * uniforms.aShape[2] + row) / ${component}];` : `value = A[(batch * batchASize + row * uniforms.aShape[2] + col) / ${component}];`} - let RowPerThread = ${workPerThread[1]}; - let ColPerThread = ${workPerThread[0]}; - let InnerElementSize = ${innerElementSize}; - let TileInner = ${tileInner}; - - ${getMainHeaderString()} - - let tileRow = ${tileAOuter === 1 ? "0" : "i32(localId.y) * RowPerThread"}; - let tileCol = i32(localId.x); - - let globalRow = ${tileAOuter === 1 ? "0" : "i32(globalId.y) * RowPerThread"}; - let globalCol = i32(globalId.x); - let numTiles = (uniforms.dimInner - 1) / TileInner + 1; - - var acc: array, RowPerThread>; - var BCached : array, 4>; - - // Loop over shared dimension. - var globalColA = tileCol; - let RowPerThreadB = TileInner / i32(workGroupSizeY); - let tileRowB = i32(localId.y) * RowPerThreadB; - for (var t = 0; t < numTiles; t = t + 1) { - // Load one tile of A into local memory. - for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { - let inputRow = tileRow + innerRow; - let inputCol = tileCol; - mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId); - } - globalColA = globalColA + TileInner / InnerElementSize; - - // Load one tile of B into local memory. - for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) { - let inputRow = tileRowB + innerRow; - let inputCol = tileCol; - mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId); - } - - workgroupBarrier(); - - // Compute acc values for a single thread. - for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) { - BCached[0] = mm_Bsub[k * InnerElementSize][tileCol]; - BCached[1] = mm_Bsub[k * InnerElementSize + 1][tileCol]; - BCached[2] = mm_Bsub[k * InnerElementSize + 2][tileCol]; - ${innerElementSize === 3 ? "" : "BCached[3] = mm_Bsub[k * InnerElementSize + 3][tileCol];"} - - for (var i = 0; i < RowPerThread; i = i + 1) { - let ACached = mm_Asub[tileRow + i][k]; - acc[i] = BCached[0] * ACached.x + acc[i]; - acc[i] = BCached[1] * ACached.y + acc[i]; - acc[i] = BCached[2] * ACached.z + acc[i]; - ${innerElementSize === 3 ? "" : "acc[i] = BCached[3] * ACached.w + acc[i];"} - } - } - - workgroupBarrier(); - } - - for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { - mm_write(globalRow + innerRow, - globalCol, - acc[innerRow], globalId); - } - }`; -} -var MatMulPackedVec4Program = class { - constructor(aShape, outputShape, rowPerThread, batchAEqualOne, batchBEqualOne, bias = null, activation2 = null, preluActivationWeights = null) { - this.variableNames = ["A", "B"]; - this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; - this.workGroupSize = [8, 8, 1]; - this.isVec4 = true; - this.outputShape = outputShape; - this.dispatchLayout = { x: [2], y: [1], z: [0] }; - if (outputShape[1] === 1) { - this.elementsPerThread = [4, 1, 1]; - } else { - this.elementsPerThread = [4, 4, 1]; - } - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread); - const addBias = bias != null; - const hasPreluActivationWeights = preluActivationWeights != null; - if (addBias) { - this.variableNames.push("bias"); - } - if (hasPreluActivationWeights) { - this.variableNames.push("preluActivationWeights"); - } - this.tileAOuter = outputShape[1] === 1 ? 1 : this.workGroupSize[1] * this.elementsPerThread[1]; - this.tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; - this.tileInner = this.tileBOuter; - this.aShape = aShape; - this.addBias = addBias; - this.activation = activation2; - this.hasPreluActivationWeights = hasPreluActivationWeights; - this.batchAEqualOne = batchAEqualOne; - this.batchBEqualOne = batchBEqualOne; - [this.fitA, this.fitB] = this.getShapeFit(); - this.shaderKey = `matMulPackedVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}_${this.batchAEqualOne}_${this.batchBEqualOne}`; - } - getShapeFit() { - const dimInner = this.aShape[2]; - const dimBOuter = this.outputShape[2]; - const bShape = [this.outputShape[0], dimInner, dimBOuter]; - const tileSizeA = [this.tileAOuter, this.tileInner]; - const tileSizeB = [this.tileInner, this.tileBOuter]; - return [ - tilesFitEvenlyIntoShape(tileSizeA, this.aShape.slice(1)), - tilesFitEvenlyIntoShape(tileSizeB, bShape.slice(1)) - ]; - } - getUserCode() { - const sampleA = this.fitA ? `return A[batch * batchASize + row * uniforms.dimInner / 4 + col]` : `if (coordsInBounds2D(vec2(row, col * 4), vec2(uniforms.dimAOuter, uniforms.dimInner))) { - return A[batch * batchASize + row * uniforms.dimInner / 4 + col]; - } - return vec4(0.0)`; - const sampleB = this.fitB ? `return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]` : `if(coordsInBounds2D(vec2(row, col * 4), vec2(uniforms.dimInner, uniforms.dimBOuter))) { - return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]; - } - return vec4(0.0)`; - let activationSnippet = "", applyActivationSnippet = ""; - if (this.activation) { - const activationOp = mapActivationToShaderProgram2(this.activation, this.isVec4); - if (this.hasPreluActivationWeights) { - activationSnippet = `fn activation(a : vec4, outCoord : vec3) -> vec4 { - let b = getPreluActivationWeightsByOutputCoords(outCoord); - ${activationOp} - }`; - } else { - activationSnippet = ` - fn activation(a : vec4, outCoord : vec3) -> vec4 { - ${activationOp} - }`; - } - applyActivationSnippet = "value = activation(value, outCoord);"; - } - const addBiasSnippet = this.addBias ? "value = value + getBiasByOutputCoords(outCoord);" : ""; - const userCode = ` - ${activationSnippet} - fn mm_readA(row : i32, col : i32, globalId : vec3) -> vec4 { - ${this.batchAEqualOne ? ` - let batchASize = 0; - let batch = 0; - ` : ` - let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / 4; - let batch = i32(globalId.z); - `} - - ${sampleA}; - } - - fn mm_readB(row : i32, col : i32, globalId : vec3) -> vec4 { - ${this.batchBEqualOne ? ` - let batchBSize = 0; - let batch = 0; - ` : ` - let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / 4; - let batch = i32(globalId.z); - `} - ${sampleB}; - } - - fn mm_write(row : i32, col : i32, valueIn : vec4, globalId : vec3) { - if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2]) - { - var value = valueIn; - let batch = i32(globalId.z); - let outCoord = vec3(batch, row, col * 4); - ${addBiasSnippet} - ${applyActivationSnippet} - setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], value); - } - } - ${makeMatMulPackedVec4Source(this.elementsPerThread, this.tileAOuter, this.tileBOuter, this.tileInner)} `; - return userCode; + let sampleB; + if (transposeB === false) { + sampleB = `value = B[(batch * batchBSize + row * uniforms.bShape[2] + col) / ${component}];`; + } else { + sampleB = `value = B[(batch * batchBSize + col * uniforms.bShape[2] + row) / ${component}];`; + } + return ` + fn mm_readA(batchIn: i32, row: i32, colIn: i32) -> ${typeSnippet(component)} { + var value = ${typeSnippet(component)}(0.0); + let col = colIn * ${component}; + ${fitAOuter && fitInner ? sampleA : ` + ${transposeA ? `if(row < uniforms.dimAOuter && col < uniforms.dimInner)` : `if(row < uniforms.aShape[1] && col < uniforms.aShape[2])`} + { + ${sampleA} + } + `} + return value; + } + + fn mm_readB(batchIn: i32, row: i32, colIn: i32) -> ${typeSnippet(component)} { + let col = colIn * ${component}; + let batch = ${batchBEqualOne ? "0" : "batchIn"}; + let batchBSize = uniforms.bShape[1] * uniforms.bShape[2]; + var value = ${typeSnippet(component)}(0.0); + ${sampleB} + return value; + } + `; +} +function matMulReadWriteFnSource(hasBias, activation2, batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter = false, fitBOuter = false, fitInner = false, component = 1) { + return ` + ${matMulReadFnSource(batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter, fitBOuter, fitInner, component)} + fn mm_write(batch: i32, row: i32, colIn: i32, valueIn: ${typeSnippet(component)}) { + let col = colIn * ${component}; + ${fitAOuter && fitBOuter ? "" : "if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)"} + { + var value = valueIn; + let coords = vec3(batch, row, col); + ${biasActivationSnippet(hasBias, activation2)} + setOutputAtCoords(coords[0], coords[1], coords[2], value); + } + } + `; +} +var writeDataToSubASnippet = (transpose6) => { + if (transpose6) { + return ` + mm_Asub[inputRow][inputCol] = mm_readA(batch, + t * TileInner + inputRow, + globalRowStart + inputCol); + `; + } else { + return ` + mm_Asub[inputRow][inputCol] = mm_readA(batch, + globalRowStart + inputRow, + t * TileInner + inputCol); + `; } }; -function makeMatMulPackedSource(workPerThread, workGroupSize) { - const tileAOuter = workGroupSize[1] * workPerThread[1]; - const tileBOuter = workGroupSize[0] * workPerThread[0]; - const tileInner = tileAOuter > tileBOuter ? tileAOuter : tileBOuter; +var readDataFromSubASnippet = (transposeA) => { + return transposeA ? "let ACached = mm_Asub[k][tileRow + innerRow];" : "let ACached = mm_Asub[tileRow + innerRow][k];"; +}; +function makeMatMulPackedSource(workPerThread, workGroupSize, transposeA = false, tileInner = 32) { + const tileAOuter = workPerThread[1] * workGroupSize[1]; + const tileBOuter = workPerThread[0] * workGroupSize[0]; + const tileAWidth = transposeA ? tileAOuter : tileInner; + const tileAHight = transposeA ? tileInner : tileAOuter; + util_exports.assert(tileAHight % workGroupSize[1] === 0 && tileAWidth % workGroupSize[0] === 0 && tileInner % workGroupSize[1] === 0, () => `tileAHight ${tileAHight} must be divisible by workGroupSize[1]${workGroupSize[1]}, tileAWidth ${tileAWidth} must be divisible by workGroupSize[0]${workGroupSize[0]}, tileInner ${tileInner} must be divisible by workGroupSize[1]${workGroupSize[1]}`); + const rowPerThreadA = tileAHight / workGroupSize[1]; + const colPerThreadA = tileAWidth / workGroupSize[0]; + const rowPerThreadB = tileInner / workGroupSize[1]; return ` - var mm_Asub : array, ${tileAOuter}>; + var mm_Asub : array, ${tileAHight}>; var mm_Bsub : array, ${tileInner}>; - ${getMainHeaderString()} - let tileRow = i32(localId.y) * ${workPerThread[1]}; - let tileCol = i32(localId.x) * ${workPerThread[0]}; + const RowPerThread = ${workPerThread[1]}; + const ColPerThread = ${workPerThread[0]}; + const TileInner = ${tileInner}; - let globalRow = i32(globalId.y) * ${workPerThread[1]}; - let globalCol = i32(globalId.x) * ${workPerThread[0]}; + @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ) + fn main(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(num_workgroups) NumWorkgroups: vec3, + @builtin(workgroup_id) workgroupId: vec3) { + localId = LocalId; + globalId = GlobalId; + numWorkgroups = NumWorkgroups; - let numTiles = (uniforms.dimInner - 1) / ${tileInner} + 1; + let tileRow = i32(localId.y) * RowPerThread; + let tileCol = i32(localId.x) * ColPerThread; - var acc : array, ${workPerThread[1]}>; - var ACached : f32; - var BCached : array; + let globalRow = i32(globalId.y) * RowPerThread; + let globalCol = i32(globalId.x) * ColPerThread; + let batch = i32(globalId.z); + let globalRowStart = i32(workgroupId.y) * ${tileAOuter}; + + let numTiles = (uniforms.dimInner - 1) / TileInner + 1; + + var acc : array, RowPerThread>; // Without this initialization strange values show up in acc. - for (var innerRow = 0; innerRow < ${workPerThread[1]}; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ${workPerThread[0]}; innerCol = innerCol + 1) { + for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { + for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) { acc[innerRow][innerCol] = 0.0; } } - let ColPerThreadA = ${tileInner} / ${workGroupSize[0]}; - let tileColA = i32(localId.x) * ColPerThreadA; - let RowPerThreadB = ${tileInner} / ${workGroupSize[1]}; - let tileRowB = i32(localId.y) * RowPerThreadB; - + let tileRowA = i32(localId.y) * ${rowPerThreadA}; + let tileColA = i32(localId.x) * ${colPerThreadA}; + let tileRowB = i32(localId.y) * ${rowPerThreadB}; // Loop over shared dimension. for (var t = 0; t < numTiles; t = t + 1) { // Load one tile of A into local memory. - for (var innerRow = 0; innerRow < ${workPerThread[1]}; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) { - let inputRow = tileRow + innerRow; + for (var innerRow = 0; innerRow < ${rowPerThreadA}; innerRow = innerRow + 1) { + for (var innerCol = 0; innerCol < ${colPerThreadA}; innerCol = innerCol + 1) { + let inputRow = tileRowA + innerRow; let inputCol = tileColA + innerCol; - - mm_Asub[inputRow][inputCol] = mm_readA( - globalRow + innerRow, - t * ${tileInner} + inputCol, globalId); + ${writeDataToSubASnippet(transposeA)} } } + // Load one tile of B into local memory. - for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ${workPerThread[0]}; innerCol = innerCol + 1) { + for (var innerRow = 0; innerRow < ${rowPerThreadB}; innerRow = innerRow + 1) { + for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) { let inputRow = tileRowB + innerRow; let inputCol = tileCol + innerCol; - - mm_Bsub[inputRow][inputCol] = mm_readB( - t * ${tileInner} + inputRow, - globalCol + innerCol, globalId); + mm_Bsub[inputRow][inputCol] = mm_readB(batch, + t * TileInner + inputRow, + globalCol + innerCol); } } workgroupBarrier(); // Compute acc values for a single thread. - for (var k = 0; k < ${tileInner}; k = k + 1) { - for (var inner = 0; inner < ${workPerThread[0]}; inner = inner + 1) { + var BCached : array; + for (var k = 0; k < TileInner; k = k + 1) { + for (var inner = 0; inner < ColPerThread; inner = inner + 1) { BCached[inner] = mm_Bsub[k][tileCol + inner]; } - for (var innerRow = 0; innerRow < ${workPerThread[1]}; innerRow = innerRow + 1) { - ACached = mm_Asub[tileRow + innerRow][k]; - for (var innerCol = 0; innerCol < ${workPerThread[0]}; innerCol = innerCol + 1) { + for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { + ${readDataFromSubASnippet(transposeA)} + for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) { acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol]; } } @@ -66014,23 +65816,32 @@ function makeMatMulPackedSource(workPerThread, workGroupSize) { workgroupBarrier(); } - for (var innerRow = 0; innerRow < ${workPerThread[1]}; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ${workPerThread[0]}; innerCol = innerCol + 1) { - - if ((globalCol + innerCol) < uniforms.dimBOuter && - (globalRow + innerRow) < uniforms.dimAOuter) { - mm_write(globalRow + innerRow, - globalCol + innerCol, - acc[innerRow][innerCol], globalId); - } + for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { + for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) { + mm_write(batch, globalRow + innerRow, globalCol + innerCol, + acc[innerRow][innerCol]); } } } `; } -function makeMatMulVectorSource(workGroupSize) { +var readVectorASnippet = (transpose6) => { + return transpose6 ? ` + mm_readA(batch, colA, globalRow), + mm_readA(batch, colA + 1, globalRow), + mm_readA(batch, colA + 2, globalRow), + mm_readA(batch, colA + 3, globalRow) + ` : ` + mm_readA(batch, globalRow, colA), + mm_readA(batch, globalRow, colA + 1), + mm_readA(batch, globalRow, colA + 2), + mm_readA(batch, globalRow, colA + 3) + `; +}; +function makeVectorMatrixProductSource(workGroupSize, transposeA = false) { + util_exports.assert(workGroupSize[1] === 1 && workGroupSize[2] === 1, () => `A linear work group size is required. But got ${workGroupSize}.`); return ` - let TileSize = ${workGroupSize[0] * 4}; + const TileSize = ${workGroupSize[0] * 4}; var mm_Asub : array, ${workGroupSize[0]}>; ${getMainHeaderString()} @@ -66039,7 +65850,7 @@ function makeMatMulVectorSource(workGroupSize) { let globalRow = i32(globalId.y); let numTiles = (uniforms.dimInner - 1) / TileSize + 1; - + let batch = i32(globalId.z); // Without this initialization strange values show up in acc. var acc = 0.0; @@ -66047,19 +65858,16 @@ function makeMatMulVectorSource(workGroupSize) { for (var t = 0; t < numTiles; t = t + 1) { // Load one tile of A into local memory. let colA = t * TileSize + tileCol * 4; - mm_Asub[tileCol] = vec4(mm_readA(globalRow, colA, globalId), - mm_readA(globalRow, colA + 1, globalId), - mm_readA(globalRow, colA + 2, globalId), - mm_readA(globalRow, colA + 3, globalId)); + mm_Asub[tileCol] = vec4(${readVectorASnippet(transposeA)}); workgroupBarrier(); // Compute acc values for a single thread. for (var k = 0; k < TileSize / 4; k = k + 1) { let rowB = t * TileSize + k * 4; - let BCached = vec4(mm_readB(rowB, globalCol, globalId), - mm_readB(rowB + 1, globalCol, globalId), - mm_readB(rowB + 2, globalCol, globalId), - mm_readB(rowB + 3, globalCol, globalId)); + let BCached = vec4(mm_readB(batch, rowB, globalCol), + mm_readB(batch, rowB + 1, globalCol), + mm_readB(batch, rowB + 2, globalCol), + mm_readB(batch, rowB + 3, globalCol)); let ACached = mm_Asub[k]; acc = acc + dot(ACached, BCached); @@ -66068,9 +65876,7 @@ function makeMatMulVectorSource(workGroupSize) { workgroupBarrier(); } - if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) { - mm_write(globalRow, globalCol, acc, globalId); - } + mm_write(batch, globalRow, globalCol, acc); } `; } @@ -66100,7 +65906,6 @@ var MatMulPackedProgram2 = class { this.variableNames.push("preluActivationWeights"); } this.workPerThread = workPerThread; - this.aShape = aShape; this.transposeA = transposeA; this.transposeB = transposeB; this.addBias = addBias; @@ -66108,103 +65913,188 @@ var MatMulPackedProgram2 = class { this.hasPreluActivationWeights = hasPreluActivationWeights; this.batchAEqualOne = batchAEqualOne; this.batchBEqualOne = batchBEqualOne; - const dimBOuter = this.outputShape[2]; - const bShape = this.transposeB ? [this.outputShape[0], dimBOuter, dimInner] : [this.outputShape[0], dimInner, dimBOuter]; - [this.fitA, this.fitB] = this.getShapeFit(bShape); - this.shaderKey = `matMulPacked_${this.workPerThread}_${transposeA}_${transposeB}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1] > 1}_${this.batchAEqualOne}_${this.batchBEqualOne}`; + [this.fitAOuter, this.fitBOuter, this.fitInner] = this.getShapeFit(outputShape[1], outputShape[2], dimInner); + this.shaderKey = `matMulPacked_${this.workPerThread}_${transposeA}_${transposeB}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.outputShape[1] > 1}_${this.batchAEqualOne}_${this.batchBEqualOne}`; } - getShapeFit(bShape) { + getShapeFit(dimAOuter, dimBOuter, dimInner) { const tileAOuter = this.workGroupSize[1] * this.workPerThread; const tileBOuter = this.workGroupSize[0] * this.workPerThread; - let tileInner = tileAOuter > tileBOuter ? tileAOuter : tileBOuter; + this.tileInner = 32; if (this.outputShape[1] === 1) { - tileInner *= 4; + this.tileInner = this.workGroupSize[0] * 4; } - util_exports.assert(tileInner % this.workGroupSize[0] === 0 && tileInner % this.workGroupSize[1] === 0, () => `tileInner must be multiple of workgroupsize.x and workgroupsize.y`); - const tileSizeA = [tileAOuter, tileInner]; - const tileSizeB = [tileInner, tileBOuter]; - return [ - tilesFitEvenlyIntoShape(tileSizeA, this.aShape.slice(1)), - tilesFitEvenlyIntoShape(tileSizeB, bShape.slice(1)) - ]; + const fitAOuter = dimAOuter % tileAOuter === 0; + const fitBOuter = dimBOuter % tileBOuter === 0; + const fitInner = dimInner % this.tileInner === 0; + return [fitAOuter, fitBOuter, fitInner]; } getUserCode() { - let sampleA; - if (this.transposeA === false) { - sampleA = this.fitA ? `return A[batch * batchASize + row * uniforms.dimInner + col];` : `if(coordsInBounds2D(vec2(row, col), vec2(uniforms.dimAOuter, uniforms.dimInner))) { - return A[batch * batchASize + row * uniforms.dimInner + col]; - } - return 0.0;`; - } else { - sampleA = this.fitA ? `return A[batch * batchASize + col * uniforms.dimAOuter + row];` : `if(coordsInBounds2D(vec2(row, col), vec2(uniforms.dimAOuter, uniforms.dimInner))) { - return A[batch* batchASize + col * uniforms.dimAOuter + row]; - } - return 0.0;`; - } - let sampleB; - if (this.transposeB === false) { - sampleB = this.fitB ? `return B[batch * batchBSize + row * uniforms.dimBOuter + col];` : `if(coordsInBounds2D(vec2(row, col), vec2(uniforms.dimInner, uniforms.dimBOuter))) { - return B[batch * batchBSize + row * uniforms.dimBOuter + col]; - } - return 0.0;`; - } else { - sampleB = this.fitB ? `return B[batch * batchBSize + col * uniforms.dimInner + row];` : `if(coordsInBounds2D(vec2(row, col), vec2(uniforms.dimInner, uniforms.dimBOuter))) { - return B[batch * batchBSize + col * uniforms.dimInner + row]; - } - return 0.0;`; - } - let activationSnippet = "", applyActivationSnippet = ""; - if (this.activation) { - const activationOp = mapActivationToShaderProgram2(this.activation, false); - if (this.hasPreluActivationWeights) { - activationSnippet = `fn activation(a : f32, outCoord : vec3) -> f32 { - let b = getPreluActivationWeightsByOutputCoords(outCoord); - ${activationOp} - }`; - } else { - activationSnippet = ` - fn activation(a : f32, outCoord : vec3) -> f32 { - ${activationOp} - } - `; - } - applyActivationSnippet = "value = activation(value, outCoord);"; - } - const addBiasSnippet = this.addBias ? "value = value + getBiasByOutputCoords(outCoord);" : ""; const userCode = ` - ${activationSnippet} + ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)} + ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, false, this.transposeB, this.fitAOuter, this.fitBOuter, this.fitInner)} + ${this.outputShape[1] > 1 ? makeMatMulPackedSource([this.workPerThread, this.workPerThread, 1], this.workGroupSize, this.transposeA, this.tileInner) : makeVectorMatrixProductSource(this.workGroupSize, this.transposeA)} + `; + return userCode; + } +}; +var writeDataToSubASnippet2 = (transpose6, innerAElementSize) => { + if (transpose6) { + return ` + mm_Asub[inputRow][inputCol] = mm_readA(batch, + t * TileInner + inputRow, + globalRowStart / ${innerAElementSize} + inputCol); + `; + } else { + return ` + mm_Asub[inputRow][inputCol] = mm_readA(batch, + globalRow + innerRow, + t * TileInner / ${innerAElementSize} + inputCol); + `; + } +}; +var calculateResultSnippet = (transposeA, innerElementSize) => { + if (transposeA) { + return ` + let ACached0 = mm_Asub[k * InnerElementSize][localRow]; + let ACached1 = mm_Asub[k * InnerElementSize + 1][localRow]; + let ACached2 = mm_Asub[k * InnerElementSize + 2][localRow]; + ${innerElementSize === 3 ? "" : "let ACached3 = mm_Asub[k * InnerElementSize + 3][localRow];"} + for (var i = 0; i < RowPerThread; i = i + 1) { + acc[i] = BCached[0] * ACached0[i] + acc[i]; + acc[i] = BCached[1] * ACached1[i] + acc[i]; + acc[i] = BCached[2] * ACached2[i] + acc[i]; + ${innerElementSize === 3 ? "" : "acc[i] = BCached[3] * ACached3[i] + acc[i];"} + }`; + } else { + return ` + for (var i = 0; i < RowPerThread; i = i + 1) { + let ACached = mm_Asub[tileRow + i][k]; + acc[i] = BCached[0] * ACached.x + acc[i]; + acc[i] = BCached[1] * ACached.y + acc[i]; + acc[i] = BCached[2] * ACached.z + acc[i]; + ${innerElementSize === 3 ? "" : "acc[i] = BCached[3] * ACached.w + acc[i];"} + }`; + } +}; +function makeMatMulPackedVec4Source(workPerThread, tileAOuter, tileBOuter, tileInner, innerElementSize = 4, transposeA = false) { + const tileAWidth = transposeA ? tileAOuter : tileInner; + const tileAHight = transposeA ? tileInner : tileAOuter; + const innerAElementSize = transposeA ? workPerThread[1] : innerElementSize; + util_exports.assert((transposeA && tileAOuter === tileBOuter || (tileInner % 4 === 0 || tileInner % 3 === 0)) && workPerThread[0] === 4 && (innerElementSize === 3 || innerElementSize === 4), () => `tileInner ${tileInner} must be divisible by 4|3. ColPerThread ${workPerThread[0]} must be 4. + innerElementSize ${innerElementSize} must be 3|4.`); + return ` + var mm_Asub : array, ${tileAWidth / innerAElementSize}>, ${tileAHight}>; + var mm_Bsub : array, ${tileBOuter / workPerThread[0]}>, ${tileInner}>; - fn mm_readA(row : i32, col : i32, globalId : vec3) -> f32 { - ${this.batchAEqualOne ? ` - let batch = 0; - let batchASize = 0; - ` : ` - let batch = i32(globalId.z); - let batchASize = uniforms.aShape[1] * uniforms.aShape[2]; - `} - ${sampleA} - } + const RowPerThread = ${workPerThread[1]}; + const ColPerThread = ${workPerThread[0]}; + const InnerElementSize = ${innerElementSize}; + const TileInner = ${tileInner}; - fn mm_readB(row : i32, col : i32, globalId : vec3) -> f32 { - ${this.batchBEqualOne ? ` - let batch = 0; - let batchBSize = 0; - ` : ` - let batch = i32(globalId.z); - let batchBSize = uniforms.bShape[1] * uniforms.bShape[2]; - `} - ${sampleB} - } + @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ) + fn main(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(num_workgroups) NumWorkgroups: vec3, + @builtin(workgroup_id) workgroupId: vec3) { + localId = LocalId; + globalId = GlobalId; + numWorkgroups = NumWorkgroups; - fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3) { - var value = valueIn; - let batch = i32(globalId.z); - let outCoord = vec3(batch, row, col); - ${addBiasSnippet} - ${applyActivationSnippet} - setOutputAtCoords(batch, row, col, value); - } - ${this.outputShape[1] > 1 ? makeMatMulPackedSource([this.workPerThread, this.workPerThread, 1], this.workGroupSize) : makeMatMulVectorSource(this.workGroupSize)} + let localRow = i32(localId.y); + let tileRow = ${tileAOuter === 1 ? "0" : "localRow * RowPerThread"}; + let tileCol = i32(localId.x); + + let globalRow = ${tileAOuter === 1 ? "0" : "i32(globalId.y) * RowPerThread"}; + let globalCol = i32(globalId.x); + let batch = i32(globalId.z); + let globalRowStart = i32(workgroupId.y) * ${tileAOuter}; + + let numTiles = (uniforms.dimInner - 1) / TileInner + 1; + + var acc: array, RowPerThread>; + var BCached : array, 4>; + + // Loop over shared dimension. + let RowPerThreadB = TileInner / i32(workGroupSizeY); + let tileRowB = localRow * RowPerThreadB; + for (var t = 0; t < numTiles; t = t + 1) { + // Load one tile of A into local memory. + for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { + let inputRow = tileRow + innerRow; + let inputCol = tileCol; + ${writeDataToSubASnippet2(transposeA, innerAElementSize)} + } + + // Load one tile of B into local memory. + for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) { + let inputRow = tileRowB + innerRow; + let inputCol = tileCol; + mm_Bsub[inputRow][inputCol] = mm_readB(batch, t * TileInner + inputRow, globalCol); + } + + workgroupBarrier(); + + // Compute acc values for a single thread. + for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) { + BCached[0] = mm_Bsub[k * InnerElementSize][tileCol]; + BCached[1] = mm_Bsub[k * InnerElementSize + 1][tileCol]; + BCached[2] = mm_Bsub[k * InnerElementSize + 2][tileCol]; + ${innerElementSize === 3 ? "" : "BCached[3] = mm_Bsub[k * InnerElementSize + 3][tileCol];"} + + ${calculateResultSnippet(transposeA, innerElementSize)} + } + + workgroupBarrier(); + } + + for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { + mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]); + } + }`; +} +var MatMulPackedVec4Program = class { + constructor(aShape, outputShape, batchAEqualOne, batchBEqualOne, transposeA = false, bias = null, activation2 = null, preluActivationWeights = null) { + this.variableNames = ["A", "B"]; + this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; + this.workGroupSize = [8, 8, 1]; + this.isVec4 = true; + this.outputShape = outputShape; + this.dispatchLayout = { x: [2], y: [1], z: [0] }; + if (outputShape[1] === 1 && !transposeA) { + this.elementsPerThread = [4, 1, 1]; + } else { + this.elementsPerThread = [4, 4, 1]; + } + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread); + const addBias = bias != null; + const hasPreluActivationWeights = preluActivationWeights != null; + if (addBias) { + this.variableNames.push("bias"); + } + if (hasPreluActivationWeights) { + this.variableNames.push("preluActivationWeights"); + } + this.tileAOuter = outputShape[1] === 1 && !transposeA ? 1 : this.workGroupSize[1] * this.elementsPerThread[1]; + this.tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; + this.tileInner = this.tileBOuter; + this.aShape = aShape; + this.addBias = addBias; + this.activation = activation2; + this.hasPreluActivationWeights = hasPreluActivationWeights; + this.batchAEqualOne = batchAEqualOne; + this.batchBEqualOne = batchBEqualOne; + this.transposeA = transposeA; + const dimInner = transposeA ? aShape[1] : aShape[2]; + this.fitAOuter = outputShape[1] % this.tileAOuter === 0; + this.fitBOuter = outputShape[2] % this.tileBOuter === 0; + this.fitInner = dimInner % this.tileInner === 0; + this.shaderKey = `matMulPackedVec4_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.elementsPerThread}_${this.batchAEqualOne}_${this.batchBEqualOne}_${this.transposeA}`; + } + getUserCode() { + const userCode = ` + ${activationFnSnippet(this.activation, this.hasPreluActivationWeights, true)} + ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, false, false, this.fitAOuter, this.fitBOuter, this.fitInner, 4)} + ${makeMatMulPackedVec4Source(this.elementsPerThread, this.tileAOuter, this.tileBOuter, this.tileInner, 4, this.transposeA)} `; return userCode; } @@ -66269,177 +66159,80 @@ var MatMulReduceProgram = class { this.shaderKey = `matMulReduce_${this.activation}_${transposeA}_${transposeB}_${this.batchAEqualOne}_${this.batchBEqualOne}`; } getUserCode() { - let sampleA; - if (this.transposeA === false) { - sampleA = `return f32(A[batch * batchASize + row * uniforms.dimInner + col]);`; - } else { - sampleA = `return f32(A[batch * batchASize + col * uniforms.dimAOuter + row]);`; - } - let sampleB; - if (this.transposeB === false) { - sampleB = `return f32(B[batch * batchBSize + row * uniforms.dimBOuter + col]);`; - } else { - sampleB = `return f32(B[batch * batchBSize + col * uniforms.dimInner + row]);`; - } - let activationSnippet = "", applyActivationSnippet = ""; - if (this.activation) { - const activationOp = mapActivationToShaderProgram2(this.activation, false); - if (this.hasPreluActivationWeights) { - activationSnippet = `fn activation(a : f32, outCoord : vec3) -> f32 { - let b = getPreluActivationWeightsByOutputCoords(outCoord); - ${activationOp} - }`; - } else { - activationSnippet = ` - fn activation(a : f32, outCoord : vec3) -> f32 { - ${activationOp} - } - `; - } - applyActivationSnippet = "value = activation(value, outCoord);"; - } - const addBiasSnippet = this.addBias ? "value = value + getBiasByOutputCoords(outCoord);" : ""; const userCode = ` - ${activationSnippet} - - fn mm_readA(batchIn: i32, row : i32, col : i32) -> f32 { - ${this.batchAEqualOne ? ` - let batchASize = 0; - let batch = 0; - ` : ` - let batchASize = uniforms.aShape[1] * uniforms.aShape[2]; - let batch = batchIn; - `} - ${sampleA} - } - - fn mm_readB(batchIn: i32, row : i32, col : i32) -> f32 { - ${this.batchBEqualOne ? ` - let batch = 0; - let batchBSize = 0; - ` : ` - let batch = batchIn; - let batchBSize = uniforms.bShape[1] * uniforms.bShape[2]; - `} - ${sampleB} - } - - fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) { - var value = valueIn; - let outCoord = vec3(batch, row, col); - ${addBiasSnippet} - ${applyActivationSnippet} - setOutputAtCoords(batch, row, col, value); - } + ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)} + ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, this.transposeA, this.transposeB)} ${makeMatMulReduceSource()} `; return userCode; } }; function makeMatMulSmallOutputSizeSource(workGroupSize) { - const tileAOuter = workGroupSize[1] / 2; + const tileAOuter = workGroupSize[1]; const tileBOuter = workGroupSize[0]; const tileInner = tileAOuter > tileBOuter ? tileAOuter : tileBOuter; return ` - var mm_Asub1 : array, ${tileAOuter}>; - var mm_Bsub1 : array, ${tileInner}>; - var mm_Asub2 : array, ${tileAOuter}>; - var mm_Bsub2 : array, ${tileInner}>; + var mm_Asub : array, ${tileAOuter}>; + var mm_Bsub : array, ${tileInner}>; // If the output size is small for matrix multiplication, avoid to use vec4 // and handle some elements per thread to optimally utilize the ALU. - // Introduces two shared memory buffers, some logical threads could handle - // arithmetic operations and others handle IO operations between barrier api, - // makes ALUs and load/store units work simultaneously, could improves - // the performance. + // Read data from global memory to registers firstly, then store them into + // shared memory, so it is instruction-Level parallelism for arithmetic + // operations and others handle IO operations between barrier api, makes ALU + // and load/store units work simultaneously, could improves the performance. ${getMainHeaderString()} let tileRow = i32(localId.y); let tileCol = i32(localId.x); let globalRow = i32(globalId.y); let globalCol = i32(globalId.x); + let batch = i32(globalId.z); // uniforms.dimInner should be greater than 0. let numTiles = (uniforms.dimInner - 1) / ${tileInner} + 1; var acc = 0.0; var globalColA = tileCol; - var globalRowB = tileRow; - for (var t = 0; t < numTiles; t = t + 1) { - if (t == 0) { - if (tileRow < ${tileAOuter}) { - // Load one tile of A and B into local memory. - // globalRow is always greater than or equal tileRow. - mm_Asub1[tileRow][tileCol] = - mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId); - globalColA = globalColA + ${tileInner}; - mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId); - globalRowB = globalRowB + ${tileInner}; - } - } else { - if (tileRow < ${tileAOuter}) { - // Load one tile of A and B into local memory. - // globalRow is always greater than or equal tileRow. - mm_Asub1[tileRow][tileCol] = - mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId); - globalColA = globalColA + ${tileInner}; - mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId); - globalRowB = globalRowB + ${tileInner}; - } else { - // Compute acc values for a single thread. - for (var k = 0; k < ${tileInner}; k = k + 1) { - let subRow = tileRow - ${tileAOuter}; - if (subRow < 0) { - continue; - } - acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol]; - } - } - } - workgroupBarrier(); - if (t != 0) { - t = t + 1; - } + var globalRowB = 0; + var regA = mm_readA(batch, globalRow, globalColA); + var regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol); + var regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol); + globalColA = globalColA + ${tileInner}; + globalRowB = globalRowB + ${tileInner}; - if (t < numTiles) { - if (tileRow < ${tileAOuter}) { - // Load one tile of A and B into local memory. - // globalRow is always greater than or equal tileRow. - mm_Asub2[tileRow][tileCol] = - mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId); - globalColA = globalColA + ${tileInner}; - mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId); - globalRowB = globalRowB + ${tileInner}; - } else { - // Compute acc values for a single thread. - for (var k = 0; k < ${tileInner}; k = k + 1) { - let subRow = tileRow - ${tileAOuter}; - if (subRow < 0) { - continue; - } - acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol]; - } - } + for (var t = 0; t < numTiles; t = t + 1) { + mm_Asub[tileRow][tileCol] = regA; + mm_Bsub[2 * tileRow][tileCol] = regB0; + mm_Bsub[2 * tileRow + 1][tileCol] = regB1; + + workgroupBarrier(); + + regA = mm_readA(batch, globalRow, globalColA); + regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol); + regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol); + globalColA = globalColA + ${tileInner}; + globalRowB = globalRowB + ${tileInner}; + + for (var k = 0; k < ${tileInner}; k = k + 1) { + acc = acc + mm_Asub[tileRow][k] * mm_Bsub[k][tileCol]; } workgroupBarrier(); } - let writeCol = (globalRow - tileRow) / 2 + tileRow - ${tileAOuter}; - if (tileRow >= ${tileAOuter} && writeCol >= 0) { - mm_write(writeCol, globalCol, acc, globalId); - } + + mm_write(batch, globalRow, globalCol, acc); } `; } var MatMulSmallOutputSizeProgram = class { - constructor(aShape, bShape, outputShape, bias = null, activation2 = null, preluActivationWeights = null) { + constructor(aShape, bShape, outputShape, transposeA = false, transposeB = false, bias = null, activation2 = null, preluActivationWeights = null) { this.variableNames = ["A", "B"]; this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; - this.workGroupSize = [8, 16, 1]; - util_exports.assert(aShape[1] <= 16 || bShape[2] <= 16, () => "This program can be only used when A width or B Height are small"); + this.workGroupSize = [16, 8, 1]; this.outputShape = outputShape; this.dispatchLayout = { x: [2], y: [1], z: [0] }; this.dispatch = [ Math.ceil(outputShape[2] / this.workGroupSize[0]), - Math.ceil(outputShape[1] * 2 / this.workGroupSize[1]), + Math.ceil(outputShape[1] / this.workGroupSize[1]), outputShape[0] ]; const addBias = bias != null; @@ -66450,76 +66243,229 @@ var MatMulSmallOutputSizeProgram = class { if (hasPreluActivationWeights) { this.variableNames.push("preluActivationWeights"); } + this.transposeA = transposeA; + this.transposeB = transposeB; this.addBias = addBias; this.activation = activation2; this.hasPreluActivationWeights = hasPreluActivationWeights; this.batchAEqualOne = aShape[0] === 1; this.batchBEqualOne = bShape[0] === 1; - this.shaderKey = `matMulSmallOutputSize_${this.activation}_${this.batchAEqualOne}_${this.batchBEqualOne}`; + this.shaderKey = `matMulSmallOutputSize_${this.activation}_${transposeA}_${transposeB}_${this.batchAEqualOne}_${this.batchBEqualOne}`; } getUserCode() { - const sampleA = `if (coordsInBounds2D(vec2(row, col), vec2(uniforms.dimAOuter, uniforms.dimInner))) { - return A[batch * batchASize + row * uniforms.dimInner + col]; - } - return 0.0;`; - const sampleB = `if (coordsInBounds2D(vec2(row, col), vec2(uniforms.dimInner, uniforms.dimBOuter))) { - return B[batch * batchBSize + row * uniforms.dimBOuter + col]; - } - return 0.0;`; - let activationSnippet = "", applyActivationSnippet = ""; - if (this.activation) { - const activationOp = mapActivationToShaderProgram2(this.activation, false); - if (this.hasPreluActivationWeights) { - activationSnippet = `fn activation(a : f32, outCoord : vec3) -> f32 { - let b = getPreluActivationWeightsByOutputCoords(outCoord); - ${activationOp} - }`; - } else { - activationSnippet = `fn activation(a : f32, outCoord : vec3) -> f32 { - ${activationOp} - }`; - } - applyActivationSnippet = "value = activation(value, outCoord);"; - } - const addBiasSnippet = this.addBias ? "value = value + getBiasByOutputCoords(outCoord);" : ""; const userCode = ` - ${activationSnippet} - - fn mm_readA(row : i32, col : i32, globalId : vec3) -> f32 { - ${this.batchAEqualOne ? ` - let batch = 0; - let batchASize = 0; - ` : ` - let batchASize = uniforms.aShape[1] * uniforms.aShape[2]; - let batch = i32(globalId.z); - `} - ${sampleA} - } - fn mm_readB(row : i32, col : i32, globalId : vec3) -> f32 { - ${this.batchBEqualOne ? ` - let batch = 0; - let batchBSize = 0; - ` : ` - let batch = i32(globalId.z); - let batchBSize = uniforms.bShape[1] * uniforms.bShape[2]; - `} - ${sampleB} - } - fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3) { - if (coordsInBounds2D(vec2(row, col), vec2(uniforms.dimAOuter, uniforms.dimBOuter))) { - let batch = i32(globalId.z); - let outCoord = vec3(batch, row, col); - var value = valueIn; - ${addBiasSnippet} - ${applyActivationSnippet} - setOutputAtCoords(batch, row, col, value); - } - } + ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)} + ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, this.transposeA, this.transposeB)} ${makeMatMulSmallOutputSizeSource(this.workGroupSize)} `; return userCode; } }; +var MatMulSplitKProgram = class { + constructor(outputShape, dimInner, batchAEqualOne, batchBEqualOne, transposeA = false, transposeB = false) { + this.variableNames = ["A", "B"]; + this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; + this.workGroupSize = [8, 8, 1]; + this.atomic = true; + this.tileInner = 32; + util_exports.assert(outputShape[0] === 1, () => "MatMulSplitKProgram only supports batch = 1."); + this.outputShape = outputShape; + this.dispatchLayout = { x: [2], y: [1], z: [0, 3] }; + this.elementsPerThread = [4, 4, this.tileInner]; + if (this.outputShape[1] < 16) { + this.elementsPerThread[1] = 1; + } + if (this.outputShape[2] < 16) { + this.elementsPerThread[0] = 1; + } + this.dispatch = computeDispatch(this.dispatchLayout, [ + this.outputShape[0], + this.outputShape[1], + this.outputShape[2], + dimInner + ], this.workGroupSize, this.elementsPerThread); + this.transposeA = transposeA; + this.transposeB = transposeB; + this.batchAEqualOne = batchAEqualOne; + this.batchBEqualOne = batchBEqualOne; + this.shaderKey = `matMulSplitK_${transposeA}_${transposeB}_${batchAEqualOne}_${batchBEqualOne}_${this.elementsPerThread}`; + } + getUserCode() { + const atomicAddSnippet = ` + var oldValue = atomicLoad(&(result[flatIndex])); + var exchanged = false; + for (; !exchanged;) { + let newValueF32 = bitcast(oldValue) + value; + let newValue = bitcast(newValueF32); + let res = atomicCompareExchangeWeak(&(result[flatIndex]), oldValue, newValue); + oldValue = res.old_value; + exchanged = res.exchanged; + } + `; + const userCode = ` + ${matMulReadFnSource(this.batchAEqualOne, this.batchBEqualOne, this.transposeA, this.transposeB)} + fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) { + if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) { + let coords = vec3(batch, row, col); + let flatIndex = getOutputIndexFromCoords(coords); + var value = valueIn; + // The problem is that we should initialize output to zero before using. + // Otherwise, the original value will be added to the result. + ${atomicAddSnippet} + } + } + + ${this.makeMatMulSplitKSource()} + `; + return userCode; + } + makeMatMulSplitKSource() { + const tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1]; + const tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; + const rowPerThread = this.elementsPerThread[1]; + const colPerThread = this.elementsPerThread[0]; + const colPerThreadA = this.tileInner / this.workGroupSize[0]; + const rowPerThreadB = this.tileInner / this.workGroupSize[1]; + util_exports.assert(this.tileInner % this.workGroupSize[0] === 0 && this.tileInner % this.workGroupSize[1] === 0, () => `tileInner ${this.tileInner} must be divisible by workGroupSize[0]${this.workGroupSize[0]} and workGroupSize[1]${this.workGroupSize[1]}`); + return ` + var mm_Asub : array, ${tileAOuter}>; + var mm_Bsub : array, ${this.tileInner}>; + ${getMainHeaderString()} + let tileRow = i32(localId.y) * ${rowPerThread}; + let tileCol = i32(localId.x) * ${colPerThread}; + + let globalRow = i32(globalId.y) * ${rowPerThread}; + let globalCol = i32(globalId.x) * ${colPerThread}; + let batch = 0; + let kStart = i32(globalId.z) * ${this.tileInner}; + + // Load one tile of A into local memory. + let tileColA = i32(localId.x) * ${colPerThreadA}; + for (var innerRow = 0; innerRow < ${rowPerThread}; innerRow = innerRow + 1) { + for (var innerCol = 0; innerCol < ${colPerThreadA}; innerCol = innerCol + 1) { + let inputRow = tileRow + innerRow; + let inputCol = tileColA + innerCol; + mm_Asub[inputRow][inputCol] = mm_readA(${this.batchAEqualOne ? 0 : "batch"}, + globalRow + innerRow, + kStart + inputCol); + } + } + // Load one tile of B into local memory. + let tileRowB = i32(localId.y) * ${rowPerThreadB}; + for (var innerRow = 0; innerRow < ${rowPerThreadB}; innerRow = innerRow + 1) { + for (var innerCol = 0; innerCol < ${colPerThread}; innerCol = innerCol + 1) { + let inputRow = tileRowB + innerRow; + let inputCol = tileCol + innerCol; + mm_Bsub[inputRow][inputCol] = mm_readB(${this.batchBEqualOne ? 0 : "batch"}, + kStart + inputRow, + globalCol + innerCol); + } + } + + workgroupBarrier(); + + var acc : array, ${rowPerThread}>; + // Loop over shared dimension. Compute acc values for a single thread. + for (var k = 0; k < ${this.tileInner}; k = k + 1) { + var BCached : array; + for (var inner = 0; inner < ${colPerThread}; inner = inner + 1) { + BCached[inner] = mm_Bsub[k][tileCol + inner]; + } + + for (var innerRow = 0; innerRow < ${rowPerThread}; innerRow = innerRow + 1) { + let ACached = mm_Asub[tileRow + innerRow][k]; + for (var innerCol = 0; innerCol < ${colPerThread}; innerCol = innerCol + 1) { + acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol]; + } + } + } + + for (var innerRow = 0; innerRow < ${rowPerThread}; innerRow = innerRow + 1) { + for (var innerCol = 0; innerCol < ${colPerThread}; innerCol = innerCol + 1) { + mm_write(batch, globalRow + innerRow, globalCol + innerCol, acc[innerRow][innerCol]); + } + } + } + `; + } +}; +var BiasActivationProgram = class { + constructor(outputShape, bias = null, activation2 = null, preluActivationWeights = null) { + this.uniforms = ""; + this.variableNames = ["x"]; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = outputShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.addBias = bias != null; + this.hasPreluActivationWeights = preluActivationWeights != null; + this.activation = activation2; + if (this.addBias) { + this.variableNames.push("bias"); + } + if (this.hasPreluActivationWeights) { + this.variableNames.push("preluActivationWeights"); + } + this.shaderKey = `biasActivation_${activation2}`; + } + getUserCode() { + return ` + ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)} + ${getMainHeaderAndGlobalIndexString()} + if (index < uniforms.size) { + let coords = getCoordsFromIndex(index); + var value = getXByOutputIndex(index); + ${biasActivationSnippet(this.addBias, this.activation)} + setOutputAtIndex(index, value); + } + } + `; + } +}; +var FillProgram2 = class { + constructor(shape) { + this.variableNames = []; + this.outputShape = []; + this.uniforms = "value : f32,"; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = shape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.shaderKey = "fill"; + } + getUserCode() { + const userCode = ` + ${getMainHeaderAndGlobalIndexString()} + if (index < uniforms.size) { + setOutputAtIndex(index, uniforms.value); + } + } + `; + return userCode; + } +}; +function fill5(args) { + const { backend: backend2, attrs } = args; + const { shape, value } = attrs; + let { dtype } = attrs; + dtype = dtype || util_exports.inferDtype(value); + if (dtype === "string") { + const values = util_exports.getArrayFromDType(dtype, util_exports.sizeFromShape(shape)); + values.fill(value); + return backend2.makeTensorInfo(shape, dtype, values); + } else { + const program = new FillProgram2(shape); + const uniformData = [{ type: "float32", data: [value] }]; + return backend2.runWebGPUProgram(program, [], dtype, uniformData); + } +} +var fillConfig4 = { + kernelName: Fill, + backendName: "webgpu", + kernelFunc: fill5 +}; function reshape6(args) { const { inputs, attrs } = args; const { x } = inputs; @@ -66536,56 +66482,108 @@ var reshapeConfig4 = { backendName: "webgpu", kernelFunc: reshape6 }; -function batchMatMulImpl2({ a: a6, b, transposeA, transposeB, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) { - const aRank = a6.shape.length; +function batchMatMulImpl2({ a, b, transposeA, transposeB, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) { + const aRank = a.shape.length; const bRank = b.shape.length; - const innerShapeA = transposeA ? a6.shape[aRank - 2] : a6.shape[aRank - 1]; + const innerShapeA = transposeA ? a.shape[aRank - 2] : a.shape[aRank - 1]; const innerShapeB = transposeB ? b.shape[bRank - 1] : b.shape[bRank - 2]; - const outerShapeA = transposeA ? a6.shape[aRank - 1] : a6.shape[aRank - 2]; + const outerShapeA = transposeA ? a.shape[aRank - 1] : a.shape[aRank - 2]; const outerShapeB = transposeB ? b.shape[bRank - 2] : b.shape[bRank - 1]; - const outerDimsA = a6.shape.slice(0, -2); + const outerDimsA = a.shape.slice(0, -2); const outerDimsB = b.shape.slice(0, -2); const batchDimA = util_exports.sizeFromShape(outerDimsA); const batchDimB = util_exports.sizeFromShape(outerDimsB); - const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a6.shape.slice(0, -2), b.shape.slice(0, -2)); + const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2)); const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]); - util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a6.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`); + util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`); const a3dShape = transposeA ? [batchDimA, innerShapeA, outerShapeA] : [batchDimA, outerShapeA, innerShapeA]; const b3dShape = transposeB ? [batchDimB, outerShapeB, innerShapeB] : [batchDimB, innerShapeB, outerShapeB]; - const a3d = reshape6({ inputs: { x: a6 }, backend: backend2, attrs: { shape: a3dShape } }); + const a3d = reshape6({ inputs: { x: a }, backend: backend2, attrs: { shape: a3dShape } }); const b3d = reshape6({ inputs: { x: b }, backend: backend2, attrs: { shape: b3dShape } }); const intermediates = [a3d, b3d]; const batchDim = Math.max(batchDimA, batchDimB); const batchAEqualOne = batchDimA === 1; const batchBEqualOne = batchDimB === 1; - const useVec4 = innerShapeA % 4 === 0 && outerShapeB % 4 === 0 && !transposeA && !transposeB; - let program; - if (outerShapeA * outerShapeB <= 32) { - program = new MatMulReduceProgram([batchDim, outerShapeA, outerShapeB], batchAEqualOne, batchBEqualOne, transposeA, transposeB, bias, activation2, preluActivationWeights); - } else if (!transposeA && !transposeB && (outerShapeA <= 16 && (outerShapeB <= 512 || innerShapeB >= 2 * outerShapeB) || outerShapeB <= 16 && (outerShapeA <= 512 || innerShapeA >= 2 * outerShapeA))) { - program = new MatMulSmallOutputSizeProgram(a3dShape, b3dShape, [batchDim, outerShapeA, outerShapeB], bias, activation2, preluActivationWeights); - } else if (useVec4) { - program = new MatMulPackedVec4Program(a3dShape, [batchDim, outerShapeA, outerShapeB], env().get("WEBGPU_MATMUL_WORK_PER_THREAD"), batchAEqualOne, batchBEqualOne, bias, activation2, preluActivationWeights); - } else { - program = new MatMulPackedProgram2(a3dShape, [batchDim, outerShapeA, outerShapeB], env().get("WEBGPU_MATMUL_WORK_PER_THREAD"), batchAEqualOne, batchBEqualOne, transposeA, transposeB, bias, activation2, preluActivationWeights); - } + const useVec4 = (innerShapeA % 4 === 0 && !transposeA || outerShapeA % 4 === 0 && transposeA) && outerShapeB % 4 === 0 && !transposeB; const inputs = [a3d, b3d]; + const dimensions = [ + { type: "int32", data: [outerShapeA] }, + { type: "int32", data: [outerShapeB] }, + { type: "int32", data: [innerShapeA] } + ]; + let program; + let out; + const outputShape = [batchDim, outerShapeA, outerShapeB]; + let matmulProgramType = env().get("WEBGPU_MATMUL_PROGRAM_TYPE"); + if (matmulProgramType < 0) { + if (outerShapeA * outerShapeB <= 128) { + matmulProgramType = MatMulProgramType.MatMulReduceProgram; + } else if (batchDim === 1 && outerShapeA <= 128 && outerShapeB <= 48 && innerShapeB >= 2e3) { + matmulProgramType = MatMulProgramType.MatMulSplitKProgram; + } else if (outerShapeA <= 16 && (outerShapeB <= 512 || innerShapeB >= 2 * outerShapeB) || outerShapeB <= 16 && (outerShapeA <= 512 || innerShapeA >= 2 * outerShapeA)) { + matmulProgramType = MatMulProgramType.MatMulSmallOutputSizeProgram; + } else if (useVec4) { + matmulProgramType = MatMulProgramType.MatMulPackedVec4Program; + } else { + matmulProgramType = MatMulProgramType.MatMulPackedProgram; + } + } + switch (matmulProgramType) { + case MatMulProgramType.MatMulPackedVec4Program: + program = new MatMulPackedVec4Program(a3dShape, outputShape, batchAEqualOne, batchBEqualOne, transposeA, bias, activation2, preluActivationWeights); + break; + case MatMulProgramType.MatMulReduceProgram: + program = new MatMulReduceProgram(outputShape, batchAEqualOne, batchBEqualOne, transposeA, transposeB, bias, activation2, preluActivationWeights); + break; + case MatMulProgramType.MatMulSplitKProgram: { + out = fill5({ backend: backend2, attrs: { shape: outputShape, value: 0, dtype: a.dtype } }); + program = new MatMulSplitKProgram(outputShape, innerShapeB, batchAEqualOne, batchBEqualOne, transposeA, transposeB); + if (bias || activation2) { + out = backend2.runWebGPUProgram(program, inputs, a.dtype, dimensions, out); + const biasActivationProgram = new BiasActivationProgram(out.shape, bias, activation2, preluActivationWeights); + let uniformData = null; + const activationInputs = [out]; + if (bias) { + activationInputs.push(bias); + } + if (preluActivationWeights) { + activationInputs.push(preluActivationWeights); + } + if (activation2 === "leakyrelu") { + uniformData = [{ type: "float32", data: [leakyreluAlpha] }]; + biasActivationProgram.uniforms += " alpha : f32,"; + } + const outActivated = backend2.runWebGPUProgram(biasActivationProgram, activationInputs, out.dtype, uniformData); + intermediates.push(out); + const outReshaped2 = reshape6({ inputs: { x: outActivated }, backend: backend2, attrs: { shape: outShape } }); + intermediates.push(outActivated); + for (const i2 of intermediates) { + backend2.disposeData(i2.dataId); + } + return outReshaped2; + } + break; + } + case MatMulProgramType.MatMulSmallOutputSizeProgram: + program = new MatMulSmallOutputSizeProgram(a3dShape, b3dShape, outputShape, transposeA, transposeB, bias, activation2, preluActivationWeights); + break; + case MatMulProgramType.MatMulPackedProgram: + program = new MatMulPackedProgram2(a3dShape, outputShape, env().get("WEBGPU_MATMUL_WORK_PER_THREAD"), batchAEqualOne, batchBEqualOne, transposeA, transposeB, bias, activation2, preluActivationWeights); + break; + default: + throw new Error(`Unsupported MatMulProgramType ${matmulProgramType}.`); + } if (bias) { inputs.push(bias); } if (preluActivationWeights) { inputs.push(preluActivationWeights); } - const dimensions = [ - { type: "int32", data: [outerShapeA] }, - { type: "int32", data: [outerShapeB] }, - { type: "int32", data: [innerShapeA] } - ]; if (activation2 === "leakyrelu") { dimensions.push({ type: "float32", data: [leakyreluAlpha] }); program.uniforms += " alpha : f32,"; } - const out = backend2.runWebGPUProgram(program, inputs, a6.dtype, dimensions); + out = backend2.runWebGPUProgram(program, inputs, a.dtype, dimensions, out); const outReshaped = reshape6({ inputs: { x: out }, backend: backend2, attrs: { shape: outShape } }); intermediates.push(out); for (const i2 of intermediates) { @@ -66595,10 +66593,10 @@ function batchMatMulImpl2({ a: a6, b, transposeA, transposeB, backend: backend2, } function _fusedMatMul3(args) { const { inputs, backend: backend2, attrs } = args; - const { a: a6, b, bias, preluActivationWeights } = inputs; + const { a, b, bias, preluActivationWeights } = inputs; const { transposeA, transposeB, activation: activation2, leakyreluAlpha } = attrs; return batchMatMulImpl2({ - a: a6, + a, b, transposeA, transposeB, @@ -66646,34 +66644,52 @@ var BinaryOpComplexProgram2 = class { return userCode; } }; -var BinaryOpSharedProgram = class { - constructor(op2, aShape, bShape, useSharedMemoryWithB) { - this.variableNames = ["A", "B"]; +var BinaryOpProgram2 = class { + constructor(op2, aShape, bShape) { this.size = true; - const workGroupSizeX = 256; - this.workGroupSize = [workGroupSizeX, 1, 1]; + this.variableNames = ["A", "B"]; this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape); this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.lastDimensionSize = useSharedMemoryWithB ? bShape[0] : aShape[0]; - if (this.lastDimensionSize < 256) { - this.workPerThread = 1; - } else if (this.lastDimensionSize < 512) { - this.workPerThread = 2; + this.op = op2; + this.useSharedMemoryWithA = aShape.length === 1 && bShape.length > 1 && aShape[0] < 1024; + this.useSharedMemoryWithB = bShape.length === 1 && aShape.length > 1 && bShape[0] < 1024; + if (this.useSharedMemoryWithA || this.useSharedMemoryWithB) { + this.isVec4 = false; + this.lastDimensionSize = this.useSharedMemoryWithB ? bShape[0] : aShape[0]; + this.shaderKey = `binary_${this.type}_${op2}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`; + this.type = "shared"; + this.workGroupSize = [256, 1, 1]; + if (this.lastDimensionSize < 256) { + this.workPerThread = 1; + } else if (this.lastDimensionSize < 512) { + this.workPerThread = 2; + } else { + this.workPerThread = 4; + } } else { - this.workPerThread = 4; + if (util_exports.arraysEqual(aShape, bShape) && util_exports.sizeFromShape(aShape) % 4 === 0) { + this.isVec4 = true; + this.type = "vec4"; + this.workPerThread = 4; + } else { + this.isVec4 = false; + this.type = "plain"; + this.workPerThread = 1; + } + this.shaderKey = `binary_${this.type}_${op2}`; + this.workGroupSize = [128, 1, 1]; } this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); - this.useSharedMemoryWithB = useSharedMemoryWithB; - this.op = op2; - this.shaderKey = `binaryShared_${op2}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`; } getUserCode() { - const sharedIndexSnippet = this.lastDimensionSize > 1 ? `coords[${this.outputShape.length - 1}]` : "0"; - const accessDataSnippet = this.useSharedMemoryWithB ? `let a = getAByOutputCoords(coords); - let b = sharedBuf[${sharedIndexSnippet}];` : `let a = sharedBuf[${sharedIndexSnippet}]; - let b = getBByOutputCoords(coords);`; - const opStr = getBinaryOpString(this.op, false); - const userCode = ` + let userCode; + if (this.type === "shared") { + const sharedIndexSnippet = this.lastDimensionSize > 1 ? `coords[${this.outputShape.length - 1}]` : "0"; + const accessDataSnippet = this.useSharedMemoryWithB ? `let a = getAByOutputCoords(coords); + let b = sharedBuf[${sharedIndexSnippet}];` : `let a = sharedBuf[${sharedIndexSnippet}]; + let b = getBByOutputCoords(coords);`; + const opStr = getBinaryOpString(this.op, this.isVec4); + userCode = ` fn binaryOperation(a : f32, b : f32) -> f32 { ${opStr} } @@ -66699,82 +66715,25 @@ var BinaryOpSharedProgram = class { } } `; + } else { + const dType = this.type === "vec4" ? "vec4" : "f32"; + const opStr = getBinaryOpString(this.op, this.isVec4); + userCode = ` + fn binaryOperation(a : ${dType}, b : ${dType}) -> ${dType} { + ${opStr} + } + ${getMainHeaderAndGlobalIndexString()} + if (index < uniforms.size) { + let a = getAByOutputIndex(index); + let b = getBByOutputIndex(index); + setOutputAtIndex(index, binaryOperation(a, b)); + } + } + `; + } return userCode; } }; -var BinaryOpVec4Program = class { - constructor(op2, aShape, bShape) { - this.variableNames = ["A", "B"]; - this.workPerThread = 4; - this.isVec4 = true; - this.size = true; - const workGroupSizeX = 128; - this.workGroupSize = [workGroupSizeX, 1, 1]; - this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape); - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); - this.op = op2; - this.shaderKey = `binaryVec4_${op2}`; - } - getUserCode() { - const opStr = getBinaryOpString(this.op, this.isVec4); - const userCode = ` - fn binaryOperation(a : vec4, b : vec4) -> vec4 { - ${opStr} - } - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let a = getAByOutputIndex(index); - let b = getBByOutputIndex(index); - setOutputAtIndex(index, binaryOperation(a, b)); - } - } - `; - return userCode; - } -}; -var BinaryOpProgram2 = class { - constructor(op2, aShape, bShape) { - this.variableNames = ["A", "B"]; - this.size = true; - const workGroupSizeX = 128; - this.workGroupSize = [workGroupSizeX, 1, 1]; - this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape); - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.shaderKey = `binary_${op2}`; - this.op = op2; - } - getUserCode() { - const opStr = getBinaryOpString(this.op, false); - const userCode = ` - fn binaryOperation(a : f32, b : f32) -> f32 { - ${opStr} - } - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let a = getAByOutputIndex(index); - let b = getBByOutputIndex(index); - setOutputAtIndex(index, binaryOperation(a, b)); - } - } - `; - return userCode; - } -}; -function getBinaryProgram(op2, aShape, bShape) { - const useVec4 = util_exports.arraysEqual(aShape, bShape) && util_exports.sizeFromShape(aShape) % 4 === 0; - if (useVec4) { - return new BinaryOpVec4Program(op2, aShape, bShape); - } - const useSharedMemoryWithA = aShape.length === 1 && bShape.length > 1 && aShape[0] < 1024; - const useSharedMemoryWithB = bShape.length === 1 && aShape.length > 1 && bShape[0] < 1024; - if (useSharedMemoryWithA || useSharedMemoryWithB) { - return new BinaryOpSharedProgram(op2, aShape, bShape, useSharedMemoryWithB); - } else { - return new BinaryOpProgram2(op2, aShape, bShape); - } -} function identity5(args) { const { inputs } = args; const { x } = inputs; @@ -66841,15 +66800,15 @@ function unaryKernelFunc3({ opType, cpuKernelImpl, dtype }) { return webgpuBackend.runWebGPUProgram(program, [x], $dtype); }; } -function binaryKernelFunc3({ opSnippet, cpuKernelImpl, supportsComplex = false, dtype }) { +function binaryKernelFunc3({ opType, cpuKernelImpl, supportsComplex = false, dtype }) { return ({ inputs, backend: backend2 }) => { - const { a: a6, b } = inputs; + const { a, b } = inputs; const webgpuBackend = backend2; - if (supportsComplex && a6.dtype === "complex64") { - const aData = webgpuBackend.tensorMap.get(a6.dataId); + if (supportsComplex && a.dtype === "complex64") { + const aData = webgpuBackend.tensorMap.get(a.dataId); const bData = webgpuBackend.tensorMap.get(b.dataId); let real5, imag5; - if (opSnippet !== BinaryOpType.MUL) { + if (opType !== BinaryOpType.MUL) { [real5, imag5] = [ [aData.complexTensorInfos.real, bData.complexTensorInfos.real], [aData.complexTensorInfos.imag, bData.complexTensorInfos.imag] @@ -66858,29 +66817,29 @@ function binaryKernelFunc3({ opSnippet, cpuKernelImpl, supportsComplex = false, const aHandle = { dataId: aPart.dataId, dtype: aPart.dtype, - shape: a6.shape + shape: a.shape }; const bHandle = { dataId: bPart.dataId, dtype: bPart.dtype, shape: b.shape }; - const program2 = getBinaryProgram(opSnippet, a6.shape, b.shape); + const program2 = new BinaryOpProgram2(opType, a.shape, b.shape); return webgpuBackend.runWebGPUProgram(program2, [aHandle, bHandle], upcastType(aPart.dtype, bPart.dtype)); }); } else { - const realProgram = new BinaryOpComplexProgram2(BinaryOpType.COMPLEX_MULTIPLY_REAL, a6.shape, b.shape); - const imagProgram = new BinaryOpComplexProgram2(BinaryOpType.COMPLEX_MULTIPLY_IMAG, a6.shape, b.shape); + const realProgram = new BinaryOpComplexProgram2(BinaryOpType.COMPLEX_MULTIPLY_REAL, a.shape, b.shape); + const imagProgram = new BinaryOpComplexProgram2(BinaryOpType.COMPLEX_MULTIPLY_IMAG, a.shape, b.shape); const inputs2 = [ { dataId: aData.complexTensorInfos.real.dataId, dtype: aData.complexTensorInfos.real.dtype, - shape: a6.shape + shape: a.shape }, { dataId: aData.complexTensorInfos.imag.dataId, dtype: aData.complexTensorInfos.imag.dtype, - shape: a6.shape + shape: a.shape }, { dataId: bData.complexTensorInfos.real.dataId, @@ -66901,17 +66860,17 @@ function binaryKernelFunc3({ opSnippet, cpuKernelImpl, supportsComplex = false, webgpuBackend.disposeData(imag5.dataId); return complexOutput; } - const $dtype = dtype || upcastType(a6.dtype, b.dtype); - if ((a6.dtype === "string" || b.dtype === "string" || webgpuBackend.shouldExecuteOnCPU([a6, b])) && cpuKernelImpl != null) { - const aData = webgpuBackend.tensorMap.get(a6.dataId).values; + const $dtype = dtype || upcastType(a.dtype, b.dtype); + if ((a.dtype === "string" || b.dtype === "string" || webgpuBackend.shouldExecuteOnCPU([a, b])) && cpuKernelImpl != null) { + const aData = webgpuBackend.tensorMap.get(a.dataId).values; const bData = webgpuBackend.tensorMap.get(b.dataId).values; - const decodedAVals = a6.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(aData) : aData; - const decodedBVals = a6.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(bData) : bData; - const [outValues, outShape] = cpuKernelImpl(a6.shape, b.shape, decodedAVals, decodedBVals, $dtype); + const decodedAVals = a.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(aData) : aData; + const decodedBVals = a.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(bData) : bData; + const [outValues, outShape] = cpuKernelImpl(a.shape, b.shape, decodedAVals, decodedBVals, $dtype); return webgpuBackend.makeTensorInfo(outShape, $dtype, outValues); } - const program = getBinaryProgram(opSnippet, a6.shape, b.shape); - return webgpuBackend.runWebGPUProgram(program, [a6, b], $dtype); + const program = new BinaryOpProgram2(opType, a.shape, b.shape); + return webgpuBackend.runWebGPUProgram(program, [a, b], $dtype); }; } var { addImpl: addImplCPU2, ceilImpl: ceilImplCPU2, concatImpl: concatImplCPU2, equalImpl: equalImplCPU2, expImpl: expImplCPU2, expm1Impl: expm1ImplCPU2, floorImpl: floorImplCPU2, gatherNdImpl: gatherNdImplCPU2, gatherV2Impl: gatherV2ImplCPU2, greaterEqualImpl: greaterEqualImplCPU2, greaterImpl: greaterImplCPU2, lessEqualImpl: lessEqualImplCPU2, lessImpl: lessImplCPU2, logImpl: logImplCPU2, maxImpl: maxImplCPU2, maximumImpl: maximumImplCPU2, minimumImpl: minimumImplCPU2, multiplyImpl: multiplyImplCPU2, negImpl: negImplCPU2, notEqualImpl: notEqualImplCPU2, prodImpl: prodImplCPU2, rangeImpl: rangeImplCPU2, rsqrtImpl: rsqrtImplCPU2, scatterImpl: scatterImplCPU2, simpleAbsImpl: simpleAbsImplCPU2, sliceImpl: sliceImplCPU2, stridedSliceImpl: stridedSliceImplCPU2, stringNGramsImpl: stringNGramsImplCPU2, subImpl: subImplCPU2, tileImpl: tileImplCPU2, topKImpl: topKImplCPU2, transposeImpl: transposeImplCPU2, uniqueImpl: uniqueImplCPU2 } = shared_exports; @@ -66921,11 +66880,7 @@ var absConfig4 = { backendName: "webgpu", kernelFunc: abs4 }; -var addKernelFunc2 = binaryKernelFunc3({ - opSnippet: BinaryOpType.ADD, - cpuKernelImpl: addImplCPU2, - supportsComplex: true -}); +var addKernelFunc2 = binaryKernelFunc3({ opType: BinaryOpType.ADD, cpuKernelImpl: addImplCPU2, supportsComplex: true }); var addConfig4 = { kernelName: Add, backendName: "webgpu", @@ -67087,7 +67042,7 @@ var TransposeSharedProgram = class { } getUserCode() { const userCode = ` - let TILE_DIM = ${this.workGroupSize[0]}; + const TILE_DIM = ${this.workGroupSize[0]}; var tile : array, ${this.workGroupSize[0]}>; ${getWorkGroupSizeString()} fn main(@builtin(local_invocation_id) localId : vec3, @@ -67357,9 +67312,9 @@ var avgPoolConfig4 = { }; function batchMatMul4(args) { const { inputs, backend: backend2, attrs } = args; - const { a: a6, b } = inputs; + const { a, b } = inputs; const { transposeA, transposeB } = attrs; - return batchMatMulImpl2({ a: a6, b, transposeA, transposeB, backend: backend2 }); + return batchMatMulImpl2({ a, b, transposeA, transposeB, backend: backend2 }); } var batchMatMulConfig4 = { kernelName: BatchMatMul, @@ -67444,7 +67399,7 @@ var batchToSpaceND5 = (args) => { const { x } = inputs; const { blockShape, crops } = attrs; util_exports.assert(x.shape.length <= 4, () => "batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet"); - const prod6 = blockShape.reduce((a6, b) => a6 * b); + const prod6 = blockShape.reduce((a, b) => a * b); const reshaped = backend_util_exports.getReshaped(x.shape, blockShape, prod6); const permuted = backend_util_exports.getPermuted(reshaped.length, blockShape.length); const reshapedPermuted = backend_util_exports.getReshapedPermuted(x.shape, blockShape, prod6); @@ -67475,7 +67430,7 @@ var batchToSpaceNDConfig4 = { kernelFunc: batchToSpaceND5 }; var notEqual4 = binaryKernelFunc3({ - opSnippet: BinaryOpType.NOT_EQUAL, + opType: BinaryOpType.NOT_EQUAL, dtype: "bool", cpuKernelImpl: notEqualImplCPU2 }); @@ -67722,6 +67677,19 @@ function concatImpl3(inputs, axis, backend2) { tensors2D2.forEach((t2) => backend2.disposeData(t2.dataId)); return outInfo; } + const maxInputNum = backend2.device.limits.maxStorageBuffersPerShaderStage - 1; + if (inputs.length > maxInputNum) { + const reducedInputs = []; + for (let i2 = 0; i2 < inputs.length; i2 += maxInputNum) { + const subArray = inputs.slice(i2, i2 + maxInputNum); + reducedInputs.push(concatImpl3(subArray, axis, backend2)); + } + const result = concatImpl3(reducedInputs, axis, backend2); + for (const i2 of reducedInputs) { + backend2.disposeData(i2.dataId); + } + return result; + } const { tensors2D, outShape } = computeTensors2D2(inputs, axis, backend2); const shapes = tensors2D.map((t2) => t2.shape); const program = new ConcatProgram2(shapes); @@ -67776,274 +67744,194 @@ var concatConfig4 = { backendName: "webgpu", kernelFunc: concat5 }; -var Conv2DMMVec4Program = class { - constructor(convInfo, addBias = false, activation2 = null, hasPreluActivationWeights = false) { - this.variableNames = ["x", "W"]; - this.uniforms = `filterDims : vec2, pad : vec2, stride : vec2, dilation : vec2, - dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; - this.workGroupSize = [8, 8, 1]; - this.isVec4 = true; - this.outputShape = convInfo.outShape; - util_exports.assert(convInfo.dataFormat === "channelsLast", () => "TODO: NCHW is unimplemented"); - this.dispatchLayout = { x: [3], y: [1, 2], z: [0] }; - if (this.outputShape[1] === 1) { - this.elementsPerThread = [4, 1, 1]; - } else { - this.elementsPerThread = [4, 4, 1]; +function conv2dCommonSnippet(isChannelsLast, fitAOuter, fitBOuter, fitInner, addBias = false, activation2 = null, hasPreluActivationWeights = false, innerElementSizeX = 4, innerElementSizeW = 4, innerElementSize = 4) { + const getXSnippet = (innerElementSize2) => { + switch (innerElementSize2) { + case 1: + return "resData = x[xIndex];"; + case 3: + return "resData = vec3(x[xIndex], x[xIndex + 1], x[xIndex + 2]);"; + case 4: + return "resData = x[xIndex / 4];"; + default: + throw new Error(`innerElementSize ${innerElementSize2} is not supported.`); } - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread); - this.convInfo = convInfo; - this.addBias = addBias; - this.activation = activation2; - this.hasPreluActivationWeights = hasPreluActivationWeights; - this.innerElementSize = this.convInfo.inChannels % 4 === 0 ? 4 : 3; - if (this.innerElementSize === 3) { - this.variableTypes = ["f32", "vec4"]; - } else { - this.variableTypes = ["vec4", "vec4"]; + }; + const getWSnippet = (innerElementSize2) => { + switch (innerElementSize2) { + case 1: + return "return W[row * uniforms.wShape[3] + colIn];"; + case 4: + return "return W[row * uniforms.wShape[3] / 4 + colIn];"; + default: + throw new Error(`innerElementSize ${innerElementSize2} is not supported.`); } - if (this.addBias) { - this.variableNames.push("bias"); - this.variableTypes.push("vec4"); - } - if (this.hasPreluActivationWeights) { - this.variableNames.push("preluActivationWeights"); - this.variableTypes.push("vec4"); - } - this.tileAOuter = this.outputShape[1] === 1 ? 1 : this.workGroupSize[1] * this.elementsPerThread[1]; - this.tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; - this.tileInner = this.workGroupSize[0] * this.innerElementSize; - [this.fitA, this.fitB] = this.getShapeFit(); - this.shaderKey = `conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}_${this.innerElementSize}`; - } - getShapeFit() { - const tileSizeA = [this.tileAOuter, this.tileInner]; - const tileSizeB = [this.tileInner, this.tileBOuter]; - const dimAOuter = this.outputShape[1] * this.outputShape[2]; - const dimBOuter = this.outputShape[3]; - const dimInner = this.convInfo.filterHeight * this.convInfo.filterWidth * this.convInfo.inChannels; - return [ - tilesFitEvenlyIntoShape(tileSizeA, [dimAOuter, dimInner]), - tilesFitEvenlyIntoShape(tileSizeB, [dimInner, dimBOuter]) - ]; - } - getUserCode() { - const matMulSource = makeMatMulPackedVec4Source(this.elementsPerThread, this.tileAOuter, this.tileBOuter, this.tileInner, this.innerElementSize); - const readASnippet = `let outRow = r / uniforms.outShape[2]; - let outCol = r % uniforms.outShape[2]; - let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]); - let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1]; - let inChCoord = c % uniforms.xShape[3]; - let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0]; - let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1]; - - var resData = vec${this.innerElementSize}(0.0); - // The bounds checking is always needed since we use it to pad zero for - // the 'same' padding type. - if (xRow >= 0 && xRow < uniforms.xShape[1] && xCol >= 0 && xCol < uniforms.xShape[2]) { - var coord = vec4( - batch, - xRow, - xCol, - inChCoord); - let xIndex = getIndexFromCoords4D(coord, uniforms.xShape); - ${this.innerElementSize === 3 ? "resData = vec3(x[xIndex], x[xIndex + 1], x[xIndex + 2]);" : "resData = x[xIndex / 4];"} - } - return resData;`; - const sampleA = this.fitA ? `${readASnippet}` : `if (r < uniforms.dimAOuter && c < uniforms.dimInner) { - ${readASnippet} - } - return vec${this.innerElementSize}(0.0); - `; - const sampleB = this.fitB ? `return W[row * uniforms.dimBOuter / 4 + col];` : `if(coordsInBounds2D(vec2(row, col * 4), vec2(uniforms.dimInner, uniforms.dimBOuter))) { - return W[row * uniforms.dimBOuter / 4 + col]; - } - return vec4(0.0); - `; - let activationSnippet = "", applyActivationSnippet = ""; - if (this.activation) { - const activationOp = mapActivationToShaderProgram2(this.activation, this.isVec4); - if (this.hasPreluActivationWeights) { - activationSnippet = `fn activation(a : vec4, outCoord : vec4) -> vec4 { - let b = getPreluActivationWeightsByOutputCoords(outCoord); - ${activationOp} - }`; - } else { - activationSnippet = ` - fn activation(a : vec4, outCoord : vec4) -> vec4 { - ${activationOp} - }`; - } - applyActivationSnippet = `value = activation(value, outCoord);`; - } - const addBiasSnippet = this.addBias ? "value = value + getBiasByOutputCoords(outCoord);" : ""; - const userCode = ` - ${activationSnippet} - fn mm_readA(row : i32, col : i32, globalId : vec3) -> vec${this.innerElementSize} { - let r = row; - let c = col * ${this.innerElementSize}; - var batch = i32(globalId.z); - ${sampleA} - } - - fn mm_readB(row : i32, col : i32, globalId : vec3) -> vec4 { - ${sampleB} - } - - fn mm_write(row : i32, col : i32, valueInput : vec4, globalId : vec3) { - var batch = i32(globalId.z); - var value = valueInput; - if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter) - { - let outCoord = vec4( - batch, - row / uniforms.outShape[2], - row % uniforms.outShape[2], - col * 4); - ${addBiasSnippet} - ${applyActivationSnippet} - setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], outCoord[3], - value); - } - } - ${matMulSource} + }; + const coordASnippet = isChannelsLast ? ` + let coord = vec4(batch, xRow, xCol, xCh); + ` : ` + let coord = vec4(batch, xCh, xRow, xCol); `; - return userCode; - } -}; + const coordResSnippet = isChannelsLast ? ` + let coords = vec4( + batch, + row / outWidth, + row % outWidth, + col); + ` : ` + let coords = vec4( + batch, + row, + col / outWidth, + col % outWidth); + `; + const xHight = isChannelsLast ? "uniforms.xShape[1]" : "uniforms.xShape[2]"; + const xWidth = isChannelsLast ? "uniforms.xShape[2]" : "uniforms.xShape[3]"; + const row = isChannelsLast ? "row" : "col"; + const col = isChannelsLast ? "col" : "row"; + const readXSnippet = ` + let inChannels = uniforms.wShape[2]; + let outWidth = ${isChannelsLast ? "uniforms.outShape[2]" : "uniforms.outShape[3]"}; + let outRow = ${row} / outWidth; + let outCol = ${row} % outWidth; + + let WRow = ${col} / (uniforms.filterDims[1] * inChannels); + let WCol = ${col} / inChannels % uniforms.filterDims[1]; + let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0]; + let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1]; + let xCh = ${col} % inChannels; + var resData = ${typeSnippet(innerElementSizeX)}(0.0); + // The bounds checking is always needed since we use it to pad zero for + // the 'same' padding type. + if (xRow >= 0 && xRow < ${xHight} && xCol >= 0 && xCol < ${xWidth}) { + ${coordASnippet} + let xIndex = getIndexFromCoords4D(coord, uniforms.xShape); + ${getXSnippet(innerElementSizeX)} + } + return resData;`; + const sampleX = isChannelsLast ? fitAOuter && fitInner ? ` + let col = colIn * ${innerElementSizeX}; + ${readXSnippet}` : ` + let col = colIn * ${innerElementSizeX}; + if (row < uniforms.dimAOuter && col < uniforms.dimInner) { + ${readXSnippet} + } + return ${typeSnippet(innerElementSizeX)}(0.0);` : fitInner && fitBOuter ? ` + let col = colIn * ${innerElementSizeX}; + ${readXSnippet}` : ` + let col = colIn * ${innerElementSizeX}; + if (row < uniforms.dimInner && col < uniforms.dimBOuter) { + ${readXSnippet} + } + return ${typeSnippet(innerElementSizeX)}(0.0);`; + const sampleW = `${getWSnippet(innerElementSizeW)}`; + const resType = typeSnippet(innerElementSize); + const aType = isChannelsLast ? typeSnippet(innerElementSizeX) : typeSnippet(innerElementSizeW); + const bType = isChannelsLast ? typeSnippet(innerElementSizeW) : typeSnippet(innerElementSizeX); + const userCode = ` + ${activationFnSnippet(activation2, hasPreluActivationWeights, innerElementSize === 4, 4)} + fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${aType} { + ${isChannelsLast ? sampleX : sampleW} + } + + fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${bType} { + ${isChannelsLast ? sampleW : sampleX} + } + + fn mm_write(batch: i32, row : i32, colIn : i32, valueIn : ${resType}) { + let col = colIn * ${innerElementSize}; + if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) + { + var value = valueIn; + let outWidth = ${isChannelsLast ? "uniforms.outShape[2]" : "uniforms.outShape[3]"}; + ${coordResSnippet} + ${biasActivationSnippet(addBias, activation2)} + setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); + } + }`; + return userCode; +} var Conv2DMMProgram = class { - constructor(convInfo, addBias = false, activation2 = null, hasPreluActivationWeights = false) { + constructor(convInfo, dimAOuter, dimBOuter, dimInner, addBias = false, activation2 = null, hasPreluActivationWeights = false) { this.variableNames = ["x", "W"]; this.uniforms = `filterDims : vec2, pad : vec2, stride : vec2, dilation : vec2, dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; this.outputShape = convInfo.outShape; this.isChannelsLast = convInfo.dataFormat === "channelsLast"; - this.dispatchLayout = this.isChannelsLast ? { x: [3], y: [1, 2], z: [0] } : { x: [1], y: [2, 3], z: [0] }; - this.workGroupSize = computeWorkGroupSizeForConv2d(this.dispatchLayout, this.outputShape); - this.elementsPerThread = computeWorkPerThreadForConv2d(this.dispatchLayout, this.outputShape); + this.isVec4 = ((convInfo.inChannels % 4 === 0 || convInfo.inChannels % 3 === 0) && this.isChannelsLast || convInfo.outWidth % 4 === 0 && !this.isChannelsLast) && convInfo.outChannels % 4 === 0; + this.dispatchLayout = this.isChannelsLast ? { x: [3], y: [1, 2], z: [0] } : { x: [2, 3], y: [1], z: [0] }; + this.workGroupSize = computeWorkGroupSizeForConv2d(this.dispatchLayout, this.outputShape, this.isVec4); + this.elementsPerThread = computeWorkPerThreadForConv2d(this.dispatchLayout, this.outputShape, this.isVec4); this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread); - if (addBias) { - this.variableNames.push("bias"); + if (this.isVec4) { + if (this.isChannelsLast && convInfo.inChannels % 4 !== 0) { + this.innerElementSize = 3; + this.variableTypes = ["f32", "vec4"]; + } else { + this.innerElementSize = 4; + this.variableTypes = ["vec4", "vec4"]; + } + if (addBias) { + this.variableNames.push("bias"); + this.variableTypes.push("vec4"); + } + if (hasPreluActivationWeights) { + this.variableNames.push("preluActivationWeights"); + this.variableTypes.push("vec4"); + } + } else { + this.innerElementSize = this.elementsPerThread[0]; + if (addBias) { + this.variableNames.push("bias"); + } + if (hasPreluActivationWeights) { + this.variableNames.push("preluActivationWeights"); + } } - if (hasPreluActivationWeights) { - this.variableNames.push("preluActivationWeights"); - } - this.convInfo = convInfo; this.addBias = addBias; this.activation = activation2; this.hasPreluActivationWeights = hasPreluActivationWeights; - [this.fitA, this.fitB] = this.getShapeFit(); - this.shaderKey = `conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}_${this.isChannelsLast}`; - } - getShapeFit() { - const tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1]; - const tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; - const tileInner = tileAOuter > tileBOuter ? tileAOuter : tileBOuter; - util_exports.assert(tileInner % this.workGroupSize[0] === 0 && tileInner % this.workGroupSize[1] === 0, () => "tileInner must be multiple of workgroupsize.x and workgroupsize.y"); - const tileSizeA = [tileAOuter, tileInner]; - const tileSizeB = [tileInner, tileBOuter]; - const dimAOuter = this.convInfo.outHeight * this.convInfo.outWidth; - const dimBOuter = this.convInfo.outChannels; - const dimInner = this.convInfo.filterHeight * this.convInfo.filterWidth * this.convInfo.inChannels; - return [ - tilesFitEvenlyIntoShape(tileSizeA, [dimAOuter, dimInner]), - tilesFitEvenlyIntoShape(tileSizeB, [dimInner, dimBOuter]) - ]; + this.tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1]; + this.tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; + this.tileInner = Math.max(this.workGroupSize[0] * this.innerElementSize, this.workGroupSize[1]); + this.fitAOuter = dimAOuter % this.tileAOuter === 0; + this.fitBOuter = dimBOuter % this.tileBOuter === 0; + this.fitInner = dimInner % this.tileInner === 0; + this.shaderKey = `conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}`; } getUserCode() { - const coordASnippet = this.isChannelsLast ? ` - let coord = vec4(batch, xRow, xCol, col % inChannels); - ` : ` - let coord = vec4(batch, col % inChannels, xRow, xCol); - `; - const coordResSnippet = this.isChannelsLast ? ` - let outCoord = vec4( - batch, - row / outWidth, - row % outWidth, - col); - ` : ` - let outCoord = vec4( - batch, - col, - row / outWidth, - row % outWidth); - `; - const matMulSource = makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize); - const readASnippet = ` - let inChannels = uniforms.wShape[2]; - let outWidth = ${this.isChannelsLast ? "uniforms.outShape[2]" : "uniforms.outShape[3]"}; - let outRow = row / outWidth; - let outCol = row % outWidth; - - let WRow = col / (uniforms.filterDims[1] * inChannels); - let WCol = col / inChannels % uniforms.filterDims[1]; - let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0]; - let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1]; - ${coordASnippet} - // The bounds checking is always needed since we use it to pad zero for the - // 'same' padding type. - if(coordsInBounds4D(coord, uniforms.xShape)) { - return x[getIndexFromCoords4D(coord, uniforms.xShape)]; - } - return 0.0;`; - const sampleA = this.fitA ? `${readASnippet}` : `if (row < uniforms.dimAOuter && col < uniforms.dimInner) { - ${readASnippet} - } - return 0.0; - `; - const sampleB = this.fitB ? `return W[row * uniforms.dimBOuter + col];` : `if(coordsInBounds2D(vec2(row, col), vec2(uniforms.dimInner, uniforms.dimBOuter))) { - return W[row * uniforms.dimBOuter + col]; - } - return 0.0; - `; - let activationSnippet = "", applyActivationSnippet = ""; - if (this.activation) { - const activationOp = mapActivationToShaderProgram2(this.activation, false); - if (this.hasPreluActivationWeights) { - activationSnippet = `fn activation(a: f32, outCoord : vec4) -> f32 { - let b = getPreluActivationWeightsByOutputCoords(outCoord); - ${activationOp} - }`; - } else { - activationSnippet = ` - fn activation(a : f32, outCoord : vec4) -> f32 { - ${activationOp} - } - `; - } - applyActivationSnippet = `value = activation(value, outCoord);`; - } - const addBiasSnippet = this.addBias ? "value = value + getBiasByOutputCoords(outCoord);" : ""; + const matMulSource = this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.tileAOuter, this.tileBOuter, this.tileInner, this.innerElementSize, !this.isChannelsLast) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize, !this.isChannelsLast, this.tileInner); + const elementsSize = this.isVec4 ? [this.isChannelsLast ? this.innerElementSize : 4, 4, 4] : [1, 1, 1]; const userCode = ` - ${activationSnippet} - fn mm_readA(row : i32, col : i32, globalId : vec3) -> f32 { - var batch = i32(globalId.z); - ${sampleA} - } - - fn mm_readB(row : i32, col : i32, globalId : vec3) -> f32 { - ${sampleB} - } - - fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3) { - var batch = i32(globalId.z); - var value = valueInput; - let outWidth = ${this.isChannelsLast ? "uniforms.outShape[2]" : "uniforms.outShape[3]"}; - ${coordResSnippet} - ${addBiasSnippet} - ${applyActivationSnippet} - result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value; - } + ${conv2dCommonSnippet(this.isChannelsLast, this.fitAOuter, this.fitBOuter, this.fitInner, this.addBias, this.activation, this.hasPreluActivationWeights, elementsSize[0], elementsSize[1], elementsSize[2])} ${matMulSource} `; return userCode; } }; +function getShapeForBatchMatMul2(shape, isChannelsLast) { + const length = shape.length; + if (length >= 3) { + return isChannelsLast ? [ + ...shape.slice(0, -3), + shape[length - 3] * shape[length - 2], + shape[length - 1] + ] : [ + ...shape.slice(0, -3), + shape[length - 3], + shape[length - 2] * shape[length - 1] + ]; + } else if (!isChannelsLast && length === 1 && shape[0] > 1) { + return [shape[0], 1]; + } else { + return null; + } +} function conv2dByMatMul2({ x, filter, convInfo, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) { const isChannelsLast = convInfo.dataFormat === "channelsLast"; const transposeA = isChannelsLast ? false : true; const transposeB = false; const sameSize = isChannelsLast && convInfo.filterHeight === convInfo.inHeight && convInfo.filterWidth === convInfo.inWidth && convInfo.padInfo.type === "VALID"; + const intermediates = []; let xReshaped; let filterReshaped; if (sameSize) { @@ -68080,6 +67968,26 @@ function conv2dByMatMul2({ x, filter, convInfo, backend: backend2, bias = null, attrs: { shape: [1, convInfo.inChannels, convInfo.outChannels] } }); } + intermediates.push(xReshaped); + intermediates.push(filterReshaped); + if (preluActivationWeights != null) { + const targetShape = getShapeForBatchMatMul2(preluActivationWeights.shape, isChannelsLast); + if (targetShape != null) { + preluActivationWeights = reshape6({ + inputs: { x: preluActivationWeights }, + backend: backend2, + attrs: { shape: targetShape } + }); + intermediates.push(preluActivationWeights); + } + } + if (bias != null) { + const targetShape = getShapeForBatchMatMul2(bias.shape, isChannelsLast); + if (targetShape != null) { + bias = reshape6({ inputs: { x: bias }, backend: backend2, attrs: { shape: targetShape } }); + intermediates.push(bias); + } + } const result = batchMatMulImpl2({ a: isChannelsLast ? xReshaped : filterReshaped, b: isChannelsLast ? filterReshaped : xReshaped, @@ -68092,16 +68000,16 @@ function conv2dByMatMul2({ x, filter, convInfo, backend: backend2, bias = null, leakyreluAlpha }); const out = reshape6({ inputs: { x: result }, backend: backend2, attrs: { shape: convInfo.outShape } }); - backend2.disposeData(xReshaped.dataId); - backend2.disposeData(filterReshaped.dataId); - backend2.disposeData(result.dataId); + intermediates.push(result); + for (const i2 of intermediates) { + backend2.disposeData(i2.dataId); + } return out; } function conv2DImpl({ x, filter, convInfo, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) { const hasBias = bias != null; const hasPreluActivationWeights = preluActivationWeights != null; const isChannelsLast = convInfo.dataFormat === "channelsLast"; - let program; const sameSize = isChannelsLast && convInfo.filterHeight === convInfo.inHeight && convInfo.filterWidth === convInfo.inWidth && convInfo.padInfo.type === "VALID"; if (sameSize || convInfo.filterHeight === 1 && convInfo.filterWidth === 1 && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && (convInfo.padInfo.type === "SAME" || convInfo.padInfo.type === "VALID")) { return conv2dByMatMul2({ @@ -68115,35 +68023,49 @@ function conv2DImpl({ x, filter, convInfo, backend: backend2, bias = null, prelu leakyreluAlpha }); } - const useVec4 = (convInfo.inChannels % 4 === 0 || convInfo.inChannels % 3 === 0) && convInfo.outChannels % 4 === 0 && isChannelsLast; + const dimAOuter = isChannelsLast ? convInfo.outHeight * convInfo.outWidth : convInfo.outChannels; + const dimBOuter = isChannelsLast ? convInfo.outChannels : convInfo.outHeight * convInfo.outWidth; + const dimInner = convInfo.filterHeight * convInfo.filterWidth * convInfo.inChannels; const padInfo = [convInfo.padInfo.top, convInfo.padInfo.left]; const dimensions = [ { type: "int32", data: [convInfo.filterHeight, convInfo.filterWidth] }, { type: "int32", data: [...padInfo] }, { type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }, - { type: "int32", data: [convInfo.dilationHeight, convInfo.dilationWidth] } + { type: "int32", data: [convInfo.dilationHeight, convInfo.dilationWidth] }, + { type: "int32", data: [dimAOuter] }, + { type: "int32", data: [dimBOuter] }, + { type: "int32", data: [dimInner] } ]; - if (useVec4) { - program = new Conv2DMMVec4Program(convInfo, hasBias, activation2, hasPreluActivationWeights); - } else { - program = new Conv2DMMProgram(convInfo, hasBias, activation2, hasPreluActivationWeights); - } - const dimAOuter = convInfo.outHeight * convInfo.outWidth; - const dimBOuter = convInfo.outChannels; - const dimInner = convInfo.filterHeight * convInfo.filterWidth * convInfo.inChannels; - dimensions.push({ type: "int32", data: [dimAOuter] }, { type: "int32", data: [dimBOuter] }, { type: "int32", data: [dimInner] }); + const program = new Conv2DMMProgram(convInfo, dimAOuter, dimBOuter, dimInner, hasBias, activation2, hasPreluActivationWeights); + const intermediates = []; const inputVar = [x, filter]; if (hasBias) { + if (!isChannelsLast && bias.shape.length === 1) { + bias = reshape6({ inputs: { x: bias }, backend: backend2, attrs: { shape: [bias.shape[0], 1, 1] } }); + intermediates.push(bias); + } inputVar.push(bias); } if (hasPreluActivationWeights) { + if (!isChannelsLast && preluActivationWeights.shape.length === 1) { + preluActivationWeights = reshape6({ + inputs: { x: preluActivationWeights }, + backend: backend2, + attrs: { shape: [preluActivationWeights.shape[0], 1, 1] } + }); + intermediates.push(preluActivationWeights); + } inputVar.push(preluActivationWeights); } if (activation2 === "leakyrelu") { dimensions.push({ type: "float32", data: [leakyreluAlpha] }); program.uniforms += " alpha : f32,"; } - return backend2.runWebGPUProgram(program, inputVar, x.dtype, dimensions); + const out = backend2.runWebGPUProgram(program, inputVar, x.dtype, dimensions); + for (const i2 of intermediates) { + backend2.disposeData(i2.dataId); + } + return out; } function conv2d6(args) { const { inputs, attrs, backend: backend2 } = args; @@ -68158,77 +68080,113 @@ var conv2DConfig4 = { backendName: "webgpu", kernelFunc: conv2d6 }; -var Conv2DDerInputMMProgram = class { - constructor(convInfo) { - this.variableNames = ["x", "W"]; - this.uniforms = "filterDims : vec2, pads : vec2, stride : vec2, outBackprop : vec4, dimAOuter : i32, dimBOuter : i32, dimInner : i32,"; - this.outputShape = convInfo.inShape; - util_exports.assert(convInfo.dataFormat === "channelsLast", () => "TODO: NCHW is unimplemented"); - this.dispatchLayout = { x: [3], y: [1, 2], z: [0] }; - this.workGroupSize = computeWorkGroupSizeForConv2d(this.dispatchLayout, this.outputShape); - this.elementsPerThread = computeWorkPerThreadForConv2d(this.dispatchLayout, this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread); - this.shaderKey = `conv2DDerInputMM_${this.elementsPerThread}`; - } - getUserCode() { - const matMulSource = makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize); - const readASnippet = ` - let outRow = row / uniforms.outShape[2]; - let outCol = row % uniforms.outShape[2]; +function conv2dTransposeCommonSnippet(innerElementSize = 4) { + const getWSnippet = (innerElementSize2) => { + switch (innerElementSize2) { + case 1: + return "return W[getIndexFromCoords4D(coord, uniforms.wShape)];"; + case 4: + return ` + let coord1 = vec4(coordX, coordY, col + 1, rowInner); + let coord2 = vec4(coordX, coordY, col + 2, rowInner); + let coord3 = vec4(coordX, coordY, col + 3, rowInner); + let v0 = W[getIndexFromCoords4D(coord, uniforms.wShape)]; + let v1 = W[getIndexFromCoords4D(coord1, uniforms.wShape)]; + let v2 = W[getIndexFromCoords4D(coord2, uniforms.wShape)]; + let v3 = W[getIndexFromCoords4D(coord3, uniforms.wShape)]; + return vec4(v0, v1, v2, v3); + `; + default: + throw new Error(`innerElementSize ${innerElementSize2} is not supported.`); + } + }; + const readASnippet = ` + let outRow = row / uniforms.outShape[2]; + let outCol = row % uniforms.outShape[2]; - let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]); - let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1]; - let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]); - let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]); - if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) { - return 0.0; - } - if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) { - return 0.0; - } - let coord = vec4( - batch, - i32(xR), - i32(xC), - col % uniforms.outBackprop[3]); - return x[getIndexFromCoords4D(coord, uniforms.xShape)];`; - const sampleA = `if (row < uniforms.dimAOuter && col < uniforms.dimInner) { - ${readASnippet} - } - return 0.0;`; - const userCode = ` - fn mm_readA(row : i32, col : i32, globalId : vec3) -> f32 { - var batch = i32(globalId.z); - ${sampleA} - } - - fn mm_readB(row : i32, col : i32, globalId : vec3) -> f32 { - let coordX = uniforms.filterDims.x - 1 - - row / (uniforms.filterDims[1] * uniforms.outBackprop[3]); - let coordY = uniforms.filterDims.y - 1 - - (row / uniforms.outBackprop[3]) % uniforms.filterDims[1]; - if (row < uniforms.dimInner && col < uniforms.dimBOuter && - coordX >= 0 && coordY >= 0) { - let coord = vec4(coordX, coordY, col, - row % uniforms.outBackprop[3]); - return W[getIndexFromCoords4D(coord, uniforms.wShape)]; + let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]); + let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1]; + let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]); + let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]); + if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) { + return ${typeSnippet(innerElementSize)}(0.0); } - return 0.0; - } + if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) { + return ${typeSnippet(innerElementSize)}(0.0); + } + let coord = vec4( + batch, + i32(xR), + i32(xC), + col % uniforms.outBackprop[3]); + return x[getIndexFromCoords4D(coord, uniforms.xShape)/${innerElementSize}];`; + const sampleA = `if (row < uniforms.dimAOuter && col < uniforms.dimInner) { + ${readASnippet} + } + return ${typeSnippet(innerElementSize)}(0.0);`; + const userCode = ` + fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} { + let col = colIn * ${innerElementSize}; + ${sampleA} + } - fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3) { - var batch = i32(globalId.z); + fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} { + let col = colIn * ${innerElementSize}; + let coordX = uniforms.filterDims.x - 1 - + row / (uniforms.filterDims[1] * uniforms.outBackprop[3]); + let coordY = uniforms.filterDims.y - 1 - + (row / uniforms.outBackprop[3]) % uniforms.filterDims[1]; + if (row < uniforms.dimInner && col < uniforms.dimBOuter && + coordX >= 0 && coordY >= 0) { + let rowInner = row % uniforms.outBackprop[3]; + let coord = vec4(coordX, coordY, col, rowInner); + ${getWSnippet(innerElementSize)} + } + return ${typeSnippet(innerElementSize)}(0.0); + } + + fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${typeSnippet(innerElementSize)}) { + let col = colIn * ${innerElementSize}; + if (row < uniforms.dimAOuter && (col + ${innerElementSize - 1}) < uniforms.dimBOuter) { var value = valueInput; let outCoord = vec4( batch, row / uniforms.outShape[2], row % uniforms.outShape[2], col); - result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value; + result[getIndexFromCoords4D(outCoord, uniforms.outShape)/${innerElementSize}] = value; } - + }`; + return userCode; +} +var Conv2DDerInputMMProgram = class { + constructor(convInfo) { + this.variableNames = ["x", "W"]; + this.uniforms = "filterDims : vec2, pads : vec2, stride : vec2, outBackprop : vec4, dimAOuter : i32, dimBOuter : i32, dimInner : i32,"; + this.outputShape = convInfo.inShape; + util_exports.assert(convInfo.dataFormat === "channelsLast", () => "TODO: NCHW is unimplemented"); + this.isVec4 = convInfo.inChannels % 4 === 0 && convInfo.outChannels % 4 === 0; + this.dispatchLayout = { x: [3], y: [1, 2], z: [0] }; + this.workGroupSize = computeWorkGroupSizeForConv2d(this.dispatchLayout, this.outputShape, this.isVec4); + this.elementsPerThread = computeWorkPerThreadForConv2d(this.dispatchLayout, this.outputShape, this.isVec4); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread); + if (this.isVec4) { + this.innerElementSize = 4; + this.variableTypes = ["vec4", "f32"]; + } else { + this.innerElementSize = this.elementsPerThread[0]; + } + this.tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1]; + this.tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; + this.tileInner = Math.max(this.workGroupSize[0] * this.innerElementSize, this.workGroupSize[1]); + this.shaderKey = `conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}_${this.innerElementSize}`; + } + getUserCode() { + const matMulSource = this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.tileAOuter, this.tileBOuter, this.tileInner, this.innerElementSize) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize); + const userCode = ` + ${conv2dTransposeCommonSnippet(this.isVec4 ? 4 : 1)} ${matMulSource} - `; + `; return userCode; } }; @@ -68695,15 +68653,115 @@ var depthToSpaceConfig4 = { backendName: "webgpu", kernelFunc: depthToSpace5 }; -var DepthwiseConv2D3x3Program = class { +var DepthwiseConv2DNCHWSharedProgram = class { + constructor(outputShape, filterHeight, filterWidth, addBias = false, activation2 = null, hasPreluActivation = false) { + this.variableNames = ["x", "W"]; + this.uniforms = `pad : vec2, inDims : vec2,`; + this.workGroupSize = [16, 16, 1]; + this.outputShape = outputShape; + this.dispatchLayout = { x: [3], y: [2], z: [0, 1] }; + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + if (addBias) { + this.variableNames.push("bias"); + } + if (hasPreluActivation) { + this.variableNames.push("preluActivationWeights"); + } + this.addBias = addBias; + this.activation = activation2; + this.hasPreluActivation = hasPreluActivation; + this.filterHeight = filterHeight; + this.filterWidth = filterWidth; + this.shaderKey = `depthwiseNCHW_${this.activation}_${this.filterHeight}_${this.filterWidth}`; + } + getUserCode() { + const filterSize = this.filterWidth * this.filterHeight; + const workGroupSize = this.workGroupSize[0] * this.workGroupSize[1] * this.workGroupSize[2]; + const tileAHeight = this.workGroupSize[1] + this.filterHeight - 1; + const tileAWidth = this.workGroupSize[0] + this.filterWidth - 1; + const userCode = ` + ${activationFnSnippet(this.activation, this.hasPreluActivation, false, 4)} + + var mm_Asub : array, ${tileAHeight}>; + var mm_Bsub : array, ${this.filterHeight}>; + fn readX(batch : i32, channel : i32, row : i32, col : i32) -> f32 { + var value = 0.0; + if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1]) + { + value = getX(batch, channel, row, col); + } + return value; + } + + ${getWorkGroupSizeString()} + fn main(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(local_invocation_index) LocalIndex: u32, + @builtin(num_workgroups) NumWorkgroups: vec3) { + localId = LocalId; + globalId = GlobalId; + let localIndex = i32(LocalIndex); + numWorkgroups = NumWorkgroups; + let coords = getOutputCoords(); + let batch = coords[0]; + let xRCCorner = vec2(coords.zw) - uniforms.pad; + let channelMul = uniforms.wShape[3]; + let d1 = coords[1] / channelMul; + let q = coords[1] % channelMul; + + let inputRowStart = xRCCorner.x; + let inputColStart = xRCCorner.y; + + let localRow = i32(localId.y); + let localCol = i32(localId.x); + + // Load one tile of X into local memory. + for (var inputRow = localRow; inputRow < ${tileAHeight}; inputRow = inputRow + ${this.workGroupSize[1]}) { + for (var inputCol = localCol; inputCol < ${tileAWidth}; inputCol = inputCol + ${this.workGroupSize[0]}) { + let rowOffset = inputRow - localRow; + let colOffset = inputCol - localCol; + mm_Asub[inputRow][inputCol] = readX(batch, d1, inputRowStart + rowOffset, inputColStart + colOffset); + } + } + + // Load one tile of W into local memory. + var wIndex = localIndex; + ${filterSize < workGroupSize ? `if (wIndex < ${filterSize})` : `for(; wIndex < ${filterSize}; wIndex = wIndex + ${workGroupSize})`} + + { + let wRow = wIndex / ${this.filterWidth}; + let wCol = wIndex % ${this.filterWidth}; + mm_Bsub[wRow][wCol] = getW(wRow, wCol, d1, q); + } + + workgroupBarrier(); + + var value = 0.0; + for (var wR = 0; wR < ${this.filterHeight}; wR = wR + 1) { + for (var wC = 0; wC < ${this.filterWidth}; wC = wC + 1) { + let xVal = mm_Asub[localRow + wR][localCol + wC]; + let wVal = mm_Bsub[wR][wC]; + value = fma(xVal, wVal, value); + } + } + ${biasActivationSnippet(this.addBias, this.activation)} + if (coordsInBounds4D(coords, uniforms.outShape)) { + setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); + } + } + `; + return userCode; + } +}; +var DepthwiseConv2DVec4Program = class { constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false) { this.variableNames = ["x", "W"]; - this.uniforms = "pad : vec2, stride : vec2, dilation : vec2, inDims : vec2,"; + this.uniforms = "pad : vec2, inDims : vec2,"; this.workGroupSize = [4, 4, 4]; this.isVec4 = true; this.outputShape = convInfo.outShape; - this.dispatchLayout = { x: [0, 1], y: [2], z: [3] }; - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [1, 4, 4]); + this.dispatchLayout = { x: [3], y: [2], z: [0, 1] }; + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [4, 4, 1]); util_exports.assert(convInfo.dataFormat === "channelsLast", () => "TODO: NCHW is unimplemented"); if (addBias) { this.variableNames.push("bias"); @@ -68715,89 +68773,59 @@ var DepthwiseConv2D3x3Program = class { this.addBias = addBias; this.activation = activation2; this.hasPreluActivation = hasPreluActivation; - this.shaderKey = `depthwise3x3_${activation2}`; + this.shaderKey = `depthwiseVec4_${activation2}_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}`; } getUserCode() { - let activationSnippet = "", applyActivationSnippet = ""; - if (this.activation) { - const activationOp = mapActivationToShaderProgram2(this.activation, this.isVec4); - if (this.hasPreluActivation) { - activationSnippet = `fn activation(a : vec4, outCoord : vec4) -> vec4 { - let b = getPreluActivationWeightsByOutputCoords(outCoord); - ${activationOp} - }`; - } else { - activationSnippet = ` - fn activation(a : vec4, outCoord : vec4) -> vec4 { - ${activationOp} - } - `; - } - applyActivationSnippet = `dotProd[i] = activation(dotProd[i], coords);`; - } - const addBiasSnippet = this.addBias ? "dotProd[i] = dotProd[i] + getBiasByOutputCoords(coords);" : ""; + const xNumber = 4 + this.convInfo.filterWidth - 1; const userCode = ` - ${activationSnippet} - + ${activationFnSnippet(this.activation, this.hasPreluActivation, true, 4)} + fn readX(batch : i32, row : i32, col : i32, channel : i32) -> vec4 { + var value = vec4(0.0); + if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1]) + { + value = getX(batch, row, col, channel); + } + return value; + } ${getWorkGroupSizeString()} fn main(@builtin(global_invocation_id) globalId: vec3) { - let batch = 0; - let r = i32(globalId.x); + let batch = i32(globalId.z) / uniforms.outShape[1]; + let r = i32(globalId.z) % uniforms.outShape[1]; let c = i32(globalId.y) * 4; - let d2 = i32(globalId.z) * 4; - let xRCCorner = vec2(r, c) * uniforms.stride - uniforms.pad; - let d1 = d2; - let q = 0; + let d1 = i32(globalId.x) * 4; + let xRCCorner = vec2(r, c) - uniforms.pad; let xRCorner = xRCCorner.x; let xCCorner = xRCCorner.y; - - var wVals : array, 9>; - wVals[0] = getW(0, 0, d1, q); - wVals[1] = getW(0, 1, d1, q); - wVals[2] = getW(0, 2, d1, q); - wVals[3] = getW(1, 0, d1, q); - wVals[4] = getW(1, 1, d1, q); - wVals[5] = getW(1, 2, d1, q); - wVals[6] = getW(2, 0, d1, q); - wVals[7] = getW(2, 1, d1, q); - wVals[8] = getW(2, 2, d1, q); - - var xVals : array, 6>, 3>; - for (var wR = 0; wR < 3; wR = wR + 1) { - let xR = xRCorner + wR * uniforms.dilation[0]; - for (var wC = 0; wC < 6; wC = wC + 1) { - let xC = xCCorner + wC * uniforms.dilation[1]; - if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) { - xVals[wR][wC] = vec4(0.0); - } else { - xVals[wR][wC] = getX(batch, xR, xC, d1); - } - } - } - + var xVals : array, ${xNumber}>; var dotProd : array, 4>; dotProd[0] = vec4(0.0); dotProd[1] = vec4(0.0); dotProd[2] = vec4(0.0); dotProd[3] = vec4(0.0); - for (var wR = 0; wR < 3; wR = wR + 1) { - for (var wC = 0; wC < 3; wC = wC + 1) { - let indexW = wR * 3 + wC; - dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW]; - dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW]; - dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW]; - dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW]; + // Use constant instead of uniform can give better performance. + for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) { + let xR = xRCorner + wR; + for (var i = 0; i < ${xNumber}; i++) + { + xVals[i] = readX(batch, xR, xCCorner + i, d1); + } + for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) { + let wValue = getW(wR, wC, d1, 0); + dotProd[0] = dotProd[0] + xVals[0 + wC] * wValue; + dotProd[1] = dotProd[1] + xVals[1 + wC] * wValue; + dotProd[2] = dotProd[2] + xVals[2 + wC] * wValue; + dotProd[3] = dotProd[3] + xVals[3 + wC] * wValue; } } for (var i = 0; i < 4; i = i + 1) { - let coords = vec4(batch, r, c + i, d2); + let coords = vec4(batch, r, c + i, d1); if (coordsInBounds4D(coords, uniforms.outShape)) { - ${addBiasSnippet} - ${applyActivationSnippet} - setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], dotProd[i]); + var value = dotProd[i]; + ${biasActivationSnippet(this.addBias, this.activation)} + setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); } } } @@ -68808,14 +68836,13 @@ var DepthwiseConv2D3x3Program = class { var DepthwiseConv2DProgram2 = class { constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false) { this.variableNames = ["x", "W"]; - this.uniforms = `pad : vec2, stride : vec2, dilation : vec2, - inDims : vec2, filterHeight : i32, filterWidth : i32, - channelMul : i32,`; + this.uniforms = `pad : vec2, inDims : vec2, filterHeight : i32, + filterWidth : i32, stride : vec2, dilation : vec2,`; this.workGroupSize = [256, 1, 1]; this.outputShape = convInfo.outShape; this.dispatchLayout = flatDispatchLayout(this.outputShape); this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - util_exports.assert(convInfo.dataFormat === "channelsLast", () => "TODO: NCHW is unimplemented"); + this.isChannelsLast = convInfo.dataFormat === "channelsLast"; if (addBias) { this.variableNames.push("bias"); } @@ -68826,45 +68853,21 @@ var DepthwiseConv2DProgram2 = class { this.addBias = addBias; this.activation = activation2; this.hasPreluActivation = hasPreluActivation; - this.shaderKey = `depthwise_${this.activation}`; + this.shaderKey = `depthwise_${this.activation}_${this.isChannelsLast}`; } getUserCode() { - let activationSnippet = "", applyActivationSnippet = ""; - if (this.activation) { - const activationOp = mapActivationToShaderProgram2(this.activation, false); - if (this.hasPreluActivation) { - activationSnippet = `fn activation(a : f32, outCoord : vec4) -> f32 { - let b = getPreluActivationWeightsByOutputCoords(outCoord); - ${activationOp} - }`; - } else { - activationSnippet = ` - fn activation(a : f32, outCoord : vec4) -> f32 { - ${activationOp} - } - `; - } - applyActivationSnippet = `dotProd = activation(dotProd, coords);`; - } - const addBiasSnippet = this.addBias ? "dotProd = dotProd + getBiasByOutputCoords(coords);" : ""; + const getXSnippet = this.isChannelsLast ? "getX(batch, xR, xC, d1);" : "getX(batch, d1, xR, xC);"; const userCode = ` - ${activationSnippet} - - fn writeResult(batch : i32, row : i32, col : i32, chan : i32, - value : f32) { - let coord = vec4(batch, row, col, chan); - if (coordsInBounds4D(coord, uniforms.outShape)) { - setOutputAtCoords(batch, row, col, chan, value); - } - } + ${activationFnSnippet(this.activation, this.hasPreluActivation, false, 4)} ${getMainHeaderString()} let coords = getOutputCoords(); let batch = coords[0]; - let xRCCorner = vec2(coords.yz) * uniforms.stride - uniforms.pad; - let d2 = coords[3]; - let d1 = d2 / uniforms.channelMul; - let q = d2 - d1 * uniforms.channelMul; + let xRCCorner = vec2(coords.${this.isChannelsLast ? "yz" : "zw"}) * uniforms.stride - uniforms.pad; + let d2 = coords[${this.isChannelsLast ? 3 : 1}]; + let channelMul = uniforms.wShape[3]; + let d1 = d2 / channelMul; + let q = d2 % channelMul; let inputRowStart = xRCCorner.x; let inputColStart = xRCCorner.y; @@ -68873,25 +68876,25 @@ var DepthwiseConv2DProgram2 = class { let inputColEnd = inputColStart + uniforms.filterWidth * uniforms.dilation[1]; - // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2). - // ? = to be determined. : = across all values in that axis. - var dotProd = 0.0; + // Convolve x(?, ?, d1)|x(d1, ?, ?) with w(:, :, d1, q) to get + // y(yR, yC, d2)|y(d2, yR, yC). ? = to be determined. : = across all + // values in that axis. x(?, ?, d1) and y(yR, yC, d2) is for NHWC. + // x(d1, ?, ?) and y(d2, yR, yC) is for NCHW. + var value = 0.0; // Extract if checking out of for loop for performance. if (inputRowStart >= 0 && inputColStart >= 0 && inputRowEnd < uniforms.inDims[0] && inputColEnd < uniforms.inDims[1]) { - // Here using a constant value |this.convInfo.filterHeight| instead - // of uniform value is in order to loop unrolling. for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) { let xR = inputRowStart + wR * uniforms.dilation[0]; for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) { let xC = inputColStart + wC * uniforms.dilation[1]; - let xVal = getX(batch, xR, xC, d1); + let xVal = ${getXSnippet}; let wVal = getW(wR, wC, d1, q); - dotProd = dotProd + xVal * wVal; + value = value + xVal * wVal; } } } else { @@ -68909,16 +68912,16 @@ var DepthwiseConv2DProgram2 = class { continue; } - let xVal = getX(batch, xR, xC, d1); + let xVal = ${getXSnippet}; let wVal = getW(wR, wC, d1, q); - dotProd = dotProd + xVal * wVal; + value = value + xVal * wVal; } } } - - ${addBiasSnippet} - ${applyActivationSnippet} - writeResult(batch, coords[1], coords[2], d2, dotProd); + ${biasActivationSnippet(this.addBias, this.activation)} + if (coordsInBounds4D(coords, uniforms.outShape)) { + setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); + } } `; return userCode; @@ -68927,24 +68930,29 @@ var DepthwiseConv2DProgram2 = class { function depthwiseConv2dNative3(args) { const { inputs, backend: backend2, attrs } = args; const { x, filter } = inputs; - const { strides: strides2, pad: pad3, dilations, dimRoundingMode } = attrs; + const { strides: strides2, pad: pad3, dataFormat, dilations, dimRoundingMode } = attrs; + const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat); let $dilations = dilations; if ($dilations == null) { $dilations = [1, 1]; } - const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides2, $dilations, pad3, dimRoundingMode, true); + const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides2, $dilations, pad3, dimRoundingMode, true, $dataFormat); const dimensions = [ { type: "int32", data: [convInfo.padInfo.top, convInfo.padInfo.left] }, - { type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }, - { type: "int32", data: [convInfo.dilationHeight, convInfo.dilationWidth] }, { type: "int32", data: [convInfo.inHeight, convInfo.inWidth] } ]; + const isChannelsLast = convInfo.dataFormat === "channelsLast"; let program; - if (convInfo.batchSize === 1 && convInfo.inHeight === convInfo.outHeight && convInfo.inWidth === convInfo.outWidth && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.filterHeight === convInfo.filterWidth && convInfo.inChannels === convInfo.outChannels && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.filterHeight === 3 && convInfo.inChannels % 4 === 0) { - program = new DepthwiseConv2D3x3Program(convInfo); + if (!isChannelsLast && convInfo.inHeight > 16 && convInfo.inWidth > 16 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.dilationWidth === 1 && convInfo.dilationHeight === 1 && convInfo.inChannels === convInfo.outChannels) { + program = new DepthwiseConv2DNCHWSharedProgram(convInfo.outShape, convInfo.filterHeight, convInfo.filterWidth); + } else if (isChannelsLast && convInfo.inHeight > 4 && convInfo.inWidth > 4 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.inChannels === convInfo.outChannels && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.inChannels % 4 === 0) { + program = new DepthwiseConv2DVec4Program(convInfo); } else { program = new DepthwiseConv2DProgram2(convInfo); - dimensions.push({ type: "int32", data: [convInfo.filterHeight] }, { type: "int32", data: [convInfo.filterWidth] }, { type: "int32", data: [convInfo.outChannels / convInfo.inChannels] }); + dimensions.push({ type: "int32", data: [convInfo.filterHeight] }, { type: "int32", data: [convInfo.filterWidth] }, { type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }, { + type: "int32", + data: [convInfo.dilationHeight, convInfo.dilationWidth] + }); } return backend2.runWebGPUProgram(program, [x, filter], x.dtype, dimensions); } @@ -68954,7 +68962,7 @@ var depthwiseConv2dNativeConfig4 = { kernelFunc: depthwiseConv2dNative3 }; var multiplyKernelFunc = binaryKernelFunc3({ - opSnippet: BinaryOpType.MUL, + opType: BinaryOpType.MUL, cpuKernelImpl: multiplyImplCPU2, supportsComplex: true }); @@ -69174,7 +69182,7 @@ var eluConfig4 = { backendName: "webgpu", kernelFunc: elu6 }; -var equal4 = binaryKernelFunc3({ opSnippet: BinaryOpType.EQUAL, dtype: "bool", cpuKernelImpl: equalImplCPU2 }); +var equal4 = binaryKernelFunc3({ opType: BinaryOpType.EQUAL, dtype: "bool", cpuKernelImpl: equalImplCPU2 }); var equalConfig4 = { kernelName: Equal, backendName: "webgpu", @@ -69215,49 +69223,6 @@ var expm1Config3 = { backendName: "webgpu", kernelFunc: expm14 }; -var FillProgram2 = class { - constructor(shape) { - this.variableNames = []; - this.outputShape = []; - this.uniforms = "value : f32,"; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = shape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.shaderKey = "fill"; - } - getUserCode() { - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - setOutputAtIndex(index, uniforms.value); - } - } - `; - return userCode; - } -}; -function fill5(args) { - const { backend: backend2, attrs } = args; - const { shape, value } = attrs; - let { dtype } = attrs; - dtype = dtype || util_exports.inferDtype(value); - if (dtype === "string") { - const values = util_exports.getArrayFromDType(dtype, util_exports.sizeFromShape(shape)); - values.fill(value); - return backend2.makeTensorInfo(shape, dtype, values); - } else { - const program = new FillProgram2(shape); - const uniformData = [{ type: "float32", data: [value] }]; - return backend2.runWebGPUProgram(program, [], dtype, uniformData); - } -} -var fillConfig4 = { - kernelName: Fill, - backendName: "webgpu", - kernelFunc: fill5 -}; var FlipLeftRightProgram2 = class { constructor(imageShape) { this.outputShape = []; @@ -69300,37 +69265,36 @@ var floorConfig4 = { backendName: "webgpu", kernelFunc: floor4 }; -var floorDiv4 = binaryKernelFunc3({ opSnippet: BinaryOpType.INT_DIV, dtype: "int32" }); +var floorDiv4 = binaryKernelFunc3({ opType: BinaryOpType.INT_DIV, dtype: "int32" }); var floorDivConfig4 = { kernelName: FloorDiv, backendName: "webgpu", kernelFunc: floorDiv4 }; var FromPixelsProgram2 = class { - constructor(outputShape, useImport = false) { + constructor(outputShape, numChannels, importVideo = false) { + this.isFromPixels = true; this.outputShape = [0]; this.variableNames = []; this.workGroupSize = [256, 1, 1]; this.outputShape = outputShape; this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.useImport = useImport; - this.shaderKey = `fromPixels_${this.useImport}`; + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [numChannels, 1, 1]); + this.importVideo = importVideo; + this.shaderKey = `fromPixels_${this.importVideo}`; } getUserCode() { - const textureLoad = this.useImport ? "textureLoad(src, vec2(coords.yx));" : "textureLoad(src, vec2(coords.yx), 0)"; - const textureType = this.useImport ? "texture_external" : "texture_2d"; + const textureLoad = this.importVideo ? "textureLoad(src, vec2(coords.yx));" : "textureLoad(src, vec2(coords.yx), 0)"; + const textureType = this.importVideo ? "texture_external" : "texture_2d"; return ` @binding(1) @group(0) var src: ${textureType}; - ${getMainHeaderAndGlobalIndexString()} - let flatIndexBase = index * uniforms.numChannels; - for (var i = 0; i < uniforms.numChannels; i = i + 1) { - let flatIndex = flatIndexBase + i; - if (flatIndex < uniforms.size) { - let coords = getCoordsFromIndex(flatIndexBase); - let values = ${textureLoad}; - result[flatIndex] = i32(floor(255.0 * values[i])); + let flatIndex = index * uniforms.numChannels; + if (flatIndex < uniforms.size) { + let coords = getCoordsFromIndex(flatIndex); + let values = ${textureLoad}; + for (var i = 0; i < uniforms.numChannels; i = i + 1) { + result[flatIndex + i] = i32(floor(255.0 * values[i])); } } } @@ -69343,6 +69307,7 @@ var fromPixelsConfig2 = { kernelFunc: fromPixels3 }; var fromPixels2DContext3; +var videoToTextureMap = /* @__PURE__ */ new Map(); function fromPixels3(args) { const { inputs, backend: backend2, attrs } = args; let { pixels } = inputs; @@ -69358,35 +69323,54 @@ function fromPixels3(args) { pixels.videoWidth, pixels.videoHeight ] : [pixels.width, pixels.height]; - const outShape = [height, width, numChannels]; - if (env().getBool("WEBGPU_USE_IMPORT")) { - if (isVideo) { - return fromPixelsExternalImage({ - externalImage: pixels, - backend: backend2, - attrs, - outShape, - useImport: true - }); + const outputShape = [height, width, numChannels]; + const importVideo = env().getBool("WEBGPU_IMPORT_EXTERNAL_TEXTURE") && isVideo; + const isVideoOrImage = isVideo || isImage; + if (isImageBitmap || isCanvas || isVideoOrImage) { + let textureInfo; + if (importVideo) { + const videoElement = pixels; + if (!videoToTextureMap.has(videoElement) || videoToTextureMap.get(videoElement).expired) { + const externalTextureDescriptor = { source: videoElement }; + videoToTextureMap.set(videoElement, backend2.device.importExternalTexture(externalTextureDescriptor)); + } + textureInfo = { + width, + height, + format: null, + usage: null, + texture: videoToTextureMap.get(videoElement) + }; + } else { + if (isVideoOrImage) { + if (fromPixels2DContext3 == null) { + fromPixels2DContext3 = document.createElement("canvas").getContext("2d"); + } + fromPixels2DContext3.canvas.width = width; + fromPixels2DContext3.canvas.height = height; + fromPixels2DContext3.drawImage(pixels, 0, 0, width, height); + pixels = fromPixels2DContext3.canvas; + } + const usage = GPUTextureUsage.COPY_DST | GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.TEXTURE_BINDING; + const format = "rgba8unorm"; + const texture = backend2.textureManager.acquireTexture(outputShape[1], outputShape[0], format, usage); + backend2.queue.copyExternalImageToTexture({ source: pixels }, { texture }, [outputShape[1], outputShape[0]]); + textureInfo = { width, height, format, usage, texture }; } - } - if (isVideo || isImage) { - if (fromPixels2DContext3 == null) { - fromPixels2DContext3 = document.createElement("canvas").getContext("2d"); - } - fromPixels2DContext3.canvas.width = width; - fromPixels2DContext3.canvas.height = height; - fromPixels2DContext3.drawImage(pixels, 0, 0, width, height); - pixels = fromPixels2DContext3.canvas; - } - if (isImageBitmap || isCanvas || isVideo || isImage) { - return fromPixelsExternalImage({ - externalImage: pixels, - backend: backend2, - attrs, - outShape, - useImport: false - }); + const size2 = util_exports.sizeFromShape(outputShape); + const strides2 = util_exports.computeStrides(outputShape); + const program = new FromPixelsProgram2(outputShape, numChannels, importVideo); + const uniformData = [ + { type: "uint32", data: [size2] }, + { type: "uint32", data: [numChannels] }, + { type: "uint32", data: [...strides2] } + ]; + const input2 = backend2.makeTensorInfo([height, width], "int32"); + const info = backend2.tensorMap.get(input2.dataId); + info.resourceInfo = textureInfo; + const result = backend2.runWebGPUProgram(program, [input2], "int32", uniformData); + backend2.disposeData(input2.dataId); + return result; } const imageData = pixels.data; let pixelArray = imageData; @@ -69400,28 +69384,10 @@ function fromPixels3(args) { } } } - const output = backend2.makeTensorInfo(outShape, "int32"); - const info = backend2.tensorMap.get(output.dataId); - info.values = new Int32Array(pixelArray); - backend2.maybeReleaseBuffer(output.dataId); + const output = backend2.makeTensorInfo(outputShape, "int32", new Int32Array(pixelArray)); backend2.uploadToGPU(output.dataId); return output; } -function fromPixelsExternalImage(args) { - const { externalImage, backend: backend2, attrs, outShape, useImport } = args; - const { numChannels } = attrs; - const size2 = util_exports.sizeFromShape(outShape); - const strides2 = util_exports.computeStrides(outShape); - const program = new FromPixelsProgram2(outShape, useImport); - const uniformData = [ - { type: "uint32", data: [size2] }, - { type: "uint32", data: [numChannels] }, - { type: "uint32", data: [...strides2] }, - { type: "uint32", data: [...program.dispatch] } - ]; - const output = backend2.runFromPixelsProgram(program, outShape, uniformData, useImport, externalImage); - return output; -} var BatchNormProgram2 = class { constructor(xShape, meanShape, varianceShape, offsetShape, scaleShape) { this.uniforms = "varianceEpsilon : f32,"; @@ -69498,9 +69464,6 @@ function fusedConv2d3(args) { const { inputs, backend: backend2, attrs } = args; const { x, filter, bias, preluActivationWeights } = inputs; const { strides: strides2, pad: pad3, dataFormat, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs; - if (dataFormat !== "NHWC") { - throw new Error(`WebGPU backend FusedConv2D does not support dataFormat:'${dataFormat}'. Please use 'NHWC'.`); - } const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat); const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides2, dilations, pad3, dimRoundingMode, false, $dataFormat); return conv2DImpl({ @@ -69540,16 +69503,17 @@ function fusedDepthwiseConv2D3(args) { } const dimensions = [ { type: "int32", data: [convInfo.padInfo.top, convInfo.padInfo.left] }, - { type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }, - { type: "int32", data: [convInfo.dilationHeight, convInfo.dilationWidth] }, { type: "int32", data: [convInfo.inHeight, convInfo.inWidth] } ]; let program; - if (convInfo.batchSize === 1 && convInfo.inHeight === convInfo.outHeight && convInfo.inWidth === convInfo.outWidth && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.filterHeight === convInfo.filterWidth && convInfo.inChannels === convInfo.outChannels && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.filterHeight === 3 && convInfo.inChannels % 4 === 0) { - program = new DepthwiseConv2D3x3Program(convInfo, hasBias, activation2, hasPreluActivationWeights); + if (convInfo.inHeight > 4 && convInfo.inWidth > 4 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.inChannels === convInfo.outChannels && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.inChannels % 4 === 0) { + program = new DepthwiseConv2DVec4Program(convInfo, hasBias, activation2, hasPreluActivationWeights); } else { program = new DepthwiseConv2DProgram2(convInfo, hasBias, activation2, hasPreluActivationWeights); - dimensions.push({ type: "int32", data: [convInfo.filterHeight] }, { type: "int32", data: [convInfo.filterWidth] }, { type: "int32", data: [convInfo.outChannels / convInfo.inChannels] }); + dimensions.push({ type: "int32", data: [convInfo.filterHeight] }, { type: "int32", data: [convInfo.filterWidth] }, { type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }, { + type: "int32", + data: [convInfo.dilationHeight, convInfo.dilationWidth] + }); } if (activation2 === "leakyrelu") { dimensions.push({ type: "float32", data: [leakyreluAlpha] }); @@ -69729,7 +69693,7 @@ var gatherV2Config4 = { kernelFunc: gatherV24 }; var greater5 = binaryKernelFunc3({ - opSnippet: BinaryOpType.GREATER, + opType: BinaryOpType.GREATER, cpuKernelImpl: greaterImplCPU2, dtype: "bool" }); @@ -69739,7 +69703,7 @@ var greaterConfig4 = { kernelFunc: greater5 }; var greaterEqual4 = binaryKernelFunc3({ - opSnippet: BinaryOpType.GREATER_EQUAL, + opType: BinaryOpType.GREATER_EQUAL, dtype: "bool", cpuKernelImpl: greaterEqualImplCPU2 }); @@ -69762,14 +69726,14 @@ var leakyReluConfig4 = { backendName: "webgpu", kernelFunc: leakyRelu5 }; -var less5 = binaryKernelFunc3({ opSnippet: BinaryOpType.LESS, dtype: "bool", cpuKernelImpl: lessImplCPU2 }); +var less5 = binaryKernelFunc3({ opType: BinaryOpType.LESS, dtype: "bool", cpuKernelImpl: lessImplCPU2 }); var lessConfig4 = { kernelName: Less, backendName: "webgpu", kernelFunc: less5 }; var lessEqual4 = binaryKernelFunc3({ - opSnippet: BinaryOpType.LESS_EQUAL, + opType: BinaryOpType.LESS_EQUAL, dtype: "bool", cpuKernelImpl: lessEqualImplCPU2 }); @@ -69784,17 +69748,14 @@ var logConfig4 = { backendName: "webgpu", kernelFunc: log5 }; -var logicalAnd4 = binaryKernelFunc3({ - opSnippet: BinaryOpType.LOGICAL_AND, - dtype: "bool" -}); +var logicalAnd4 = binaryKernelFunc3({ opType: BinaryOpType.LOGICAL_AND, dtype: "bool" }); var logicalAndConfig4 = { kernelName: LogicalAnd, backendName: "webgpu", kernelFunc: logicalAnd4 }; var logicalNot4 = unaryKernelFunc3({ opType: UnaryOpType.LOGICAL_NOT }); -var logicalNotConfig3 = { +var logicalNotConfig4 = { kernelName: LogicalNot, backendName: "webgpu", kernelFunc: logicalNot4 @@ -69811,7 +69772,7 @@ var maxConfig4 = { kernelFunc: max6 }; var maximum5 = binaryKernelFunc3({ - opSnippet: BinaryOpType.MAX, + opType: BinaryOpType.MAX, cpuKernelImpl: maximumImplCPU2 }); var maximumConfig4 = { @@ -69873,7 +69834,7 @@ var minConfig4 = { kernelFunc: min6 }; var minimum5 = binaryKernelFunc3({ - opSnippet: BinaryOpType.MIN, + opType: BinaryOpType.MIN, cpuKernelImpl: minimumImplCPU2 }); var minimumConfig4 = { @@ -70145,7 +70106,7 @@ var padV2Config4 = { kernelFunc: padV23 }; var pow4 = binaryKernelFunc3({ - opSnippet: BinaryOpType.POW + opType: BinaryOpType.POW }); var powConfig4 = { kernelName: Pow, @@ -70185,7 +70146,7 @@ var rangeConfig4 = { backendName: "webgpu", kernelFunc: range6 }; -var realDiv2 = binaryKernelFunc3({ opSnippet: BinaryOpType.DIV }); +var realDiv2 = binaryKernelFunc3({ opType: BinaryOpType.DIV }); var realDivConfig4 = { kernelName: RealDiv, backendName: "webgpu", @@ -70336,7 +70297,7 @@ var ResizeNearestNeighborProgram2 = class { return userCode; } }; -function resizeNearestNeighbor4(args) { +function resizeNearestNeighbor5(args) { const { inputs, backend: backend2, attrs } = args; const { images } = inputs; const { alignCorners, halfPixelCenters, size: size2 } = attrs; @@ -70351,10 +70312,10 @@ function resizeNearestNeighbor4(args) { const program = new ResizeNearestNeighborProgram2(images.shape, newHeight, newWidth, halfPixelCenters); return backend2.runWebGPUProgram(program, [images], images.dtype, uniformData); } -var resizeNearestNeighborConfig3 = { +var resizeNearestNeighborConfig4 = { kernelName: ResizeNearestNeighbor, backendName: "webgpu", - kernelFunc: resizeNearestNeighbor4 + kernelFunc: resizeNearestNeighbor5 }; var RotateProgram2 = class { constructor(imageShape, fillValue) { @@ -70436,16 +70397,17 @@ var rsqrtConfig4 = { kernelFunc: rsqrt4 }; var ScatterOptimizedProgram = class { - constructor(flattenXShape, sliceDim, indicesRank, updatesRank, strides2, shape, outputDtype) { + constructor(flattenXShape, sliceDim, indicesRank, updatesRank, strides2, shape, outputDtype, sumDupeIndices = true) { this.variableNames = ["updates", "indices"]; this.workGroupSize = [64, 1, 1]; this.atomic = true; this.outputShape = shape; this.type = outputDtype; + this.sumDupeIndices = sumDupeIndices; this.dispatchLayout = flatDispatchLayout(flattenXShape); this.dispatch = computeDispatch(this.dispatchLayout, flattenXShape, this.workGroupSize); this.sliceDimGreaterThanOne = sliceDim > 1; - this.shaderKey = `scatter_${indicesRank}_${updatesRank}_${this.sliceDimGreaterThanOne}_${outputDtype}`; + this.shaderKey = `scatter_${indicesRank}_${updatesRank}_${this.sliceDimGreaterThanOne}_${outputDtype}_${sumDupeIndices}`; const stridesType = getCoordsDataType2(strides2.length); this.uniforms = `sliceDim : i32, strides: ${stridesType}, size: i32,`; this.updatesRank = updatesRank; @@ -70460,40 +70422,55 @@ var ScatterOptimizedProgram = class { } const indicesSnippet = `getIndices(${indicesString})`; const strideString = this.sliceDimGreaterThanOne ? "uniforms.strides[j]" : "uniforms.strides"; - let updatesString = ""; let outCoordsString = ""; let getUpdatesCoordsFromFlatIndex = ""; - if (this.updatesRank === 1) { - updatesString = "coords[0]"; + if (this.dispatchLayout.x.length === 1) { outCoordsString = "flattenedIndex"; getUpdatesCoordsFromFlatIndex = ` fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 { return index; } `; - } else if (this.updatesRank === 2) { - updatesString = "coords[0], coords[1]"; + } else if (this.dispatchLayout.x.length === 2) { outCoordsString = "vec2(flattenedIndex, coords[1])"; getUpdatesCoordsFromFlatIndex = ` fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2 { - let d0 = index / uniforms.updatesShape[1]; - let d1 = index - d0 * uniforms.updatesShape[1]; + // N.B. |updates| could be a scalar tensor, conceptually representing a + // 2D tensor with all values equal to that. By design, its size must be + // the same as |outShape[1]| in one dimension, and |indicesShape[0]| + // gives the other. + let sliceSize = uniforms.outShape[1]; + let d0 = index / sliceSize; + let d1 = index - d0 * sliceSize; return vec2(d0, d1); } `; } - const updatesSnippet = `getUpdates(${updatesString})`; - const atomicAddSnippet = this.type === "int32" ? `atomicAdd(&(result[flatIndex]), i32(updateValue));` : ` - var assumed = atomicLoad(&(result[flatIndex])); - var success = 0; - for (; success == 0;) { - let new = bitcast(assumed) + updateValue; - let newI32 = bitcast(new); - let resValue = atomicCompareExchangeWeak(&(result[flatIndex]), assumed, newI32); - assumed = resValue[0]; - success = resValue[1]; - } - `; + const updatesString = Array.from({ length: this.updatesRank }, (_, idx) => `coords[${idx}]`); + const updatesSnippet = `getUpdates(${updatesString.join(", ")})`; + const atomicRMW = (ptr, val) => { + let atomicAddSnippet = `atomicAdd(${ptr}, bitcast(${val}))`; + if (this.type === "float32") { + atomicAddSnippet = ` + { + var oldBits = 0; + var newBits = bitcast(${val}); + loop { + let info = atomicCompareExchangeWeak(${ptr}, oldBits, newBits); + if (info.exchanged) { + break; + } + oldBits = info.old_value; + let oldValue = bitcast(oldBits); + let newValue = oldValue + (${val}); + newBits = bitcast(newValue); + } + } + `; + } + const atomicStoreSnippet = `atomicStore(${ptr}, bitcast(${val}));`; + return this.sumDupeIndices ? atomicAddSnippet : atomicStoreSnippet; + }; const userCode = ` ${getUpdatesCoordsFromFlatIndex} @@ -70506,10 +70483,11 @@ var ScatterOptimizedProgram = class { let indexInside = i32(round(${indicesSnippet})); flattenedIndex = flattenedIndex + indexInside * ${strideString}; } - let updateValue = ${updatesSnippet}; + let updateValue = + ${mapToWgslTypes(this.type, false)}(${updatesSnippet}); let flatIndex = getOutputIndexFromCoords(${outCoordsString}); - ${atomicAddSnippet} + ${atomicRMW("&result[flatIndex]", "updateValue")}; } }`; return userCode; @@ -70626,11 +70604,7 @@ var sinhConfig3 = { backendName: "webgpu", kernelFunc: sinh4 }; -var sub4 = binaryKernelFunc3({ - opSnippet: BinaryOpType.SUB, - cpuKernelImpl: subImplCPU2, - supportsComplex: true -}); +var sub4 = binaryKernelFunc3({ opType: BinaryOpType.SUB, cpuKernelImpl: subImplCPU2, supportsComplex: true }); var subConfig4 = { kernelName: Sub, backendName: "webgpu", @@ -70648,14 +70622,14 @@ function softmax6(args) { }); const expandedShape = backend_util_exports.expandShapeToKeepDim(maxLogit.shape, axes); const maxLogitsReshaped = reshape6({ inputs: { x: maxLogit }, backend: backend2, attrs: { shape: expandedShape } }); - const a6 = sub4({ inputs: { a: logits, b: maxLogitsReshaped }, backend: backend2 }); - const b = exp4({ inputs: { x: a6 }, backend: backend2 }); + const a = sub4({ inputs: { a: logits, b: maxLogitsReshaped }, backend: backend2 }); + const b = exp4({ inputs: { x: a }, backend: backend2 }); const sumExp = sum6({ inputs: { x: b }, backend: backend2, attrs: { axis: axes, keepDims: false } }); const sumExpReshaped = reshape6({ inputs: { x: sumExp }, backend: backend2, attrs: { shape: expandedShape } }); const res = realDiv2({ inputs: { a: b, b: sumExpReshaped }, backend: backend2 }); backend2.disposeData(maxLogit.dataId); backend2.disposeData(maxLogitsReshaped.dataId); - backend2.disposeData(a6.dataId); + backend2.disposeData(a.dataId); backend2.disposeData(b.dataId); backend2.disposeData(sumExp.dataId); backend2.disposeData(sumExpReshaped.dataId); @@ -70671,7 +70645,7 @@ var spaceToBatchND5 = (args) => { const { x } = inputs; const { blockShape, paddings } = attrs; util_exports.assert(x.shape.length <= 4, () => "spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet"); - const prod6 = blockShape.reduce((a6, b) => a6 * b); + const prod6 = blockShape.reduce((a, b) => a * b); const completePaddings = [[0, 0]]; completePaddings.push(...paddings); for (let i2 = 1 + blockShape.length; i2 < x.shape.length; ++i2) { @@ -70704,70 +70678,68 @@ var spaceToBatchNDConfig4 = { backendName: "webgpu", kernelFunc: spaceToBatchND5 }; -var ScatterProgram2 = class { - constructor(updateSize, sliceDim, indicesRank, updatesRank, strides2, shape, summingDupeIndex = true) { - this.variableNames = ["updates", "indices", "defaultValue"]; +var TileProgram2 = class { + constructor(aShape, reps) { + this.variableNames = ["A"]; this.workGroupSize = [64, 1, 1]; - this.workPerThread = 4; this.size = true; - this.outputShape = shape; + const outputShape = new Array(aShape.length); + for (let i2 = 0; i2 < outputShape.length; i2++) { + outputShape[i2] = aShape[i2] * reps[i2]; + } + this.outputShape = outputShape; this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); - const sliceDimGreaterThanOne = sliceDim > 1; - this.shaderKey = `scatter_${indicesRank}_${updatesRank}_${sliceDimGreaterThanOne}`; - const stridesType = getCoordsDataType2(strides2.length); - this.uniforms = `updateSize : i32, sliceDim : i32, strides: ${stridesType},`; - let indicesString = ""; - if (indicesRank === 1) { - indicesString = "i"; - } else if (indicesRank === 2) { - indicesString = "i, j"; - } - this.indicesSnippet = `getIndices(${indicesString})`; - let updatesString = ""; - if (updatesRank === 1) { - updatesString = "i"; - } else if (updatesRank === 2) { - updatesString = "i, coords[1]"; - } - this.updatesSnippet = `getUpdates(${updatesString})`; - this.strideString = sliceDimGreaterThanOne ? "uniforms.strides[j]" : "uniforms.strides"; + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.rank = this.outputShape.length; + this.shaderKey = "tile"; } getUserCode() { + const sourceCoords = getSourceCoords5(this.rank, "uniforms."); const userCode = ` ${getMainHeaderAndGlobalIndexString()} - - let globalIndex = index * ${this.workPerThread}; - if (globalIndex < uniforms.size) { - var sum = vec4(0.0); - var found = vec4(false); - for (var i = 0; i < uniforms.updateSize; i = i + 1) { - var flattenedIndex = 0; - for (var j = 0; j < uniforms.sliceDim; j = j + 1) { - let indexInside = i32(round(${this.indicesSnippet})); - flattenedIndex = flattenedIndex + indexInside * ${this.strideString}; - } - for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) { - let curIndex = globalIndex + innerIndex; - let coords = getCoordsFromIndex(curIndex); - if (flattenedIndex == coords[0]) { - sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet}; - found[innerIndex] = true; - } - } - } - for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) { - let curIndex = globalIndex + innerIndex; - if (curIndex < uniforms.size) - { - setOutputAtIndex(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex]))); - } - } + if (index < uniforms.size) { + let resRC = getCoordsFromIndex(index); + setOutputAtIndex(index, getA(${sourceCoords})); } - }`; + } + `; return userCode; } }; +function getSourceCoords5(rank, uniformPrefix = "") { + if (rank >= 5) { + throw Error(`Tile for rank ${rank} is not yet supported`); + } + if (rank === 1) { + return `(resRC % ${uniformPrefix}aShape)`; + } + const currentCoords = ["resRC.x", "resRC.y", "resRC.z", "resRC.w"]; + const sourceCoords = []; + for (let i2 = 0; i2 < rank; i2++) { + sourceCoords.push(`(${currentCoords[i2]} % ${uniformPrefix}aShape[${i2}])`); + } + return sourceCoords.join(); +} +function tile6(params) { + const { inputs, backend: backend2, attrs } = params; + const { x } = inputs; + const { reps } = attrs; + if (backend2.shouldExecuteOnCPU([x]) || x.dtype === "string" || x.shape.length >= 5) { + const data = backend2.readSync(x.dataId); + const value = x.dtype === "string" ? data.map((d) => util_exports.decodeString(d)) : data; + const buf = buffer(x.shape, x.dtype, value); + const outBuf = tileImplCPU2(buf, reps); + return backend2.makeTensorInfo(outBuf.shape, outBuf.dtype, outBuf.values); + } + const program = new TileProgram2(x.shape, reps); + const output = backend2.runWebGPUProgram(program, [x], x.dtype); + return output; +} +var tileConfig4 = { + kernelName: Tile, + backendName: "webgpu", + kernelFunc: tile6 +}; function sparseToDense4(args) { const { inputs, backend: backend2, attrs } = args; const { sparseIndices, sparseValues, defaultValue } = inputs; @@ -70777,20 +70749,61 @@ function sparseToDense4(args) { if (sparseValues.dtype === "string") { const indicesBuf = backend2.bufferSync(sparseIndices); const updatesBuf = backend2.bufferSync(sparseValues); - const $defaultValue = util_exports.decodeString(backend2.readSync(defaultValue.dataId)[0]); - const outBuf = scatterImplCPU2(indicesBuf, updatesBuf, outputShape, outputSize2, sliceSize, numUpdates, sliceRank, strides2, $defaultValue, sumDupeIndices); + const $defaultValue2 = util_exports.decodeString(backend2.readSync(defaultValue.dataId)[0]); + const outBuf = scatterImplCPU2(indicesBuf, updatesBuf, outputShape, outputSize2, sliceSize, numUpdates, sliceRank, strides2, $defaultValue2, sumDupeIndices); return backend2.makeTensorInfo(outputShape, outBuf.dtype, outBuf.values); } + const flattenShape = [outputSize2 / sliceSize, sliceSize]; + const $sparseIndices = reshape6({ + inputs: { x: sparseIndices }, + backend: backend2, + attrs: { shape: [numUpdates, sliceRank] } + }); + const $sparseValues = sparseValues.shape.length ? reshape6({ + inputs: { x: sparseValues }, + backend: backend2, + attrs: { shape: [numUpdates, sliceSize] } + }) : identity5({ inputs: { x: sparseValues }, backend: backend2 }); + const type = $sparseValues.dtype; + const zero = backend2.makeTensorInfo([], type, util_exports.makeZerosTypedArray(1, type)); + const $defaultValue = reshape6({ + inputs: { x: defaultValue }, + backend: backend2, + attrs: { shape: Array(flattenShape.length).fill(1) } + }); + const $denseValues = tile6({ inputs: { x: $defaultValue }, backend: backend2, attrs: { reps: flattenShape } }); + const size2 = util_exports.sizeFromShape([numUpdates, sliceSize]); const uniformData = [ - { type: "int32", data: [numUpdates] }, { type: "int32", data: [sliceRank] }, - { type: "int32", data: strides2 } + { type: "int32", data: strides2 }, + { type: "int32", data: [size2] } ]; - const program = new ScatterProgram2(numUpdates, sliceRank, sparseIndices.shape.length, sparseValues.shape.length, strides2, [outputSize2, 1], sumDupeIndices); - const res = backend2.runWebGPUProgram(program, [sparseValues, sparseIndices, defaultValue], sparseValues.dtype, uniformData); - const reshaped = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape: outputShape } }); - backend2.disposeData(res.dataId); - return reshaped; + switch (numUpdates) { + case 0: + break; + case 1: + if (true) { + const program = new ScatterOptimizedProgram([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, $sparseValues.shape.length, strides2, flattenShape, type, sumDupeIndices); + backend2.runWebGPUProgram(program, [$sparseValues, $sparseIndices], type, uniformData, $denseValues); + } + break; + default: + if (true) { + const program = new ScatterOptimizedProgram([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, zero.shape.length, strides2, flattenShape, type, sumDupeIndices); + backend2.runWebGPUProgram(program, [zero, $sparseIndices], type, uniformData, $denseValues); + } + { + const program = new ScatterOptimizedProgram([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, $sparseValues.shape.length, strides2, flattenShape, type); + backend2.runWebGPUProgram(program, [$sparseValues, $sparseIndices], type, uniformData, $denseValues); + } + } + const denseValues = reshape6({ inputs: { x: $denseValues }, backend: backend2, attrs: { shape: outputShape } }); + backend2.disposeData($sparseIndices.dataId); + backend2.disposeData($sparseValues.dataId); + backend2.disposeData($defaultValue.dataId); + backend2.disposeData(zero.dataId); + backend2.disposeData($denseValues.dataId); + return denseValues; } var sparseToDenseConfig3 = { kernelName: SparseToDense, @@ -70836,7 +70849,7 @@ var squareConfig4 = { } }; var squaredDifference4 = binaryKernelFunc3({ - opSnippet: BinaryOpType.SQUARED_DIFFERENCE + opType: BinaryOpType.SQUARED_DIFFERENCE }); var squaredDifferenceConfig4 = { kernelName: SquaredDifference, @@ -70915,7 +70928,7 @@ var stridedSliceConfig4 = { backendName: "webgpu", kernelFunc: stridedSlice5 }; -function stringNGrams4(args) { +function stringNGrams5(args) { const { inputs, backend: backend2, attrs } = args; const { separator, nGramWidths, leftPad, rightPad: rightPad2, padWidth, preserveShortSequences } = attrs; const { data, dataSplits } = inputs; @@ -70927,10 +70940,10 @@ function stringNGrams4(args) { backend2.makeTensorInfo(dataSplits.shape, "int32", nGramsSplits) ]; } -var stringNGramsConfig3 = { +var stringNGramsConfig4 = { kernelName: StringNGrams, backendName: "webgpu", - kernelFunc: stringNGrams4 + kernelFunc: stringNGrams5 }; var tanh5 = unaryKernelFunc3({ opType: UnaryOpType.TANH }); var tanhConfig4 = { @@ -70938,68 +70951,6 @@ var tanhConfig4 = { backendName: "webgpu", kernelFunc: tanh5 }; -var TileProgram2 = class { - constructor(aShape, reps) { - this.variableNames = ["A"]; - this.workGroupSize = [64, 1, 1]; - this.size = true; - const outputShape = new Array(aShape.length); - for (let i2 = 0; i2 < outputShape.length; i2++) { - outputShape[i2] = aShape[i2] * reps[i2]; - } - this.outputShape = outputShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.rank = this.outputShape.length; - this.shaderKey = "tile"; - } - getUserCode() { - const sourceCoords = getSourceCoords5(this.rank, "uniforms."); - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let resRC = getCoordsFromIndex(index); - setOutputAtIndex(index, getA(${sourceCoords})); - } - } - `; - return userCode; - } -}; -function getSourceCoords5(rank, uniformPrefix = "") { - if (rank >= 5) { - throw Error(`Tile for rank ${rank} is not yet supported`); - } - if (rank === 1) { - return `(resRC % ${uniformPrefix}aShape)`; - } - const currentCoords = ["resRC.x", "resRC.y", "resRC.z", "resRC.w"]; - const sourceCoords = []; - for (let i2 = 0; i2 < rank; i2++) { - sourceCoords.push(`(${currentCoords[i2]} % ${uniformPrefix}aShape[${i2}])`); - } - return sourceCoords.join(); -} -function tile6(params) { - const { inputs, backend: backend2, attrs } = params; - const { x } = inputs; - const { reps } = attrs; - if (backend2.shouldExecuteOnCPU([x]) || x.dtype === "string" || x.shape.length >= 5) { - const data = backend2.readSync(x.dataId); - const value = x.dtype === "string" ? data.map((d) => util_exports.decodeString(d)) : data; - const buf = buffer(x.shape, x.dtype, value); - const outBuf = tileImplCPU2(buf, reps); - return backend2.makeTensorInfo(outBuf.shape, outBuf.dtype, outBuf.values); - } - const program = new TileProgram2(x.shape, reps); - const output = backend2.runWebGPUProgram(program, [x], x.dtype); - return output; -} -var tileConfig4 = { - kernelName: Tile, - backendName: "webgpu", - kernelFunc: tile6 -}; var SwapProgram2 = class { constructor(shape) { this.variableNames = ["x", "indices"]; @@ -71526,7 +71477,7 @@ var kernelConfigs4 = [ lessEqualConfig4, logConfig4, logicalAndConfig4, - logicalNotConfig3, + logicalNotConfig4, maxConfig4, maximumConfig4, maxPoolConfig4, @@ -71552,7 +71503,7 @@ var kernelConfigs4 = [ relu6Config4, reshapeConfig4, resizeBilinearConfig4, - resizeNearestNeighborConfig3, + resizeNearestNeighborConfig4, rotateWithOffsetConfig4, rsqrtConfig4, scatterNdConfig4, @@ -71562,7 +71513,7 @@ var kernelConfigs4 = [ sinhConfig3, sliceConfig4, stridedSliceConfig4, - stringNGramsConfig3, + stringNGramsConfig4, softmaxConfig4, spaceToBatchNDConfig4, sparseToDenseConfig3, @@ -71593,18 +71544,18 @@ var BufferManager = class { this.numBytesUsed = 0; this.numBytesAllocated = 0; } - acquireUploadBuffer(byteSize, usage) { - return this.acquireBuffer(byteSize, usage, true); + acquireUploadBuffer(size2, usage) { + return this.acquireBuffer(size2, usage, true); } - acquireBuffer(byteSize, usage, mappedAtCreation = false) { - const key = getBufferKey(byteSize, usage); + acquireBuffer(size2, usage, mappedAtCreation = false) { + const key = getBufferKey(size2, usage); if (!this.freeBuffers.has(key)) { this.freeBuffers.set(key, []); } if (!this.usedBuffers.has(key)) { this.usedBuffers.set(key, []); } - this.numBytesUsed += byteSize; + this.numBytesUsed += size2; this.numUsedBuffers++; if (this.freeBuffers.get(key).length > 0) { this.numFreeBuffers--; @@ -71612,16 +71563,16 @@ var BufferManager = class { this.usedBuffers.get(key).push(newBuffer2); return newBuffer2; } - this.numBytesAllocated += byteSize; - const newBuffer = this.device.createBuffer({ mappedAtCreation, size: byteSize, usage }); + this.numBytesAllocated += size2; + const newBuffer = this.device.createBuffer({ size: size2, usage, mappedAtCreation }); this.usedBuffers.get(key).push(newBuffer); return newBuffer; } - releaseBuffer(buffer2, byteSize, usage) { + releaseBuffer(buffer2, size2, usage) { if (this.freeBuffers.size === 0) { return; } - const key = getBufferKey(byteSize, usage); + const key = getBufferKey(size2, usage); if (!this.freeBuffers.has(key)) { this.freeBuffers.set(key, []); } @@ -71634,11 +71585,11 @@ var BufferManager = class { throw new Error("Cannot release a buffer that was never provided by this buffer manager"); } bufferList.splice(bufferIndex, 1); - this.numBytesUsed -= byteSize; + this.numBytesUsed -= size2; } - releaseUploadBuffer(buffer2, byteSize, usage) { + releaseUploadBuffer(buffer2, size2, usage) { buffer2.mapAsync(GPUMapMode.WRITE).then(() => { - this.releaseBuffer(buffer2, byteSize, usage); + this.releaseBuffer(buffer2, size2, usage); }, (err) => { }); } @@ -71650,13 +71601,13 @@ var BufferManager = class { } dispose() { this.freeBuffers.forEach((buffers, key) => { - buffers.forEach((buff) => { - buff.destroy(); + buffers.forEach((buffer2) => { + buffer2.destroy(); }); }); this.usedBuffers.forEach((buffers, key) => { - buffers.forEach((buff) => { - buff.destroy(); + buffers.forEach((buffer2) => { + buffer2.destroy(); }); }); this.freeBuffers = /* @__PURE__ */ new Map(); @@ -71667,8 +71618,8 @@ var BufferManager = class { this.numBytesAllocated = 0; } }; -function getBufferKey(byteSize, usage) { - return `${byteSize}_${usage}`; +function getBufferKey(size2, usage) { + return `${size2}_${usage}`; } var TextureManager2 = class { constructor(device) { @@ -71763,31 +71714,6 @@ function getBytesPerElement(format) { throw new Error(`${format} is not supported!`); } } -var makeBindGroup = (device, bindGroupLayout, inputs, output, uniforms) => { - const bindings = [output, ...inputs]; - if (uniforms) { - bindings.push(uniforms); - } - return device.createBindGroup({ - layout: bindGroupLayout, - entries: bindings.map((b, i2) => ({ binding: i2, resource: b })) - }); -}; -var compileProgram2 = (device, program, pipelineLayout, inputsData, output, isFromPixel = false) => { - const outputData = { dtype: output.dtype, shape: output.shape }; - const source = makeShader2(inputsData, outputData, program, isFromPixel); - const module = device.createShaderModule({ code: source, label: program.constructor.name }); - const pipeline = device.createComputePipeline({ - layout: pipelineLayout, - compute: { module, entryPoint: "main" }, - label: program.constructor.name - }); - return pipeline; -}; -function makeShaderKey2(program, shapes, types = [], broadcastDimsKey = "", inputShapesEqualsOutShape = "") { - const key = program.shaderKey + "_" + (program.workGroupSize ? program.workGroupSize.join(",") : "") + shapes.map((shape) => shape.length).join(",") + types.join(",") + program.variableNames.join(",") + broadcastDimsKey + inputShapesEqualsOutShape; - return key; -} var CPU_HANDOFF_SIZE_THRESHOLD2 = env().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"); var reshapeDispatch = (device, program) => { const MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE = device.limits.maxComputeWorkgroupsPerDimension; @@ -71810,20 +71736,16 @@ var WebGPUBackend = class extends KernelBackend { constructor(device, supportTimeQuery = false) { super(); this.commandQueueOwnedIds = /* @__PURE__ */ new WeakSet(); - this.tensorDisposalQueue = []; - this.uniformDisposalQueue = []; - this.stagingDisposalQueue = []; - this.textureDisposalQueue = []; - this.disposed = false; - this.uploadWaitMs = 0; - this.downloadWaitMs = 0; this.dispatchNumberInEncoder = 0; - this.fromPixelTextureLayout = null; - this.fromPixelImportTextureLayout = null; + this.disposed = false; + this.downloadWaitMs = 0; + this.tensorDataPendingDisposal = []; + this.stagingPendingDisposal = []; + this.uniformPendingDisposal = []; + this.uploadWaitMs = 0; if (!isWebGPUSupported()) { throw new Error("WebGPU is not supported on this device"); } - this.layoutCache = {}; this.pipelineCache = {}; this.device = device; this.queue = device.queue; @@ -71860,39 +71782,29 @@ var WebGPUBackend = class extends KernelBackend { defaultGpuBufferUsage() { return GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST; } - flushDisposalQueue() { - this.tensorDisposalQueue.forEach((d) => { - this.maybeReleaseBuffer(d); - this.tensorMap.delete(d); - }); - this.uniformDisposalQueue.forEach((d) => this.bufferManager.releaseBuffer(d.buffer, d.byteSize, d.usage)); - this.stagingDisposalQueue.forEach((d) => this.bufferManager.releaseUploadBuffer(d.buffer, d.byteSize, d.usage)); - this.textureDisposalQueue.forEach((d) => this.textureManager.releaseTexture(d.texture, d.width, d.height, d.format, d.usage)); - this.tensorDisposalQueue = []; - this.uniformDisposalQueue = []; - this.stagingDisposalQueue = []; - this.textureDisposalQueue = []; - } disposeData(dataId, force = false) { - if (this.tensorMap.has(dataId)) { - const data = this.tensorMap.get(dataId); - data.refCount--; - if (!force && data.refCount > 0) { - return false; - } - if (this.commandQueueOwnedIds.has(dataId)) { - this.tensorDisposalQueue.push(dataId); - return false; - } else { - this.maybeReleaseBuffer(dataId); - } - const { complexTensorInfos } = this.tensorMap.get(dataId); - if (complexTensorInfos != null) { - this.disposeData(complexTensorInfos.real.dataId, true); - this.disposeData(complexTensorInfos.imag.dataId, true); - } - this.tensorMap.delete(dataId); + if (this.tensorDataPendingDisposal.indexOf(dataId) >= 0) { + return false; } + if (!this.tensorMap.has(dataId)) { + return true; + } + const tensorData = this.tensorMap.get(dataId); + this.decRef(dataId); + if (!force && tensorData.refCount > 0) { + return false; + } + if (this.commandQueueOwnedIds.has(dataId)) { + this.tensorDataPendingDisposal.push(dataId); + return false; + } + const { complexTensorInfos } = this.tensorMap.get(dataId); + if (complexTensorInfos != null) { + this.disposeData(complexTensorInfos.real.dataId, force); + this.disposeData(complexTensorInfos.imag.dataId, force); + } + this.releaseResource(dataId); + this.tensorMap.delete(dataId); return true; } memory() { @@ -71902,21 +71814,23 @@ var WebGPUBackend = class extends KernelBackend { unreliable: false }; } - getBufferManager() { - return this.bufferManager; - } - getTextureManager() { - return this.textureManager; - } - acquireBuffer(byteSize, usage = this.defaultGpuBufferUsage()) { - return this.bufferManager.acquireBuffer(byteSize, usage); - } - maybeReleaseBuffer(dataId) { - const info = this.tensorMap.get(dataId); - if (info != null && info.bufferInfo.buffer != null) { - this.bufferManager.releaseBuffer(info.bufferInfo.buffer, info.bufferInfo.byteSize, info.bufferInfo.usage); - info.bufferInfo.buffer = null; + releaseResource(dataId) { + const tensorData = this.tensorMap.get(dataId); + if (!tensorData || !tensorData.resourceInfo) { + return; } + if ("texture" in tensorData.resourceInfo) { + const textureInfo = tensorData.resourceInfo; + if (textureInfo.texture instanceof GPUTexture) { + this.textureManager.releaseTexture(textureInfo.texture, textureInfo.width, textureInfo.height, textureInfo.format, textureInfo.usage); + } + textureInfo.texture = null; + } else { + const bufferInfo = tensorData.resourceInfo; + this.bufferManager.releaseBuffer(bufferInfo.buffer, bufferInfo.size, bufferInfo.usage); + bufferInfo.buffer = null; + } + tensorData.resourceInfo = null; } refCount(dataId) { if (this.tensorMap.has(dataId)) { @@ -71940,28 +71854,14 @@ var WebGPUBackend = class extends KernelBackend { throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`); } const dataId = { id: this.nextDataId() }; - const byteSize = util_exports.sizeFromShape(shape) * GPUBytesPerElement(dtype); - this.tensorMap.set(dataId, { - dtype, - shape, - values, - bufferInfo: { byteSize, usage: this.defaultGpuBufferUsage() }, - refCount: 1 - }); + this.tensorMap.set(dataId, { dtype, shape, values, refCount: 1 }); return dataId; } move(dataId, values, shape, dtype, refCount) { if (dtype === "complex64") { throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`); } - const byteSize = util_exports.sizeFromShape(shape) * GPUBytesPerElement(dtype); - this.tensorMap.set(dataId, { - dtype, - shape, - values, - bufferInfo: { byteSize, usage: this.defaultGpuBufferUsage() }, - refCount - }); + this.tensorMap.set(dataId, { dtype, shape, values, refCount }); } submitQueue() { this.ensureComputePassEnded(); @@ -71969,11 +71869,15 @@ var WebGPUBackend = class extends KernelBackend { this.currentCommandEncoder = null; this.dispatchNumberInEncoder = 0; this.commandQueueOwnedIds = /* @__PURE__ */ new WeakSet(); - this.flushDisposalQueue(); - } - getBuffer(dataId) { - this.uploadToGPU(dataId); - return this.tensorMap.get(dataId).bufferInfo.buffer; + this.tensorDataPendingDisposal.forEach((d) => { + this.releaseResource(d); + this.tensorMap.delete(d); + }); + this.uniformPendingDisposal.forEach((d) => this.bufferManager.releaseBuffer(d.buffer, d.size, d.usage)); + this.stagingPendingDisposal.forEach((d) => this.bufferManager.releaseUploadBuffer(d.buffer, d.size, d.usage)); + this.tensorDataPendingDisposal = []; + this.uniformPendingDisposal = []; + this.stagingPendingDisposal = []; } ensureCommandEncoderReady() { if (!this.currentCommandEncoder) { @@ -71993,7 +71897,7 @@ var WebGPUBackend = class extends KernelBackend { return this.currentComputePass; } async getBufferData(buffer2, size2) { - const staging = this.acquireBuffer(size2, GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ); + const staging = this.bufferManager.acquireBuffer(size2, GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ); this.ensureCommandEncoderReady(); this.ensureComputePassEnded(); this.currentCommandEncoder.copyBufferToBuffer(buffer2, 0, staging, 0, size2); @@ -72011,14 +71915,14 @@ var WebGPUBackend = class extends KernelBackend { return values; } convertAndCacheOnCPU(dataId, data) { - const info = this.tensorMap.get(dataId); - this.maybeReleaseBuffer(dataId); - info.values = data; - return info.values; + const tensorData = this.tensorMap.get(dataId); + this.releaseResource(dataId); + tensorData.values = data; + return tensorData.values; } readSync(dataId) { - const texData = this.tensorMap.get(dataId); - const { values } = texData; + const tensorData = this.tensorMap.get(dataId); + const { values } = tensorData; if (values == null) { throw new Error("WebGPU readSync is only available for CPU-resident tensors."); } @@ -72028,51 +71932,52 @@ var WebGPUBackend = class extends KernelBackend { if (!this.tensorMap.has(dataId)) { throw new Error(`Tensor ${dataId} was not registered!`); } - const info = this.tensorMap.get(dataId); - const { values } = info; + const tensorData = this.tensorMap.get(dataId); + const { values } = tensorData; if (values != null) { return this.convertAndCacheOnCPU(dataId, values); } let vals; - if (info.dtype === "complex64") { + if (tensorData.dtype === "complex64") { const ps = await Promise.all([ - this.read(info.complexTensorInfos.real.dataId), - this.read(info.complexTensorInfos.imag.dataId) + this.read(tensorData.complexTensorInfos.real.dataId), + this.read(tensorData.complexTensorInfos.imag.dataId) ]); const realValues = ps[0]; const imagValues = ps[1]; vals = backend_util_exports.mergeRealAndImagArrays(realValues, imagValues); } else { - const data = info.values != null ? info.values : await this.getBufferData(info.bufferInfo.buffer, info.bufferInfo.byteSize); - vals = ArrayBufferToTypedArray(data, info.dtype); + const bufferInfo = tensorData.resourceInfo; + const data = await this.getBufferData(bufferInfo.buffer, bufferInfo.size); + vals = ArrayBufferToTypedArray(data, tensorData.dtype); } this.convertAndCacheOnCPU(dataId, vals); return vals; } readToGPU(dataId) { - const srcData = this.tensorMap.get(dataId); - const { values, dtype, shape, bufferInfo } = srcData; + const srcTensorData = this.tensorMap.get(dataId); + const { values, dtype, shape, resourceInfo } = srcTensorData; if (dtype === "complex64") { throw new Error("Does not support reading buffer for complex64 dtype."); } - if (bufferInfo.buffer == null) { + if (resourceInfo == null) { if (values != null) { throw new Error("Data is not on GPU but on CPU."); } else { throw new Error("There is no data on GPU or CPU."); } } - const size2 = util_exports.sizeFromShape(shape) * GPUBytesPerElement(dtype); - const resBuffer = this.acquireBuffer(size2); + const size2 = resourceInfo.size; + const buffer2 = this.bufferManager.acquireBuffer(size2, resourceInfo.usage); this.ensureCommandEncoderReady(); this.ensureComputePassEnded(); - this.currentCommandEncoder.copyBufferToBuffer(bufferInfo.buffer, 0, resBuffer, 0, size2); + this.currentCommandEncoder.copyBufferToBuffer(resourceInfo.buffer, 0, buffer2, 0, size2); this.submitQueue(); const tensorInfo = this.makeTensorInfo(shape, dtype); const tensorRef = engine().makeTensorFromTensorInfo(tensorInfo); - const info = this.tensorMap.get(tensorInfo.dataId); - info.bufferInfo.buffer = resBuffer; - return { tensorRef, buffer: resBuffer, bufSize: size2 }; + const tensorData = this.tensorMap.get(tensorInfo.dataId); + tensorData.resourceInfo = { size: size2, usage: this.defaultGpuBufferUsage(), buffer: buffer2 }; + return { tensorRef, buffer: buffer2, bufSize: size2 }; } bufferSync(t2) { const data = this.readSync(t2.dataId); @@ -72117,20 +72022,11 @@ var WebGPUBackend = class extends KernelBackend { this.downloadWaitMs = 0; return res; } - getAndSavePipeline(key, getPipeline) { - if (!(key in this.pipelineCache)) { - this.pipelineCache[key] = getPipeline(); - } - return this.pipelineCache[key]; - } makeTensorInfo(shape, dtype, values) { - let dataId; if (dtype === "string" && values != null && values.length > 0 && util_exports.isString(values[0])) { - const encodedValues = values.map((d) => util_exports.encodeString(d)); - dataId = this.write(encodedValues, shape, dtype); - } else { - dataId = this.write(values, shape, dtype); + values = values.map((d) => util_exports.encodeString(d)); } + const dataId = this.write(values, shape, dtype); return { dataId, shape, dtype }; } tensorToBinding(tensor2) { @@ -72138,11 +72034,16 @@ var WebGPUBackend = class extends KernelBackend { return null; } const tensorData = this.tensorMap.get(tensor2.dataId); - return { - offset: 0, - size: tensorData.bufferInfo.byteSize, - buffer: tensorData.bufferInfo.buffer - }; + if ("texture" in tensorData.resourceInfo) { + const info = tensorData.resourceInfo; + if (info.texture instanceof GPUExternalTexture) { + return info.texture; + } else { + return info.texture.createView(); + } + } + const bufferInfo = tensorData.resourceInfo; + return { offset: 0, size: bufferInfo.size, buffer: bufferInfo.buffer }; } async getQueryTime(query) { if (this.supportTimeQuery) { @@ -72152,36 +72053,38 @@ var WebGPUBackend = class extends KernelBackend { } } uploadToGPU(dataId) { - const info = this.tensorMap.get(dataId); - if (info.bufferInfo.buffer != null) { + const tensorData = this.tensorMap.get(dataId); + if (tensorData.resourceInfo) { return; } - info.bufferInfo.buffer = this.acquireBuffer(info.bufferInfo.byteSize); - if (info.values) { - const stagingBuffer = this.bufferManager.acquireUploadBuffer(info.bufferInfo.byteSize, GPUBufferUsage.MAP_WRITE | GPUBufferUsage.COPY_SRC); + const size2 = GPUBytesPerElement(tensorData.dtype) * util_exports.sizeFromShape(tensorData.shape); + const buffer2 = this.bufferManager.acquireBuffer(size2, this.defaultGpuBufferUsage()); + tensorData.resourceInfo = { size: size2, usage: this.defaultGpuBufferUsage(), buffer: buffer2 }; + if (tensorData.values) { + const stagingBuffer = this.bufferManager.acquireUploadBuffer(size2, GPUBufferUsage.MAP_WRITE | GPUBufferUsage.COPY_SRC); const arrayBuffer = stagingBuffer.getMappedRange(); - if (info.dtype === "int32" || info.dtype === "bool") { - new Int32Array(arrayBuffer).set(info.values); + if (tensorData.dtype === "int32" || tensorData.dtype === "bool") { + new Int32Array(arrayBuffer).set(tensorData.values); } else { - new Float32Array(arrayBuffer).set(info.values); + new Float32Array(arrayBuffer).set(tensorData.values); } stagingBuffer.unmap(); this.ensureCommandEncoderReady(); this.ensureComputePassEnded(); - this.currentCommandEncoder.copyBufferToBuffer(stagingBuffer, 0, info.bufferInfo.buffer, 0, info.bufferInfo.byteSize); + this.currentCommandEncoder.copyBufferToBuffer(stagingBuffer, 0, buffer2, 0, size2); const stagingInfo = { - byteSize: info.bufferInfo.byteSize, + size: size2, usage: GPUBufferUsage.MAP_WRITE | GPUBufferUsage.COPY_SRC, buffer: stagingBuffer }; - this.stagingDisposalQueue.push(stagingInfo); + this.stagingPendingDisposal.push(stagingInfo); } } - makeUniforms(uniformsWithType) { + makeUniforms(programUniform) { let currentOffset = 0; let preLength = 0; const offsets = []; - uniformsWithType.forEach((d) => { + programUniform.forEach((d) => { if (d.data.length === 0) { d.data = [1]; } @@ -72217,7 +72120,7 @@ var WebGPUBackend = class extends KernelBackend { currentOffset += d.data.length * 4; }); const arrayBuffer = new ArrayBuffer(currentOffset); - uniformsWithType.forEach((d, i2) => { + programUniform.forEach((d, i2) => { const offset = offsets[i2]; if (d.type === "int32") { new Int32Array(arrayBuffer, offset, d.data.length).set(d.data); @@ -72227,72 +72130,42 @@ var WebGPUBackend = class extends KernelBackend { new Float32Array(arrayBuffer, offset, d.data.length).set(d.data); } }); - const uniformBuffer = this.acquireBuffer(currentOffset, GPUBufferUsage.COPY_DST | GPUBufferUsage.UNIFORM); + const uniformBuffer = this.bufferManager.acquireBuffer(currentOffset, GPUBufferUsage.COPY_DST | GPUBufferUsage.UNIFORM); this.queue.writeBuffer(uniformBuffer, 0, arrayBuffer, 0, currentOffset); const uniformInfo = { - byteSize: currentOffset, + size: currentOffset, usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.UNIFORM, buffer: uniformBuffer }; - this.uniformDisposalQueue.push(uniformInfo); + this.uniformPendingDisposal.push(uniformInfo); return { offset: 0, size: currentOffset, buffer: uniformBuffer }; } - createLayout(inputEntrySize) { - const bindGroupLayoutEntries = []; - bindGroupLayoutEntries.push({ - binding: 0, - visibility: GPUShaderStage.COMPUTE, - buffer: { type: "storage" } - }); - for (let i2 = 0; i2 < inputEntrySize; i2++) { - bindGroupLayoutEntries.push({ - binding: i2 + 1, - visibility: GPUShaderStage.COMPUTE, - buffer: { type: "read-only-storage" } - }); - } - bindGroupLayoutEntries.push({ - binding: inputEntrySize + 1, - visibility: GPUShaderStage.COMPUTE, - buffer: { type: "uniform" } - }); - const bindGroupLayout = this.device.createBindGroupLayout({ entries: bindGroupLayoutEntries }); - const pipelineLayout = this.device.createPipelineLayout({ bindGroupLayouts: [bindGroupLayout] }); - return { bindGroupLayout, pipelineLayout }; - } - getCachedOrCreateLayout(inputEntrySize) { - if (!(inputEntrySize in this.layoutCache)) { - this.layoutCache[inputEntrySize] = this.createLayout(inputEntrySize); - } - return this.layoutCache[inputEntrySize]; - } - runWebGPUProgram(program, inputs, outputDtype, programUniforms, output) { + runWebGPUProgram(program, inputs, outputDtype, programDefinedUniform, output) { if (!output) { output = this.makeTensorInfo(program.outputShape, outputDtype); - if (util_exports.sizeFromShape(output.shape) === 0) { - const outData = this.tensorMap.get(output.dataId); - outData.values = util_exports.getTypedArrayFromDType(output.dtype, 0); - return output; - } - this.uploadToGPU(output.dataId); } + if (util_exports.sizeFromShape(output.shape) === 0) { + this.tensorMap.get(output.dataId).values = util_exports.getTypedArrayFromDType(output.dtype, 0); + return output; + } + this.uploadToGPU(output.dataId); program.dispatch = reshapeDispatch(this.device, program); - let uniformsWithType = [{ type: "float32", data: [NaN] }]; - const bufferShapes = inputs.concat(output).map((d) => d.shape); - const uniformsType = "int32"; - bufferShapes.map((d) => { - uniformsWithType.push({ type: uniformsType, data: d }); - }); - const strides2 = util_exports.computeStrides(output.shape); - uniformsWithType.push({ type: uniformsType, data: strides2 }); - if (program.size) { - const size2 = util_exports.sizeFromShape(program.outputShape); - uniformsWithType.push({ type: uniformsType, data: [program.isVec4 ? size2 / 4 : size2] }); + let programUniform = []; + let bufferShapes = []; + if (!program.isFromPixels) { + programUniform.push({ type: "float32", data: [NaN] }); + bufferShapes = inputs.concat(output).map((d) => d.shape); + const uniformsType = "int32"; + bufferShapes.map((d) => { + programUniform.push({ type: uniformsType, data: d }); + }); + const strides2 = util_exports.computeStrides(output.shape); + programUniform.push({ type: uniformsType, data: strides2 }); + if (program.size) { + const size2 = util_exports.sizeFromShape(program.outputShape); + programUniform.push({ type: uniformsType, data: [program.isVec4 ? size2 / 4 : size2] }); + } } - if (programUniforms) { - uniformsWithType = [...uniformsWithType, ...programUniforms]; - } - const uniforms = this.makeUniforms(uniformsWithType); const inputsData = inputs.map((input2, i2) => { if (input2.dtype === "complex64") { throw new Error(`GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.`); @@ -72304,26 +72177,36 @@ var WebGPUBackend = class extends KernelBackend { name: program.variableNames[i2] }; }); - const bufferTypes = inputsData.map((d) => d.dtype).concat(output.dtype); - const broadcastDims = inputsData.map((d) => backend_util_exports.getBroadcastDims(d.shape, output.shape)); - const inputShapesEqualsOutShape = inputsData.map((d) => util_exports.arraysEqual(d.shape, output.shape)).join("_"); - const broadcastDimsKey = broadcastDims.map((d) => d.join("_")).join(";"); - const key = makeShaderKey2(program, bufferShapes, bufferTypes, broadcastDimsKey, inputShapesEqualsOutShape); - const { bindGroupLayout, pipelineLayout } = this.getCachedOrCreateLayout(program.variableNames.length); - const pipeline = this.getAndSavePipeline(key, () => { - return compileProgram2(this.device, program, pipelineLayout, inputsData, output); + const key = makeShaderKey2(program, bufferShapes, inputsData, output); + let pipeline; + if (key in this.pipelineCache) { + pipeline = this.pipelineCache[key]; + } else { + pipeline = compileProgram2(this.device, program, inputsData, output); + this.pipelineCache[key] = pipeline; + } + if (programDefinedUniform) { + programUniform = [...programUniform, ...programDefinedUniform]; + } + const bindings = [ + this.tensorToBinding(output), + ...inputs.map((t2) => this.tensorToBinding(t2)), + this.makeUniforms(programUniform) + ]; + const bindGroup = this.device.createBindGroup({ + layout: pipeline.getBindGroupLayout(0), + entries: bindings.map((b, i2) => ({ binding: i2, resource: b })) }); - const shouldTimeProgram = this.activeTimers != null; - const bg = makeBindGroup(this.device, bindGroupLayout, inputs.map((t2) => this.tensorToBinding(t2)), this.tensorToBinding(output), uniforms); this.ensureCommandEncoderReady(); const pass = this.getComputePass(); + const shouldTimeProgram = this.activeTimers != null; if (shouldTimeProgram) { if (this.supportTimeQuery) { pass.writeTimestamp(this.querySet, 0); } } pass.setPipeline(pipeline); - pass.setBindGroup(0, bg); + pass.setBindGroup(0, bindGroup); pass.dispatchWorkgroups(program.dispatch[0], program.dispatch[1], program.dispatch[2]); if (shouldTimeProgram) { if (this.supportTimeQuery) { @@ -72346,136 +72229,9 @@ var WebGPUBackend = class extends KernelBackend { } return output; } - getFromPixelTextureLayout(useImport) { - if (useImport) { - if (this.fromPixelImportTextureLayout === null) { - this.fromPixelImportTextureLayout = this.createFromPixelTextureLayout(true); - } - return this.fromPixelImportTextureLayout; - } - if (this.fromPixelTextureLayout === null) { - this.fromPixelTextureLayout = this.createFromPixelTextureLayout(false); - } - return this.fromPixelTextureLayout; - } - createFromPixelTextureLayout(useImport) { - const bindGroupLayoutEntries = []; - bindGroupLayoutEntries.push({ - binding: 0, - visibility: GPUShaderStage.COMPUTE, - buffer: { type: "storage" } - }); - if (useImport) { - bindGroupLayoutEntries.push({ - binding: 1, - visibility: GPUShaderStage.COMPUTE, - externalTexture: {} - }); - } else { - bindGroupLayoutEntries.push({ binding: 1, visibility: GPUShaderStage.COMPUTE, texture: {} }); - } - bindGroupLayoutEntries.push({ binding: 2, visibility: GPUShaderStage.COMPUTE, buffer: {} }); - const fromPixelBindGroupLayout = this.device.createBindGroupLayout({ entries: bindGroupLayoutEntries }); - const fromPixelPipelineLayout = this.device.createPipelineLayout({ bindGroupLayouts: [fromPixelBindGroupLayout] }); - return { - bindGroupLayout: fromPixelBindGroupLayout, - pipelineLayout: fromPixelPipelineLayout - }; - } - copyExternalImageToTexture(externalImage, outShape) { - const textureUsage = GPUTextureUsage.COPY_DST | GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.TEXTURE_BINDING; - const textureFormat = "rgba8unorm"; - const texture = this.textureManager.acquireTexture(outShape[1], outShape[0], textureFormat, textureUsage); - const externalResource = texture.createView(); - this.queue.copyExternalImageToTexture({ source: externalImage }, { texture }, [outShape[1], outShape[0]]); - const textureInfo = { - width: outShape[1], - height: outShape[0], - format: textureFormat, - usage: textureUsage, - texture - }; - this.textureDisposalQueue.push(textureInfo); - return externalResource; - } - runFromPixelsProgram(program, outShape, programUniforms, useImport, externalImage) { - program.dispatch = reshapeDispatch(this.device, program); - const output = this.makeTensorInfo(outShape, "int32"); - if (util_exports.sizeFromShape(output.shape) === 0) { - const outData = this.tensorMap.get(output.dataId); - outData.values = util_exports.getTypedArrayFromDType(output.dtype, 0); - return output; - } - this.uploadToGPU(output.dataId); - const key = makeShaderKey2(program, [output.shape]); - const layout = this.getFromPixelTextureLayout(useImport); - const pipeline = this.getAndSavePipeline(key, () => { - return compileProgram2(this.device, program, layout.pipelineLayout, [], output, true); - }); - let externalResource; - if (useImport) { - const externalTextureDescriptor = { - source: externalImage - }; - externalResource = this.device.importExternalTexture(externalTextureDescriptor); - } else { - externalResource = this.copyExternalImageToTexture(externalImage, output.shape); - } - const binding = this.tensorToBinding(output); - const uniforms = this.makeUniforms(programUniforms); - const bindGroup = this.device.createBindGroup({ - layout: layout.bindGroupLayout, - entries: [ - { - binding: 0, - resource: { - buffer: binding.buffer - } - }, - { - binding: 1, - resource: externalResource - }, - { - binding: 2, - resource: { - buffer: uniforms.buffer - } - } - ] - }); - this.ensureCommandEncoderReady(); - const pass = this.getComputePass(); - const shouldTimeProgram = this.activeTimers != null; - if (shouldTimeProgram) { - if (this.supportTimeQuery) { - pass.writeTimestamp(this.querySet, 0); - } - } - pass.setPipeline(pipeline); - pass.setBindGroup(0, bindGroup); - pass.dispatchWorkgroups(program.dispatch[0], program.dispatch[1], program.dispatch[2]); - if (shouldTimeProgram) { - if (this.supportTimeQuery) { - pass.writeTimestamp(this.querySet, 1); - } - } - this.commandQueueOwnedIds.add(output.dataId); - this.dispatchNumberInEncoder++; - if (env().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE") <= this.dispatchNumberInEncoder) { - this.submitQueue(); - } - if (shouldTimeProgram) { - this.activeTimers.push({ - name: program.constructor.name, - query: this.getQueryTime(this.querySet) - }); - } - return output; - } async getTimeFromQuerySet(querySet) { - const queryBuffer = this.acquireBuffer(16, GPUBufferUsage.COPY_SRC | GPUBufferUsage.QUERY_RESOLVE); - const dst = this.acquireBuffer(16, GPUBufferUsage.MAP_READ | GPUBufferUsage.COPY_DST); + const queryBuffer = this.bufferManager.acquireBuffer(16, GPUBufferUsage.COPY_SRC | GPUBufferUsage.QUERY_RESOLVE); + const dst = this.bufferManager.acquireBuffer(16, GPUBufferUsage.MAP_READ | GPUBufferUsage.COPY_DST); this.ensureCommandEncoderReady(); this.ensureComputePassEnded(); this.currentCommandEncoder.resolveQuerySet(querySet, 0, 2, queryBuffer, 0); @@ -72490,10 +72246,10 @@ var WebGPUBackend = class extends KernelBackend { return timeElapsedNanos / 1e6; } shouldExecuteOnCPU(inputs, sizeThreshold = CPU_HANDOFF_SIZE_THRESHOLD2) { - return env().getBool("WEBGPU_CPU_FORWARD") && inputs.every((input2) => this.tensorMap.get(input2.dataId).bufferInfo.buffer == null && util_exports.sizeFromShape(input2.shape) < sizeThreshold); + return env().getBool("WEBGPU_CPU_FORWARD") && inputs.every((input2) => this.tensorMap.get(input2.dataId).resourceInfo == null && util_exports.sizeFromShape(input2.shape) < sizeThreshold); } numDataIds() { - return this.tensorMap.numDataIds() - this.tensorDisposalQueue.length; + return this.tensorMap.numDataIds() - this.tensorDataPendingDisposal.length; } dispose() { if (this.disposed) { @@ -72522,7 +72278,8 @@ if (isWebGPUSupported()) { const supportTimeQuery = adapter.features.has("timestamp-query"); deviceDescriptor.requiredLimits = { "maxComputeWorkgroupStorageSize": adapterLimits.maxComputeWorkgroupStorageSize, - "maxComputeWorkgroupsPerDimension": adapterLimits.maxComputeWorkgroupsPerDimension + "maxComputeWorkgroupsPerDimension": adapterLimits.maxComputeWorkgroupsPerDimension, + "maxStorageBufferBindingSize": adapterLimits.maxStorageBufferBindingSize }; if (supportTimeQuery) { deviceDescriptor.requiredFeatures = ["timestamp-query"]; @@ -72533,14 +72290,14 @@ if (isWebGPUSupported()) { return new WebGPUBackend(device, supportTimeQuery); }, 3); } -var e = "3.18.0"; -var s = "3.18.0"; -var t = "3.18.0"; -var r = "3.18.0"; -var l = "3.18.0"; -var i = "3.18.0"; -var a = "3.18.0"; -var V = { tfjs: e, "tfjs-core": s, "tfjs-data": t, "tfjs-layers": r, "tfjs-converter": l, "tfjs-backend-webgl": i, "tfjs-backend-wasm": a }; +var e = "3.19.0"; +var s = "3.19.0"; +var t = "3.19.0"; +var i = "3.19.0"; +var n = "3.19.0"; +var r = "3.19.0"; +var l = "3.19.0"; +var V = { tfjs: e, "tfjs-core": s, "tfjs-data": t, "tfjs-layers": i, "tfjs-converter": n, "tfjs-backend-webgl": r, "tfjs-backend-wasm": l }; // src/image/imagefxshaders.ts var vertexIdentity = ` @@ -72689,8 +72446,8 @@ var GLProgram = class { } this.gl.useProgram(this.id); collect(vertexSource, "attribute", this.attribute); - for (const a6 in this.attribute) - this.attribute[a6] = this.gl.getAttribLocation(this.id, a6); + for (const a in this.attribute) + this.attribute[a] = this.gl.getAttribLocation(this.id, a); collect(vertexSource, "uniform", this.uniform); collect(fragmentSource, "uniform", this.uniform); for (const u in this.uniform) @@ -73164,16 +72921,16 @@ function GLImageFilter() { ]); }, sharpen: (amount) => { - const a6 = amount || 1; + const a = amount || 1; filter.convolution.call(this, [ 0, - -1 * a6, + -1 * a, 0, - -1 * a6, - 1 + 4 * a6, - -1 * a6, + -1 * a, + 1 + 4 * a, + -1 * a, 0, - -1 * a6, + -1 * a, 0 ]); }, @@ -73903,9 +73660,9 @@ async function predict(image2, config3, idx, count3) { if (race[i2] > (((_b2 = config3.face["gear"]) == null ? void 0 : _b2.minConfidence) || 0.2)) obj.race.push({ score: Math.round(100 * race[i2]) / 100, race: raceNames[i2] }); } - obj.race.sort((a6, b) => b.score - a6.score); + obj.race.sort((a, b) => b.score - a.score); const ageDistribution = Array.from(await t2.age.data()); - const ageSorted = ageDistribution.map((a6, i2) => [ageWeights[i2], a6]).sort((a6, b) => b[1] - a6[1]); + const ageSorted = ageDistribution.map((a, i2) => [ageWeights[i2], a]).sort((a, b) => b[1] - a[1]); let age2 = ageSorted[0][0]; for (let i2 = 1; i2 < ageSorted.length; i2++) age2 += ageSorted[i2][1] * (ageSorted[i2][0] - age2); @@ -77567,7 +77324,7 @@ function generateAnchors(inputSize10) { const anchorY = stride * (gridY + 0.5); for (let gridX = 0; gridX < gridCols; gridX++) { const anchorX = stride * (gridX + 0.5); - for (let n = 0; n < anchorsNum; n++) + for (let n2 = 0; n2 < anchorsNum; n2++) anchors3.push([anchorX, anchorY]); } } @@ -77678,7 +77435,7 @@ async function getBoxes(inputImage, config3) { t2.normalized = sub(t2.div, constants.tf05); const res = model6 == null ? void 0 : model6.execute(t2.normalized); if (Array.isArray(res) && res.length > 2) { - const sorted = res.sort((a6, b) => a6.size - b.size); + const sorted = res.sort((a, b) => a.size - b.size); t2.concat384 = concat([sorted[0], sorted[2]], 2); t2.concat512 = concat([sorted[1], sorted[3]], 2); t2.concat = concat([t2.concat512, t2.concat384], 1); @@ -77825,7 +77582,7 @@ async function createAnchors() { } layerId = lastSameStrideLayer; } - anchorTensor = { x: tensor1d(anchors3.map((a6) => a6.x)), y: tensor1d(anchors3.map((a6) => a6.y)) }; + anchorTensor = { x: tensor1d(anchors3.map((a) => a.x)), y: tensor1d(anchors3.map((a) => a.y)) }; } // src/util/box.ts @@ -78298,16 +78055,16 @@ async function predict7(image2, config3) { stack2.forEach((s2) => dispose(s2)); } cache2.score = cache2.keypoints.reduce((prev, curr) => curr.score > prev ? curr.score : prev, 0); - const x = cache2.keypoints.map((a6) => a6.position[0]); - const y = cache2.keypoints.map((a6) => a6.position[1]); + const x = cache2.keypoints.map((a) => a.position[0]); + const y = cache2.keypoints.map((a) => a.position[1]); cache2.box = [ Math.min(...x), Math.min(...y), Math.max(...x) - Math.min(...x), Math.max(...y) - Math.min(...y) ]; - const xRaw = cache2.keypoints.map((a6) => a6.positionRaw[0]); - const yRaw = cache2.keypoints.map((a6) => a6.positionRaw[1]); + const xRaw = cache2.keypoints.map((a) => a.positionRaw[0]); + const yRaw = cache2.keypoints.map((a) => a.positionRaw[1]); cache2.boxRaw = [ Math.min(...xRaw), Math.min(...yRaw), @@ -78374,7 +78131,7 @@ async function predict8(image2, config3, idx, count3) { if (data[i2] > (((_b2 = config3.face.emotion) == null ? void 0 : _b2.minConfidence) || 0)) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i2]) / 100), emotion: annotations[i2] }); } - obj.sort((a6, b) => b.score - a6.score); + obj.sort((a, b) => b.score - a.score); Object.keys(t2).forEach((tensor2) => dispose(t2[tensor2])); } last6[idx] = obj; @@ -82388,7 +82145,7 @@ var HandPipeline = class { hands.push(result); } } - this.storedBoxes = this.storedBoxes.filter((a6) => a6 !== null); + this.storedBoxes = this.storedBoxes.filter((a) => a !== null); this.detectedHands = hands.length; if (hands.length > config3.hand.maxDetected) hands.length = config3.hand.maxDetected; @@ -82459,7 +82216,7 @@ var FingerGesture = class { } weight(finger, weight) { this.weights[finger] = weight; - const total = this.weights.reduce((a6, b) => a6 + b, 0); + const total = this.weights.reduce((a, b) => a + b, 0); this.weightsRelative = this.weights.map((el) => el * 5 / total); } matchAgainst(detectedCurls, detectedDirections) { @@ -82982,7 +82739,7 @@ async function detectHands(input2, config3) { hands.push(hand3); } Object.keys(t2).forEach((tensor2) => dispose(t2[tensor2])); - hands.sort((a6, b) => b.score - a6.score); + hands.sort((a, b) => b.score - a.score); if (hands.length > (config3.hand.maxDetected || 1)) hands.length = config3.hand.maxDetected || 1; return hands; @@ -83359,7 +83116,7 @@ async function parseMultiPose(res, config3, image2) { bodies.push(body4); } } - bodies.sort((a6, b) => b.score - a6.score); + bodies.sort((a, b) => b.score - a.score); if (bodies.length > config3.body.maxDetected) bodies.length = config3.body.maxDetected; return bodies; @@ -83414,8 +83171,8 @@ async function process4(res, outputShape, config3) { for (const strideSize of [1, 2, 4]) { tidy(async () => { const baseSize = strideSize * 13; - const scoresT = squeeze(res.find((a6) => a6.shape[1] === baseSize ** 2 && (a6.shape[2] || 0) === labels.length)); - const featuresT = squeeze(res.find((a6) => a6.shape[1] === baseSize ** 2 && (a6.shape[2] || 0) < labels.length)); + const scoresT = squeeze(res.find((a) => a.shape[1] === baseSize ** 2 && (a.shape[2] || 0) === labels.length)); + const featuresT = squeeze(res.find((a) => a.shape[1] === baseSize ** 2 && (a.shape[2] || 0) < labels.length)); const boxesMax = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); const boxIdx = await boxesMax.argMax(2).array(); const scores = await scoresT.array(); @@ -83425,7 +83182,7 @@ async function process4(res, outputShape, config3) { if (score > (config3.object.minConfidence || 0) && j !== 61) { const cx = (0.5 + Math.trunc(i2 % baseSize)) / baseSize; const cy = (0.5 + Math.trunc(i2 / baseSize)) / baseSize; - const boxOffset = boxIdx[i2].map((a6) => a6 * (baseSize / strideSize / inputSize9)); + const boxOffset = boxIdx[i2].map((a) => a * (baseSize / strideSize / inputSize9)); const [x, y] = [ cx - scaleBox / strideSize * boxOffset[0], cy - scaleBox / strideSize * boxOffset[1] @@ -83435,7 +83192,7 @@ async function process4(res, outputShape, config3) { cy + scaleBox / strideSize * boxOffset[3] - y ]; let boxRaw = [x, y, w, h]; - boxRaw = boxRaw.map((a6) => Math.max(0, Math.min(a6, 1))); + boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))); const box = [ boxRaw[0] * outputShape[0], boxRaw[1] * outputShape[1], @@ -83447,7 +83204,7 @@ async function process4(res, outputShape, config3) { score: Math.round(100 * score) / 100, class: j + 1, label: labels[j].label, - box: box.map((a6) => Math.trunc(a6)), + box: box.map((a) => Math.trunc(a)), boxRaw }; results.push(result); @@ -83457,15 +83214,15 @@ async function process4(res, outputShape, config3) { }); } res.forEach((t2) => dispose(t2)); - const nmsBoxes = results.map((a6) => [a6.boxRaw[1], a6.boxRaw[0], a6.boxRaw[3], a6.boxRaw[2]]); - const nmsScores = results.map((a6) => a6.score); + const nmsBoxes = results.map((a) => [a.boxRaw[1], a.boxRaw[0], a.boxRaw[3], a.boxRaw[2]]); + const nmsScores = results.map((a) => a.score); let nmsIdx = []; if (nmsBoxes && nmsBoxes.length > 0) { const nms = await image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config3.object.maxDetected, config3.object.iouThreshold, config3.object.minConfidence); nmsIdx = await nms.data(); dispose(nms); } - results = results.filter((_val, idx) => nmsIdx.includes(idx)).sort((a6, b) => b.score - a6.score); + results = results.filter((_val, idx) => nmsIdx.includes(idx)).sort((a, b) => b.score - a.score); return results; } async function predict16(image2, config3) { @@ -83662,20 +83419,20 @@ function getImageCoords(part, outputStride2, offsets) { y: part.heatmapY * outputStride2 + y }; } -function clamp2(a6, min7, max7) { - if (a6 < min7) +function clamp2(a, min7, max7) { + if (a < min7) return min7; - if (a6 > max7) + if (a > max7) return max7; - return a6; + return a; } function squaredDistance(y1, x1, y2, x2) { const dy = y2 - y1; const dx = x2 - x1; return dy * dy + dx * dx; } -function addVectors(a6, b) { - return { x: a6.x + b.x, y: a6.y + b.y }; +function addVectors(a, b) { + return { x: a.x + b.x, y: a.y + b.y }; } // src/body/posenet.ts @@ -83797,7 +83554,7 @@ function decode(offsets, scores, displacementsFwd, displacementsBwd, maxDetected if (withinRadius(poses, rootImageCoords, root.part.id)) continue; let keypoints = decodePose(root, scores, offsets, displacementsFwd, displacementsBwd); - keypoints = keypoints.filter((a6) => a6.score > minConfidence2); + keypoints = keypoints.filter((a) => a.score > minConfidence2); const score = getInstanceScore(poses, keypoints); const box = getBoundingBox(keypoints); if (score > minConfidence2) @@ -84463,7 +84220,7 @@ function drawLabels(f, ctx) { if (f.live) labels2.push(`live: ${Math.trunc(100 * f.live)}%`); if (f.emotion && f.emotion.length > 0) { - const emotion2 = f.emotion.map((a6) => `${Math.trunc(100 * a6.score)}% ${a6.emotion}`); + const emotion2 = f.emotion.map((a) => `${Math.trunc(100 * a.score)}% ${a.emotion}`); if (emotion2.length > 3) emotion2.length = 3; labels2.push(emotion2.join(" ")); @@ -84914,16 +84671,16 @@ var calculateFaceAngle = (face4, imageSize) => { v[2] /= length; return v; }; - const subVectors = (a6, b) => { - const x = a6[0] - b[0]; - const y = a6[1] - b[1]; - const z = a6[2] - b[2]; + const subVectors = (a, b) => { + const x = a[0] - b[0]; + const y = a[1] - b[1]; + const z = a[2] - b[2]; return [x, y, z]; }; - const crossVectors = (a6, b) => { - const x = a6[1] * b[2] - a6[2] * b[1]; - const y = a6[2] * b[0] - a6[0] * b[2]; - const z = a6[0] * b[1] - a6[1] * b[0]; + const crossVectors = (a, b) => { + const x = a[1] * b[2] - a[2] * b[1]; + const y = a[2] * b[0] - a[0] * b[2]; + const z = a[0] * b[1] - a[1] * b[0]; return [x, y, z]; }; const rotationMatrixToEulerAngle = (r2) => { @@ -85163,17 +84920,17 @@ var body2 = (res) => { return []; const gestures = []; for (let i2 = 0; i2 < res.length; i2++) { - const leftWrist = res[i2].keypoints.find((a6) => a6.part === "leftWrist"); - const rightWrist = res[i2].keypoints.find((a6) => a6.part === "rightWrist"); - const nose = res[i2].keypoints.find((a6) => a6.part === "nose"); + const leftWrist = res[i2].keypoints.find((a) => a.part === "leftWrist"); + const rightWrist = res[i2].keypoints.find((a) => a.part === "rightWrist"); + const nose = res[i2].keypoints.find((a) => a.part === "nose"); if (nose && leftWrist && rightWrist && leftWrist.position[1] < nose.position[1] && rightWrist.position[1] < nose.position[1]) gestures.push({ body: i2, gesture: "i give up" }); else if (nose && leftWrist && leftWrist.position[1] < nose.position[1]) gestures.push({ body: i2, gesture: "raise left hand" }); else if (nose && rightWrist && rightWrist.position[1] < nose.position[1]) gestures.push({ body: i2, gesture: "raise right hand" }); - const leftShoulder = res[i2].keypoints.find((a6) => a6.part === "leftShoulder"); - const rightShoulder = res[i2].keypoints.find((a6) => a6.part === "rightShoulder"); + const leftShoulder = res[i2].keypoints.find((a) => a.part === "leftShoulder"); + const rightShoulder = res[i2].keypoints.find((a) => a.part === "rightShoulder"); if (leftShoulder && rightShoulder && Math.abs(leftShoulder.positionRaw[1] - rightShoulder.positionRaw[1]) > 0.1) { gestures.push({ body: i2, gesture: `leaning ${leftShoulder.position[1] > rightShoulder.position[1] ? "left" : "right"}` }); } @@ -85264,9 +85021,9 @@ var hand2 = (res) => { } } if (fingers && fingers.length > 0) { - const closest = fingers.reduce((best, a6) => (best.position[2] || 0) < (a6.position[2] || 0) ? best : a6); + const closest = fingers.reduce((best, a) => (best.position[2] || 0) < (a.position[2] || 0) ? best : a); gestures.push({ hand: i2, gesture: `${closest.name} forward` }); - const highest = fingers.reduce((best, a6) => best.position[1] < a6.position[1] ? best : a6); + const highest = fingers.reduce((best, a) => best.position[1] < a.position[1] ? best : a); gestures.push({ hand: i2, gesture: `${highest.name} up` }); } if (res[i2]["keypoints"]) { @@ -86571,7 +86328,7 @@ var Human = class { } const kernelArr = []; Object.entries(kernels).forEach((key) => kernelArr.push({ name: key[0], ms: key[1] })); - kernelArr.sort((a6, b) => b.ms - a6.ms); + kernelArr.sort((a, b) => b.ms - a.ms); kernelArr.length = 20; const res = {}; for (const kernel of kernelArr) @@ -86849,6 +86606,22 @@ export { * limitations under the License. * ============================================================================= */ +/** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the 'License'); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an 'AS IS' BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ /** * @license * Copyright 2020 Google Inc. All Rights Reserved. @@ -87035,21 +86808,5 @@ export { * @copyright * @license MIT */ -/** -* @license -* Copyright 2018 Google LLC. All Rights Reserved. -* Licensed under the Apache License, Version 2.0 (the "License"); -* you may not use this file except in compliance with the License. -* You may obtain a copy of the License at -* -* http://www.apache.org/licenses/LICENSE-2.0 -* -* Unless required by applicable law or agreed to in writing, software -* distributed under the License is distributed on an "AS IS" BASIS, -* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -* See the License for the specific language governing permissions and -* limitations under the License. -* ============================================================================= -*/ /** @license See the LICENSE file. */ //# sourceMappingURL=human.esm.js.map diff --git a/dist/human.esm.js.map b/dist/human.esm.js.map index ff62249b..0af5fedf 100644 --- a/dist/human.esm.js.map +++ b/dist/human.esm.js.map @@ -1,7 +1,7 @@ { "version": 3, "sources": ["../src/util/util.ts", "../src/config.ts", "tfjs.esm.js", "../src/image/imagefxshaders.ts", "../src/image/imagefx.ts", "../src/image/enhance.ts", "../src/image/image.ts", "../src/util/env.ts", "../src/tfjs/load.ts", "../src/models.ts", "../src/gear/gear.ts", "../src/tfjs/constants.ts", "../src/gear/ssrnet-age.ts", "../src/gear/ssrnet-gender.ts", "../src/face/antispoof.ts", "../src/face/facemeshcoords.ts", "../src/face/facemeshutil.ts", "../src/face/blazeface.ts", "../src/body/blazeposecoords.ts", "../src/body/blazeposedetector.ts", "../src/util/box.ts", "../src/body/blazepose.ts", "../src/object/labels.ts", "../src/object/centernet.ts", "../src/body/efficientposecoords.ts", "../src/body/efficientpose.ts", "../src/gear/emotion.ts", "../src/face/mobilefacenet.ts", "../src/face/iris.ts", "../src/face/constants.ts", "../src/face/attention.ts", "../src/face/facemesh.ts", "../src/face/faceres.ts", "../src/hand/handposeutil.ts", "../src/hand/handposeanchors.ts", "../src/hand/handposedetector.ts", "../src/hand/handposepipeline.ts", "../src/hand/fingerdef.ts", "../src/hand/fingergesture.ts", "../src/hand/fingerpose.ts", "../src/hand/handpose.ts", "../src/hand/handtrack.ts", "../src/face/liveness.ts", "../src/body/movenetcoords.ts", "../src/body/movenetfix.ts", "../src/body/movenet.ts", "../src/object/nanodet.ts", "../src/body/posenetutils.ts", "../src/body/posenet.ts", "../src/segmentation/segmentation.ts", "../src/tfjs/humangl.ts", "../src/tfjs/backend.ts", "../src/draw/draw.ts", "../src/draw/primitives.ts", "../src/draw/options.ts", "../src/draw/face.ts", "../src/draw/body.ts", "../src/draw/hand.ts", "../src/draw/object.ts", "../src/draw/gesture.ts", "../src/face/mask.ts", "../src/face/angles.ts", "../src/face/face.ts", "../src/gesture/gesture.ts", "../src/util/interpolate.ts", "../src/face/match.ts", "../src/util/persons.ts", "../src/sample.ts", "../src/warmup.ts", "../src/human.ts"], - "sourcesContent": ["import type { Config } from '../exports';\n\n/**\n * Simple helper functions used accross codebase\n */\n\n// helper function: wrapper around console output\nexport function log(...msg): void {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`modelpath error: expecting json file: ${path}`);\n return path;\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: checks current config validity\nexport function validate(defaults: Partial, config: Partial, parent = 'config', msgs: Array<{ reason: string, where: string, expected?: string }> = []) {\n for (const key of Object.keys(config)) {\n if (typeof config[key] === 'object') {\n validate(defaults[key], config[key], key, msgs);\n } else {\n const defined = defaults && (typeof defaults[key] !== 'undefined');\n if (!defined) msgs.push({ reason: 'unknown property', where: `${parent}.${key} = ${config[key]}` });\n const same = defaults && typeof defaults[key] === typeof config[key];\n if (defined && !same) msgs.push({ reason: 'property type mismatch', where: `${parent}.${key} = ${config[key]}`, expected: typeof defaults[key] });\n }\n // ok = ok && defined && same;\n }\n if (config.debug && parent === 'config' && msgs.length > 0) log('invalid configuration', msgs);\n return msgs;\n}\n\n// helper function: perform deep merge of multiple objects so it allows full inheritance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n\n// helper function: return min and max from input array\nexport const minmax = (data: Array) => data.reduce((acc: Array, val) => {\n acc[0] = (acc[0] === undefined || val < acc[0]) ? val : acc[0];\n acc[1] = (acc[1] === undefined || val > acc[1]) ? val : acc[1];\n return acc;\n}, []);\n\n// helper function: async wait\nexport async function wait(time: number) {\n const waiting = new Promise((resolve) => { setTimeout(() => resolve(true), time); });\n await waiting;\n}\n", "/* eslint-disable indent */\n/* eslint-disable no-multi-spaces */\n\n/** Generic config type inherited by all module types */\nexport interface GenericConfig {\n /** is module enabled? */\n enabled: boolean,\n /** path to model json file (relative to `modelBasePath` */\n modelPath: string,\n /** how many max frames to go without re-running model if cached results are acceptable\n * for two-phase models such as face and hand caching applies to bounding boxes detection only */\n skipFrames: number,\n /** how many max milliseconds to go without re-running model if cached results are acceptable\n * for two-phase models such as face and hand caching applies to bounding boxes detection only */\n skipTime: number,\n}\n\n/** Detector part of face configuration */\nexport interface FaceDetectorConfig extends GenericConfig {\n /** is face rotation correction performed after detecting face?\n * used to correctly analyze faces under high angles\n */\n rotation: boolean,\n /** maximum number of detected faces */\n maxDetected: number,\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected faces before one is discarded */\n iouThreshold: number,\n /** should child models perform on masked image of a face */\n mask: boolean,\n /** should face detection return processed and cropped face tensor that can with an external model for addtional processing?\n * if enabled it must be manually deallocated to avoid memory leak */\n return: boolean,\n}\n\n/** Mesh part of face configuration */\nexport interface FaceMeshConfig extends GenericConfig {\n /** Keep detected faces that cannot be verified using facemesh */\n keepInvalid: boolean\n}\n\n/** Iris part of face configuration */\nexport interface FaceIrisConfig extends GenericConfig {}\n\n/** Attention part of face configuration */\nexport interface FaceAttentionConfig extends GenericConfig {}\n\n/** Description or face embedding part of face configuration\n * - also used by age and gender detection\n */\nexport interface FaceDescriptionConfig extends GenericConfig {\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n}\n\n/** Emotion part of face configuration */\nexport interface FaceEmotionConfig extends GenericConfig {\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n}\n\n/** Anti-spoofing part of face configuration */\nexport interface FaceAntiSpoofConfig extends GenericConfig {}\n\n/** Liveness part of face configuration */\nexport interface FaceLivenessConfig extends GenericConfig {}\n\n/** Gear part of face configuration */\nexport interface FaceGearConfig extends GenericConfig {\n /** minimum confidence for a detected race before results are discarded */\n minConfidence: number,\n}\n\n/** Configures all face-specific options: face detection, mesh analysis, age, gender, emotion detection and face description */\nexport interface FaceConfig extends GenericConfig {\n detector: Partial,\n mesh: Partial,\n attention: Partial,\n iris: Partial,\n description: Partial,\n emotion: Partial,\n antispoof: Partial,\n liveness: Partial,\n gear: Partial,\n}\n\n/** Configures all body detection specific options */\nexport interface BodyConfig extends GenericConfig {\n /** maximum number of detected bodies */\n maxDetected: number,\n /** minimum confidence for a detected body before results are discarded */\n minConfidence: number,\n /* experimental\n /** experimental: detector used for body model before actual analysis\n detector?: {\n /** experimental: enable body detector before body landmarks\n enabled: boolean,\n /** experimental: path to optional body detector model json file\n modelPath: string,\n /** experimental: minimum confidence for a detected body before results are discarded\n minConfidence: number,\n /** experimental: minimum overlap between two detected bodies before one is discarded\n iouThreshold: number\n },\n */\n}\n\n/** Configures all hand detection specific options */\nexport interface HandConfig extends GenericConfig {\n /** should hand rotation correction be performed after hand detection? */\n rotation: boolean,\n /** minimum confidence for a detected hand before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected hands before one is discarded */\n iouThreshold: number,\n /** maximum number of detected hands */\n maxDetected: number,\n /** should hand landmarks be detected or just return detected hand box */\n landmarks: boolean,\n detector: {\n /** path to hand detector model json */\n modelPath?: string,\n },\n skeleton: {\n /** path to hand skeleton model json */\n modelPath?: string,\n },\n}\n\n/** Configures all object detection specific options */\nexport interface ObjectConfig extends GenericConfig {\n /** minimum confidence for a detected objects before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected objects before one is discarded */\n iouThreshold: number,\n /** maximum number of detected objects */\n maxDetected: number,\n}\n\n/** Configures all body segmentation module\n * removes background from input containing person\n * if segmentation is enabled it will run as preprocessing task before any other model\n * alternatively leave it disabled and use it on-demand using human.segmentation method which can\n * remove background or replace it with user-provided background\n*/\nexport interface SegmentationConfig extends GenericConfig {\n /** blur segmentation output by pixels for more realistic image */\n blur: number,\n}\n\n/** Run input through image filters before inference\n * - available only in Browser environments\n * - image filters run with near-zero latency as they are executed on the GPU using WebGL\n*/\nexport interface FilterConfig {\n /** are image filters enabled? */\n enabled: boolean,\n /** perform image histogram equalization\n * - equalization is performed on input as a whole and detected face before its passed for further analysis\n */\n equalization: boolean,\n /** resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** return processed canvas imagedata in result */\n return: boolean,\n /** flip input as mirror image */\n flip: boolean,\n /** range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** image negative */\n negative: boolean,\n /** image sepia colors */\n sepia: boolean,\n /** image vintage colors */\n vintage: boolean,\n /** image kodachrome colors */\n kodachrome: boolean,\n /** image technicolor colors */\n technicolor: boolean,\n /** image polaroid camera effect */\n polaroid: boolean,\n /** range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n}\n\n/** Controlls gesture detection */\nexport interface GestureConfig {\n /** is gesture detection enabled? */\n enabled: boolean,\n}\n/** Possible TensorFlow backends */\nexport type BackendType = ['cpu', 'wasm', 'webgl', 'humangl', 'tensorflow', 'webgpu'];\n\n/** Possible values for `human.warmup` */\nexport type WarmupType = ['' | 'none' | 'face' | 'full' | 'body'];\n\n/**\n * Configuration interface definition for **Human** library\n * Contains all configurable parameters\n * Defaults: [config](https://github.com/vladmandic/human/blob/main/src/config.ts#L262)\n */\nexport interface Config {\n /** Backend used for TFJS operations\n * valid build-in backends are:\n * - Browser: `cpu`, `wasm`, `webgl`, `humangl`, `webgpu`\n * - NodeJS: `cpu`, `wasm`, `tensorflow`\n * default: `humangl` for browser and `tensorflow` for nodejs\n */\n backend: '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow' | 'webgpu',\n\n /** Path to *.wasm files if backend is set to `wasm`\n *\n * default: auto-detects to link to CDN `jsdelivr` when running in browser\n */\n wasmPath: string,\n\n /** Force WASM loader to use platform fetch\n *\n * default: auto-detects to link to CDN `jsdelivr` when running in browser\n */\n wasmPlatformFetch: boolean,\n\n /** Print debug statements to console\n *\n * default: `true`\n */\n debug: boolean,\n\n /** Perform model loading and inference concurrently or sequentially\n *\n * default: `true`\n */\n async: boolean,\n\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - used by `webgl`, `humangl` and `webgpu` backends\n *\n * default: `full`\n */\n warmup: '' | 'none' | 'face' | 'full' | 'body',\n\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are relative to this path\n *\n * default: `../models/` for browsers and `file://models/` for nodejs\n */\n modelBasePath: string,\n\n /** Cache models in IndexDB on first sucessfull load\n * default: true if indexdb is available (browsers), false if its not (nodejs)\n */\n cacheModels: boolean,\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n *\n * default: 0.7\n */\n cacheSensitivity: number;\n\n /** Perform immediate garbage collection on deallocated tensors instead of caching them */\n deallocate: boolean;\n\n /** Internal Variable */\n skipAllowed: boolean;\n\n /** Filter config {@link FilterConfig} */\n filter: Partial,\n\n /** Gesture config {@link GestureConfig} */\n gesture: Partial;\n\n /** Face config {@link FaceConfig} */\n face: Partial,\n\n /** Body config {@link BodyConfig} */\n body: Partial,\n\n /** Hand config {@link HandConfig} */\n hand: Partial,\n\n /** Object config {@link ObjectConfig} */\n object: Partial,\n\n /** Segmentation config {@link SegmentationConfig} */\n segmentation: Partial,\n}\n\n/** - [See all default Config values...](https://github.com/vladmandic/human/blob/main/src/config.ts#L262) */\nconst config: Config = {\n backend: '',\n modelBasePath: '',\n cacheModels: true,\n wasmPath: '',\n wasmPlatformFetch: false,\n debug: false,\n async: true,\n warmup: 'full',\n cacheSensitivity: 0.70,\n skipAllowed: false,\n deallocate: false,\n filter: {\n enabled: true,\n equalization: false,\n width: 0,\n height: 0,\n flip: false,\n return: true,\n brightness: 0,\n contrast: 0,\n sharpness: 0,\n blur: 0,\n saturation: 0,\n hue: 0,\n negative: false,\n sepia: false,\n vintage: false,\n kodachrome: false,\n technicolor: false,\n polaroid: false,\n pixelate: 0,\n },\n gesture: {\n enabled: true,\n },\n face: {\n enabled: true,\n detector: {\n modelPath: 'blazeface.json',\n rotation: true,\n maxDetected: 1,\n skipFrames: 99,\n skipTime: 2500,\n minConfidence: 0.2,\n iouThreshold: 0.1,\n mask: false,\n return: false,\n },\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json',\n keepInvalid: false,\n },\n attention: {\n enabled: false,\n modelPath: 'facemesh-attention.json',\n },\n iris: {\n enabled: true,\n modelPath: 'iris.json',\n },\n emotion: {\n enabled: true,\n minConfidence: 0.1,\n skipFrames: 99,\n skipTime: 1500,\n modelPath: 'emotion.json',\n },\n description: {\n enabled: true,\n modelPath: 'faceres.json',\n skipFrames: 99,\n skipTime: 3000,\n minConfidence: 0.1,\n },\n antispoof: {\n enabled: false,\n skipFrames: 99,\n skipTime: 4000,\n modelPath: 'antispoof.json',\n },\n liveness: {\n enabled: false,\n skipFrames: 99,\n skipTime: 4000,\n modelPath: 'liveness.json',\n },\n },\n body: {\n enabled: true,\n modelPath: 'movenet-lightning.json',\n maxDetected: -1,\n minConfidence: 0.3,\n skipFrames: 1,\n skipTime: 200,\n },\n hand: {\n enabled: true,\n rotation: true,\n skipFrames: 99,\n skipTime: 1000,\n minConfidence: 0.50,\n iouThreshold: 0.2,\n maxDetected: -1,\n landmarks: true,\n detector: {\n modelPath: 'handtrack.json',\n },\n skeleton: {\n modelPath: 'handlandmark-full.json',\n },\n },\n object: {\n enabled: false,\n modelPath: 'mb3-centernet.json',\n minConfidence: 0.2,\n iouThreshold: 0.4,\n maxDetected: 10,\n skipFrames: 99,\n skipTime: 2000,\n },\n segmentation: {\n enabled: false,\n modelPath: 'selfie.json',\n blur: 8,\n },\n};\n\nexport { config as defaults };\n", "/*\n Human\n homepage: \n author: '\n*/\n\nvar __create = Object.create;\nvar __defProp = Object.defineProperty;\nvar __getOwnPropDesc = Object.getOwnPropertyDescriptor;\nvar __getOwnPropNames = Object.getOwnPropertyNames;\nvar __getProtoOf = Object.getPrototypeOf;\nvar __hasOwnProp = Object.prototype.hasOwnProperty;\nvar __commonJS = (cb, mod4) => function __require() {\n return mod4 || (0, cb[__getOwnPropNames(cb)[0]])((mod4 = { exports: {} }).exports, mod4), mod4.exports;\n};\nvar __export = (target, all5) => {\n for (var name in all5)\n __defProp(target, name, { get: all5[name], enumerable: true });\n};\nvar __copyProps = (to, from, except, desc) => {\n if (from && typeof from === \"object\" || typeof from === \"function\") {\n for (let key of __getOwnPropNames(from))\n if (!__hasOwnProp.call(to, key) && key !== except)\n __defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable });\n }\n return to;\n};\nvar __toESM = (mod4, isNodeMode, target) => (target = mod4 != null ? __create(__getProtoOf(mod4)) : {}, __copyProps(isNodeMode || !mod4 || !mod4.__esModule ? __defProp(target, \"default\", { value: mod4, enumerable: true }) : target, mod4));\n\n// node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js\nvar require_long = __commonJS({\n \"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js\"(exports, module) {\n module.exports = Long2;\n var wasm = null;\n try {\n wasm = new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([\n 0,\n 97,\n 115,\n 109,\n 1,\n 0,\n 0,\n 0,\n 1,\n 13,\n 2,\n 96,\n 0,\n 1,\n 127,\n 96,\n 4,\n 127,\n 127,\n 127,\n 127,\n 1,\n 127,\n 3,\n 7,\n 6,\n 0,\n 1,\n 1,\n 1,\n 1,\n 1,\n 6,\n 6,\n 1,\n 127,\n 1,\n 65,\n 0,\n 11,\n 7,\n 50,\n 6,\n 3,\n 109,\n 117,\n 108,\n 0,\n 1,\n 5,\n 100,\n 105,\n 118,\n 95,\n 115,\n 0,\n 2,\n 5,\n 100,\n 105,\n 118,\n 95,\n 117,\n 0,\n 3,\n 5,\n 114,\n 101,\n 109,\n 95,\n 115,\n 0,\n 4,\n 5,\n 114,\n 101,\n 109,\n 95,\n 117,\n 0,\n 5,\n 8,\n 103,\n 101,\n 116,\n 95,\n 104,\n 105,\n 103,\n 104,\n 0,\n 0,\n 10,\n 191,\n 1,\n 6,\n 4,\n 0,\n 35,\n 0,\n 11,\n 36,\n 1,\n 1,\n 126,\n 32,\n 0,\n 173,\n 32,\n 1,\n 173,\n 66,\n 32,\n 134,\n 132,\n 32,\n 2,\n 173,\n 32,\n 3,\n 173,\n 66,\n 32,\n 134,\n 132,\n 126,\n 34,\n 4,\n 66,\n 32,\n 135,\n 167,\n 36,\n 0,\n 32,\n 4,\n 167,\n 11,\n 36,\n 1,\n 1,\n 126,\n 32,\n 0,\n 173,\n 32,\n 1,\n 173,\n 66,\n 32,\n 134,\n 132,\n 32,\n 2,\n 173,\n 32,\n 3,\n 173,\n 66,\n 32,\n 134,\n 132,\n 127,\n 34,\n 4,\n 66,\n 32,\n 135,\n 167,\n 36,\n 0,\n 32,\n 4,\n 167,\n 11,\n 36,\n 1,\n 1,\n 126,\n 32,\n 0,\n 173,\n 32,\n 1,\n 173,\n 66,\n 32,\n 134,\n 132,\n 32,\n 2,\n 173,\n 32,\n 3,\n 173,\n 66,\n 32,\n 134,\n 132,\n 128,\n 34,\n 4,\n 66,\n 32,\n 135,\n 167,\n 36,\n 0,\n 32,\n 4,\n 167,\n 11,\n 36,\n 1,\n 1,\n 126,\n 32,\n 0,\n 173,\n 32,\n 1,\n 173,\n 66,\n 32,\n 134,\n 132,\n 32,\n 2,\n 173,\n 32,\n 3,\n 173,\n 66,\n 32,\n 134,\n 132,\n 129,\n 34,\n 4,\n 66,\n 32,\n 135,\n 167,\n 36,\n 0,\n 32,\n 4,\n 167,\n 11,\n 36,\n 1,\n 1,\n 126,\n 32,\n 0,\n 173,\n 32,\n 1,\n 173,\n 66,\n 32,\n 134,\n 132,\n 32,\n 2,\n 173,\n 32,\n 3,\n 173,\n 66,\n 32,\n 134,\n 132,\n 130,\n 34,\n 4,\n 66,\n 32,\n 135,\n 167,\n 36,\n 0,\n 32,\n 4,\n 167,\n 11\n ])), {}).exports;\n } catch (e2) {\n }\n function Long2(low, high, unsigned) {\n this.low = low | 0;\n this.high = high | 0;\n this.unsigned = !!unsigned;\n }\n Long2.prototype.__isLong__;\n Object.defineProperty(Long2.prototype, \"__isLong__\", { value: true });\n function isLong(obj) {\n return (obj && obj[\"__isLong__\"]) === true;\n }\n Long2.isLong = isLong;\n var INT_CACHE = {};\n var UINT_CACHE = {};\n function fromInt(value, unsigned) {\n var obj, cachedObj, cache;\n if (unsigned) {\n value >>>= 0;\n if (cache = 0 <= value && value < 256) {\n cachedObj = UINT_CACHE[value];\n if (cachedObj)\n return cachedObj;\n }\n obj = fromBits(value, (value | 0) < 0 ? -1 : 0, true);\n if (cache)\n UINT_CACHE[value] = obj;\n return obj;\n } else {\n value |= 0;\n if (cache = -128 <= value && value < 128) {\n cachedObj = INT_CACHE[value];\n if (cachedObj)\n return cachedObj;\n }\n obj = fromBits(value, value < 0 ? -1 : 0, false);\n if (cache)\n INT_CACHE[value] = obj;\n return obj;\n }\n }\n Long2.fromInt = fromInt;\n function fromNumber(value, unsigned) {\n if (isNaN(value))\n return unsigned ? UZERO : ZERO;\n if (unsigned) {\n if (value < 0)\n return UZERO;\n if (value >= TWO_PWR_64_DBL)\n return MAX_UNSIGNED_VALUE;\n } else {\n if (value <= -TWO_PWR_63_DBL)\n return MIN_VALUE;\n if (value + 1 >= TWO_PWR_63_DBL)\n return MAX_VALUE;\n }\n if (value < 0)\n return fromNumber(-value, unsigned).neg();\n return fromBits(value % TWO_PWR_32_DBL | 0, value / TWO_PWR_32_DBL | 0, unsigned);\n }\n Long2.fromNumber = fromNumber;\n function fromBits(lowBits, highBits, unsigned) {\n return new Long2(lowBits, highBits, unsigned);\n }\n Long2.fromBits = fromBits;\n var pow_dbl = Math.pow;\n function fromString(str, unsigned, radix) {\n if (str.length === 0)\n throw Error(\"empty string\");\n if (str === \"NaN\" || str === \"Infinity\" || str === \"+Infinity\" || str === \"-Infinity\")\n return ZERO;\n if (typeof unsigned === \"number\") {\n radix = unsigned, unsigned = false;\n } else {\n unsigned = !!unsigned;\n }\n radix = radix || 10;\n if (radix < 2 || 36 < radix)\n throw RangeError(\"radix\");\n var p2;\n if ((p2 = str.indexOf(\"-\")) > 0)\n throw Error(\"interior hyphen\");\n else if (p2 === 0) {\n return fromString(str.substring(1), unsigned, radix).neg();\n }\n var radixToPower = fromNumber(pow_dbl(radix, 8));\n var result = ZERO;\n for (var i2 = 0; i2 < str.length; i2 += 8) {\n var size = Math.min(8, str.length - i2), value = parseInt(str.substring(i2, i2 + size), radix);\n if (size < 8) {\n var power = fromNumber(pow_dbl(radix, size));\n result = result.mul(power).add(fromNumber(value));\n } else {\n result = result.mul(radixToPower);\n result = result.add(fromNumber(value));\n }\n }\n result.unsigned = unsigned;\n return result;\n }\n Long2.fromString = fromString;\n function fromValue(val, unsigned) {\n if (typeof val === \"number\")\n return fromNumber(val, unsigned);\n if (typeof val === \"string\")\n return fromString(val, unsigned);\n return fromBits(val.low, val.high, typeof unsigned === \"boolean\" ? unsigned : val.unsigned);\n }\n Long2.fromValue = fromValue;\n var TWO_PWR_16_DBL = 1 << 16;\n var TWO_PWR_24_DBL = 1 << 24;\n var TWO_PWR_32_DBL = TWO_PWR_16_DBL * TWO_PWR_16_DBL;\n var TWO_PWR_64_DBL = TWO_PWR_32_DBL * TWO_PWR_32_DBL;\n var TWO_PWR_63_DBL = TWO_PWR_64_DBL / 2;\n var TWO_PWR_24 = fromInt(TWO_PWR_24_DBL);\n var ZERO = fromInt(0);\n Long2.ZERO = ZERO;\n var UZERO = fromInt(0, true);\n Long2.UZERO = UZERO;\n var ONE = fromInt(1);\n Long2.ONE = ONE;\n var UONE = fromInt(1, true);\n Long2.UONE = UONE;\n var NEG_ONE = fromInt(-1);\n Long2.NEG_ONE = NEG_ONE;\n var MAX_VALUE = fromBits(4294967295 | 0, 2147483647 | 0, false);\n Long2.MAX_VALUE = MAX_VALUE;\n var MAX_UNSIGNED_VALUE = fromBits(4294967295 | 0, 4294967295 | 0, true);\n Long2.MAX_UNSIGNED_VALUE = MAX_UNSIGNED_VALUE;\n var MIN_VALUE = fromBits(0, 2147483648 | 0, false);\n Long2.MIN_VALUE = MIN_VALUE;\n var LongPrototype = Long2.prototype;\n LongPrototype.toInt = function toInt() {\n return this.unsigned ? this.low >>> 0 : this.low;\n };\n LongPrototype.toNumber = function toNumber() {\n if (this.unsigned)\n return (this.high >>> 0) * TWO_PWR_32_DBL + (this.low >>> 0);\n return this.high * TWO_PWR_32_DBL + (this.low >>> 0);\n };\n LongPrototype.toString = function toString(radix) {\n radix = radix || 10;\n if (radix < 2 || 36 < radix)\n throw RangeError(\"radix\");\n if (this.isZero())\n return \"0\";\n if (this.isNegative()) {\n if (this.eq(MIN_VALUE)) {\n var radixLong = fromNumber(radix), div3 = this.div(radixLong), rem1 = div3.mul(radixLong).sub(this);\n return div3.toString(radix) + rem1.toInt().toString(radix);\n } else\n return \"-\" + this.neg().toString(radix);\n }\n var radixToPower = fromNumber(pow_dbl(radix, 6), this.unsigned), rem = this;\n var result = \"\";\n while (true) {\n var remDiv = rem.div(radixToPower), intval = rem.sub(remDiv.mul(radixToPower)).toInt() >>> 0, digits = intval.toString(radix);\n rem = remDiv;\n if (rem.isZero())\n return digits + result;\n else {\n while (digits.length < 6)\n digits = \"0\" + digits;\n result = \"\" + digits + result;\n }\n }\n };\n LongPrototype.getHighBits = function getHighBits() {\n return this.high;\n };\n LongPrototype.getHighBitsUnsigned = function getHighBitsUnsigned() {\n return this.high >>> 0;\n };\n LongPrototype.getLowBits = function getLowBits() {\n return this.low;\n };\n LongPrototype.getLowBitsUnsigned = function getLowBitsUnsigned() {\n return this.low >>> 0;\n };\n LongPrototype.getNumBitsAbs = function getNumBitsAbs() {\n if (this.isNegative())\n return this.eq(MIN_VALUE) ? 64 : this.neg().getNumBitsAbs();\n var val = this.high != 0 ? this.high : this.low;\n for (var bit = 31; bit > 0; bit--)\n if ((val & 1 << bit) != 0)\n break;\n return this.high != 0 ? bit + 33 : bit + 1;\n };\n LongPrototype.isZero = function isZero() {\n return this.high === 0 && this.low === 0;\n };\n LongPrototype.eqz = LongPrototype.isZero;\n LongPrototype.isNegative = function isNegative() {\n return !this.unsigned && this.high < 0;\n };\n LongPrototype.isPositive = function isPositive() {\n return this.unsigned || this.high >= 0;\n };\n LongPrototype.isOdd = function isOdd() {\n return (this.low & 1) === 1;\n };\n LongPrototype.isEven = function isEven2() {\n return (this.low & 1) === 0;\n };\n LongPrototype.equals = function equals(other) {\n if (!isLong(other))\n other = fromValue(other);\n if (this.unsigned !== other.unsigned && this.high >>> 31 === 1 && other.high >>> 31 === 1)\n return false;\n return this.high === other.high && this.low === other.low;\n };\n LongPrototype.eq = LongPrototype.equals;\n LongPrototype.notEquals = function notEquals(other) {\n return !this.eq(other);\n };\n LongPrototype.neq = LongPrototype.notEquals;\n LongPrototype.ne = LongPrototype.notEquals;\n LongPrototype.lessThan = function lessThan(other) {\n return this.comp(other) < 0;\n };\n LongPrototype.lt = LongPrototype.lessThan;\n LongPrototype.lessThanOrEqual = function lessThanOrEqual(other) {\n return this.comp(other) <= 0;\n };\n LongPrototype.lte = LongPrototype.lessThanOrEqual;\n LongPrototype.le = LongPrototype.lessThanOrEqual;\n LongPrototype.greaterThan = function greaterThan(other) {\n return this.comp(other) > 0;\n };\n LongPrototype.gt = LongPrototype.greaterThan;\n LongPrototype.greaterThanOrEqual = function greaterThanOrEqual(other) {\n return this.comp(other) >= 0;\n };\n LongPrototype.gte = LongPrototype.greaterThanOrEqual;\n LongPrototype.ge = LongPrototype.greaterThanOrEqual;\n LongPrototype.compare = function compare(other) {\n if (!isLong(other))\n other = fromValue(other);\n if (this.eq(other))\n return 0;\n var thisNeg = this.isNegative(), otherNeg = other.isNegative();\n if (thisNeg && !otherNeg)\n return -1;\n if (!thisNeg && otherNeg)\n return 1;\n if (!this.unsigned)\n return this.sub(other).isNegative() ? -1 : 1;\n return other.high >>> 0 > this.high >>> 0 || other.high === this.high && other.low >>> 0 > this.low >>> 0 ? -1 : 1;\n };\n LongPrototype.comp = LongPrototype.compare;\n LongPrototype.negate = function negate() {\n if (!this.unsigned && this.eq(MIN_VALUE))\n return MIN_VALUE;\n return this.not().add(ONE);\n };\n LongPrototype.neg = LongPrototype.negate;\n LongPrototype.add = function add5(addend) {\n if (!isLong(addend))\n addend = fromValue(addend);\n var a48 = this.high >>> 16;\n var a32 = this.high & 65535;\n var a16 = this.low >>> 16;\n var a00 = this.low & 65535;\n var b48 = addend.high >>> 16;\n var b32 = addend.high & 65535;\n var b16 = addend.low >>> 16;\n var b00 = addend.low & 65535;\n var c48 = 0, c32 = 0, c16 = 0, c00 = 0;\n c00 += a00 + b00;\n c16 += c00 >>> 16;\n c00 &= 65535;\n c16 += a16 + b16;\n c32 += c16 >>> 16;\n c16 &= 65535;\n c32 += a32 + b32;\n c48 += c32 >>> 16;\n c32 &= 65535;\n c48 += a48 + b48;\n c48 &= 65535;\n return fromBits(c16 << 16 | c00, c48 << 16 | c32, this.unsigned);\n };\n LongPrototype.subtract = function subtract(subtrahend) {\n if (!isLong(subtrahend))\n subtrahend = fromValue(subtrahend);\n return this.add(subtrahend.neg());\n };\n LongPrototype.sub = LongPrototype.subtract;\n LongPrototype.multiply = function multiply4(multiplier) {\n if (this.isZero())\n return ZERO;\n if (!isLong(multiplier))\n multiplier = fromValue(multiplier);\n if (wasm) {\n var low = wasm.mul(this.low, this.high, multiplier.low, multiplier.high);\n return fromBits(low, wasm.get_high(), this.unsigned);\n }\n if (multiplier.isZero())\n return ZERO;\n if (this.eq(MIN_VALUE))\n return multiplier.isOdd() ? MIN_VALUE : ZERO;\n if (multiplier.eq(MIN_VALUE))\n return this.isOdd() ? MIN_VALUE : ZERO;\n if (this.isNegative()) {\n if (multiplier.isNegative())\n return this.neg().mul(multiplier.neg());\n else\n return this.neg().mul(multiplier).neg();\n } else if (multiplier.isNegative())\n return this.mul(multiplier.neg()).neg();\n if (this.lt(TWO_PWR_24) && multiplier.lt(TWO_PWR_24))\n return fromNumber(this.toNumber() * multiplier.toNumber(), this.unsigned);\n var a48 = this.high >>> 16;\n var a32 = this.high & 65535;\n var a16 = this.low >>> 16;\n var a00 = this.low & 65535;\n var b48 = multiplier.high >>> 16;\n var b32 = multiplier.high & 65535;\n var b16 = multiplier.low >>> 16;\n var b00 = multiplier.low & 65535;\n var c48 = 0, c32 = 0, c16 = 0, c00 = 0;\n c00 += a00 * b00;\n c16 += c00 >>> 16;\n c00 &= 65535;\n c16 += a16 * b00;\n c32 += c16 >>> 16;\n c16 &= 65535;\n c16 += a00 * b16;\n c32 += c16 >>> 16;\n c16 &= 65535;\n c32 += a32 * b00;\n c48 += c32 >>> 16;\n c32 &= 65535;\n c32 += a16 * b16;\n c48 += c32 >>> 16;\n c32 &= 65535;\n c32 += a00 * b32;\n c48 += c32 >>> 16;\n c32 &= 65535;\n c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;\n c48 &= 65535;\n return fromBits(c16 << 16 | c00, c48 << 16 | c32, this.unsigned);\n };\n LongPrototype.mul = LongPrototype.multiply;\n LongPrototype.divide = function divide(divisor) {\n if (!isLong(divisor))\n divisor = fromValue(divisor);\n if (divisor.isZero())\n throw Error(\"division by zero\");\n if (wasm) {\n if (!this.unsigned && this.high === -2147483648 && divisor.low === -1 && divisor.high === -1) {\n return this;\n }\n var low = (this.unsigned ? wasm.div_u : wasm.div_s)(this.low, this.high, divisor.low, divisor.high);\n return fromBits(low, wasm.get_high(), this.unsigned);\n }\n if (this.isZero())\n return this.unsigned ? UZERO : ZERO;\n var approx, rem, res;\n if (!this.unsigned) {\n if (this.eq(MIN_VALUE)) {\n if (divisor.eq(ONE) || divisor.eq(NEG_ONE))\n return MIN_VALUE;\n else if (divisor.eq(MIN_VALUE))\n return ONE;\n else {\n var halfThis = this.shr(1);\n approx = halfThis.div(divisor).shl(1);\n if (approx.eq(ZERO)) {\n return divisor.isNegative() ? ONE : NEG_ONE;\n } else {\n rem = this.sub(divisor.mul(approx));\n res = approx.add(rem.div(divisor));\n return res;\n }\n }\n } else if (divisor.eq(MIN_VALUE))\n return this.unsigned ? UZERO : ZERO;\n if (this.isNegative()) {\n if (divisor.isNegative())\n return this.neg().div(divisor.neg());\n return this.neg().div(divisor).neg();\n } else if (divisor.isNegative())\n return this.div(divisor.neg()).neg();\n res = ZERO;\n } else {\n if (!divisor.unsigned)\n divisor = divisor.toUnsigned();\n if (divisor.gt(this))\n return UZERO;\n if (divisor.gt(this.shru(1)))\n return UONE;\n res = UZERO;\n }\n rem = this;\n while (rem.gte(divisor)) {\n approx = Math.max(1, Math.floor(rem.toNumber() / divisor.toNumber()));\n var log22 = Math.ceil(Math.log(approx) / Math.LN2), delta = log22 <= 48 ? 1 : pow_dbl(2, log22 - 48), approxRes = fromNumber(approx), approxRem = approxRes.mul(divisor);\n while (approxRem.isNegative() || approxRem.gt(rem)) {\n approx -= delta;\n approxRes = fromNumber(approx, this.unsigned);\n approxRem = approxRes.mul(divisor);\n }\n if (approxRes.isZero())\n approxRes = ONE;\n res = res.add(approxRes);\n rem = rem.sub(approxRem);\n }\n return res;\n };\n LongPrototype.div = LongPrototype.divide;\n LongPrototype.modulo = function modulo(divisor) {\n if (!isLong(divisor))\n divisor = fromValue(divisor);\n if (wasm) {\n var low = (this.unsigned ? wasm.rem_u : wasm.rem_s)(this.low, this.high, divisor.low, divisor.high);\n return fromBits(low, wasm.get_high(), this.unsigned);\n }\n return this.sub(this.div(divisor).mul(divisor));\n };\n LongPrototype.mod = LongPrototype.modulo;\n LongPrototype.rem = LongPrototype.modulo;\n LongPrototype.not = function not() {\n return fromBits(~this.low, ~this.high, this.unsigned);\n };\n LongPrototype.and = function and(other) {\n if (!isLong(other))\n other = fromValue(other);\n return fromBits(this.low & other.low, this.high & other.high, this.unsigned);\n };\n LongPrototype.or = function or(other) {\n if (!isLong(other))\n other = fromValue(other);\n return fromBits(this.low | other.low, this.high | other.high, this.unsigned);\n };\n LongPrototype.xor = function xor(other) {\n if (!isLong(other))\n other = fromValue(other);\n return fromBits(this.low ^ other.low, this.high ^ other.high, this.unsigned);\n };\n LongPrototype.shiftLeft = function shiftLeft(numBits) {\n if (isLong(numBits))\n numBits = numBits.toInt();\n if ((numBits &= 63) === 0)\n return this;\n else if (numBits < 32)\n return fromBits(this.low << numBits, this.high << numBits | this.low >>> 32 - numBits, this.unsigned);\n else\n return fromBits(0, this.low << numBits - 32, this.unsigned);\n };\n LongPrototype.shl = LongPrototype.shiftLeft;\n LongPrototype.shiftRight = function shiftRight(numBits) {\n if (isLong(numBits))\n numBits = numBits.toInt();\n if ((numBits &= 63) === 0)\n return this;\n else if (numBits < 32)\n return fromBits(this.low >>> numBits | this.high << 32 - numBits, this.high >> numBits, this.unsigned);\n else\n return fromBits(this.high >> numBits - 32, this.high >= 0 ? 0 : -1, this.unsigned);\n };\n LongPrototype.shr = LongPrototype.shiftRight;\n LongPrototype.shiftRightUnsigned = function shiftRightUnsigned(numBits) {\n if (isLong(numBits))\n numBits = numBits.toInt();\n numBits &= 63;\n if (numBits === 0)\n return this;\n else {\n var high = this.high;\n if (numBits < 32) {\n var low = this.low;\n return fromBits(low >>> numBits | high << 32 - numBits, high >>> numBits, this.unsigned);\n } else if (numBits === 32)\n return fromBits(high, 0, this.unsigned);\n else\n return fromBits(high >>> numBits - 32, 0, this.unsigned);\n }\n };\n LongPrototype.shru = LongPrototype.shiftRightUnsigned;\n LongPrototype.shr_u = LongPrototype.shiftRightUnsigned;\n LongPrototype.toSigned = function toSigned() {\n if (!this.unsigned)\n return this;\n return fromBits(this.low, this.high, false);\n };\n LongPrototype.toUnsigned = function toUnsigned() {\n if (this.unsigned)\n return this;\n return fromBits(this.low, this.high, true);\n };\n LongPrototype.toBytes = function toBytes(le) {\n return le ? this.toBytesLE() : this.toBytesBE();\n };\n LongPrototype.toBytesLE = function toBytesLE() {\n var hi = this.high, lo = this.low;\n return [\n lo & 255,\n lo >>> 8 & 255,\n lo >>> 16 & 255,\n lo >>> 24,\n hi & 255,\n hi >>> 8 & 255,\n hi >>> 16 & 255,\n hi >>> 24\n ];\n };\n LongPrototype.toBytesBE = function toBytesBE() {\n var hi = this.high, lo = this.low;\n return [\n hi >>> 24,\n hi >>> 16 & 255,\n hi >>> 8 & 255,\n hi & 255,\n lo >>> 24,\n lo >>> 16 & 255,\n lo >>> 8 & 255,\n lo & 255\n ];\n };\n Long2.fromBytes = function fromBytes(bytes, unsigned, le) {\n return le ? Long2.fromBytesLE(bytes, unsigned) : Long2.fromBytesBE(bytes, unsigned);\n };\n Long2.fromBytesLE = function fromBytesLE(bytes, unsigned) {\n return new Long2(bytes[0] | bytes[1] << 8 | bytes[2] << 16 | bytes[3] << 24, bytes[4] | bytes[5] << 8 | bytes[6] << 16 | bytes[7] << 24, unsigned);\n };\n Long2.fromBytesBE = function fromBytesBE(bytes, unsigned) {\n return new Long2(bytes[4] << 24 | bytes[5] << 16 | bytes[6] << 8 | bytes[7], bytes[0] << 24 | bytes[1] << 16 | bytes[2] << 8 | bytes[3], unsigned);\n };\n }\n});\n\n// (disabled):node_modules/.pnpm/node-fetch@2.6.7/node_modules/node-fetch/browser.js\nvar require_browser = __commonJS({\n \"(disabled):node_modules/.pnpm/node-fetch@2.6.7/node_modules/node-fetch/browser.js\"() {\n }\n});\n\n// (disabled):util\nvar require_util = __commonJS({\n \"(disabled):util\"() {\n }\n});\n\n// node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js\nvar require_alea = __commonJS({\n \"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js\"(exports, module) {\n (function(global2, module2, define2) {\n function Alea(seed) {\n var me = this, mash = Mash();\n me.next = function() {\n var t2 = 2091639 * me.s0 + me.c * 23283064365386963e-26;\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t2 - (me.c = t2 | 0);\n };\n me.c = 1;\n me.s0 = mash(\" \");\n me.s1 = mash(\" \");\n me.s2 = mash(\" \");\n me.s0 -= mash(seed);\n if (me.s0 < 0) {\n me.s0 += 1;\n }\n me.s1 -= mash(seed);\n if (me.s1 < 0) {\n me.s1 += 1;\n }\n me.s2 -= mash(seed);\n if (me.s2 < 0) {\n me.s2 += 1;\n }\n mash = null;\n }\n function copy(f, t2) {\n t2.c = f.c;\n t2.s0 = f.s0;\n t2.s1 = f.s1;\n t2.s2 = f.s2;\n return t2;\n }\n function impl(seed, opts) {\n var xg = new Alea(seed), state = opts && opts.state, prng = xg.next;\n prng.int32 = function() {\n return xg.next() * 4294967296 | 0;\n };\n prng.double = function() {\n return prng() + (prng() * 2097152 | 0) * 11102230246251565e-32;\n };\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n function Mash() {\n var n = 4022871197;\n var mash = function(data) {\n data = data.toString();\n for (var i2 = 0; i2 < data.length; i2++) {\n n += data.charCodeAt(i2);\n var h = 0.02519603282416938 * n;\n n = h >>> 0;\n h -= n;\n h *= n;\n n = h >>> 0;\n h -= n;\n n += h * 4294967296;\n }\n return (n >>> 0) * 23283064365386963e-26;\n };\n return mash;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.alea = impl;\n }\n })(exports, typeof module == \"object\" && module, typeof define == \"function\" && define);\n }\n});\n\n// node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js\nvar require_xor128 = __commonJS({\n \"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this, strseed = \"\";\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.next = function() {\n var t2 = me.x ^ me.x << 11;\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= me.w >>> 19 ^ t2 ^ t2 >>> 8;\n };\n if (seed === (seed | 0)) {\n me.x = seed;\n } else {\n strseed += seed;\n }\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n }\n function copy(f, t2) {\n t2.x = f.x;\n t2.y = f.y;\n t2.z = f.z;\n t2.w = f.w;\n return t2;\n }\n function impl(seed, opts) {\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xor128 = impl;\n }\n })(exports, typeof module == \"object\" && module, typeof define == \"function\" && define);\n }\n});\n\n// node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js\nvar require_xorwow = __commonJS({\n \"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this, strseed = \"\";\n me.next = function() {\n var t2 = me.x ^ me.x >>> 2;\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n me.w = me.v;\n return (me.d = me.d + 362437 | 0) + (me.v = me.v ^ me.v << 4 ^ (t2 ^ t2 << 1)) | 0;\n };\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n if (seed === (seed | 0)) {\n me.x = seed;\n } else {\n strseed += seed;\n }\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n }\n function copy(f, t2) {\n t2.x = f.x;\n t2.y = f.y;\n t2.z = f.z;\n t2.w = f.w;\n t2.v = f.v;\n t2.d = f.d;\n return t2;\n }\n function impl(seed, opts) {\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xorwow = impl;\n }\n })(exports, typeof module == \"object\" && module, typeof define == \"function\" && define);\n }\n});\n\n// node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js\nvar require_xorshift7 = __commonJS({\n \"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this;\n me.next = function() {\n var X = me.x, i2 = me.i, t2, v, w;\n t2 = X[i2];\n t2 ^= t2 >>> 7;\n v = t2 ^ t2 << 24;\n t2 = X[i2 + 1 & 7];\n v ^= t2 ^ t2 >>> 10;\n t2 = X[i2 + 3 & 7];\n v ^= t2 ^ t2 >>> 3;\n t2 = X[i2 + 4 & 7];\n v ^= t2 ^ t2 << 7;\n t2 = X[i2 + 7 & 7];\n t2 = t2 ^ t2 << 13;\n v ^= t2 ^ t2 << 9;\n X[i2] = v;\n me.i = i2 + 1 & 7;\n return v;\n };\n function init2(me2, seed2) {\n var j, w, X = [];\n if (seed2 === (seed2 | 0)) {\n w = X[0] = seed2;\n } else {\n seed2 = \"\" + seed2;\n for (j = 0; j < seed2.length; ++j) {\n X[j & 7] = X[j & 7] << 15 ^ seed2.charCodeAt(j) + X[j + 1 & 7] << 13;\n }\n }\n while (X.length < 8)\n X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j)\n ;\n if (j == 8)\n w = X[7] = -1;\n else\n w = X[j];\n me2.x = X;\n me2.i = 0;\n for (j = 256; j > 0; --j) {\n me2.next();\n }\n }\n init2(me, seed);\n }\n function copy(f, t2) {\n t2.x = f.x.slice();\n t2.i = f.i;\n return t2;\n }\n function impl(seed, opts) {\n if (seed == null)\n seed = +new Date();\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x)\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xorshift7 = impl;\n }\n })(exports, typeof module == \"object\" && module, typeof define == \"function\" && define);\n }\n});\n\n// node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js\nvar require_xor4096 = __commonJS({\n \"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this;\n me.next = function() {\n var w = me.w, X = me.X, i2 = me.i, t2, v;\n me.w = w = w + 1640531527 | 0;\n v = X[i2 + 34 & 127];\n t2 = X[i2 = i2 + 1 & 127];\n v ^= v << 13;\n t2 ^= t2 << 17;\n v ^= v >>> 15;\n t2 ^= t2 >>> 12;\n v = X[i2] = v ^ t2;\n me.i = i2;\n return v + (w ^ w >>> 16) | 0;\n };\n function init2(me2, seed2) {\n var t2, v, i2, j, w, X = [], limit = 128;\n if (seed2 === (seed2 | 0)) {\n v = seed2;\n seed2 = null;\n } else {\n seed2 = seed2 + \"\\0\";\n v = 0;\n limit = Math.max(limit, seed2.length);\n }\n for (i2 = 0, j = -32; j < limit; ++j) {\n if (seed2)\n v ^= seed2.charCodeAt((j + 32) % seed2.length);\n if (j === 0)\n w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = w + 1640531527 | 0;\n t2 = X[j & 127] ^= v + w;\n i2 = 0 == t2 ? i2 + 1 : 0;\n }\n }\n if (i2 >= 128) {\n X[(seed2 && seed2.length || 0) & 127] = -1;\n }\n i2 = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[i2 + 34 & 127];\n t2 = X[i2 = i2 + 1 & 127];\n v ^= v << 13;\n t2 ^= t2 << 17;\n v ^= v >>> 15;\n t2 ^= t2 >>> 12;\n X[i2] = v ^ t2;\n }\n me2.w = w;\n me2.X = X;\n me2.i = i2;\n }\n init2(me, seed);\n }\n function copy(f, t2) {\n t2.i = f.i;\n t2.w = f.w;\n t2.X = f.X.slice();\n return t2;\n }\n ;\n function impl(seed, opts) {\n if (seed == null)\n seed = +new Date();\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X)\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xor4096 = impl;\n }\n })(exports, typeof module == \"object\" && module, typeof define == \"function\" && define);\n }\n});\n\n// node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js\nvar require_tychei = __commonJS({\n \"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this, strseed = \"\";\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a6 = me.a;\n b = b << 25 ^ b >>> 7 ^ c;\n c = c - d | 0;\n d = d << 24 ^ d >>> 8 ^ a6;\n a6 = a6 - b | 0;\n me.b = b = b << 20 ^ b >>> 12 ^ c;\n me.c = c = c - d | 0;\n me.d = d << 16 ^ c >>> 16 ^ a6;\n return me.a = a6 - b | 0;\n };\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n if (seed === Math.floor(seed)) {\n me.a = seed / 4294967296 | 0;\n me.b = seed | 0;\n } else {\n strseed += seed;\n }\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n }\n function copy(f, t2) {\n t2.a = f.a;\n t2.b = f.b;\n t2.c = f.c;\n t2.d = f.d;\n return t2;\n }\n ;\n function impl(seed, opts) {\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.tychei = impl;\n }\n })(exports, typeof module == \"object\" && module, typeof define == \"function\" && define);\n }\n});\n\n// (disabled):crypto\nvar require_crypto = __commonJS({\n \"(disabled):crypto\"() {\n }\n});\n\n// node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js\nvar require_seedrandom = __commonJS({\n \"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js\"(exports, module) {\n (function(pool3, math) {\n var global2 = this, width = 256, chunks = 6, digits = 52, rngname = \"random\", startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask = width - 1, nodecrypto;\n function seedrandom5(seed, options, callback) {\n var key = [];\n options = options == true ? { entropy: true } : options || {};\n var shortseed = mixkey(flatten4(options.entropy ? [seed, tostring(pool3)] : seed == null ? autoseed() : seed, 3), key);\n var arc4 = new ARC4(key);\n var prng = function() {\n var n = arc4.g(chunks), d = startdenom, x = 0;\n while (n < significance) {\n n = (n + x) * width;\n d *= width;\n x = arc4.g(1);\n }\n while (n >= overflow) {\n n /= 2;\n d /= 2;\n x >>>= 1;\n }\n return (n + x) / d;\n };\n prng.int32 = function() {\n return arc4.g(4) | 0;\n };\n prng.quick = function() {\n return arc4.g(4) / 4294967296;\n };\n prng.double = prng;\n mixkey(tostring(arc4.S), pool3);\n return (options.pass || callback || function(prng2, seed2, is_math_call, state) {\n if (state) {\n if (state.S) {\n copy(state, arc4);\n }\n prng2.state = function() {\n return copy(arc4, {});\n };\n }\n if (is_math_call) {\n math[rngname] = prng2;\n return seed2;\n } else\n return prng2;\n })(prng, shortseed, \"global\" in options ? options.global : this == math, options.state);\n }\n math[\"seed\" + rngname] = seedrandom5;\n function ARC4(key) {\n var t2, keylen = key.length, me = this, i2 = 0, j = me.i = me.j = 0, s2 = me.S = [];\n if (!keylen) {\n key = [keylen++];\n }\n while (i2 < width) {\n s2[i2] = i2++;\n }\n for (i2 = 0; i2 < width; i2++) {\n s2[i2] = s2[j = mask & j + key[i2 % keylen] + (t2 = s2[i2])];\n s2[j] = t2;\n }\n (me.g = function(count2) {\n var t3, r2 = 0, i3 = me.i, j2 = me.j, s3 = me.S;\n while (count2--) {\n t3 = s3[i3 = mask & i3 + 1];\n r2 = r2 * width + s3[mask & (s3[i3] = s3[j2 = mask & j2 + t3]) + (s3[j2] = t3)];\n }\n me.i = i3;\n me.j = j2;\n return r2;\n })(width);\n }\n function copy(f, t2) {\n t2.i = f.i;\n t2.j = f.j;\n t2.S = f.S.slice();\n return t2;\n }\n ;\n function flatten4(obj, depth) {\n var result = [], typ = typeof obj, prop;\n if (depth && typ == \"object\") {\n for (prop in obj) {\n try {\n result.push(flatten4(obj[prop], depth - 1));\n } catch (e2) {\n }\n }\n }\n return result.length ? result : typ == \"string\" ? obj : obj + \"\\0\";\n }\n function mixkey(seed, key) {\n var stringseed = seed + \"\", smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] = mask & (smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++);\n }\n return tostring(key);\n }\n function autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global2.crypto || global2.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e2) {\n var browser = global2.navigator, plugins = browser && browser.plugins;\n return [+new Date(), global2, plugins, global2.screen, tostring(pool3)];\n }\n }\n function tostring(a6) {\n return String.fromCharCode.apply(0, a6);\n }\n mixkey(math.random(), pool3);\n if (typeof module == \"object\" && module.exports) {\n module.exports = seedrandom5;\n try {\n nodecrypto = require_crypto();\n } catch (ex) {\n }\n } else if (typeof define == \"function\" && define.amd) {\n define(function() {\n return seedrandom5;\n });\n }\n })([], Math);\n }\n});\n\n// node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js\nvar require_seedrandom2 = __commonJS({\n \"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js\"(exports, module) {\n var alea5 = require_alea();\n var xor128 = require_xor128();\n var xorwow = require_xorwow();\n var xorshift7 = require_xorshift7();\n var xor4096 = require_xor4096();\n var tychei = require_tychei();\n var sr = require_seedrandom();\n sr.alea = alea5;\n sr.xor128 = xor128;\n sr.xorwow = xorwow;\n sr.xorshift7 = xorshift7;\n sr.xor4096 = xor4096;\n sr.tychei = tychei;\n module.exports = sr;\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js\nvar require_alea2 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js\"(exports, module) {\n (function(global2, module2, define2) {\n function Alea(seed) {\n var me = this, mash = Mash();\n me.next = function() {\n var t2 = 2091639 * me.s0 + me.c * 23283064365386963e-26;\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t2 - (me.c = t2 | 0);\n };\n me.c = 1;\n me.s0 = mash(\" \");\n me.s1 = mash(\" \");\n me.s2 = mash(\" \");\n me.s0 -= mash(seed);\n if (me.s0 < 0) {\n me.s0 += 1;\n }\n me.s1 -= mash(seed);\n if (me.s1 < 0) {\n me.s1 += 1;\n }\n me.s2 -= mash(seed);\n if (me.s2 < 0) {\n me.s2 += 1;\n }\n mash = null;\n }\n function copy(f, t2) {\n t2.c = f.c;\n t2.s0 = f.s0;\n t2.s1 = f.s1;\n t2.s2 = f.s2;\n return t2;\n }\n function impl(seed, opts) {\n var xg = new Alea(seed), state = opts && opts.state, prng = xg.next;\n prng.int32 = function() {\n return xg.next() * 4294967296 | 0;\n };\n prng.double = function() {\n return prng() + (prng() * 2097152 | 0) * 11102230246251565e-32;\n };\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n function Mash() {\n var n = 4022871197;\n var mash = function(data) {\n data = String(data);\n for (var i2 = 0; i2 < data.length; i2++) {\n n += data.charCodeAt(i2);\n var h = 0.02519603282416938 * n;\n n = h >>> 0;\n h -= n;\n h *= n;\n n = h >>> 0;\n h -= n;\n n += h * 4294967296;\n }\n return (n >>> 0) * 23283064365386963e-26;\n };\n return mash;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.alea = impl;\n }\n })(exports, typeof module == \"object\" && module, typeof define == \"function\" && define);\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js\nvar require_xor1282 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this, strseed = \"\";\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.next = function() {\n var t2 = me.x ^ me.x << 11;\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= me.w >>> 19 ^ t2 ^ t2 >>> 8;\n };\n if (seed === (seed | 0)) {\n me.x = seed;\n } else {\n strseed += seed;\n }\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n }\n function copy(f, t2) {\n t2.x = f.x;\n t2.y = f.y;\n t2.z = f.z;\n t2.w = f.w;\n return t2;\n }\n function impl(seed, opts) {\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xor128 = impl;\n }\n })(exports, typeof module == \"object\" && module, typeof define == \"function\" && define);\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js\nvar require_xorwow2 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this, strseed = \"\";\n me.next = function() {\n var t2 = me.x ^ me.x >>> 2;\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n me.w = me.v;\n return (me.d = me.d + 362437 | 0) + (me.v = me.v ^ me.v << 4 ^ (t2 ^ t2 << 1)) | 0;\n };\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n if (seed === (seed | 0)) {\n me.x = seed;\n } else {\n strseed += seed;\n }\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n }\n function copy(f, t2) {\n t2.x = f.x;\n t2.y = f.y;\n t2.z = f.z;\n t2.w = f.w;\n t2.v = f.v;\n t2.d = f.d;\n return t2;\n }\n function impl(seed, opts) {\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xorwow = impl;\n }\n })(exports, typeof module == \"object\" && module, typeof define == \"function\" && define);\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js\nvar require_xorshift72 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this;\n me.next = function() {\n var X = me.x, i2 = me.i, t2, v, w;\n t2 = X[i2];\n t2 ^= t2 >>> 7;\n v = t2 ^ t2 << 24;\n t2 = X[i2 + 1 & 7];\n v ^= t2 ^ t2 >>> 10;\n t2 = X[i2 + 3 & 7];\n v ^= t2 ^ t2 >>> 3;\n t2 = X[i2 + 4 & 7];\n v ^= t2 ^ t2 << 7;\n t2 = X[i2 + 7 & 7];\n t2 = t2 ^ t2 << 13;\n v ^= t2 ^ t2 << 9;\n X[i2] = v;\n me.i = i2 + 1 & 7;\n return v;\n };\n function init2(me2, seed2) {\n var j, w, X = [];\n if (seed2 === (seed2 | 0)) {\n w = X[0] = seed2;\n } else {\n seed2 = \"\" + seed2;\n for (j = 0; j < seed2.length; ++j) {\n X[j & 7] = X[j & 7] << 15 ^ seed2.charCodeAt(j) + X[j + 1 & 7] << 13;\n }\n }\n while (X.length < 8)\n X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j)\n ;\n if (j == 8)\n w = X[7] = -1;\n else\n w = X[j];\n me2.x = X;\n me2.i = 0;\n for (j = 256; j > 0; --j) {\n me2.next();\n }\n }\n init2(me, seed);\n }\n function copy(f, t2) {\n t2.x = f.x.slice();\n t2.i = f.i;\n return t2;\n }\n function impl(seed, opts) {\n if (seed == null)\n seed = +new Date();\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x)\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xorshift7 = impl;\n }\n })(exports, typeof module == \"object\" && module, typeof define == \"function\" && define);\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js\nvar require_xor40962 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this;\n me.next = function() {\n var w = me.w, X = me.X, i2 = me.i, t2, v;\n me.w = w = w + 1640531527 | 0;\n v = X[i2 + 34 & 127];\n t2 = X[i2 = i2 + 1 & 127];\n v ^= v << 13;\n t2 ^= t2 << 17;\n v ^= v >>> 15;\n t2 ^= t2 >>> 12;\n v = X[i2] = v ^ t2;\n me.i = i2;\n return v + (w ^ w >>> 16) | 0;\n };\n function init2(me2, seed2) {\n var t2, v, i2, j, w, X = [], limit = 128;\n if (seed2 === (seed2 | 0)) {\n v = seed2;\n seed2 = null;\n } else {\n seed2 = seed2 + \"\\0\";\n v = 0;\n limit = Math.max(limit, seed2.length);\n }\n for (i2 = 0, j = -32; j < limit; ++j) {\n if (seed2)\n v ^= seed2.charCodeAt((j + 32) % seed2.length);\n if (j === 0)\n w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = w + 1640531527 | 0;\n t2 = X[j & 127] ^= v + w;\n i2 = 0 == t2 ? i2 + 1 : 0;\n }\n }\n if (i2 >= 128) {\n X[(seed2 && seed2.length || 0) & 127] = -1;\n }\n i2 = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[i2 + 34 & 127];\n t2 = X[i2 = i2 + 1 & 127];\n v ^= v << 13;\n t2 ^= t2 << 17;\n v ^= v >>> 15;\n t2 ^= t2 >>> 12;\n X[i2] = v ^ t2;\n }\n me2.w = w;\n me2.X = X;\n me2.i = i2;\n }\n init2(me, seed);\n }\n function copy(f, t2) {\n t2.i = f.i;\n t2.w = f.w;\n t2.X = f.X.slice();\n return t2;\n }\n ;\n function impl(seed, opts) {\n if (seed == null)\n seed = +new Date();\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X)\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xor4096 = impl;\n }\n })(exports, typeof module == \"object\" && module, typeof define == \"function\" && define);\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js\nvar require_tychei2 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this, strseed = \"\";\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a6 = me.a;\n b = b << 25 ^ b >>> 7 ^ c;\n c = c - d | 0;\n d = d << 24 ^ d >>> 8 ^ a6;\n a6 = a6 - b | 0;\n me.b = b = b << 20 ^ b >>> 12 ^ c;\n me.c = c = c - d | 0;\n me.d = d << 16 ^ c >>> 16 ^ a6;\n return me.a = a6 - b | 0;\n };\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n if (seed === Math.floor(seed)) {\n me.a = seed / 4294967296 | 0;\n me.b = seed | 0;\n } else {\n strseed += seed;\n }\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n }\n function copy(f, t2) {\n t2.a = f.a;\n t2.b = f.b;\n t2.c = f.c;\n t2.d = f.d;\n return t2;\n }\n ;\n function impl(seed, opts) {\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.tychei = impl;\n }\n })(exports, typeof module == \"object\" && module, typeof define == \"function\" && define);\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js\nvar require_seedrandom3 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js\"(exports, module) {\n (function(global2, pool3, math) {\n var width = 256, chunks = 6, digits = 52, rngname = \"random\", startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask = width - 1, nodecrypto;\n function seedrandom5(seed, options, callback) {\n var key = [];\n options = options == true ? { entropy: true } : options || {};\n var shortseed = mixkey(flatten4(options.entropy ? [seed, tostring(pool3)] : seed == null ? autoseed() : seed, 3), key);\n var arc4 = new ARC4(key);\n var prng = function() {\n var n = arc4.g(chunks), d = startdenom, x = 0;\n while (n < significance) {\n n = (n + x) * width;\n d *= width;\n x = arc4.g(1);\n }\n while (n >= overflow) {\n n /= 2;\n d /= 2;\n x >>>= 1;\n }\n return (n + x) / d;\n };\n prng.int32 = function() {\n return arc4.g(4) | 0;\n };\n prng.quick = function() {\n return arc4.g(4) / 4294967296;\n };\n prng.double = prng;\n mixkey(tostring(arc4.S), pool3);\n return (options.pass || callback || function(prng2, seed2, is_math_call, state) {\n if (state) {\n if (state.S) {\n copy(state, arc4);\n }\n prng2.state = function() {\n return copy(arc4, {});\n };\n }\n if (is_math_call) {\n math[rngname] = prng2;\n return seed2;\n } else\n return prng2;\n })(prng, shortseed, \"global\" in options ? options.global : this == math, options.state);\n }\n function ARC4(key) {\n var t2, keylen = key.length, me = this, i2 = 0, j = me.i = me.j = 0, s2 = me.S = [];\n if (!keylen) {\n key = [keylen++];\n }\n while (i2 < width) {\n s2[i2] = i2++;\n }\n for (i2 = 0; i2 < width; i2++) {\n s2[i2] = s2[j = mask & j + key[i2 % keylen] + (t2 = s2[i2])];\n s2[j] = t2;\n }\n (me.g = function(count2) {\n var t3, r2 = 0, i3 = me.i, j2 = me.j, s3 = me.S;\n while (count2--) {\n t3 = s3[i3 = mask & i3 + 1];\n r2 = r2 * width + s3[mask & (s3[i3] = s3[j2 = mask & j2 + t3]) + (s3[j2] = t3)];\n }\n me.i = i3;\n me.j = j2;\n return r2;\n })(width);\n }\n function copy(f, t2) {\n t2.i = f.i;\n t2.j = f.j;\n t2.S = f.S.slice();\n return t2;\n }\n ;\n function flatten4(obj, depth) {\n var result = [], typ = typeof obj, prop;\n if (depth && typ == \"object\") {\n for (prop in obj) {\n try {\n result.push(flatten4(obj[prop], depth - 1));\n } catch (e2) {\n }\n }\n }\n return result.length ? result : typ == \"string\" ? obj : obj + \"\\0\";\n }\n function mixkey(seed, key) {\n var stringseed = seed + \"\", smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] = mask & (smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++);\n }\n return tostring(key);\n }\n function autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global2.crypto || global2.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e2) {\n var browser = global2.navigator, plugins = browser && browser.plugins;\n return [+new Date(), global2, plugins, global2.screen, tostring(pool3)];\n }\n }\n function tostring(a6) {\n return String.fromCharCode.apply(0, a6);\n }\n mixkey(math.random(), pool3);\n if (typeof module == \"object\" && module.exports) {\n module.exports = seedrandom5;\n try {\n nodecrypto = require_crypto();\n } catch (ex) {\n }\n } else if (typeof define == \"function\" && define.amd) {\n define(function() {\n return seedrandom5;\n });\n } else {\n math[\"seed\" + rngname] = seedrandom5;\n }\n })(typeof self !== \"undefined\" ? self : exports, [], Math);\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js\nvar require_seedrandom4 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js\"(exports, module) {\n var alea5 = require_alea2();\n var xor128 = require_xor1282();\n var xorwow = require_xorwow2();\n var xorshift7 = require_xorshift72();\n var xor4096 = require_xor40962();\n var tychei = require_tychei2();\n var sr = require_seedrandom3();\n sr.alea = alea5;\n sr.xor128 = xor128;\n sr.xorwow = xorwow;\n sr.xorshift7 = xorshift7;\n sr.xor4096 = xor4096;\n sr.tychei = tychei;\n module.exports = sr;\n }\n});\n\n// (disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js\nvar require_string_decoder = __commonJS({\n \"(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js\"() {\n }\n});\n\n// (disabled):fs\nvar require_fs = __commonJS({\n \"(disabled):fs\"() {\n }\n});\n\n// (disabled):path\nvar require_path = __commonJS({\n \"(disabled):path\"() {\n }\n});\n\n// (disabled):worker_threads\nvar require_worker_threads = __commonJS({\n \"(disabled):worker_threads\"() {\n }\n});\n\n// (disabled):perf_hooks\nvar require_perf_hooks = __commonJS({\n \"(disabled):perf_hooks\"() {\n }\n});\n\n// (disabled):os\nvar require_os = __commonJS({\n \"(disabled):os\"() {\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.18.0_br26fteayl44zj43fz4bazb7oq/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js\nvar require_tfjs_backend_wasm_threaded_simd = __commonJS({\n \"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.18.0_br26fteayl44zj43fz4bazb7oq/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js\"(exports, module) {\n var WasmBackendModuleThreadedSimd2 = (() => {\n var _scriptDir = typeof document !== \"undefined\" && document.currentScript ? document.currentScript.src : void 0;\n if (typeof __filename !== \"undefined\")\n _scriptDir = _scriptDir || __filename;\n return function(WasmBackendModuleThreadedSimd3) {\n WasmBackendModuleThreadedSimd3 = WasmBackendModuleThreadedSimd3 || {};\n function GROWABLE_HEAP_I8() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAP8;\n }\n function GROWABLE_HEAP_U8() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAPU8;\n }\n function GROWABLE_HEAP_I16() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAP16;\n }\n function GROWABLE_HEAP_U16() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAPU16;\n }\n function GROWABLE_HEAP_I32() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAP32;\n }\n function GROWABLE_HEAP_F32() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAPF32;\n }\n function GROWABLE_HEAP_F64() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAPF64;\n }\n var Module = typeof WasmBackendModuleThreadedSimd3 !== \"undefined\" ? WasmBackendModuleThreadedSimd3 : {};\n var readyPromiseResolve, readyPromiseReject;\n Module[\"ready\"] = new Promise(function(resolve, reject) {\n readyPromiseResolve = resolve;\n readyPromiseReject = reject;\n });\n var beforeListeners;\n if (typeof process !== \"undefined\" && process.listeners) {\n beforeListeners = { uncaughtException: process.listeners(\"uncaughtException\"), unhandledRejection: process.listeners(\"unhandledRejection\") };\n }\n var moduleOverrides = Object.assign({}, Module);\n var arguments_ = [];\n var thisProgram = \"./this.program\";\n var quit_ = (status, toThrow) => {\n throw toThrow;\n };\n var ENVIRONMENT_IS_WEB = typeof window === \"object\";\n var ENVIRONMENT_IS_WORKER = typeof importScripts === \"function\";\n var ENVIRONMENT_IS_NODE = typeof process === \"object\" && typeof process.versions === \"object\" && typeof process.versions.node === \"string\";\n var ENVIRONMENT_IS_PTHREAD = Module[\"ENVIRONMENT_IS_PTHREAD\"] || false;\n var scriptDirectory = \"\";\n function locateFile(path) {\n if (Module[\"locateFile\"]) {\n return Module[\"locateFile\"](path, scriptDirectory);\n }\n return scriptDirectory + path;\n }\n var read_, readAsync, readBinary, setWindowTitle;\n function logExceptionOnExit(e2) {\n if (e2 instanceof ExitStatus)\n return;\n let toLog = e2;\n err(\"exiting due to exception: \" + toLog);\n }\n var fs;\n var nodePath;\n var requireNodeFS;\n if (ENVIRONMENT_IS_NODE) {\n if (ENVIRONMENT_IS_WORKER) {\n scriptDirectory = require_path().dirname(scriptDirectory) + \"/\";\n } else {\n scriptDirectory = __dirname + \"/\";\n }\n requireNodeFS = () => {\n if (!nodePath) {\n fs = require_fs();\n nodePath = require_path();\n }\n };\n read_ = function shell_read(filename, binary) {\n requireNodeFS();\n filename = nodePath[\"normalize\"](filename);\n return fs.readFileSync(filename, binary ? void 0 : \"utf8\");\n };\n readBinary = (filename) => {\n var ret = read_(filename, true);\n if (!ret.buffer) {\n ret = new Uint8Array(ret);\n }\n return ret;\n };\n readAsync = (filename, onload, onerror) => {\n requireNodeFS();\n filename = nodePath[\"normalize\"](filename);\n fs.readFile(filename, function(err2, data) {\n if (err2)\n onerror(err2);\n else\n onload(data.buffer);\n });\n };\n if (process[\"argv\"].length > 1) {\n thisProgram = process[\"argv\"][1].replace(/\\\\/g, \"/\");\n }\n arguments_ = process[\"argv\"].slice(2);\n process[\"on\"](\"uncaughtException\", function(ex) {\n if (!(ex instanceof ExitStatus)) {\n throw ex;\n }\n });\n process[\"on\"](\"unhandledRejection\", function(reason) {\n throw reason;\n });\n quit_ = (status, toThrow) => {\n if (keepRuntimeAlive()) {\n process[\"exitCode\"] = status;\n throw toThrow;\n }\n logExceptionOnExit(toThrow);\n process[\"exit\"](status);\n };\n Module[\"inspect\"] = function() {\n return \"[Emscripten Module object]\";\n };\n let nodeWorkerThreads;\n try {\n nodeWorkerThreads = require_worker_threads();\n } catch (e2) {\n console.error('The \"worker_threads\" module is not supported in this node.js build - perhaps a newer version is needed?');\n throw e2;\n }\n global.Worker = nodeWorkerThreads.Worker;\n } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) {\n if (ENVIRONMENT_IS_WORKER) {\n scriptDirectory = self.location.href;\n } else if (typeof document !== \"undefined\" && document.currentScript) {\n scriptDirectory = document.currentScript.src;\n }\n if (typeof _scriptDir !== \"undefined\" && _scriptDir) {\n scriptDirectory = _scriptDir;\n }\n if (scriptDirectory.indexOf(\"blob:\") !== 0) {\n scriptDirectory = scriptDirectory.substr(0, scriptDirectory.replace(/[?#].*/, \"\").lastIndexOf(\"/\") + 1);\n } else {\n scriptDirectory = \"\";\n }\n if (!ENVIRONMENT_IS_NODE) {\n read_ = (url) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, false);\n xhr.send(null);\n return xhr.responseText;\n };\n if (ENVIRONMENT_IS_WORKER) {\n readBinary = (url) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, false);\n xhr.responseType = \"arraybuffer\";\n xhr.send(null);\n return new Uint8Array(xhr.response);\n };\n }\n readAsync = (url, onload, onerror) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, true);\n xhr.responseType = \"arraybuffer\";\n xhr.onload = () => {\n if (xhr.status == 200 || xhr.status == 0 && xhr.response) {\n onload(xhr.response);\n return;\n }\n onerror();\n };\n xhr.onerror = onerror;\n xhr.send(null);\n };\n }\n setWindowTitle = (title) => document.title = title;\n } else {\n }\n if (ENVIRONMENT_IS_NODE) {\n if (typeof performance === \"undefined\") {\n global.performance = require_perf_hooks().performance;\n }\n }\n var defaultPrint = console.log.bind(console);\n var defaultPrintErr = console.warn.bind(console);\n if (ENVIRONMENT_IS_NODE) {\n requireNodeFS();\n defaultPrint = (str) => fs.writeSync(1, str + \"\\n\");\n defaultPrintErr = (str) => fs.writeSync(2, str + \"\\n\");\n }\n var out = Module[\"print\"] || defaultPrint;\n var err = Module[\"printErr\"] || defaultPrintErr;\n Object.assign(Module, moduleOverrides);\n moduleOverrides = null;\n if (Module[\"arguments\"])\n arguments_ = Module[\"arguments\"];\n if (Module[\"thisProgram\"])\n thisProgram = Module[\"thisProgram\"];\n if (Module[\"quit\"])\n quit_ = Module[\"quit\"];\n var POINTER_SIZE = 4;\n function warnOnce(text) {\n if (!warnOnce.shown)\n warnOnce.shown = {};\n if (!warnOnce.shown[text]) {\n warnOnce.shown[text] = 1;\n err(text);\n }\n }\n function convertJsFunctionToWasm(func2, sig) {\n if (typeof WebAssembly.Function === \"function\") {\n var typeNames = { \"i\": \"i32\", \"j\": \"i64\", \"f\": \"f32\", \"d\": \"f64\" };\n var type = { parameters: [], results: sig[0] == \"v\" ? [] : [typeNames[sig[0]]] };\n for (var i2 = 1; i2 < sig.length; ++i2) {\n type.parameters.push(typeNames[sig[i2]]);\n }\n return new WebAssembly.Function(type, func2);\n }\n var typeSection = [1, 0, 1, 96];\n var sigRet = sig.slice(0, 1);\n var sigParam = sig.slice(1);\n var typeCodes = { \"i\": 127, \"j\": 126, \"f\": 125, \"d\": 124 };\n typeSection.push(sigParam.length);\n for (var i2 = 0; i2 < sigParam.length; ++i2) {\n typeSection.push(typeCodes[sigParam[i2]]);\n }\n if (sigRet == \"v\") {\n typeSection.push(0);\n } else {\n typeSection = typeSection.concat([1, typeCodes[sigRet]]);\n }\n typeSection[1] = typeSection.length - 2;\n var bytes = new Uint8Array([0, 97, 115, 109, 1, 0, 0, 0].concat(typeSection, [2, 7, 1, 1, 101, 1, 102, 0, 0, 7, 5, 1, 1, 102, 0, 0]));\n var module2 = new WebAssembly.Module(bytes);\n var instance = new WebAssembly.Instance(module2, { \"e\": { \"f\": func2 } });\n var wrappedFunc = instance.exports[\"f\"];\n return wrappedFunc;\n }\n var freeTableIndexes = [];\n var functionsInTableMap;\n function getEmptyTableSlot() {\n if (freeTableIndexes.length) {\n return freeTableIndexes.pop();\n }\n try {\n wasmTable.grow(1);\n } catch (err2) {\n if (!(err2 instanceof RangeError)) {\n throw err2;\n }\n throw \"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.\";\n }\n return wasmTable.length - 1;\n }\n function updateTableMap(offset, count2) {\n for (var i2 = offset; i2 < offset + count2; i2++) {\n var item = getWasmTableEntry(i2);\n if (item) {\n functionsInTableMap.set(item, i2);\n }\n }\n }\n var tempRet0 = 0;\n var setTempRet0 = (value) => {\n tempRet0 = value;\n };\n var Atomics_load = Atomics.load;\n var Atomics_store = Atomics.store;\n var Atomics_compareExchange = Atomics.compareExchange;\n var wasmBinary;\n if (Module[\"wasmBinary\"])\n wasmBinary = Module[\"wasmBinary\"];\n var noExitRuntime = Module[\"noExitRuntime\"] || true;\n if (typeof WebAssembly !== \"object\") {\n abort(\"no native wasm support detected\");\n }\n var wasmMemory;\n var wasmModule;\n var ABORT = false;\n var EXITSTATUS;\n function assert3(condition, text) {\n if (!condition) {\n abort(text);\n }\n }\n function getCFunc(ident) {\n var func2 = Module[\"_\" + ident];\n return func2;\n }\n function ccall(ident, returnType, argTypes, args, opts) {\n var toC = { \"string\": function(str) {\n var ret2 = 0;\n if (str !== null && str !== void 0 && str !== 0) {\n var len = (str.length << 2) + 1;\n ret2 = stackAlloc(len);\n stringToUTF8(str, ret2, len);\n }\n return ret2;\n }, \"array\": function(arr) {\n var ret2 = stackAlloc(arr.length);\n writeArrayToMemory(arr, ret2);\n return ret2;\n } };\n function convertReturnValue(ret2) {\n if (returnType === \"string\")\n return UTF8ToString(ret2);\n if (returnType === \"boolean\")\n return Boolean(ret2);\n return ret2;\n }\n var func2 = getCFunc(ident);\n var cArgs = [];\n var stack2 = 0;\n if (args) {\n for (var i2 = 0; i2 < args.length; i2++) {\n var converter = toC[argTypes[i2]];\n if (converter) {\n if (stack2 === 0)\n stack2 = stackSave();\n cArgs[i2] = converter(args[i2]);\n } else {\n cArgs[i2] = args[i2];\n }\n }\n }\n var ret = func2.apply(null, cArgs);\n function onDone(ret2) {\n if (stack2 !== 0)\n stackRestore(stack2);\n return convertReturnValue(ret2);\n }\n ret = onDone(ret);\n return ret;\n }\n function cwrap(ident, returnType, argTypes, opts) {\n argTypes = argTypes || [];\n var numericArgs = argTypes.every(function(type) {\n return type === \"number\";\n });\n var numericRet = returnType !== \"string\";\n if (numericRet && numericArgs && !opts) {\n return getCFunc(ident);\n }\n return function() {\n return ccall(ident, returnType, argTypes, arguments, opts);\n };\n }\n var ALLOC_STACK = 1;\n function TextDecoderWrapper(encoding) {\n var textDecoder = new TextDecoder(encoding);\n this.decode = (data) => {\n if (data.buffer instanceof SharedArrayBuffer) {\n data = new Uint8Array(data);\n }\n return textDecoder.decode.call(textDecoder, data);\n };\n }\n var UTF8Decoder = typeof TextDecoder !== \"undefined\" ? new TextDecoderWrapper(\"utf8\") : void 0;\n function UTF8ArrayToString(heap, idx, maxBytesToRead) {\n var endIdx = idx + maxBytesToRead;\n var endPtr = idx;\n while (heap[endPtr] && !(endPtr >= endIdx))\n ++endPtr;\n if (endPtr - idx > 16 && heap.subarray && UTF8Decoder) {\n return UTF8Decoder.decode(heap.subarray(idx, endPtr));\n } else {\n var str = \"\";\n while (idx < endPtr) {\n var u0 = heap[idx++];\n if (!(u0 & 128)) {\n str += String.fromCharCode(u0);\n continue;\n }\n var u1 = heap[idx++] & 63;\n if ((u0 & 224) == 192) {\n str += String.fromCharCode((u0 & 31) << 6 | u1);\n continue;\n }\n var u2 = heap[idx++] & 63;\n if ((u0 & 240) == 224) {\n u0 = (u0 & 15) << 12 | u1 << 6 | u2;\n } else {\n u0 = (u0 & 7) << 18 | u1 << 12 | u2 << 6 | heap[idx++] & 63;\n }\n if (u0 < 65536) {\n str += String.fromCharCode(u0);\n } else {\n var ch = u0 - 65536;\n str += String.fromCharCode(55296 | ch >> 10, 56320 | ch & 1023);\n }\n }\n }\n return str;\n }\n function UTF8ToString(ptr, maxBytesToRead) {\n return ptr ? UTF8ArrayToString(GROWABLE_HEAP_U8(), ptr, maxBytesToRead) : \"\";\n }\n function stringToUTF8Array(str, heap, outIdx, maxBytesToWrite) {\n if (!(maxBytesToWrite > 0))\n return 0;\n var startIdx = outIdx;\n var endIdx = outIdx + maxBytesToWrite - 1;\n for (var i2 = 0; i2 < str.length; ++i2) {\n var u = str.charCodeAt(i2);\n if (u >= 55296 && u <= 57343) {\n var u1 = str.charCodeAt(++i2);\n u = 65536 + ((u & 1023) << 10) | u1 & 1023;\n }\n if (u <= 127) {\n if (outIdx >= endIdx)\n break;\n heap[outIdx++] = u;\n } else if (u <= 2047) {\n if (outIdx + 1 >= endIdx)\n break;\n heap[outIdx++] = 192 | u >> 6;\n heap[outIdx++] = 128 | u & 63;\n } else if (u <= 65535) {\n if (outIdx + 2 >= endIdx)\n break;\n heap[outIdx++] = 224 | u >> 12;\n heap[outIdx++] = 128 | u >> 6 & 63;\n heap[outIdx++] = 128 | u & 63;\n } else {\n if (outIdx + 3 >= endIdx)\n break;\n heap[outIdx++] = 240 | u >> 18;\n heap[outIdx++] = 128 | u >> 12 & 63;\n heap[outIdx++] = 128 | u >> 6 & 63;\n heap[outIdx++] = 128 | u & 63;\n }\n }\n heap[outIdx] = 0;\n return outIdx - startIdx;\n }\n function stringToUTF8(str, outPtr, maxBytesToWrite) {\n return stringToUTF8Array(str, GROWABLE_HEAP_U8(), outPtr, maxBytesToWrite);\n }\n function lengthBytesUTF8(str) {\n var len = 0;\n for (var i2 = 0; i2 < str.length; ++i2) {\n var u = str.charCodeAt(i2);\n if (u >= 55296 && u <= 57343)\n u = 65536 + ((u & 1023) << 10) | str.charCodeAt(++i2) & 1023;\n if (u <= 127)\n ++len;\n else if (u <= 2047)\n len += 2;\n else if (u <= 65535)\n len += 3;\n else\n len += 4;\n }\n return len;\n }\n var UTF16Decoder = typeof TextDecoder !== \"undefined\" ? new TextDecoderWrapper(\"utf-16le\") : void 0;\n function writeArrayToMemory(array2, buffer3) {\n GROWABLE_HEAP_I8().set(array2, buffer3);\n }\n function writeAsciiToMemory(str, buffer3, dontAddNull) {\n for (var i2 = 0; i2 < str.length; ++i2) {\n GROWABLE_HEAP_I8()[buffer3++ >> 0] = str.charCodeAt(i2);\n }\n if (!dontAddNull)\n GROWABLE_HEAP_I8()[buffer3 >> 0] = 0;\n }\n function alignUp(x, multiple) {\n if (x % multiple > 0) {\n x += multiple - x % multiple;\n }\n return x;\n }\n var buffer2, HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64;\n if (ENVIRONMENT_IS_PTHREAD) {\n buffer2 = Module[\"buffer\"];\n }\n function updateGlobalBufferAndViews(buf) {\n buffer2 = buf;\n Module[\"HEAP8\"] = HEAP8 = new Int8Array(buf);\n Module[\"HEAP16\"] = HEAP16 = new Int16Array(buf);\n Module[\"HEAP32\"] = HEAP32 = new Int32Array(buf);\n Module[\"HEAPU8\"] = HEAPU8 = new Uint8Array(buf);\n Module[\"HEAPU16\"] = HEAPU16 = new Uint16Array(buf);\n Module[\"HEAPU32\"] = HEAPU32 = new Uint32Array(buf);\n Module[\"HEAPF32\"] = HEAPF32 = new Float32Array(buf);\n Module[\"HEAPF64\"] = HEAPF64 = new Float64Array(buf);\n }\n var INITIAL_MEMORY = Module[\"INITIAL_MEMORY\"] || 16777216;\n if (ENVIRONMENT_IS_PTHREAD) {\n wasmMemory = Module[\"wasmMemory\"];\n buffer2 = Module[\"buffer\"];\n } else {\n if (Module[\"wasmMemory\"]) {\n wasmMemory = Module[\"wasmMemory\"];\n } else {\n wasmMemory = new WebAssembly.Memory({ \"initial\": INITIAL_MEMORY / 65536, \"maximum\": 2147483648 / 65536, \"shared\": true });\n if (!(wasmMemory.buffer instanceof SharedArrayBuffer)) {\n err(\"requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag\");\n if (ENVIRONMENT_IS_NODE) {\n console.log(\"(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)\");\n }\n throw Error(\"bad memory\");\n }\n }\n }\n if (wasmMemory) {\n buffer2 = wasmMemory.buffer;\n }\n INITIAL_MEMORY = buffer2.byteLength;\n updateGlobalBufferAndViews(buffer2);\n var wasmTable;\n var __ATPRERUN__ = [];\n var __ATINIT__ = [];\n var __ATEXIT__ = [];\n var __ATPOSTRUN__ = [];\n var runtimeInitialized = false;\n var runtimeExited = false;\n var runtimeKeepaliveCounter = 0;\n function keepRuntimeAlive() {\n return noExitRuntime || runtimeKeepaliveCounter > 0;\n }\n function preRun() {\n if (Module[\"preRun\"]) {\n if (typeof Module[\"preRun\"] == \"function\")\n Module[\"preRun\"] = [Module[\"preRun\"]];\n while (Module[\"preRun\"].length) {\n addOnPreRun(Module[\"preRun\"].shift());\n }\n }\n callRuntimeCallbacks(__ATPRERUN__);\n }\n function initRuntime() {\n runtimeInitialized = true;\n if (ENVIRONMENT_IS_PTHREAD)\n return;\n callRuntimeCallbacks(__ATINIT__);\n }\n function exitRuntime() {\n if (ENVIRONMENT_IS_PTHREAD)\n return;\n PThread.terminateAllThreads();\n runtimeExited = true;\n }\n function postRun() {\n if (ENVIRONMENT_IS_PTHREAD)\n return;\n if (Module[\"postRun\"]) {\n if (typeof Module[\"postRun\"] == \"function\")\n Module[\"postRun\"] = [Module[\"postRun\"]];\n while (Module[\"postRun\"].length) {\n addOnPostRun(Module[\"postRun\"].shift());\n }\n }\n callRuntimeCallbacks(__ATPOSTRUN__);\n }\n function addOnPreRun(cb) {\n __ATPRERUN__.unshift(cb);\n }\n function addOnInit(cb) {\n __ATINIT__.unshift(cb);\n }\n function addOnPostRun(cb) {\n __ATPOSTRUN__.unshift(cb);\n }\n var runDependencies = 0;\n var runDependencyWatcher = null;\n var dependenciesFulfilled = null;\n function addRunDependency(id) {\n runDependencies++;\n if (Module[\"monitorRunDependencies\"]) {\n Module[\"monitorRunDependencies\"](runDependencies);\n }\n }\n function removeRunDependency(id) {\n runDependencies--;\n if (Module[\"monitorRunDependencies\"]) {\n Module[\"monitorRunDependencies\"](runDependencies);\n }\n if (runDependencies == 0) {\n if (runDependencyWatcher !== null) {\n clearInterval(runDependencyWatcher);\n runDependencyWatcher = null;\n }\n if (dependenciesFulfilled) {\n var callback = dependenciesFulfilled;\n dependenciesFulfilled = null;\n callback();\n }\n }\n }\n Module[\"preloadedImages\"] = {};\n Module[\"preloadedAudios\"] = {};\n function abort(what) {\n if (ENVIRONMENT_IS_PTHREAD) {\n postMessage({ \"cmd\": \"onAbort\", \"arg\": what });\n } else {\n if (Module[\"onAbort\"]) {\n Module[\"onAbort\"](what);\n }\n }\n what = \"Aborted(\" + what + \")\";\n err(what);\n ABORT = true;\n EXITSTATUS = 1;\n what += \". Build with -s ASSERTIONS=1 for more info.\";\n var e2 = new WebAssembly.RuntimeError(what);\n readyPromiseReject(e2);\n throw e2;\n }\n var dataURIPrefix = \"data:application/octet-stream;base64,\";\n function isDataURI(filename) {\n return filename.startsWith(dataURIPrefix);\n }\n function isFileURI(filename) {\n return filename.startsWith(\"file://\");\n }\n var wasmBinaryFile;\n wasmBinaryFile = \"tfjs-backend-wasm-threaded-simd.wasm\";\n if (!isDataURI(wasmBinaryFile)) {\n wasmBinaryFile = locateFile(wasmBinaryFile);\n }\n function getBinary(file) {\n try {\n if (file == wasmBinaryFile && wasmBinary) {\n return new Uint8Array(wasmBinary);\n }\n if (readBinary) {\n return readBinary(file);\n } else {\n throw \"both async and sync fetching of the wasm failed\";\n }\n } catch (err2) {\n abort(err2);\n }\n }\n function getBinaryPromise() {\n if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER)) {\n if (typeof fetch === \"function\" && !isFileURI(wasmBinaryFile)) {\n return fetch(wasmBinaryFile, { credentials: \"same-origin\" }).then(function(response) {\n if (!response[\"ok\"]) {\n throw \"failed to load wasm binary file at '\" + wasmBinaryFile + \"'\";\n }\n return response[\"arrayBuffer\"]();\n }).catch(function() {\n return getBinary(wasmBinaryFile);\n });\n } else {\n if (readAsync) {\n return new Promise(function(resolve, reject) {\n readAsync(wasmBinaryFile, function(response) {\n resolve(new Uint8Array(response));\n }, reject);\n });\n }\n }\n }\n return Promise.resolve().then(function() {\n return getBinary(wasmBinaryFile);\n });\n }\n function createWasm() {\n var info = { \"env\": asmLibraryArg, \"wasi_snapshot_preview1\": asmLibraryArg };\n function receiveInstance(instance, module2) {\n var exports3 = instance.exports;\n Module[\"asm\"] = exports3;\n registerTlsInit(Module[\"asm\"][\"emscripten_tls_init\"]);\n wasmTable = Module[\"asm\"][\"__indirect_function_table\"];\n addOnInit(Module[\"asm\"][\"__wasm_call_ctors\"]);\n wasmModule = module2;\n if (!ENVIRONMENT_IS_PTHREAD) {\n var numWorkersToLoad = PThread.unusedWorkers.length;\n PThread.unusedWorkers.forEach(function(w) {\n PThread.loadWasmModuleToWorker(w, function() {\n if (!--numWorkersToLoad)\n removeRunDependency(\"wasm-instantiate\");\n });\n });\n }\n }\n if (!ENVIRONMENT_IS_PTHREAD) {\n addRunDependency(\"wasm-instantiate\");\n }\n function receiveInstantiationResult(result) {\n receiveInstance(result[\"instance\"], result[\"module\"]);\n }\n function instantiateArrayBuffer(receiver) {\n return getBinaryPromise().then(function(binary) {\n return WebAssembly.instantiate(binary, info);\n }).then(function(instance) {\n return instance;\n }).then(receiver, function(reason) {\n err(\"failed to asynchronously prepare wasm: \" + reason);\n abort(reason);\n });\n }\n function instantiateAsync() {\n if (!wasmBinary && typeof WebAssembly.instantiateStreaming === \"function\" && !isDataURI(wasmBinaryFile) && !isFileURI(wasmBinaryFile) && typeof fetch === \"function\") {\n return fetch(wasmBinaryFile, { credentials: \"same-origin\" }).then(function(response) {\n var result = WebAssembly.instantiateStreaming(response, info);\n return result.then(receiveInstantiationResult, function(reason) {\n err(\"wasm streaming compile failed: \" + reason);\n err(\"falling back to ArrayBuffer instantiation\");\n return instantiateArrayBuffer(receiveInstantiationResult);\n });\n });\n } else {\n return instantiateArrayBuffer(receiveInstantiationResult);\n }\n }\n if (Module[\"instantiateWasm\"]) {\n try {\n var exports2 = Module[\"instantiateWasm\"](info, receiveInstance);\n return exports2;\n } catch (e2) {\n err(\"Module.instantiateWasm callback failed with error: \" + e2);\n return false;\n }\n }\n instantiateAsync().catch(readyPromiseReject);\n return {};\n }\n var tempDouble;\n var tempI64;\n var ASM_CONSTS = {};\n function callRuntimeCallbacks(callbacks2) {\n while (callbacks2.length > 0) {\n var callback = callbacks2.shift();\n if (typeof callback == \"function\") {\n callback(Module);\n continue;\n }\n var func2 = callback.func;\n if (typeof func2 === \"number\") {\n if (callback.arg === void 0) {\n getWasmTableEntry(func2)();\n } else {\n getWasmTableEntry(func2)(callback.arg);\n }\n } else {\n func2(callback.arg === void 0 ? null : callback.arg);\n }\n }\n }\n function withStackSave(f) {\n var stack2 = stackSave();\n var ret = f();\n stackRestore(stack2);\n return ret;\n }\n function demangle(func2) {\n return func2;\n }\n function demangleAll(text) {\n var regex = /\\b_Z[\\w\\d_]+/g;\n return text.replace(regex, function(x) {\n var y = demangle(x);\n return x === y ? x : y + \" [\" + x + \"]\";\n });\n }\n function killThread(pthread_ptr) {\n GROWABLE_HEAP_I32()[pthread_ptr >> 2] = 0;\n var pthread = PThread.pthreads[pthread_ptr];\n delete PThread.pthreads[pthread_ptr];\n pthread.worker.terminate();\n __emscripten_thread_free_data(pthread_ptr);\n PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(pthread.worker), 1);\n pthread.worker.pthread = void 0;\n }\n function cancelThread(pthread_ptr) {\n var pthread = PThread.pthreads[pthread_ptr];\n pthread.worker.postMessage({ \"cmd\": \"cancel\" });\n }\n function cleanupThread(pthread_ptr) {\n var pthread = PThread.pthreads[pthread_ptr];\n if (pthread) {\n GROWABLE_HEAP_I32()[pthread_ptr >> 2] = 0;\n var worker = pthread.worker;\n PThread.returnWorkerToPool(worker);\n }\n }\n function _exit(status) {\n exit(status);\n }\n function handleException(e2) {\n if (e2 instanceof ExitStatus || e2 == \"unwind\") {\n return EXITSTATUS;\n }\n quit_(1, e2);\n }\n var PThread = { unusedWorkers: [], runningWorkers: [], tlsInitFunctions: [], init: function() {\n if (ENVIRONMENT_IS_PTHREAD) {\n PThread.initWorker();\n } else {\n PThread.initMainThread();\n }\n }, initMainThread: function() {\n var pthreadPoolSize = 8;\n for (var i2 = 0; i2 < pthreadPoolSize; ++i2) {\n PThread.allocateUnusedWorker();\n }\n }, initWorker: function() {\n noExitRuntime = false;\n }, pthreads: {}, setExitStatus: function(status) {\n EXITSTATUS = status;\n }, terminateAllThreads: function() {\n for (var t2 in PThread.pthreads) {\n var pthread = PThread.pthreads[t2];\n if (pthread && pthread.worker) {\n PThread.returnWorkerToPool(pthread.worker);\n }\n }\n for (var i2 = 0; i2 < PThread.unusedWorkers.length; ++i2) {\n var worker = PThread.unusedWorkers[i2];\n worker.terminate();\n }\n PThread.unusedWorkers = [];\n }, returnWorkerToPool: function(worker) {\n PThread.runWithoutMainThreadQueuedCalls(function() {\n delete PThread.pthreads[worker.pthread.threadInfoStruct];\n PThread.unusedWorkers.push(worker);\n PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(worker), 1);\n __emscripten_thread_free_data(worker.pthread.threadInfoStruct);\n worker.pthread = void 0;\n });\n }, runWithoutMainThreadQueuedCalls: function(func2) {\n GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls >> 2] = 0;\n try {\n func2();\n } finally {\n GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls >> 2] = 1;\n }\n }, receiveObjectTransfer: function(data) {\n }, threadInit: function() {\n for (var i2 in PThread.tlsInitFunctions) {\n PThread.tlsInitFunctions[i2]();\n }\n }, loadWasmModuleToWorker: function(worker, onFinishedLoading) {\n worker.onmessage = (e2) => {\n var d = e2[\"data\"];\n var cmd = d[\"cmd\"];\n if (worker.pthread)\n PThread.currentProxiedOperationCallerThread = worker.pthread.threadInfoStruct;\n if (d[\"targetThread\"] && d[\"targetThread\"] != _pthread_self()) {\n var thread = PThread.pthreads[d.targetThread];\n if (thread) {\n thread.worker.postMessage(d, d[\"transferList\"]);\n } else {\n err('Internal error! Worker sent a message \"' + cmd + '\" to target pthread ' + d[\"targetThread\"] + \", but that thread no longer exists!\");\n }\n PThread.currentProxiedOperationCallerThread = void 0;\n return;\n }\n if (cmd === \"processQueuedMainThreadWork\") {\n _emscripten_main_thread_process_queued_calls();\n } else if (cmd === \"spawnThread\") {\n spawnThread(d);\n } else if (cmd === \"cleanupThread\") {\n cleanupThread(d[\"thread\"]);\n } else if (cmd === \"killThread\") {\n killThread(d[\"thread\"]);\n } else if (cmd === \"cancelThread\") {\n cancelThread(d[\"thread\"]);\n } else if (cmd === \"loaded\") {\n worker.loaded = true;\n if (onFinishedLoading)\n onFinishedLoading(worker);\n if (worker.runPthread) {\n worker.runPthread();\n delete worker.runPthread;\n }\n } else if (cmd === \"print\") {\n out(\"Thread \" + d[\"threadId\"] + \": \" + d[\"text\"]);\n } else if (cmd === \"printErr\") {\n err(\"Thread \" + d[\"threadId\"] + \": \" + d[\"text\"]);\n } else if (cmd === \"alert\") {\n alert(\"Thread \" + d[\"threadId\"] + \": \" + d[\"text\"]);\n } else if (d.target === \"setimmediate\") {\n worker.postMessage(d);\n } else if (cmd === \"onAbort\") {\n if (Module[\"onAbort\"]) {\n Module[\"onAbort\"](d[\"arg\"]);\n }\n } else {\n err(\"worker sent an unknown command \" + cmd);\n }\n PThread.currentProxiedOperationCallerThread = void 0;\n };\n worker.onerror = (e2) => {\n var message = \"worker sent an error!\";\n err(message + \" \" + e2.filename + \":\" + e2.lineno + \": \" + e2.message);\n throw e2;\n };\n if (ENVIRONMENT_IS_NODE) {\n worker.on(\"message\", function(data) {\n worker.onmessage({ data });\n });\n worker.on(\"error\", function(e2) {\n worker.onerror(e2);\n });\n worker.on(\"detachedExit\", function() {\n });\n }\n worker.postMessage({ \"cmd\": \"load\", \"urlOrBlob\": Module[\"mainScriptUrlOrBlob\"] || _scriptDir, \"wasmMemory\": wasmMemory, \"wasmModule\": wasmModule });\n }, allocateUnusedWorker: function() {\n var pthreadMainJs = locateFile(\"tfjs-backend-wasm-threaded-simd.worker.js\");\n PThread.unusedWorkers.push(new Worker(pthreadMainJs));\n }, getNewWorker: function() {\n if (PThread.unusedWorkers.length == 0) {\n PThread.allocateUnusedWorker();\n PThread.loadWasmModuleToWorker(PThread.unusedWorkers[0]);\n }\n return PThread.unusedWorkers.pop();\n } };\n function establishStackSpace() {\n var pthread_ptr = _pthread_self();\n var stackTop = GROWABLE_HEAP_I32()[pthread_ptr + 44 >> 2];\n var stackSize = GROWABLE_HEAP_I32()[pthread_ptr + 48 >> 2];\n var stackMax = stackTop - stackSize;\n _emscripten_stack_set_limits(stackTop, stackMax);\n stackRestore(stackTop);\n }\n Module[\"establishStackSpace\"] = establishStackSpace;\n function exitOnMainThread(returnCode) {\n if (ENVIRONMENT_IS_PTHREAD)\n return _emscripten_proxy_to_main_thread_js(1, 0, returnCode);\n try {\n _exit(returnCode);\n } catch (e2) {\n handleException(e2);\n }\n }\n var wasmTableMirror = [];\n function getWasmTableEntry(funcPtr) {\n var func2 = wasmTableMirror[funcPtr];\n if (!func2) {\n if (funcPtr >= wasmTableMirror.length)\n wasmTableMirror.length = funcPtr + 1;\n wasmTableMirror[funcPtr] = func2 = wasmTable.get(funcPtr);\n }\n return func2;\n }\n function invokeEntryPoint(ptr, arg) {\n return getWasmTableEntry(ptr)(arg);\n }\n Module[\"invokeEntryPoint\"] = invokeEntryPoint;\n function jsStackTrace() {\n var error = new Error();\n if (!error.stack) {\n try {\n throw new Error();\n } catch (e2) {\n error = e2;\n }\n if (!error.stack) {\n return \"(no stack trace available)\";\n }\n }\n return error.stack.toString();\n }\n function registerTlsInit(tlsInitFunc, moduleExports, metadata) {\n PThread.tlsInitFunctions.push(tlsInitFunc);\n }\n function setWasmTableEntry(idx, func2) {\n wasmTable.set(idx, func2);\n wasmTableMirror[idx] = func2;\n }\n var _emscripten_get_now;\n if (ENVIRONMENT_IS_NODE) {\n _emscripten_get_now = () => {\n var t2 = process[\"hrtime\"]();\n return t2[0] * 1e3 + t2[1] / 1e6;\n };\n } else if (ENVIRONMENT_IS_PTHREAD) {\n _emscripten_get_now = () => performance.now() - Module[\"__performance_now_clock_drift\"];\n } else\n _emscripten_get_now = () => performance.now();\n var _emscripten_get_now_is_monotonic = true;\n function setErrNo(value) {\n GROWABLE_HEAP_I32()[___errno_location() >> 2] = value;\n return value;\n }\n function _clock_gettime(clk_id, tp) {\n var now2;\n if (clk_id === 0) {\n now2 = Date.now();\n } else if ((clk_id === 1 || clk_id === 4) && _emscripten_get_now_is_monotonic) {\n now2 = _emscripten_get_now();\n } else {\n setErrNo(28);\n return -1;\n }\n GROWABLE_HEAP_I32()[tp >> 2] = now2 / 1e3 | 0;\n GROWABLE_HEAP_I32()[tp + 4 >> 2] = now2 % 1e3 * 1e3 * 1e3 | 0;\n return 0;\n }\n function ___clock_gettime(a0, a12) {\n return _clock_gettime(a0, a12);\n }\n function ___emscripten_init_main_thread_js(tb) {\n __emscripten_thread_init(tb, !ENVIRONMENT_IS_WORKER, 1, !ENVIRONMENT_IS_WEB);\n PThread.threadInit();\n }\n function ___emscripten_thread_cleanup(thread) {\n if (!ENVIRONMENT_IS_PTHREAD)\n cleanupThread(thread);\n else\n postMessage({ \"cmd\": \"cleanupThread\", \"thread\": thread });\n }\n function spawnThread(threadParams) {\n var worker = PThread.getNewWorker();\n if (!worker) {\n return 6;\n }\n PThread.runningWorkers.push(worker);\n var pthread = PThread.pthreads[threadParams.pthread_ptr] = { worker, threadInfoStruct: threadParams.pthread_ptr };\n worker.pthread = pthread;\n var msg = { \"cmd\": \"run\", \"start_routine\": threadParams.startRoutine, \"arg\": threadParams.arg, \"threadInfoStruct\": threadParams.pthread_ptr };\n worker.runPthread = () => {\n msg.time = performance.now();\n worker.postMessage(msg, threadParams.transferList);\n };\n if (worker.loaded) {\n worker.runPthread();\n delete worker.runPthread;\n }\n return 0;\n }\n function ___pthread_create_js(pthread_ptr, attr, start_routine, arg) {\n if (typeof SharedArrayBuffer === \"undefined\") {\n err(\"Current environment does not support SharedArrayBuffer, pthreads are not available!\");\n return 6;\n }\n var transferList = [];\n var error = 0;\n if (ENVIRONMENT_IS_PTHREAD && (transferList.length === 0 || error)) {\n return _emscripten_sync_run_in_main_thread_4(687865856, pthread_ptr, attr, start_routine, arg);\n }\n if (error)\n return error;\n var threadParams = { startRoutine: start_routine, pthread_ptr, arg, transferList };\n if (ENVIRONMENT_IS_PTHREAD) {\n threadParams.cmd = \"spawnThread\";\n postMessage(threadParams, transferList);\n return 0;\n }\n return spawnThread(threadParams);\n }\n function __emscripten_default_pthread_stack_size() {\n return 2097152;\n }\n function __emscripten_notify_thread_queue(targetThreadId, mainThreadId) {\n if (targetThreadId == mainThreadId) {\n postMessage({ \"cmd\": \"processQueuedMainThreadWork\" });\n } else if (ENVIRONMENT_IS_PTHREAD) {\n postMessage({ \"targetThread\": targetThreadId, \"cmd\": \"processThreadQueue\" });\n } else {\n var pthread = PThread.pthreads[targetThreadId];\n var worker = pthread && pthread.worker;\n if (!worker) {\n return;\n }\n worker.postMessage({ \"cmd\": \"processThreadQueue\" });\n }\n return 1;\n }\n function _abort() {\n abort(\"\");\n }\n function _emscripten_check_blocking_allowed() {\n if (ENVIRONMENT_IS_NODE)\n return;\n if (ENVIRONMENT_IS_WORKER)\n return;\n warnOnce(\"Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread\");\n }\n function _emscripten_get_heap_max() {\n return 2147483648;\n }\n function _emscripten_memcpy_big(dest, src, num) {\n GROWABLE_HEAP_U8().copyWithin(dest, src, src + num);\n }\n function _emscripten_num_logical_cores() {\n if (ENVIRONMENT_IS_NODE)\n return require_os().cpus().length;\n return navigator[\"hardwareConcurrency\"];\n }\n function _emscripten_proxy_to_main_thread_js(index, sync) {\n var numCallArgs = arguments.length - 2;\n var outerArgs = arguments;\n return withStackSave(function() {\n var serializedNumCallArgs = numCallArgs;\n var args = stackAlloc(serializedNumCallArgs * 8);\n var b = args >> 3;\n for (var i2 = 0; i2 < numCallArgs; i2++) {\n var arg = outerArgs[2 + i2];\n GROWABLE_HEAP_F64()[b + i2] = arg;\n }\n return _emscripten_run_in_main_runtime_thread_js(index, serializedNumCallArgs, args, sync);\n });\n }\n var _emscripten_receive_on_main_thread_js_callArgs = [];\n function _emscripten_receive_on_main_thread_js(index, numCallArgs, args) {\n _emscripten_receive_on_main_thread_js_callArgs.length = numCallArgs;\n var b = args >> 3;\n for (var i2 = 0; i2 < numCallArgs; i2++) {\n _emscripten_receive_on_main_thread_js_callArgs[i2] = GROWABLE_HEAP_F64()[b + i2];\n }\n var isEmAsmConst = index < 0;\n var func2 = !isEmAsmConst ? proxiedFunctionTable[index] : ASM_CONSTS[-index - 1];\n return func2.apply(null, _emscripten_receive_on_main_thread_js_callArgs);\n }\n function emscripten_realloc_buffer(size) {\n try {\n wasmMemory.grow(size - buffer2.byteLength + 65535 >>> 16);\n updateGlobalBufferAndViews(wasmMemory.buffer);\n return 1;\n } catch (e2) {\n }\n }\n function _emscripten_resize_heap(requestedSize) {\n var oldSize = GROWABLE_HEAP_U8().length;\n requestedSize = requestedSize >>> 0;\n if (requestedSize <= oldSize) {\n return false;\n }\n var maxHeapSize = _emscripten_get_heap_max();\n if (requestedSize > maxHeapSize) {\n return false;\n }\n for (var cutDown = 1; cutDown <= 4; cutDown *= 2) {\n var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown);\n overGrownHeapSize = Math.min(overGrownHeapSize, requestedSize + 100663296);\n var newSize = Math.min(maxHeapSize, alignUp(Math.max(requestedSize, overGrownHeapSize), 65536));\n var replacement = emscripten_realloc_buffer(newSize);\n if (replacement) {\n return true;\n }\n }\n return false;\n }\n var JSEvents = { inEventHandler: 0, removeAllEventListeners: function() {\n for (var i2 = JSEvents.eventHandlers.length - 1; i2 >= 0; --i2) {\n JSEvents._removeHandler(i2);\n }\n JSEvents.eventHandlers = [];\n JSEvents.deferredCalls = [];\n }, registerRemoveEventListeners: function() {\n if (!JSEvents.removeEventListenersRegistered) {\n __ATEXIT__.push(JSEvents.removeAllEventListeners);\n JSEvents.removeEventListenersRegistered = true;\n }\n }, deferredCalls: [], deferCall: function(targetFunction, precedence, argsList) {\n function arraysHaveEqualContent(arrA, arrB) {\n if (arrA.length != arrB.length)\n return false;\n for (var i3 in arrA) {\n if (arrA[i3] != arrB[i3])\n return false;\n }\n return true;\n }\n for (var i2 in JSEvents.deferredCalls) {\n var call = JSEvents.deferredCalls[i2];\n if (call.targetFunction == targetFunction && arraysHaveEqualContent(call.argsList, argsList)) {\n return;\n }\n }\n JSEvents.deferredCalls.push({ targetFunction, precedence, argsList });\n JSEvents.deferredCalls.sort(function(x, y) {\n return x.precedence < y.precedence;\n });\n }, removeDeferredCalls: function(targetFunction) {\n for (var i2 = 0; i2 < JSEvents.deferredCalls.length; ++i2) {\n if (JSEvents.deferredCalls[i2].targetFunction == targetFunction) {\n JSEvents.deferredCalls.splice(i2, 1);\n --i2;\n }\n }\n }, canPerformEventHandlerRequests: function() {\n return JSEvents.inEventHandler && JSEvents.currentEventHandler.allowsDeferredCalls;\n }, runDeferredCalls: function() {\n if (!JSEvents.canPerformEventHandlerRequests()) {\n return;\n }\n for (var i2 = 0; i2 < JSEvents.deferredCalls.length; ++i2) {\n var call = JSEvents.deferredCalls[i2];\n JSEvents.deferredCalls.splice(i2, 1);\n --i2;\n call.targetFunction.apply(null, call.argsList);\n }\n }, eventHandlers: [], removeAllHandlersOnTarget: function(target, eventTypeString) {\n for (var i2 = 0; i2 < JSEvents.eventHandlers.length; ++i2) {\n if (JSEvents.eventHandlers[i2].target == target && (!eventTypeString || eventTypeString == JSEvents.eventHandlers[i2].eventTypeString)) {\n JSEvents._removeHandler(i2--);\n }\n }\n }, _removeHandler: function(i2) {\n var h = JSEvents.eventHandlers[i2];\n h.target.removeEventListener(h.eventTypeString, h.eventListenerFunc, h.useCapture);\n JSEvents.eventHandlers.splice(i2, 1);\n }, registerOrRemoveHandler: function(eventHandler) {\n var jsEventHandler = function jsEventHandler2(event) {\n ++JSEvents.inEventHandler;\n JSEvents.currentEventHandler = eventHandler;\n JSEvents.runDeferredCalls();\n eventHandler.handlerFunc(event);\n JSEvents.runDeferredCalls();\n --JSEvents.inEventHandler;\n };\n if (eventHandler.callbackfunc) {\n eventHandler.eventListenerFunc = jsEventHandler;\n eventHandler.target.addEventListener(eventHandler.eventTypeString, jsEventHandler, eventHandler.useCapture);\n JSEvents.eventHandlers.push(eventHandler);\n JSEvents.registerRemoveEventListeners();\n } else {\n for (var i2 = 0; i2 < JSEvents.eventHandlers.length; ++i2) {\n if (JSEvents.eventHandlers[i2].target == eventHandler.target && JSEvents.eventHandlers[i2].eventTypeString == eventHandler.eventTypeString) {\n JSEvents._removeHandler(i2--);\n }\n }\n }\n }, queueEventHandlerOnThread_iiii: function(targetThread, eventHandlerFunc, eventTypeId, eventData, userData) {\n withStackSave(function() {\n var varargs = stackAlloc(12);\n GROWABLE_HEAP_I32()[varargs >> 2] = eventTypeId;\n GROWABLE_HEAP_I32()[varargs + 4 >> 2] = eventData;\n GROWABLE_HEAP_I32()[varargs + 8 >> 2] = userData;\n _emscripten_dispatch_to_thread_(targetThread, 637534208, eventHandlerFunc, eventData, varargs);\n });\n }, getTargetThreadForEventCallback: function(targetThread) {\n switch (targetThread) {\n case 1:\n return 0;\n case 2:\n return PThread.currentProxiedOperationCallerThread;\n default:\n return targetThread;\n }\n }, getNodeNameForTarget: function(target) {\n if (!target)\n return \"\";\n if (target == window)\n return \"#window\";\n if (target == screen)\n return \"#screen\";\n return target && target.nodeName ? target.nodeName : \"\";\n }, fullscreenEnabled: function() {\n return document.fullscreenEnabled || document.webkitFullscreenEnabled;\n } };\n function stringToNewUTF8(jsString) {\n var length = lengthBytesUTF8(jsString) + 1;\n var cString = _malloc(length);\n stringToUTF8(jsString, cString, length);\n return cString;\n }\n function _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread, targetCanvas, width, height) {\n withStackSave(function() {\n var varargs = stackAlloc(12);\n var targetCanvasPtr = 0;\n if (targetCanvas) {\n targetCanvasPtr = stringToNewUTF8(targetCanvas);\n }\n GROWABLE_HEAP_I32()[varargs >> 2] = targetCanvasPtr;\n GROWABLE_HEAP_I32()[varargs + 4 >> 2] = width;\n GROWABLE_HEAP_I32()[varargs + 8 >> 2] = height;\n _emscripten_dispatch_to_thread_(targetThread, 657457152, 0, targetCanvasPtr, varargs);\n });\n }\n function _emscripten_set_offscreencanvas_size_on_target_thread(targetThread, targetCanvas, width, height) {\n targetCanvas = targetCanvas ? UTF8ToString(targetCanvas) : \"\";\n _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread, targetCanvas, width, height);\n }\n function maybeCStringToJsString(cString) {\n return cString > 2 ? UTF8ToString(cString) : cString;\n }\n var specialHTMLTargets = [0, typeof document !== \"undefined\" ? document : 0, typeof window !== \"undefined\" ? window : 0];\n function findEventTarget(target) {\n target = maybeCStringToJsString(target);\n var domElement = specialHTMLTargets[target] || (typeof document !== \"undefined\" ? document.querySelector(target) : void 0);\n return domElement;\n }\n function findCanvasEventTarget(target) {\n return findEventTarget(target);\n }\n function _emscripten_set_canvas_element_size_calling_thread(target, width, height) {\n var canvas = findCanvasEventTarget(target);\n if (!canvas)\n return -4;\n if (canvas.canvasSharedPtr) {\n GROWABLE_HEAP_I32()[canvas.canvasSharedPtr >> 2] = width;\n GROWABLE_HEAP_I32()[canvas.canvasSharedPtr + 4 >> 2] = height;\n }\n if (canvas.offscreenCanvas || !canvas.controlTransferredOffscreen) {\n if (canvas.offscreenCanvas)\n canvas = canvas.offscreenCanvas;\n var autoResizeViewport = false;\n if (canvas.GLctxObject && canvas.GLctxObject.GLctx) {\n var prevViewport = canvas.GLctxObject.GLctx.getParameter(2978);\n autoResizeViewport = prevViewport[0] === 0 && prevViewport[1] === 0 && prevViewport[2] === canvas.width && prevViewport[3] === canvas.height;\n }\n canvas.width = width;\n canvas.height = height;\n if (autoResizeViewport) {\n canvas.GLctxObject.GLctx.viewport(0, 0, width, height);\n }\n } else if (canvas.canvasSharedPtr) {\n var targetThread = GROWABLE_HEAP_I32()[canvas.canvasSharedPtr + 8 >> 2];\n _emscripten_set_offscreencanvas_size_on_target_thread(targetThread, target, width, height);\n return 1;\n } else {\n return -4;\n }\n return 0;\n }\n function _emscripten_set_canvas_element_size_main_thread(target, width, height) {\n if (ENVIRONMENT_IS_PTHREAD)\n return _emscripten_proxy_to_main_thread_js(2, 1, target, width, height);\n return _emscripten_set_canvas_element_size_calling_thread(target, width, height);\n }\n function _emscripten_set_canvas_element_size(target, width, height) {\n var canvas = findCanvasEventTarget(target);\n if (canvas) {\n return _emscripten_set_canvas_element_size_calling_thread(target, width, height);\n } else {\n return _emscripten_set_canvas_element_size_main_thread(target, width, height);\n }\n }\n function _emscripten_unwind_to_js_event_loop() {\n throw \"unwind\";\n }\n function __webgl_enable_ANGLE_instanced_arrays(ctx) {\n var ext = ctx.getExtension(\"ANGLE_instanced_arrays\");\n if (ext) {\n ctx[\"vertexAttribDivisor\"] = function(index, divisor) {\n ext[\"vertexAttribDivisorANGLE\"](index, divisor);\n };\n ctx[\"drawArraysInstanced\"] = function(mode, first, count2, primcount) {\n ext[\"drawArraysInstancedANGLE\"](mode, first, count2, primcount);\n };\n ctx[\"drawElementsInstanced\"] = function(mode, count2, type, indices, primcount) {\n ext[\"drawElementsInstancedANGLE\"](mode, count2, type, indices, primcount);\n };\n return 1;\n }\n }\n function __webgl_enable_OES_vertex_array_object(ctx) {\n var ext = ctx.getExtension(\"OES_vertex_array_object\");\n if (ext) {\n ctx[\"createVertexArray\"] = function() {\n return ext[\"createVertexArrayOES\"]();\n };\n ctx[\"deleteVertexArray\"] = function(vao) {\n ext[\"deleteVertexArrayOES\"](vao);\n };\n ctx[\"bindVertexArray\"] = function(vao) {\n ext[\"bindVertexArrayOES\"](vao);\n };\n ctx[\"isVertexArray\"] = function(vao) {\n return ext[\"isVertexArrayOES\"](vao);\n };\n return 1;\n }\n }\n function __webgl_enable_WEBGL_draw_buffers(ctx) {\n var ext = ctx.getExtension(\"WEBGL_draw_buffers\");\n if (ext) {\n ctx[\"drawBuffers\"] = function(n, bufs) {\n ext[\"drawBuffersWEBGL\"](n, bufs);\n };\n return 1;\n }\n }\n function __webgl_enable_WEBGL_multi_draw(ctx) {\n return !!(ctx.multiDrawWebgl = ctx.getExtension(\"WEBGL_multi_draw\"));\n }\n var GL = { counter: 1, buffers: [], programs: [], framebuffers: [], renderbuffers: [], textures: [], shaders: [], vaos: [], contexts: {}, offscreenCanvases: {}, queries: [], stringCache: {}, unpackAlignment: 4, recordError: function recordError(errorCode) {\n if (!GL.lastError) {\n GL.lastError = errorCode;\n }\n }, getNewId: function(table) {\n var ret = GL.counter++;\n for (var i2 = table.length; i2 < ret; i2++) {\n table[i2] = null;\n }\n return ret;\n }, getSource: function(shader, count2, string2, length) {\n var source = \"\";\n for (var i2 = 0; i2 < count2; ++i2) {\n var len = length ? GROWABLE_HEAP_I32()[length + i2 * 4 >> 2] : -1;\n source += UTF8ToString(GROWABLE_HEAP_I32()[string2 + i2 * 4 >> 2], len < 0 ? void 0 : len);\n }\n return source;\n }, createContext: function(canvas, webGLContextAttributes) {\n if (!canvas.getContextSafariWebGL2Fixed) {\n canvas.getContextSafariWebGL2Fixed = canvas.getContext;\n canvas.getContext = function(ver, attrs) {\n var gl = canvas.getContextSafariWebGL2Fixed(ver, attrs);\n return ver == \"webgl\" == gl instanceof WebGLRenderingContext ? gl : null;\n };\n }\n var ctx = canvas.getContext(\"webgl\", webGLContextAttributes);\n if (!ctx)\n return 0;\n var handle = GL.registerContext(ctx, webGLContextAttributes);\n return handle;\n }, registerContext: function(ctx, webGLContextAttributes) {\n var handle = _malloc(8);\n GROWABLE_HEAP_I32()[handle + 4 >> 2] = _pthread_self();\n var context = { handle, attributes: webGLContextAttributes, version: webGLContextAttributes.majorVersion, GLctx: ctx };\n if (ctx.canvas)\n ctx.canvas.GLctxObject = context;\n GL.contexts[handle] = context;\n if (typeof webGLContextAttributes.enableExtensionsByDefault === \"undefined\" || webGLContextAttributes.enableExtensionsByDefault) {\n GL.initExtensions(context);\n }\n return handle;\n }, makeContextCurrent: function(contextHandle) {\n GL.currentContext = GL.contexts[contextHandle];\n Module.ctx = GLctx = GL.currentContext && GL.currentContext.GLctx;\n return !(contextHandle && !GLctx);\n }, getContext: function(contextHandle) {\n return GL.contexts[contextHandle];\n }, deleteContext: function(contextHandle) {\n if (GL.currentContext === GL.contexts[contextHandle])\n GL.currentContext = null;\n if (typeof JSEvents === \"object\")\n JSEvents.removeAllHandlersOnTarget(GL.contexts[contextHandle].GLctx.canvas);\n if (GL.contexts[contextHandle] && GL.contexts[contextHandle].GLctx.canvas)\n GL.contexts[contextHandle].GLctx.canvas.GLctxObject = void 0;\n _free(GL.contexts[contextHandle].handle);\n GL.contexts[contextHandle] = null;\n }, initExtensions: function(context) {\n if (!context)\n context = GL.currentContext;\n if (context.initExtensionsDone)\n return;\n context.initExtensionsDone = true;\n var GLctx2 = context.GLctx;\n __webgl_enable_ANGLE_instanced_arrays(GLctx2);\n __webgl_enable_OES_vertex_array_object(GLctx2);\n __webgl_enable_WEBGL_draw_buffers(GLctx2);\n {\n GLctx2.disjointTimerQueryExt = GLctx2.getExtension(\"EXT_disjoint_timer_query\");\n }\n __webgl_enable_WEBGL_multi_draw(GLctx2);\n var exts = GLctx2.getSupportedExtensions() || [];\n exts.forEach(function(ext) {\n if (!ext.includes(\"lose_context\") && !ext.includes(\"debug\")) {\n GLctx2.getExtension(ext);\n }\n });\n } };\n var __emscripten_webgl_power_preferences = [\"default\", \"low-power\", \"high-performance\"];\n function _emscripten_webgl_do_create_context(target, attributes) {\n var a6 = attributes >> 2;\n var powerPreference = GROWABLE_HEAP_I32()[a6 + (24 >> 2)];\n var contextAttributes = { \"alpha\": !!GROWABLE_HEAP_I32()[a6 + (0 >> 2)], \"depth\": !!GROWABLE_HEAP_I32()[a6 + (4 >> 2)], \"stencil\": !!GROWABLE_HEAP_I32()[a6 + (8 >> 2)], \"antialias\": !!GROWABLE_HEAP_I32()[a6 + (12 >> 2)], \"premultipliedAlpha\": !!GROWABLE_HEAP_I32()[a6 + (16 >> 2)], \"preserveDrawingBuffer\": !!GROWABLE_HEAP_I32()[a6 + (20 >> 2)], \"powerPreference\": __emscripten_webgl_power_preferences[powerPreference], \"failIfMajorPerformanceCaveat\": !!GROWABLE_HEAP_I32()[a6 + (28 >> 2)], majorVersion: GROWABLE_HEAP_I32()[a6 + (32 >> 2)], minorVersion: GROWABLE_HEAP_I32()[a6 + (36 >> 2)], enableExtensionsByDefault: GROWABLE_HEAP_I32()[a6 + (40 >> 2)], explicitSwapControl: GROWABLE_HEAP_I32()[a6 + (44 >> 2)], proxyContextToMainThread: GROWABLE_HEAP_I32()[a6 + (48 >> 2)], renderViaOffscreenBackBuffer: GROWABLE_HEAP_I32()[a6 + (52 >> 2)] };\n var canvas = findCanvasEventTarget(target);\n if (!canvas) {\n return 0;\n }\n if (contextAttributes.explicitSwapControl) {\n return 0;\n }\n var contextHandle = GL.createContext(canvas, contextAttributes);\n return contextHandle;\n }\n function _emscripten_webgl_create_context(a0, a12) {\n return _emscripten_webgl_do_create_context(a0, a12);\n }\n var SYSCALLS = { mappings: {}, buffers: [null, [], []], printChar: function(stream, curr) {\n var buffer3 = SYSCALLS.buffers[stream];\n if (curr === 0 || curr === 10) {\n (stream === 1 ? out : err)(UTF8ArrayToString(buffer3, 0));\n buffer3.length = 0;\n } else {\n buffer3.push(curr);\n }\n }, varargs: void 0, get: function() {\n SYSCALLS.varargs += 4;\n var ret = GROWABLE_HEAP_I32()[SYSCALLS.varargs - 4 >> 2];\n return ret;\n }, getStr: function(ptr) {\n var ret = UTF8ToString(ptr);\n return ret;\n }, get64: function(low, high) {\n return low;\n } };\n function _fd_close(fd) {\n if (ENVIRONMENT_IS_PTHREAD)\n return _emscripten_proxy_to_main_thread_js(3, 1, fd);\n return 0;\n }\n function _fd_seek(fd, offset_low, offset_high, whence, newOffset) {\n if (ENVIRONMENT_IS_PTHREAD)\n return _emscripten_proxy_to_main_thread_js(4, 1, fd, offset_low, offset_high, whence, newOffset);\n }\n function _fd_write(fd, iov, iovcnt, pnum) {\n if (ENVIRONMENT_IS_PTHREAD)\n return _emscripten_proxy_to_main_thread_js(5, 1, fd, iov, iovcnt, pnum);\n var num = 0;\n for (var i2 = 0; i2 < iovcnt; i2++) {\n var ptr = GROWABLE_HEAP_I32()[iov >> 2];\n var len = GROWABLE_HEAP_I32()[iov + 4 >> 2];\n iov += 8;\n for (var j = 0; j < len; j++) {\n SYSCALLS.printChar(fd, GROWABLE_HEAP_U8()[ptr + j]);\n }\n num += len;\n }\n GROWABLE_HEAP_I32()[pnum >> 2] = num;\n return 0;\n }\n function _setTempRet0(val) {\n setTempRet0(val);\n }\n PThread.init();\n var GLctx;\n var proxiedFunctionTable = [null, exitOnMainThread, _emscripten_set_canvas_element_size_main_thread, _fd_close, _fd_seek, _fd_write];\n var ASSERTIONS = false;\n var asmLibraryArg = { \"__clock_gettime\": ___clock_gettime, \"__emscripten_init_main_thread_js\": ___emscripten_init_main_thread_js, \"__emscripten_thread_cleanup\": ___emscripten_thread_cleanup, \"__pthread_create_js\": ___pthread_create_js, \"_emscripten_default_pthread_stack_size\": __emscripten_default_pthread_stack_size, \"_emscripten_notify_thread_queue\": __emscripten_notify_thread_queue, \"abort\": _abort, \"emscripten_check_blocking_allowed\": _emscripten_check_blocking_allowed, \"emscripten_get_heap_max\": _emscripten_get_heap_max, \"emscripten_get_now\": _emscripten_get_now, \"emscripten_memcpy_big\": _emscripten_memcpy_big, \"emscripten_num_logical_cores\": _emscripten_num_logical_cores, \"emscripten_receive_on_main_thread_js\": _emscripten_receive_on_main_thread_js, \"emscripten_resize_heap\": _emscripten_resize_heap, \"emscripten_set_canvas_element_size\": _emscripten_set_canvas_element_size, \"emscripten_unwind_to_js_event_loop\": _emscripten_unwind_to_js_event_loop, \"emscripten_webgl_create_context\": _emscripten_webgl_create_context, \"exit\": _exit, \"fd_close\": _fd_close, \"fd_seek\": _fd_seek, \"fd_write\": _fd_write, \"memory\": wasmMemory || Module[\"wasmMemory\"], \"setTempRet0\": _setTempRet0 };\n var asm = createWasm();\n var ___wasm_call_ctors = Module[\"___wasm_call_ctors\"] = function() {\n return (___wasm_call_ctors = Module[\"___wasm_call_ctors\"] = Module[\"asm\"][\"__wasm_call_ctors\"]).apply(null, arguments);\n };\n var _init = Module[\"_init\"] = function() {\n return (_init = Module[\"_init\"] = Module[\"asm\"][\"init\"]).apply(null, arguments);\n };\n var _init_with_threads_count = Module[\"_init_with_threads_count\"] = function() {\n return (_init_with_threads_count = Module[\"_init_with_threads_count\"] = Module[\"asm\"][\"init_with_threads_count\"]).apply(null, arguments);\n };\n var _get_threads_count = Module[\"_get_threads_count\"] = function() {\n return (_get_threads_count = Module[\"_get_threads_count\"] = Module[\"asm\"][\"get_threads_count\"]).apply(null, arguments);\n };\n var _register_tensor = Module[\"_register_tensor\"] = function() {\n return (_register_tensor = Module[\"_register_tensor\"] = Module[\"asm\"][\"register_tensor\"]).apply(null, arguments);\n };\n var _dispose_data = Module[\"_dispose_data\"] = function() {\n return (_dispose_data = Module[\"_dispose_data\"] = Module[\"asm\"][\"dispose_data\"]).apply(null, arguments);\n };\n var _dispose = Module[\"_dispose\"] = function() {\n return (_dispose = Module[\"_dispose\"] = Module[\"asm\"][\"dispose\"]).apply(null, arguments);\n };\n var _Abs = Module[\"_Abs\"] = function() {\n return (_Abs = Module[\"_Abs\"] = Module[\"asm\"][\"Abs\"]).apply(null, arguments);\n };\n var _Add = Module[\"_Add\"] = function() {\n return (_Add = Module[\"_Add\"] = Module[\"asm\"][\"Add\"]).apply(null, arguments);\n };\n var _AddN = Module[\"_AddN\"] = function() {\n return (_AddN = Module[\"_AddN\"] = Module[\"asm\"][\"AddN\"]).apply(null, arguments);\n };\n var _All = Module[\"_All\"] = function() {\n return (_All = Module[\"_All\"] = Module[\"asm\"][\"All\"]).apply(null, arguments);\n };\n var _Any = Module[\"_Any\"] = function() {\n return (_Any = Module[\"_Any\"] = Module[\"asm\"][\"Any\"]).apply(null, arguments);\n };\n var _ArgMax = Module[\"_ArgMax\"] = function() {\n return (_ArgMax = Module[\"_ArgMax\"] = Module[\"asm\"][\"ArgMax\"]).apply(null, arguments);\n };\n var _AvgPool = Module[\"_AvgPool\"] = function() {\n return (_AvgPool = Module[\"_AvgPool\"] = Module[\"asm\"][\"AvgPool\"]).apply(null, arguments);\n };\n var _BatchMatMul = Module[\"_BatchMatMul\"] = function() {\n return (_BatchMatMul = Module[\"_BatchMatMul\"] = Module[\"asm\"][\"BatchMatMul\"]).apply(null, arguments);\n };\n var _Ceil = Module[\"_Ceil\"] = function() {\n return (_Ceil = Module[\"_Ceil\"] = Module[\"asm\"][\"Ceil\"]).apply(null, arguments);\n };\n var _ClipByValue = Module[\"_ClipByValue\"] = function() {\n return (_ClipByValue = Module[\"_ClipByValue\"] = Module[\"asm\"][\"ClipByValue\"]).apply(null, arguments);\n };\n var _Conv2D = Module[\"_Conv2D\"] = function() {\n return (_Conv2D = Module[\"_Conv2D\"] = Module[\"asm\"][\"Conv2D\"]).apply(null, arguments);\n };\n var _Conv2DBackpropInput = Module[\"_Conv2DBackpropInput\"] = function() {\n return (_Conv2DBackpropInput = Module[\"_Conv2DBackpropInput\"] = Module[\"asm\"][\"Conv2DBackpropInput\"]).apply(null, arguments);\n };\n var _Cos = Module[\"_Cos\"] = function() {\n return (_Cos = Module[\"_Cos\"] = Module[\"asm\"][\"Cos\"]).apply(null, arguments);\n };\n var _Cosh = Module[\"_Cosh\"] = function() {\n return (_Cosh = Module[\"_Cosh\"] = Module[\"asm\"][\"Cosh\"]).apply(null, arguments);\n };\n var _CropAndResize = Module[\"_CropAndResize\"] = function() {\n return (_CropAndResize = Module[\"_CropAndResize\"] = Module[\"asm\"][\"CropAndResize\"]).apply(null, arguments);\n };\n var _Cumprod = Module[\"_Cumprod\"] = function() {\n return (_Cumprod = Module[\"_Cumprod\"] = Module[\"asm\"][\"Cumprod\"]).apply(null, arguments);\n };\n var _Cumsum = Module[\"_Cumsum\"] = function() {\n return (_Cumsum = Module[\"_Cumsum\"] = Module[\"asm\"][\"Cumsum\"]).apply(null, arguments);\n };\n var _DepthToSpace = Module[\"_DepthToSpace\"] = function() {\n return (_DepthToSpace = Module[\"_DepthToSpace\"] = Module[\"asm\"][\"DepthToSpace\"]).apply(null, arguments);\n };\n var _DepthwiseConv2dNative = Module[\"_DepthwiseConv2dNative\"] = function() {\n return (_DepthwiseConv2dNative = Module[\"_DepthwiseConv2dNative\"] = Module[\"asm\"][\"DepthwiseConv2dNative\"]).apply(null, arguments);\n };\n var _Elu = Module[\"_Elu\"] = function() {\n return (_Elu = Module[\"_Elu\"] = Module[\"asm\"][\"Elu\"]).apply(null, arguments);\n };\n var _Equal = Module[\"_Equal\"] = function() {\n return (_Equal = Module[\"_Equal\"] = Module[\"asm\"][\"Equal\"]).apply(null, arguments);\n };\n var _Exp = Module[\"_Exp\"] = function() {\n return (_Exp = Module[\"_Exp\"] = Module[\"asm\"][\"Exp\"]).apply(null, arguments);\n };\n var _FlipLeftRight = Module[\"_FlipLeftRight\"] = function() {\n return (_FlipLeftRight = Module[\"_FlipLeftRight\"] = Module[\"asm\"][\"FlipLeftRight\"]).apply(null, arguments);\n };\n var _Floor = Module[\"_Floor\"] = function() {\n return (_Floor = Module[\"_Floor\"] = Module[\"asm\"][\"Floor\"]).apply(null, arguments);\n };\n var _FloorDiv = Module[\"_FloorDiv\"] = function() {\n return (_FloorDiv = Module[\"_FloorDiv\"] = Module[\"asm\"][\"FloorDiv\"]).apply(null, arguments);\n };\n var _FusedBatchNorm = Module[\"_FusedBatchNorm\"] = function() {\n return (_FusedBatchNorm = Module[\"_FusedBatchNorm\"] = Module[\"asm\"][\"FusedBatchNorm\"]).apply(null, arguments);\n };\n var _FusedConv2D = Module[\"_FusedConv2D\"] = function() {\n return (_FusedConv2D = Module[\"_FusedConv2D\"] = Module[\"asm\"][\"FusedConv2D\"]).apply(null, arguments);\n };\n var _FusedDepthwiseConv2D = Module[\"_FusedDepthwiseConv2D\"] = function() {\n return (_FusedDepthwiseConv2D = Module[\"_FusedDepthwiseConv2D\"] = Module[\"asm\"][\"FusedDepthwiseConv2D\"]).apply(null, arguments);\n };\n var _Gather = Module[\"_Gather\"] = function() {\n return (_Gather = Module[\"_Gather\"] = Module[\"asm\"][\"Gather\"]).apply(null, arguments);\n };\n var _GatherNd = Module[\"_GatherNd\"] = function() {\n return (_GatherNd = Module[\"_GatherNd\"] = Module[\"asm\"][\"GatherNd\"]).apply(null, arguments);\n };\n var _Greater = Module[\"_Greater\"] = function() {\n return (_Greater = Module[\"_Greater\"] = Module[\"asm\"][\"Greater\"]).apply(null, arguments);\n };\n var _GreaterEqual = Module[\"_GreaterEqual\"] = function() {\n return (_GreaterEqual = Module[\"_GreaterEqual\"] = Module[\"asm\"][\"GreaterEqual\"]).apply(null, arguments);\n };\n var _LeakyRelu = Module[\"_LeakyRelu\"] = function() {\n return (_LeakyRelu = Module[\"_LeakyRelu\"] = Module[\"asm\"][\"LeakyRelu\"]).apply(null, arguments);\n };\n var _Less = Module[\"_Less\"] = function() {\n return (_Less = Module[\"_Less\"] = Module[\"asm\"][\"Less\"]).apply(null, arguments);\n };\n var _LessEqual = Module[\"_LessEqual\"] = function() {\n return (_LessEqual = Module[\"_LessEqual\"] = Module[\"asm\"][\"LessEqual\"]).apply(null, arguments);\n };\n var _Log = Module[\"_Log\"] = function() {\n return (_Log = Module[\"_Log\"] = Module[\"asm\"][\"Log\"]).apply(null, arguments);\n };\n var _LogicalAnd = Module[\"_LogicalAnd\"] = function() {\n return (_LogicalAnd = Module[\"_LogicalAnd\"] = Module[\"asm\"][\"LogicalAnd\"]).apply(null, arguments);\n };\n var _Max = Module[\"_Max\"] = function() {\n return (_Max = Module[\"_Max\"] = Module[\"asm\"][\"Max\"]).apply(null, arguments);\n };\n var _MaxPool = Module[\"_MaxPool\"] = function() {\n return (_MaxPool = Module[\"_MaxPool\"] = Module[\"asm\"][\"MaxPool\"]).apply(null, arguments);\n };\n var _Maximum = Module[\"_Maximum\"] = function() {\n return (_Maximum = Module[\"_Maximum\"] = Module[\"asm\"][\"Maximum\"]).apply(null, arguments);\n };\n var _Mean = Module[\"_Mean\"] = function() {\n return (_Mean = Module[\"_Mean\"] = Module[\"asm\"][\"Mean\"]).apply(null, arguments);\n };\n var _Min = Module[\"_Min\"] = function() {\n return (_Min = Module[\"_Min\"] = Module[\"asm\"][\"Min\"]).apply(null, arguments);\n };\n var _Minimum = Module[\"_Minimum\"] = function() {\n return (_Minimum = Module[\"_Minimum\"] = Module[\"asm\"][\"Minimum\"]).apply(null, arguments);\n };\n var _MirrorPad = Module[\"_MirrorPad\"] = function() {\n return (_MirrorPad = Module[\"_MirrorPad\"] = Module[\"asm\"][\"MirrorPad\"]).apply(null, arguments);\n };\n var _Multiply = Module[\"_Multiply\"] = function() {\n return (_Multiply = Module[\"_Multiply\"] = Module[\"asm\"][\"Multiply\"]).apply(null, arguments);\n };\n var _Neg = Module[\"_Neg\"] = function() {\n return (_Neg = Module[\"_Neg\"] = Module[\"asm\"][\"Neg\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV3 = Module[\"_NonMaxSuppressionV3\"] = function() {\n return (_NonMaxSuppressionV3 = Module[\"_NonMaxSuppressionV3\"] = Module[\"asm\"][\"NonMaxSuppressionV3\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV4 = Module[\"_NonMaxSuppressionV4\"] = function() {\n return (_NonMaxSuppressionV4 = Module[\"_NonMaxSuppressionV4\"] = Module[\"asm\"][\"NonMaxSuppressionV4\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV5 = Module[\"_NonMaxSuppressionV5\"] = function() {\n return (_NonMaxSuppressionV5 = Module[\"_NonMaxSuppressionV5\"] = Module[\"asm\"][\"NonMaxSuppressionV5\"]).apply(null, arguments);\n };\n var _NotEqual = Module[\"_NotEqual\"] = function() {\n return (_NotEqual = Module[\"_NotEqual\"] = Module[\"asm\"][\"NotEqual\"]).apply(null, arguments);\n };\n var _OneHot = Module[\"_OneHot\"] = function() {\n return (_OneHot = Module[\"_OneHot\"] = Module[\"asm\"][\"OneHot\"]).apply(null, arguments);\n };\n var _PadV2 = Module[\"_PadV2\"] = function() {\n return (_PadV2 = Module[\"_PadV2\"] = Module[\"asm\"][\"PadV2\"]).apply(null, arguments);\n };\n var _Pow = Module[\"_Pow\"] = function() {\n return (_Pow = Module[\"_Pow\"] = Module[\"asm\"][\"Pow\"]).apply(null, arguments);\n };\n var _Prelu = Module[\"_Prelu\"] = function() {\n return (_Prelu = Module[\"_Prelu\"] = Module[\"asm\"][\"Prelu\"]).apply(null, arguments);\n };\n var _Prod = Module[\"_Prod\"] = function() {\n return (_Prod = Module[\"_Prod\"] = Module[\"asm\"][\"Prod\"]).apply(null, arguments);\n };\n var _RealDiv = Module[\"_RealDiv\"] = function() {\n return (_RealDiv = Module[\"_RealDiv\"] = Module[\"asm\"][\"RealDiv\"]).apply(null, arguments);\n };\n var _Relu = Module[\"_Relu\"] = function() {\n return (_Relu = Module[\"_Relu\"] = Module[\"asm\"][\"Relu\"]).apply(null, arguments);\n };\n var _Relu6 = Module[\"_Relu6\"] = function() {\n return (_Relu6 = Module[\"_Relu6\"] = Module[\"asm\"][\"Relu6\"]).apply(null, arguments);\n };\n var _ResizeBilinear = Module[\"_ResizeBilinear\"] = function() {\n return (_ResizeBilinear = Module[\"_ResizeBilinear\"] = Module[\"asm\"][\"ResizeBilinear\"]).apply(null, arguments);\n };\n var _Reverse = Module[\"_Reverse\"] = function() {\n return (_Reverse = Module[\"_Reverse\"] = Module[\"asm\"][\"Reverse\"]).apply(null, arguments);\n };\n var _RotateWithOffset = Module[\"_RotateWithOffset\"] = function() {\n return (_RotateWithOffset = Module[\"_RotateWithOffset\"] = Module[\"asm\"][\"RotateWithOffset\"]).apply(null, arguments);\n };\n var _Round = Module[\"_Round\"] = function() {\n return (_Round = Module[\"_Round\"] = Module[\"asm\"][\"Round\"]).apply(null, arguments);\n };\n var _Rsqrt = Module[\"_Rsqrt\"] = function() {\n return (_Rsqrt = Module[\"_Rsqrt\"] = Module[\"asm\"][\"Rsqrt\"]).apply(null, arguments);\n };\n var _ScatterNd = Module[\"_ScatterNd\"] = function() {\n return (_ScatterNd = Module[\"_ScatterNd\"] = Module[\"asm\"][\"ScatterNd\"]).apply(null, arguments);\n };\n var _SelectV2 = Module[\"_SelectV2\"] = function() {\n return (_SelectV2 = Module[\"_SelectV2\"] = Module[\"asm\"][\"SelectV2\"]).apply(null, arguments);\n };\n var _Sigmoid = Module[\"_Sigmoid\"] = function() {\n return (_Sigmoid = Module[\"_Sigmoid\"] = Module[\"asm\"][\"Sigmoid\"]).apply(null, arguments);\n };\n var _Sin = Module[\"_Sin\"] = function() {\n return (_Sin = Module[\"_Sin\"] = Module[\"asm\"][\"Sin\"]).apply(null, arguments);\n };\n var _Softmax = Module[\"_Softmax\"] = function() {\n return (_Softmax = Module[\"_Softmax\"] = Module[\"asm\"][\"Softmax\"]).apply(null, arguments);\n };\n var _SparseFillEmptyRows = Module[\"_SparseFillEmptyRows\"] = function() {\n return (_SparseFillEmptyRows = Module[\"_SparseFillEmptyRows\"] = Module[\"asm\"][\"SparseFillEmptyRows\"]).apply(null, arguments);\n };\n var _SparseReshape = Module[\"_SparseReshape\"] = function() {\n return (_SparseReshape = Module[\"_SparseReshape\"] = Module[\"asm\"][\"SparseReshape\"]).apply(null, arguments);\n };\n var _SparseSegmentReduction = Module[\"_SparseSegmentReduction\"] = function() {\n return (_SparseSegmentReduction = Module[\"_SparseSegmentReduction\"] = Module[\"asm\"][\"SparseSegmentReduction\"]).apply(null, arguments);\n };\n var _Sqrt = Module[\"_Sqrt\"] = function() {\n return (_Sqrt = Module[\"_Sqrt\"] = Module[\"asm\"][\"Sqrt\"]).apply(null, arguments);\n };\n var _Square = Module[\"_Square\"] = function() {\n return (_Square = Module[\"_Square\"] = Module[\"asm\"][\"Square\"]).apply(null, arguments);\n };\n var _SquaredDifference = Module[\"_SquaredDifference\"] = function() {\n return (_SquaredDifference = Module[\"_SquaredDifference\"] = Module[\"asm\"][\"SquaredDifference\"]).apply(null, arguments);\n };\n var _Step = Module[\"_Step\"] = function() {\n return (_Step = Module[\"_Step\"] = Module[\"asm\"][\"Step\"]).apply(null, arguments);\n };\n var _StridedSlice = Module[\"_StridedSlice\"] = function() {\n return (_StridedSlice = Module[\"_StridedSlice\"] = Module[\"asm\"][\"StridedSlice\"]).apply(null, arguments);\n };\n var _Sub = Module[\"_Sub\"] = function() {\n return (_Sub = Module[\"_Sub\"] = Module[\"asm\"][\"Sub\"]).apply(null, arguments);\n };\n var _Sum = Module[\"_Sum\"] = function() {\n return (_Sum = Module[\"_Sum\"] = Module[\"asm\"][\"Sum\"]).apply(null, arguments);\n };\n var _Tan = Module[\"_Tan\"] = function() {\n return (_Tan = Module[\"_Tan\"] = Module[\"asm\"][\"Tan\"]).apply(null, arguments);\n };\n var _Tanh = Module[\"_Tanh\"] = function() {\n return (_Tanh = Module[\"_Tanh\"] = Module[\"asm\"][\"Tanh\"]).apply(null, arguments);\n };\n var _Tile = Module[\"_Tile\"] = function() {\n return (_Tile = Module[\"_Tile\"] = Module[\"asm\"][\"Tile\"]).apply(null, arguments);\n };\n var _TopK = Module[\"_TopK\"] = function() {\n return (_TopK = Module[\"_TopK\"] = Module[\"asm\"][\"TopK\"]).apply(null, arguments);\n };\n var _Transform = Module[\"_Transform\"] = function() {\n return (_Transform = Module[\"_Transform\"] = Module[\"asm\"][\"Transform\"]).apply(null, arguments);\n };\n var _Transpose = Module[\"_Transpose\"] = function() {\n return (_Transpose = Module[\"_Transpose\"] = Module[\"asm\"][\"Transpose\"]).apply(null, arguments);\n };\n var __FusedMatMul = Module[\"__FusedMatMul\"] = function() {\n return (__FusedMatMul = Module[\"__FusedMatMul\"] = Module[\"asm\"][\"_FusedMatMul\"]).apply(null, arguments);\n };\n var _malloc = Module[\"_malloc\"] = function() {\n return (_malloc = Module[\"_malloc\"] = Module[\"asm\"][\"malloc\"]).apply(null, arguments);\n };\n var _free = Module[\"_free\"] = function() {\n return (_free = Module[\"_free\"] = Module[\"asm\"][\"free\"]).apply(null, arguments);\n };\n var _emscripten_tls_init = Module[\"_emscripten_tls_init\"] = function() {\n return (_emscripten_tls_init = Module[\"_emscripten_tls_init\"] = Module[\"asm\"][\"emscripten_tls_init\"]).apply(null, arguments);\n };\n var ___errno_location = Module[\"___errno_location\"] = function() {\n return (___errno_location = Module[\"___errno_location\"] = Module[\"asm\"][\"__errno_location\"]).apply(null, arguments);\n };\n var _pthread_self = Module[\"_pthread_self\"] = function() {\n return (_pthread_self = Module[\"_pthread_self\"] = Module[\"asm\"][\"pthread_self\"]).apply(null, arguments);\n };\n var _emscripten_main_thread_process_queued_calls = Module[\"_emscripten_main_thread_process_queued_calls\"] = function() {\n return (_emscripten_main_thread_process_queued_calls = Module[\"_emscripten_main_thread_process_queued_calls\"] = Module[\"asm\"][\"emscripten_main_thread_process_queued_calls\"]).apply(null, arguments);\n };\n var __emscripten_thread_crashed = Module[\"__emscripten_thread_crashed\"] = function() {\n return (__emscripten_thread_crashed = Module[\"__emscripten_thread_crashed\"] = Module[\"asm\"][\"_emscripten_thread_crashed\"]).apply(null, arguments);\n };\n var __emscripten_thread_init = Module[\"__emscripten_thread_init\"] = function() {\n return (__emscripten_thread_init = Module[\"__emscripten_thread_init\"] = Module[\"asm\"][\"_emscripten_thread_init\"]).apply(null, arguments);\n };\n var _emscripten_current_thread_process_queued_calls = Module[\"_emscripten_current_thread_process_queued_calls\"] = function() {\n return (_emscripten_current_thread_process_queued_calls = Module[\"_emscripten_current_thread_process_queued_calls\"] = Module[\"asm\"][\"emscripten_current_thread_process_queued_calls\"]).apply(null, arguments);\n };\n var _emscripten_main_browser_thread_id = Module[\"_emscripten_main_browser_thread_id\"] = function() {\n return (_emscripten_main_browser_thread_id = Module[\"_emscripten_main_browser_thread_id\"] = Module[\"asm\"][\"emscripten_main_browser_thread_id\"]).apply(null, arguments);\n };\n var _emscripten_sync_run_in_main_thread_2 = Module[\"_emscripten_sync_run_in_main_thread_2\"] = function() {\n return (_emscripten_sync_run_in_main_thread_2 = Module[\"_emscripten_sync_run_in_main_thread_2\"] = Module[\"asm\"][\"emscripten_sync_run_in_main_thread_2\"]).apply(null, arguments);\n };\n var _emscripten_sync_run_in_main_thread_4 = Module[\"_emscripten_sync_run_in_main_thread_4\"] = function() {\n return (_emscripten_sync_run_in_main_thread_4 = Module[\"_emscripten_sync_run_in_main_thread_4\"] = Module[\"asm\"][\"emscripten_sync_run_in_main_thread_4\"]).apply(null, arguments);\n };\n var _emscripten_run_in_main_runtime_thread_js = Module[\"_emscripten_run_in_main_runtime_thread_js\"] = function() {\n return (_emscripten_run_in_main_runtime_thread_js = Module[\"_emscripten_run_in_main_runtime_thread_js\"] = Module[\"asm\"][\"emscripten_run_in_main_runtime_thread_js\"]).apply(null, arguments);\n };\n var _emscripten_dispatch_to_thread_ = Module[\"_emscripten_dispatch_to_thread_\"] = function() {\n return (_emscripten_dispatch_to_thread_ = Module[\"_emscripten_dispatch_to_thread_\"] = Module[\"asm\"][\"emscripten_dispatch_to_thread_\"]).apply(null, arguments);\n };\n var __emscripten_thread_free_data = Module[\"__emscripten_thread_free_data\"] = function() {\n return (__emscripten_thread_free_data = Module[\"__emscripten_thread_free_data\"] = Module[\"asm\"][\"_emscripten_thread_free_data\"]).apply(null, arguments);\n };\n var __emscripten_thread_exit = Module[\"__emscripten_thread_exit\"] = function() {\n return (__emscripten_thread_exit = Module[\"__emscripten_thread_exit\"] = Module[\"asm\"][\"_emscripten_thread_exit\"]).apply(null, arguments);\n };\n var _memalign = Module[\"_memalign\"] = function() {\n return (_memalign = Module[\"_memalign\"] = Module[\"asm\"][\"memalign\"]).apply(null, arguments);\n };\n var _emscripten_stack_set_limits = Module[\"_emscripten_stack_set_limits\"] = function() {\n return (_emscripten_stack_set_limits = Module[\"_emscripten_stack_set_limits\"] = Module[\"asm\"][\"emscripten_stack_set_limits\"]).apply(null, arguments);\n };\n var stackSave = Module[\"stackSave\"] = function() {\n return (stackSave = Module[\"stackSave\"] = Module[\"asm\"][\"stackSave\"]).apply(null, arguments);\n };\n var stackRestore = Module[\"stackRestore\"] = function() {\n return (stackRestore = Module[\"stackRestore\"] = Module[\"asm\"][\"stackRestore\"]).apply(null, arguments);\n };\n var stackAlloc = Module[\"stackAlloc\"] = function() {\n return (stackAlloc = Module[\"stackAlloc\"] = Module[\"asm\"][\"stackAlloc\"]).apply(null, arguments);\n };\n var dynCall_iijjiiii = Module[\"dynCall_iijjiiii\"] = function() {\n return (dynCall_iijjiiii = Module[\"dynCall_iijjiiii\"] = Module[\"asm\"][\"dynCall_iijjiiii\"]).apply(null, arguments);\n };\n var dynCall_jiji = Module[\"dynCall_jiji\"] = function() {\n return (dynCall_jiji = Module[\"dynCall_jiji\"] = Module[\"asm\"][\"dynCall_jiji\"]).apply(null, arguments);\n };\n var __emscripten_allow_main_runtime_queued_calls = Module[\"__emscripten_allow_main_runtime_queued_calls\"] = 21464;\n Module[\"cwrap\"] = cwrap;\n Module[\"keepRuntimeAlive\"] = keepRuntimeAlive;\n Module[\"PThread\"] = PThread;\n Module[\"PThread\"] = PThread;\n Module[\"wasmMemory\"] = wasmMemory;\n Module[\"ExitStatus\"] = ExitStatus;\n var calledRun;\n function ExitStatus(status) {\n this.name = \"ExitStatus\";\n this.message = \"Program terminated with exit(\" + status + \")\";\n this.status = status;\n }\n dependenciesFulfilled = function runCaller() {\n if (!calledRun)\n run();\n if (!calledRun)\n dependenciesFulfilled = runCaller;\n };\n function run(args) {\n args = args || arguments_;\n if (runDependencies > 0) {\n return;\n }\n if (ENVIRONMENT_IS_PTHREAD) {\n readyPromiseResolve(Module);\n initRuntime();\n postMessage({ \"cmd\": \"loaded\" });\n return;\n }\n preRun();\n if (runDependencies > 0) {\n return;\n }\n function doRun() {\n if (calledRun)\n return;\n calledRun = true;\n Module[\"calledRun\"] = true;\n if (ABORT)\n return;\n initRuntime();\n readyPromiseResolve(Module);\n if (Module[\"onRuntimeInitialized\"])\n Module[\"onRuntimeInitialized\"]();\n postRun();\n }\n if (Module[\"setStatus\"]) {\n Module[\"setStatus\"](\"Running...\");\n setTimeout(function() {\n setTimeout(function() {\n Module[\"setStatus\"](\"\");\n }, 1);\n doRun();\n }, 1);\n } else {\n doRun();\n }\n }\n Module[\"run\"] = run;\n function exit(status, implicit) {\n EXITSTATUS = status;\n if (!implicit) {\n if (ENVIRONMENT_IS_PTHREAD) {\n exitOnMainThread(status);\n throw \"unwind\";\n } else {\n }\n }\n if (keepRuntimeAlive()) {\n } else {\n exitRuntime();\n }\n procExit(status);\n }\n function procExit(code) {\n EXITSTATUS = code;\n if (!keepRuntimeAlive()) {\n PThread.terminateAllThreads();\n if (Module[\"onExit\"])\n Module[\"onExit\"](code);\n ABORT = true;\n }\n quit_(code, new ExitStatus(code));\n }\n if (Module[\"preInit\"]) {\n if (typeof Module[\"preInit\"] == \"function\")\n Module[\"preInit\"] = [Module[\"preInit\"]];\n while (Module[\"preInit\"].length > 0) {\n Module[\"preInit\"].pop()();\n }\n }\n run();\n var listenersAdded;\n if (beforeListeners) {\n listenersAdded = { uncaughtException: process.listeners(\"uncaughtException\").filter(function(listener) {\n return !beforeListeners.uncaughtException.indexOf(listener) > -1;\n }), unhandledRejection: process.listeners(\"unhandledRejection\").filter(function(listener) {\n return !beforeListeners.unhandledRejection.indexOf(listener) > -1;\n }) };\n }\n var actualModule;\n if (typeof WasmBackendModule !== \"undefined\") {\n actualModule = WasmBackendModule;\n } else if (typeof WasmBackendModuleThreadedSimd3 !== \"undefined\") {\n actualModule = WasmBackendModuleThreadedSimd3;\n } else {\n throw new Error(\"Could not find wasm module in post.js\");\n }\n if (listenersAdded) {\n var tmpDispose = actualModule[\"_dispose\"];\n actualModule[\"_dispose\"] = function() {\n tmpDispose();\n listenersAdded.uncaughtException.forEach(function(listener) {\n process.removeListener(\"uncaughtException\", listener);\n });\n listenersAdded.unhandledRejection.forEach(function(listener) {\n process.removeListener(\"unhandledRejection\", listener);\n });\n };\n }\n return WasmBackendModuleThreadedSimd3.ready;\n };\n })();\n if (typeof exports === \"object\" && typeof module === \"object\")\n module.exports = WasmBackendModuleThreadedSimd2;\n else if (typeof define === \"function\" && define[\"amd\"])\n define([], function() {\n return WasmBackendModuleThreadedSimd2;\n });\n else if (typeof exports === \"object\")\n exports[\"WasmBackendModuleThreadedSimd\"] = WasmBackendModuleThreadedSimd2;\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.18.0_br26fteayl44zj43fz4bazb7oq/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js\nvar require_tfjs_backend_wasm = __commonJS({\n \"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.18.0_br26fteayl44zj43fz4bazb7oq/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js\"(exports, module) {\n var WasmBackendModule2 = (() => {\n var _scriptDir = typeof document !== \"undefined\" && document.currentScript ? document.currentScript.src : void 0;\n if (typeof __filename !== \"undefined\")\n _scriptDir = _scriptDir || __filename;\n return function(WasmBackendModule3) {\n WasmBackendModule3 = WasmBackendModule3 || {};\n var Module = typeof WasmBackendModule3 !== \"undefined\" ? WasmBackendModule3 : {};\n var readyPromiseResolve, readyPromiseReject;\n Module[\"ready\"] = new Promise(function(resolve, reject) {\n readyPromiseResolve = resolve;\n readyPromiseReject = reject;\n });\n var beforeListeners;\n if (typeof process !== \"undefined\" && process.listeners) {\n beforeListeners = { uncaughtException: process.listeners(\"uncaughtException\"), unhandledRejection: process.listeners(\"unhandledRejection\") };\n }\n var moduleOverrides = Object.assign({}, Module);\n var arguments_ = [];\n var thisProgram = \"./this.program\";\n var quit_ = (status, toThrow) => {\n throw toThrow;\n };\n var ENVIRONMENT_IS_WEB = typeof window === \"object\";\n var ENVIRONMENT_IS_WORKER = typeof importScripts === \"function\";\n var ENVIRONMENT_IS_NODE = typeof process === \"object\" && typeof process.versions === \"object\" && typeof process.versions.node === \"string\";\n var scriptDirectory = \"\";\n function locateFile(path) {\n if (Module[\"locateFile\"]) {\n return Module[\"locateFile\"](path, scriptDirectory);\n }\n return scriptDirectory + path;\n }\n var read_, readAsync, readBinary, setWindowTitle;\n function logExceptionOnExit(e2) {\n if (e2 instanceof ExitStatus)\n return;\n let toLog = e2;\n err(\"exiting due to exception: \" + toLog);\n }\n var fs;\n var nodePath;\n var requireNodeFS;\n if (ENVIRONMENT_IS_NODE) {\n if (ENVIRONMENT_IS_WORKER) {\n scriptDirectory = require_path().dirname(scriptDirectory) + \"/\";\n } else {\n scriptDirectory = __dirname + \"/\";\n }\n requireNodeFS = () => {\n if (!nodePath) {\n fs = require_fs();\n nodePath = require_path();\n }\n };\n read_ = function shell_read(filename, binary) {\n requireNodeFS();\n filename = nodePath[\"normalize\"](filename);\n return fs.readFileSync(filename, binary ? void 0 : \"utf8\");\n };\n readBinary = (filename) => {\n var ret = read_(filename, true);\n if (!ret.buffer) {\n ret = new Uint8Array(ret);\n }\n return ret;\n };\n readAsync = (filename, onload, onerror) => {\n requireNodeFS();\n filename = nodePath[\"normalize\"](filename);\n fs.readFile(filename, function(err2, data) {\n if (err2)\n onerror(err2);\n else\n onload(data.buffer);\n });\n };\n if (process[\"argv\"].length > 1) {\n thisProgram = process[\"argv\"][1].replace(/\\\\/g, \"/\");\n }\n arguments_ = process[\"argv\"].slice(2);\n process[\"on\"](\"uncaughtException\", function(ex) {\n if (!(ex instanceof ExitStatus)) {\n throw ex;\n }\n });\n process[\"on\"](\"unhandledRejection\", function(reason) {\n throw reason;\n });\n quit_ = (status, toThrow) => {\n if (keepRuntimeAlive()) {\n process[\"exitCode\"] = status;\n throw toThrow;\n }\n logExceptionOnExit(toThrow);\n process[\"exit\"](status);\n };\n Module[\"inspect\"] = function() {\n return \"[Emscripten Module object]\";\n };\n } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) {\n if (ENVIRONMENT_IS_WORKER) {\n scriptDirectory = self.location.href;\n } else if (typeof document !== \"undefined\" && document.currentScript) {\n scriptDirectory = document.currentScript.src;\n }\n if (_scriptDir) {\n scriptDirectory = _scriptDir;\n }\n if (scriptDirectory.indexOf(\"blob:\") !== 0) {\n scriptDirectory = scriptDirectory.substr(0, scriptDirectory.replace(/[?#].*/, \"\").lastIndexOf(\"/\") + 1);\n } else {\n scriptDirectory = \"\";\n }\n {\n read_ = (url) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, false);\n xhr.send(null);\n return xhr.responseText;\n };\n if (ENVIRONMENT_IS_WORKER) {\n readBinary = (url) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, false);\n xhr.responseType = \"arraybuffer\";\n xhr.send(null);\n return new Uint8Array(xhr.response);\n };\n }\n readAsync = (url, onload, onerror) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, true);\n xhr.responseType = \"arraybuffer\";\n xhr.onload = () => {\n if (xhr.status == 200 || xhr.status == 0 && xhr.response) {\n onload(xhr.response);\n return;\n }\n onerror();\n };\n xhr.onerror = onerror;\n xhr.send(null);\n };\n }\n setWindowTitle = (title) => document.title = title;\n } else {\n }\n var out = Module[\"print\"] || console.log.bind(console);\n var err = Module[\"printErr\"] || console.warn.bind(console);\n Object.assign(Module, moduleOverrides);\n moduleOverrides = null;\n if (Module[\"arguments\"])\n arguments_ = Module[\"arguments\"];\n if (Module[\"thisProgram\"])\n thisProgram = Module[\"thisProgram\"];\n if (Module[\"quit\"])\n quit_ = Module[\"quit\"];\n var POINTER_SIZE = 4;\n function warnOnce(text) {\n if (!warnOnce.shown)\n warnOnce.shown = {};\n if (!warnOnce.shown[text]) {\n warnOnce.shown[text] = 1;\n err(text);\n }\n }\n function convertJsFunctionToWasm(func2, sig) {\n if (typeof WebAssembly.Function === \"function\") {\n var typeNames = { \"i\": \"i32\", \"j\": \"i64\", \"f\": \"f32\", \"d\": \"f64\" };\n var type = { parameters: [], results: sig[0] == \"v\" ? [] : [typeNames[sig[0]]] };\n for (var i2 = 1; i2 < sig.length; ++i2) {\n type.parameters.push(typeNames[sig[i2]]);\n }\n return new WebAssembly.Function(type, func2);\n }\n var typeSection = [1, 0, 1, 96];\n var sigRet = sig.slice(0, 1);\n var sigParam = sig.slice(1);\n var typeCodes = { \"i\": 127, \"j\": 126, \"f\": 125, \"d\": 124 };\n typeSection.push(sigParam.length);\n for (var i2 = 0; i2 < sigParam.length; ++i2) {\n typeSection.push(typeCodes[sigParam[i2]]);\n }\n if (sigRet == \"v\") {\n typeSection.push(0);\n } else {\n typeSection = typeSection.concat([1, typeCodes[sigRet]]);\n }\n typeSection[1] = typeSection.length - 2;\n var bytes = new Uint8Array([0, 97, 115, 109, 1, 0, 0, 0].concat(typeSection, [2, 7, 1, 1, 101, 1, 102, 0, 0, 7, 5, 1, 1, 102, 0, 0]));\n var module2 = new WebAssembly.Module(bytes);\n var instance = new WebAssembly.Instance(module2, { \"e\": { \"f\": func2 } });\n var wrappedFunc = instance.exports[\"f\"];\n return wrappedFunc;\n }\n var freeTableIndexes = [];\n var functionsInTableMap;\n function getEmptyTableSlot() {\n if (freeTableIndexes.length) {\n return freeTableIndexes.pop();\n }\n try {\n wasmTable.grow(1);\n } catch (err2) {\n if (!(err2 instanceof RangeError)) {\n throw err2;\n }\n throw \"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.\";\n }\n return wasmTable.length - 1;\n }\n function updateTableMap(offset, count2) {\n for (var i2 = offset; i2 < offset + count2; i2++) {\n var item = getWasmTableEntry(i2);\n if (item) {\n functionsInTableMap.set(item, i2);\n }\n }\n }\n var tempRet0 = 0;\n var setTempRet0 = (value) => {\n tempRet0 = value;\n };\n var wasmBinary;\n if (Module[\"wasmBinary\"])\n wasmBinary = Module[\"wasmBinary\"];\n var noExitRuntime = Module[\"noExitRuntime\"] || true;\n if (typeof WebAssembly !== \"object\") {\n abort(\"no native wasm support detected\");\n }\n var wasmMemory;\n var ABORT = false;\n var EXITSTATUS;\n function assert3(condition, text) {\n if (!condition) {\n abort(text);\n }\n }\n function getCFunc(ident) {\n var func2 = Module[\"_\" + ident];\n return func2;\n }\n function ccall(ident, returnType, argTypes, args, opts) {\n var toC = { \"string\": function(str) {\n var ret2 = 0;\n if (str !== null && str !== void 0 && str !== 0) {\n var len = (str.length << 2) + 1;\n ret2 = stackAlloc(len);\n stringToUTF8(str, ret2, len);\n }\n return ret2;\n }, \"array\": function(arr) {\n var ret2 = stackAlloc(arr.length);\n writeArrayToMemory(arr, ret2);\n return ret2;\n } };\n function convertReturnValue(ret2) {\n if (returnType === \"string\")\n return UTF8ToString(ret2);\n if (returnType === \"boolean\")\n return Boolean(ret2);\n return ret2;\n }\n var func2 = getCFunc(ident);\n var cArgs = [];\n var stack2 = 0;\n if (args) {\n for (var i2 = 0; i2 < args.length; i2++) {\n var converter = toC[argTypes[i2]];\n if (converter) {\n if (stack2 === 0)\n stack2 = stackSave();\n cArgs[i2] = converter(args[i2]);\n } else {\n cArgs[i2] = args[i2];\n }\n }\n }\n var ret = func2.apply(null, cArgs);\n function onDone(ret2) {\n if (stack2 !== 0)\n stackRestore(stack2);\n return convertReturnValue(ret2);\n }\n ret = onDone(ret);\n return ret;\n }\n function cwrap(ident, returnType, argTypes, opts) {\n argTypes = argTypes || [];\n var numericArgs = argTypes.every(function(type) {\n return type === \"number\";\n });\n var numericRet = returnType !== \"string\";\n if (numericRet && numericArgs && !opts) {\n return getCFunc(ident);\n }\n return function() {\n return ccall(ident, returnType, argTypes, arguments, opts);\n };\n }\n var ALLOC_STACK = 1;\n var UTF8Decoder = typeof TextDecoder !== \"undefined\" ? new TextDecoder(\"utf8\") : void 0;\n function UTF8ArrayToString(heap, idx, maxBytesToRead) {\n var endIdx = idx + maxBytesToRead;\n var endPtr = idx;\n while (heap[endPtr] && !(endPtr >= endIdx))\n ++endPtr;\n if (endPtr - idx > 16 && heap.subarray && UTF8Decoder) {\n return UTF8Decoder.decode(heap.subarray(idx, endPtr));\n } else {\n var str = \"\";\n while (idx < endPtr) {\n var u0 = heap[idx++];\n if (!(u0 & 128)) {\n str += String.fromCharCode(u0);\n continue;\n }\n var u1 = heap[idx++] & 63;\n if ((u0 & 224) == 192) {\n str += String.fromCharCode((u0 & 31) << 6 | u1);\n continue;\n }\n var u2 = heap[idx++] & 63;\n if ((u0 & 240) == 224) {\n u0 = (u0 & 15) << 12 | u1 << 6 | u2;\n } else {\n u0 = (u0 & 7) << 18 | u1 << 12 | u2 << 6 | heap[idx++] & 63;\n }\n if (u0 < 65536) {\n str += String.fromCharCode(u0);\n } else {\n var ch = u0 - 65536;\n str += String.fromCharCode(55296 | ch >> 10, 56320 | ch & 1023);\n }\n }\n }\n return str;\n }\n function UTF8ToString(ptr, maxBytesToRead) {\n return ptr ? UTF8ArrayToString(HEAPU8, ptr, maxBytesToRead) : \"\";\n }\n function stringToUTF8Array(str, heap, outIdx, maxBytesToWrite) {\n if (!(maxBytesToWrite > 0))\n return 0;\n var startIdx = outIdx;\n var endIdx = outIdx + maxBytesToWrite - 1;\n for (var i2 = 0; i2 < str.length; ++i2) {\n var u = str.charCodeAt(i2);\n if (u >= 55296 && u <= 57343) {\n var u1 = str.charCodeAt(++i2);\n u = 65536 + ((u & 1023) << 10) | u1 & 1023;\n }\n if (u <= 127) {\n if (outIdx >= endIdx)\n break;\n heap[outIdx++] = u;\n } else if (u <= 2047) {\n if (outIdx + 1 >= endIdx)\n break;\n heap[outIdx++] = 192 | u >> 6;\n heap[outIdx++] = 128 | u & 63;\n } else if (u <= 65535) {\n if (outIdx + 2 >= endIdx)\n break;\n heap[outIdx++] = 224 | u >> 12;\n heap[outIdx++] = 128 | u >> 6 & 63;\n heap[outIdx++] = 128 | u & 63;\n } else {\n if (outIdx + 3 >= endIdx)\n break;\n heap[outIdx++] = 240 | u >> 18;\n heap[outIdx++] = 128 | u >> 12 & 63;\n heap[outIdx++] = 128 | u >> 6 & 63;\n heap[outIdx++] = 128 | u & 63;\n }\n }\n heap[outIdx] = 0;\n return outIdx - startIdx;\n }\n function stringToUTF8(str, outPtr, maxBytesToWrite) {\n return stringToUTF8Array(str, HEAPU8, outPtr, maxBytesToWrite);\n }\n function lengthBytesUTF8(str) {\n var len = 0;\n for (var i2 = 0; i2 < str.length; ++i2) {\n var u = str.charCodeAt(i2);\n if (u >= 55296 && u <= 57343)\n u = 65536 + ((u & 1023) << 10) | str.charCodeAt(++i2) & 1023;\n if (u <= 127)\n ++len;\n else if (u <= 2047)\n len += 2;\n else if (u <= 65535)\n len += 3;\n else\n len += 4;\n }\n return len;\n }\n var UTF16Decoder = typeof TextDecoder !== \"undefined\" ? new TextDecoder(\"utf-16le\") : void 0;\n function writeArrayToMemory(array2, buffer3) {\n HEAP8.set(array2, buffer3);\n }\n function writeAsciiToMemory(str, buffer3, dontAddNull) {\n for (var i2 = 0; i2 < str.length; ++i2) {\n HEAP8[buffer3++ >> 0] = str.charCodeAt(i2);\n }\n if (!dontAddNull)\n HEAP8[buffer3 >> 0] = 0;\n }\n function alignUp(x, multiple) {\n if (x % multiple > 0) {\n x += multiple - x % multiple;\n }\n return x;\n }\n var buffer2, HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64;\n function updateGlobalBufferAndViews(buf) {\n buffer2 = buf;\n Module[\"HEAP8\"] = HEAP8 = new Int8Array(buf);\n Module[\"HEAP16\"] = HEAP16 = new Int16Array(buf);\n Module[\"HEAP32\"] = HEAP32 = new Int32Array(buf);\n Module[\"HEAPU8\"] = HEAPU8 = new Uint8Array(buf);\n Module[\"HEAPU16\"] = HEAPU16 = new Uint16Array(buf);\n Module[\"HEAPU32\"] = HEAPU32 = new Uint32Array(buf);\n Module[\"HEAPF32\"] = HEAPF32 = new Float32Array(buf);\n Module[\"HEAPF64\"] = HEAPF64 = new Float64Array(buf);\n }\n var INITIAL_MEMORY = Module[\"INITIAL_MEMORY\"] || 16777216;\n var wasmTable;\n var __ATPRERUN__ = [];\n var __ATINIT__ = [];\n var __ATPOSTRUN__ = [];\n var runtimeInitialized = false;\n var runtimeExited = false;\n var runtimeKeepaliveCounter = 0;\n function keepRuntimeAlive() {\n return noExitRuntime || runtimeKeepaliveCounter > 0;\n }\n function preRun() {\n if (Module[\"preRun\"]) {\n if (typeof Module[\"preRun\"] == \"function\")\n Module[\"preRun\"] = [Module[\"preRun\"]];\n while (Module[\"preRun\"].length) {\n addOnPreRun(Module[\"preRun\"].shift());\n }\n }\n callRuntimeCallbacks(__ATPRERUN__);\n }\n function initRuntime() {\n runtimeInitialized = true;\n callRuntimeCallbacks(__ATINIT__);\n }\n function exitRuntime() {\n runtimeExited = true;\n }\n function postRun() {\n if (Module[\"postRun\"]) {\n if (typeof Module[\"postRun\"] == \"function\")\n Module[\"postRun\"] = [Module[\"postRun\"]];\n while (Module[\"postRun\"].length) {\n addOnPostRun(Module[\"postRun\"].shift());\n }\n }\n callRuntimeCallbacks(__ATPOSTRUN__);\n }\n function addOnPreRun(cb) {\n __ATPRERUN__.unshift(cb);\n }\n function addOnInit(cb) {\n __ATINIT__.unshift(cb);\n }\n function addOnPostRun(cb) {\n __ATPOSTRUN__.unshift(cb);\n }\n var runDependencies = 0;\n var runDependencyWatcher = null;\n var dependenciesFulfilled = null;\n function addRunDependency(id) {\n runDependencies++;\n if (Module[\"monitorRunDependencies\"]) {\n Module[\"monitorRunDependencies\"](runDependencies);\n }\n }\n function removeRunDependency(id) {\n runDependencies--;\n if (Module[\"monitorRunDependencies\"]) {\n Module[\"monitorRunDependencies\"](runDependencies);\n }\n if (runDependencies == 0) {\n if (runDependencyWatcher !== null) {\n clearInterval(runDependencyWatcher);\n runDependencyWatcher = null;\n }\n if (dependenciesFulfilled) {\n var callback = dependenciesFulfilled;\n dependenciesFulfilled = null;\n callback();\n }\n }\n }\n Module[\"preloadedImages\"] = {};\n Module[\"preloadedAudios\"] = {};\n function abort(what) {\n {\n if (Module[\"onAbort\"]) {\n Module[\"onAbort\"](what);\n }\n }\n what = \"Aborted(\" + what + \")\";\n err(what);\n ABORT = true;\n EXITSTATUS = 1;\n what += \". Build with -s ASSERTIONS=1 for more info.\";\n var e2 = new WebAssembly.RuntimeError(what);\n readyPromiseReject(e2);\n throw e2;\n }\n var dataURIPrefix = \"data:application/octet-stream;base64,\";\n function isDataURI(filename) {\n return filename.startsWith(dataURIPrefix);\n }\n function isFileURI(filename) {\n return filename.startsWith(\"file://\");\n }\n var wasmBinaryFile;\n wasmBinaryFile = \"tfjs-backend-wasm.wasm\";\n if (!isDataURI(wasmBinaryFile)) {\n wasmBinaryFile = locateFile(wasmBinaryFile);\n }\n function getBinary(file) {\n try {\n if (file == wasmBinaryFile && wasmBinary) {\n return new Uint8Array(wasmBinary);\n }\n if (readBinary) {\n return readBinary(file);\n } else {\n throw \"both async and sync fetching of the wasm failed\";\n }\n } catch (err2) {\n abort(err2);\n }\n }\n function getBinaryPromise() {\n if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER)) {\n if (typeof fetch === \"function\" && !isFileURI(wasmBinaryFile)) {\n return fetch(wasmBinaryFile, { credentials: \"same-origin\" }).then(function(response) {\n if (!response[\"ok\"]) {\n throw \"failed to load wasm binary file at '\" + wasmBinaryFile + \"'\";\n }\n return response[\"arrayBuffer\"]();\n }).catch(function() {\n return getBinary(wasmBinaryFile);\n });\n } else {\n if (readAsync) {\n return new Promise(function(resolve, reject) {\n readAsync(wasmBinaryFile, function(response) {\n resolve(new Uint8Array(response));\n }, reject);\n });\n }\n }\n }\n return Promise.resolve().then(function() {\n return getBinary(wasmBinaryFile);\n });\n }\n function createWasm() {\n var info = { \"env\": asmLibraryArg, \"wasi_snapshot_preview1\": asmLibraryArg };\n function receiveInstance(instance, module2) {\n var exports3 = instance.exports;\n Module[\"asm\"] = exports3;\n wasmMemory = Module[\"asm\"][\"memory\"];\n updateGlobalBufferAndViews(wasmMemory.buffer);\n wasmTable = Module[\"asm\"][\"__indirect_function_table\"];\n addOnInit(Module[\"asm\"][\"__wasm_call_ctors\"]);\n removeRunDependency(\"wasm-instantiate\");\n }\n addRunDependency(\"wasm-instantiate\");\n function receiveInstantiationResult(result) {\n receiveInstance(result[\"instance\"]);\n }\n function instantiateArrayBuffer(receiver) {\n return getBinaryPromise().then(function(binary) {\n return WebAssembly.instantiate(binary, info);\n }).then(function(instance) {\n return instance;\n }).then(receiver, function(reason) {\n err(\"failed to asynchronously prepare wasm: \" + reason);\n abort(reason);\n });\n }\n function instantiateAsync() {\n if (!wasmBinary && typeof WebAssembly.instantiateStreaming === \"function\" && !isDataURI(wasmBinaryFile) && !isFileURI(wasmBinaryFile) && typeof fetch === \"function\") {\n return fetch(wasmBinaryFile, { credentials: \"same-origin\" }).then(function(response) {\n var result = WebAssembly.instantiateStreaming(response, info);\n return result.then(receiveInstantiationResult, function(reason) {\n err(\"wasm streaming compile failed: \" + reason);\n err(\"falling back to ArrayBuffer instantiation\");\n return instantiateArrayBuffer(receiveInstantiationResult);\n });\n });\n } else {\n return instantiateArrayBuffer(receiveInstantiationResult);\n }\n }\n if (Module[\"instantiateWasm\"]) {\n try {\n var exports2 = Module[\"instantiateWasm\"](info, receiveInstance);\n return exports2;\n } catch (e2) {\n err(\"Module.instantiateWasm callback failed with error: \" + e2);\n return false;\n }\n }\n instantiateAsync().catch(readyPromiseReject);\n return {};\n }\n var tempDouble;\n var tempI64;\n function callRuntimeCallbacks(callbacks2) {\n while (callbacks2.length > 0) {\n var callback = callbacks2.shift();\n if (typeof callback == \"function\") {\n callback(Module);\n continue;\n }\n var func2 = callback.func;\n if (typeof func2 === \"number\") {\n if (callback.arg === void 0) {\n getWasmTableEntry(func2)();\n } else {\n getWasmTableEntry(func2)(callback.arg);\n }\n } else {\n func2(callback.arg === void 0 ? null : callback.arg);\n }\n }\n }\n function demangle(func2) {\n return func2;\n }\n function demangleAll(text) {\n var regex = /\\b_Z[\\w\\d_]+/g;\n return text.replace(regex, function(x) {\n var y = demangle(x);\n return x === y ? x : y + \" [\" + x + \"]\";\n });\n }\n var wasmTableMirror = [];\n function getWasmTableEntry(funcPtr) {\n var func2 = wasmTableMirror[funcPtr];\n if (!func2) {\n if (funcPtr >= wasmTableMirror.length)\n wasmTableMirror.length = funcPtr + 1;\n wasmTableMirror[funcPtr] = func2 = wasmTable.get(funcPtr);\n }\n return func2;\n }\n function jsStackTrace() {\n var error = new Error();\n if (!error.stack) {\n try {\n throw new Error();\n } catch (e2) {\n error = e2;\n }\n if (!error.stack) {\n return \"(no stack trace available)\";\n }\n }\n return error.stack.toString();\n }\n function setWasmTableEntry(idx, func2) {\n wasmTable.set(idx, func2);\n wasmTableMirror[idx] = func2;\n }\n function _abort() {\n abort(\"\");\n }\n function _emscripten_get_heap_max() {\n return 2147483648;\n }\n function _emscripten_memcpy_big(dest, src, num) {\n HEAPU8.copyWithin(dest, src, src + num);\n }\n function emscripten_realloc_buffer(size) {\n try {\n wasmMemory.grow(size - buffer2.byteLength + 65535 >>> 16);\n updateGlobalBufferAndViews(wasmMemory.buffer);\n return 1;\n } catch (e2) {\n }\n }\n function _emscripten_resize_heap(requestedSize) {\n var oldSize = HEAPU8.length;\n requestedSize = requestedSize >>> 0;\n var maxHeapSize = _emscripten_get_heap_max();\n if (requestedSize > maxHeapSize) {\n return false;\n }\n for (var cutDown = 1; cutDown <= 4; cutDown *= 2) {\n var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown);\n overGrownHeapSize = Math.min(overGrownHeapSize, requestedSize + 100663296);\n var newSize = Math.min(maxHeapSize, alignUp(Math.max(requestedSize, overGrownHeapSize), 65536));\n var replacement = emscripten_realloc_buffer(newSize);\n if (replacement) {\n return true;\n }\n }\n return false;\n }\n var SYSCALLS = { mappings: {}, buffers: [null, [], []], printChar: function(stream, curr) {\n var buffer3 = SYSCALLS.buffers[stream];\n if (curr === 0 || curr === 10) {\n (stream === 1 ? out : err)(UTF8ArrayToString(buffer3, 0));\n buffer3.length = 0;\n } else {\n buffer3.push(curr);\n }\n }, varargs: void 0, get: function() {\n SYSCALLS.varargs += 4;\n var ret = HEAP32[SYSCALLS.varargs - 4 >> 2];\n return ret;\n }, getStr: function(ptr) {\n var ret = UTF8ToString(ptr);\n return ret;\n }, get64: function(low, high) {\n return low;\n } };\n function _fd_close(fd) {\n return 0;\n }\n function _fd_seek(fd, offset_low, offset_high, whence, newOffset) {\n }\n function _fd_write(fd, iov, iovcnt, pnum) {\n var num = 0;\n for (var i2 = 0; i2 < iovcnt; i2++) {\n var ptr = HEAP32[iov >> 2];\n var len = HEAP32[iov + 4 >> 2];\n iov += 8;\n for (var j = 0; j < len; j++) {\n SYSCALLS.printChar(fd, HEAPU8[ptr + j]);\n }\n num += len;\n }\n HEAP32[pnum >> 2] = num;\n return 0;\n }\n function _setTempRet0(val) {\n setTempRet0(val);\n }\n var ASSERTIONS = false;\n var asmLibraryArg = { \"abort\": _abort, \"emscripten_get_heap_max\": _emscripten_get_heap_max, \"emscripten_memcpy_big\": _emscripten_memcpy_big, \"emscripten_resize_heap\": _emscripten_resize_heap, \"fd_close\": _fd_close, \"fd_seek\": _fd_seek, \"fd_write\": _fd_write, \"setTempRet0\": _setTempRet0 };\n var asm = createWasm();\n var ___wasm_call_ctors = Module[\"___wasm_call_ctors\"] = function() {\n return (___wasm_call_ctors = Module[\"___wasm_call_ctors\"] = Module[\"asm\"][\"__wasm_call_ctors\"]).apply(null, arguments);\n };\n var _init = Module[\"_init\"] = function() {\n return (_init = Module[\"_init\"] = Module[\"asm\"][\"init\"]).apply(null, arguments);\n };\n var _init_with_threads_count = Module[\"_init_with_threads_count\"] = function() {\n return (_init_with_threads_count = Module[\"_init_with_threads_count\"] = Module[\"asm\"][\"init_with_threads_count\"]).apply(null, arguments);\n };\n var _get_threads_count = Module[\"_get_threads_count\"] = function() {\n return (_get_threads_count = Module[\"_get_threads_count\"] = Module[\"asm\"][\"get_threads_count\"]).apply(null, arguments);\n };\n var _register_tensor = Module[\"_register_tensor\"] = function() {\n return (_register_tensor = Module[\"_register_tensor\"] = Module[\"asm\"][\"register_tensor\"]).apply(null, arguments);\n };\n var _dispose_data = Module[\"_dispose_data\"] = function() {\n return (_dispose_data = Module[\"_dispose_data\"] = Module[\"asm\"][\"dispose_data\"]).apply(null, arguments);\n };\n var _dispose = Module[\"_dispose\"] = function() {\n return (_dispose = Module[\"_dispose\"] = Module[\"asm\"][\"dispose\"]).apply(null, arguments);\n };\n var _Abs = Module[\"_Abs\"] = function() {\n return (_Abs = Module[\"_Abs\"] = Module[\"asm\"][\"Abs\"]).apply(null, arguments);\n };\n var _Add = Module[\"_Add\"] = function() {\n return (_Add = Module[\"_Add\"] = Module[\"asm\"][\"Add\"]).apply(null, arguments);\n };\n var _AddN = Module[\"_AddN\"] = function() {\n return (_AddN = Module[\"_AddN\"] = Module[\"asm\"][\"AddN\"]).apply(null, arguments);\n };\n var _All = Module[\"_All\"] = function() {\n return (_All = Module[\"_All\"] = Module[\"asm\"][\"All\"]).apply(null, arguments);\n };\n var _Any = Module[\"_Any\"] = function() {\n return (_Any = Module[\"_Any\"] = Module[\"asm\"][\"Any\"]).apply(null, arguments);\n };\n var _ArgMax = Module[\"_ArgMax\"] = function() {\n return (_ArgMax = Module[\"_ArgMax\"] = Module[\"asm\"][\"ArgMax\"]).apply(null, arguments);\n };\n var _AvgPool = Module[\"_AvgPool\"] = function() {\n return (_AvgPool = Module[\"_AvgPool\"] = Module[\"asm\"][\"AvgPool\"]).apply(null, arguments);\n };\n var _BatchMatMul = Module[\"_BatchMatMul\"] = function() {\n return (_BatchMatMul = Module[\"_BatchMatMul\"] = Module[\"asm\"][\"BatchMatMul\"]).apply(null, arguments);\n };\n var _Ceil = Module[\"_Ceil\"] = function() {\n return (_Ceil = Module[\"_Ceil\"] = Module[\"asm\"][\"Ceil\"]).apply(null, arguments);\n };\n var _ClipByValue = Module[\"_ClipByValue\"] = function() {\n return (_ClipByValue = Module[\"_ClipByValue\"] = Module[\"asm\"][\"ClipByValue\"]).apply(null, arguments);\n };\n var _Conv2D = Module[\"_Conv2D\"] = function() {\n return (_Conv2D = Module[\"_Conv2D\"] = Module[\"asm\"][\"Conv2D\"]).apply(null, arguments);\n };\n var _Conv2DBackpropInput = Module[\"_Conv2DBackpropInput\"] = function() {\n return (_Conv2DBackpropInput = Module[\"_Conv2DBackpropInput\"] = Module[\"asm\"][\"Conv2DBackpropInput\"]).apply(null, arguments);\n };\n var _Cos = Module[\"_Cos\"] = function() {\n return (_Cos = Module[\"_Cos\"] = Module[\"asm\"][\"Cos\"]).apply(null, arguments);\n };\n var _Cosh = Module[\"_Cosh\"] = function() {\n return (_Cosh = Module[\"_Cosh\"] = Module[\"asm\"][\"Cosh\"]).apply(null, arguments);\n };\n var _CropAndResize = Module[\"_CropAndResize\"] = function() {\n return (_CropAndResize = Module[\"_CropAndResize\"] = Module[\"asm\"][\"CropAndResize\"]).apply(null, arguments);\n };\n var _Cumprod = Module[\"_Cumprod\"] = function() {\n return (_Cumprod = Module[\"_Cumprod\"] = Module[\"asm\"][\"Cumprod\"]).apply(null, arguments);\n };\n var _Cumsum = Module[\"_Cumsum\"] = function() {\n return (_Cumsum = Module[\"_Cumsum\"] = Module[\"asm\"][\"Cumsum\"]).apply(null, arguments);\n };\n var _DepthToSpace = Module[\"_DepthToSpace\"] = function() {\n return (_DepthToSpace = Module[\"_DepthToSpace\"] = Module[\"asm\"][\"DepthToSpace\"]).apply(null, arguments);\n };\n var _DepthwiseConv2dNative = Module[\"_DepthwiseConv2dNative\"] = function() {\n return (_DepthwiseConv2dNative = Module[\"_DepthwiseConv2dNative\"] = Module[\"asm\"][\"DepthwiseConv2dNative\"]).apply(null, arguments);\n };\n var _Elu = Module[\"_Elu\"] = function() {\n return (_Elu = Module[\"_Elu\"] = Module[\"asm\"][\"Elu\"]).apply(null, arguments);\n };\n var _Equal = Module[\"_Equal\"] = function() {\n return (_Equal = Module[\"_Equal\"] = Module[\"asm\"][\"Equal\"]).apply(null, arguments);\n };\n var _Exp = Module[\"_Exp\"] = function() {\n return (_Exp = Module[\"_Exp\"] = Module[\"asm\"][\"Exp\"]).apply(null, arguments);\n };\n var _FlipLeftRight = Module[\"_FlipLeftRight\"] = function() {\n return (_FlipLeftRight = Module[\"_FlipLeftRight\"] = Module[\"asm\"][\"FlipLeftRight\"]).apply(null, arguments);\n };\n var _Floor = Module[\"_Floor\"] = function() {\n return (_Floor = Module[\"_Floor\"] = Module[\"asm\"][\"Floor\"]).apply(null, arguments);\n };\n var _FloorDiv = Module[\"_FloorDiv\"] = function() {\n return (_FloorDiv = Module[\"_FloorDiv\"] = Module[\"asm\"][\"FloorDiv\"]).apply(null, arguments);\n };\n var _FusedBatchNorm = Module[\"_FusedBatchNorm\"] = function() {\n return (_FusedBatchNorm = Module[\"_FusedBatchNorm\"] = Module[\"asm\"][\"FusedBatchNorm\"]).apply(null, arguments);\n };\n var _FusedConv2D = Module[\"_FusedConv2D\"] = function() {\n return (_FusedConv2D = Module[\"_FusedConv2D\"] = Module[\"asm\"][\"FusedConv2D\"]).apply(null, arguments);\n };\n var _FusedDepthwiseConv2D = Module[\"_FusedDepthwiseConv2D\"] = function() {\n return (_FusedDepthwiseConv2D = Module[\"_FusedDepthwiseConv2D\"] = Module[\"asm\"][\"FusedDepthwiseConv2D\"]).apply(null, arguments);\n };\n var _Gather = Module[\"_Gather\"] = function() {\n return (_Gather = Module[\"_Gather\"] = Module[\"asm\"][\"Gather\"]).apply(null, arguments);\n };\n var _GatherNd = Module[\"_GatherNd\"] = function() {\n return (_GatherNd = Module[\"_GatherNd\"] = Module[\"asm\"][\"GatherNd\"]).apply(null, arguments);\n };\n var _Greater = Module[\"_Greater\"] = function() {\n return (_Greater = Module[\"_Greater\"] = Module[\"asm\"][\"Greater\"]).apply(null, arguments);\n };\n var _GreaterEqual = Module[\"_GreaterEqual\"] = function() {\n return (_GreaterEqual = Module[\"_GreaterEqual\"] = Module[\"asm\"][\"GreaterEqual\"]).apply(null, arguments);\n };\n var _LeakyRelu = Module[\"_LeakyRelu\"] = function() {\n return (_LeakyRelu = Module[\"_LeakyRelu\"] = Module[\"asm\"][\"LeakyRelu\"]).apply(null, arguments);\n };\n var _Less = Module[\"_Less\"] = function() {\n return (_Less = Module[\"_Less\"] = Module[\"asm\"][\"Less\"]).apply(null, arguments);\n };\n var _LessEqual = Module[\"_LessEqual\"] = function() {\n return (_LessEqual = Module[\"_LessEqual\"] = Module[\"asm\"][\"LessEqual\"]).apply(null, arguments);\n };\n var _Log = Module[\"_Log\"] = function() {\n return (_Log = Module[\"_Log\"] = Module[\"asm\"][\"Log\"]).apply(null, arguments);\n };\n var _LogicalAnd = Module[\"_LogicalAnd\"] = function() {\n return (_LogicalAnd = Module[\"_LogicalAnd\"] = Module[\"asm\"][\"LogicalAnd\"]).apply(null, arguments);\n };\n var _Max = Module[\"_Max\"] = function() {\n return (_Max = Module[\"_Max\"] = Module[\"asm\"][\"Max\"]).apply(null, arguments);\n };\n var _MaxPool = Module[\"_MaxPool\"] = function() {\n return (_MaxPool = Module[\"_MaxPool\"] = Module[\"asm\"][\"MaxPool\"]).apply(null, arguments);\n };\n var _Maximum = Module[\"_Maximum\"] = function() {\n return (_Maximum = Module[\"_Maximum\"] = Module[\"asm\"][\"Maximum\"]).apply(null, arguments);\n };\n var _Mean = Module[\"_Mean\"] = function() {\n return (_Mean = Module[\"_Mean\"] = Module[\"asm\"][\"Mean\"]).apply(null, arguments);\n };\n var _Min = Module[\"_Min\"] = function() {\n return (_Min = Module[\"_Min\"] = Module[\"asm\"][\"Min\"]).apply(null, arguments);\n };\n var _Minimum = Module[\"_Minimum\"] = function() {\n return (_Minimum = Module[\"_Minimum\"] = Module[\"asm\"][\"Minimum\"]).apply(null, arguments);\n };\n var _MirrorPad = Module[\"_MirrorPad\"] = function() {\n return (_MirrorPad = Module[\"_MirrorPad\"] = Module[\"asm\"][\"MirrorPad\"]).apply(null, arguments);\n };\n var _Multiply = Module[\"_Multiply\"] = function() {\n return (_Multiply = Module[\"_Multiply\"] = Module[\"asm\"][\"Multiply\"]).apply(null, arguments);\n };\n var _Neg = Module[\"_Neg\"] = function() {\n return (_Neg = Module[\"_Neg\"] = Module[\"asm\"][\"Neg\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV3 = Module[\"_NonMaxSuppressionV3\"] = function() {\n return (_NonMaxSuppressionV3 = Module[\"_NonMaxSuppressionV3\"] = Module[\"asm\"][\"NonMaxSuppressionV3\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV4 = Module[\"_NonMaxSuppressionV4\"] = function() {\n return (_NonMaxSuppressionV4 = Module[\"_NonMaxSuppressionV4\"] = Module[\"asm\"][\"NonMaxSuppressionV4\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV5 = Module[\"_NonMaxSuppressionV5\"] = function() {\n return (_NonMaxSuppressionV5 = Module[\"_NonMaxSuppressionV5\"] = Module[\"asm\"][\"NonMaxSuppressionV5\"]).apply(null, arguments);\n };\n var _NotEqual = Module[\"_NotEqual\"] = function() {\n return (_NotEqual = Module[\"_NotEqual\"] = Module[\"asm\"][\"NotEqual\"]).apply(null, arguments);\n };\n var _OneHot = Module[\"_OneHot\"] = function() {\n return (_OneHot = Module[\"_OneHot\"] = Module[\"asm\"][\"OneHot\"]).apply(null, arguments);\n };\n var _PadV2 = Module[\"_PadV2\"] = function() {\n return (_PadV2 = Module[\"_PadV2\"] = Module[\"asm\"][\"PadV2\"]).apply(null, arguments);\n };\n var _Pow = Module[\"_Pow\"] = function() {\n return (_Pow = Module[\"_Pow\"] = Module[\"asm\"][\"Pow\"]).apply(null, arguments);\n };\n var _Prelu = Module[\"_Prelu\"] = function() {\n return (_Prelu = Module[\"_Prelu\"] = Module[\"asm\"][\"Prelu\"]).apply(null, arguments);\n };\n var _Prod = Module[\"_Prod\"] = function() {\n return (_Prod = Module[\"_Prod\"] = Module[\"asm\"][\"Prod\"]).apply(null, arguments);\n };\n var _RealDiv = Module[\"_RealDiv\"] = function() {\n return (_RealDiv = Module[\"_RealDiv\"] = Module[\"asm\"][\"RealDiv\"]).apply(null, arguments);\n };\n var _Relu = Module[\"_Relu\"] = function() {\n return (_Relu = Module[\"_Relu\"] = Module[\"asm\"][\"Relu\"]).apply(null, arguments);\n };\n var _Relu6 = Module[\"_Relu6\"] = function() {\n return (_Relu6 = Module[\"_Relu6\"] = Module[\"asm\"][\"Relu6\"]).apply(null, arguments);\n };\n var _ResizeBilinear = Module[\"_ResizeBilinear\"] = function() {\n return (_ResizeBilinear = Module[\"_ResizeBilinear\"] = Module[\"asm\"][\"ResizeBilinear\"]).apply(null, arguments);\n };\n var _Reverse = Module[\"_Reverse\"] = function() {\n return (_Reverse = Module[\"_Reverse\"] = Module[\"asm\"][\"Reverse\"]).apply(null, arguments);\n };\n var _RotateWithOffset = Module[\"_RotateWithOffset\"] = function() {\n return (_RotateWithOffset = Module[\"_RotateWithOffset\"] = Module[\"asm\"][\"RotateWithOffset\"]).apply(null, arguments);\n };\n var _Round = Module[\"_Round\"] = function() {\n return (_Round = Module[\"_Round\"] = Module[\"asm\"][\"Round\"]).apply(null, arguments);\n };\n var _Rsqrt = Module[\"_Rsqrt\"] = function() {\n return (_Rsqrt = Module[\"_Rsqrt\"] = Module[\"asm\"][\"Rsqrt\"]).apply(null, arguments);\n };\n var _ScatterNd = Module[\"_ScatterNd\"] = function() {\n return (_ScatterNd = Module[\"_ScatterNd\"] = Module[\"asm\"][\"ScatterNd\"]).apply(null, arguments);\n };\n var _SelectV2 = Module[\"_SelectV2\"] = function() {\n return (_SelectV2 = Module[\"_SelectV2\"] = Module[\"asm\"][\"SelectV2\"]).apply(null, arguments);\n };\n var _Sigmoid = Module[\"_Sigmoid\"] = function() {\n return (_Sigmoid = Module[\"_Sigmoid\"] = Module[\"asm\"][\"Sigmoid\"]).apply(null, arguments);\n };\n var _Sin = Module[\"_Sin\"] = function() {\n return (_Sin = Module[\"_Sin\"] = Module[\"asm\"][\"Sin\"]).apply(null, arguments);\n };\n var _Softmax = Module[\"_Softmax\"] = function() {\n return (_Softmax = Module[\"_Softmax\"] = Module[\"asm\"][\"Softmax\"]).apply(null, arguments);\n };\n var _SparseFillEmptyRows = Module[\"_SparseFillEmptyRows\"] = function() {\n return (_SparseFillEmptyRows = Module[\"_SparseFillEmptyRows\"] = Module[\"asm\"][\"SparseFillEmptyRows\"]).apply(null, arguments);\n };\n var _SparseReshape = Module[\"_SparseReshape\"] = function() {\n return (_SparseReshape = Module[\"_SparseReshape\"] = Module[\"asm\"][\"SparseReshape\"]).apply(null, arguments);\n };\n var _SparseSegmentReduction = Module[\"_SparseSegmentReduction\"] = function() {\n return (_SparseSegmentReduction = Module[\"_SparseSegmentReduction\"] = Module[\"asm\"][\"SparseSegmentReduction\"]).apply(null, arguments);\n };\n var _Sqrt = Module[\"_Sqrt\"] = function() {\n return (_Sqrt = Module[\"_Sqrt\"] = Module[\"asm\"][\"Sqrt\"]).apply(null, arguments);\n };\n var _Square = Module[\"_Square\"] = function() {\n return (_Square = Module[\"_Square\"] = Module[\"asm\"][\"Square\"]).apply(null, arguments);\n };\n var _SquaredDifference = Module[\"_SquaredDifference\"] = function() {\n return (_SquaredDifference = Module[\"_SquaredDifference\"] = Module[\"asm\"][\"SquaredDifference\"]).apply(null, arguments);\n };\n var _Step = Module[\"_Step\"] = function() {\n return (_Step = Module[\"_Step\"] = Module[\"asm\"][\"Step\"]).apply(null, arguments);\n };\n var _StridedSlice = Module[\"_StridedSlice\"] = function() {\n return (_StridedSlice = Module[\"_StridedSlice\"] = Module[\"asm\"][\"StridedSlice\"]).apply(null, arguments);\n };\n var _Sub = Module[\"_Sub\"] = function() {\n return (_Sub = Module[\"_Sub\"] = Module[\"asm\"][\"Sub\"]).apply(null, arguments);\n };\n var _Sum = Module[\"_Sum\"] = function() {\n return (_Sum = Module[\"_Sum\"] = Module[\"asm\"][\"Sum\"]).apply(null, arguments);\n };\n var _Tan = Module[\"_Tan\"] = function() {\n return (_Tan = Module[\"_Tan\"] = Module[\"asm\"][\"Tan\"]).apply(null, arguments);\n };\n var _Tanh = Module[\"_Tanh\"] = function() {\n return (_Tanh = Module[\"_Tanh\"] = Module[\"asm\"][\"Tanh\"]).apply(null, arguments);\n };\n var _Tile = Module[\"_Tile\"] = function() {\n return (_Tile = Module[\"_Tile\"] = Module[\"asm\"][\"Tile\"]).apply(null, arguments);\n };\n var _TopK = Module[\"_TopK\"] = function() {\n return (_TopK = Module[\"_TopK\"] = Module[\"asm\"][\"TopK\"]).apply(null, arguments);\n };\n var _Transform = Module[\"_Transform\"] = function() {\n return (_Transform = Module[\"_Transform\"] = Module[\"asm\"][\"Transform\"]).apply(null, arguments);\n };\n var _Transpose = Module[\"_Transpose\"] = function() {\n return (_Transpose = Module[\"_Transpose\"] = Module[\"asm\"][\"Transpose\"]).apply(null, arguments);\n };\n var __FusedMatMul = Module[\"__FusedMatMul\"] = function() {\n return (__FusedMatMul = Module[\"__FusedMatMul\"] = Module[\"asm\"][\"_FusedMatMul\"]).apply(null, arguments);\n };\n var _malloc = Module[\"_malloc\"] = function() {\n return (_malloc = Module[\"_malloc\"] = Module[\"asm\"][\"malloc\"]).apply(null, arguments);\n };\n var _free = Module[\"_free\"] = function() {\n return (_free = Module[\"_free\"] = Module[\"asm\"][\"free\"]).apply(null, arguments);\n };\n var ___errno_location = Module[\"___errno_location\"] = function() {\n return (___errno_location = Module[\"___errno_location\"] = Module[\"asm\"][\"__errno_location\"]).apply(null, arguments);\n };\n var _emscripten_main_thread_process_queued_calls = Module[\"_emscripten_main_thread_process_queued_calls\"] = function() {\n return (_emscripten_main_thread_process_queued_calls = Module[\"_emscripten_main_thread_process_queued_calls\"] = Module[\"asm\"][\"emscripten_main_thread_process_queued_calls\"]).apply(null, arguments);\n };\n var stackSave = Module[\"stackSave\"] = function() {\n return (stackSave = Module[\"stackSave\"] = Module[\"asm\"][\"stackSave\"]).apply(null, arguments);\n };\n var stackRestore = Module[\"stackRestore\"] = function() {\n return (stackRestore = Module[\"stackRestore\"] = Module[\"asm\"][\"stackRestore\"]).apply(null, arguments);\n };\n var stackAlloc = Module[\"stackAlloc\"] = function() {\n return (stackAlloc = Module[\"stackAlloc\"] = Module[\"asm\"][\"stackAlloc\"]).apply(null, arguments);\n };\n var dynCall_iijjiiii = Module[\"dynCall_iijjiiii\"] = function() {\n return (dynCall_iijjiiii = Module[\"dynCall_iijjiiii\"] = Module[\"asm\"][\"dynCall_iijjiiii\"]).apply(null, arguments);\n };\n var dynCall_jiji = Module[\"dynCall_jiji\"] = function() {\n return (dynCall_jiji = Module[\"dynCall_jiji\"] = Module[\"asm\"][\"dynCall_jiji\"]).apply(null, arguments);\n };\n Module[\"cwrap\"] = cwrap;\n var calledRun;\n function ExitStatus(status) {\n this.name = \"ExitStatus\";\n this.message = \"Program terminated with exit(\" + status + \")\";\n this.status = status;\n }\n dependenciesFulfilled = function runCaller() {\n if (!calledRun)\n run();\n if (!calledRun)\n dependenciesFulfilled = runCaller;\n };\n function run(args) {\n args = args || arguments_;\n if (runDependencies > 0) {\n return;\n }\n preRun();\n if (runDependencies > 0) {\n return;\n }\n function doRun() {\n if (calledRun)\n return;\n calledRun = true;\n Module[\"calledRun\"] = true;\n if (ABORT)\n return;\n initRuntime();\n readyPromiseResolve(Module);\n if (Module[\"onRuntimeInitialized\"])\n Module[\"onRuntimeInitialized\"]();\n postRun();\n }\n if (Module[\"setStatus\"]) {\n Module[\"setStatus\"](\"Running...\");\n setTimeout(function() {\n setTimeout(function() {\n Module[\"setStatus\"](\"\");\n }, 1);\n doRun();\n }, 1);\n } else {\n doRun();\n }\n }\n Module[\"run\"] = run;\n function procExit(code) {\n EXITSTATUS = code;\n if (!keepRuntimeAlive()) {\n if (Module[\"onExit\"])\n Module[\"onExit\"](code);\n ABORT = true;\n }\n quit_(code, new ExitStatus(code));\n }\n if (Module[\"preInit\"]) {\n if (typeof Module[\"preInit\"] == \"function\")\n Module[\"preInit\"] = [Module[\"preInit\"]];\n while (Module[\"preInit\"].length > 0) {\n Module[\"preInit\"].pop()();\n }\n }\n run();\n var listenersAdded;\n if (beforeListeners) {\n listenersAdded = { uncaughtException: process.listeners(\"uncaughtException\").filter(function(listener) {\n return !beforeListeners.uncaughtException.indexOf(listener) > -1;\n }), unhandledRejection: process.listeners(\"unhandledRejection\").filter(function(listener) {\n return !beforeListeners.unhandledRejection.indexOf(listener) > -1;\n }) };\n }\n var actualModule;\n if (typeof WasmBackendModule3 !== \"undefined\") {\n actualModule = WasmBackendModule3;\n } else if (typeof WasmBackendModuleThreadedSimd !== \"undefined\") {\n actualModule = WasmBackendModuleThreadedSimd;\n } else {\n throw new Error(\"Could not find wasm module in post.js\");\n }\n if (listenersAdded) {\n var tmpDispose = actualModule[\"_dispose\"];\n actualModule[\"_dispose\"] = function() {\n tmpDispose();\n listenersAdded.uncaughtException.forEach(function(listener) {\n process.removeListener(\"uncaughtException\", listener);\n });\n listenersAdded.unhandledRejection.forEach(function(listener) {\n process.removeListener(\"unhandledRejection\", listener);\n });\n };\n }\n return WasmBackendModule3.ready;\n };\n })();\n if (typeof exports === \"object\" && typeof module === \"object\")\n module.exports = WasmBackendModule2;\n else if (typeof define === \"function\" && define[\"amd\"])\n define([], function() {\n return WasmBackendModule2;\n });\n else if (typeof exports === \"object\")\n exports[\"WasmBackendModule\"] = WasmBackendModule2;\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/backends/backend.js\nvar EPSILON_FLOAT32 = 1e-7;\nvar EPSILON_FLOAT16 = 1e-4;\nvar DataStorage = class {\n constructor(backend2, dataMover) {\n this.backend = backend2;\n this.dataMover = dataMover;\n this.data = /* @__PURE__ */ new WeakMap();\n this.dataIdsCount = 0;\n }\n get(dataId) {\n if (!this.data.has(dataId)) {\n this.dataMover.moveData(this.backend, dataId);\n }\n return this.data.get(dataId);\n }\n set(dataId, value) {\n this.dataIdsCount++;\n this.data.set(dataId, value);\n }\n has(dataId) {\n return this.data.has(dataId);\n }\n delete(dataId) {\n this.dataIdsCount--;\n return this.data.delete(dataId);\n }\n numDataIds() {\n return this.dataIdsCount;\n }\n};\nvar KernelBackend = class {\n refCount(dataId) {\n return notYetImplemented(\"refCount\");\n }\n incRef(dataId) {\n return notYetImplemented(\"incRef\");\n }\n timerAvailable() {\n return true;\n }\n time(f) {\n return notYetImplemented(\"time\");\n }\n read(dataId) {\n return notYetImplemented(\"read\");\n }\n readSync(dataId) {\n return notYetImplemented(\"readSync\");\n }\n readToGPU(dataId, options) {\n return notYetImplemented(\"readToGPU\");\n }\n numDataIds() {\n return notYetImplemented(\"numDataIds\");\n }\n disposeData(dataId, force) {\n return notYetImplemented(\"disposeData\");\n }\n write(values, shape, dtype) {\n return notYetImplemented(\"write\");\n }\n move(dataId, values, shape, dtype, refCount) {\n return notYetImplemented(\"move\");\n }\n memory() {\n return notYetImplemented(\"memory\");\n }\n floatPrecision() {\n return notYetImplemented(\"floatPrecision\");\n }\n epsilon() {\n return this.floatPrecision() === 32 ? EPSILON_FLOAT32 : EPSILON_FLOAT16;\n }\n dispose() {\n return notYetImplemented(\"dispose\");\n }\n};\nfunction notYetImplemented(kernelName) {\n throw new Error(`'${kernelName}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/util_base.js\nfunction shuffle(array2) {\n let counter = array2.length;\n let index = 0;\n while (counter > 0) {\n index = Math.random() * counter | 0;\n counter--;\n swap(array2, counter, index);\n }\n}\nfunction shuffleCombo(array2, array22) {\n if (array2.length !== array22.length) {\n throw new Error(`Array sizes must match to be shuffled together First array length was ${array2.length}Second array length was ${array22.length}`);\n }\n let counter = array2.length;\n let index = 0;\n while (counter > 0) {\n index = Math.random() * counter | 0;\n counter--;\n swap(array2, counter, index);\n swap(array22, counter, index);\n }\n}\nfunction clamp(min7, x, max7) {\n return Math.max(min7, Math.min(x, max7));\n}\nfunction nearestLargerEven(val) {\n return val % 2 === 0 ? val : val + 1;\n}\nfunction swap(object, left, right) {\n const temp = object[left];\n object[left] = object[right];\n object[right] = temp;\n}\nfunction sum(arr) {\n let sum7 = 0;\n for (let i2 = 0; i2 < arr.length; i2++) {\n sum7 += arr[i2];\n }\n return sum7;\n}\nfunction randUniform(a6, b) {\n const r2 = Math.random();\n return b * r2 + (1 - r2) * a6;\n}\nfunction distSquared(a6, b) {\n let result = 0;\n for (let i2 = 0; i2 < a6.length; i2++) {\n const diff = Number(a6[i2]) - Number(b[i2]);\n result += diff * diff;\n }\n return result;\n}\nfunction assert(expr, msg) {\n if (!expr) {\n throw new Error(typeof msg === \"string\" ? msg : msg());\n }\n}\nfunction assertShapesMatch(shapeA, shapeB, errorMessagePrefix = \"\") {\n assert(arraysEqual(shapeA, shapeB), () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`);\n}\nfunction assertNonNull(a6) {\n assert(a6 != null, () => `The input to the tensor constructor must be a non-null value.`);\n}\nfunction flatten(arr, result = [], skipTypedArray = false) {\n if (result == null) {\n result = [];\n }\n if (Array.isArray(arr) || isTypedArray(arr) && !skipTypedArray) {\n for (let i2 = 0; i2 < arr.length; ++i2) {\n flatten(arr[i2], result, skipTypedArray);\n }\n } else {\n result.push(arr);\n }\n return result;\n}\nfunction sizeFromShape(shape) {\n if (shape.length === 0) {\n return 1;\n }\n let size = shape[0];\n for (let i2 = 1; i2 < shape.length; i2++) {\n size *= shape[i2];\n }\n return size;\n}\nfunction isScalarShape(shape) {\n return shape.length === 0;\n}\nfunction arraysEqual(n1, n2) {\n if (n1 === n2) {\n return true;\n }\n if (n1 == null || n2 == null) {\n return false;\n }\n if (n1.length !== n2.length) {\n return false;\n }\n for (let i2 = 0; i2 < n1.length; i2++) {\n if (n1[i2] !== n2[i2]) {\n return false;\n }\n }\n return true;\n}\nfunction isInt(a6) {\n return a6 % 1 === 0;\n}\nfunction tanh(x) {\n if (Math.tanh != null) {\n return Math.tanh(x);\n }\n if (x === Infinity) {\n return 1;\n } else if (x === -Infinity) {\n return -1;\n } else {\n const e2x = Math.exp(2 * x);\n return (e2x - 1) / (e2x + 1);\n }\n}\nfunction sizeToSquarishShape(size) {\n const width = Math.ceil(Math.sqrt(size));\n return [width, Math.ceil(size / width)];\n}\nfunction createShuffledIndices(n) {\n const shuffledIndices = new Uint32Array(n);\n for (let i2 = 0; i2 < n; ++i2) {\n shuffledIndices[i2] = i2;\n }\n shuffle(shuffledIndices);\n return shuffledIndices;\n}\nfunction rightPad(a6, size) {\n if (size <= a6.length) {\n return a6;\n }\n return a6 + \" \".repeat(size - a6.length);\n}\nfunction repeatedTry(checkFn, delayFn = (counter) => 0, maxCounter) {\n return new Promise((resolve, reject) => {\n let tryCount = 0;\n const tryFn = () => {\n if (checkFn()) {\n resolve();\n return;\n }\n tryCount++;\n const nextBackoff = delayFn(tryCount);\n if (maxCounter != null && tryCount >= maxCounter) {\n reject();\n return;\n }\n setTimeout(tryFn, nextBackoff);\n };\n tryFn();\n });\n}\nfunction inferFromImplicitShape(shape, size) {\n let shapeProd = 1;\n let implicitIdx = -1;\n for (let i2 = 0; i2 < shape.length; ++i2) {\n if (shape[i2] >= 0) {\n shapeProd *= shape[i2];\n } else if (shape[i2] === -1) {\n if (implicitIdx !== -1) {\n throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${implicitIdx} and dim ${i2}`);\n }\n implicitIdx = i2;\n } else if (shape[i2] < 0) {\n throw Error(`Shapes can not be < 0. Found ${shape[i2]} at dim ${i2}`);\n }\n }\n if (implicitIdx === -1) {\n if (size > 0 && size !== shapeProd) {\n throw Error(`Size(${size}) must match the product of shape ${shape}`);\n }\n return shape;\n }\n if (shapeProd === 0) {\n throw Error(`Cannot infer the missing size in [${shape}] when there are 0 elements`);\n }\n if (size % shapeProd !== 0) {\n throw Error(`The implicit shape can't be a fractional number. Got ${size} / ${shapeProd}`);\n }\n const newShape = shape.slice();\n newShape[implicitIdx] = size / shapeProd;\n return newShape;\n}\nfunction parseAxisParam(axis, shape) {\n const rank = shape.length;\n axis = axis == null ? shape.map((s2, i2) => i2) : [].concat(axis);\n assert(axis.every((ax) => ax >= -rank && ax < rank), () => `All values in axis param must be in range [-${rank}, ${rank}) but got axis ${axis}`);\n assert(axis.every((ax) => isInt(ax)), () => `All values in axis param must be integers but got axis ${axis}`);\n return axis.map((a6) => a6 < 0 ? rank + a6 : a6);\n}\nfunction squeezeShape(shape, axis) {\n const newShape = [];\n const keptDims = [];\n const isEmptyArray = axis != null && Array.isArray(axis) && axis.length === 0;\n const axes = axis == null || isEmptyArray ? null : parseAxisParam(axis, shape).sort();\n let j = 0;\n for (let i2 = 0; i2 < shape.length; ++i2) {\n if (axes != null) {\n if (axes[j] === i2 && shape[i2] !== 1) {\n throw new Error(`Can't squeeze axis ${i2} since its dim '${shape[i2]}' is not 1`);\n }\n if ((axes[j] == null || axes[j] > i2) && shape[i2] === 1) {\n newShape.push(shape[i2]);\n keptDims.push(i2);\n }\n if (axes[j] <= i2) {\n j++;\n }\n }\n if (shape[i2] !== 1) {\n newShape.push(shape[i2]);\n keptDims.push(i2);\n }\n }\n return { newShape, keptDims };\n}\nfunction getTypedArrayFromDType(dtype, size) {\n let values = null;\n if (dtype == null || dtype === \"float32\") {\n values = new Float32Array(size);\n } else if (dtype === \"int32\") {\n values = new Int32Array(size);\n } else if (dtype === \"bool\") {\n values = new Uint8Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values;\n}\nfunction getArrayFromDType(dtype, size) {\n let values = null;\n if (dtype == null || dtype === \"float32\") {\n values = new Float32Array(size);\n } else if (dtype === \"int32\") {\n values = new Int32Array(size);\n } else if (dtype === \"bool\") {\n values = new Uint8Array(size);\n } else if (dtype === \"string\") {\n values = new Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values;\n}\nfunction checkConversionForErrors(vals, dtype) {\n for (let i2 = 0; i2 < vals.length; i2++) {\n const num = vals[i2];\n if (isNaN(num) || !isFinite(num)) {\n throw Error(`A tensor of type ${dtype} being uploaded contains ${num}.`);\n }\n }\n}\nfunction isValidDtype(dtype) {\n return dtype === \"bool\" || dtype === \"complex64\" || dtype === \"float32\" || dtype === \"int32\" || dtype === \"string\";\n}\nfunction hasEncodingLoss(oldType, newType) {\n if (newType === \"complex64\") {\n return false;\n }\n if (newType === \"float32\" && oldType !== \"complex64\") {\n return false;\n }\n if (newType === \"int32\" && oldType !== \"float32\" && oldType !== \"complex64\") {\n return false;\n }\n if (newType === \"bool\" && oldType === \"bool\") {\n return false;\n }\n return true;\n}\nfunction isTypedArray(a6) {\n return a6 instanceof Float32Array || a6 instanceof Int32Array || a6 instanceof Uint8Array || a6 instanceof Uint8ClampedArray;\n}\nfunction bytesPerElement(dtype) {\n if (dtype === \"float32\" || dtype === \"int32\") {\n return 4;\n } else if (dtype === \"complex64\") {\n return 8;\n } else if (dtype === \"bool\") {\n return 1;\n } else {\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\nfunction bytesFromStringArray(arr) {\n if (arr == null) {\n return 0;\n }\n let bytes = 0;\n arr.forEach((x) => bytes += x.length);\n return bytes;\n}\nfunction isString(value) {\n return typeof value === \"string\" || value instanceof String;\n}\nfunction isBoolean(value) {\n return typeof value === \"boolean\";\n}\nfunction isNumber(value) {\n return typeof value === \"number\";\n}\nfunction inferDtype(values) {\n if (Array.isArray(values)) {\n return inferDtype(values[0]);\n }\n if (values instanceof Float32Array) {\n return \"float32\";\n } else if (values instanceof Int32Array || values instanceof Uint8Array || values instanceof Uint8ClampedArray) {\n return \"int32\";\n } else if (isNumber(values)) {\n return \"float32\";\n } else if (isString(values)) {\n return \"string\";\n } else if (isBoolean(values)) {\n return \"bool\";\n }\n return \"float32\";\n}\nfunction isFunction(f) {\n return !!(f && f.constructor && f.call && f.apply);\n}\nfunction nearestDivisor(size, start) {\n for (let i2 = start; i2 < size; ++i2) {\n if (size % i2 === 0) {\n return i2;\n }\n }\n return size;\n}\nfunction computeStrides(shape) {\n const rank = shape.length;\n if (rank < 2) {\n return [];\n }\n const strides = new Array(rank - 1);\n strides[rank - 2] = shape[rank - 1];\n for (let i2 = rank - 3; i2 >= 0; --i2) {\n strides[i2] = strides[i2 + 1] * shape[i2 + 1];\n }\n return strides;\n}\nfunction createNestedArray(offset, shape, a6, isComplex = false) {\n const ret = new Array();\n if (shape.length === 1) {\n const d = shape[0] * (isComplex ? 2 : 1);\n for (let i2 = 0; i2 < d; i2++) {\n ret[i2] = a6[offset + i2];\n }\n } else {\n const d = shape[0];\n const rest = shape.slice(1);\n const len = rest.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n for (let i2 = 0; i2 < d; i2++) {\n ret[i2] = createNestedArray(offset + i2 * len, rest, a6, isComplex);\n }\n }\n return ret;\n}\nfunction toNestedArray(shape, a6, isComplex = false) {\n if (shape.length === 0) {\n return a6[0];\n }\n const size = shape.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n if (size === 0) {\n return [];\n }\n if (size !== a6.length) {\n throw new Error(`[${shape}] does not match the input size ${a6.length}${isComplex ? \" for a complex tensor\" : \"\"}.`);\n }\n return createNestedArray(0, shape, a6, isComplex);\n}\nfunction makeOnesTypedArray(size, dtype) {\n const array2 = makeZerosTypedArray(size, dtype);\n for (let i2 = 0; i2 < array2.length; i2++) {\n array2[i2] = 1;\n }\n return array2;\n}\nfunction makeZerosTypedArray(size, dtype) {\n if (dtype == null || dtype === \"float32\" || dtype === \"complex64\") {\n return new Float32Array(size);\n } else if (dtype === \"int32\") {\n return new Int32Array(size);\n } else if (dtype === \"bool\") {\n return new Uint8Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\nfunction makeZerosNestedTypedArray(shape, dtype) {\n const size = shape.reduce((prev, curr) => prev * curr, 1);\n if (dtype == null || dtype === \"float32\") {\n return toNestedArray(shape, new Float32Array(size));\n } else if (dtype === \"int32\") {\n return toNestedArray(shape, new Int32Array(size));\n } else if (dtype === \"bool\") {\n return toNestedArray(shape, new Uint8Array(size));\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\nfunction assertNonNegativeIntegerDimensions(shape) {\n shape.forEach((dimSize) => {\n assert(Number.isInteger(dimSize) && dimSize >= 0, () => `Tensor must have a shape comprised of positive integers but got shape [${shape}].`);\n });\n}\nfunction locToIndex(locs, rank, strides) {\n if (rank === 0) {\n return 0;\n } else if (rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i2 = 0; i2 < locs.length - 1; ++i2) {\n index += strides[i2] * locs[i2];\n }\n return index;\n}\nfunction indexToLoc(index, rank, strides) {\n if (rank === 0) {\n return [];\n } else if (rank === 1) {\n return [index];\n }\n const locs = new Array(rank);\n for (let i2 = 0; i2 < locs.length - 1; ++i2) {\n locs[i2] = Math.floor(index / strides[i2]);\n index -= locs[i2] * strides[i2];\n }\n locs[locs.length - 1] = index;\n return locs;\n}\nfunction isPromise(object) {\n return object && object.then && typeof object.then === \"function\";\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/environment.js\nvar TENSORFLOWJS_FLAGS_PREFIX = \"tfjsflags\";\nvar Environment = class {\n constructor(global2) {\n this.global = global2;\n this.flags = {};\n this.flagRegistry = {};\n this.urlFlags = {};\n this.getQueryParams = getQueryParams;\n this.populateURLFlags();\n }\n setPlatform(platformName, platform) {\n if (this.platform != null) {\n if (!(env().getBool(\"IS_TEST\") || env().getBool(\"PROD\"))) {\n console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${platformName}.`);\n }\n }\n this.platformName = platformName;\n this.platform = platform;\n }\n registerFlag(flagName, evaluationFn, setHook) {\n this.flagRegistry[flagName] = { evaluationFn, setHook };\n if (this.urlFlags[flagName] != null) {\n const flagValue = this.urlFlags[flagName];\n if (!(env().getBool(\"IS_TEST\") || env().getBool(\"PROD\"))) {\n console.warn(`Setting feature override from URL ${flagName}: ${flagValue}.`);\n }\n this.set(flagName, flagValue);\n }\n }\n async getAsync(flagName) {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n this.flags[flagName] = await this.evaluateFlag(flagName);\n return this.flags[flagName];\n }\n get(flagName) {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n const flagValue = this.evaluateFlag(flagName);\n if (isPromise(flagValue)) {\n throw new Error(`Flag ${flagName} cannot be synchronously evaluated. Please use getAsync() instead.`);\n }\n this.flags[flagName] = flagValue;\n return this.flags[flagName];\n }\n getNumber(flagName) {\n return this.get(flagName);\n }\n getBool(flagName) {\n return this.get(flagName);\n }\n getFlags() {\n return this.flags;\n }\n get features() {\n return this.flags;\n }\n set(flagName, value) {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(`Cannot set flag ${flagName} as it has not been registered.`);\n }\n this.flags[flagName] = value;\n if (this.flagRegistry[flagName].setHook != null) {\n this.flagRegistry[flagName].setHook(value);\n }\n }\n evaluateFlag(flagName) {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(`Cannot evaluate flag '${flagName}': no evaluation function found.`);\n }\n return this.flagRegistry[flagName].evaluationFn();\n }\n setFlags(flags) {\n this.flags = Object.assign({}, flags);\n }\n reset() {\n this.flags = {};\n this.urlFlags = {};\n this.populateURLFlags();\n }\n populateURLFlags() {\n if (typeof this.global === \"undefined\" || typeof this.global.location === \"undefined\" || typeof this.global.location.search === \"undefined\") {\n return;\n }\n const urlParams = this.getQueryParams(this.global.location.search);\n if (TENSORFLOWJS_FLAGS_PREFIX in urlParams) {\n const keyValues = urlParams[TENSORFLOWJS_FLAGS_PREFIX].split(\",\");\n keyValues.forEach((keyValue) => {\n const [key, value] = keyValue.split(\":\");\n this.urlFlags[key] = parseValue(key, value);\n });\n }\n }\n};\nfunction getQueryParams(queryString) {\n const params = {};\n queryString.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g, (s2, ...t2) => {\n decodeParam(params, t2[0], t2[1]);\n return t2.join(\"=\");\n });\n return params;\n}\nfunction decodeParam(params, name, value) {\n params[decodeURIComponent(name)] = decodeURIComponent(value || \"\");\n}\nfunction parseValue(flagName, value) {\n value = value.toLowerCase();\n if (value === \"true\" || value === \"false\") {\n return value === \"true\";\n } else if (`${+value}` === value) {\n return +value;\n }\n throw new Error(`Could not parse value flag value ${value} for flag ${flagName}.`);\n}\nfunction env() {\n return ENV;\n}\nvar ENV = null;\nfunction setEnvironmentGlobal(environment) {\n ENV = environment;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/global_util.js\nvar globalNameSpace;\nfunction getGlobalNamespace() {\n if (globalNameSpace == null) {\n let ns;\n if (typeof window !== \"undefined\") {\n ns = window;\n } else if (typeof global !== \"undefined\") {\n ns = global;\n } else if (typeof process !== \"undefined\") {\n ns = process;\n } else if (typeof self !== \"undefined\") {\n ns = self;\n } else {\n throw new Error(\"Could not find a global object\");\n }\n globalNameSpace = ns;\n }\n return globalNameSpace;\n}\nfunction getGlobalMap() {\n const ns = getGlobalNamespace();\n if (ns._tfGlobals == null) {\n ns._tfGlobals = /* @__PURE__ */ new Map();\n }\n return ns._tfGlobals;\n}\nfunction getGlobal(key, init2) {\n const globalMap = getGlobalMap();\n if (globalMap.has(key)) {\n return globalMap.get(key);\n } else {\n const singleton = init2();\n globalMap.set(key, singleton);\n return globalMap.get(key);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/kernel_names.js\nvar Abs = \"Abs\";\nvar Acos = \"Acos\";\nvar Acosh = \"Acosh\";\nvar Add = \"Add\";\nvar AddN = \"AddN\";\nvar All = \"All\";\nvar Any = \"Any\";\nvar ArgMax = \"ArgMax\";\nvar ArgMin = \"ArgMin\";\nvar Asin = \"Asin\";\nvar Asinh = \"Asinh\";\nvar Atan = \"Atan\";\nvar Atanh = \"Atanh\";\nvar Atan2 = \"Atan2\";\nvar AvgPool = \"AvgPool\";\nvar AvgPoolGrad = \"AvgPoolGrad\";\nvar AvgPool3D = \"AvgPool3D\";\nvar AvgPool3DGrad = \"AvgPool3DGrad\";\nvar BatchMatMul = \"BatchMatMul\";\nvar BatchToSpaceND = \"BatchToSpaceND\";\nvar Bincount = \"Bincount\";\nvar BroadcastTo = \"BroadcastTo\";\nvar BroadcastArgs = \"BroadcastArgs\";\nvar Cast = \"Cast\";\nvar Ceil = \"Ceil\";\nvar ClipByValue = \"ClipByValue\";\nvar Complex = \"Complex\";\nvar ComplexAbs = \"ComplexAbs\";\nvar Concat = \"Concat\";\nvar Conv2D = \"Conv2D\";\nvar Conv2DBackpropFilter = \"Conv2DBackpropFilter\";\nvar Conv2DBackpropInput = \"Conv2DBackpropInput\";\nvar Conv3D = \"Conv3D\";\nvar Conv3DBackpropFilterV2 = \"Conv3DBackpropFilterV2\";\nvar Conv3DBackpropInputV2 = \"Conv3DBackpropInputV2\";\nvar Cos = \"Cos\";\nvar Cosh = \"Cosh\";\nvar Cumprod = \"Cumprod\";\nvar Cumsum = \"Cumsum\";\nvar CropAndResize = \"CropAndResize\";\nvar DenseBincount = \"DenseBincount\";\nvar DepthToSpace = \"DepthToSpace\";\nvar DepthwiseConv2dNative = \"DepthwiseConv2dNative\";\nvar DepthwiseConv2dNativeBackpropFilter = \"DepthwiseConv2dNativeBackpropFilter\";\nvar DepthwiseConv2dNativeBackpropInput = \"DepthwiseConv2dNativeBackpropInput\";\nvar Diag = \"Diag\";\nvar Dilation2D = \"Dilation2D\";\nvar Dilation2DBackpropInput = \"Dilation2DBackpropInput\";\nvar Dilation2DBackpropFilter = \"Dilation2DBackpropFilter\";\nvar RealDiv = \"RealDiv\";\nvar Einsum = \"Einsum\";\nvar Elu = \"Elu\";\nvar EluGrad = \"EluGrad\";\nvar Erf = \"Erf\";\nvar Equal = \"Equal\";\nvar Exp = \"Exp\";\nvar ExpandDims = \"ExpandDims\";\nvar Expm1 = \"Expm1\";\nvar FFT = \"FFT\";\nvar Fill = \"Fill\";\nvar FlipLeftRight = \"FlipLeftRight\";\nvar Floor = \"Floor\";\nvar FloorDiv = \"FloorDiv\";\nvar FusedBatchNorm = \"FusedBatchNorm\";\nvar GatherV2 = \"GatherV2\";\nvar GatherNd = \"GatherNd\";\nvar Greater = \"Greater\";\nvar GreaterEqual = \"GreaterEqual\";\nvar Identity = \"Identity\";\nvar IFFT = \"IFFT\";\nvar Imag = \"Imag\";\nvar IsFinite = \"IsFinite\";\nvar IsInf = \"IsInf\";\nvar IsNan = \"IsNan\";\nvar LeakyRelu = \"LeakyRelu\";\nvar Less = \"Less\";\nvar LessEqual = \"LessEqual\";\nvar LinSpace = \"LinSpace\";\nvar Log = \"Log\";\nvar Log1p = \"Log1p\";\nvar LogicalAnd = \"LogicalAnd\";\nvar LogicalNot = \"LogicalNot\";\nvar LogicalOr = \"LogicalOr\";\nvar LogSoftmax = \"LogSoftmax\";\nvar LowerBound = \"LowerBound\";\nvar LRN = \"LRN\";\nvar LRNGrad = \"LRNGrad\";\nvar Max = \"Max\";\nvar Maximum = \"Maximum\";\nvar MaxPool = \"MaxPool\";\nvar MaxPoolGrad = \"MaxPoolGrad\";\nvar MaxPool3D = \"MaxPool3D\";\nvar MaxPool3DGrad = \"MaxPool3DGrad\";\nvar MaxPoolWithArgmax = \"MaxPoolWithArgmax\";\nvar Mean = \"Mean\";\nvar Min = \"Min\";\nvar Minimum = \"Minimum\";\nvar MirrorPad = \"MirrorPad\";\nvar Mod = \"Mod\";\nvar Multinomial = \"Multinomial\";\nvar Multiply = \"Multiply\";\nvar Neg = \"Neg\";\nvar NotEqual = \"NotEqual\";\nvar NonMaxSuppressionV3 = \"NonMaxSuppressionV3\";\nvar NonMaxSuppressionV4 = \"NonMaxSuppressionV4\";\nvar NonMaxSuppressionV5 = \"NonMaxSuppressionV5\";\nvar OnesLike = \"OnesLike\";\nvar OneHot = \"OneHot\";\nvar Pack = \"Pack\";\nvar PadV2 = \"PadV2\";\nvar Pool = \"Pool\";\nvar Pow = \"Pow\";\nvar Prelu = \"Prelu\";\nvar Prod = \"Prod\";\nvar Range = \"Range\";\nvar Real = \"Real\";\nvar Reciprocal = \"Reciprocal\";\nvar Relu = \"Relu\";\nvar Reshape = \"Reshape\";\nvar ResizeNearestNeighbor = \"ResizeNearestNeighbor\";\nvar ResizeNearestNeighborGrad = \"ResizeNearestNeighborGrad\";\nvar ResizeBilinear = \"ResizeBilinear\";\nvar ResizeBilinearGrad = \"ResizeBilinearGrad\";\nvar Relu6 = \"Relu6\";\nvar Reverse = \"Reverse\";\nvar Round = \"Round\";\nvar Rsqrt = \"Rsqrt\";\nvar ScatterNd = \"ScatterNd\";\nvar SearchSorted = \"SearchSorted\";\nvar Select = \"Select\";\nvar Selu = \"Selu\";\nvar Slice = \"Slice\";\nvar Sin = \"Sin\";\nvar Sinh = \"Sinh\";\nvar Sign = \"Sign\";\nvar Sigmoid = \"Sigmoid\";\nvar Softplus = \"Softplus\";\nvar Sqrt = \"Sqrt\";\nvar Sum = \"Sum\";\nvar SpaceToBatchND = \"SpaceToBatchND\";\nvar SplitV = \"SplitV\";\nvar Softmax = \"Softmax\";\nvar SparseFillEmptyRows = \"SparseFillEmptyRows\";\nvar SparseReshape = \"SparseReshape\";\nvar SparseSegmentMean = \"SparseSegmentMean\";\nvar SparseSegmentSum = \"SparseSegmentSum\";\nvar SparseToDense = \"SparseToDense\";\nvar SquaredDifference = \"SquaredDifference\";\nvar Square = \"Square\";\nvar StridedSlice = \"StridedSlice\";\nvar StringNGrams = \"StringNGrams\";\nvar StringSplit = \"StringSplit\";\nvar StringToHashBucketFast = \"StringToHashBucketFast\";\nvar Sub = \"Sub\";\nvar Tan = \"Tan\";\nvar Tanh = \"Tanh\";\nvar Tile = \"Tile\";\nvar TopK = \"TopK\";\nvar Transform = \"Transform\";\nvar Transpose = \"Transpose\";\nvar Unique = \"Unique\";\nvar Unpack = \"Unpack\";\nvar UnsortedSegmentSum = \"UnsortedSegmentSum\";\nvar UpperBound = \"UpperBound\";\nvar ZerosLike = \"ZerosLike\";\nvar Step = \"Step\";\nvar FromPixels = \"FromPixels\";\nvar RotateWithOffset = \"RotateWithOffset\";\nvar _FusedMatMul = \"_FusedMatMul\";\nvar FusedConv2D = \"FusedConv2D\";\nvar FusedDepthwiseConv2D = \"FusedDepthwiseConv2D\";\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/log.js\nfunction warn(...msg) {\n if (!(env().getBool(\"IS_TEST\") || env().getBool(\"PROD\"))) {\n console.warn(...msg);\n }\n}\nfunction log(...msg) {\n if (!(env().getBool(\"IS_TEST\") || env().getBool(\"PROD\"))) {\n console.log(...msg);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/kernel_registry.js\nvar kernelRegistry = getGlobal(\"kernelRegistry\", () => /* @__PURE__ */ new Map());\nvar gradRegistry = getGlobal(\"gradRegistry\", () => /* @__PURE__ */ new Map());\nfunction getKernel(kernelName, backendName) {\n const key = makeKey(kernelName, backendName);\n return kernelRegistry.get(key);\n}\nfunction getGradient(kernelName) {\n return gradRegistry.get(kernelName);\n}\nfunction getKernelsForBackend(backendName) {\n const it = kernelRegistry.entries();\n const result = [];\n while (true) {\n const { done, value } = it.next();\n if (done) {\n break;\n }\n const [key, config] = value;\n const [backend2] = key.split(\"_\");\n if (backend2 === backendName) {\n result.push(config);\n }\n }\n return result;\n}\nfunction registerKernel(config) {\n const { kernelName, backendName } = config;\n const key = makeKey(kernelName, backendName);\n if (kernelRegistry.has(key)) {\n warn(`The kernel '${kernelName}' for backend '${backendName}' is already registered`);\n }\n kernelRegistry.set(key, config);\n}\nfunction registerGradient(config) {\n const { kernelName } = config;\n if (gradRegistry.has(kernelName)) {\n if (env().getBool(\"DEBUG\")) {\n warn(`Overriding the gradient for '${kernelName}'`);\n }\n }\n gradRegistry.set(kernelName, config);\n}\nfunction unregisterKernel(kernelName, backendName) {\n const key = makeKey(kernelName, backendName);\n if (!kernelRegistry.has(key)) {\n throw new Error(`The kernel '${kernelName}' for backend '${backendName}' is not registered`);\n }\n kernelRegistry.delete(key);\n}\nfunction unregisterGradient(kernelName) {\n if (!gradRegistry.has(kernelName)) {\n throw new Error(`The gradient '${kernelName}' for backend is not registered`);\n }\n gradRegistry.delete(kernelName);\n}\nfunction copyRegisteredKernels(registeredBackendName, newBackendName) {\n const kernels = getKernelsForBackend(registeredBackendName);\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = Object.assign({}, kernelConfig, { backendName: newBackendName });\n registerKernel(newKernelConfig);\n });\n}\nfunction makeKey(kernelName, backendName) {\n return `${backendName}_${kernelName}`;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/util.js\nvar util_exports = {};\n__export(util_exports, {\n arraysEqual: () => arraysEqual,\n assert: () => assert,\n assertNonNegativeIntegerDimensions: () => assertNonNegativeIntegerDimensions,\n assertNonNull: () => assertNonNull,\n assertShapesMatch: () => assertShapesMatch,\n bytesFromStringArray: () => bytesFromStringArray,\n bytesPerElement: () => bytesPerElement,\n checkConversionForErrors: () => checkConversionForErrors,\n clamp: () => clamp,\n computeStrides: () => computeStrides,\n createScalarValue: () => createScalarValue,\n createShuffledIndices: () => createShuffledIndices,\n decodeString: () => decodeString,\n distSquared: () => distSquared,\n encodeString: () => encodeString,\n fetch: () => fetch3,\n fingerPrint64: () => fingerPrint64,\n flatten: () => flatten,\n getArrayFromDType: () => getArrayFromDType,\n getTypedArrayFromDType: () => getTypedArrayFromDType,\n hasEncodingLoss: () => hasEncodingLoss,\n hexToLong: () => hexToLong,\n indexToLoc: () => indexToLoc,\n inferDtype: () => inferDtype,\n inferFromImplicitShape: () => inferFromImplicitShape,\n isBoolean: () => isBoolean,\n isFunction: () => isFunction,\n isInt: () => isInt,\n isNumber: () => isNumber,\n isPromise: () => isPromise,\n isScalarShape: () => isScalarShape,\n isString: () => isString,\n isTypedArray: () => isTypedArray,\n isValidDtype: () => isValidDtype,\n locToIndex: () => locToIndex,\n makeOnesTypedArray: () => makeOnesTypedArray,\n makeZerosNestedTypedArray: () => makeZerosNestedTypedArray,\n makeZerosTypedArray: () => makeZerosTypedArray,\n nearestDivisor: () => nearestDivisor,\n nearestLargerEven: () => nearestLargerEven,\n now: () => now,\n parseAxisParam: () => parseAxisParam,\n randUniform: () => randUniform,\n repeatedTry: () => repeatedTry,\n rightPad: () => rightPad,\n shuffle: () => shuffle,\n shuffleCombo: () => shuffleCombo,\n sizeFromShape: () => sizeFromShape,\n sizeToSquarishShape: () => sizeToSquarishShape,\n squeezeShape: () => squeezeShape,\n sum: () => sum,\n swap: () => swap,\n tanh: () => tanh,\n toNestedArray: () => toNestedArray,\n toTypedArray: () => toTypedArray\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/hash_util.js\nvar LongExports = __toESM(require_long());\nvar Long = LongExports.default || LongExports;\nfunction hexToLong(hex) {\n return Long.fromString(hex, true, 16);\n}\nvar k0 = hexToLong(\"c3a5c85c97cb3127\");\nvar k1 = hexToLong(\"b492b66fbe98f273\");\nvar k2 = hexToLong(\"9ae16a3b2f90404f\");\nfunction shiftMix(val) {\n return val.xor(val.shru(47));\n}\nfunction fetch2(s2, offset, numBytes) {\n const bytes = s2.slice(offset, offset + numBytes);\n return Long.fromBytes(Array.from(bytes), true, true);\n}\nfunction fetch64(s2, offset) {\n return fetch2(s2, offset, 8);\n}\nfunction fetch32(s2, offset) {\n return fetch2(s2, offset, 4);\n}\nfunction rotate64(val, shift) {\n return shift === 0 ? val : val.shru(shift).or(val.shl(64 - shift));\n}\nfunction hashLen16(u, v, mul2 = hexToLong(\"9ddfea08eb382d69\")) {\n let a6 = u.xor(v).mul(mul2);\n a6 = a6.xor(a6.shru(47));\n let b = v.xor(a6).mul(mul2);\n b = b.xor(b.shru(47));\n b = b.mul(mul2);\n return b;\n}\nfunction weakHashLen32WithSeeds(w, x, y, z, a6, b) {\n a6 = a6.add(w);\n b = rotate64(b.add(a6).add(z), 21);\n const c = a6;\n a6 = a6.add(x);\n a6 = a6.add(y);\n b = b.add(rotate64(a6, 44));\n return [a6.add(z), b.add(c)];\n}\nfunction weakHashLen32WithSeedsStr(s2, offset, a6, b) {\n return weakHashLen32WithSeeds(fetch64(s2, offset), fetch64(s2, offset + 8), fetch64(s2, offset + 16), fetch64(s2, offset + 24), a6, b);\n}\nfunction hashLen0to16(s2, len = s2.length) {\n if (len >= 8) {\n const mul2 = k2.add(len * 2);\n const a6 = fetch64(s2, 0).add(k2);\n const b = fetch64(s2, len - 8);\n const c = rotate64(b, 37).mul(mul2).add(a6);\n const d = rotate64(a6, 25).add(b).mul(mul2);\n return hashLen16(c, d, mul2);\n }\n if (len >= 4) {\n const mul2 = k2.add(len * 2);\n const a6 = fetch32(s2, 0);\n return hashLen16(a6.shl(3).add(len), fetch32(s2, len - 4), mul2);\n }\n if (len > 0) {\n const a6 = s2[0];\n const b = s2[len >> 1];\n const c = s2[len - 1];\n const y = a6 + (b << 8);\n const z = len + (c << 2);\n return shiftMix(k2.mul(y).xor(k0.mul(z))).mul(k2);\n }\n return k2;\n}\nfunction hashLen17to32(s2, len = s2.length) {\n const mul2 = k2.add(len * 2);\n const a6 = fetch64(s2, 0).mul(k1);\n const b = fetch64(s2, 8);\n const c = fetch64(s2, len - 8).mul(mul2);\n const d = fetch64(s2, len - 16).mul(k2);\n return hashLen16(rotate64(a6.add(b), 43).add(rotate64(c, 30)).add(d), a6.add(rotate64(b.add(k2), 18)).add(c), mul2);\n}\nfunction hashLen33to64(s2, len = s2.length) {\n const mul2 = k2.add(len * 2);\n const a6 = fetch64(s2, 0).mul(k2);\n const b = fetch64(s2, 8);\n const c = fetch64(s2, len - 8).mul(mul2);\n const d = fetch64(s2, len - 16).mul(k2);\n const y = rotate64(a6.add(b), 43).add(rotate64(c, 30)).add(d);\n const z = hashLen16(y, a6.add(rotate64(b.add(k2), 18)).add(c), mul2);\n const e2 = fetch64(s2, 16).mul(mul2);\n const f = fetch64(s2, 24);\n const g = y.add(fetch64(s2, len - 32)).mul(mul2);\n const h = z.add(fetch64(s2, len - 24)).mul(mul2);\n return hashLen16(rotate64(e2.add(f), 43).add(rotate64(g, 30)).add(h), e2.add(rotate64(f.add(a6), 18)).add(g), mul2);\n}\nfunction fingerPrint64(s2, len = s2.length) {\n const seed = Long.fromNumber(81, true);\n if (len <= 32) {\n if (len <= 16) {\n return hashLen0to16(s2, len);\n } else {\n return hashLen17to32(s2, len);\n }\n } else if (len <= 64) {\n return hashLen33to64(s2, len);\n }\n let x = seed;\n let y = seed.mul(k1).add(113);\n let z = shiftMix(y.mul(k2).add(113)).mul(k2);\n let v = [Long.UZERO, Long.UZERO];\n let w = [Long.UZERO, Long.UZERO];\n x = x.mul(k2).add(fetch64(s2, 0));\n let offset = 0;\n const end = (len - 1 >> 6) * 64;\n const last64 = end + (len - 1 & 63) - 63;\n do {\n x = rotate64(x.add(y).add(v[0]).add(fetch64(s2, offset + 8)), 37).mul(k1);\n y = rotate64(y.add(v[1]).add(fetch64(s2, offset + 48)), 42).mul(k1);\n x = x.xor(w[1]);\n y = y.add(v[0]).add(fetch64(s2, offset + 40));\n z = rotate64(z.add(w[0]), 33).mul(k1);\n v = weakHashLen32WithSeedsStr(s2, offset, v[1].mul(k1), x.add(w[0]));\n w = weakHashLen32WithSeedsStr(s2, offset + 32, z.add(w[1]), y.add(fetch64(s2, offset + 16)));\n [z, x] = [x, z];\n offset += 64;\n } while (offset !== end);\n const mul2 = k1.add(z.and(255).shl(1));\n offset = last64;\n w[0] = w[0].add(len - 1 & 63);\n v[0] = v[0].add(w[0]);\n w[0] = w[0].add(v[0]);\n x = rotate64(x.add(y).add(v[0]).add(fetch64(s2, offset + 8)), 37).mul(mul2);\n y = rotate64(y.add(v[1]).add(fetch64(s2, offset + 48)), 42).mul(mul2);\n x = x.xor(w[1].mul(9));\n y = y.add(v[0].mul(9).add(fetch64(s2, offset + 40)));\n z = rotate64(z.add(w[0]), 33).mul(mul2);\n v = weakHashLen32WithSeedsStr(s2, offset, v[1].mul(mul2), x.add(w[0]));\n w = weakHashLen32WithSeedsStr(s2, offset + 32, z.add(w[1]), y.add(fetch64(s2, offset + 16)));\n [z, x] = [x, z];\n return hashLen16(hashLen16(v[0], w[0], mul2).add(shiftMix(y).mul(k0)).add(z), hashLen16(v[1], w[1], mul2).add(x), mul2);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/util.js\nfunction createScalarValue(value, dtype) {\n if (dtype === \"string\") {\n return encodeString(value);\n }\n return toTypedArray([value], dtype);\n}\nfunction noConversionNeeded(a6, dtype) {\n return a6 instanceof Float32Array && dtype === \"float32\" || a6 instanceof Int32Array && dtype === \"int32\" || a6 instanceof Uint8Array && dtype === \"bool\";\n}\nfunction toTypedArray(a6, dtype) {\n if (dtype === \"string\") {\n throw new Error(\"Cannot convert a string[] to a TypedArray\");\n }\n if (Array.isArray(a6)) {\n a6 = flatten(a6);\n }\n if (env().getBool(\"DEBUG\")) {\n checkConversionForErrors(a6, dtype);\n }\n if (noConversionNeeded(a6, dtype)) {\n return a6;\n }\n if (dtype == null || dtype === \"float32\" || dtype === \"complex64\") {\n return new Float32Array(a6);\n } else if (dtype === \"int32\") {\n return new Int32Array(a6);\n } else if (dtype === \"bool\") {\n const bool = new Uint8Array(a6.length);\n for (let i2 = 0; i2 < bool.length; ++i2) {\n if (Math.round(a6[i2]) !== 0) {\n bool[i2] = 1;\n }\n }\n return bool;\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\nfunction now() {\n return env().platform.now();\n}\nfunction fetch3(path, requestInits) {\n return env().platform.fetch(path, requestInits);\n}\nfunction encodeString(s2, encoding = \"utf-8\") {\n encoding = encoding || \"utf-8\";\n return env().platform.encode(s2, encoding);\n}\nfunction decodeString(bytes, encoding = \"utf-8\") {\n encoding = encoding || \"utf-8\";\n return env().platform.decode(bytes, encoding);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/profiler.js\nvar Profiler = class {\n constructor(backendTimer, logger) {\n this.backendTimer = backendTimer;\n this.logger = logger;\n if (logger == null) {\n this.logger = new Logger();\n }\n }\n profileKernel(kernelName, inputs, f) {\n let outputs;\n const holdResultWrapperFn = () => {\n outputs = f();\n };\n let timer;\n const start = now();\n if (this.backendTimer.timerAvailable()) {\n timer = this.backendTimer.time(holdResultWrapperFn);\n } else {\n holdResultWrapperFn();\n for (const output of outputs) {\n output.dataSync();\n }\n timer = Promise.resolve({ kernelMs: now() - start });\n }\n if (env().getBool(\"CHECK_COMPUTATION_FOR_ERRORS\")) {\n for (let i2 = 0; i2 < outputs.length; i2++) {\n const output = outputs[i2];\n output.data().then((tensorVals) => {\n checkComputationForErrors(tensorVals, output.dtype, kernelName);\n });\n }\n }\n const kernelProfile = {\n kernelName,\n outputs,\n inputs,\n timeMs: timer.then((timing) => timing.kernelMs),\n extraInfo: timer.then((timing) => timing.getExtraProfileInfo != null ? timing.getExtraProfileInfo() : \"\")\n };\n return kernelProfile;\n }\n logKernelProfile(kernelProfile) {\n const { kernelName, outputs, timeMs, inputs, extraInfo } = kernelProfile;\n outputs.forEach((result) => {\n Promise.all([result.data(), timeMs, extraInfo]).then((valueContainer) => {\n this.logger.logKernelProfile(kernelName, result, valueContainer[0], valueContainer[1], inputs, valueContainer[2]);\n });\n });\n }\n};\nfunction checkComputationForErrors(vals, dtype, kernelName) {\n if (dtype !== \"float32\") {\n return false;\n }\n for (let i2 = 0; i2 < vals.length; i2++) {\n const num = vals[i2];\n if (isNaN(num) || !isFinite(num)) {\n console.warn(`Found ${num} in the result of '${kernelName}'`);\n return true;\n }\n }\n return false;\n}\nvar Logger = class {\n logKernelProfile(name, result, vals, timeMs, inputs, extraInfo) {\n const time2 = typeof timeMs === \"number\" ? rightPad(`${timeMs}ms`, 9) : timeMs[\"error\"];\n const paddedName = rightPad(name, 25);\n const rank = result.rank;\n const size = result.size;\n const shape = rightPad(result.shape.toString(), 14);\n let inputShapesDescription = \"\";\n for (const name2 in inputs) {\n const input2 = inputs[name2];\n if (input2 != null) {\n const inputShape = input2.shape || result.shape;\n const inputRank = inputShape.length;\n inputShapesDescription += `${name2}: ${inputRank}D ${inputRank > 0 ? inputShape : \"\"} `;\n }\n }\n console.log(`%c${paddedName}\t%c${time2}\t%c${rank}D ${shape}\t%c${size}\t%c${inputShapesDescription}\t%c${extraInfo}`, \"font-weight:bold\", \"color:red\", \"color:blue\", \"color: orange\", \"color: green\", \"color: steelblue\");\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/tape.js\nfunction getFilteredNodesXToY(tape, xs, y) {\n const tensorsFromX = {};\n const nodesFromX = {};\n for (let i2 = 0; i2 < xs.length; i2++) {\n tensorsFromX[xs[i2].id] = true;\n }\n for (let i2 = 0; i2 < tape.length; i2++) {\n const node = tape[i2];\n const nodeInputs = node.inputs;\n for (const inputName in nodeInputs) {\n const input2 = nodeInputs[inputName];\n let anyInputFromX = false;\n for (let j = 0; j < xs.length; j++) {\n if (tensorsFromX[input2.id]) {\n node.outputs.forEach((output) => tensorsFromX[output.id] = true);\n anyInputFromX = true;\n nodesFromX[node.id] = true;\n break;\n }\n }\n if (anyInputFromX) {\n break;\n }\n }\n }\n const tensorsLeadToY = {};\n tensorsLeadToY[y.id] = true;\n const nodesToY = {};\n for (let i2 = tape.length - 1; i2 >= 0; i2--) {\n const node = tape[i2];\n const nodeInputs = node.inputs;\n for (let j = 0; j < node.outputs.length; j++) {\n if (tensorsLeadToY[node.outputs[j].id]) {\n for (const inputName in nodeInputs) {\n tensorsLeadToY[nodeInputs[inputName].id] = true;\n nodesToY[node.id] = true;\n }\n break;\n }\n }\n }\n const filteredTape = [];\n for (let i2 = 0; i2 < tape.length; i2++) {\n const node = tape[i2];\n if (nodesFromX[node.id] && nodesToY[node.id]) {\n const prunedInputs = {};\n for (const inputName in node.inputs) {\n const nodeInput = node.inputs[inputName];\n if (tensorsFromX[nodeInput.id]) {\n prunedInputs[inputName] = nodeInput;\n }\n }\n const prunedNode = Object.assign({}, node);\n prunedNode.inputs = prunedInputs;\n prunedNode.outputs = node.outputs;\n filteredTape.push(prunedNode);\n }\n }\n return filteredTape;\n}\nfunction backpropagateGradients(tensorAccumulatedGradientMap, filteredTape, tidy2, add5) {\n for (let i2 = filteredTape.length - 1; i2 >= 0; i2--) {\n const node = filteredTape[i2];\n const dys = [];\n node.outputs.forEach((o) => {\n const gradTensor = tensorAccumulatedGradientMap[o.id];\n if (gradTensor != null) {\n dys.push(gradTensor);\n } else {\n dys.push(null);\n }\n });\n if (node.gradient == null) {\n throw new Error(`Cannot compute gradient: gradient function not found for ${node.kernelName}.`);\n }\n const inputGradients = node.gradient(dys);\n for (const inputName in node.inputs) {\n if (!(inputName in inputGradients)) {\n throw new Error(`Cannot backprop through input ${inputName}. Available gradients found: ${Object.keys(inputGradients)}.`);\n }\n const dx = tidy2(() => inputGradients[inputName]());\n if (dx.dtype !== \"float32\") {\n throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input ${inputName} must have 'float32' dtype, but has '${dx.dtype}'`);\n }\n const x = node.inputs[inputName];\n if (!arraysEqual(dx.shape, x.shape)) {\n throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input '${inputName}' has shape '${dx.shape}', which does not match the shape of the input '${x.shape}'`);\n }\n if (tensorAccumulatedGradientMap[x.id] == null) {\n tensorAccumulatedGradientMap[x.id] = dx;\n } else {\n const curGradient = tensorAccumulatedGradientMap[x.id];\n tensorAccumulatedGradientMap[x.id] = add5(curGradient, dx);\n curGradient.dispose();\n }\n }\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/tensor_format.js\nvar FORMAT_LIMIT_NUM_VALS = 20;\nvar FORMAT_NUM_FIRST_LAST_VALS = 3;\nvar FORMAT_NUM_SIG_DIGITS = 7;\nfunction tensorToString(vals, shape, dtype, verbose) {\n const strides = computeStrides(shape);\n const padPerCol = computeMaxSizePerColumn(vals, shape, dtype, strides);\n const rank = shape.length;\n const valsLines = subTensorToString(vals, shape, dtype, strides, padPerCol);\n const lines = [\"Tensor\"];\n if (verbose) {\n lines.push(` dtype: ${dtype}`);\n lines.push(` rank: ${rank}`);\n lines.push(` shape: [${shape}]`);\n lines.push(` values:`);\n }\n lines.push(valsLines.map((l3) => \" \" + l3).join(\"\\n\"));\n return lines.join(\"\\n\");\n}\nfunction computeMaxSizePerColumn(vals, shape, dtype, strides) {\n const n = sizeFromShape(shape);\n const numCols = strides[strides.length - 1];\n const padPerCol = new Array(numCols).fill(0);\n const rank = shape.length;\n const valuesOrTuples = dtype === \"complex64\" ? createComplexTuples(vals) : vals;\n if (rank > 1) {\n for (let row = 0; row < n / numCols; row++) {\n const offset = row * numCols;\n for (let j = 0; j < numCols; j++) {\n padPerCol[j] = Math.max(padPerCol[j], valToString(valuesOrTuples[offset + j], 0, dtype).length);\n }\n }\n }\n return padPerCol;\n}\nfunction valToString(val, pad3, dtype) {\n let valStr;\n if (Array.isArray(val)) {\n valStr = `${parseFloat(val[0].toFixed(FORMAT_NUM_SIG_DIGITS))} + ${parseFloat(val[1].toFixed(FORMAT_NUM_SIG_DIGITS))}j`;\n } else if (isString(val)) {\n valStr = `'${val}'`;\n } else if (dtype === \"bool\") {\n valStr = boolNumToString(val);\n } else {\n valStr = parseFloat(val.toFixed(FORMAT_NUM_SIG_DIGITS)).toString();\n }\n return rightPad(valStr, pad3);\n}\nfunction boolNumToString(v) {\n return v === 0 ? \"false\" : \"true\";\n}\nfunction subTensorToString(vals, shape, dtype, strides, padPerCol, isLast = true) {\n const storagePerElement = dtype === \"complex64\" ? 2 : 1;\n const size = shape[0];\n const rank = shape.length;\n if (rank === 0) {\n if (dtype === \"complex64\") {\n const complexTuple = createComplexTuples(vals);\n return [valToString(complexTuple[0], 0, dtype)];\n }\n if (dtype === \"bool\") {\n return [boolNumToString(vals[0])];\n }\n return [vals[0].toString()];\n }\n if (rank === 1) {\n if (size > FORMAT_LIMIT_NUM_VALS) {\n const firstValsSize = FORMAT_NUM_FIRST_LAST_VALS * storagePerElement;\n let firstVals = Array.from(vals.slice(0, firstValsSize));\n let lastVals = Array.from(vals.slice((size - FORMAT_NUM_FIRST_LAST_VALS) * storagePerElement, size * storagePerElement));\n if (dtype === \"complex64\") {\n firstVals = createComplexTuples(firstVals);\n lastVals = createComplexTuples(lastVals);\n }\n return [\n \"[\" + firstVals.map((x, i2) => valToString(x, padPerCol[i2], dtype)).join(\", \") + \", ..., \" + lastVals.map((x, i2) => valToString(x, padPerCol[size - FORMAT_NUM_FIRST_LAST_VALS + i2], dtype)).join(\", \") + \"]\"\n ];\n }\n const displayVals = dtype === \"complex64\" ? createComplexTuples(vals) : Array.from(vals);\n return [\n \"[\" + displayVals.map((x, i2) => valToString(x, padPerCol[i2], dtype)).join(\", \") + \"]\"\n ];\n }\n const subshape = shape.slice(1);\n const substrides = strides.slice(1);\n const stride = strides[0] * storagePerElement;\n const lines = [];\n if (size > FORMAT_LIMIT_NUM_VALS) {\n for (let i2 = 0; i2 < FORMAT_NUM_FIRST_LAST_VALS; i2++) {\n const start = i2 * stride;\n const end = start + stride;\n lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, false));\n }\n lines.push(\"...\");\n for (let i2 = size - FORMAT_NUM_FIRST_LAST_VALS; i2 < size; i2++) {\n const start = i2 * stride;\n const end = start + stride;\n lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, i2 === size - 1));\n }\n } else {\n for (let i2 = 0; i2 < size; i2++) {\n const start = i2 * stride;\n const end = start + stride;\n lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, i2 === size - 1));\n }\n }\n const sep = rank === 2 ? \",\" : \"\";\n lines[0] = \"[\" + lines[0] + sep;\n for (let i2 = 1; i2 < lines.length - 1; i2++) {\n lines[i2] = \" \" + lines[i2] + sep;\n }\n let newLineSep = \",\\n\";\n for (let i2 = 2; i2 < rank; i2++) {\n newLineSep += \"\\n\";\n }\n lines[lines.length - 1] = \" \" + lines[lines.length - 1] + \"]\" + (isLast ? \"\" : newLineSep);\n return lines;\n}\nfunction createComplexTuples(vals) {\n const complexTuples = [];\n for (let i2 = 0; i2 < vals.length; i2 += 2) {\n complexTuples.push([vals[i2], vals[i2 + 1]]);\n }\n return complexTuples;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/tensor.js\nvar TensorBuffer = class {\n constructor(shape, dtype, values) {\n this.dtype = dtype;\n this.shape = shape.slice();\n this.size = sizeFromShape(shape);\n if (values != null) {\n const n = values.length;\n assert(n === this.size, () => `Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`);\n }\n if (dtype === \"complex64\") {\n throw new Error(`complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).`);\n }\n this.values = values || getArrayFromDType(dtype, this.size);\n this.strides = computeStrides(shape);\n }\n set(value, ...locs) {\n if (locs.length === 0) {\n locs = [0];\n }\n assert(locs.length === this.rank, () => `The number of provided coordinates (${locs.length}) must match the rank (${this.rank})`);\n const index = this.locToIndex(locs);\n this.values[index] = value;\n }\n get(...locs) {\n if (locs.length === 0) {\n locs = [0];\n }\n let i2 = 0;\n for (const loc of locs) {\n if (loc < 0 || loc >= this.shape[i2]) {\n const msg = `Requested out of range element at ${locs}. Buffer shape=${this.shape}`;\n throw new Error(msg);\n }\n i2++;\n }\n let index = locs[locs.length - 1];\n for (let i3 = 0; i3 < locs.length - 1; ++i3) {\n index += this.strides[i3] * locs[i3];\n }\n return this.values[index];\n }\n locToIndex(locs) {\n if (this.rank === 0) {\n return 0;\n } else if (this.rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i2 = 0; i2 < locs.length - 1; ++i2) {\n index += this.strides[i2] * locs[i2];\n }\n return index;\n }\n indexToLoc(index) {\n if (this.rank === 0) {\n return [];\n } else if (this.rank === 1) {\n return [index];\n }\n const locs = new Array(this.shape.length);\n for (let i2 = 0; i2 < locs.length - 1; ++i2) {\n locs[i2] = Math.floor(index / this.strides[i2]);\n index -= locs[i2] * this.strides[i2];\n }\n locs[locs.length - 1] = index;\n return locs;\n }\n get rank() {\n return this.shape.length;\n }\n toTensor() {\n return trackerFn().makeTensor(this.values, this.shape, this.dtype);\n }\n};\nvar trackerFn = null;\nvar opHandler = null;\nvar deprecationWarningFn = null;\nfunction setTensorTracker(fn) {\n trackerFn = fn;\n}\nfunction setOpHandler(handler) {\n opHandler = handler;\n}\nfunction setDeprecationWarningFn(fn) {\n deprecationWarningFn = fn;\n}\nvar Tensor = class {\n constructor(shape, dtype, dataId, id) {\n this.kept = false;\n this.isDisposedInternal = false;\n this.shape = shape.slice();\n this.dtype = dtype || \"float32\";\n this.size = sizeFromShape(shape);\n this.strides = computeStrides(shape);\n this.dataId = dataId;\n this.id = id;\n this.rankType = this.rank < 5 ? this.rank.toString() : \"higher\";\n }\n get rank() {\n return this.shape.length;\n }\n async buffer() {\n const vals = await this.data();\n return opHandler.buffer(this.shape, this.dtype, vals);\n }\n bufferSync() {\n return opHandler.buffer(this.shape, this.dtype, this.dataSync());\n }\n async array() {\n const vals = await this.data();\n return toNestedArray(this.shape, vals, this.dtype === \"complex64\");\n }\n arraySync() {\n return toNestedArray(this.shape, this.dataSync(), this.dtype === \"complex64\");\n }\n async data() {\n this.throwIfDisposed();\n const data = trackerFn().read(this.dataId);\n if (this.dtype === \"string\") {\n const bytes = await data;\n try {\n return bytes.map((b) => decodeString(b));\n } catch (_a) {\n throw new Error(\"Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().\");\n }\n }\n return data;\n }\n dataToGPU(options) {\n this.throwIfDisposed();\n return trackerFn().readToGPU(this.dataId, options);\n }\n dataSync() {\n this.throwIfDisposed();\n const data = trackerFn().readSync(this.dataId);\n if (this.dtype === \"string\") {\n try {\n return data.map((b) => decodeString(b));\n } catch (_a) {\n throw new Error(\"Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().\");\n }\n }\n return data;\n }\n async bytes() {\n this.throwIfDisposed();\n const data = await trackerFn().read(this.dataId);\n if (this.dtype === \"string\") {\n return data;\n } else {\n return new Uint8Array(data.buffer);\n }\n }\n dispose() {\n if (this.isDisposed) {\n return;\n }\n trackerFn().disposeTensor(this);\n this.isDisposedInternal = true;\n }\n get isDisposed() {\n return this.isDisposedInternal;\n }\n throwIfDisposed() {\n if (this.isDisposed) {\n throw new Error(`Tensor is disposed.`);\n }\n }\n print(verbose = false) {\n return opHandler.print(this, verbose);\n }\n clone() {\n this.throwIfDisposed();\n return opHandler.clone(this);\n }\n toString(verbose = false) {\n const vals = this.dataSync();\n return tensorToString(vals, this.shape, this.dtype, verbose);\n }\n cast(dtype) {\n this.throwIfDisposed();\n return opHandler.cast(this, dtype);\n }\n variable(trainable = true, name, dtype) {\n this.throwIfDisposed();\n return trackerFn().makeVariable(this, trainable, name, dtype);\n }\n};\nObject.defineProperty(Tensor, Symbol.hasInstance, {\n value: (instance) => {\n return !!instance && instance.data != null && instance.dataSync != null && instance.throwIfDisposed != null;\n }\n});\nfunction getGlobalTensorClass() {\n return getGlobal(\"Tensor\", () => {\n return Tensor;\n });\n}\ngetGlobalTensorClass();\nvar Variable = class extends Tensor {\n constructor(initialValue, trainable, name, tensorId) {\n super(initialValue.shape, initialValue.dtype, initialValue.dataId, tensorId);\n this.trainable = trainable;\n this.name = name;\n }\n assign(newValue) {\n if (newValue.dtype !== this.dtype) {\n throw new Error(`dtype of the new value (${newValue.dtype}) and previous value (${this.dtype}) must match`);\n }\n if (!arraysEqual(newValue.shape, this.shape)) {\n throw new Error(`shape of the new value (${newValue.shape}) and previous value (${this.shape}) must match`);\n }\n trackerFn().disposeTensor(this);\n this.dataId = newValue.dataId;\n trackerFn().incRef(this, null);\n }\n dispose() {\n trackerFn().disposeVariable(this);\n this.isDisposedInternal = true;\n }\n};\nObject.defineProperty(Variable, Symbol.hasInstance, {\n value: (instance) => {\n return instance instanceof Tensor && instance.assign != null && instance.assign instanceof Function;\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/tensor_util.js\nvar tensor_util_exports = {};\n__export(tensor_util_exports, {\n assertTypesMatch: () => assertTypesMatch,\n getTensorsInContainer: () => getTensorsInContainer,\n isTensorInList: () => isTensorInList,\n makeTypesMatch: () => makeTypesMatch\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/types.js\nvar Rank;\n(function(Rank2) {\n Rank2[\"R0\"] = \"R0\";\n Rank2[\"R1\"] = \"R1\";\n Rank2[\"R2\"] = \"R2\";\n Rank2[\"R3\"] = \"R3\";\n Rank2[\"R4\"] = \"R4\";\n Rank2[\"R5\"] = \"R5\";\n Rank2[\"R6\"] = \"R6\";\n})(Rank || (Rank = {}));\nvar UpcastInt32AndMap;\n(function(UpcastInt32AndMap2) {\n UpcastInt32AndMap2[\"float32\"] = \"float32\";\n UpcastInt32AndMap2[\"int32\"] = \"int32\";\n UpcastInt32AndMap2[\"bool\"] = \"int32\";\n UpcastInt32AndMap2[\"complex64\"] = \"complex64\";\n})(UpcastInt32AndMap || (UpcastInt32AndMap = {}));\nvar UpcastBoolAndMap;\n(function(UpcastBoolAndMap2) {\n UpcastBoolAndMap2[\"float32\"] = \"float32\";\n UpcastBoolAndMap2[\"int32\"] = \"int32\";\n UpcastBoolAndMap2[\"bool\"] = \"bool\";\n UpcastBoolAndMap2[\"complex64\"] = \"complex64\";\n})(UpcastBoolAndMap || (UpcastBoolAndMap = {}));\nvar UpcastFloat32AndMap;\n(function(UpcastFloat32AndMap2) {\n UpcastFloat32AndMap2[\"float32\"] = \"float32\";\n UpcastFloat32AndMap2[\"int32\"] = \"float32\";\n UpcastFloat32AndMap2[\"bool\"] = \"float32\";\n UpcastFloat32AndMap2[\"complex64\"] = \"complex64\";\n})(UpcastFloat32AndMap || (UpcastFloat32AndMap = {}));\nvar UpcastComplex64AndMap;\n(function(UpcastComplex64AndMap2) {\n UpcastComplex64AndMap2[\"float32\"] = \"complex64\";\n UpcastComplex64AndMap2[\"int32\"] = \"complex64\";\n UpcastComplex64AndMap2[\"bool\"] = \"complex64\";\n UpcastComplex64AndMap2[\"complex64\"] = \"complex64\";\n})(UpcastComplex64AndMap || (UpcastComplex64AndMap = {}));\nvar upcastTypeMap = {\n \"float32\": UpcastFloat32AndMap,\n \"int32\": UpcastInt32AndMap,\n \"bool\": UpcastBoolAndMap,\n \"complex64\": UpcastComplex64AndMap\n};\nfunction upcastType(typeA, typeB) {\n if (typeA === \"string\" || typeB === \"string\") {\n if (typeA === \"string\" && typeB === \"string\") {\n return \"string\";\n }\n throw new Error(`Can not upcast ${typeA} with ${typeB}`);\n }\n return upcastTypeMap[typeA][typeB];\n}\nfunction sumOutType(type) {\n return upcastType(type, \"int32\");\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/tensor_util.js\nfunction makeTypesMatch(a6, b) {\n if (a6.dtype === b.dtype) {\n return [a6, b];\n }\n const dtype = upcastType(a6.dtype, b.dtype);\n return [a6.cast(dtype), b.cast(dtype)];\n}\nfunction assertTypesMatch(a6, b) {\n assert(a6.dtype === b.dtype, () => `The dtypes of the first(${a6.dtype}) and second(${b.dtype}) input must match`);\n}\nfunction isTensorInList(tensor2, tensorList) {\n return tensorList.some((x) => x.id === tensor2.id);\n}\nfunction getTensorsInContainer(result) {\n const list = [];\n const seen = /* @__PURE__ */ new Set();\n walkTensorContainer(result, list, seen);\n return list;\n}\nfunction walkTensorContainer(container, list, seen) {\n if (container == null) {\n return;\n }\n if (container instanceof Tensor) {\n list.push(container);\n return;\n }\n if (!isIterable(container)) {\n return;\n }\n const iterable = container;\n for (const k in iterable) {\n const val = iterable[k];\n if (!seen.has(val)) {\n seen.add(val);\n walkTensorContainer(val, list, seen);\n }\n }\n}\nfunction isIterable(obj) {\n return Array.isArray(obj) || typeof obj === \"object\";\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/engine.js\nfunction isRegisteredKernelInvocation(kernelInvocation) {\n return kernelInvocation.kernelName != null;\n}\nvar EngineState = class {\n constructor() {\n this.registeredVariables = {};\n this.nextTapeNodeId = 0;\n this.numBytes = 0;\n this.numTensors = 0;\n this.numStringTensors = 0;\n this.numDataBuffers = 0;\n this.gradientDepth = 0;\n this.kernelDepth = 0;\n this.scopeStack = [];\n this.numDataMovesStack = [];\n this.nextScopeId = 0;\n this.tensorInfo = /* @__PURE__ */ new WeakMap();\n this.profiling = false;\n this.activeProfile = {\n newBytes: 0,\n newTensors: 0,\n peakBytes: 0,\n kernels: [],\n result: null,\n get kernelNames() {\n return Array.from(new Set(this.kernels.map((k) => k.name)));\n }\n };\n }\n dispose() {\n for (const variableName in this.registeredVariables) {\n this.registeredVariables[variableName].dispose();\n }\n }\n};\nvar Engine = class {\n constructor(ENV8) {\n this.ENV = ENV8;\n this.registry = {};\n this.registryFactory = {};\n this.pendingBackendInitId = 0;\n this.state = new EngineState();\n }\n async ready() {\n if (this.pendingBackendInit != null) {\n return this.pendingBackendInit.then(() => {\n });\n }\n if (this.backendInstance != null) {\n return;\n }\n const sortedBackends = this.getSortedBackends();\n for (let i2 = 0; i2 < sortedBackends.length; i2++) {\n const backendName = sortedBackends[i2];\n const success = await this.initializeBackend(backendName).success;\n if (success) {\n await this.setBackend(backendName);\n return;\n }\n }\n throw new Error(`Could not initialize any backends, all backend initializations failed.`);\n }\n get backend() {\n if (this.pendingBackendInit != null) {\n throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);\n }\n if (this.backendInstance == null) {\n const { name, asyncInit } = this.initializeBackendsAndReturnBest();\n if (asyncInit) {\n throw new Error(`The highest priority backend '${name}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);\n }\n this.setBackend(name);\n }\n return this.backendInstance;\n }\n backendNames() {\n return Object.keys(this.registryFactory);\n }\n findBackend(backendName) {\n if (!(backendName in this.registry)) {\n if (backendName in this.registryFactory) {\n const { asyncInit } = this.initializeBackend(backendName);\n if (asyncInit) {\n return null;\n }\n } else {\n return null;\n }\n }\n return this.registry[backendName];\n }\n findBackendFactory(backendName) {\n if (!(backendName in this.registryFactory)) {\n return null;\n }\n return this.registryFactory[backendName].factory;\n }\n registerBackend(backendName, factory, priority = 1) {\n if (backendName in this.registryFactory) {\n warn(`${backendName} backend was already registered. Reusing existing backend factory.`);\n return false;\n }\n this.registryFactory[backendName] = { factory, priority };\n return true;\n }\n async setBackend(backendName) {\n if (this.registryFactory[backendName] == null) {\n throw new Error(`Backend name '${backendName}' not found in registry`);\n }\n this.backendName = backendName;\n if (this.registry[backendName] == null) {\n this.backendInstance = null;\n const { success, asyncInit } = this.initializeBackend(backendName);\n const result = asyncInit ? await success : success;\n if (!result) {\n return false;\n }\n }\n this.backendInstance = this.registry[backendName];\n this.setupRegisteredKernels();\n this.profiler = new Profiler(this.backendInstance);\n return true;\n }\n setupRegisteredKernels() {\n const kernels = getKernelsForBackend(this.backendName);\n kernels.forEach((kernel) => {\n if (kernel.setupFunc != null) {\n kernel.setupFunc(this.backendInstance);\n }\n });\n }\n disposeRegisteredKernels(backendName) {\n const kernels = getKernelsForBackend(backendName);\n kernels.forEach((kernel) => {\n if (kernel.disposeFunc != null) {\n kernel.disposeFunc(this.registry[backendName]);\n }\n });\n }\n initializeBackend(backendName) {\n const registryFactoryEntry = this.registryFactory[backendName];\n if (registryFactoryEntry == null) {\n throw new Error(`Cannot initialize backend ${backendName}, no registration found.`);\n }\n try {\n const backend2 = registryFactoryEntry.factory();\n if (backend2 && !(backend2 instanceof KernelBackend) && typeof backend2.then === \"function\") {\n const promiseId = ++this.pendingBackendInitId;\n const success = backend2.then((backendInstance) => {\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.registry[backendName] = backendInstance;\n this.pendingBackendInit = null;\n return true;\n }).catch((err) => {\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.pendingBackendInit = null;\n warn(`Initialization of backend ${backendName} failed`);\n warn(err.stack || err.message);\n return false;\n });\n this.pendingBackendInit = success;\n return { success, asyncInit: true };\n } else {\n this.registry[backendName] = backend2;\n return { success: true, asyncInit: false };\n }\n } catch (err) {\n warn(`Initialization of backend ${backendName} failed`);\n warn(err.stack || err.message);\n return { success: false, asyncInit: false };\n }\n }\n removeBackend(backendName) {\n if (!(backendName in this.registryFactory)) {\n throw new Error(`${backendName} backend not found in registry`);\n }\n if (this.backendName === backendName && this.pendingBackendInit != null) {\n this.pendingBackendInitId++;\n }\n if (backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n delete this.registryFactory[backendName];\n if (this.backendName === backendName) {\n this.pendingBackendInit = null;\n this.backendName = null;\n this.backendInstance = null;\n }\n }\n getSortedBackends() {\n if (Object.keys(this.registryFactory).length === 0) {\n throw new Error(\"No backend found in registry.\");\n }\n return Object.keys(this.registryFactory).sort((a6, b) => {\n return this.registryFactory[b].priority - this.registryFactory[a6].priority;\n });\n }\n initializeBackendsAndReturnBest() {\n const sortedBackends = this.getSortedBackends();\n for (let i2 = 0; i2 < sortedBackends.length; i2++) {\n const backendName = sortedBackends[i2];\n const { success, asyncInit } = this.initializeBackend(backendName);\n if (asyncInit || success) {\n return { name: backendName, asyncInit };\n }\n }\n throw new Error(`Could not initialize any backends, all backend initializations failed.`);\n }\n moveData(backend2, dataId) {\n const info = this.state.tensorInfo.get(dataId);\n const srcBackend = info.backend;\n const values = this.readSync(dataId);\n const refCount = srcBackend.refCount(dataId);\n srcBackend.disposeData(dataId, true);\n info.backend = backend2;\n backend2.move(dataId, values, info.shape, info.dtype, refCount);\n if (this.shouldCheckForMemLeaks()) {\n this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]++;\n }\n }\n tidy(nameOrFn, fn) {\n let name = null;\n if (fn == null) {\n if (typeof nameOrFn !== \"function\") {\n throw new Error(\"Please provide a function to tidy()\");\n }\n fn = nameOrFn;\n } else {\n if (typeof nameOrFn !== \"string\" && !(nameOrFn instanceof String)) {\n throw new Error(\"When calling with two arguments, the first argument to tidy() must be a string\");\n }\n if (typeof fn !== \"function\") {\n throw new Error(\"When calling with two arguments, the 2nd argument to tidy() must be a function\");\n }\n name = nameOrFn;\n }\n let result;\n return this.scopedRun(() => this.startScope(name), () => this.endScope(result), () => {\n result = fn();\n if (result instanceof Promise) {\n console.error(\"Cannot return a Promise inside of tidy.\");\n }\n return result;\n });\n }\n scopedRun(start, end, f) {\n start();\n try {\n const res = f();\n end();\n return res;\n } catch (ex) {\n end();\n throw ex;\n }\n }\n nextTensorId() {\n return Engine.nextTensorId++;\n }\n nextVariableId() {\n return Engine.nextVariableId++;\n }\n clone(x) {\n const y = ENGINE.runKernel(Identity, { x });\n const inputs = { x };\n const grad2 = (dy) => ({\n x: () => {\n const dtype = \"float32\";\n const gradInputs = { x: dy };\n const attrs = { dtype };\n return ENGINE.runKernel(Cast, gradInputs, attrs);\n }\n });\n const saved = [];\n this.addTapeNode(this.state.activeScope.name, inputs, [y], grad2, saved, {});\n return y;\n }\n runKernel(kernelName, inputs, attrs) {\n if (this.backendName == null) {\n this.backend;\n }\n const hasKernel = getKernel(kernelName, this.backendName) != null;\n if (!hasKernel) {\n throw new Error(`Kernel '${kernelName}' not registered for backend '${this.backendName}'`);\n }\n return this.runKernelFunc({ kernelName, inputs, attrs });\n }\n shouldCheckForMemLeaks() {\n return this.ENV.getBool(\"IS_TEST\");\n }\n checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos) {\n const numDataIdsAfter = this.backend.numDataIds();\n let numOutputDataIds = 0;\n outInfos.forEach((info) => {\n numOutputDataIds += info.dtype === \"complex64\" ? 3 : 1;\n });\n const numMoves = this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1];\n const dataIdsLeaked = numDataIdsAfter - numDataIdsBefore - numOutputDataIds - numMoves;\n if (dataIdsLeaked > 0) {\n throw new Error(`Backend '${this.backendName}' has an internal memory leak (${dataIdsLeaked} data ids) after running '${kernelName}'`);\n }\n }\n runKernelFunc(kernelParams) {\n let outputs;\n let saved = [];\n const isTapeOn = this.isTapeOn();\n const startingBytecount = this.state.numBytes;\n const startingNumTensors = this.state.numTensors;\n if (this.shouldCheckForMemLeaks()) {\n this.state.numDataMovesStack.push(0);\n }\n let kernelFunc3;\n if (this.backendName == null) {\n this.backend;\n }\n let out;\n const kernelOrScopeName = isRegisteredKernelInvocation(kernelParams) ? kernelParams.kernelName : this.state.activeScope != null ? this.state.activeScope.name : \"\";\n if (isRegisteredKernelInvocation(kernelParams)) {\n const { kernelName, inputs: inputs2, attrs: attrs2 } = kernelParams;\n if (this.backendName == null) {\n this.backend;\n }\n const kernel = getKernel(kernelName, this.backendName);\n assert(kernel != null, () => `Cannot find registered kernel '${kernelName}' for backend '${this.backendName}'`);\n kernelFunc3 = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = kernel.kernelFunc({ inputs: inputs2, attrs: attrs2, backend: this.backend });\n const outInfos = Array.isArray(out) ? out : [out];\n if (this.shouldCheckForMemLeaks()) {\n this.checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos);\n }\n const outTensors = outInfos.map((outInfo) => {\n if (outInfo.rank != null) {\n return outInfo;\n }\n return this.makeTensorFromTensorInfo(outInfo);\n });\n if (isTapeOn) {\n const tensorsToSave = this.getTensorsForGradient(kernelName, inputs2, outTensors);\n saved = this.saveTensorsForBackwardMode(tensorsToSave);\n }\n return outTensors;\n };\n } else {\n const { forwardFunc } = kernelParams;\n const saveFunc = (tensors) => {\n if (!isTapeOn) {\n return;\n }\n saved = tensors.map((tensor2) => this.keep(this.clone(tensor2)));\n };\n kernelFunc3 = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = this.tidy(() => forwardFunc(this.backend, saveFunc));\n const outs = Array.isArray(out) ? out : [out];\n if (this.shouldCheckForMemLeaks()) {\n this.checkKernelForMemLeak(kernelOrScopeName, numDataIdsBefore, outs);\n }\n return outs;\n };\n }\n const { inputs, attrs } = kernelParams;\n const backwardsFunc = isRegisteredKernelInvocation(kernelParams) ? null : kernelParams.backwardsFunc;\n let kernelProfile;\n this.scopedRun(() => this.state.kernelDepth++, () => this.state.kernelDepth--, () => {\n if (!this.ENV.getBool(\"DEBUG\") && !this.state.profiling) {\n outputs = kernelFunc3();\n } else {\n kernelProfile = this.profiler.profileKernel(kernelOrScopeName, inputs, () => kernelFunc3());\n if (this.ENV.getBool(\"DEBUG\")) {\n this.profiler.logKernelProfile(kernelProfile);\n }\n outputs = kernelProfile.outputs;\n }\n });\n if (isTapeOn) {\n this.addTapeNode(kernelOrScopeName, inputs, outputs, backwardsFunc, saved, attrs);\n }\n if (this.state.profiling) {\n this.state.activeProfile.kernels.push({\n name: kernelOrScopeName,\n bytesAdded: this.state.numBytes - startingBytecount,\n totalBytesSnapshot: this.state.numBytes,\n tensorsAdded: this.state.numTensors - startingNumTensors,\n totalTensorsSnapshot: this.state.numTensors,\n inputShapes: Object.keys(inputs).map((key) => inputs[key] != null ? inputs[key].shape : null),\n outputShapes: outputs.map((item) => item.shape),\n kernelTimeMs: kernelProfile.timeMs,\n extraInfo: kernelProfile.extraInfo\n });\n }\n return Array.isArray(out) ? outputs : outputs[0];\n }\n saveTensorsForBackwardMode(tensors) {\n const saved = tensors.map((tensor2) => this.keep(this.clone(tensor2)));\n return saved;\n }\n getTensorsForGradient(kernelName, inputs, outputs) {\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n const inputsToSave = gradConfig.inputsToSave || [];\n const outputsToSave = gradConfig.outputsToSave || [];\n let inputTensorsToSave;\n if (gradConfig.saveAllInputs) {\n assert(Array.isArray(inputs), () => \"saveAllInputs is true, expected inputs to be an array.\");\n inputTensorsToSave = Object.keys(inputs).map((key) => inputs[key]);\n } else {\n inputTensorsToSave = inputsToSave.map((inputName) => inputs[inputName]);\n }\n const outputTensorsToSave = outputs.filter((_, i2) => outputsToSave[i2]);\n return inputTensorsToSave.concat(outputTensorsToSave);\n }\n return [];\n }\n makeTensor(values, shape, dtype, backend2) {\n if (values == null) {\n throw new Error(\"Values passed to engine.makeTensor() are null\");\n }\n dtype = dtype || \"float32\";\n backend2 = backend2 || this.backend;\n let backendVals = values;\n if (dtype === \"string\" && isString(values[0])) {\n backendVals = values.map((d) => encodeString(d));\n }\n const dataId = backend2.write(backendVals, shape, dtype);\n const t2 = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t2, backend2);\n if (dtype === \"string\") {\n const info = this.state.tensorInfo.get(dataId);\n const newBytes = bytesFromStringArray(backendVals);\n this.state.numBytes += newBytes - info.bytes;\n info.bytes = newBytes;\n }\n return t2;\n }\n makeTensorFromDataId(dataId, shape, dtype, backend2) {\n dtype = dtype || \"float32\";\n const tensorInfo = { dataId, shape, dtype };\n return this.makeTensorFromTensorInfo(tensorInfo, backend2);\n }\n makeTensorFromTensorInfo(tensorInfo, backend2) {\n const { dataId, shape, dtype } = tensorInfo;\n const t2 = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t2, backend2);\n return t2;\n }\n makeVariable(initialValue, trainable = true, name, dtype) {\n name = name || this.nextVariableId().toString();\n if (dtype != null && dtype !== initialValue.dtype) {\n initialValue = initialValue.cast(dtype);\n }\n const v = new Variable(initialValue, trainable, name, this.nextTensorId());\n if (this.state.registeredVariables[v.name] != null) {\n throw new Error(`Variable with name ${v.name} was already registered`);\n }\n this.state.registeredVariables[v.name] = v;\n this.incRef(v, this.backend);\n return v;\n }\n trackTensor(a6, backend2) {\n this.state.numTensors++;\n if (a6.dtype === \"string\") {\n this.state.numStringTensors++;\n }\n let bytes = 0;\n if (a6.dtype !== \"complex64\" && a6.dtype !== \"string\") {\n bytes = a6.size * bytesPerElement(a6.dtype);\n }\n this.state.numBytes += bytes;\n if (!this.state.tensorInfo.has(a6.dataId)) {\n this.state.numDataBuffers++;\n this.state.tensorInfo.set(a6.dataId, {\n backend: backend2 || this.backend,\n dtype: a6.dtype,\n shape: a6.shape,\n bytes\n });\n }\n if (!(a6 instanceof Variable)) {\n this.track(a6);\n }\n }\n incRef(a6, backend2) {\n this.trackTensor(a6, backend2);\n this.backend.incRef(a6.dataId);\n }\n removeDataId(dataId, backend2) {\n if (this.state.tensorInfo.has(dataId) && this.state.tensorInfo.get(dataId).backend === backend2) {\n this.state.tensorInfo.delete(dataId);\n this.state.numDataBuffers--;\n }\n }\n disposeTensor(a6) {\n if (!this.state.tensorInfo.has(a6.dataId)) {\n return;\n }\n const info = this.state.tensorInfo.get(a6.dataId);\n this.state.numTensors--;\n if (a6.dtype === \"string\") {\n this.state.numStringTensors--;\n this.state.numBytes -= info.bytes;\n }\n if (a6.dtype !== \"complex64\" && a6.dtype !== \"string\") {\n const bytes = a6.size * bytesPerElement(a6.dtype);\n this.state.numBytes -= bytes;\n }\n if (info.backend.disposeData(a6.dataId)) {\n this.removeDataId(a6.dataId, info.backend);\n }\n }\n disposeVariables() {\n for (const varName in this.state.registeredVariables) {\n const v = this.state.registeredVariables[varName];\n this.disposeVariable(v);\n }\n }\n disposeVariable(v) {\n this.disposeTensor(v);\n if (this.state.registeredVariables[v.name] != null) {\n delete this.state.registeredVariables[v.name];\n }\n }\n memory() {\n const info = this.backend.memory();\n info.numTensors = this.state.numTensors;\n info.numDataBuffers = this.state.numDataBuffers;\n info.numBytes = this.state.numBytes;\n if (this.state.numStringTensors > 0) {\n info.unreliable = true;\n if (info.reasons == null) {\n info.reasons = [];\n }\n info.reasons.push(\"Memory usage by string tensors is approximate (2 bytes per character)\");\n }\n return info;\n }\n async profile(query) {\n this.state.profiling = true;\n const startBytes = this.state.numBytes;\n const startNumTensors = this.state.numTensors;\n this.state.activeProfile.kernels = [];\n this.state.activeProfile.result = await query();\n this.state.profiling = false;\n this.state.activeProfile.peakBytes = Math.max(...this.state.activeProfile.kernels.map((d) => d.totalBytesSnapshot));\n this.state.activeProfile.newBytes = this.state.numBytes - startBytes;\n this.state.activeProfile.newTensors = this.state.numTensors - startNumTensors;\n for (const kernel of this.state.activeProfile.kernels) {\n kernel.kernelTimeMs = await kernel.kernelTimeMs;\n kernel.extraInfo = await kernel.extraInfo;\n }\n return this.state.activeProfile;\n }\n isTapeOn() {\n return this.state.gradientDepth > 0 && this.state.kernelDepth === 0;\n }\n addTapeNode(kernelName, inputs, outputs, gradientsFunc, saved, attrs) {\n const tapeNode = { id: this.state.nextTapeNodeId++, kernelName, inputs, outputs, saved };\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n gradientsFunc = gradConfig.gradFunc;\n }\n if (gradientsFunc != null) {\n tapeNode.gradient = (dys) => {\n dys = dys.map((dy, i2) => {\n if (dy == null) {\n const output = outputs[i2];\n const vals = makeZerosTypedArray(output.size, output.dtype);\n return this.makeTensor(vals, output.shape, output.dtype);\n }\n return dy;\n });\n return gradientsFunc(dys.length > 1 ? dys : dys[0], saved, attrs);\n };\n }\n this.state.activeTape.push(tapeNode);\n }\n keep(result) {\n result.kept = true;\n return result;\n }\n startTape() {\n if (this.state.gradientDepth === 0) {\n this.state.activeTape = [];\n }\n this.state.gradientDepth++;\n }\n endTape() {\n this.state.gradientDepth--;\n }\n startScope(name) {\n const scopeInfo = {\n track: [],\n name: \"unnamed scope\",\n id: this.state.nextScopeId++\n };\n if (name) {\n scopeInfo.name = name;\n }\n this.state.scopeStack.push(scopeInfo);\n this.state.activeScope = scopeInfo;\n }\n endScope(result) {\n const tensorsToTrackInParent = getTensorsInContainer(result);\n const tensorsToTrackInParentSet = new Set(tensorsToTrackInParent.map((t2) => t2.id));\n for (let i2 = 0; i2 < this.state.activeScope.track.length; i2++) {\n const tensor2 = this.state.activeScope.track[i2];\n if (!tensor2.kept && !tensorsToTrackInParentSet.has(tensor2.id)) {\n tensor2.dispose();\n }\n }\n const oldScope = this.state.scopeStack.pop();\n this.state.activeScope = this.state.scopeStack.length === 0 ? null : this.state.scopeStack[this.state.scopeStack.length - 1];\n tensorsToTrackInParent.forEach((tensor2) => {\n if (!tensor2.kept && tensor2.scopeId === oldScope.id) {\n this.track(tensor2);\n }\n });\n }\n gradients(f, xs, dy, allowNoGradients = false) {\n assert(xs.length > 0, () => \"gradients() received an empty list of xs.\");\n if (dy != null && dy.dtype !== \"float32\") {\n throw new Error(`dy must have 'float32' dtype, but has '${dy.dtype}'`);\n }\n const y = this.scopedRun(() => this.startTape(), () => this.endTape(), () => this.tidy(\"forward\", f));\n assert(y instanceof Tensor, () => \"The result y returned by f() must be a tensor.\");\n const filteredTape = getFilteredNodesXToY(this.state.activeTape, xs, y);\n if (!allowNoGradients && filteredTape.length === 0 && xs.length > 0) {\n throw new Error(\"Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.\");\n }\n return this.tidy(\"backward\", () => {\n const accumulatedGradientMap = {};\n accumulatedGradientMap[y.id] = dy == null ? ones(y.shape) : dy;\n backpropagateGradients(accumulatedGradientMap, filteredTape, (f2) => this.tidy(f2), add);\n const grads2 = xs.map((x) => accumulatedGradientMap[x.id]);\n if (this.state.gradientDepth === 0) {\n this.state.activeTape.forEach((node) => {\n for (const tensor2 of node.saved) {\n tensor2.dispose();\n }\n });\n this.state.activeTape = null;\n }\n return { value: y, grads: grads2 };\n });\n }\n customGrad(f) {\n assert(isFunction(f), () => \"The f passed in customGrad(f) must be a function.\");\n return (...inputs) => {\n assert(inputs.every((t2) => t2 instanceof Tensor), () => \"The args passed in customGrad(f)(x1, x2,...) must all be tensors\");\n let res;\n const inputMap = {};\n inputs.forEach((input2, i2) => {\n inputMap[i2] = input2;\n });\n const forwardFunc = (_, save) => {\n res = f(...[...inputs, save]);\n assert(res.value instanceof Tensor, () => \"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor\");\n assert(isFunction(res.gradFunc), () => \"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function.\");\n return res.value;\n };\n const backwardsFunc = (dy, saved) => {\n const gradRes = res.gradFunc(dy, saved);\n const grads2 = Array.isArray(gradRes) ? gradRes : [gradRes];\n assert(grads2.length === inputs.length, () => \"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...).\");\n assert(grads2.every((t2) => t2 instanceof Tensor), () => \"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.\");\n const gradMap = {};\n grads2.forEach((grad2, i2) => {\n gradMap[i2] = () => grad2;\n });\n return gradMap;\n };\n return this.runKernelFunc({\n forwardFunc,\n backwardsFunc,\n inputs: inputMap\n });\n };\n }\n readSync(dataId) {\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.readSync(dataId);\n }\n read(dataId) {\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.read(dataId);\n }\n readToGPU(dataId, options) {\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.readToGPU(dataId, options);\n }\n async time(query) {\n const start = now();\n const timingInfo = await this.backend.time(query);\n timingInfo.wallMs = now() - start;\n return timingInfo;\n }\n track(result) {\n if (this.state.activeScope != null) {\n result.scopeId = this.state.activeScope.id;\n this.state.activeScope.track.push(result);\n }\n return result;\n }\n get registeredVariables() {\n return this.state.registeredVariables;\n }\n reset() {\n this.pendingBackendInitId++;\n this.state.dispose();\n this.ENV.reset();\n this.state = new EngineState();\n for (const backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n this.backendName = null;\n this.backendInstance = null;\n this.pendingBackendInit = null;\n }\n};\nEngine.nextTensorId = 0;\nEngine.nextVariableId = 0;\nfunction ones(shape) {\n const values = makeOnesTypedArray(sizeFromShape(shape), \"float32\");\n return ENGINE.makeTensor(values, shape, \"float32\");\n}\nfunction getOrMakeEngine() {\n const ns = getGlobalNamespace();\n if (ns._tfengine == null) {\n const environment = new Environment(ns);\n ns._tfengine = new Engine(environment);\n }\n setEnvironmentGlobal(ns._tfengine.ENV);\n setTensorTracker(() => ns._tfengine);\n return ns._tfengine;\n}\nvar ENGINE = getOrMakeEngine();\nfunction add(a6, b) {\n const inputs = { a: a6, b };\n return ENGINE.runKernel(Add, inputs);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/device_util.js\nvar device_util_exports = {};\n__export(device_util_exports, {\n isBrowser: () => isBrowser,\n isMobile: () => isMobile,\n mockIsMobile: () => mockIsMobile\n});\nfunction _isNavigatorDefined() {\n return typeof navigator !== \"undefined\" && navigator != null;\n}\nvar isMobileMockValue;\nfunction mockIsMobile(value) {\n isMobileMockValue = value;\n}\nfunction isMobile(nav) {\n if (isMobileMockValue !== void 0) {\n return isMobileMockValue;\n }\n if (nav || _isNavigatorDefined()) {\n if (!nav) {\n nav = navigator;\n }\n if (nav.product === \"ReactNative\") {\n return true;\n }\n const a6 = nav.userAgent || nav.vendor || (typeof window !== \"undefined\" ? window.opera : \"\");\n if (!a6) {\n const navAny = nav;\n return navAny.userAgentData && navAny.userAgentData.mobile;\n }\n return /(android|bb\\d+|meego).+mobile|avantgo|bada\\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(a6) || /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\\-(n|u)|c55\\/|capi|ccwa|cdm\\-|cell|chtm|cldc|cmd\\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\\-s|devi|dica|dmob|do(c|p)o|ds(12|\\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\\-|_)|g1 u|g560|gene|gf\\-5|g\\-mo|go(\\.w|od)|gr(ad|un)|haie|hcit|hd\\-(m|p|t)|hei\\-|hi(pt|ta)|hp( i|ip)|hs\\-c|ht(c(\\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\\-(20|go|ma)|i230|iac( |\\-|\\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\\/)|klon|kpt |kwc\\-|kyo(c|k)|le(no|xi)|lg( g|\\/(k|l|u)|50|54|\\-[a-w])|libw|lynx|m1\\-w|m3ga|m50\\/|ma(te|ui|xo)|mc(01|21|ca)|m\\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\\-2|po(ck|rt|se)|prox|psio|pt\\-g|qa\\-a|qc(07|12|21|32|60|\\-[2-7]|i\\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\\-|oo|p\\-)|sdk\\/|se(c(\\-|0|1)|47|mc|nd|ri)|sgh\\-|shar|sie(\\-|m)|sk\\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\\-|v\\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\\-|tdg\\-|tel(i|m)|tim\\-|t\\-mo|to(pl|sh)|ts(70|m\\-|m3|m5)|tx\\-9|up(\\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\\-|your|zeto|zte\\-/i.test(a6.substr(0, 4));\n }\n return false;\n}\nfunction isBrowser() {\n return typeof window !== \"undefined\" && window.document != null || typeof WorkerGlobalScope !== \"undefined\";\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/flags.js\nvar ENV2 = env();\nENV2.registerFlag(\"DEBUG\", () => false, (debugValue) => {\n if (debugValue) {\n console.warn(\"Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.\");\n }\n});\nENV2.registerFlag(\"IS_BROWSER\", () => isBrowser());\nENV2.registerFlag(\"IS_NODE\", () => typeof process !== \"undefined\" && typeof process.versions !== \"undefined\" && typeof process.versions.node !== \"undefined\");\nENV2.registerFlag(\"IS_CHROME\", () => typeof navigator !== \"undefined\" && navigator != null && navigator.userAgent != null && /Chrome/.test(navigator.userAgent) && /Google Inc/.test(navigator.vendor));\nENV2.registerFlag(\"PROD\", () => false);\nENV2.registerFlag(\"TENSORLIKE_CHECK_SHAPE_CONSISTENCY\", () => ENV2.getBool(\"DEBUG\"));\nENV2.registerFlag(\"DEPRECATION_WARNINGS_ENABLED\", () => true);\nENV2.registerFlag(\"IS_TEST\", () => false);\nENV2.registerFlag(\"CHECK_COMPUTATION_FOR_ERRORS\", () => true);\nENV2.registerFlag(\"WRAP_TO_IMAGEBITMAP\", () => false);\nENV2.registerFlag(\"ENGINE_COMPILE_ONLY\", () => false);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/tensor_util_env.js\nfunction inferShape(val, dtype) {\n let firstElem = val;\n if (isTypedArray(val)) {\n return dtype === \"string\" ? [] : [val.length];\n }\n if (!Array.isArray(val)) {\n return [];\n }\n const shape = [];\n while (Array.isArray(firstElem) || isTypedArray(firstElem) && dtype !== \"string\") {\n shape.push(firstElem.length);\n firstElem = firstElem[0];\n }\n if (Array.isArray(val) && env().getBool(\"TENSORLIKE_CHECK_SHAPE_CONSISTENCY\")) {\n deepAssertShapeConsistency(val, shape, []);\n }\n return shape;\n}\nfunction deepAssertShapeConsistency(val, shape, indices) {\n indices = indices || [];\n if (!Array.isArray(val) && !isTypedArray(val)) {\n assert(shape.length === 0, () => `Element arr[${indices.join(\"][\")}] is a primitive, but should be an array/TypedArray of ${shape[0]} elements`);\n return;\n }\n assert(shape.length > 0, () => `Element arr[${indices.join(\"][\")}] should be a primitive, but is an array of ${val.length} elements`);\n assert(val.length === shape[0], () => `Element arr[${indices.join(\"][\")}] should have ${shape[0]} elements, but has ${val.length} elements`);\n const subShape = shape.slice(1);\n for (let i2 = 0; i2 < val.length; ++i2) {\n deepAssertShapeConsistency(val[i2], subShape, indices.concat(i2));\n }\n}\nfunction assertDtype(expectedDtype, actualDType, argName, functionName) {\n if (expectedDtype === \"string_or_numeric\") {\n return;\n }\n if (expectedDtype == null) {\n throw new Error(`Expected dtype cannot be null.`);\n }\n if (expectedDtype !== \"numeric\" && expectedDtype !== actualDType || expectedDtype === \"numeric\" && actualDType === \"string\") {\n throw new Error(`Argument '${argName}' passed to '${functionName}' must be ${expectedDtype} tensor, but got ${actualDType} tensor`);\n }\n}\nfunction convertToTensor(x, argName, functionName, parseAsDtype = \"numeric\") {\n if (x instanceof Tensor) {\n assertDtype(parseAsDtype, x.dtype, argName, functionName);\n return x;\n }\n let inferredDtype = inferDtype(x);\n if (inferredDtype !== \"string\" && [\"bool\", \"int32\", \"float32\"].indexOf(parseAsDtype) >= 0) {\n inferredDtype = parseAsDtype;\n }\n assertDtype(parseAsDtype, inferredDtype, argName, functionName);\n if (x == null || !isTypedArray(x) && !Array.isArray(x) && typeof x !== \"number\" && typeof x !== \"boolean\" && typeof x !== \"string\") {\n const type = x == null ? \"null\" : x.constructor.name;\n throw new Error(`Argument '${argName}' passed to '${functionName}' must be a Tensor or TensorLike, but got '${type}'`);\n }\n const inferredShape = inferShape(x, inferredDtype);\n if (!isTypedArray(x) && !Array.isArray(x)) {\n x = [x];\n }\n const skipTypedArray = true;\n const values = inferredDtype !== \"string\" ? toTypedArray(x, inferredDtype) : flatten(x, [], skipTypedArray);\n return ENGINE.makeTensor(values, inferredShape, inferredDtype);\n}\nfunction convertToTensorArray(arg, argName, functionName, parseAsDtype = \"numeric\") {\n if (!Array.isArray(arg)) {\n throw new Error(`Argument ${argName} passed to ${functionName} must be a \\`Tensor[]\\` or \\`TensorLike[]\\``);\n }\n const tensors = arg;\n return tensors.map((t2, i2) => convertToTensor(t2, `${argName}[${i2}]`, functionName, parseAsDtype));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/operation.js\nvar OP_SCOPE_SUFFIX = \"__op\";\nfunction op(f) {\n const keys = Object.keys(f);\n if (keys.length !== 1) {\n throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${keys.length} keys.`);\n }\n let opName = keys[0];\n const fn = f[opName];\n if (opName.endsWith(\"_\")) {\n opName = opName.substring(0, opName.length - 1);\n }\n opName = opName + OP_SCOPE_SUFFIX;\n const f2 = (...args) => {\n ENGINE.startScope(opName);\n try {\n const result = fn(...args);\n if (isPromise(result)) {\n console.error(\"Cannot return a Promise inside of tidy.\");\n }\n ENGINE.endScope(result);\n return result;\n } catch (ex) {\n ENGINE.endScope(null);\n throw ex;\n }\n };\n Object.defineProperty(f2, \"name\", { value: opName, configurable: true });\n return f2;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/complex.js\nfunction complex_(real5, imag5) {\n const $real = convertToTensor(real5, \"real\", \"complex\");\n const $imag = convertToTensor(imag5, \"imag\", \"complex\");\n assertShapesMatch($real.shape, $imag.shape, `real and imag shapes, ${$real.shape} and ${$imag.shape}, must match in call to tf.complex().`);\n const inputs = { real: $real, imag: $imag };\n return ENGINE.runKernel(Complex, inputs);\n}\nvar complex = op({ complex_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor_ops_util.js\nfunction makeTensor(values, shape, inferredShape, dtype) {\n if (dtype == null) {\n dtype = inferDtype(values);\n }\n if (dtype === \"complex64\") {\n throw new Error(`Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).`);\n }\n if (!isTypedArray(values) && !Array.isArray(values) && typeof values !== \"number\" && typeof values !== \"boolean\" && typeof values !== \"string\") {\n throw new Error(\"values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray\");\n }\n if (shape != null) {\n assertNonNegativeIntegerDimensions(shape);\n const providedSize = sizeFromShape(shape);\n const inferredSize = sizeFromShape(inferredShape);\n assert(providedSize === inferredSize, () => `Based on the provided shape, [${shape}], the tensor should have ${providedSize} values but has ${inferredSize}`);\n for (let i2 = 0; i2 < inferredShape.length; ++i2) {\n const inferred = inferredShape[i2];\n const flatDimsDontMatch = i2 === inferredShape.length - 1 ? inferred !== sizeFromShape(shape.slice(i2)) : true;\n assert(inferredShape[i2] === shape[i2] || !flatDimsDontMatch, () => `Error creating a new Tensor. Inferred shape (${inferredShape}) does not match the provided shape (${shape}). `);\n }\n }\n if (!isTypedArray(values) && !Array.isArray(values)) {\n values = [values];\n }\n shape = shape || inferredShape;\n values = dtype !== \"string\" ? toTypedArray(values, dtype) : flatten(values, [], true);\n return ENGINE.makeTensor(values, shape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor.js\nfunction tensor(values, shape, dtype) {\n const inferredShape = inferShape(values, dtype);\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/io/types.js\nvar DTYPE_VALUE_SIZE_MAP = {\n \"float32\": 4,\n \"float16\": 2,\n \"int32\": 4,\n \"uint16\": 2,\n \"uint8\": 1,\n \"bool\": 1,\n \"complex64\": 8\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/io/io_utils.js\nvar NUM_BYTES_STRING_LENGTH = 4;\nasync function encodeWeights(tensors, group) {\n const specs = [];\n const dataPromises = [];\n const names = Array.isArray(tensors) ? tensors.map((tensor2) => tensor2.name) : Object.keys(tensors);\n for (let i2 = 0; i2 < names.length; ++i2) {\n const name = names[i2];\n const t2 = Array.isArray(tensors) ? tensors[i2].tensor : tensors[name];\n if (t2.dtype !== \"float32\" && t2.dtype !== \"int32\" && t2.dtype !== \"bool\" && t2.dtype !== \"string\" && t2.dtype !== \"complex64\") {\n throw new Error(`Unsupported dtype in weight '${name}': ${t2.dtype}`);\n }\n const spec = { name, shape: t2.shape, dtype: t2.dtype };\n if (t2.dtype === \"string\") {\n const utf8bytes = new Promise(async (resolve) => {\n const vals = await t2.bytes();\n const totalNumBytes = vals.reduce((p2, c) => p2 + c.length, 0) + NUM_BYTES_STRING_LENGTH * vals.length;\n const bytes = new Uint8Array(totalNumBytes);\n let offset = 0;\n for (let i3 = 0; i3 < vals.length; i3++) {\n const val = vals[i3];\n const bytesOfLength = new Uint8Array(new Uint32Array([val.length]).buffer);\n bytes.set(bytesOfLength, offset);\n offset += NUM_BYTES_STRING_LENGTH;\n bytes.set(val, offset);\n offset += val.length;\n }\n resolve(bytes);\n });\n dataPromises.push(utf8bytes);\n } else {\n dataPromises.push(t2.data());\n }\n if (group != null) {\n spec.group = group;\n }\n specs.push(spec);\n }\n const tensorValues = await Promise.all(dataPromises);\n return { data: concatenateTypedArrays(tensorValues), specs };\n}\nfunction decodeWeights(buffer2, specs) {\n const out = {};\n let float16Decode;\n let offset = 0;\n for (const spec of specs) {\n const name = spec.name;\n const dtype = spec.dtype;\n const shape = spec.shape;\n const size = sizeFromShape(shape);\n let values;\n if (\"quantization\" in spec) {\n const quantization = spec.quantization;\n if (quantization.dtype === \"uint8\" || quantization.dtype === \"uint16\") {\n if (!(\"min\" in quantization && \"scale\" in quantization)) {\n throw new Error(`Weight ${spec.name} with quantization ${quantization.dtype} doesn't have corresponding metadata min and scale.`);\n }\n } else if (quantization.dtype === \"float16\") {\n if (dtype !== \"float32\") {\n throw new Error(`Weight ${spec.name} is quantized with ${quantization.dtype} which only supports weights of type float32 not ${dtype}.`);\n }\n } else {\n throw new Error(`Weight ${spec.name} has unknown quantization dtype ${quantization.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);\n }\n const quantizationSizeFactor = DTYPE_VALUE_SIZE_MAP[quantization.dtype];\n const byteBuffer = buffer2.slice(offset, offset + size * quantizationSizeFactor);\n const quantizedArray = quantization.dtype === \"uint8\" ? new Uint8Array(byteBuffer) : new Uint16Array(byteBuffer);\n if (dtype === \"float32\") {\n if (quantization.dtype === \"uint8\" || quantization.dtype === \"uint16\") {\n values = new Float32Array(quantizedArray.length);\n for (let i2 = 0; i2 < quantizedArray.length; i2++) {\n const v = quantizedArray[i2];\n values[i2] = v * quantization.scale + quantization.min;\n }\n } else if (quantization.dtype === \"float16\") {\n if (float16Decode === void 0) {\n float16Decode = getFloat16Decoder();\n }\n values = float16Decode(quantizedArray);\n } else {\n throw new Error(`Unsupported quantization type ${quantization.dtype} for weight type float32.`);\n }\n } else if (dtype === \"int32\") {\n if (quantization.dtype !== \"uint8\" && quantization.dtype !== \"uint16\") {\n throw new Error(`Unsupported quantization type ${quantization.dtype} for weight type int32.`);\n }\n values = new Int32Array(quantizedArray.length);\n for (let i2 = 0; i2 < quantizedArray.length; i2++) {\n const v = quantizedArray[i2];\n values[i2] = Math.round(v * quantization.scale + quantization.min);\n }\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * quantizationSizeFactor;\n } else if (dtype === \"string\") {\n const size2 = sizeFromShape(spec.shape);\n values = [];\n for (let i2 = 0; i2 < size2; i2++) {\n const byteLength = new Uint32Array(buffer2.slice(offset, offset + NUM_BYTES_STRING_LENGTH))[0];\n offset += NUM_BYTES_STRING_LENGTH;\n const bytes = new Uint8Array(buffer2.slice(offset, offset + byteLength));\n values.push(bytes);\n offset += byteLength;\n }\n } else {\n const dtypeFactor = DTYPE_VALUE_SIZE_MAP[dtype];\n const byteBuffer = buffer2.slice(offset, offset + size * dtypeFactor);\n if (dtype === \"float32\") {\n values = new Float32Array(byteBuffer);\n } else if (dtype === \"int32\") {\n values = new Int32Array(byteBuffer);\n } else if (dtype === \"bool\") {\n values = new Uint8Array(byteBuffer);\n } else if (dtype === \"complex64\") {\n values = new Float32Array(byteBuffer);\n const real5 = new Float32Array(values.length / 2);\n const image2 = new Float32Array(values.length / 2);\n for (let i2 = 0; i2 < real5.length; i2++) {\n real5[i2] = values[i2 * 2];\n image2[i2] = values[i2 * 2 + 1];\n }\n const realTensor = tensor(real5, shape, \"float32\");\n const imageTensor = tensor(image2, shape, \"float32\");\n out[name] = complex(realTensor, imageTensor);\n realTensor.dispose();\n imageTensor.dispose();\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * dtypeFactor;\n }\n if (dtype !== \"complex64\") {\n out[name] = tensor(values, shape, dtype);\n }\n }\n return out;\n}\nfunction concatenateTypedArrays(xs) {\n if (xs === null) {\n throw new Error(`Invalid input value: ${JSON.stringify(xs)}`);\n }\n let totalByteLength = 0;\n const normalizedXs = [];\n xs.forEach((x) => {\n totalByteLength += x.byteLength;\n normalizedXs.push(x.byteLength === x.buffer.byteLength ? x : new x.constructor(x));\n if (!(x instanceof Float32Array || x instanceof Int32Array || x instanceof Uint8Array)) {\n throw new Error(`Unsupported TypedArray subtype: ${x.constructor.name}`);\n }\n });\n const y = new Uint8Array(totalByteLength);\n let offset = 0;\n normalizedXs.forEach((x) => {\n y.set(new Uint8Array(x.buffer), offset);\n offset += x.byteLength;\n });\n return y.buffer;\n}\nvar useNodeBuffer = typeof Buffer !== \"undefined\" && (typeof Blob === \"undefined\" || typeof atob === \"undefined\" || typeof btoa === \"undefined\");\nfunction stringByteLength(str) {\n if (useNodeBuffer) {\n return Buffer.byteLength(str);\n }\n return new Blob([str]).size;\n}\nfunction arrayBufferToBase64String(buffer2) {\n if (useNodeBuffer) {\n return Buffer.from(buffer2).toString(\"base64\");\n }\n const buf = new Uint8Array(buffer2);\n let s2 = \"\";\n for (let i2 = 0, l3 = buf.length; i2 < l3; i2++) {\n s2 += String.fromCharCode(buf[i2]);\n }\n return btoa(s2);\n}\nfunction base64StringToArrayBuffer(str) {\n if (useNodeBuffer) {\n const buf = Buffer.from(str, \"base64\");\n return buf.buffer.slice(buf.byteOffset, buf.byteOffset + buf.byteLength);\n }\n const s2 = atob(str);\n const buffer2 = new Uint8Array(s2.length);\n for (let i2 = 0; i2 < s2.length; ++i2) {\n buffer2.set([s2.charCodeAt(i2)], i2);\n }\n return buffer2.buffer;\n}\nfunction concatenateArrayBuffers(buffers) {\n if (buffers.length === 1) {\n return buffers[0];\n }\n let totalByteLength = 0;\n buffers.forEach((buffer2) => {\n totalByteLength += buffer2.byteLength;\n });\n const temp = new Uint8Array(totalByteLength);\n let offset = 0;\n buffers.forEach((buffer2) => {\n temp.set(new Uint8Array(buffer2), offset);\n offset += buffer2.byteLength;\n });\n return temp.buffer;\n}\nfunction basename(path) {\n const SEPARATOR = \"/\";\n path = path.trim();\n while (path.endsWith(SEPARATOR)) {\n path = path.slice(0, path.length - 1);\n }\n const items = path.split(SEPARATOR);\n return items[items.length - 1];\n}\nfunction getModelJSONForModelArtifacts(artifacts, manifest) {\n const result = {\n modelTopology: artifacts.modelTopology,\n format: artifacts.format,\n generatedBy: artifacts.generatedBy,\n convertedBy: artifacts.convertedBy,\n weightsManifest: manifest\n };\n if (artifacts.signature != null) {\n result.signature = artifacts.signature;\n }\n if (artifacts.userDefinedMetadata != null) {\n result.userDefinedMetadata = artifacts.userDefinedMetadata;\n }\n if (artifacts.modelInitializer != null) {\n result.modelInitializer = artifacts.modelInitializer;\n }\n if (artifacts.trainingConfig != null) {\n result.trainingConfig = artifacts.trainingConfig;\n }\n return result;\n}\nasync function getModelArtifactsForJSON(modelJSON, loadWeights2) {\n const modelArtifacts = {\n modelTopology: modelJSON.modelTopology,\n format: modelJSON.format,\n generatedBy: modelJSON.generatedBy,\n convertedBy: modelJSON.convertedBy\n };\n if (modelJSON.trainingConfig != null) {\n modelArtifacts.trainingConfig = modelJSON.trainingConfig;\n }\n if (modelJSON.weightsManifest != null) {\n const [weightSpecs, weightData] = await loadWeights2(modelJSON.weightsManifest);\n modelArtifacts.weightSpecs = weightSpecs;\n modelArtifacts.weightData = weightData;\n }\n if (modelJSON.signature != null) {\n modelArtifacts.signature = modelJSON.signature;\n }\n if (modelJSON.userDefinedMetadata != null) {\n modelArtifacts.userDefinedMetadata = modelJSON.userDefinedMetadata;\n }\n if (modelJSON.modelInitializer != null) {\n modelArtifacts.modelInitializer = modelJSON.modelInitializer;\n }\n return modelArtifacts;\n}\nfunction getModelArtifactsInfoForJSON(modelArtifacts) {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\"Expected JSON model topology, received ArrayBuffer.\");\n }\n return {\n dateSaved: new Date(),\n modelTopologyType: \"JSON\",\n modelTopologyBytes: modelArtifacts.modelTopology == null ? 0 : stringByteLength(JSON.stringify(modelArtifacts.modelTopology)),\n weightSpecsBytes: modelArtifacts.weightSpecs == null ? 0 : stringByteLength(JSON.stringify(modelArtifacts.weightSpecs)),\n weightDataBytes: modelArtifacts.weightData == null ? 0 : modelArtifacts.weightData.byteLength\n };\n}\nfunction computeFloat16MantisaTable() {\n const convertMantissa = (i2) => {\n let m = i2 << 13;\n let e2 = 0;\n while ((m & 8388608) === 0) {\n e2 -= 8388608;\n m <<= 1;\n }\n m &= ~8388608;\n e2 += 947912704;\n return m | e2;\n };\n const mantisaTable = new Uint32Array(2048);\n mantisaTable[0] = 0;\n for (let i2 = 1; i2 < 1024; i2++) {\n mantisaTable[i2] = convertMantissa(i2);\n }\n for (let i2 = 1024; i2 < 2048; i2++) {\n mantisaTable[i2] = 939524096 + (i2 - 1024 << 13);\n }\n return mantisaTable;\n}\nfunction computeFloat16ExponentTable() {\n const exponentTable = new Uint32Array(64);\n exponentTable[0] = 0;\n exponentTable[31] = 1199570944;\n exponentTable[32] = 2147483648;\n exponentTable[63] = 3347054592;\n for (let i2 = 1; i2 < 31; i2++) {\n exponentTable[i2] = i2 << 23;\n }\n for (let i2 = 33; i2 < 63; i2++) {\n exponentTable[i2] = 2147483648 + (i2 - 32 << 23);\n }\n return exponentTable;\n}\nfunction computeFloat16OffsetTable() {\n const offsetTable = new Uint32Array(64);\n for (let i2 = 0; i2 < 64; i2++) {\n offsetTable[i2] = 1024;\n }\n offsetTable[0] = offsetTable[32] = 0;\n return offsetTable;\n}\nfunction getFloat16Decoder() {\n const mantisaTable = computeFloat16MantisaTable();\n const exponentTable = computeFloat16ExponentTable();\n const offsetTable = computeFloat16OffsetTable();\n return (quantizedArray) => {\n const buffer2 = new ArrayBuffer(4 * quantizedArray.length);\n const bufferUint32View = new Uint32Array(buffer2);\n for (let index = 0; index < quantizedArray.length; index++) {\n const float16Bits = quantizedArray[index];\n const float32Bits = mantisaTable[offsetTable[float16Bits >> 10] + (float16Bits & 1023)] + exponentTable[float16Bits >> 10];\n bufferUint32View[index] = float32Bits;\n }\n return new Float32Array(buffer2);\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/io/router_registry.js\nvar IORouterRegistry = class {\n constructor() {\n this.saveRouters = [];\n this.loadRouters = [];\n }\n static getInstance() {\n if (IORouterRegistry.instance == null) {\n IORouterRegistry.instance = new IORouterRegistry();\n }\n return IORouterRegistry.instance;\n }\n static registerSaveRouter(saveRouter) {\n IORouterRegistry.getInstance().saveRouters.push(saveRouter);\n }\n static registerLoadRouter(loadRouter) {\n IORouterRegistry.getInstance().loadRouters.push(loadRouter);\n }\n static getSaveHandlers(url) {\n return IORouterRegistry.getHandlers(url, \"save\");\n }\n static getLoadHandlers(url, loadOptions) {\n return IORouterRegistry.getHandlers(url, \"load\", loadOptions);\n }\n static getHandlers(url, handlerType, loadOptions) {\n const validHandlers = [];\n const routers = handlerType === \"load\" ? IORouterRegistry.getInstance().loadRouters : IORouterRegistry.getInstance().saveRouters;\n routers.forEach((router) => {\n const handler = router(url, loadOptions);\n if (handler !== null) {\n validHandlers.push(handler);\n }\n });\n return validHandlers;\n }\n};\nvar registerSaveRouter = (loudRouter) => IORouterRegistry.registerSaveRouter(loudRouter);\nvar registerLoadRouter = (loudRouter) => IORouterRegistry.registerLoadRouter(loudRouter);\nvar getSaveHandlers = (url) => IORouterRegistry.getSaveHandlers(url);\nvar getLoadHandlers = (url, loadOptions) => IORouterRegistry.getLoadHandlers(url, loadOptions);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/io/indexed_db.js\nvar DATABASE_NAME = \"tensorflowjs\";\nvar DATABASE_VERSION = 1;\nvar MODEL_STORE_NAME = \"models_store\";\nvar INFO_STORE_NAME = \"model_info_store\";\nfunction getIndexedDBFactory() {\n if (!env().getBool(\"IS_BROWSER\")) {\n throw new Error(\"Failed to obtain IndexedDB factory because the current environmentis not a web browser.\");\n }\n const theWindow = typeof window === \"undefined\" ? self : window;\n const factory = theWindow.indexedDB || theWindow.mozIndexedDB || theWindow.webkitIndexedDB || theWindow.msIndexedDB || theWindow.shimIndexedDB;\n if (factory == null) {\n throw new Error(\"The current browser does not appear to support IndexedDB.\");\n }\n return factory;\n}\nfunction setUpDatabase(openRequest) {\n const db = openRequest.result;\n db.createObjectStore(MODEL_STORE_NAME, { keyPath: \"modelPath\" });\n db.createObjectStore(INFO_STORE_NAME, { keyPath: \"modelPath\" });\n}\nvar BrowserIndexedDB = class {\n constructor(modelPath) {\n this.indexedDB = getIndexedDBFactory();\n if (modelPath == null || !modelPath) {\n throw new Error(\"For IndexedDB, modelPath must not be null, undefined or empty.\");\n }\n this.modelPath = modelPath;\n }\n async save(modelArtifacts) {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\"BrowserLocalStorage.save() does not support saving model topology in binary formats yet.\");\n }\n return this.databaseAction(this.modelPath, modelArtifacts);\n }\n async load() {\n return this.databaseAction(this.modelPath);\n }\n databaseAction(modelPath, modelArtifacts) {\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n if (modelArtifacts == null) {\n const modelTx = db.transaction(MODEL_STORE_NAME, \"readonly\");\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const getRequest = modelStore.get(this.modelPath);\n getRequest.onsuccess = () => {\n if (getRequest.result == null) {\n db.close();\n return reject(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));\n } else {\n resolve(getRequest.result.modelArtifacts);\n }\n };\n getRequest.onerror = (error) => {\n db.close();\n return reject(getRequest.error);\n };\n modelTx.oncomplete = () => db.close();\n } else {\n const modelArtifactsInfo = getModelArtifactsInfoForJSON(modelArtifacts);\n const infoTx = db.transaction(INFO_STORE_NAME, \"readwrite\");\n let infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const putInfoRequest = infoStore.put({ modelPath: this.modelPath, modelArtifactsInfo });\n let modelTx;\n putInfoRequest.onsuccess = () => {\n modelTx = db.transaction(MODEL_STORE_NAME, \"readwrite\");\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const putModelRequest = modelStore.put({\n modelPath: this.modelPath,\n modelArtifacts,\n modelArtifactsInfo\n });\n putModelRequest.onsuccess = () => resolve({ modelArtifactsInfo });\n putModelRequest.onerror = (error) => {\n infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const deleteInfoRequest = infoStore.delete(this.modelPath);\n deleteInfoRequest.onsuccess = () => {\n db.close();\n return reject(putModelRequest.error);\n };\n deleteInfoRequest.onerror = (error2) => {\n db.close();\n return reject(putModelRequest.error);\n };\n };\n };\n putInfoRequest.onerror = (error) => {\n db.close();\n return reject(putInfoRequest.error);\n };\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n }\n };\n openRequest.onerror = (error) => reject(openRequest.error);\n });\n }\n};\nBrowserIndexedDB.URL_SCHEME = \"indexeddb://\";\nvar indexedDBRouter = (url) => {\n if (!env().getBool(\"IS_BROWSER\")) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserIndexedDB.URL_SCHEME)) {\n return browserIndexedDB(url.slice(BrowserIndexedDB.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(indexedDBRouter);\nIORouterRegistry.registerLoadRouter(indexedDBRouter);\nfunction browserIndexedDB(modelPath) {\n return new BrowserIndexedDB(modelPath);\n}\nfunction maybeStripScheme(key) {\n return key.startsWith(BrowserIndexedDB.URL_SCHEME) ? key.slice(BrowserIndexedDB.URL_SCHEME.length) : key;\n}\nvar BrowserIndexedDBManager = class {\n constructor() {\n this.indexedDB = getIndexedDBFactory();\n }\n async listModels() {\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const tx = db.transaction(INFO_STORE_NAME, \"readonly\");\n const store = tx.objectStore(INFO_STORE_NAME);\n const getAllInfoRequest = store.getAll();\n getAllInfoRequest.onsuccess = () => {\n const out = {};\n for (const item of getAllInfoRequest.result) {\n out[item.modelPath] = item.modelArtifactsInfo;\n }\n resolve(out);\n };\n getAllInfoRequest.onerror = (error) => {\n db.close();\n return reject(getAllInfoRequest.error);\n };\n tx.oncomplete = () => db.close();\n };\n openRequest.onerror = (error) => reject(openRequest.error);\n });\n }\n async removeModel(path) {\n path = maybeStripScheme(path);\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const infoTx = db.transaction(INFO_STORE_NAME, \"readwrite\");\n const infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const getInfoRequest = infoStore.get(path);\n let modelTx;\n getInfoRequest.onsuccess = () => {\n if (getInfoRequest.result == null) {\n db.close();\n return reject(new Error(`Cannot find model with path '${path}' in IndexedDB.`));\n } else {\n const deleteInfoRequest = infoStore.delete(path);\n const deleteModelData = () => {\n modelTx = db.transaction(MODEL_STORE_NAME, \"readwrite\");\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const deleteModelRequest = modelStore.delete(path);\n deleteModelRequest.onsuccess = () => resolve(getInfoRequest.result.modelArtifactsInfo);\n deleteModelRequest.onerror = (error) => reject(getInfoRequest.error);\n };\n deleteInfoRequest.onsuccess = deleteModelData;\n deleteInfoRequest.onerror = (error) => {\n deleteModelData();\n db.close();\n return reject(getInfoRequest.error);\n };\n }\n };\n getInfoRequest.onerror = (error) => {\n db.close();\n return reject(getInfoRequest.error);\n };\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n };\n openRequest.onerror = (error) => reject(openRequest.error);\n });\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/io/local_storage.js\nvar PATH_SEPARATOR = \"/\";\nvar PATH_PREFIX = \"tensorflowjs_models\";\nvar INFO_SUFFIX = \"info\";\nvar MODEL_TOPOLOGY_SUFFIX = \"model_topology\";\nvar WEIGHT_SPECS_SUFFIX = \"weight_specs\";\nvar WEIGHT_DATA_SUFFIX = \"weight_data\";\nvar MODEL_METADATA_SUFFIX = \"model_metadata\";\nfunction getModelKeys(path) {\n return {\n info: [PATH_PREFIX, path, INFO_SUFFIX].join(PATH_SEPARATOR),\n topology: [PATH_PREFIX, path, MODEL_TOPOLOGY_SUFFIX].join(PATH_SEPARATOR),\n weightSpecs: [PATH_PREFIX, path, WEIGHT_SPECS_SUFFIX].join(PATH_SEPARATOR),\n weightData: [PATH_PREFIX, path, WEIGHT_DATA_SUFFIX].join(PATH_SEPARATOR),\n modelMetadata: [PATH_PREFIX, path, MODEL_METADATA_SUFFIX].join(PATH_SEPARATOR)\n };\n}\nfunction removeItems(keys) {\n for (const key of Object.values(keys)) {\n window.localStorage.removeItem(key);\n }\n}\nfunction getModelPathFromKey(key) {\n const items = key.split(PATH_SEPARATOR);\n if (items.length < 3) {\n throw new Error(`Invalid key format: ${key}`);\n }\n return items.slice(1, items.length - 1).join(PATH_SEPARATOR);\n}\nfunction maybeStripScheme2(key) {\n return key.startsWith(BrowserLocalStorage.URL_SCHEME) ? key.slice(BrowserLocalStorage.URL_SCHEME.length) : key;\n}\nvar BrowserLocalStorage = class {\n constructor(modelPath) {\n if (!env().getBool(\"IS_BROWSER\") || typeof window === \"undefined\" || typeof window.localStorage === \"undefined\") {\n throw new Error(\"The current environment does not support local storage.\");\n }\n this.LS = window.localStorage;\n if (modelPath == null || !modelPath) {\n throw new Error(\"For local storage, modelPath must not be null, undefined or empty.\");\n }\n this.modelPath = modelPath;\n this.keys = getModelKeys(this.modelPath);\n }\n async save(modelArtifacts) {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\"BrowserLocalStorage.save() does not support saving model topology in binary formats yet.\");\n } else {\n const topology = JSON.stringify(modelArtifacts.modelTopology);\n const weightSpecs = JSON.stringify(modelArtifacts.weightSpecs);\n const modelArtifactsInfo = getModelArtifactsInfoForJSON(modelArtifacts);\n try {\n this.LS.setItem(this.keys.info, JSON.stringify(modelArtifactsInfo));\n this.LS.setItem(this.keys.topology, topology);\n this.LS.setItem(this.keys.weightSpecs, weightSpecs);\n this.LS.setItem(this.keys.weightData, arrayBufferToBase64String(modelArtifacts.weightData));\n const metadata = {\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy,\n signature: modelArtifacts.signature != null ? modelArtifacts.signature : void 0,\n userDefinedMetadata: modelArtifacts.userDefinedMetadata != null ? modelArtifacts.userDefinedMetadata : void 0,\n modelInitializer: modelArtifacts.modelInitializer != null ? modelArtifacts.modelInitializer : void 0,\n trainingConfig: modelArtifacts.trainingConfig != null ? modelArtifacts.trainingConfig : void 0\n };\n this.LS.setItem(this.keys.modelMetadata, JSON.stringify(metadata));\n return { modelArtifactsInfo };\n } catch (err) {\n removeItems(this.keys);\n throw new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${modelArtifactsInfo.modelTopologyBytes}, weightSpecsBytes=${modelArtifactsInfo.weightSpecsBytes}, weightDataBytes=${modelArtifactsInfo.weightDataBytes}.`);\n }\n }\n }\n async load() {\n const info = JSON.parse(this.LS.getItem(this.keys.info));\n if (info == null) {\n throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);\n }\n if (info.modelTopologyType !== \"JSON\") {\n throw new Error(\"BrowserLocalStorage does not support loading non-JSON model topology yet.\");\n }\n const out = {};\n const topology = JSON.parse(this.LS.getItem(this.keys.topology));\n if (topology == null) {\n throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);\n }\n out.modelTopology = topology;\n const weightSpecs = JSON.parse(this.LS.getItem(this.keys.weightSpecs));\n if (weightSpecs == null) {\n throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);\n }\n out.weightSpecs = weightSpecs;\n const metadataString = this.LS.getItem(this.keys.modelMetadata);\n if (metadataString != null) {\n const metadata = JSON.parse(metadataString);\n out.format = metadata.format;\n out.generatedBy = metadata.generatedBy;\n out.convertedBy = metadata.convertedBy;\n if (metadata.signature != null) {\n out.signature = metadata.signature;\n }\n if (metadata.userDefinedMetadata != null) {\n out.userDefinedMetadata = metadata.userDefinedMetadata;\n }\n if (metadata.modelInitializer != null) {\n out.modelInitializer = metadata.modelInitializer;\n }\n if (metadata.trainingConfig != null) {\n out.trainingConfig = metadata.trainingConfig;\n }\n }\n const weightDataBase64 = this.LS.getItem(this.keys.weightData);\n if (weightDataBase64 == null) {\n throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);\n }\n out.weightData = base64StringToArrayBuffer(weightDataBase64);\n return out;\n }\n};\nBrowserLocalStorage.URL_SCHEME = \"localstorage://\";\nvar localStorageRouter = (url) => {\n if (!env().getBool(\"IS_BROWSER\")) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserLocalStorage.URL_SCHEME)) {\n return browserLocalStorage(url.slice(BrowserLocalStorage.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(localStorageRouter);\nIORouterRegistry.registerLoadRouter(localStorageRouter);\nfunction browserLocalStorage(modelPath) {\n return new BrowserLocalStorage(modelPath);\n}\nvar BrowserLocalStorageManager = class {\n constructor() {\n assert(env().getBool(\"IS_BROWSER\"), () => \"Current environment is not a web browser\");\n assert(typeof window === \"undefined\" || typeof window.localStorage !== \"undefined\", () => \"Current browser does not appear to support localStorage\");\n this.LS = window.localStorage;\n }\n async listModels() {\n const out = {};\n const prefix = PATH_PREFIX + PATH_SEPARATOR;\n const suffix = PATH_SEPARATOR + INFO_SUFFIX;\n for (let i2 = 0; i2 < this.LS.length; ++i2) {\n const key = this.LS.key(i2);\n if (key.startsWith(prefix) && key.endsWith(suffix)) {\n const modelPath = getModelPathFromKey(key);\n out[modelPath] = JSON.parse(this.LS.getItem(key));\n }\n }\n return out;\n }\n async removeModel(path) {\n path = maybeStripScheme2(path);\n const keys = getModelKeys(path);\n if (this.LS.getItem(keys.info) == null) {\n throw new Error(`Cannot find model at path '${path}'`);\n }\n const info = JSON.parse(this.LS.getItem(keys.info));\n removeItems(keys);\n return info;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/io/model_management.js\nvar URL_SCHEME_SUFFIX = \"://\";\nvar ModelStoreManagerRegistry = class {\n constructor() {\n this.managers = {};\n }\n static getInstance() {\n if (ModelStoreManagerRegistry.instance == null) {\n ModelStoreManagerRegistry.instance = new ModelStoreManagerRegistry();\n }\n return ModelStoreManagerRegistry.instance;\n }\n static registerManager(scheme, manager) {\n assert(scheme != null, () => \"scheme must not be undefined or null.\");\n if (scheme.endsWith(URL_SCHEME_SUFFIX)) {\n scheme = scheme.slice(0, scheme.indexOf(URL_SCHEME_SUFFIX));\n }\n assert(scheme.length > 0, () => \"scheme must not be an empty string.\");\n const registry = ModelStoreManagerRegistry.getInstance();\n assert(registry.managers[scheme] == null, () => `A model store manager is already registered for scheme '${scheme}'.`);\n registry.managers[scheme] = manager;\n }\n static getManager(scheme) {\n const manager = this.getInstance().managers[scheme];\n if (manager == null) {\n throw new Error(`Cannot find model manager for scheme '${scheme}'`);\n }\n return manager;\n }\n static getSchemes() {\n return Object.keys(this.getInstance().managers);\n }\n};\nfunction parseURL(url) {\n if (url.indexOf(URL_SCHEME_SUFFIX) === -1) {\n throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ModelStoreManagerRegistry.getSchemes().join(\",\")}`);\n }\n return {\n scheme: url.split(URL_SCHEME_SUFFIX)[0],\n path: url.split(URL_SCHEME_SUFFIX)[1]\n };\n}\nasync function cloneModelInternal(sourceURL, destURL, deleteSource = false) {\n assert(sourceURL !== destURL, () => `Old path and new path are the same: '${sourceURL}'`);\n const loadHandlers = IORouterRegistry.getLoadHandlers(sourceURL);\n assert(loadHandlers.length > 0, () => `Copying failed because no load handler is found for source URL ${sourceURL}.`);\n assert(loadHandlers.length < 2, () => `Copying failed because more than one (${loadHandlers.length}) load handlers for source URL ${sourceURL}.`);\n const loadHandler = loadHandlers[0];\n const saveHandlers = IORouterRegistry.getSaveHandlers(destURL);\n assert(saveHandlers.length > 0, () => `Copying failed because no save handler is found for destination URL ${destURL}.`);\n assert(saveHandlers.length < 2, () => `Copying failed because more than one (${loadHandlers.length}) save handlers for destination URL ${destURL}.`);\n const saveHandler = saveHandlers[0];\n const sourceScheme = parseURL(sourceURL).scheme;\n const sourcePath = parseURL(sourceURL).path;\n const sameMedium = sourceScheme === parseURL(sourceURL).scheme;\n const modelArtifacts = await loadHandler.load();\n if (deleteSource && sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath);\n }\n const saveResult = await saveHandler.save(modelArtifacts);\n if (deleteSource && !sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath);\n }\n return saveResult.modelArtifactsInfo;\n}\nasync function listModels() {\n const schemes = ModelStoreManagerRegistry.getSchemes();\n const out = {};\n for (const scheme of schemes) {\n const schemeOut = await ModelStoreManagerRegistry.getManager(scheme).listModels();\n for (const path in schemeOut) {\n const url = scheme + URL_SCHEME_SUFFIX + path;\n out[url] = schemeOut[path];\n }\n }\n return out;\n}\nasync function removeModel(url) {\n const schemeAndPath = parseURL(url);\n const manager = ModelStoreManagerRegistry.getManager(schemeAndPath.scheme);\n return manager.removeModel(schemeAndPath.path);\n}\nasync function copyModel(sourceURL, destURL) {\n const deleteSource = false;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\nasync function moveModel(sourceURL, destURL) {\n const deleteSource = true;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/platforms/platform_browser.js\nvar PlatformBrowser = class {\n fetch(path, init2) {\n return fetch(path, init2);\n }\n now() {\n return performance.now();\n }\n encode(text, encoding) {\n if (encoding !== \"utf-8\" && encoding !== \"utf8\") {\n throw new Error(`Browser's encoder only supports utf-8, but got ${encoding}`);\n }\n if (this.textEncoder == null) {\n this.textEncoder = new TextEncoder();\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes, encoding) {\n return new TextDecoder(encoding).decode(bytes);\n }\n};\nif (env().get(\"IS_BROWSER\")) {\n env().setPlatform(\"browser\", new PlatformBrowser());\n try {\n ModelStoreManagerRegistry.registerManager(BrowserLocalStorage.URL_SCHEME, new BrowserLocalStorageManager());\n } catch (err) {\n }\n try {\n ModelStoreManagerRegistry.registerManager(BrowserIndexedDB.URL_SCHEME, new BrowserIndexedDBManager());\n } catch (err) {\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/platforms/platform_node.js\nvar getNodeFetch = {\n importFetch: () => require_browser()\n};\nvar systemFetch;\nvar PlatformNode = class {\n constructor() {\n this.util = require_util();\n this.textEncoder = new this.util.TextEncoder();\n }\n fetch(path, requestInits) {\n if (env().global.fetch != null) {\n return env().global.fetch(path, requestInits);\n }\n if (systemFetch == null) {\n systemFetch = getNodeFetch.importFetch();\n }\n return systemFetch(path, requestInits);\n }\n now() {\n const time2 = process.hrtime();\n return time2[0] * 1e3 + time2[1] / 1e6;\n }\n encode(text, encoding) {\n if (encoding !== \"utf-8\" && encoding !== \"utf8\") {\n throw new Error(`Node built-in encoder only supports utf-8, but got ${encoding}`);\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes, encoding) {\n if (bytes.length === 0) {\n return \"\";\n }\n return new this.util.TextDecoder(encoding).decode(bytes);\n }\n};\nif (env().get(\"IS_NODE\") && !env().get(\"IS_BROWSER\")) {\n env().setPlatform(\"node\", new PlatformNode());\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/buffer.js\nfunction buffer(shape, dtype = \"float32\", values) {\n dtype = dtype || \"float32\";\n assertNonNegativeIntegerDimensions(shape);\n return new TensorBuffer(shape, dtype, values);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/cast.js\nfunction cast_(x, dtype) {\n const $x = convertToTensor(x, \"x\", \"cast\");\n if (!isValidDtype(dtype)) {\n throw new Error(`Failed to cast to unknown dtype ${dtype}`);\n }\n if (dtype === \"string\" && $x.dtype !== \"string\" || dtype !== \"string\" && $x.dtype === \"string\") {\n throw new Error(\"Only strings can be casted to strings\");\n }\n const inputs = { x: $x };\n const attrs = { dtype };\n return ENGINE.runKernel(Cast, inputs, attrs);\n}\nvar cast = op({ cast_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/clone.js\nfunction clone_(x) {\n const $x = convertToTensor(x, \"x\", \"clone\", \"string_or_numeric\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Identity, inputs);\n}\nvar clone = op({ clone_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/print.js\nfunction print(x, verbose = false) {\n console.log(x.toString(verbose));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/base_side_effects.js\ngetOrMakeEngine();\nvar opHandler2 = {\n buffer,\n cast,\n clone,\n print\n};\nsetOpHandler(opHandler2);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/io/io.js\nvar io_exports = {};\n__export(io_exports, {\n browserFiles: () => browserFiles,\n browserHTTPRequest: () => browserHTTPRequest,\n concatenateArrayBuffers: () => concatenateArrayBuffers,\n copyModel: () => copyModel,\n decodeWeights: () => decodeWeights,\n encodeWeights: () => encodeWeights,\n fromMemory: () => fromMemory,\n fromMemorySync: () => fromMemorySync,\n getLoadHandlers: () => getLoadHandlers,\n getModelArtifactsForJSON: () => getModelArtifactsForJSON,\n getModelArtifactsInfoForJSON: () => getModelArtifactsInfoForJSON,\n getSaveHandlers: () => getSaveHandlers,\n http: () => http,\n isHTTPScheme: () => isHTTPScheme,\n listModels: () => listModels,\n loadWeights: () => loadWeights,\n moveModel: () => moveModel,\n registerLoadRouter: () => registerLoadRouter,\n registerSaveRouter: () => registerSaveRouter,\n removeModel: () => removeModel,\n weightsLoaderFactory: () => weightsLoaderFactory,\n withSaveHandler: () => withSaveHandler,\n withSaveHandlerSync: () => withSaveHandlerSync\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/io/browser_files.js\nvar DEFAULT_FILE_NAME_PREFIX = \"model\";\nvar DEFAULT_JSON_EXTENSION_NAME = \".json\";\nvar DEFAULT_WEIGHT_DATA_EXTENSION_NAME = \".weights.bin\";\nfunction defer(f) {\n return new Promise((resolve) => setTimeout(resolve)).then(f);\n}\nvar BrowserDownloads = class {\n constructor(fileNamePrefix) {\n if (!env().getBool(\"IS_BROWSER\")) {\n throw new Error(\"browserDownloads() cannot proceed because the current environment is not a browser.\");\n }\n if (fileNamePrefix.startsWith(BrowserDownloads.URL_SCHEME)) {\n fileNamePrefix = fileNamePrefix.slice(BrowserDownloads.URL_SCHEME.length);\n }\n if (fileNamePrefix == null || fileNamePrefix.length === 0) {\n fileNamePrefix = DEFAULT_FILE_NAME_PREFIX;\n }\n this.modelJsonFileName = fileNamePrefix + DEFAULT_JSON_EXTENSION_NAME;\n this.weightDataFileName = fileNamePrefix + DEFAULT_WEIGHT_DATA_EXTENSION_NAME;\n }\n async save(modelArtifacts) {\n if (typeof document === \"undefined\") {\n throw new Error(\"Browser downloads are not supported in this environment since `document` is not present\");\n }\n const weightsURL = window.URL.createObjectURL(new Blob([modelArtifacts.weightData], { type: \"application/octet-stream\" }));\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\"BrowserDownloads.save() does not support saving model topology in binary formats yet.\");\n } else {\n const weightsManifest = [{\n paths: [\"./\" + this.weightDataFileName],\n weights: modelArtifacts.weightSpecs\n }];\n const modelJSON = getModelJSONForModelArtifacts(modelArtifacts, weightsManifest);\n const modelJsonURL = window.URL.createObjectURL(new Blob([JSON.stringify(modelJSON)], { type: \"application/json\" }));\n const jsonAnchor = this.modelJsonAnchor == null ? document.createElement(\"a\") : this.modelJsonAnchor;\n jsonAnchor.download = this.modelJsonFileName;\n jsonAnchor.href = modelJsonURL;\n await defer(() => jsonAnchor.dispatchEvent(new MouseEvent(\"click\")));\n if (modelArtifacts.weightData != null) {\n const weightDataAnchor = this.weightDataAnchor == null ? document.createElement(\"a\") : this.weightDataAnchor;\n weightDataAnchor.download = this.weightDataFileName;\n weightDataAnchor.href = weightsURL;\n await defer(() => weightDataAnchor.dispatchEvent(new MouseEvent(\"click\")));\n }\n return { modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts) };\n }\n }\n};\nBrowserDownloads.URL_SCHEME = \"downloads://\";\nvar BrowserFiles = class {\n constructor(files) {\n if (files == null || files.length < 1) {\n throw new Error(`When calling browserFiles, at least 1 file is required, but received ${files}`);\n }\n this.jsonFile = files[0];\n this.weightsFiles = files.slice(1);\n }\n async load() {\n return new Promise((resolve, reject) => {\n const jsonReader = new FileReader();\n jsonReader.onload = (event) => {\n const modelJSON = JSON.parse(event.target.result);\n const modelTopology = modelJSON.modelTopology;\n if (modelTopology == null) {\n reject(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));\n return;\n }\n const weightsManifest = modelJSON.weightsManifest;\n if (weightsManifest == null) {\n reject(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));\n return;\n }\n if (this.weightsFiles.length === 0) {\n resolve({ modelTopology });\n return;\n }\n const modelArtifactsPromise = getModelArtifactsForJSON(modelJSON, (weightsManifest2) => this.loadWeights(weightsManifest2));\n resolve(modelArtifactsPromise);\n };\n jsonReader.onerror = (error) => reject(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`);\n jsonReader.readAsText(this.jsonFile);\n });\n }\n loadWeights(weightsManifest) {\n const weightSpecs = [];\n const paths = [];\n for (const entry of weightsManifest) {\n weightSpecs.push(...entry.weights);\n paths.push(...entry.paths);\n }\n const pathToFile = this.checkManifestAndWeightFiles(weightsManifest);\n const promises = paths.map((path) => this.loadWeightsFile(path, pathToFile[path]));\n return Promise.all(promises).then((buffers) => [weightSpecs, concatenateArrayBuffers(buffers)]);\n }\n loadWeightsFile(path, file) {\n return new Promise((resolve, reject) => {\n const weightFileReader = new FileReader();\n weightFileReader.onload = (event) => {\n const weightData = event.target.result;\n resolve(weightData);\n };\n weightFileReader.onerror = (error) => reject(`Failed to weights data from file of path '${path}'.`);\n weightFileReader.readAsArrayBuffer(file);\n });\n }\n checkManifestAndWeightFiles(manifest) {\n const basenames = [];\n const fileNames = this.weightsFiles.map((file) => basename(file.name));\n const pathToFile = {};\n for (const group of manifest) {\n group.paths.forEach((path) => {\n const pathBasename = basename(path);\n if (basenames.indexOf(pathBasename) !== -1) {\n throw new Error(`Duplicate file basename found in weights manifest: '${pathBasename}'`);\n }\n basenames.push(pathBasename);\n if (fileNames.indexOf(pathBasename) === -1) {\n throw new Error(`Weight file with basename '${pathBasename}' is not provided.`);\n } else {\n pathToFile[path] = this.weightsFiles[fileNames.indexOf(pathBasename)];\n }\n });\n }\n if (basenames.length !== this.weightsFiles.length) {\n throw new Error(`Mismatch in the number of files in weights manifest (${basenames.length}) and the number of weight files provided (${this.weightsFiles.length}).`);\n }\n return pathToFile;\n }\n};\nvar browserDownloadsRouter = (url) => {\n if (!env().getBool(\"IS_BROWSER\")) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserDownloads.URL_SCHEME)) {\n return browserDownloads(url.slice(BrowserDownloads.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(browserDownloadsRouter);\nfunction browserDownloads(fileNamePrefix = \"model\") {\n return new BrowserDownloads(fileNamePrefix);\n}\nfunction browserFiles(files) {\n return new BrowserFiles(files);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/io/progress.js\nfunction monitorPromisesProgress(promises, onProgress, startFraction, endFraction) {\n checkPromises(promises);\n startFraction = startFraction == null ? 0 : startFraction;\n endFraction = endFraction == null ? 1 : endFraction;\n checkFraction(startFraction, endFraction);\n let resolvedPromise = 0;\n const registerMonitor = (promise) => {\n promise.then((value) => {\n const fraction = startFraction + ++resolvedPromise / promises.length * (endFraction - startFraction);\n onProgress(fraction);\n return value;\n });\n return promise;\n };\n function checkPromises(promises2) {\n assert(promises2 != null && Array.isArray(promises2) && promises2.length > 0, () => \"promises must be a none empty array\");\n }\n function checkFraction(startFraction2, endFraction2) {\n assert(startFraction2 >= 0 && startFraction2 <= 1, () => `Progress fraction must be in range [0, 1], but got startFraction ${startFraction2}`);\n assert(endFraction2 >= 0 && endFraction2 <= 1, () => `Progress fraction must be in range [0, 1], but got endFraction ${endFraction2}`);\n assert(endFraction2 >= startFraction2, () => `startFraction must be no more than endFraction, but got startFraction ${startFraction2} and endFraction ${endFraction2}`);\n }\n return Promise.all(promises.map(registerMonitor));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/io/weights_loader.js\nasync function loadWeightsAsArrayBuffer(fetchURLs, loadOptions) {\n if (loadOptions == null) {\n loadOptions = {};\n }\n const fetchFunc = loadOptions.fetchFunc == null ? env().platform.fetch : loadOptions.fetchFunc;\n const requests = fetchURLs.map((fetchURL) => fetchFunc(fetchURL, loadOptions.requestInit, { isBinary: true }));\n const fetchStartFraction = 0;\n const fetchEndFraction = 0.5;\n const responses = loadOptions.onProgress == null ? await Promise.all(requests) : await monitorPromisesProgress(requests, loadOptions.onProgress, fetchStartFraction, fetchEndFraction);\n const bufferPromises = responses.map((response) => response.arrayBuffer());\n const bufferStartFraction = 0.5;\n const bufferEndFraction = 1;\n const buffers = loadOptions.onProgress == null ? await Promise.all(bufferPromises) : await monitorPromisesProgress(bufferPromises, loadOptions.onProgress, bufferStartFraction, bufferEndFraction);\n return buffers;\n}\nasync function loadWeights(manifest, filePathPrefix = \"\", weightNames, requestInit) {\n const fetchWeights = (fetchUrls) => loadWeightsAsArrayBuffer(fetchUrls, { requestInit });\n const loadWeights2 = weightsLoaderFactory(fetchWeights);\n return loadWeights2(manifest, filePathPrefix, weightNames);\n}\nfunction weightsLoaderFactory(fetchWeightsFunction) {\n return async (manifest, filePathPrefix = \"\", weightNames) => {\n const groupIndicesToFetchMap = manifest.map(() => false);\n const groupWeightsToFetch = {};\n const weightsFound = weightNames != null ? weightNames.map(() => false) : [];\n const allManifestWeightNames = [];\n manifest.forEach((manifestGroupConfig, groupIndex) => {\n let groupOffset = 0;\n manifestGroupConfig.weights.forEach((weightsEntry) => {\n const rawDtype = \"quantization\" in weightsEntry ? weightsEntry.quantization.dtype : weightsEntry.dtype;\n const weightsBytes = DTYPE_VALUE_SIZE_MAP[rawDtype] * sizeFromShape(weightsEntry.shape);\n const enqueueWeightsForFetchingFn = () => {\n groupIndicesToFetchMap[groupIndex] = true;\n if (groupWeightsToFetch[groupIndex] == null) {\n groupWeightsToFetch[groupIndex] = [];\n }\n groupWeightsToFetch[groupIndex].push({\n manifestEntry: weightsEntry,\n groupOffset,\n sizeBytes: weightsBytes\n });\n };\n if (weightNames != null) {\n weightNames.forEach((weightName, weightIndex) => {\n if (weightName === weightsEntry.name) {\n enqueueWeightsForFetchingFn();\n weightsFound[weightIndex] = true;\n }\n });\n } else {\n enqueueWeightsForFetchingFn();\n }\n allManifestWeightNames.push(weightsEntry.name);\n groupOffset += weightsBytes;\n });\n });\n if (!weightsFound.every((found) => found)) {\n const weightsNotFound = weightNames.filter((_, i2) => !weightsFound[i2]);\n throw new Error(`Could not find weights in manifest with names: ${weightsNotFound.join(\", \")}. \nManifest JSON has weights with names: ${allManifestWeightNames.join(\", \")}.`);\n }\n const groupIndicesToFetch = groupIndicesToFetchMap.reduce((accumulator, shouldFetch, i2) => {\n if (shouldFetch) {\n accumulator.push(i2);\n }\n return accumulator;\n }, []);\n const fetchUrls = [];\n groupIndicesToFetch.forEach((i2) => {\n manifest[i2].paths.forEach((filepath) => {\n const fetchUrl = filePathPrefix + (!filePathPrefix.endsWith(\"/\") ? \"/\" : \"\") + filepath;\n fetchUrls.push(fetchUrl);\n });\n });\n const buffers = await fetchWeightsFunction(fetchUrls);\n const weightsTensorMap = {};\n let bufferIndexOffset = 0;\n groupIndicesToFetch.forEach((i2) => {\n const numBuffers = manifest[i2].paths.length;\n let groupBytes = 0;\n for (let i3 = 0; i3 < numBuffers; i3++) {\n groupBytes += buffers[bufferIndexOffset + i3].byteLength;\n }\n const groupBuffer = new ArrayBuffer(groupBytes);\n const groupByteBuffer = new Uint8Array(groupBuffer);\n let groupBufferOffset = 0;\n for (let i3 = 0; i3 < numBuffers; i3++) {\n const buffer2 = new Uint8Array(buffers[bufferIndexOffset + i3]);\n groupByteBuffer.set(buffer2, groupBufferOffset);\n groupBufferOffset += buffer2.byteLength;\n }\n const weightsEntries = groupWeightsToFetch[i2];\n weightsEntries.forEach((weightsEntry) => {\n const byteBuffer = groupBuffer.slice(weightsEntry.groupOffset, weightsEntry.groupOffset + weightsEntry.sizeBytes);\n const nameToTensorMap = decodeWeights(byteBuffer, [weightsEntry.manifestEntry]);\n for (const name in nameToTensorMap) {\n weightsTensorMap[name] = nameToTensorMap[name];\n }\n });\n bufferIndexOffset += numBuffers;\n });\n return weightsTensorMap;\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/io/http.js\nvar OCTET_STREAM_MIME_TYPE = \"application/octet-stream\";\nvar JSON_TYPE = \"application/json\";\nvar HTTPRequest = class {\n constructor(path, loadOptions) {\n this.DEFAULT_METHOD = \"POST\";\n if (loadOptions == null) {\n loadOptions = {};\n }\n this.weightPathPrefix = loadOptions.weightPathPrefix;\n this.onProgress = loadOptions.onProgress;\n this.weightUrlConverter = loadOptions.weightUrlConverter;\n if (loadOptions.fetchFunc != null) {\n assert(typeof loadOptions.fetchFunc === \"function\", () => \"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)\");\n this.fetch = loadOptions.fetchFunc;\n } else {\n this.fetch = env().platform.fetch;\n }\n assert(path != null && path.length > 0, () => \"URL path for http must not be null, undefined or empty.\");\n if (Array.isArray(path)) {\n assert(path.length === 2, () => `URL paths for http must have a length of 2, (actual length is ${path.length}).`);\n }\n this.path = path;\n if (loadOptions.requestInit != null && loadOptions.requestInit.body != null) {\n throw new Error(\"requestInit is expected to have no pre-existing body, but has one.\");\n }\n this.requestInit = loadOptions.requestInit || {};\n }\n async save(modelArtifacts) {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\"BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.\");\n }\n const init2 = Object.assign({ method: this.DEFAULT_METHOD }, this.requestInit);\n init2.body = new FormData();\n const weightsManifest = [{\n paths: [\"./model.weights.bin\"],\n weights: modelArtifacts.weightSpecs\n }];\n const modelTopologyAndWeightManifest = getModelJSONForModelArtifacts(modelArtifacts, weightsManifest);\n init2.body.append(\"model.json\", new Blob([JSON.stringify(modelTopologyAndWeightManifest)], { type: JSON_TYPE }), \"model.json\");\n if (modelArtifacts.weightData != null) {\n init2.body.append(\"model.weights.bin\", new Blob([modelArtifacts.weightData], { type: OCTET_STREAM_MIME_TYPE }), \"model.weights.bin\");\n }\n const response = await this.fetch(this.path, init2);\n if (response.ok) {\n return {\n modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts),\n responses: [response]\n };\n } else {\n throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${response.status}.`);\n }\n }\n async load() {\n const modelConfigRequest = await this.fetch(this.path, this.requestInit);\n if (!modelConfigRequest.ok) {\n throw new Error(`Request to ${this.path} failed with status code ${modelConfigRequest.status}. Please verify this URL points to the model JSON of the model to load.`);\n }\n let modelJSON;\n try {\n modelJSON = await modelConfigRequest.json();\n } catch (e2) {\n let message = `Failed to parse model JSON of response from ${this.path}.`;\n if (this.path.endsWith(\".pb\")) {\n message += \" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.\";\n } else {\n message += \" Please make sure the server is serving valid JSON for this request.\";\n }\n throw new Error(message);\n }\n const modelTopology = modelJSON.modelTopology;\n const weightsManifest = modelJSON.weightsManifest;\n if (modelTopology == null && weightsManifest == null) {\n throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);\n }\n return getModelArtifactsForJSON(modelJSON, (weightsManifest2) => this.loadWeights(weightsManifest2));\n }\n async loadWeights(weightsManifest) {\n const weightPath = Array.isArray(this.path) ? this.path[1] : this.path;\n const [prefix, suffix] = parseUrl(weightPath);\n const pathPrefix = this.weightPathPrefix || prefix;\n const weightSpecs = [];\n for (const entry of weightsManifest) {\n weightSpecs.push(...entry.weights);\n }\n const fetchURLs = [];\n const urlPromises = [];\n for (const weightsGroup of weightsManifest) {\n for (const path of weightsGroup.paths) {\n if (this.weightUrlConverter != null) {\n urlPromises.push(this.weightUrlConverter(path));\n } else {\n fetchURLs.push(pathPrefix + path + suffix);\n }\n }\n }\n if (this.weightUrlConverter) {\n fetchURLs.push(...await Promise.all(urlPromises));\n }\n const buffers = await loadWeightsAsArrayBuffer(fetchURLs, {\n requestInit: this.requestInit,\n fetchFunc: this.fetch,\n onProgress: this.onProgress\n });\n return [weightSpecs, concatenateArrayBuffers(buffers)];\n }\n};\nHTTPRequest.URL_SCHEME_REGEX = /^https?:\\/\\//;\nfunction parseUrl(url) {\n const lastSlash = url.lastIndexOf(\"/\");\n const lastSearchParam = url.lastIndexOf(\"?\");\n const prefix = url.substring(0, lastSlash);\n const suffix = lastSearchParam > lastSlash ? url.substring(lastSearchParam) : \"\";\n return [prefix + \"/\", suffix];\n}\nfunction isHTTPScheme(url) {\n return url.match(HTTPRequest.URL_SCHEME_REGEX) != null;\n}\nvar httpRouter = (url, loadOptions) => {\n if (typeof fetch === \"undefined\" && (loadOptions == null || loadOptions.fetchFunc == null)) {\n return null;\n } else {\n let isHTTP = true;\n if (Array.isArray(url)) {\n isHTTP = url.every((urlItem) => isHTTPScheme(urlItem));\n } else {\n isHTTP = isHTTPScheme(url);\n }\n if (isHTTP) {\n return http(url, loadOptions);\n }\n }\n return null;\n};\nIORouterRegistry.registerSaveRouter(httpRouter);\nIORouterRegistry.registerLoadRouter(httpRouter);\nfunction http(path, loadOptions) {\n return new HTTPRequest(path, loadOptions);\n}\nfunction browserHTTPRequest(path, loadOptions) {\n return http(path, loadOptions);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/io/passthrough.js\nvar PassthroughLoader = class {\n constructor(modelArtifacts) {\n this.modelArtifacts = modelArtifacts;\n }\n load() {\n return this.modelArtifacts;\n }\n};\nvar PassthroughSaver = class {\n constructor(saveHandler) {\n this.saveHandler = saveHandler;\n }\n save(modelArtifacts) {\n return this.saveHandler(modelArtifacts);\n }\n};\nvar PassthroughAsync = class {\n constructor(handler) {\n if (handler.load) {\n this.load = () => Promise.resolve(handler.load());\n }\n if (handler.save) {\n this.save = (modelArtifacts) => Promise.resolve(handler.save(modelArtifacts));\n }\n }\n};\nfunction fromMemory(modelArtifacts, weightSpecs, weightData, trainingConfig) {\n const args = arguments;\n return new PassthroughAsync(fromMemorySync(...args));\n}\nfunction fromMemorySync(modelArtifacts, weightSpecs, weightData, trainingConfig) {\n if (arguments.length === 1) {\n const isModelArtifacts = modelArtifacts.modelTopology != null || modelArtifacts.weightSpecs != null;\n if (isModelArtifacts) {\n return new PassthroughLoader(modelArtifacts);\n } else {\n console.warn(\"Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release.\");\n return new PassthroughLoader({ modelTopology: modelArtifacts });\n }\n } else {\n console.warn(\"Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release.\");\n return new PassthroughLoader({\n modelTopology: modelArtifacts,\n weightSpecs,\n weightData,\n trainingConfig\n });\n }\n}\nfunction withSaveHandler(saveHandler) {\n return new PassthroughSaver(saveHandler);\n}\nfunction withSaveHandlerSync(saveHandler) {\n return new PassthroughSaver(saveHandler);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/math.js\nvar math_exports = {};\n__export(math_exports, {\n confusionMatrix: () => confusionMatrix\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/mat_mul.js\nfunction matMul_(a6, b, transposeA = false, transposeB = false) {\n let $a = convertToTensor(a6, \"a\", \"matMul\");\n let $b = convertToTensor(b, \"b\", \"matMul\");\n [$a, $b] = makeTypesMatch($a, $b);\n const inputs = { a: $a, b: $b };\n const attrs = { transposeA, transposeB };\n return ENGINE.runKernel(BatchMatMul, inputs, attrs);\n}\nvar matMul = op({ matMul_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/one_hot.js\nfunction oneHot_(indices, depth, onValue = 1, offValue = 0) {\n if (depth < 2) {\n throw new Error(`Error in oneHot: depth must be >=2, but it is ${depth}`);\n }\n const $indices = convertToTensor(indices, \"indices\", \"oneHot\", \"int32\");\n const inputs = { indices: $indices };\n const attrs = { depth, onValue, offValue };\n return ENGINE.runKernel(OneHot, inputs, attrs);\n}\nvar oneHot = op({ oneHot_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/globals.js\nfunction enableProdMode() {\n env().set(\"PROD\", true);\n}\nfunction enableDebugMode() {\n env().set(\"DEBUG\", true);\n}\nfunction disableDeprecationWarnings() {\n env().set(\"DEPRECATION_WARNINGS_ENABLED\", false);\n console.warn(`TensorFlow.js deprecation warnings have been disabled.`);\n}\nfunction deprecationWarn(msg) {\n if (env().getBool(\"DEPRECATION_WARNINGS_ENABLED\")) {\n console.warn(msg + \" You can disable deprecation warnings with tf.disableDeprecationWarnings().\");\n }\n}\nsetDeprecationWarningFn(deprecationWarn);\nfunction disposeVariables() {\n ENGINE.disposeVariables();\n}\nfunction engine() {\n return ENGINE;\n}\nfunction memory() {\n return ENGINE.memory();\n}\nfunction profile(f) {\n return ENGINE.profile(f);\n}\nfunction tidy(nameOrFn, fn) {\n return ENGINE.tidy(nameOrFn, fn);\n}\nfunction dispose(container) {\n const tensors = getTensorsInContainer(container);\n tensors.forEach((tensor2) => tensor2.dispose());\n}\nfunction keep(result) {\n return ENGINE.keep(result);\n}\nfunction time(f) {\n return ENGINE.time(f);\n}\nfunction setBackend(backendName) {\n return ENGINE.setBackend(backendName);\n}\nfunction ready() {\n return ENGINE.ready();\n}\nfunction getBackend() {\n return ENGINE.backendName;\n}\nfunction removeBackend(name) {\n ENGINE.removeBackend(name);\n}\nfunction findBackend(name) {\n return ENGINE.findBackend(name);\n}\nfunction findBackendFactory(name) {\n return ENGINE.findBackendFactory(name);\n}\nfunction registerBackend(name, factory, priority = 1) {\n return ENGINE.registerBackend(name, factory, priority);\n}\nfunction backend() {\n return ENGINE.backend;\n}\nfunction setPlatform(platformName, platform) {\n env().setPlatform(platformName, platform);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/imag.js\nfunction imag_(input2) {\n const $input = convertToTensor(input2, \"input\", \"imag\");\n const inputs = { input: $input };\n return ENGINE.runKernel(Imag, inputs);\n}\nvar imag = op({ imag_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/neg.js\nfunction neg_(x) {\n const $x = convertToTensor(x, \"x\", \"neg\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Neg, inputs);\n}\nvar neg = op({ neg_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/real.js\nfunction real_(input2) {\n const $input = convertToTensor(input2, \"input\", \"real\");\n const inputs = { input: $input };\n return ENGINE.runKernel(Real, inputs);\n}\nvar real = op({ real_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/transpose.js\nfunction transpose_(x, perm, conjugate) {\n const $x = convertToTensor(x, \"x\", \"transpose\");\n if (perm == null) {\n perm = $x.shape.map((s2, i2) => i2).reverse();\n }\n assert($x.rank === perm.length, () => `Error in transpose: rank of input ${$x.rank} must match length of perm ${perm}.`);\n perm.forEach((axis) => {\n assert(axis >= 0 && axis < $x.rank, () => `All entries in 'perm' must be between 0 and ${$x.rank - 1} but got ${perm}`);\n });\n if ($x.rank <= 1) {\n return $x.clone();\n }\n const inputs = { x: $x };\n const attrs = { perm };\n if ($x.dtype === \"complex64\") {\n return tidy(() => {\n let $real = real($x);\n let $imag = imag($x);\n $real = ENGINE.runKernel(Transpose, { x: $real }, attrs);\n $imag = ENGINE.runKernel(Transpose, { x: $imag }, attrs);\n if (conjugate) {\n $imag = neg($imag);\n }\n return complex($real, $imag);\n });\n }\n return ENGINE.runKernel(Transpose, inputs, attrs);\n}\nvar transpose = op({ transpose_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/confusion_matrix.js\nfunction confusionMatrix_(labels, predictions, numClasses) {\n const $labels = convertToTensor(labels, \"labels\", \"confusionMatrix\");\n const $predictions = convertToTensor(predictions, \"predictions\", \"confusionMatrix\");\n assert(numClasses == null || numClasses > 0 && Number.isInteger(numClasses), () => `If provided, numClasses must be a positive integer, but got ${numClasses}`);\n assert($labels.rank === 1, () => `Expected the rank of labels to be 1, but got ${$labels.rank}`);\n assert($predictions.rank === 1, () => `Expected the rank of predictions to be 1, but got ${$predictions.rank}`);\n assert($labels.shape[0] === $predictions.shape[0], () => `Mismatch in the number of examples: ${$labels.shape[0]} vs. ${$predictions.shape[0]}. Labels and predictions should have the same number of elements.`);\n assert(numClasses > 0 && Number.isInteger(numClasses), () => `numClasses is required to be a positive integer, but got ${numClasses}`);\n const oneHotLabels = oneHot(cast($labels, \"int32\"), numClasses);\n const oneHotPredictions = oneHot(cast($predictions, \"int32\"), numClasses);\n const oneHotLabelsT = transpose(oneHotLabels);\n const product = matMul(oneHotLabelsT, oneHotPredictions);\n return cast(product, \"int32\");\n}\nvar confusionMatrix = op({ confusionMatrix_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/broadcast_util.js\nvar broadcast_util_exports = {};\n__export(broadcast_util_exports, {\n assertAndGetBroadcastShape: () => assertAndGetBroadcastShape,\n getBroadcastDims: () => getBroadcastDims,\n getReductionAxes: () => getReductionAxes\n});\nfunction getBroadcastDims(inShape, outShape) {\n const inRank = inShape.length;\n const dims = [];\n for (let i2 = 0; i2 < inRank; i2++) {\n const dim = inRank - 1 - i2;\n const a6 = inShape[dim] || 1;\n const b = outShape[outShape.length - 1 - i2] || 1;\n if (b > 1 && a6 === 1) {\n dims.unshift(dim);\n }\n }\n return dims;\n}\nfunction getReductionAxes(inShape, outShape) {\n const result = [];\n for (let i2 = 0; i2 < outShape.length; i2++) {\n const inDim = inShape[inShape.length - i2 - 1];\n const outAxis = outShape.length - i2 - 1;\n const outDim = outShape[outAxis];\n if (inDim == null || inDim === 1 && outDim > 1) {\n result.unshift(outAxis);\n }\n }\n return result;\n}\nfunction assertAndGetBroadcastShape(shapeA, shapeB) {\n const result = [];\n const l3 = Math.max(shapeA.length, shapeB.length);\n for (let i2 = 0; i2 < l3; i2++) {\n let a6 = shapeA[shapeA.length - i2 - 1];\n if (a6 == null) {\n a6 = 1;\n }\n let b = shapeB[shapeB.length - i2 - 1];\n if (b == null) {\n b = 1;\n }\n if (a6 === 1) {\n result.unshift(b);\n } else if (b === 1) {\n result.unshift(a6);\n } else if (a6 !== b) {\n const errMsg = `Operands could not be broadcast together with shapes ${shapeA} and ${shapeB}.`;\n throw Error(errMsg);\n } else {\n result.unshift(a6);\n }\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/browser.js\nvar browser_exports = {};\n__export(browser_exports, {\n fromPixels: () => fromPixels,\n fromPixelsAsync: () => fromPixelsAsync,\n toPixels: () => toPixels\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor3d.js\nfunction tensor3d(values, shape, dtype) {\n assertNonNull(values);\n if (shape != null && shape.length !== 3) {\n throw new Error(\"tensor3d() requires shape to have three numbers\");\n }\n const inferredShape = inferShape(values, dtype);\n if (inferredShape.length !== 3 && inferredShape.length !== 1) {\n throw new Error(\"tensor3d() requires values to be number[][][] or flat/TypedArray\");\n }\n if (inferredShape.length === 1 && shape == null) {\n throw new Error(\"tensor3d() requires shape to be provided when `values` are a flat array\");\n }\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.18.0/node_modules/@tensorflow/tfjs-core/dist/ops/browser.js\nvar fromPixels2DContext;\nfunction fromPixels_(pixels, numChannels = 3) {\n if (numChannels > 4) {\n throw new Error(\"Cannot construct Tensor with more than 4 channels from pixels.\");\n }\n if (pixels == null) {\n throw new Error(\"pixels passed to tf.browser.fromPixels() can not be null\");\n }\n let isPixelData2 = false;\n let isImageData = false;\n let isVideo = false;\n let isImage = false;\n let isCanvasLike = false;\n let isImageBitmap = false;\n if (pixels.data instanceof Uint8Array) {\n isPixelData2 = true;\n } else if (typeof ImageData !== \"undefined\" && pixels instanceof ImageData) {\n isImageData = true;\n } else if (typeof HTMLVideoElement !== \"undefined\" && pixels instanceof HTMLVideoElement) {\n isVideo = true;\n } else if (typeof HTMLImageElement !== \"undefined\" && pixels instanceof HTMLImageElement) {\n isImage = true;\n } else if (pixels.getContext != null) {\n isCanvasLike = true;\n } else if (typeof ImageBitmap !== \"undefined\" && pixels instanceof ImageBitmap) {\n isImageBitmap = true;\n } else {\n throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${pixels.constructor.name}`);\n }\n if (isVideo) {\n const HAVE_CURRENT_DATA_READY_STATE = 2;\n if (isVideo && pixels.readyState < HAVE_CURRENT_DATA_READY_STATE) {\n throw new Error(\"The video element has not loaded data yet. Please wait for `loadeddata` event on the