2020-11-18 14:26:28 +01:00
var _ _create = Object . create , _ _defProp = Object . defineProperty , _ _getProtoOf = Object . getPrototypeOf , _ _hasOwnProp = Object . prototype . hasOwnProperty , _ _getOwnPropNames = Object . getOwnPropertyNames , _ _getOwnPropDesc = Object . getOwnPropertyDescriptor , _ _markAsModule = target => _ _defProp ( target , "__esModule" , { value : ! 0 } ) , _ _commonJS = ( callback , module2 ) => ( ) => ( module2 || ( module2 = { exports : { } } , callback ( module2 . exports , module2 ) ) , module2 . exports ) , _ _export = ( target , all2 ) => { _ _markAsModule ( target ) ; for ( var name in all2 ) _ _defProp ( target , name , { get : all2 [ name ] , enumerable : ! 0 } ) } , _ _exportStar = ( target , module2 , desc ) => { if ( _ _markAsModule ( target ) , typeof module2 == "object" || typeof module2 == "function" ) for ( let key of _ _getOwnPropNames ( module2 ) ) ! _ _hasOwnProp . call ( target , key ) && key !== "default" && _ _defProp ( target , key , { get : ( ) => module2 [ key ] , enumerable : ! ( desc = _ _getOwnPropDesc ( module2 , key ) ) || desc . enumerable } ) ; return target } , _ _toModule = module2 => module2 && module2 . _ _esModule ? module2 : _ _exportStar ( _ _defProp ( _ _create ( _ _getProtoOf ( module2 ) ) , "default" , { value : module2 , enumerable : ! 0 } ) , module2 ) , require _blazeface = _ _commonJS ( exports2 => { const NUM _LANDMARKS = 6 ; function generateAnchors ( inputSize ) { const spec = { strides : [ inputSize / 16 , inputSize / 8 ] , anchors : [ 2 , 6 ] } , anchors = [ ] ; for ( let i = 0 ; i < spec . strides . length ; i ++ ) { const stride = spec . strides [ i ] , gridRows = Math . floor ( ( inputSize + stride - 1 ) / stride ) , gridCols = Math . floor ( ( inputSize + stride - 1 ) / stride ) , anchorsNum = spec . anchors [ i ] ; for ( let gridY = 0 ; gridY < gridRows ; gridY ++ ) { const anchorY = stride * ( gridY + . 5 ) ; for ( let gridX = 0 ; gridX < gridCols ; gridX ++ ) { const anchorX = stride * ( gridX + . 5 ) ; for ( let n = 0 ; n < anchorsNum ; n ++ ) anchors . push ( [ anchorX , anchorY ] ) } } } return anchors } const disposeBox = box => { box . startEndTensor . dispose ( ) , box . startPoint . dispose ( ) , box . endPoint . dispose ( ) } , createBox = startEndTensor => ( { startEndTensor , startPoint : slice ( startEndTensor , [ 0 , 0 ] , [ - 1 , 2 ] ) , endPoint : slice ( startEndTensor , [ 0 , 2 ] , [ - 1 , 2 ] ) } ) , scaleBox = ( box , factors ) => { const starts = mul ( box . startPoint , factors ) , ends = mul ( box . endPoint , factors ) , newCoordinates = concat2d ( [ starts , ends ] , 1 ) ; return createBox ( newCoordinates ) } ; function decodeBounds ( boxOutputs , anchors , inputSize ) { const boxStarts = slice ( boxOutputs , [ 0 , 1 ] , [ - 1 , 2 ] ) , centers = add2 ( boxStarts , anchors ) , boxSizes = slice ( boxOutputs , [ 0 , 3 ] , [ - 1 , 2 ] ) , boxSizesNormalized = div ( boxSizes , inputSize ) , centersNormalized = div ( centers , inputSize ) , halfBoxSize = div ( boxSizesNormalized , 2 ) , starts = sub ( centersNormalized , halfBoxSize ) , ends = add2 ( centersNormalized , halfBoxSize ) , startNormalized = mul ( starts , inputSize ) , endNormalized = mul ( ends , inputSize ) , concatAxis = 1 ; return concat2d ( [ startNormalized , endNormalized ] , concatAxis ) } function scaleBoxFromPrediction ( face2 , scaleFactor ) { return tidy ( ( ) => { const box = face2 . box ? face2 . box : face2 ; return scaleBox ( box , scaleFactor ) . startEndTensor . squeeze ( ) } ) } class BlazeFaceModel { constructor ( model2 , config2 ) { this . blazeFaceModel = model2 , this . width = config2 . face . detector . inputSize , this . height = config2 . face . detector . inputSize , this . anchorsData = generateAnchors ( config2 . face . detector . inputSize ) , this . anchors = tensor2d ( this . anchorsData ) , this . inputSize = tensor1d ( [ this . width , this . height ] ) , this . config = config2 , this . scaleFaces = . 8 } async getBoundingBoxes ( inputImage ) { if ( ! inputImage || inputImage . isDisposedInternal || inputImage . shape . length !== 4 || inputImage . shape [ 1 ] < 1 || inputImage . shape [ 2 ] < 1 ) return null ; const [ detectedOutputs , boxes , scores ] = tidy ( ( ) => { const resizedImage = inputImage . resizeBilinear ( [ this . width , this . height ] ) , normalizedImage = sub ( resizedImage . div ( 127.5 ) , 1 ) , batchedPrediction = this . blazeFaceModel . predict ( normalizedImage ) ; let prediction ; if ( Array . isArray ( batchedPrediction ) ) { const sorted = batchedPrediction . sort ( ( a , b ) => a . size - b . size ) , concat384 = concat ( [ sorted [ 0 ] , sorted [ 2 ] ] , 2 ) , concat512 = concat ( [ sorted [ 1 ] , sorted [ 3 ] ] , 2 ) , concat2 = concat ( [ concat512 , concat384 ] , 1 ) ; prediction = concat2 . squeeze ( 0 ) } else prediction = batchedPrediction . squeeze ( ) ; const decodedBounds = decodeBounds ( prediction , this . anchors , this . inputSize ) , logits = slice ( prediction , [ 0 , 0 ] , [ - 1 , 1 ] ) , scoresOut = sigmoid ( logits ) . squeeze ( ) ; return [ prediction , decodedBounds , scoresOut ] } ) , boxIndicesTensor = await image . nonMaxSuppressionAsync ( boxes , scores , this . config . face . detector . maxFaces , this . config . face . detector . io
2020-11-17 23:42:44 +01:00
` ),SHADER.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join( `
` );let _filter={};_filter.colorMatrix=function(matrix){const m=new Float32Array(matrix);m[4]/=255,m[9]/=255,m[14]/=255,m[19]/=255;const shader=m[18]===1&&m[3]===0&&m[8]===0&&m[13]===0&&m[15]===0&&m[16]===0&&m[17]===0&&m[19]===0?_filter.colorMatrix.SHADER.WITHOUT_ALPHA:_filter.colorMatrix.SHADER.WITH_ALPHA,program=_compileShader(shader);gl.uniform1fv(program.uniform.m,m),_draw()},_filter.colorMatrix.SHADER={},_filter.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join( `
` ),_filter.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join( `
` ),_filter.brightness=function(brightness){const b=(brightness||0)+1;_filter.colorMatrix([b,0,0,0,0,0,b,0,0,0,0,0,b,0,0,0,0,0,1,0])},_filter.saturation=function(amount){const x=(amount||0)*2/3+1,y=(x-1)*-.5;_filter.colorMatrix([x,y,y,0,0,y,x,y,0,0,y,y,x,0,0,0,0,0,1,0])},_filter.desaturate=function(){_filter.saturation(-1)},_filter.contrast=function(amount){const v=(amount||0)+1,o=-128*(v-1);_filter.colorMatrix([v,0,0,0,o,0,v,0,0,o,0,0,v,0,o,0,0,0,1,0])},_filter.negative=function(){_filter.contrast(-2)},_filter.hue=function(rotation){rotation=(rotation||0)/180*Math.PI;const cos2=Math.cos(rotation),sin2=Math.sin(rotation),lumR=.213,lumG=.715,lumB=.072;_filter.colorMatrix([lumR+cos2*(1-lumR)+sin2*-lumR,lumG+cos2*-lumG+sin2*-lumG,lumB+cos2*-lumB+sin2*(1-lumB),0,0,lumR+cos2*-lumR+sin2*.143,lumG+cos2*(1-lumG)+sin2*.14,lumB+cos2*-lumB+sin2*-.283,0,0,lumR+cos2*-lumR+sin2*-(1-lumR),lumG+cos2*-lumG+sin2*lumG,lumB+cos2*(1-lumB)+sin2*lumB,0,0,0,0,0,1,0])},_filter.desaturateLuminance=function(){_filter.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},_filter.sepia=function(){_filter.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},_filter.brownie=function(){_filter.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},_filter.vintagePinhole=function(){_filter.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},_filter.kodachrome=function(){_filter.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},_filter.technicolor=function(){_filter.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},_filter.polaroid=function(){_filter.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},_filter.shiftToBGR=function(){_filter.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},_filter.convolution=function(matrix){const m=new Float32Array(matrix),pixelSizeX=1/_width,pixelSizeY=1/_height,program=_compileShader(_filter.convolution.SHADER);gl.uniform1fv(program.uniform.m,m),gl.uniform2f(program.uniform.px,pixelSizeX,pixelSizeY),_draw()},_filter.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join( `
` ),_filter.detectEdges=function(){_filter.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},_filter.sobelX=function(){_filter.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},_filter.sobelY=function(){_filter.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},_filter.sharpen=function(amount){const a=amount||1;_filter.convolution.call(this,[0,-1*a,0,-1*a,1+4*a,-1*a,0,-1*a,0])},_filter.emboss=function(size){const s=size||1;_filter.convolution.call(this,[-2*s,-1*s,0,-1*s,1,1*s,0,1*s,2*s])},_filter.blur=function(size){const blurSizeX=size/7/_width,blurSizeY=size/7/_height,program=_compileShader(_filter.blur.SHADER);gl.uniform2f(program.uniform.px,0,blurSizeY),_draw(DRAW.INTERMEDIATE),gl.uniform2f(program.uniform.px,blurSizeX,0),_draw()},_filter.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join( `
` ),_filter.pixelate=function(size){const blurSizeX=size/_width,blurSizeY=size/_height,program=_compileShader(_filter.pixelate.SHADER);gl.uniform2f(program.uniform.size,blurSizeX,blurSizeY),_draw()},_filter.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join( `
2020-11-20 13:52:50 +01:00
` )};exports2.Canvas=WebGLImageFilter}),require_image=__commonJS(exports2=>{const fxImage=__toModule(require_imagefx());let inCanvas=null,outCanvas=null;function process3(input2,config2){let tensor;if(input2 instanceof Tensor)tensor=clone(input2);else{const originalWidth=input2.naturalWidth||input2.videoWidth||input2.width||input2.shape&&input2.shape[1]>0,originalHeight=input2.naturalHeight||input2.videoHeight||input2.height||input2.shape&&input2.shape[2]>0;let targetWidth=originalWidth,targetHeight=originalHeight;if(config2.filter.width>0?targetWidth=config2.filter.width:config2.filter.height>0&&(targetWidth=originalWidth*(config2.filter.height/originalHeight)),config2.filter.height>0?targetHeight=config2.filter.height:config2.filter.width>0&&(targetHeight=originalHeight*(config2.filter.width/originalWidth)),!targetWidth||!targetHeight)return console.log("Human: invalid input",input2),null;(!inCanvas||inCanvas.width!==targetWidth||inCanvas.height!==targetHeight)&&(inCanvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(targetWidth,targetHeight):document.createElement("canvas"),inCanvas.width!==targetWidth&&(inCanvas.width=targetWidth),inCanvas.height!==targetHeight&&(inCanvas.height=targetHeight));const ctx=inCanvas.getContext("2d");if(input2 instanceof ImageData?ctx.putImageData(input2,0,0):ctx.drawImage(input2,0,0,originalWidth,originalHeight,0,0,inCanvas.width,inCanvas.height),config2.filter.enabled){(!this.fx||!outCanvas||inCanvas.width!==outCanvas.width||inCanvas.height!==outCanvas.height)&&(outCanvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(inCanvas.width,inCanvas.height):document.createElement("canvas"),outCanvas.width!==inCanvas.width&&(outCanvas.width=inCanvas.width),outCanvas.height!==inCanvas.height&&(outCanvas.height=inCanvas.height),this.fx=ENV.flags.IS_BROWSER?new fxImage.Canvas({canvas:outCanvas}):null),this.fx.reset(),this.fx.addFilter("brightness",config2.filter.brightness),config2.filter.contrast!==0&&this.fx.addFilter("contrast",config2.filter.contrast),config2.filter.sharpness!==0&&this.fx.addFilter("sharpen",config2.filter.sharpness),config2.filter.blur!==0&&this.fx.addFilter("blur",config2.filter.blur),config2.filter.saturation!==0&&this.fx.addFilter("saturation",config2.filter.saturation),config2.filter.hue!==0&&this.fx.addFilter("hue",config2.filter.hue),config2.filter.negative&&this.fx.addFilter("negative"),config2.filter.sepia&&this.fx.addFilter("sepia"),config2.filter.vintage&&this.fx.addFilter("brownie"),config2.filter.sepia&&this.fx.addFilter("sepia"),config2.filter.kodachrome&&this.fx.addFilter("kodachrome"),config2.filter.technicolor&&this.fx.addFilter("technicolor"),config2.filter.polaroid&&this.fx.addFilter("polaroid"),config2.filter.pixelate!==0&&this.fx.addFilter("pixelate",config2.filter.pixelate),this.fx.apply(inCanvas);const gl=!1;if(gl){const glBuffer=new Uint8Array(outCanvas.width*outCanvas.height*4),pixBuffer=new Uint8Array(outCanvas.width*outCanvas.height*3);gl.readPixels(0,0,outCanvas.width,outCanvas.height,gl.RGBA,gl.UNSIGNED_BYTE,glBuffer);let i=0;for(let y=outCanvas.height-1;y>=0;y--)for(let x=0;x<outCanvas.width;x++){const index=(x+y*outCanvas.width)*4;pixBuffer[i++]=glBuffer[index+0],pixBuffer[i++]=glBuffer[index+1],pixBuffer[i++]=glBuffer[index+2]}outCanvas.data=pixBuffer}}else outCanvas=inCanvas;let pixels;if(outCanvas.data){const shape=[outCanvas.height,outCanvas.width,3];pixels=tensor3d(outCanvas.data,shape,"int32")}else if(config2.backend==="webgl"||outCanvas instanceof ImageData)pixels=browser_exports.fromPixels(outCanvas);else{const tempCanvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(targetWidth,targetHeight):document.createElement("canvas");tempCanvas.width=targetWidth,tempCanvas.height=targetHeight;const tempCtx=tempCanvas.getContext("2d");tempCtx.drawImage(outCanvas,0,0);const data2=tempCtx.getImageData(0,0,targetWidth,targetHeight);pixels=browser_exports.fromPixels(data2)}const casted=pixels.toFloat();tensor=casted.expandDims(0),pixels.dispose(),casted.dispose()}return{tensor,canvas:config2.filter.return?outCanvas:null}}exp
2020-11-17 23:42:44 +01:00
` )),lines.join( `
` )}function computeMaxSizePerColumn(vals,shape,dtype,strides){const n=sizeFromShape(shape),numCols=strides[strides.length-1],padPerCol=new Array(numCols).fill(0),rank=shape.length,valuesOrTuples=dtype==="complex64"?createComplexTuples(vals):vals;if(rank>1)for(let row=0;row<n/numCols;row++){const offset=row*numCols;for(let j=0;j<numCols;j++)padPerCol[j]=Math.max(padPerCol[j],valToString(valuesOrTuples[offset+j],0,dtype).length)}return padPerCol}function valToString(val,pad11,dtype){let valStr;return Array.isArray(val)?valStr= ` $ { parseFloat ( val [ 0 ] . toFixed ( FORMAT _NUM _SIG _DIGITS ) ) } + $ { parseFloat ( val [ 1 ] . toFixed ( FORMAT _NUM _SIG _DIGITS ) ) } j ` :isString(val)?valStr= ` '${val}' ` :dtype==="bool"?valStr=boolNumToString(val):valStr=parseFloat(val.toFixed(FORMAT_NUM_SIG_DIGITS)).toString(),rightPad(valStr,pad11)}function boolNumToString(v){return v===0?"false":"true"}function subTensorToString(vals,shape,dtype,strides,padPerCol,isLast=!0){const storagePerElement=dtype==="complex64"?2:1,size=shape[0],rank=shape.length;if(rank===0){if(dtype==="complex64"){const complexTuple=createComplexTuples(vals);return[valToString(complexTuple[0],0,dtype)]}return dtype==="bool"?[boolNumToString(vals[0])]:[vals[0].toString()]}if(rank===1){if(size>FORMAT_LIMIT_NUM_VALS){const firstValsSize=FORMAT_NUM_FIRST_LAST_VALS*storagePerElement;let firstVals=Array.from(vals.slice(0,firstValsSize)),lastVals=Array.from(vals.slice((size-FORMAT_NUM_FIRST_LAST_VALS)*storagePerElement,size*storagePerElement));return dtype==="complex64"&&(firstVals=createComplexTuples(firstVals),lastVals=createComplexTuples(lastVals)),["["+firstVals.map((x,i)=>valToString(x,padPerCol[i],dtype)).join(", ")+", ..., "+lastVals.map((x,i)=>valToString(x,padPerCol[size-FORMAT_NUM_FIRST_LAST_VALS+i],dtype)).join(", ")+"]"]}const displayVals=dtype==="complex64"?createComplexTuples(vals):Array.from(vals);return["["+displayVals.map((x,i)=>valToString(x,padPerCol[i],dtype)).join(", ")+"]"]}const subshape=shape.slice(1),substrides=strides.slice(1),stride=strides[0]*storagePerElement,lines=[];if(size>FORMAT_LIMIT_NUM_VALS){for(let i=0;i<FORMAT_NUM_FIRST_LAST_VALS;i++){const start=i*stride,end=start+stride;lines.push(...subTensorToString(vals.slice(start,end),subshape,dtype,substrides,padPerCol,!1))}lines.push("...");for(let i=size-FORMAT_NUM_FIRST_LAST_VALS;i<size;i++){const start=i*stride,end=start+stride;lines.push(...subTensorToString(vals.slice(start,end),subshape,dtype,substrides,padPerCol,i===size-1))}}else for(let i=0;i<size;i++){const start=i*stride,end=start+stride;lines.push(...subTensorToString(vals.slice(start,end),subshape,dtype,substrides,padPerCol,i===size-1))}const sep=rank===2?",":"";lines[0]="["+lines[0]+sep;for(let i=1;i<lines.length-1;i++)lines[i]=" "+lines[i]+sep;let newLineSep= ` ,
` ;for(let i=2;i<rank;i++)newLineSep+= `
` ;return lines[lines.length-1]=" "+lines[lines.length-1]+"]"+(isLast?"":newLineSep),lines}function createComplexTuples(vals){const complexTuples=[];for(let i=0;i<vals.length;i+=2)complexTuples.push([vals[i],vals[i+1]]);return complexTuples}class TensorBuffer{constructor(shape,dtype,values){if(this.dtype=dtype,this.shape=shape.slice(),this.size=sizeFromShape(shape),values!=null){const n=values.length;assert(n===this.size,()=> ` Length of values '${n}' does not match the size inferred by the shape '${this.size}' . ` )}if(dtype==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=values||getArrayFromDType(dtype,this.size),this.strides=computeStrides(shape)}set(value,...locs){locs.length===0&&(locs=[0]),assert(locs.length===this.rank,()=> ` The number of provided coordinates ( $ { locs . length } ) must match the rank ( $ { this . rank } ) ` );const index=this.locToIndex(locs);this.values[index]=value}get(...locs){locs.length===0&&(locs=[0]);let i=0;for(const loc of locs){if(loc<0||loc>=this.shape[i]){const msg= ` Requested out of range element at $ { locs } . Buffer shape = $ { this . shape } ` ;throw new Error(msg)}i++}let index=locs[locs.length-1];for(let i2=0;i2<locs.length-1;++i2)index+=this.strides[i2]*locs[i2];return this.values[index]}locToIndex(locs){if(this.rank===0)return 0;if(this.rank===1)return locs[0];let index=locs[locs.length-1];for(let i=0;i<locs.length-1;++i)index+=this.strides[i]*locs[i];return index}indexToLoc(index){if(this.rank===0)return[];if(this.rank===1)return[index];const locs=new Array(this.shape.length);for(let i=0;i<locs.length-1;++i)locs[i]=Math.floor(index/this.strides[i]),index-=locs[i]*this.strides[i];return locs[locs.length-1]=index,locs}get rank(){return this.shape.length}toTensor(){return trackerFn().makeTensor(this.values,this.shape,this.dtype)}}let trackerFn=null,opHandler=null,deprecationWarningFn=null;function setTensorTracker(fn){trackerFn=fn}function setOpHandler(handler){opHandler=handler}function setDeprecationWarningFn(fn){deprecationWarningFn=fn}class Tensor{constructor(shape,dtype,dataId,id){this.kept=!1,this.isDisposedInternal=!1,this.shape=shape.slice(),this.dtype=dtype||"float32",this.size=sizeFromShape(shape),this.strides=computeStrides(shape),this.dataId=dataId,this.id=id,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){const vals=await this.data();return opHandler.buffer(this.shape,this.dtype,vals)}bufferSync(){return opHandler.buffer(this.shape,this.dtype,this.dataSync())}async array(){const vals=await this.data();return toNestedArray(this.shape,vals)}arraySync(){return toNestedArray(this.shape,this.dataSync())}async data(){this.throwIfDisposed();const data2=trackerFn().read(this.dataId);if(this.dtype==="string"){const bytes=await data2;try{return bytes.map(b=>decodeString(b))}catch(_a){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return data2}dataSync(){this.throwIfDisposed();const data2=trackerFn().readSync(this.dataId);if(this.dtype==="string")try{return data2.map(b=>decodeString(b))}catch(_a){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return data2}async bytes(){this.throwIfDisposed();const data2=await trackerFn().read(this.dataId);return this.dtype==="string"?data2:new Uint8Array(data2.buffer)}dispose(){if(this.isDisposed)return;trackerFn().disposeTensor(this),this.isDisposedInternal=!0}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(verbose=!1){return opHandler.print(this,verbose)}clone(){return this.throwIfDisposed(),opHandler.clone(this)}toString(verbose=!1){const vals=this.dataSync();return tensorToString(vals,this.shape,this.dtype,verbose)}cast(dtype){return this.throwIfDisposed(),opHandler.cast(this,dtype)}variable(trainable=!0,name,dtype){return this.throwIfDisposed(),tracker
Manifest JSON has weights with names : $ { allManifestWeightNames . join ( ", " ) } . ` )}const groupIndicesToFetch=groupIndicesToFetchMap.reduce((accumulator,shouldFetch,i)=>(shouldFetch&&accumulator.push(i),accumulator),[]),fetchUrls=[];groupIndicesToFetch.forEach(i=>{manifest[i].paths.forEach(filepath=>{const fetchUrl=filePathPrefix+(filePathPrefix.endsWith("/")?"":"/")+filepath;fetchUrls.push(fetchUrl)})});const buffers=await fetchWeightsFunction(fetchUrls),weightsTensorMap={};let bufferIndexOffset=0;return groupIndicesToFetch.forEach(i=>{const numBuffers=manifest[i].paths.length;let groupBytes=0;for(let i2=0;i2<numBuffers;i2++)groupBytes+=buffers[bufferIndexOffset+i2].byteLength;const groupBuffer=new ArrayBuffer(groupBytes),groupByteBuffer=new Uint8Array(groupBuffer);let groupBufferOffset=0;for(let i2=0;i2<numBuffers;i2++){const buffer11=new Uint8Array(buffers[bufferIndexOffset+i2]);groupByteBuffer.set(buffer11,groupBufferOffset),groupBufferOffset+=buffer11.byteLength}const weightsEntries=groupWeightsToFetch[i];weightsEntries.forEach(weightsEntry=>{const byteBuffer=groupBuffer.slice(weightsEntry.groupOffset,weightsEntry.groupOffset+weightsEntry.sizeBytes),nameToTensorMap=decodeWeights(byteBuffer,[weightsEntry.manifestEntry]);for(const name in nameToTensorMap)weightsTensorMap[name]=nameToTensorMap[name]}),bufferIndexOffset+=numBuffers}),weightsTensorMap}}const OCTET_STREAM_MIME_TYPE="application/octet-stream",JSON_TYPE="application/json";class HTTPRequest{constructor(path,loadOptions){if(this.DEFAULT_METHOD="POST",loadOptions==null&&(loadOptions={}),this.weightPathPrefix=loadOptions.weightPathPrefix,this.onProgress=loadOptions.onProgress,this.weightUrlConverter=loadOptions.weightUrlConverter,loadOptions.fetchFunc!=null?(assert(typeof loadOptions.fetchFunc=="function",()=>"Must pass a function that matches the signature of ` fetch ` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=loadOptions.fetchFunc):this.fetch=env().platform.fetch,assert(path!=null&&path.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(path)&&assert(path.length===2,()=> ` URL paths for http must have a length of 2 , ( actual length is $ { path . length } ) . ` ),this.path=path,loadOptions.requestInit!=null&&loadOptions.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=loadOptions.requestInit||{}}async save(modelArtifacts){if(modelArtifacts.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");const init2=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);init2.body=new FormData;const weightsManifest=[{paths:["./model.weights.bin"],weights:modelArtifacts.weightSpecs}],modelTopologyAndWeightManifest={modelTopology:modelArtifacts.modelTopology,format:modelArtifacts.format,generatedBy:modelArtifacts.generatedBy,convertedBy:modelArtifacts.convertedBy,userDefinedMetadata:modelArtifacts.userDefinedMetadata,weightsManifest};init2.body.append("model.json",new Blob([JSON.stringify(modelTopologyAndWeightManifest)],{type:JSON_TYPE}),"model.json"),modelArtifacts.weightData!=null&&init2.body.append("model.weights.bin",new Blob([modelArtifacts.weightData],{type:OCTET_STREAM_MIME_TYPE}),"model.weights.bin");const response=await this.fetch(this.path,init2);if(response.ok)return{modelArtifactsInfo:getModelArtifactsInfoForJSON(modelArtifacts),responses:[response]};throw new Error( ` BrowserHTTPRequest . save ( ) failed due to HTTP response status $ { response . status } . ` )}async load(){const modelConfigRequest=await this.fetch(this.path,this.requestInit);if(!modelConfigRequest.ok)throw new Error( ` Request to $ { this . path } failed with status code $ { modelConfigRequest . status } . Please verify this URL points to the model JSON of the model to load . ` );let modelConfig;try{modelConfig=await modelConfigRequest.json()}catch(e){let message= ` Failed to parse model JSON of response from $ { this . path } . ` ;throw this.path.endsWith(".pb")?message+=" Your path contains a .pb file extensi
2020-11-17 18:38:48 +01:00
Actual : $ { actualFlat } .
2020-11-17 23:42:44 +01:00
Expected : $ { expectedFlat } . ` );for(let i=0;i<expectedFlat.length;++i){const a=actualFlat[i],e=expectedFlat[i];if(!predicate(a,e))throw new Error( ` Arrays differ : actual [ $ { i } ] = $ { a } , expected [ $ { i } ] = $ { e } .
2020-11-17 18:38:48 +01:00
Actual : $ { actualFlat } .
2020-11-17 23:42:44 +01:00
Expected : $ { expectedFlat } . ` )}}function expectPromiseToFail(fn,done){fn().then(()=>done.fail(),()=>done())}function expectArraysEqual(actual,expected){const exp13=typeof expected=="string"||typeof expected=="number"||typeof expected=="boolean"?[expected]:expected;return isString(actual)||isString(actual[0])||isString(expected)||isString(expected[0])?expectArraysPredicate(actual,exp13,(a,b)=>a==b):expectArraysPredicate(actual,expected,(a,b)=>areClose(a,b,0))}function expectNumbersClose(a,e,epsilon3){if(epsilon3==null&&(epsilon3=testEpsilon()),!areClose(a,e,epsilon3))throw new Error( ` Numbers differ : actual === $ { a } , expected === $ { e } ` )}function areClose(a,e,epsilon3){return!isFinite(a)&&!isFinite(e)?!0:!(isNaN(a)||isNaN(e)||Math.abs(a-e)>epsilon3)}function expectValuesInRange(actual,low,high){for(let i=0;i<actual.length;i++)if(actual[i]<low||actual[i]>high)throw new Error( ` Value out of range : $ { actual [ i ] } low : $ { low } , high : $ { high } ` )}function expectArrayBuffersEqual(actual,expected){expect(new Float32Array(actual)).toEqual(new Float32Array(expected))}const version="2.7.0";function enableProdMode(){env().set("PROD",!0)}function enableDebugMode(){env().set("DEBUG",!0)}function disableDeprecationWarnings(){env().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function deprecationWarn(msg){env().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(msg+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}setDeprecationWarningFn(deprecationWarn);function disposeVariables(){ENGINE.disposeVariables()}function engine15(){return ENGINE}function memory(){return ENGINE.memory()}function profile(f){return ENGINE.profile(f)}function tidy(nameOrFn,fn){return ENGINE.tidy(nameOrFn,fn)}function dispose(container2){const tensors=getTensorsInContainer(container2);tensors.forEach(tensor168=>tensor168.dispose())}function keep(result){return ENGINE.keep(result)}function time(f){return ENGINE.time(f)}function setBackend(backendName){return ENGINE.setBackend(backendName)}function ready(){return ENGINE.ready()}function getBackend(){return ENGINE.backendName}function removeBackend(name){ENGINE.removeBackend(name)}function findBackend(name){return ENGINE.findBackend(name)}function findBackendFactory(name){return ENGINE.findBackendFactory(name)}function registerBackend(name,factory,priority=1){return ENGINE.registerBackend(name,factory,priority)}function backend2(){return ENGINE.backend}function setPlatform(platformName,platform){env().setPlatform(platformName,platform)}function add_(a,b){let $ a=convertToTensor(a,"a","add"), $ b=convertToTensor(b,"b","add");[ $ a, $ b]=makeTypesMatch( $ a, $ b);const forward=(backend3,save)=>{const res=backend3.add( $ a, $ b);return save([ $ a, $ b]),res},inputs={a: $ a,b: $ b};return ENGINE.runKernelFunc(forward,inputs,null,Add)}const add2=op({add_});function floorDiv_(a,b){let $ a=convertToTensor(a,"a","floorDiv"), $ b=convertToTensor(b,"b","floorDiv");[ $ a, $ b]=makeTypesMatch( $ a, $ b);const forward=(backend3,save)=>{const res=backend3.floorDiv( $ a, $ b);return save([ $ a, $ b]),res},inputs={a: $ a,b: $ b};return ENGINE.runKernelFunc(forward,inputs,null,FloorDiv)}const floorDiv=op({floorDiv_});function div_(a,b){let $ a=convertToTensor(a,"a","div"), $ b=convertToTensor(b,"b","div");if([ $ a, $ b]=makeTypesMatch( $ a, $ b), $ a.dtype==="int32"&& $ b.dtype==="int32")return floorDiv( $ a, $ b);const forward=(backend3,save)=>{const res=backend3.realDivide( $ a, $ b);return save([ $ a, $ b]),res},inputs={a: $ a,b: $ b},attrs={};return ENGINE.runKernelFunc(forward,inputs,null,Div,attrs)}const div=op({div_});function mul_(a,b){let $ a=convertToTensor(a,"a","mul"), $ b=convertToTensor(b,"b","mul");[ $ a, $ b]=makeTypesMatch( $ a, $ b);const forward=(backend3,save)=>{const res=backend3.multiply( $ a, $ b);return save([ $ a, $ b]),res},inputs={a: $ a,b: $ b};return ENGINE.runKernelFunc(forward,inputs,null,Multiply)}const mul=op({mul_});function abs_(x){const $ x=convertToTensor(x,"x","abs"),inputs={x: $ x};return ENGINE.runKernelFunc((backend3,save)=>(save([ $ x]), $ x.dtype==="complex64"?backend3.complexAbs( $ x):backend3.abs( $ x)),inputs,n
with dtype $ { tensor168 . dtype } . ` )});const forward=(backend3,save)=>{const $ axis=parseAxisParam(axis, $ tensors[0].shape)[0],outShape=computeOutShape2( $ tensors.map(t=>t.shape), $ axis);if(sizeFromShape(outShape)===0)return tensor4([],outShape);if( $ tensors= $ tensors.filter(t=>t.size>0), $ tensors.length===1)return $ tensors[0];const shapes= $ tensors.map(t=>t.shape);assertParamsConsistent(shapes, $ axis);const res=backend3.concat( $ tensors, $ axis);return save( $ tensors),res},inputs= $ tensors,attr={axis};return ENGINE.runKernelFunc(forward,inputs,null,Concat,attr)}const concat=op({concat_});function sigmoid_(x){const $ x=convertToTensor(x,"x","sigmoid"),inputs={x: $ x};return ENGINE.runKernelFunc((backend3,save)=>{const res=backend3.sigmoid( $ x);return save([res]),res},inputs,null,Sigmoid)}const sigmoid=op({sigmoid_});function slice_(x,begin,size){const $ x=convertToTensor(x,"x","slice");if( $ x.rank===0)throw new Error("Slicing scalar is not possible");const forward=(backend3,save)=>{const[begin_,size_]=parseSliceParams( $ x,begin,size);return assertParamsValid( $ x,begin_,size_),save([ $ x]),backend3.slice( $ x,begin_,size_)},inputs={x: $ x},attrs={begin,size};return ENGINE.runKernelFunc(forward,inputs,null,Slice,attrs)}const slice=op({slice_});function tanh_(x){const $ x=convertToTensor(x,"x","tanh"),inputs={x: $ x};return ENGINE.runKernelFunc((backend3,save)=>{const y=backend3.tanh( $ x);return save([y]),y},inputs,null,Tanh)}const tanh2=op({tanh_});function basicLSTMCell_(forgetBias,lstmKernel,lstmBias,data2,c,h){const $ forgetBias=convertToTensor(forgetBias,"forgetBias","basicLSTMCell"), $ lstmKernel=convertToTensor(lstmKernel,"lstmKernel","basicLSTMCell"), $ lstmBias=convertToTensor(lstmBias,"lstmBias","basicLSTMCell"), $ data=convertToTensor(data2,"data","basicLSTMCell"), $ c=convertToTensor(c,"c","basicLSTMCell"), $ h=convertToTensor(h,"h","basicLSTMCell"),combined=concat([ $ data, $ h],1),weighted=matMul(combined, $ lstmKernel),res=add2(weighted, $ lstmBias),batchSize=res.shape[0],sliceCols=res.shape[1]/4,sliceSize=[batchSize,sliceCols],i=slice(res,[0,0],sliceSize),j=slice(res,[0,sliceCols],sliceSize),f=slice(res,[0,sliceCols*2],sliceSize),o=slice(res,[0,sliceCols*3],sliceSize),newC=add2(mul(sigmoid(i),tanh2(j)),mul( $ c,sigmoid(add2( $ forgetBias,f)))),newH=mul(tanh2(newC),sigmoid(o));return[newC,newH]}const basicLSTMCell=op({basicLSTMCell_});function batchToSpaceND_(x,blockShape,crops){const $ x=convertToTensor(x,"x","batchToSpaceND"),prod5=blockShape.reduce((a,b)=>a*b);assert( $ x.rank>=1+blockShape.length,()=> ` input rank is $ { $x . rank } but should be > than blockShape . length $ { blockShape . length } ` ),assert(crops.length===blockShape.length,()=> ` crops . length is $ { crops . length } but should be equal to blockShape . length $ { blockShape . length } ` ),assert( $ x.shape[0]%prod5===0,()=> ` input tensor batch is $ { $x . shape [ 0 ] } but is not divisible by the product of the elements of blockShape $ { blockShape . join ( " * " ) } === $ { prod5 } ` );const forward=backend3=>backend3.batchToSpaceND( $ x,blockShape,crops),inputs={x: $ x},attrs={blockShape,crops};return ENGINE.runKernelFunc(forward,inputs,null,BatchToSpaceND,attrs)}const batchToSpaceND=op({batchToSpaceND_});function xAs4D(x){let x4D;return x.rank===0||x.rank===1?x4D=reshape(x,[1,1,1,x.size]):x.rank===2?x4D=reshape(x,[1,1,x.shape[0],x.shape[1]]):x.rank===3?x4D=reshape(x,[1,x.shape[0],x.shape[1],x.shape[2]]):x4D=x,x4D}function batchNorm_(x,mean7,variance,offset,scale2,varianceEpsilon){varianceEpsilon==null&&(varianceEpsilon=.001);const $ x=convertToTensor(x,"x","batchNorm"), $ mean=convertToTensor(mean7,"mean","batchNorm"), $ variance=convertToTensor(variance,"variance","batchNorm");let $ scale;scale2!=null&&( $ scale=convertToTensor(scale2,"scale","batchNorm"));let $ offset;offset!=null&&( $ offset=convertToTensor(offset,"offset","batchNorm")),assert( $ mean.rank=== $ variance.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),assert( $ offset==null|| $ mean.rank=== $ offset.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),assert( $ scale==null|| $ mean.rank=== $ scale.rank,()=>"Batch normalizatio
2020-11-17 18:38:48 +01:00
$ { inputHeight } and $ { blockSize } for depthToSpace with input shape
2020-11-17 23:42:44 +01:00
$ { $x . shape } ` ),assert(inputWidth*blockSize>=0,()=> ` Negative dimension size caused by overflow when multiplying
2020-11-17 18:38:48 +01:00
$ { inputWidth } and $ { blockSize } for depthToSpace with input shape
2020-11-17 23:42:44 +01:00
$ { $x . shape } ` ),assert(inputDepth%(blockSize*blockSize)===0,()=> ` Dimension size must be evenly divisible by $ { blockSize * blockSize } but is $ { inputDepth } for depthToSpace with input shape $ { $x . shape } ` );const forward=backend3=>backend3.depthToSpace( $ x,blockSize,dataFormat),inputs={x: $ x},attrs={blockSize,dataFormat};return ENGINE.runKernelFunc(forward,inputs,null,DepthToSpace,attrs)}const depthToSpace=op({depthToSpace_});function depthwiseConv2d_(x,filter,strides,pad11,dataFormat="NHWC",dilations=[1,1],dimRoundingMode){const $ x=convertToTensor(x,"x","depthwiseConv2d"), $ filter=convertToTensor(filter,"filter","depthwiseConv2d");let x4D= $ x,reshapedTo4D=!1; $ x.rank===3&&(reshapedTo4D=!0,x4D=reshape( $ x,[1, $ x.shape[0], $ x.shape[1], $ x.shape[2]])),assert(x4D.rank===4,()=> ` Error in depthwiseConv2d : input must be rank 4 , but got rank $ { x4D . rank } . ` ),assert( $ filter.rank===4,()=> ` Error in depthwiseConv2d : filter must be rank 4 , but got rank $ { $filter . rank } . ` ),assert(x4D.shape[3]=== $ filter.shape[2],()=> ` Error in depthwiseConv2d : number of input channels ( $ { x4D . shape [ 3 ] } ) must match the inChannels dimension in filter $ { $filter . shape [ 2 ] } . ` ),dimRoundingMode!=null&&assert(isInt(pad11),()=> ` Error in depthwiseConv2d : pad must be an integer when using , dimRoundingMode $ { dimRoundingMode } but got pad $ { pad11 } . ` );const forward=(backend3,save)=>{dilations==null&&(dilations=[1,1]),assert(eitherStridesOrDilationsAreOne(strides,dilations),()=> ` Error in depthwiseConv2d : Either strides or dilations must be 1. Got strides $ { strides } and dilations '${dilations}' ` );const convInfo=computeConv2DInfo(x4D.shape, $ filter.shape,strides,dilations,pad11,dimRoundingMode,!0),res2=backend3.depthwiseConv2D(x4D, $ filter,convInfo);return save([x4D, $ filter]),res2},inputs={x:x4D,filter: $ filter},attrs={strides,pad:pad11,dataFormat,dilations,dimRoundingMode},res=ENGINE.runKernelFunc(forward,inputs,null,DepthwiseConv2dNative,attrs);return reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}const depthwiseConv2d=op({depthwiseConv2d_});function diag_(x){const $ x=convertToTensor(x,"x","diag"),forward=backend3=>{const flat=reshape( $ x,[ $ x.size]),result=backend3.diag(flat),outShape=[...x.shape,...x.shape];return reshape(result,outShape)},inputs={x: $ x};return ENGINE.runKernelFunc(forward,inputs,null,Diag)}const diag=op({diag_});function dilation2d_(x,filter,strides,pad11,dilations=[1,1],dataFormat="NHWC"){const $ x=convertToTensor(x,"x","dilation2d"), $ filter=convertToTensor(filter,"filter","dilation2d");assert( $ x.rank===3|| $ x.rank===4,()=> ` Error in dilation2d : input must be rank 3 or 4 , but got rank $ { $x . rank } . ` ),assert( $ filter.rank===3,()=> ` Error in dilation2d : filter must be rank 3 , but got rank $ { $filter . rank } . ` ),assert(dataFormat==="NHWC",()=> ` Error in dilation2d : Only NHWC is currently supported , but got dataFormat of $ { dataFormat } ` );let x4D= $ x,reshapedTo4D=!1; $ x.rank===3&&(x4D=reshape( $ x,[1, $ x.shape[0], $ x.shape[1], $ x.shape[2]]),reshapedTo4D=!0);const inputs={x:x4D,filter: $ filter},attrs={strides,pad:pad11,dilations},res=ENGINE.runKernel(Dilation2D,inputs,attrs);return reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}const dilation2d=op({dilation2d_});function getBroadcastDims(inShape,outShape){const inRank=inShape.length,dims=[];for(let i=0;i<inRank;i++){const dim=inRank-1-i,a=inShape[dim]||1,b=outShape[outShape.length-1-i]||1;b>1&&a===1&&dims.unshift(dim)}return dims}function getReductionAxes(inShape,outShape){const result=[];for(let i=0;i<outShape.length;i++){const inDim=inShape[inShape.length-i-1],outAxis=outShape.length-i-1,outDim=outShape[outAxis];(inDim==null||inDim===1&&outDim>1)&&result.unshift(outAxis)}return result}function assertAndGetBroadcastShape(shapeA,shapeB){const result=[],l=Math.max(shapeA.length,shapeB.length);for(let i=0;i<l;i++){let a=shapeA[shapeA.length-i-1];a==null&&(a=1);let b=shapeB[shapeB.length-i-1];if(b==null&&(b=1),a===1)result.unshift(b);else if(b===1)result.unshift(a);else if(a!==b){const errMsg= ` Operands could not be broadcast together with shapes $ { shapeA } and $ { shapeB } . ` ;throw Error(errMsg)}else resu
rank $ { $x . rank } . ` ),assert(isInt(depthRadius),()=> ` Error in localResponseNormalization : depthRadius must be an integer but got depthRadius $ { depthRadius } . ` );let x4D= $ x,reshapedTo4D=!1; $ x.rank===3&&(reshapedTo4D=!0,x4D=reshape( $ x,[1, $ x.shape[0], $ x.shape[1], $ x.shape[2]]));const forward=(backend3,save)=>{const y=backend3.localResponseNormalization4D(x4D,depthRadius,bias,alpha,beta);return save([x4D,y]),y},inputs={x:x4D},attrs={depthRadius,bias,alpha,beta},res=ENGINE.runKernelFunc(forward,inputs,null,LRN,attrs);return reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}const localResponseNormalization=op({localResponseNormalization_});function log_(x){const $ x=convertToTensor(x,"x","log"),inputs={x: $ x};return ENGINE.runKernelFunc((backend3,save)=>{const res=backend3.log( $ x);return save([ $ x]),res},inputs,null,Log)}const log=op({log_});function log1p_(x){const $ x=convertToTensor(x,"x","log1p"),inputs={x: $ x};return ENGINE.runKernelFunc((backend3,save)=>{const res=backend3.log1p( $ x);return save([ $ x]),res},inputs,null,Log1p)}const log1p=op({log1p_});function grad(f){return assert(isFunction(f),()=>"The f passed in grad(f) must be a function"),(x,dy)=>{const $ x=convertToTensor(x,"x","tf.grad",null), $ dy=dy!=null?convertToTensor(dy,"dy","tf.grad"):null;return ENGINE.tidy(()=>{const{value,grads:grads2}=ENGINE.gradients(()=>f( $ x),[ $ x], $ dy);return $ dy!=null&&assertShapesMatch(value.shape, $ dy.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),checkGrads(grads2),grads2[0]})}}function grads(f){return assert(isFunction(f),()=>"The f passed in grads(f) must be a function"),(args,dy)=>{assert(Array.isArray(args),()=>"The args passed in grads(f)(args) must be an array of ` Tensor ` s or ` TensorLike ` s");const $ args=convertToTensorArray(args,"args","tf.grads",null), $ dy=dy!=null?convertToTensor(dy,"dy","tf.grads"):null;return ENGINE.tidy(()=>{const{value,grads:grads2}=ENGINE.gradients(()=>f(... $ args), $ args, $ dy);return $ dy!=null&&assertShapesMatch(value.shape, $ dy.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),checkGrads(grads2),grads2})}}function valueAndGrad(f){return assert(isFunction(f),()=>"The f passed in valueAndGrad(f) must be a function"),(x,dy)=>{assert(x instanceof Tensor,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),assert(dy==null||dy instanceof Tensor,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");const{grads:grads2,value}=ENGINE.gradients(()=>f(x),[x],dy);return checkGrads(grads2),{grad:grads2[0],value}}}function valueAndGrads(f){return assert(isFunction(f),()=>"The f passed in valueAndGrads(f) must be a function"),(args,dy)=>{assert(Array.isArray(args)&&args.every(arg=>arg instanceof Tensor),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),assert(dy==null||dy instanceof Tensor,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");const res=ENGINE.gradients(()=>f(...args),args,dy);return dy!=null&&assertShapesMatch(res.value.shape,dy.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),checkGrads(res.grads),res}}function variableGrads(f,varList){assert(isFunction(f),()=>"The f passed in variableGrads(f) must be a function"),assert(varList==null||Array.isArray(varList)&&varList.every(v=>v instanceof Variable),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");const specifiedVarList=varList!=null;if(!specifiedVarList){varList=[];for(const varName in ENGINE.registeredVariables)varList.push(ENGINE.registeredVariables[varName])}const specifiedNonTrainable=specifiedVarList?varList.filter(variable3=>!variable3.trainable):null,originalVarCount=varList.length;varList=varList.filter(variable3=>variable3.trainable),assert(varList.length>0,()=> ` variableGrads ( ) expects at least one of the input variables to be trainable , but none of the $ { originalVarCount } variables is trainable . ` );const allowNoGradients=!0,{value,grads:grads2}=ENGINE.gradients(f,varList,null,allowN
the f you passed encloses all operations that lead from x to y . ` )}function neg_(x){const $ x=convertToTensor(x,"x","neg"),inputs={x: $ x};return ENGINE.runKernelFunc(backend3=>backend3.neg( $ x),inputs,null,Negate)}const neg=op({neg_});function softplus_(x){const $ x=convertToTensor(x,"x","softplus"),inputs={x: $ x};return ENGINE.runKernelFunc((backend3,save)=>{const res=backend3.softplus( $ x);return save([ $ x]),res},inputs,null,Softplus)}const softplus=op({softplus_});function logSigmoid_(x){const $ x=convertToTensor(x,"x","logSigmoid"),customOp=customGrad(x2=>{const value=neg(softplus(neg(x2))),gradFunc=dy=>{const derX=mul(dy,sigmoid(neg(x2)));return derX};return{value,gradFunc}});return customOp( $ x)}const logSigmoid=op({logSigmoid_});function max_(x,axis=null,keepDims=!1){const $ x=convertToTensor(x,"x","max"),forward=(backend3,save)=>{const origAxes=parseAxisParam(axis, $ x.shape);let axes=origAxes;const permutedAxes=getAxesPermutation(axes, $ x.rank);let maxInput= $ x;permutedAxes!=null&&(maxInput=transpose( $ x,permutedAxes),axes=getInnerMostAxes(axes.length,maxInput.rank));const y=backend3.max(maxInput,axes);permutedAxes!=null&&maxInput.dispose();let res=y;if(keepDims){const expandedShape=expandShapeToKeepDim(res.shape,parseAxisParam(axis, $ x.shape));res=reshape(res,expandedShape),y.dispose()}return save([ $ x,res]),res},inputs={x: $ x},attrs={reductionIndices:axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Max,attrs)}const max=op({max_});function sub_(a,b){let $ a=convertToTensor(a,"a","sub"), $ b=convertToTensor(b,"b","sub");[ $ a, $ b]=makeTypesMatch( $ a, $ b);const forward=(backend3,save)=>{const res=backend3.subtract( $ a, $ b);return save([ $ a, $ b]),res},inputs={a: $ a,b: $ b};return ENGINE.runKernelFunc(forward,inputs,null,Sub)}const sub=op({sub_});function sum_(x,axis=null,keepDims=!1){let $ x=convertToTensor(x,"x","sum"); $ x.dtype==="bool"&&( $ x=cast( $ x,"int32"));const forward=(backend3,save)=>{save([ $ x]);const axes=parseAxisParam(axis, $ x.shape),permutation=getAxesPermutation(axes, $ x.rank);let reductionAxes=axes,permutedX= $ x;permutation!=null&&(permutedX=transpose( $ x,permutation),reductionAxes=getInnerMostAxes(reductionAxes.length, $ x.rank));let value=backend3.sum(permutedX,reductionAxes);if(keepDims){const newShape=expandShapeToKeepDim(value.shape,axes);value=reshape(value,newShape)}return value},inputs={x: $ x},attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Sum,attrs)}const sum2=op({sum_});function logSoftmax_(logits,axis=-1){const $ logits=convertToTensor(logits,"logits","logSoftmax");if(axis===-1&&(axis= $ logits.rank-1),axis!== $ logits.rank-1)throw Error( ` Log Softmax along a non - last dimension is not yet supported . Logits was rank $ { $logits . rank } and axis was $ { axis } ` );const forward=(backend3,save)=>{const keepDims=!0,xMax=max(logits,axis,!0),shifted=sub(logits,xMax),value=sub(cast(shifted,"float32"),log(sum2(exp(shifted),axis,keepDims)));return save([value]),value},inputs={logits: $ logits},attrs={axis};return ENGINE.runKernelFunc(forward,inputs,null,LogSoftmax,attrs)}const logSoftmax=op({logSoftmax_});function logSumExp_(x,axis=null,keepDims=!1){const $ x=convertToTensor(x,"x","logSumExp"),axes=parseAxisParam(axis, $ x.shape),xMax=max( $ x,axes,!0),a=sub( $ x,xMax),b=exp(a),c=sum2(b,axes),d=log(c),res=add2(reshape(xMax,d.shape),d);if(keepDims){const newShape=expandShapeToKeepDim(res.shape,axes);return reshape(res,newShape)}return res}const logSumExp=op({logSumExp_});function logicalAnd_(a,b){const $ a=convertToTensor(a,"a","logicalAnd","bool"), $ b=convertToTensor(b,"b","logicalAnd","bool");assertAndGetBroadcastShape( $ a.shape, $ b.shape);const inputs={a: $ a,b: $ b};return ENGINE.runKernelFunc(backend3=>backend3.logicalAnd( $ a, $ b),inputs,null,LogicalAnd)}const logicalAnd=op({logicalAnd_});function logicalNot_(x){const $ x=convertToTensor(x,"x","logicalNot","bool"),inputs={x: $ x};return ENGINE.runKernelFunc(backend3=>backend3.logicalNot( $ x),inputs,null,LogicalNot)}const logicalNot=op({logicalNot_});function logicalOr_(a,b){const $ a=convertToTensor(a,"a","logicalOr","bool"), $ b=convertToTensor(b,"b","logicalOr","bool");assertAndGetBr
2020-11-17 18:38:48 +01:00
1. The $ { printableModuleName } is defined in Python , in which case it needs to be ported to TensorFlow . js or your JavaScript code .
2020-11-17 23:42:44 +01:00
2. The custom $ { printableModuleName } is defined in JavaScript , but is not registered properly with tf . serialization . registerClass ( ) . ` );return fn}else{const config2=identifier;if(config2.className==null||config2.config==null)throw new ValueError( ` $ { printableModuleName } : Improper config format : $ { JSON . stringify ( config2 ) } .
'className' and 'config' must set . ` );const className=config2.className;let cls,fromConfig;if(className in customObjects?[cls,fromConfig]=customObjects[className]:className in _GLOBAL_CUSTOM_OBJECTS?[cls,fromConfig]=_GLOBAL_CUSTOM_OBJECTS.className:className in moduleObjects&&([cls,fromConfig]=moduleObjects[className]),cls==null)throw new ValueError( ` Unknown $ { printableModuleName } : $ { className } . This may be due to one of the following reasons :
2020-11-17 18:38:48 +01:00
1. The $ { printableModuleName } is defined in Python , in which case it needs to be ported to TensorFlow . js or your JavaScript code .
2020-11-17 23:42:44 +01:00
2. The custom $ { printableModuleName } is defined in JavaScript , but is not registered properly with tf . serialization . registerClass ( ) . ` );if(fromConfig!=null){const customObjectsCombined={};for(const key of Object.keys(_GLOBAL_CUSTOM_OBJECTS))customObjectsCombined[key]=_GLOBAL_CUSTOM_OBJECTS[key];for(const key of Object.keys(customObjects))customObjectsCombined[key]=customObjects[key];const nestedConfig=config2.config;nestedConfig.customObjects=customObjectsCombined;const backupCustomObjects=Object.assign({},_GLOBAL_CUSTOM_OBJECTS);for(const key of Object.keys(customObjects))_GLOBAL_CUSTOM_OBJECTS[key]=customObjects[key];convertNDArrayScalarsInConfig(config2.config);const returnObj=fromConfig(cls,config2.config,customObjects,fastWeightInit);return _GLOBAL_CUSTOM_OBJECTS=Object.assign({},backupCustomObjects),returnObj}else{const backupCustomObjects=Object.assign({},_GLOBAL_CUSTOM_OBJECTS);for(const key of Object.keys(customObjects))_GLOBAL_CUSTOM_OBJECTS[key]=customObjects[key];const returnObj=new cls(config2.config);return _GLOBAL_CUSTOM_OBJECTS=Object.assign({},backupCustomObjects),returnObj}}}function numberCompare(a,b){return a<b?-1:a>b?1:0}function reverseNumberCompare(a,b){return-1*numberCompare(a,b)}function unique5(xs){if(xs==null)return xs;const out=[];for(const x of xs)out.indexOf(x)===-1&&out.push(x);return out}function isObjectEmpty(obj){if(obj==null)throw new ValueError( ` Invalid value in obj : $ { JSON . stringify ( obj ) } ` );for(const key in obj)if(obj.hasOwnProperty(key))return!1;return!0}function checkStringTypeUnionValue(values,label,value){if(value==null)return;if(values.indexOf(value)<0)throw new ValueError( ` $ { value } is not a valid $ { label } . Valid values are $ { values } or null / undefined . ` )}function checkArrayTypeAndLength(x,expectedType,minLength=0,maxLength=Infinity){return assert2(minLength>=0),assert2(maxLength>=minLength),Array.isArray(x)&&x.length>=minLength&&x.length<=maxLength&&x.every(e=>typeof e===expectedType)}function assertPositiveInteger(value,name){Array.isArray(value)?(util_exports.assert(value.length>0,()=> ` $ { name } is unexpectedly an empty array . ` ),value.forEach((v,i)=>assertPositiveInteger(v, ` element $ { i + 1 } of $ { name } ` ))):util_exports.assert(Number.isInteger(value)&&value>0,()=> ` Expected $ { name } to be a positive integer , but got $ { formatAsFriendlyString ( value ) } . ` )}function formatAsFriendlyString(value){return value===null?"null":Array.isArray(value)?"["+value.map(v=>formatAsFriendlyString(v)).join(",")+"]":typeof value=="string"? ` "${value}" ` : ` $ { value } ` }function debounce(f,waitMs){let lastTime=util_exports.now(),lastResult;const f2=(...args)=>{const now22=util_exports.now();return now22-lastTime<waitMs||(lastTime=now22,lastResult=f(...args)),lastResult};return f2}function mapActivationToFusedKernel(activationName){return activationName==="relu"?"relu":activationName==="linear"?"linear":activationName==="elu"?"elu":null}function calcL2Norms(w,axis){return tidy(()=>sqrt(sum2(mul(w,w),axis,!0)))}class Constraint extends serialization_exports.Serializable{getConfig(){return{}}}class MaxNorm extends Constraint{constructor(args){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=args.maxValue!=null?args.maxValue:this.defaultMaxValue,this.axis=args.axis!=null?args.axis:this.defaultAxis}apply(w){return tidy(()=>{const norms=calcL2Norms(w,this.axis),desired=clipByValue(norms,0,this.maxValue);return mul(w,div(desired,add2(epsilon(),norms)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}}MaxNorm.className="MaxNorm";serialization_exports.registerClass(MaxNorm);class UnitNorm extends Constraint{constructor(args){super();this.defaultAxis=0,this.axis=args.axis!=null?args.axis:this.defaultAxis}apply(w){return tidy(()=>div(w,add2(epsilon(),calcL2Norms(w,this.axis))))}getConfig(){return{axis:this.axis}}}UnitNorm.className="UnitNorm";serialization_exports.registerClass(UnitNorm);class NonNeg extends Constraint{apply(w){return relu(w)}}NonNeg.className="NonNeg";serialization_exports.registerClass(NonNeg);class MinMaxNorm extends Constraint{constructor(args){super();this.defaultMinValue=0,thi
because the value dtype is $ { tensor168 . dtype } , but TensorArray dtype is $ { this . dtype } . ` );if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=tensor168.shape),assertShapesMatchAllowUndefinedSize(this.elementShape,tensor168.shape, ` TensorArray $ { this . name } : Could not write to TensorArray index $ { index } . ` ),t.read)throw new Error( ` TensorArray $ { this . name } : Could not write to TensorArray index $ { index } , because it has already been read . ` );if(t.written)throw new Error( ` TensorArray $ { this . name } : Could not write to TensorArray index $ { index } , because it has already been written . ` );t.tensor=tensor168,keep(tensor168),t.written=!0,this.tensors[index]=t}writeMany(indices,tensors){if(indices.length!==tensors.length)throw new Error( ` TensorArray $ { this . name } : could not write multiple tensors , because the index size : $ { indices . length } is not the same as tensors size : $ { tensors . length } . ` );indices.forEach((i,index)=>this.write(i,tensors[index]))}gather(indices,dtype){if(!!dtype&&dtype!==this.dtype)throw new Error( ` TensorArray dtype is $ { this . dtype } but gather requested dtype $ { dtype } ` );if(indices)indices=indices.slice(0,this.size());else{indices=[];for(let i=0;i<this.size();i++)indices.push(i)}if(indices.length===0)return tensor4([],[0].concat(this.elementShape));const tensors=this.readMany(indices);return assertShapesMatchAllowUndefinedSize(this.elementShape,tensors[0].shape,"TensorArray shape mismatch: "),stack(tensors,0)}concat(dtype){if(!!dtype&&dtype!==this.dtype)throw new Error( ` TensorArray dtype is $ { this . dtype } but concat requested dtype $ { dtype } ` );if(this.size()===0)return tensor4([],[0].concat(this.elementShape));const indices=[];for(let i=0;i<this.size();i++)indices.push(i);const tensors=this.readMany(indices);return assertShapesMatchAllowUndefinedSize(this.elementShape,tensors[0].shape, ` TensorArray shape mismatch : tensor array shape ( $ { this . elementShape } ) vs first tensor shape ( $ { tensors [ 0 ] . shape } ) ` ),concat(tensors,0)}scatter(indices,tensor168){if(tensor168.dtype!==this.dtype)throw new Error( ` TensorArray dtype is $ { this . dtype } but tensor has dtype $ { tensor168 . dtype } ` );if(indices.length!==tensor168.shape[0])throw new Error( ` Expected len ( indices ) == tensor . shape [ 0 ] , but saw : $ { indices . length } vs . $ { tensor168 . shape [ 0 ] } ` );const maxIndex=Math.max(...indices);if(!this.dynamicSize&&maxIndex>=this.maxSize)throw new Error( ` Max index must be < array size ( $ { maxIndex } vs . $ { this . maxSize } ) ` );this.writeMany(indices,unstack(tensor168,0))}split(length,tensor168){if(tensor168.dtype!==this.dtype)throw new Error( ` TensorArray dtype is $ { this . dtype } but tensor has dtype $ { tensor168 . dtype } ` );let totalLength=0;const cumulativeLengths=length.map(len=>(totalLength+=len,totalLength));if(totalLength!==tensor168.shape[0])throw new Error( ` Expected sum of lengths to be equal to
2020-11-17 18:38:48 +01:00
tensor . shape [ 0 ] , but sum of lengths is
2020-11-17 23:42:44 +01:00
$ { totalLength } , and tensor 's shape is: ${tensor168.shape}`);if(!this.dynamicSize&&length.length!==this.maxSize)throw new Error(`TensorArray' s size is not equal to the size of lengths ( $ { this . maxSize } vs . $ { length . length } ) , and the TensorArray is not marked as dynamically resizeable ` );const elementPerRow=totalLength===0?0:tensor168.size/totalLength,tensors=[];tidy(()=>{tensor168=reshape(tensor168,[1,totalLength,elementPerRow]);for(let i=0;i<length.length;++i){const previousLength=i===0?0:cumulativeLengths[i-1],indices2=[0,previousLength,0],sizes=[1,length[i],elementPerRow];tensors[i]=reshape(slice(tensor168,indices2,sizes),this.elementShape)}return tensors});const indices=[];for(let i=0;i<length.length;i++)indices[i]=i;this.writeMany(indices,tensors)}}class TensorList{constructor(tensors,elementShape,elementDtype,maxNumElements=-1){this.tensors=tensors,this.elementShape=elementShape,this.elementDtype=elementDtype,tensors!=null&&tensors.forEach(tensor168=>{if(elementDtype!==tensor168.dtype)throw new Error( ` Invalid data types ; op elements $ { elementDtype } , but list elements $ { tensor168 . dtype } ` );assertShapesMatchAllowUndefinedSize(elementShape,tensor168.shape,"TensorList shape mismatch: "),keep(tensor168)}),this.idTensor=scalar(0),this.maxNumElements=maxNumElements,keep(this.idTensor)}get id(){return this.idTensor.id}copy(){return new TensorList([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(keepIds){this.tensors.forEach(tensor168=>{(keepIds==null||!keepIds.has(tensor168.id))&&tensor168.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(elementShape,elementDtype,numElements=-1){if(elementDtype!==this.elementDtype)throw new Error( ` Invalid data types ; op elements $ { elementDtype } , but list elements $ { this . elementDtype } ` );if(numElements!==-1&&this.tensors.length!==numElements)throw new Error( ` Operation expected a list with $ { numElements } elements but got a list with $ { this . tensors . length } elements . ` );return assertShapesMatchAllowUndefinedSize(elementShape,this.elementShape,"TensorList shape mismatch: "),tidy(()=>{const reshapedTensors=this.tensors.map(tensor168=>reshape(tensor168,elementShape));return stack(reshapedTensors,0)})}popBack(elementShape,elementDtype){if(elementDtype!==this.elementDtype)throw new Error( ` Invalid data types ; op elements $ { elementDtype } , but list elements $ { this . elementDtype } ` );if(this.size()===0)throw new Error("Trying to pop from an empty list.");const tensor168=this.tensors.pop();return assertShapesMatchAllowUndefinedSize(tensor168.shape,elementShape,"TensorList shape mismatch: "),reshape(tensor168,elementShape)}pushBack(tensor168){if(tensor168.dtype!==this.elementDtype)throw new Error( ` Invalid data types ; op elements $ { tensor168 . dtype } , but list elements $ { this . elementDtype } ` );if(assertShapesMatchAllowUndefinedSize(tensor168.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");keep(tensor168),this.tensors.push(tensor168)}resize(size){if(size<0)throw new Error( ` TensorListResize expects size to be non - negative . Got : $ { size } ` );if(this.maxNumElements!==-1&&size>this.maxNumElements)throw new Error( ` TensorListResize input size $ { size } is greater maxNumElement $ { this . maxNumElements } . ` );this.tensors.length=size}getItem(elementIndex,elementShape,elementDtype){if(elementDtype!==this.elementDtype)throw new Error( ` Invalid data types ; op elements $ { elementDtype } , but list elements $ { this . elementDtype } ` );if(elementIndex<0||elementIndex>this.tensors.length)throw new Error( ` Trying to access element $ { elementIndex } in a list with $ { this . tensors . length } elements . ` );if(this.tensors[elementIndex]==null)throw new Error( ` element at index $ { elementIndex } is null . ` );return assertShapesMatchAllowUndefinedSize(this.tensors[elementIndex].shape,elementShape,"TensorList shape mismatch: "),this.tensors[elementIndex]}setItem(elementIndex,tensor168){if(tensor168.dtype!==this.elementDtype)throw new Error( ` Invalid data types ; op elements $ { tensor168 . dtype } , but li
2020-11-17 18:38:48 +01:00
tensor . shape [ 0 ] , but sum of lengths is
2020-11-17 23:42:44 +01:00
$ { totalLength } , and tensor ' s shape is : $ { tensor168 . shape } ` );const elementPerRow=totalLength===0?0:tensor168.size/totalLength,tensors=tidy(()=>{const tensors2=[];tensor168=reshape(tensor168,[1,totalLength,elementPerRow]);for(let i=0;i<length.length;++i){const previousLength=i===0?0:cumulativeLengths[i-1],indices=[0,previousLength,0],sizes=[1,length[i],elementPerRow];tensors2[i]=reshape(slice(tensor168,indices,sizes),elementShape)}return tensor168.dispose(),tensors2}),list=new TensorList([],elementShape,tensor168.dtype,length.length);for(let i=0;i<tensors.length;i++)list.setItem(i,tensors[i]);return list}const executeOp3=async(node,tensorMap,context)=>{switch(node.op){case"If":case"StatelessIf":{const thenFunc=getParamValue("thenBranch",node,tensorMap,context),elseFunc=getParamValue("elseBranch",node,tensorMap,context),cond=getParamValue("cond",node,tensorMap,context),args=getParamValue("args",node,tensorMap,context),condValue=await cond.data();return condValue[0]?context.functionMap[thenFunc].executeFunctionAsync(args,context.tensorArrayMap,context.tensorListMap):context.functionMap[elseFunc].executeFunctionAsync(args,context.tensorArrayMap,context.tensorListMap)}case"While":case"StatelessWhile":{const bodyFunc=getParamValue("body",node,tensorMap,context),condFunc=getParamValue("cond",node,tensorMap,context),args=getParamValue("args",node,tensorMap,context),condResult=await context.functionMap[condFunc].executeFunctionAsync(args,context.tensorArrayMap,context.tensorListMap),argIds=args.map(tensor168=>tensor168.id);let condValue=await condResult[0].data();condResult.forEach(tensor168=>{!tensor168.kept&&argIds.indexOf(tensor168.id)===-1&&tensor168.dispose()});let result=args;for(;condValue[0];){const origResult=result;result=await context.functionMap[bodyFunc].executeFunctionAsync(result,context.tensorArrayMap,context.tensorListMap);const resultIds=result.map(tensor168=>tensor168.id);origResult.forEach(tensor168=>{!tensor168.kept&&argIds.indexOf(tensor168.id)===-1&&resultIds.indexOf(tensor168.id)===-1&&tensor168.dispose()});const condResult2=await context.functionMap[condFunc].executeFunctionAsync(result,context.tensorArrayMap,context.tensorListMap);condValue=await condResult2[0].data(),condResult2.forEach(tensor168=>{!tensor168.kept&&argIds.indexOf(tensor168.id)===-1&&resultIds.indexOf(tensor168.id)===-1&&tensor168.dispose()})}return result}case"LoopCond":{const pred=getParamValue("pred",node,tensorMap,context);return[cloneTensor(pred)]}case"Switch":{const pred=getParamValue("pred",node,tensorMap,context);let data2=getParamValue("data",node,tensorMap,context);return data2.kept||(data2=cloneTensor(data2)),(await pred.data())[0]?[void 0,data2]:[data2,void 0]}case"Merge":{const inputName=node.inputNames.find(name=>getTensor(name,tensorMap,context)!==void 0);if(inputName){const data2=getTensor(inputName,tensorMap,context);return[cloneTensor(data2)]}return}case"Enter":{const frameId=getParamValue("frameName",node,tensorMap,context),data2=getParamValue("tensor",node,tensorMap,context);return context.enterFrame(frameId),[cloneTensor(data2)]}case"Exit":{const data2=getParamValue("tensor",node,tensorMap,context);return context.exitFrame(),[cloneTensor(data2)]}case"NextIteration":{const data2=getParamValue("tensor",node,tensorMap,context);return context.nextIteration(),[cloneTensor(data2)]}case"TensorArrayV3":{const size=getParamValue("size",node,tensorMap,context),dtype=getParamValue("dtype",node,tensorMap,context),elementShape=getParamValue("elementShape",node,tensorMap,context),dynamicSize=getParamValue("dynamicSize",node,tensorMap,context),clearAfterRead=getParamValue("clearAfterRead",node,tensorMap,context),identicalElementShapes=getParamValue("identicalElementShapes",node,tensorMap,context),name=getParamValue("name",node,tensorMap,context),tensorArray=new TensorArray(name,dtype,size,elementShape,identicalElementShapes,dynamicSize,clearAfterRead);return context.addTensorArray(tensorArray),[tensorArray.idTensor,scalar(1)]}case"TensorArrayWriteV3":{const id=getParamValue("tensorArrayId",node,tensorMap,context),index=getP
$ { batchSize } ` );let size;return this.size===Infinity||this.size==null?size=this.size:smallLastBatch?size=Math.ceil(this.size/batchSize):size=Math.floor(this.size/batchSize),datasetFromIteratorFn(async()=>(await base2.iterator()).columnMajorBatch(batchSize,smallLastBatch,deepBatchConcat),size)}concatenate(dataset5){const base2=this;let size;return this.size===Infinity||dataset5.size===Infinity?size=Infinity:this.size!=null&&dataset5.size!=null?size=this.size+dataset5.size:size=null,datasetFromIteratorFn(async()=>(await base2.iterator()).concatenate(await dataset5.iterator()),size)}filter(predicate){const base2=this;let size;return this.size===Infinity?size=Infinity:size=null,datasetFromIteratorFn(async()=>(await base2.iterator()).filter(x=>tidy(()=>predicate(x))),size)}async forEachAsync(f){return(await this.iterator()).forEachAsync(f)}map(transform){const base2=this;return datasetFromIteratorFn(async()=>(await base2.iterator()).map(x=>tidy(()=>transform(x))),this.size)}mapAsync(transform){const base2=this;return datasetFromIteratorFn(async()=>(await base2.iterator()).mapAsync(transform),this.size)}prefetch(bufferSize){if(bufferSize==null)throw new RangeError(" ` Dataset . prefetch ( ) ` requires bufferSize to be specified.");const base2=this;return datasetFromIteratorFn(async()=>(await base2.iterator()).prefetch(bufferSize),this.size)}repeat(count2){const base2=this;let size;return this.size!=null&&count2>0?size=this.size*count2:count2===0?size=0:this.size!=null&&(count2===void 0||count2<0)?size=Infinity:size=null,datasetFromIteratorFn(async()=>{const iteratorIterator=iteratorFromFunction(async()=>({value:await base2.iterator(),done:!1}));return iteratorFromConcatenated(iteratorIterator.take(count2))},size)}skip(count2){const base2=this;let size;return this.size!=null&&count2>=0&&this.size>=count2?size=this.size-count2:this.size!=null&&(this.size<count2||count2===void 0||count2<0)?size=0:size=null,datasetFromIteratorFn(async()=>(await base2.iterator()).skip(count2),size)}shuffle(bufferSize,seed,reshuffleEachIteration=!0){if(bufferSize==null||bufferSize<0)throw this.size==null?new RangeError(" ` Dataset . shuffle ( ) ` requires bufferSize to be specified."):new RangeError( ` \ ` Dataset.shuffle() \` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \` tf.Tensor \` s), consider setting bufferSize to the dataset size ( ${ this . size } elements) ` ) ; const base2 = this , random = seedrandom3 . alea ( seed || util _exports . now ( ) . toString ( ) ) ; return datasetFromIteratorFn ( async ( ) => { let seed2 = random . int32 ( ) ; return reshuffleEachIteration && ( seed2 += random . int32 ( ) ) , ( await base2 . iterator ( ) ) . shuffle ( bufferSize , seed2 . toString ( ) ) } , this . size ) } take ( count2 ) { const base2 = this ; let size ; return this . size != null && this . size > count2 ? size = count2 : this . size != null && this . size <= count2 ? size = this . size : size = null , datasetFromIteratorFn ( async ( ) => ( await base2 . iterator ( ) ) . take ( count2 ) , size ) } async toArray ( ) { if ( this . size === Infinity ) throw new Error ( "Can not convert infinite data stream to array." ) ; return ( await this . iterator ( ) ) . toArray ( ) } async toArrayForTest ( ) { if ( this . size === Infinity ) throw new Error ( "Can not convert infinite data stream to array." ) ; return ( await this . iterator ( ) ) . toArrayForTest ( ) } } Dataset . MAX _BUFFER _SIZE = 1e4 ; function datasetFromIteratorFn ( iteratorFn , size = null ) { return new class extends Dataset { constructor ( ) { super ( ... arguments ) ; this . size = size } async iterator ( ) { return iteratorFn ( ) } } } function array ( items ) { return datasetFromIteratorFn ( async ( ) => iteratorFromItems ( items ) , items . length ) } function zip ( datasets ) { if ( ! isIterable2 ( datasets ) ) throw new Error ( "The argument to zip() must be an object or array." ) ; let size ; if ( Array . isArray ( datasets ) ) for ( let i = 0 ; i < datasets . length ; i ++ ) size = size == null ? datasets [ i ] . size : Math . min ( size , datasets [ i ] . size ) ; else if ( datasets instanceof Object ) for ( const ds in datasets ) size = size == null ? datasets [ ds ] . size : Math . min ( size , datasets [ ds ] . size ) ; return datasetFromIteratorFn ( async ( ) => { const streams = await deepMapAndAwaitAll ( datasets , d => { if ( d instanceof Dataset ) return { value : d . iterator ( ) , recurse : ! 1 } ; if ( isIterable2 ( d ) ) ret
` ).map(line=>(line.endsWith(" \r ")&&(line=line.slice(0,-1)),line));return lineIterator}}const CODE_QUOTE='"',STATE_OUT=Symbol("out"),STATE_FIELD=Symbol("field"),STATE_QUOTE=Symbol("quote"),STATE_QUOTE_AFTER_QUOTE=Symbol("quoteafterquote"),STATE_WITHIN_QUOTE_IN_QUOTE=Symbol("quoteinquote");class CSVDataset extends Dataset{constructor(input2,csvConfig){super();this.input=input2,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new TextLineDataset(input2),csvConfig||(csvConfig={}),this.hasHeader=!(csvConfig.hasHeader===!1),this.fullColumnNames=csvConfig.columnNames,this.columnConfigs=csvConfig.columnConfigs,this.configuredColumnsOnly=csvConfig.configuredColumnsOnly,csvConfig.delimWhitespace?(util_exports.assert(csvConfig.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=csvConfig.delimiter?csvConfig.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){const columnNamesFromFile=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!columnNamesFromFile)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&columnNamesFromFile&&util_exports.assert(columnNamesFromFile.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+columnNamesFromFile.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=columnNamesFromFile);const counts=this.fullColumnNames.reduce((countAcc,name)=>(countAcc[name]=countAcc[name]+1||1,countAcc),{}),duplicateNames=Object.keys(counts).filter(name=>counts[name]>1);if(util_exports.assert(duplicateNames.length===0,()=>"Duplicate column names found: "+duplicateNames.toString()),this.columnConfigs)for(const key of Object.keys(this.columnConfigs)){const index=this.fullColumnNames.indexOf(key);if(index===-1)throw new Error('The key "'+key+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){const iter=await this.base.iterator(),firstElement=await iter.next();if(firstElement.done)throw new Error("No data was found for CSV parsing.");const firstLine=firstElement.value,headers=this.parseRow(firstLine,!1);return headers}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let lines=await this.base.iterator();return this.hasHeader&&(lines=lines.skip(1)),lines.map(x=>this.makeDataElement(x))}makeDataElement(line){const values=this.parseRow(line),features={},labels={};for(let i=0;i<this.fullColumnNames.length;i++){const key=this.fullColumnNames[i],config2=this.columnConfigs?this.columnConfigs[key]:null;if(this.configuredColumnsOnly&&!config2)continue;{const value=values[i];let parsedValue=null;if(value==="")if(config2&&config2.default!==void 0)parsedValue=config2.default;else{if(config2&&(config2.required||config2.isLabel))throw new Error( ` Required column $ { key } is empty in this line : $ { line } ` );parsedValue=void 0}else{const valueAsNum=Number(value);if(isNaN(valueAsNum))config2&&config2.dtype==="bool"?parsedValue=this.getBoolean(value):parsedValue=value;else if(!config2||!config2.dtype)parsedValue=valueAsNum;else switch(config2.dtype){case"float32":parsedValue=valueAsNum;break;case"int32":parsedValue=Math.floor(valueAsNum);break;case"bool":parsedValue=this.getBoolean(value);break;default:parsedValue=valueAsNum}}config2&&config2.isLabel?labels[key]=parsedValue:features[key]=parsedValue}}return Object.keys(labels).length===0?features:{xs:features,ys:labels}}getBoolean(value){return value==="1"||value.toLowerCase()==="true"?1:0}parseRow(line,validateElementCount=!0){const result=[];let readOffset=0;const re
=== === === === === === === === === =
Hi there \ u { 1 F44B } . Looks like you are running TensorFlow . js in Node . js . To speed things up dramatically , install our node backend , which binds to TensorFlow C ++ , by running npm i @ tensorflow / tfjs - node , or npm i @ tensorflow / tfjs - node - gpu if you have CUDA . Then call require ( '@tensorflow/tfjs-node' ) ; ( - gpu suffix for CUDA ) at the start of your program . Visit https : //github.com/tensorflow/tfjs-node for more details.
=== === === === === === === === === = ` ));const dataId={};return this.data.set(dataId,{values,dtype,refCount:1}),dataId}makeTensorInfo(shape,dtype,values){let outId;if(dtype==="string"&&values!=null&&values.length>0&&util_exports.isString(values[0])){const encodedValues=values.map(d=>util_exports.encodeString(d));outId=this.write(encodedValues,shape,dtype)}else outId=this.write(values,shape,dtype);return{dataId:outId,shape,dtype}}incRef(dataId){const tensorData=this.data.get(dataId);tensorData.refCount++}decRef(dataId){if(this.data.has(dataId)){const tensorData=this.data.get(dataId);tensorData.refCount--}}move(dataId,values,shape,dtype){this.data.set(dataId,{values,dtype,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(dataId){return this.readSync(dataId)}readSync(dataId){const{dtype,complexTensorInfos}=this.data.get(dataId);if(dtype==="complex64"){const realValues=this.readSync(complexTensorInfos.real.dataId),imagValues=this.readSync(complexTensorInfos.imag.dataId);return backend_util_exports.mergeRealAndImagArrays(realValues,imagValues)}return this.data.get(dataId).values}bufferSync(t){const data2=this.readSync(t.dataId);let decodedData=data2;if(t.dtype==="string")try{decodedData=data2.map(d=>util_exports.decodeString(d))}catch(_a){throw new Error("Failed to decode encoded string bytes into utf-8")}return buffer(t.shape,t.dtype,decodedData)}makeOutput(values,shape,dtype){const dataId=this.write(values,shape,dtype);return engine15().makeTensorFromDataId(dataId,shape,dtype,this)}disposeData(dataId){if(this.data.has(dataId)){const{complexTensorInfos}=this.data.get(dataId);complexTensorInfos!=null&&(this.disposeData(complexTensorInfos.real.dataId),this.disposeData(complexTensorInfos.imag.dataId)),this.data.delete(dataId)}}disposeIntermediateTensorInfo(tensorInfo){const dataId=tensorInfo.dataId;if(this.data.has(dataId)){const tensorData=this.data.get(dataId);tensorData.refCount--,tensorData.refCount<1&&this.disposeData(dataId)}}async time(f){const start=util_exports.now();f();const kernelMs=util_exports.now()-start;return{kernelMs}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}stridedSlice(x,begin,end,strides){assertNotComplex(x,"stridedSlice");const outShape=slice_util_exports.computeOutShape(begin,end,strides);if(outShape.some(axis=>axis===0))return tensor4([],outShape);const buffer11=buffer(outShape,x.dtype),xBuf=this.bufferSync(x);for(let i=0;i<buffer11.size;i++){const loc=buffer11.indexToLoc(i),newLoc=new Array(loc.length);for(let j=0;j<newLoc.length;j++)newLoc[j]=loc[j]*strides[j]+begin[j];buffer11.set(xBuf.get(...newLoc),...loc)}return buffer11.toTensor()}diag(x){const xVals=this.readSync(x.dataId),buffer11=buffer([x.size,x.size],x.dtype),vals=buffer11.values;for(let i=0;i<xVals.length;i++)vals[i*x.size+i]=xVals[i];return buffer11.toTensor()}unstack(x,axis){const num=x.shape[axis],outShape=new Array(x.rank-1);let outIndex=0;for(let i=0;i<x.rank;i++)i!==axis&&(outShape[outIndex++]=x.shape[i]);const begin=new Array(x.rank).fill(0),size=x.shape.slice();size[axis]=1;const res=new Array(num);for(let i=0;i<res.length;i++)begin[axis]=i,res[i]=slice(x,begin,size).reshape(outShape);return res}reverse(x,axis){assertNotComplex(x,"reverse");const buffer11=buffer(x.shape,x.dtype),xBuf=this.bufferSync(x);for(let i=0;i<buffer11.size;i++){const outLoc=buffer11.indexToLoc(i),inLoc=outLoc.slice();axis.forEach(ax=>inLoc[ax]=x.shape[ax]-1-inLoc[ax]),buffer11.set(xBuf.get(...inLoc),...outLoc)}return buffer11.toTensor()}neg(x){return assertNotComplex(x,"neg"),mul(scalar(-1),x)}addN(tensors){assertNotComplex(tensors,"addN");const vals=tensors.map(t=>this.readSync(t.dataId)),result=buffer(tensors[0].shape,tensors[0].dtype),resultVals=result.values;for(let i=0;i<tensors.length;i++){const currVals=vals[i];for(let j=0;j<resultVals.length;j++)resultVals[j]+=currVals[j]}return result.toTensor()}softmax(logits,dim){const axes=util_exports.parseAxisParam([dim],logits.shape),maxLogit=max(logits,axes),expandedShape=backend_util_ex
` ),pad11=shaderLines.length.toString().length+2,linesWithLineNumbers=shaderLines.map((line,lineNumber2)=>util_exports.rightPad((lineNumber2+1).toString(),pad11)+line);let maxLineLength=0;for(let i=0;i<linesWithLineNumbers.length;i++)maxLineLength=Math.max(linesWithLineNumbers[i].length,maxLineLength);const beforeErrorLines=linesWithLineNumbers.slice(0,lineNumber-1),errorLine=linesWithLineNumbers.slice(lineNumber-1,lineNumber),afterErrorLines=linesWithLineNumbers.slice(lineNumber);console.log(beforeErrorLines.join( `
` )),console.log(shaderInfoLog.split( `
` )[0]),console.log( ` % c $ { util _exports . rightPad ( errorLine [ 0 ] , maxLineLength ) } ` ,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(afterErrorLines.join( `
` ))}function createProgram(gl){return throwIfNull(gl,()=>gl.createProgram(),"Unable to create WebGLProgram.")}function linkProgram(gl,program){if(callAndCheck(gl,()=>gl.linkProgram(program)),gl.getProgramParameter(program,gl.LINK_STATUS)===!1)throw console.log(gl.getProgramInfoLog(program)),new Error("Failed to link vertex and fragment shaders.")}function validateProgram(gl,program){if(callAndCheck(gl,()=>gl.validateProgram(program)),gl.getProgramParameter(program,gl.VALIDATE_STATUS)===!1)throw console.log(gl.getProgramInfoLog(program)),new Error("Shader program validation failed.")}function createStaticVertexBuffer(gl,data2){const buffer11=throwIfNull(gl,()=>gl.createBuffer(),"Unable to create WebGLBuffer");return callAndCheck(gl,()=>gl.bindBuffer(gl.ARRAY_BUFFER,buffer11)),callAndCheck(gl,()=>gl.bufferData(gl.ARRAY_BUFFER,data2,gl.STATIC_DRAW)),buffer11}function createStaticIndexBuffer(gl,data2){const buffer11=throwIfNull(gl,()=>gl.createBuffer(),"Unable to create WebGLBuffer");return callAndCheck(gl,()=>gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER,buffer11)),callAndCheck(gl,()=>gl.bufferData(gl.ELEMENT_ARRAY_BUFFER,data2,gl.STATIC_DRAW)),buffer11}function createTexture(gl){return throwIfNull(gl,()=>gl.createTexture(),"Unable to create WebGLTexture.")}function validateTextureSize(width,height){const maxTextureSize=env().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(width<=0||height<=0){const requested= ` [ $ { width } x$ { height } ] ` ;throw new Error("Requested texture size "+requested+" is invalid.")}if(width>maxTextureSize||height>maxTextureSize){const requested= ` [ $ { width } x$ { height } ] ` ,max10= ` [ $ { maxTextureSize } x$ { maxTextureSize } ] ` ;throw new Error("Requested texture size "+requested+" greater than WebGL maximum on this browser / GPU "+max10+".")}}function createFramebuffer(gl){return throwIfNull(gl,()=>gl.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function bindVertexBufferToProgramAttribute(gl,program,attribute,buffer11,arrayEntriesPerItem,itemStrideInBytes,itemOffsetInBytes){const loc=gl.getAttribLocation(program,attribute);return loc===-1?!1:(callAndCheck(gl,()=>gl.bindBuffer(gl.ARRAY_BUFFER,buffer11)),callAndCheck(gl,()=>gl.vertexAttribPointer(loc,arrayEntriesPerItem,gl.FLOAT,!1,itemStrideInBytes,itemOffsetInBytes)),callAndCheck(gl,()=>gl.enableVertexAttribArray(loc)),!0)}function bindTextureUnit(gl,texture,textureUnit){validateTextureUnit(gl,textureUnit),callAndCheck(gl,()=>gl.activeTexture(gl.TEXTURE0+textureUnit)),callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,texture))}function getProgramUniformLocationOrThrow(gl,program,uniformName){return throwIfNull(gl,()=>gl.getUniformLocation(program,uniformName),'uniform "'+uniformName+'" not present in program.')}function getProgramUniformLocation(gl,program,uniformName){return gl.getUniformLocation(program,uniformName)}function bindTextureToProgramUniformSampler(gl,texture,uniformSamplerLocation,textureUnit){callAndCheck(gl,()=>bindTextureUnit(gl,texture,textureUnit)),callAndCheck(gl,()=>gl.uniform1i(uniformSamplerLocation,textureUnit))}function bindColorTextureToFramebuffer(gl,texture,framebuffer){callAndCheck(gl,()=>gl.bindFramebuffer(gl.FRAMEBUFFER,framebuffer)),callAndCheck(gl,()=>gl.framebufferTexture2D(gl.FRAMEBUFFER,gl.COLOR_ATTACHMENT0,gl.TEXTURE_2D,texture,0))}function unbindColorTextureFromFramebuffer(gl,framebuffer){callAndCheck(gl,()=>gl.bindFramebuffer(gl.FRAMEBUFFER,framebuffer)),callAndCheck(gl,()=>gl.framebufferTexture2D(gl.FRAMEBUFFER,gl.COLOR_ATTACHMENT0,gl.TEXTURE_2D,null,0))}function validateFramebuffer(gl){const status=gl.checkFramebufferStatus(gl.FRAMEBUFFER);if(status!==gl.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+getFramebufferErrorMessage(gl,status))}function getFramebufferErrorMessage(gl,status){switch(status){case gl.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case gl.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case gl.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case gl.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSU
void main ( ) {
$ { snippets . join ( `
` )}
2020-11-17 18:38:48 +01:00
float result = $ { operation211 } ;
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` }}class AddNPackedProgram{constructor(outputShape,shapes){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=outputShape,this.variableNames=shapes.map((_,i)=> ` T$ { i } ` );const snippets=[];this.variableNames.forEach(variable3=>{snippets.push( ` vec4 v$ { variable3 } = get$ { variable3 } AtOutCoords ( ) ; ` )});const operation211=this.variableNames.map(variable3=> ` v$ { variable3 } ` ).join(" + ");this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
2020-11-17 23:42:44 +01:00
$ { snippets . join ( `
` )}
2020-11-17 18:38:48 +01:00
vec4 result = $ { operation211 } ;
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` }}class ArgMinMaxProgram{constructor(reduceInfo,op2,firstPass){this.variableNames=["A"];const{windowSize,batchSize,outSize}=reduceInfo;firstPass||this.variableNames.push("bestIndicesA"),this.outputShape=[batchSize,outSize];const compOp=op2==="max"?">":"<",indexSnippet=firstPass?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec2 coords = getOutputCoords ( ) ;
int batch = coords [ 0 ] ;
int outIdx = coords [ 1 ] ;
int inOffset = outIdx * $ { windowSize } ;
int bestIndex = inOffset ;
float bestValue = getA ( batch , bestIndex ) ;
for ( int i = 0 ; i < $ { windowSize } ; i ++ ) {
int inIdx = $ { indexSnippet } ;
float candidate = getA ( batch , inIdx ) ;
if ( candidate $ { compOp } bestValue ) {
bestValue = candidate ;
bestIndex = inIdx ;
}
}
setOutput ( float ( bestIndex ) ) ;
}
2020-11-17 23:42:44 +01:00
` }}function getVecChannels(name,rank){return["x","y","z","w","u","v"].slice(0,rank).map(d=> ` $ { name } . $ { d } ` )}function getChannels(name,rank){return rank===1?[name]:getVecChannels(name,rank)}function getSourceCoords(rank,dims){if(rank===1)return"rc";let coords2="";for(let i=0;i<rank;i++)coords2+=dims[i],i<rank-1&&(coords2+=",");return coords2}function getGlslDifferences(){let version19,attribute,varyingVs,varyingFs,texture2D,output,defineOutput,defineSpecialNaN,defineSpecialInf,defineRound;return env().getNumber("WEBGL_VERSION")===2?(version19="#version 300 es",attribute="in",varyingVs="out",varyingFs="in",texture2D="texture",output="outputColor",defineOutput="out vec4 outputColor;",defineSpecialNaN= `
2020-11-17 18:38:48 +01:00
bool isnan _custom ( float val ) {
return ( val > 0.0 || val < 0.0 ) ? false : val != 0.0 ;
}
bvec4 isnan _custom ( vec4 val ) {
return bvec4 ( isnan _custom ( val . x ) ,
isnan _custom ( val . y ) , isnan _custom ( val . z ) , isnan _custom ( val . w ) ) ;
}
# define isnan ( value ) isnan _custom ( value )
2020-11-17 23:42:44 +01:00
` ,defineSpecialInf="",defineRound= `
2020-11-17 18:38:48 +01:00
# define round ( value ) newRound ( value )
int newRound ( float value ) {
return int ( floor ( value + 0.5 ) ) ;
}
ivec4 newRound ( vec4 value ) {
return ivec4 ( floor ( value + vec4 ( 0.5 ) ) ) ;
}
2020-11-17 23:42:44 +01:00
` ):(version19="",attribute="attribute",varyingVs="varying",varyingFs="varying",texture2D="texture2D",output="gl_FragColor",defineOutput="",defineSpecialNaN= `
2020-11-17 18:38:48 +01:00
# define isnan ( value ) isnan _custom ( value )
bool isnan _custom ( float val ) {
return ( val > 0. || val < 1. || val == 0. ) ? false : true ;
}
bvec4 isnan _custom ( vec4 val ) {
return bvec4 ( isnan ( val . x ) , isnan ( val . y ) , isnan ( val . z ) , isnan ( val . w ) ) ;
}
2020-11-17 23:42:44 +01:00
` ,defineSpecialInf= `
2020-11-17 18:38:48 +01:00
uniform float INFINITY ;
bool isinf ( float val ) {
return abs ( val ) == INFINITY ;
}
bvec4 isinf ( vec4 val ) {
return equal ( abs ( val ) , vec4 ( INFINITY ) ) ;
}
2020-11-17 23:42:44 +01:00
` ,defineRound= `
2020-11-17 18:38:48 +01:00
int round ( float value ) {
return int ( floor ( value + 0.5 ) ) ;
}
ivec4 round ( vec4 value ) {
return ivec4 ( floor ( value + vec4 ( 0.5 ) ) ) ;
}
2020-11-17 23:42:44 +01:00
` ),{version:version19,attribute,varyingVs,varyingFs,texture2D,output,defineOutput,defineSpecialNaN,defineSpecialInf,defineRound}}function getLogicalCoordinatesFromFlatIndex(coords2,shape,index="index"){const strides=util_exports.computeStrides(shape);return strides.map((stride,i)=>{const line1= ` int $ { coords2 [ i ] } = $ { index } / $ { stride } ` ,line2=i===strides.length-1? ` int $ { coords2 [ i + 1 ] } = $ { index } - $ { coords2 [ i ] } * $ { stride } ` : ` index -= $ { coords2 [ i ] } * $ { stride } ` ;return ` $ { line1 } ; $ { line2 } ; ` }).join("")}function getFlatIndexFrom3D(shape){const strides=util_exports.computeStrides(shape).map(d=>d.toString());return `
2020-11-17 18:38:48 +01:00
int getFlatIndex ( ivec3 coords ) {
return coords . x * $ { strides [ 0 ] } + coords . y * $ { strides [ 1 ] } + coords . z ;
}
` }const ENCODE_FLOAT_SNIPPET= `
const float FLOAT _MAX = 1.70141184 e38 ;
const float FLOAT _MIN = 1.17549435 e - 38 ;
lowp vec4 encode _float ( highp float v ) {
if ( isnan ( v ) ) {
return vec4 ( 255 , 255 , 255 , 255 ) ;
}
highp float av = abs ( v ) ;
if ( av < FLOAT _MIN ) {
return vec4 ( 0.0 , 0.0 , 0.0 , 0.0 ) ;
} else if ( v > FLOAT _MAX ) {
return vec4 ( 0.0 , 0.0 , 128.0 , 127.0 ) / 255.0 ;
} else if ( v < - FLOAT _MAX ) {
return vec4 ( 0.0 , 0.0 , 128.0 , 255.0 ) / 255.0 ;
}
highp vec4 c = vec4 ( 0 , 0 , 0 , 0 ) ;
highp float e = floor ( log2 ( av ) ) ;
highp float m = exp2 ( fract ( log2 ( av ) ) ) - 1.0 ;
c [ 2 ] = floor ( 128.0 * m ) ;
m -= c [ 2 ] / 128.0 ;
c [ 1 ] = floor ( 32768.0 * m ) ;
m -= c [ 1 ] / 32768.0 ;
c [ 0 ] = floor ( 8388608.0 * m ) ;
highp float ebias = e + 127.0 ;
c [ 3 ] = floor ( ebias / 2.0 ) ;
ebias -= c [ 3 ] * 2.0 ;
c [ 2 ] += floor ( ebias ) * 128.0 ;
c [ 3 ] += 128.0 * step ( 0.0 , - v ) ;
return c / 255.0 ;
}
2020-11-17 23:42:44 +01:00
` ,{getBroadcastDims:getBroadcastDims2}=backend_util_exports;function makeShader(inputsInfo,outputShape,userCode,usesPackedTextures){const prefixSnippets=[];inputsInfo.forEach(x=>{const size=util_exports.sizeFromShape(x.shapeInfo.logicalShape);x.shapeInfo.isUniform?prefixSnippets.push( ` uniform float $ { x . name } $ { size > 1 ? ` [ ${ size } ] ` : "" } ; ` ):(prefixSnippets.push( ` uniform sampler2D $ { x . name } ; ` ),prefixSnippets.push( ` uniform int offset$ { x . name } ; ` ))});const inputPrefixSnippet=prefixSnippets.join( `
` ),inputSamplingSnippet=inputsInfo.map(x=>getInputSamplingSnippet(x,outputShape,usesPackedTextures)).join( `
` ),outTexShape=outputShape.texShape,glsl=getGlslDifferences(),floatTextureSampleSnippet=getFloatTextureSampleSnippet(glsl);let outputSamplingSnippet,floatTextureSetOutputSnippet,shaderPrefix=getShaderPrefix(glsl);outputShape.isPacked?(outputSamplingSnippet=getPackedOutputSamplingSnippet(outputShape.logicalShape,outTexShape),floatTextureSetOutputSnippet=getFloatTextureSetRGBASnippet(glsl)):(outputSamplingSnippet=getOutputSamplingSnippet(outputShape.logicalShape,outTexShape),floatTextureSetOutputSnippet=getFloatTextureSetRSnippet(glsl)),usesPackedTextures&&(shaderPrefix+=SHADER_PACKED_PREFIX);const source=[shaderPrefix,floatTextureSampleSnippet,floatTextureSetOutputSnippet,inputPrefixSnippet,outputSamplingSnippet,inputSamplingSnippet,userCode].join( `
` );return source}function getSamplerFromInInfo(inInfo){const shape=inInfo.shapeInfo.logicalShape;switch(shape.length){case 0:return getSamplerScalar(inInfo);case 1:return getSampler1D(inInfo);case 2:return getSampler2D(inInfo);case 3:return getSampler3D(inInfo);case 4:return getSampler4D(inInfo);case 5:return getSampler5D(inInfo);case 6:return getSampler6D(inInfo);default:throw new Error( ` $ { shape . length } - D input sampling is not yet supported ` )}}function getPackedSamplerFromInInfo(inInfo){const shape=inInfo.shapeInfo.logicalShape;switch(shape.length){case 0:return getPackedSamplerScalar(inInfo);case 1:return getPackedSampler1D(inInfo);case 2:return getPackedSampler2D(inInfo);case 3:return getPackedSampler3D(inInfo);default:return getPackedSamplerND(inInfo)}}function getInputSamplingSnippet(inInfo,outShapeInfo,usesPackedTextures=!1){let res="";usesPackedTextures?res+=getPackedSamplerFromInInfo(inInfo):res+=getSamplerFromInInfo(inInfo);const inShape=inInfo.shapeInfo.logicalShape,outShape=outShapeInfo.logicalShape;return inShape.length<=outShape.length&&(usesPackedTextures?res+=getPackedSamplerAtOutputCoords(inInfo,outShapeInfo):res+=getSamplerAtOutputCoords(inInfo,outShapeInfo)),res}function getPackedOutputSamplingSnippet(outShape,outTexShape){switch(outShape.length){case 0:return getOutputScalarCoords();case 1:return getOutputPacked1DCoords(outShape,outTexShape);case 2:return getOutputPacked2DCoords(outShape,outTexShape);case 3:return getOutputPacked3DCoords(outShape,outTexShape);default:return getOutputPackedNDCoords(outShape,outTexShape)}}function getOutputSamplingSnippet(outShape,outTexShape){switch(outShape.length){case 0:return getOutputScalarCoords();case 1:return getOutput1DCoords(outShape,outTexShape);case 2:return getOutput2DCoords(outShape,outTexShape);case 3:return getOutput3DCoords(outShape,outTexShape);case 4:return getOutput4DCoords(outShape,outTexShape);case 5:return getOutput5DCoords(outShape,outTexShape);case 6:return getOutput6DCoords(outShape,outTexShape);default:throw new Error( ` $ { outShape . length } - D output sampling is not yet supported ` )}}function getFloatTextureSampleSnippet(glsl){return `
2020-11-17 18:38:48 +01:00
float sampleTexture ( sampler2D textureSampler , vec2 uv ) {
return $ { glsl . texture2D } ( textureSampler , uv ) . r ;
}
` }function getFloatTextureSetRSnippet(glsl){return `
void setOutput ( float val ) {
$ { glsl . output } = vec4 ( val , 0 , 0 , 0 ) ;
}
` }function getFloatTextureSetRGBASnippet(glsl){return `
void setOutput ( vec4 val ) {
$ { glsl . output } = val ;
}
` }function getShaderPrefix(glsl){const SHADER_PREFIX= ` $ { glsl . version }
precision highp float ;
precision highp int ;
precision highp sampler2D ;
$ { glsl . varyingFs } vec2 resultUV ;
$ { glsl . defineOutput }
const vec2 halfCR = vec2 ( 0.5 , 0.5 ) ;
struct ivec5
{
int x ;
int y ;
int z ;
int w ;
int u ;
} ;
struct ivec6
{
int x ;
int y ;
int z ;
int w ;
int u ;
int v ;
} ;
uniform float NAN ;
$ { glsl . defineSpecialNaN }
$ { glsl . defineSpecialInf }
$ { glsl . defineRound }
int imod ( int x , int y ) {
return x - y * ( x / y ) ;
}
int idiv ( int a , int b , float sign ) {
int res = a / b ;
int mod = imod ( a , b ) ;
if ( sign < 0. && mod != 0 ) {
res -= 1 ;
}
return res ;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
# define HASHSCALE1 443.8975
float random ( float seed ) {
vec2 p = resultUV * seed ;
vec3 p3 = fract ( vec3 ( p . xyx ) * HASHSCALE1 ) ;
p3 += dot ( p3 , p3 . yzx + 19.19 ) ;
return fract ( ( p3 . x + p3 . y ) * p3 . z ) ;
}
$ { SAMPLE _1D _SNIPPET }
$ { SAMPLE _2D _SNIPPET }
$ { SAMPLE _3D _SNIPPET }
` ;return SHADER_PREFIX}const SAMPLE_1D_SNIPPET= `
vec2 uvFromFlat ( int texNumR , int texNumC , int index ) {
int texR = index / texNumC ;
int texC = index - texR * texNumC ;
return ( vec2 ( texC , texR ) + halfCR ) / vec2 ( texNumC , texNumR ) ;
}
vec2 packedUVfrom1D ( int texNumR , int texNumC , int index ) {
int texelIndex = index / 2 ;
int texR = texelIndex / texNumC ;
int texC = texelIndex - texR * texNumC ;
return ( vec2 ( texC , texR ) + halfCR ) / vec2 ( texNumC , texNumR ) ;
}
2020-11-17 23:42:44 +01:00
` ,SAMPLE_2D_SNIPPET= `
2020-11-17 18:38:48 +01:00
vec2 packedUVfrom2D ( int texelsInLogicalRow , int texNumR ,
int texNumC , int row , int col ) {
int texelIndex = ( row / 2 ) * texelsInLogicalRow + ( col / 2 ) ;
int texR = texelIndex / texNumC ;
int texC = texelIndex - texR * texNumC ;
return ( vec2 ( texC , texR ) + halfCR ) / vec2 ( texNumC , texNumR ) ;
}
2020-11-17 23:42:44 +01:00
` ,SAMPLE_3D_SNIPPET= `
2020-11-17 18:38:48 +01:00
vec2 packedUVfrom3D ( int texNumR , int texNumC ,
int texelsInBatch , int texelsInLogicalRow , int b ,
int row , int col ) {
int index = b * texelsInBatch + ( row / 2 ) * texelsInLogicalRow + ( col / 2 ) ;
int texR = index / texNumC ;
int texC = index - texR * texNumC ;
return ( vec2 ( texC , texR ) + halfCR ) / vec2 ( texNumC , texNumR ) ;
}
2020-11-17 23:42:44 +01:00
` ,SHADER_PACKED_PREFIX= `
2020-11-17 18:38:48 +01:00
float getChannel ( vec4 frag , vec2 innerDims ) {
vec2 modCoord = mod ( innerDims , 2. ) ;
return modCoord . x == 0. ?
( modCoord . y == 0. ? frag . r : frag . g ) :
( modCoord . y == 0. ? frag . b : frag . a ) ;
}
float getChannel ( vec4 frag , int dim ) {
float modCoord = mod ( float ( dim ) , 2. ) ;
return modCoord == 0. ? frag . r : frag . g ;
}
` ;function getOutputScalarCoords(){return `
int getOutputCoords ( ) {
return 0 ;
}
2020-11-17 23:42:44 +01:00
` }function getOutputPacked1DCoords(shape,texShape){const packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)];return packedTexShape[0]===1? `
2020-11-17 18:38:48 +01:00
int getOutputCoords ( ) {
return 2 * int ( resultUV . x * $ { packedTexShape [ 1 ] } . 0 ) ;
}
2020-11-17 23:42:44 +01:00
` :packedTexShape[1]===1? `
2020-11-17 18:38:48 +01:00
int getOutputCoords ( ) {
return 2 * int ( resultUV . y * $ { packedTexShape [ 0 ] } . 0 ) ;
}
2020-11-17 23:42:44 +01:00
` : `
2020-11-17 18:38:48 +01:00
int getOutputCoords ( ) {
ivec2 resTexRC = ivec2 ( resultUV . yx *
vec2 ( $ { packedTexShape [ 0 ] } , $ { packedTexShape [ 1 ] } ) ) ;
return 2 * ( resTexRC . x * $ { packedTexShape [ 1 ] } + resTexRC . y ) ;
}
2020-11-17 23:42:44 +01:00
` }function getOutput1DCoords(shape,texShape){return texShape[0]===1? `
2020-11-17 18:38:48 +01:00
int getOutputCoords ( ) {
return int ( resultUV . x * $ { texShape [ 1 ] } . 0 ) ;
}
2020-11-17 23:42:44 +01:00
` :texShape[1]===1? `
2020-11-17 18:38:48 +01:00
int getOutputCoords ( ) {
return int ( resultUV . y * $ { texShape [ 0 ] } . 0 ) ;
}
2020-11-17 23:42:44 +01:00
` : `
2020-11-17 18:38:48 +01:00
int getOutputCoords ( ) {
ivec2 resTexRC = ivec2 ( resultUV . yx *
vec2 ( $ { texShape [ 0 ] } , $ { texShape [ 1 ] } ) ) ;
return resTexRC . x * $ { texShape [ 1 ] } + resTexRC . y ;
}
2020-11-17 23:42:44 +01:00
` }function getOutputPacked3DCoords(shape,texShape){const packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)],texelsInLogicalRow=Math.ceil(shape[2]/2),texelsInBatch=texelsInLogicalRow*Math.ceil(shape[1]/2);return `
2020-11-17 18:38:48 +01:00
ivec3 getOutputCoords ( ) {
ivec2 resTexRC = ivec2 ( resultUV . yx *
vec2 ( $ { packedTexShape [ 0 ] } , $ { packedTexShape [ 1 ] } ) ) ;
int index = resTexRC . x * $ { packedTexShape [ 1 ] } + resTexRC . y ;
int b = index / $ { texelsInBatch } ;
index -= b * $ { texelsInBatch } ;
int r = 2 * ( index / $ { texelsInLogicalRow } ) ;
int c = imod ( index , $ { texelsInLogicalRow } ) * 2 ;
return ivec3 ( b , r , c ) ;
}
` }function getOutput3DCoords(shape,texShape){const coordsFromIndexSnippet=getLogicalCoordinatesFromFlatIndex(["r","c","d"],shape);return `
ivec3 getOutputCoords ( ) {
ivec2 resTexRC = ivec2 ( resultUV . yx *
vec2 ( $ { texShape [ 0 ] } , $ { texShape [ 1 ] } ) ) ;
int index = resTexRC . x * $ { texShape [ 1 ] } + resTexRC . y ;
$ { coordsFromIndexSnippet }
return ivec3 ( r , c , d ) ;
}
2020-11-17 23:42:44 +01:00
` }function getOutputPackedNDCoords(shape,texShape){const packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)],texelsInLogicalRow=Math.ceil(shape[shape.length-1]/2),texelsInBatch=texelsInLogicalRow*Math.ceil(shape[shape.length-2]/2);let texelsInBatchN=texelsInBatch,batches="",coords2="b, r, c";for(let b=2;b<shape.length-1;b++)texelsInBatchN*=shape[shape.length-b-1],batches= `
2020-11-17 18:38:48 +01:00
int b$ { b } = index / $ { texelsInBatchN } ;
index -= b$ { b } * $ { texelsInBatchN } ;
2020-11-17 23:42:44 +01:00
` +batches,coords2= ` b$ { b } , ` +coords2;return `
2020-11-17 18:38:48 +01:00
ivec$ { shape . length } getOutputCoords ( ) {
ivec2 resTexRC = ivec2 ( resultUV . yx *
vec2 ( $ { packedTexShape [ 0 ] } , $ { packedTexShape [ 1 ] } ) ) ;
int index = resTexRC . x * $ { packedTexShape [ 1 ] } + resTexRC . y ;
$ { batches }
int b = index / $ { texelsInBatch } ;
index -= b * $ { texelsInBatch } ;
int r = 2 * ( index / $ { texelsInLogicalRow } ) ;
int c = imod ( index , $ { texelsInLogicalRow } ) * 2 ;
return ivec$ { shape . length } ( $ { coords2 } ) ;
}
` }function getOutput4DCoords(shape,texShape){const coordsFromIndexSnippet=getLogicalCoordinatesFromFlatIndex(["r","c","d","d2"],shape);return `
ivec4 getOutputCoords ( ) {
ivec2 resTexRC = ivec2 ( resultUV . yx *
vec2 ( $ { texShape [ 0 ] } , $ { texShape [ 1 ] } ) ) ;
int index = resTexRC . x * $ { texShape [ 1 ] } + resTexRC . y ;
$ { coordsFromIndexSnippet }
return ivec4 ( r , c , d , d2 ) ;
}
` }function getOutput5DCoords(shape,texShape){const coordsFromIndexSnippet=getLogicalCoordinatesFromFlatIndex(["r","c","d","d2","d3"],shape);return `
ivec5 getOutputCoords ( ) {
ivec2 resTexRC = ivec2 ( resultUV . yx * vec2 ( $ { texShape [ 0 ] } ,
$ { texShape [ 1 ] } ) ) ;
int index = resTexRC . x * $ { texShape [ 1 ] } + resTexRC . y ;
$ { coordsFromIndexSnippet }
ivec5 outShape = ivec5 ( r , c , d , d2 , d3 ) ;
return outShape ;
}
` }function getOutput6DCoords(shape,texShape){const coordsFromIndexSnippet=getLogicalCoordinatesFromFlatIndex(["r","c","d","d2","d3","d4"],shape);return `
ivec6 getOutputCoords ( ) {
ivec2 resTexRC = ivec2 ( resultUV . yx *
vec2 ( $ { texShape [ 0 ] } , $ { texShape [ 1 ] } ) ) ;
int index = resTexRC . x * $ { texShape [ 1 ] } + resTexRC . y ;
$ { coordsFromIndexSnippet }
ivec6 result = ivec6 ( r , c , d , d2 , d3 , d4 ) ;
return result ;
}
2020-11-17 23:42:44 +01:00
` }function getOutputPacked2DCoords(shape,texShape){const packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)];if(util_exports.arraysEqual(shape,texShape))return `
2020-11-17 18:38:48 +01:00
ivec2 getOutputCoords ( ) {
return 2 * ivec2 ( resultUV . yx * vec2 ( $ { packedTexShape [ 0 ] } , $ { packedTexShape [ 1 ] } ) ) ;
}
2020-11-17 23:42:44 +01:00
` ;const texelsInLogicalRow=Math.ceil(shape[1]/2);return `
2020-11-17 18:38:48 +01:00
ivec2 getOutputCoords ( ) {
ivec2 resTexRC = ivec2 ( resultUV . yx *
vec2 ( $ { packedTexShape [ 0 ] } , $ { packedTexShape [ 1 ] } ) ) ;
int index = resTexRC . x * $ { packedTexShape [ 1 ] } + resTexRC . y ;
int r = 2 * ( index / $ { texelsInLogicalRow } ) ;
int c = imod ( index , $ { texelsInLogicalRow } ) * 2 ;
return ivec2 ( r , c ) ;
}
2020-11-17 23:42:44 +01:00
` }function getOutput2DCoords(shape,texShape){return util_exports.arraysEqual(shape,texShape)? `
2020-11-17 18:38:48 +01:00
ivec2 getOutputCoords ( ) {
return ivec2 ( resultUV . yx * vec2 ( $ { texShape [ 0 ] } , $ { texShape [ 1 ] } ) ) ;
}
2020-11-17 23:42:44 +01:00
` :shape[1]===1? `
2020-11-17 18:38:48 +01:00
ivec2 getOutputCoords ( ) {
ivec2 resTexRC = ivec2 ( resultUV . yx *
vec2 ( $ { texShape [ 0 ] } , $ { texShape [ 1 ] } ) ) ;
int index = resTexRC . x * $ { texShape [ 1 ] } + resTexRC . y ;
return ivec2 ( index , 0 ) ;
}
2020-11-17 23:42:44 +01:00
` :shape[0]===1? `
2020-11-17 18:38:48 +01:00
ivec2 getOutputCoords ( ) {
ivec2 resTexRC = ivec2 ( resultUV . yx *
vec2 ( $ { texShape [ 0 ] } , $ { texShape [ 1 ] } ) ) ;
int index = resTexRC . x * $ { texShape [ 1 ] } + resTexRC . y ;
return ivec2 ( 0 , index ) ;
}
2020-11-17 23:42:44 +01:00
` : `
2020-11-17 18:38:48 +01:00
ivec2 getOutputCoords ( ) {
ivec2 resTexRC = ivec2 ( resultUV . yx *
vec2 ( $ { texShape [ 0 ] } , $ { texShape [ 1 ] } ) ) ;
int index = resTexRC . x * $ { texShape [ 1 ] } + resTexRC . y ;
int r = index / $ { shape [ 1 ] } ;
int c = index - r * $ { shape [ 1 ] } ;
return ivec2 ( r , c ) ;
}
2020-11-17 23:42:44 +01:00
` }function getFlatOffsetUniformName(texName){return ` offset$ { texName } ` }function getPackedSamplerScalar(inputInfo){const texName=inputInfo.name,funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1),glsl=getGlslDifferences();return `
2020-11-17 18:38:48 +01:00
vec4 $ { funcName } ( ) {
return $ { glsl . texture2D } ( $ { texName } , halfCR ) ;
}
2020-11-17 23:42:44 +01:00
` }function getSamplerScalar(inputInfo){const texName=inputInfo.name,funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1);if(inputInfo.shapeInfo.isUniform)return ` float $ { funcName } ( ) { return $ { texName } ; } ` ;const[texNumR,texNumC]=inputInfo.shapeInfo.texShape;if(texNumR===1&&texNumC===1)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( ) {
return sampleTexture ( $ { texName } , halfCR ) ;
}
2020-11-17 23:42:44 +01:00
` ;const[tNumR,tNumC]=inputInfo.shapeInfo.texShape,offset=getFlatOffsetUniformName(texName);return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( ) {
vec2 uv = uvFromFlat ( $ { tNumR } , $ { tNumC } , $ { offset } ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` }function getPackedSampler1D(inputInfo){const texName=inputInfo.name,funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1),texShape=inputInfo.shapeInfo.texShape,packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)],glsl=getGlslDifferences();return `
2020-11-17 18:38:48 +01:00
vec4 $ { funcName } ( int index ) {
vec2 uv = packedUVfrom1D (
$ { packedTexShape [ 0 ] } , $ { packedTexShape [ 1 ] } , index ) ;
return $ { glsl . texture2D } ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` }function getSampler1D(inputInfo){const texName=inputInfo.name,funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1);if(inputInfo.shapeInfo.isUniform)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int index ) {
$ { getUniformSampler ( inputInfo ) }
}
2020-11-17 23:42:44 +01:00
` ;const texShape=inputInfo.shapeInfo.texShape,tNumR=texShape[0],tNumC=texShape[1];if(tNumC===1&&tNumR===1)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int index ) {
return sampleTexture ( $ { texName } , halfCR ) ;
}
2020-11-17 23:42:44 +01:00
` ;const offset=getFlatOffsetUniformName(texName);return tNumC===1? `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int index ) {
vec2 uv = vec2 ( 0.5 , ( float ( index + $ { offset } ) + 0.5 ) / $ { tNumR } . 0 ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` :tNumR===1? `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int index ) {
vec2 uv = vec2 ( ( float ( index + $ { offset } ) + 0.5 ) / $ { tNumC } . 0 , 0.5 ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` : `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int index ) {
vec2 uv = uvFromFlat ( $ { tNumR } , $ { tNumC } , index + $ { offset } ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` }function getPackedSampler2D(inputInfo){const shape=inputInfo.shapeInfo.logicalShape,texName=inputInfo.name,funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1),texShape=inputInfo.shapeInfo.texShape,texNumR=texShape[0],texNumC=texShape[1],glsl=getGlslDifferences();if(texShape!=null&&util_exports.arraysEqual(shape,texShape))return `
2020-11-17 18:38:48 +01:00
vec4 $ { funcName } ( int row , int col ) {
vec2 uv = ( vec2 ( col , row ) + halfCR ) / vec2 ( $ { texNumC } . 0 , $ { texNumR } . 0 ) ;
return $ { glsl . texture2D } ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` ;const packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)],valuesPerRow=Math.ceil(shape[1]/2);return `
2020-11-17 18:38:48 +01:00
vec4 $ { funcName } ( int row , int col ) {
vec2 uv = packedUVfrom2D ( $ { valuesPerRow } , $ { packedTexShape [ 0 ] } , $ { packedTexShape [ 1 ] } , row , col ) ;
return $ { glsl . texture2D } ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` }function getSampler2D(inputInfo){const shape=inputInfo.shapeInfo.logicalShape,texName=inputInfo.name,funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1),texShape=inputInfo.shapeInfo.texShape;if(texShape!=null&&util_exports.arraysEqual(shape,texShape)){const texNumR2=texShape[0],texNumC2=texShape[1];return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col ) {
vec2 uv = ( vec2 ( col , row ) + halfCR ) / vec2 ( $ { texNumC2 } . 0 , $ { texNumR2 } . 0 ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` }const{newShape,keptDims}=util_exports.squeezeShape(shape),squeezedShape=newShape;if(squeezedShape.length<shape.length){const newInputInfo=squeezeInputInfo(inputInfo,squeezedShape),params=["row","col"];return `
2020-11-17 18:38:48 +01:00
$ { getSamplerFromInInfo ( newInputInfo ) }
float $ { funcName } ( int row , int col ) {
return $ { funcName } ( $ { getSqueezedParams ( params , keptDims ) } ) ;
}
2020-11-17 23:42:44 +01:00
` }if(inputInfo.shapeInfo.isUniform)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col ) {
int index = round ( dot ( vec2 ( row , col ) , vec2 ( $ { shape [ 1 ] } , 1 ) ) ) ;
$ { getUniformSampler ( inputInfo ) }
}
2020-11-17 23:42:44 +01:00
` ;const texNumR=texShape[0],texNumC=texShape[1],offset=getFlatOffsetUniformName(texName);return texNumC===1? `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col ) {
float index = dot ( vec3 ( row , col , $ { offset } ) , vec3 ( $ { shape [ 1 ] } , 1 , 1 ) ) ;
vec2 uv = vec2 ( 0.5 , ( index + 0.5 ) / $ { texNumR } . 0 ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` :texNumR===1? `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col ) {
float index = dot ( vec3 ( row , col , $ { offset } ) , vec3 ( $ { shape [ 1 ] } , 1 , 1 ) ) ;
vec2 uv = vec2 ( ( index + 0.5 ) / $ { texNumC } . 0 , 0.5 ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` : `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col ) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * $ { shape [ 1 ] } + col + $ { offset } ;
vec2 uv = uvFromFlat ( $ { texNumR } , $ { texNumC } , index ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` }function getPackedSampler3D(inputInfo){const shape=inputInfo.shapeInfo.logicalShape,texName=inputInfo.name,funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1),texShape=inputInfo.shapeInfo.texShape,packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)];if(shape[0]===1){const squeezedShape=shape.slice(1),keptDims=[1,2],newInputInfo=squeezeInputInfo(inputInfo,squeezedShape),params=["b","row","col"];return `
2020-11-17 18:38:48 +01:00
$ { getPackedSamplerFromInInfo ( newInputInfo ) }
vec4 $ { funcName } ( int b , int row , int col ) {
return $ { funcName } ( $ { getSqueezedParams ( params , keptDims ) } ) ;
}
2020-11-17 23:42:44 +01:00
` }const texNumR=packedTexShape[0],texNumC=packedTexShape[1],valuesPerRow=Math.ceil(shape[2]/2),texelsInBatch=valuesPerRow*Math.ceil(shape[1]/2),glsl=getGlslDifferences();return `
2020-11-17 18:38:48 +01:00
vec4 $ { funcName } ( int b , int row , int col ) {
vec2 uv = packedUVfrom3D (
$ { texNumR } , $ { texNumC } , $ { texelsInBatch } , $ { valuesPerRow } , b , row , col ) ;
return $ { glsl . texture2D } ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` }function getSampler3D(inputInfo){const shape=inputInfo.shapeInfo.logicalShape,texName=inputInfo.name,funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1),stride0=shape[1]*shape[2],stride1=shape[2],{newShape,keptDims}=util_exports.squeezeShape(shape),squeezedShape=newShape;if(squeezedShape.length<shape.length){const newInputInfo=squeezeInputInfo(inputInfo,squeezedShape),params=["row","col","depth"];return `
2020-11-17 18:38:48 +01:00
$ { getSamplerFromInInfo ( newInputInfo ) }
float $ { funcName } ( int row , int col , int depth ) {
return $ { funcName } ( $ { getSqueezedParams ( params , keptDims ) } ) ;
}
2020-11-17 23:42:44 +01:00
` }if(inputInfo.shapeInfo.isUniform)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth ) {
int index = round ( dot ( vec3 ( row , col , depth ) ,
vec3 ( $ { stride0 } , $ { stride1 } , 1 ) ) ) ;
$ { getUniformSampler ( inputInfo ) }
}
2020-11-17 23:42:44 +01:00
` ;const texShape=inputInfo.shapeInfo.texShape,texNumR=texShape[0],texNumC=texShape[1],flatOffset=inputInfo.shapeInfo.flatOffset;if(texNumC===stride0&&flatOffset==null)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth ) {
float texR = float ( row ) ;
float texC = dot ( vec2 ( col , depth ) , vec2 ( $ { stride1 } , 1 ) ) ;
vec2 uv = ( vec2 ( texC , texR ) + halfCR ) /
vec2 ( $ { texNumC } . 0 , $ { texNumR } . 0 ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` ;if(texNumC===stride1&&flatOffset==null)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth ) {
float texR = dot ( vec2 ( row , col ) , vec2 ( $ { shape [ 1 ] } , 1 ) ) ;
float texC = float ( depth ) ;
vec2 uv = ( vec2 ( texC , texR ) + halfCR ) / vec2 ( $ { texNumC } . 0 , $ { texNumR } . 0 ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` ;const offset=getFlatOffsetUniformName(texName);return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth ) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * $ { stride0 } + col * $ { stride1 } + depth + $ { offset } ;
vec2 uv = uvFromFlat ( $ { texNumR } , $ { texNumC } , index ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` }function getPackedSamplerND(inputInfo){const shape=inputInfo.shapeInfo.logicalShape,rank=shape.length,texName=inputInfo.name,funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1),texShape=inputInfo.shapeInfo.texShape,packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)],texNumR=packedTexShape[0],texNumC=packedTexShape[1],valuesPerRow=Math.ceil(shape[rank-1]/2);let texelsInBatch=valuesPerRow*Math.ceil(shape[rank-2]/2),params="int b, int row, int col",index= ` b * $ { texelsInBatch } + ( row / 2 ) * $ { valuesPerRow } + ( col / 2 ) ` ;for(let b=2;b<rank-1;b++)params= ` int b$ { b } , ` +params,texelsInBatch*=shape[rank-b-1],index= ` b$ { b } * $ { texelsInBatch } + ` +index;const glsl=getGlslDifferences();return `
2020-11-17 18:38:48 +01:00
vec4 $ { funcName } ( $ { params } ) {
int index = $ { index } ;
int texR = index / $ { texNumC } ;
int texC = index - texR * $ { texNumC } ;
vec2 uv = ( vec2 ( texC , texR ) + halfCR ) / vec2 ( $ { texNumC } , $ { texNumR } ) ;
return $ { glsl . texture2D } ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` }function getSampler4D(inputInfo){const shape=inputInfo.shapeInfo.logicalShape,texName=inputInfo.name,funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1),stride2=shape[3],stride1=shape[2]*stride2,stride0=shape[1]*stride1,{newShape,keptDims}=util_exports.squeezeShape(shape);if(newShape.length<shape.length){const newInputInfo=squeezeInputInfo(inputInfo,newShape),params=["row","col","depth","depth2"];return `
2020-11-17 18:38:48 +01:00
$ { getSamplerFromInInfo ( newInputInfo ) }
float $ { funcName } ( int row , int col , int depth , int depth2 ) {
return $ { funcName } ( $ { getSqueezedParams ( params , keptDims ) } ) ;
}
2020-11-17 23:42:44 +01:00
` }if(inputInfo.shapeInfo.isUniform)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth , int depth2 ) {
int index = round ( dot ( vec4 ( row , col , depth , depth2 ) ,
vec4 ( $ { stride0 } , $ { stride1 } , $ { stride2 } , 1 ) ) ) ;
$ { getUniformSampler ( inputInfo ) }
}
2020-11-17 23:42:44 +01:00
` ;const flatOffset=inputInfo.shapeInfo.flatOffset,texShape=inputInfo.shapeInfo.texShape,texNumR=texShape[0],texNumC=texShape[1];if(texNumC===stride0&&flatOffset==null)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth , int depth2 ) {
float texR = float ( row ) ;
float texC =
dot ( vec3 ( col , depth , depth2 ) ,
vec3 ( $ { stride1 } , $ { stride2 } , 1 ) ) ;
vec2 uv = ( vec2 ( texC , texR ) + halfCR ) /
vec2 ( $ { texNumC } . 0 , $ { texNumR } . 0 ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` ;if(texNumC===stride2&&flatOffset==null)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth , int depth2 ) {
float texR = dot ( vec3 ( row , col , depth ) ,
vec3 ( $ { shape [ 1 ] * shape [ 2 ] } , $ { shape [ 2 ] } , 1 ) ) ;
float texC = float ( depth2 ) ;
vec2 uv = ( vec2 ( texC , texR ) + halfCR ) /
vec2 ( $ { texNumC } . 0 , $ { texNumR } . 0 ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` ;const offset=getFlatOffsetUniformName(texName);return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth , int depth2 ) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * $ { stride0 } + col * $ { stride1 } +
depth * $ { stride2 } + depth2 ;
vec2 uv = uvFromFlat ( $ { texNumR } , $ { texNumC } , index + $ { offset } ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` }function getSampler5D(inputInfo){const shape=inputInfo.shapeInfo.logicalShape,texName=inputInfo.name,funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1),stride3=shape[4],stride2=shape[3]*stride3,stride1=shape[2]*stride2,stride0=shape[1]*stride1,{newShape,keptDims}=util_exports.squeezeShape(shape);if(newShape.length<shape.length){const newInputInfo=squeezeInputInfo(inputInfo,newShape),params=["row","col","depth","depth2","depth3"];return `
2020-11-17 18:38:48 +01:00
$ { getSamplerFromInInfo ( newInputInfo ) }
float $ { funcName } ( int row , int col , int depth , int depth2 , int depth3 ) {
return $ { funcName } ( $ { getSqueezedParams ( params , keptDims ) } ) ;
}
2020-11-17 23:42:44 +01:00
` }if(inputInfo.shapeInfo.isUniform)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth , int depth2 , int depth3 ) {
float index = dot (
vec4 ( row , col , depth , depth2 ) ,
vec4 ( $ { stride0 } , $ { stride1 } , $ { stride2 } , $ { stride3 } ) ) +
depth3 ;
$ { getUniformSampler ( inputInfo ) }
}
2020-11-17 23:42:44 +01:00
` ;const flatOffset=inputInfo.shapeInfo.flatOffset,texShape=inputInfo.shapeInfo.texShape,texNumR=texShape[0],texNumC=texShape[1];if(texNumC===stride0&&flatOffset==null)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth , int depth2 , int depth3 ) {
int texR = row ;
float texC = dot ( vec4 ( col , depth , depth2 , depth3 ) ,
vec4 ( $ { stride1 } , $ { stride2 } , $ { stride3 } , 1 ) ) ;
vec2 uv = ( vec2 ( texC , texR ) + halfCR ) /
vec2 ( $ { texNumC } . 0 , $ { texNumR } . 0 ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` ;if(texNumC===stride3&&flatOffset==null)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth , int depth2 , int depth3 ) {
float texR = dot (
vec4 ( row , col , depth , depth2 ) ,
vec4 ( $ { shape [ 1 ] * shape [ 2 ] * shape [ 3 ] } ,
$ { shape [ 2 ] * shape [ 3 ] } , $ { shape [ 3 ] } , 1 ) ) ;
int texC = depth3 ;
vec2 uv = ( vec2 ( texC , texR ) + halfCR ) /
vec2 ( $ { texNumC } . 0 , $ { texNumR } . 0 ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` ;const offset=getFlatOffsetUniformName(texName);return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth , int depth2 , int depth3 ) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * $ { stride0 } + col * $ { stride1 } + depth * $ { stride2 } +
depth2 * $ { stride3 } + depth3 + $ { offset } ;
vec2 uv = uvFromFlat ( $ { texNumR } , $ { texNumC } , index ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` }function getSampler6D(inputInfo){const shape=inputInfo.shapeInfo.logicalShape,texName=inputInfo.name,funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1),{newShape,keptDims}=util_exports.squeezeShape(shape);if(newShape.length<shape.length){const newInputInfo=squeezeInputInfo(inputInfo,newShape),params=["row","col","depth","depth2","depth3","depth4"];return `
2020-11-17 18:38:48 +01:00
$ { getSamplerFromInInfo ( newInputInfo ) }
float $ { funcName } ( int row , int col , int depth ,
int depth2 , int depth3 , int depth4 ) {
return $ { funcName } ( $ { getSqueezedParams ( params , keptDims ) } ) ;
}
2020-11-17 23:42:44 +01:00
` }const stride4=shape[5],stride3=shape[4]*stride4,stride2=shape[3]*stride3,stride1=shape[2]*stride2,stride0=shape[1]*stride1;if(inputInfo.shapeInfo.isUniform)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth ,
int depth2 , int depth3 , int depth4 ) {
int index = round ( dot (
vec4 ( row , col , depth , depth2 ) ,
vec4 ( $ { stride0 } , $ { stride1 } , $ { stride2 } , $ { stride3 } ) ) +
dot (
vec2 ( depth3 , depth4 ) ,
vec2 ( $ { stride4 } , 1 ) ) ) ;
$ { getUniformSampler ( inputInfo ) }
}
2020-11-17 23:42:44 +01:00
` ;const flatOffset=inputInfo.shapeInfo.flatOffset,texShape=inputInfo.shapeInfo.texShape,texNumR=texShape[0],texNumC=texShape[1];if(texNumC===stride0&&flatOffset==null)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth ,
int depth2 , int depth3 , int depth4 ) {
int texR = row ;
float texC = dot ( vec4 ( col , depth , depth2 , depth3 ) ,
vec4 ( $ { stride1 } , $ { stride2 } , $ { stride3 } , $ { stride4 } ) ) +
float ( depth4 ) ;
vec2 uv = ( vec2 ( texC , texR ) + halfCR ) /
vec2 ( $ { texNumC } . 0 , $ { texNumR } . 0 ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` ;if(texNumC===stride4&&flatOffset==null)return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth ,
int depth2 , int depth3 , int depth4 ) {
float texR = dot ( vec4 ( row , col , depth , depth2 ) ,
vec4 ( $ { shape [ 1 ] * shape [ 2 ] * shape [ 3 ] * shape [ 4 ] } ,
$ { shape [ 2 ] * shape [ 3 ] * shape [ 4 ] } ,
$ { shape [ 3 ] * shape [ 4 ] } ,
$ { shape [ 4 ] } ) ) + float ( depth3 ) ;
int texC = depth4 ;
vec2 uv = ( vec2 ( texC , texR ) + halfCR ) /
vec2 ( $ { texNumC } . 0 , $ { texNumR } . 0 ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` ;const offset=getFlatOffsetUniformName(texName);return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( int row , int col , int depth ,
int depth2 , int depth3 , int depth4 ) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * $ { stride0 } + col * $ { stride1 } + depth * $ { stride2 } +
depth2 * $ { stride3 } + depth3 * $ { stride4 } + depth4 + $ { offset } ;
vec2 uv = uvFromFlat ( $ { texNumR } , $ { texNumC } , index ) ;
return sampleTexture ( $ { texName } , uv ) ;
}
2020-11-17 23:42:44 +01:00
` }function getUniformSampler(inputInfo){const texName=inputInfo.name,inSize=util_exports.sizeFromShape(inputInfo.shapeInfo.logicalShape);return inSize<2? ` return $ { texName } ; ` : `
2020-11-17 18:38:48 +01:00
for ( int i = 0 ; i < $ { inSize } ; i ++ ) {
if ( i == index ) {
return $ { texName } [ i ] ;
}
}
2020-11-17 23:42:44 +01:00
` }function getPackedSamplerAtOutputCoords(inputInfo,outShapeInfo){const texName=inputInfo.name,texFuncSnippet=texName.charAt(0).toUpperCase()+texName.slice(1),funcName="get"+texFuncSnippet+"AtOutCoords",inRank=inputInfo.shapeInfo.logicalShape.length,outRank=outShapeInfo.logicalShape.length,broadcastDims=getBroadcastDims2(inputInfo.shapeInfo.logicalShape,outShapeInfo.logicalShape),type=getCoordsDataType(outRank),rankDiff=outRank-inRank;let coordsSnippet;const fields=["x","y","z","w","u","v"];inRank===0?coordsSnippet="":outRank<2&&broadcastDims.length>=1?coordsSnippet="coords = 0;":coordsSnippet=broadcastDims.map(d=> ` coords . $ { fields [ d + rankDiff ] } = 0 ; ` ).join( `
` );let unpackedCoordsSnippet="";outRank<2&&inRank>0?unpackedCoordsSnippet="coords":unpackedCoordsSnippet=inputInfo.shapeInfo.logicalShape.map((s,i)=> ` coords . $ { fields [ i + rankDiff ] } ` ).join(", ");let output="return outputValue;";const inSize=util_exports.sizeFromShape(inputInfo.shapeInfo.logicalShape),isInputScalar=inSize===1,outSize=util_exports.sizeFromShape(outShapeInfo.logicalShape),isOutputScalar=outSize===1;if(inRank===1&&!isInputScalar&&!isOutputScalar)output= `
2020-11-17 18:38:48 +01:00
return vec4 ( outputValue . xy , outputValue . xy ) ;
2020-11-17 23:42:44 +01:00
` ;else if(isInputScalar&&!isOutputScalar)outRank===1?output= `
2020-11-17 18:38:48 +01:00
return vec4 ( outputValue . x , outputValue . x , 0. , 0. ) ;
2020-11-17 23:42:44 +01:00
` :output= `
2020-11-17 18:38:48 +01:00
return vec4 ( outputValue . x ) ;
2020-11-17 23:42:44 +01:00
` ;else if(broadcastDims.length){const rows=inRank-2,cols=inRank-1;broadcastDims.indexOf(rows)>-1&&broadcastDims.indexOf(cols)>-1?output="return vec4(outputValue.x);":broadcastDims.indexOf(rows)>-1?output="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":broadcastDims.indexOf(cols)>-1&&(output="return vec4(outputValue.xx, outputValue.zz);")}return `
2020-11-17 18:38:48 +01:00
vec4 $ { funcName } ( ) {
$ { type } coords = getOutputCoords ( ) ;
$ { coordsSnippet }
vec4 outputValue = get$ { texFuncSnippet } ( $ { unpackedCoordsSnippet } ) ;
$ { output }
}
2020-11-17 23:42:44 +01:00
` }function getSamplerAtOutputCoords(inputInfo,outShapeInfo){const texName=inputInfo.name,texFuncSnippet=texName.charAt(0).toUpperCase()+texName.slice(1),funcName="get"+texFuncSnippet+"AtOutCoords",outTexShape=outShapeInfo.texShape,inTexShape=inputInfo.shapeInfo.texShape,inRank=inputInfo.shapeInfo.logicalShape.length,outRank=outShapeInfo.logicalShape.length;if(!inputInfo.shapeInfo.isUniform&&inRank===outRank&&inputInfo.shapeInfo.flatOffset==null&&util_exports.arraysEqual(inTexShape,outTexShape))return `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( ) {
return sampleTexture ( $ { texName } , resultUV ) ;
}
2020-11-17 23:42:44 +01:00
` ;const type=getCoordsDataType(outRank),broadcastDims=getBroadcastDims2(inputInfo.shapeInfo.logicalShape,outShapeInfo.logicalShape),rankDiff=outRank-inRank;let coordsSnippet;const fields=["x","y","z","w","u","v"];inRank===0?coordsSnippet="":outRank<2&&broadcastDims.length>=1?coordsSnippet="coords = 0;":coordsSnippet=broadcastDims.map(d=> ` coords . $ { fields [ d + rankDiff ] } = 0 ; ` ).join( `
` );let unpackedCoordsSnippet="";return outRank<2&&inRank>0?unpackedCoordsSnippet="coords":unpackedCoordsSnippet=inputInfo.shapeInfo.logicalShape.map((s,i)=> ` coords . $ { fields [ i + rankDiff ] } ` ).join(", "), `
2020-11-17 18:38:48 +01:00
float $ { funcName } ( ) {
$ { type } coords = getOutputCoords ( ) ;
$ { coordsSnippet }
return get$ { texFuncSnippet } ( $ { unpackedCoordsSnippet } ) ;
}
2020-11-17 23:42:44 +01:00
` }function getCoordsDataType(rank){if(rank<=1)return"int";if(rank===2)return"ivec2";if(rank===3)return"ivec3";if(rank===4)return"ivec4";if(rank===5)return"ivec5";if(rank===6)return"ivec6";throw Error( ` GPU for rank $ { rank } is not yet supported ` )}function squeezeInputInfo(inInfo,squeezedShape){const newInputInfo=JSON.parse(JSON.stringify(inInfo));return newInputInfo.shapeInfo.logicalShape=squeezedShape,newInputInfo}function getSqueezedParams(params,keptDims){return keptDims.map(d=>params[d]).join(", ")}class ArgMinMaxPackedProgram{constructor(shape,windowSize,op2,firstPass){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,util_exports.assert(shape.length>2,()=> ` Packed arg$ { op2 . charAt ( 0 ) . toUpperCase ( ) + op2 . slice ( 1 ) } supports only inputs with rank above 2. ` );const inSize=shape[shape.length-1],outSize=Math.ceil(inSize/windowSize);this.outputShape=shape.slice(0,-1),outSize>1&&this.outputShape.push(outSize),firstPass||this.variableNames.push("bestIndicesA");const outShape=this.outputShape,rank=outShape.length,dtype=getCoordsDataType(rank),coords2=getChannels("coords",rank);let sourceLocSetup,sourceRank;if(outSize===1){sourceRank=rank+1;const sourceLocDType=getCoordsDataType(sourceRank);sourceLocSetup= `
2020-11-17 18:38:48 +01:00
$ { sourceLocDType } sourceLocR = $ { sourceLocDType } ( $ { coords2 . join ( ) } , 0 ) ;
++ $ { coords2 [ rank - 1 ] } ;
$ { sourceLocDType } sourceLocG = $ { sourceLocDType } ( $ { coords2 . join ( ) } , 0 ) ;
++ $ { coords2 [ rank - 2 ] } ;
$ { sourceLocDType } sourceLocA = $ { sourceLocDType } ( $ { coords2 . join ( ) } , 0 ) ;
-- $ { coords2 [ rank - 1 ] } ;
$ { sourceLocDType } sourceLocB = $ { sourceLocDType } ( $ { coords2 . join ( ) } , 0 ) ;
2020-11-17 23:42:44 +01:00
-- $ { coords2 [ rank - 2 ] } ; ` }else sourceRank=rank,sourceLocSetup= `
2020-11-17 18:38:48 +01:00
$ { dtype } sourceLocR = coords ;
++ $ { coords2 [ rank - 1 ] } ;
$ { dtype } sourceLocG = coords ;
++ $ { coords2 [ rank - 2 ] } ;
$ { dtype } sourceLocA = coords ;
-- $ { coords2 [ rank - 1 ] } ;
$ { dtype } sourceLocB = coords ;
2020-11-17 23:42:44 +01:00
-- $ { coords2 [ rank - 2 ] } ; ` ;const channels=["x","y","z","w","u","v"].slice(0,sourceRank),inChannel="."+channels[sourceRank-1],intChannels=channels.map(x=>"int "+x),srcRCoords=getChannels("sourceLocR",sourceRank-1).concat("inIdx.r"),srcGCoords=getChannels("sourceLocG",sourceRank-1).concat("inIdx.g"),srcBCoords=getChannels("sourceLocB",sourceRank-1).concat("inIdx.b"),srcACoords=getChannels("sourceLocA",sourceRank-1).concat("inIdx.a"),compOp=op2==="max"?"greaterThan":"lessThan",fetchCandidateIdx=firstPass?"": `
2020-11-17 18:38:48 +01:00
inIdx = round ( vec4 ( getBestIndicesAChannel ( $ { srcRCoords . join ( ) } ) ,
getBestIndicesAChannel ( $ { srcGCoords . join ( ) } ) ,
getBestIndicesAChannel ( $ { srcBCoords . join ( ) } ) ,
2020-11-17 23:42:44 +01:00
getBestIndicesAChannel ( $ { srcACoords . join ( ) } ) ) ) ; ` ,fetchValue= ` vec4 (
2020-11-17 18:38:48 +01:00
getAChannel ( $ { srcRCoords . join ( ) } ) ,
hasNextCol ? getAChannel ( $ { srcGCoords . join ( ) } ) : 0. ,
hasNextRow ? getAChannel ( $ { srcBCoords . join ( ) } ) : 0. ,
2020-11-17 23:42:44 +01:00
hasNextRow && hasNextCol ? getAChannel ( $ { srcACoords . join ( ) } ) : 0. ) ` ,getBestIndicesAChannelSnippet=firstPass?"": `
2020-11-17 18:38:48 +01:00
float getBestIndicesAChannel ( $ { intChannels . join ( ) } ) {
return getChannel ( getBestIndicesA ( $ { channels . join ( ) } ) ,
vec2 ( $ { channels . slice ( - 2 ) . join ( ) } ) ) ;
} ` ;this.userCode= `
float getAChannel ( $ { intChannels . join ( ) } ) {
return getChannel ( getA ( $ { channels . join ( ) } ) ,
vec2 ( $ { channels . slice ( - 2 ) . join ( ) } ) ) ;
}
$ { getBestIndicesAChannelSnippet }
void main ( ) {
$ { dtype } coords = getOutputCoords ( ) ;
bool hasNextCol = $ { coords2 [ rank - 1 ] } < $ { outShape [ rank - 1 ] - 1 } ;
bool hasNextRow = $ { coords2 [ rank - 2 ] } < $ { outShape [ rank - 2 ] - 1 } ;
$ { sourceLocSetup }
ivec4 srcIdx = ivec4 ( sourceLocR$ { inChannel } , sourceLocG$ { inChannel } ,
sourceLocB$ { inChannel } , sourceLocA$ { inChannel } ) * $ { windowSize } ;
ivec4 inIdx = srcIdx ;
vec4 bestIndex = vec4 ( inIdx ) ;
vec4 bestValue = $ { fetchValue } ;
for ( int i = 0 ; i < $ { windowSize } ; i ++ ) {
inIdx = srcIdx ;
$ { fetchCandidateIdx }
vec4 candidate = $ { fetchValue } ;
bvec4 nan = isnan ( candidate ) ;
bvec4 replace = bvec4 (
vec4 ( $ { compOp } ( candidate , bestValue ) ) * ( vec4 ( 1.0 ) - vec4 ( nan ) ) ) ;
bestValue = vec4 ( replace . x ? candidate . x : bestValue . x ,
replace . y ? candidate . y : bestValue . y ,
replace . z ? candidate . z : bestValue . z ,
replace . w ? candidate . w : bestValue . w ) ;
bestIndex = mix ( bestIndex , vec4 ( inIdx ) , vec4 ( replace ) ) ;
srcIdx ++ ;
}
setOutput ( bestIndex ) ;
}
2020-11-17 23:42:44 +01:00
` }}class AvgPool2DBackpropProgram{constructor(convInfo){this.variableNames=["dy"],this.outputShape=convInfo.inShape;const filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padTop=effectiveFilterHeight-1-convInfo.padInfo.top,padLeft=effectiveFilterWidth-1-convInfo.padInfo.left,avgMultiplier=1/(filterHeight*filterWidth);this.userCode= `
2020-11-17 18:38:48 +01:00
const ivec2 pads = ivec2 ( $ { padTop } , $ { padLeft } ) ;
const float avgMultiplier = float ( $ { avgMultiplier } ) ;
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int b = coords [ 0 ] ;
int d = coords [ 3 ] ;
ivec2 dyRCCorner = coords . yz - pads ;
int dyRCorner = dyRCCorner . x ;
int dyCCorner = dyRCCorner . y ;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0 ;
for ( int wR = 0 ; wR < $ { effectiveFilterHeight } ;
wR += $ { dilationHeight } ) {
float dyR = float ( dyRCorner + wR ) / $ { strideHeight } . 0 ;
if ( dyR < 0.0 || dyR >= $ { convInfo . outHeight } . 0 || fract ( dyR ) > 0.0 ) {
continue ;
}
int idyR = int ( dyR ) ;
for ( int wC = 0 ; wC < $ { effectiveFilterWidth } ;
wC += $ { dilationWidth } ) {
float dyC = float ( dyCCorner + wC ) / $ { strideWidth } . 0 ;
if ( dyC < 0.0 || dyC >= $ { convInfo . outWidth } . 0 ||
fract ( dyC ) > 0.0 ) {
continue ;
}
int idyC = int ( dyC ) ;
float dyValue = getDy ( b , idyR , idyC , d ) ;
dotProd += dyValue * avgMultiplier ;
}
}
setOutput ( dotProd ) ;
}
2020-11-17 23:42:44 +01:00
` }}class AvgPool3DBackpropProgram{constructor(convInfo){this.variableNames=["dy"],this.outputShape=convInfo.inShape;const filterDepth=convInfo.filterDepth,filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationDepth=convInfo.dilationDepth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterDepth=convInfo.effectiveFilterDepth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padFront=effectiveFilterDepth-1-convInfo.padInfo.front,padTop=effectiveFilterHeight-1-convInfo.padInfo.top,padLeft=effectiveFilterWidth-1-convInfo.padInfo.left,avgMultiplier=1/(filterDepth*filterHeight*filterWidth);this.userCode= `
2020-11-17 18:38:48 +01:00
const ivec3 pads = ivec3 ( $ { padFront } , $ { padTop } , $ { padLeft } ) ;
const float avgMultiplier = float ( $ { avgMultiplier } ) ;
void main ( ) {
ivec5 coords = getOutputCoords ( ) ;
int batch = coords . x ;
int ch = coords . u ;
ivec3 dyCorner = ivec3 ( coords . y , coords . z , coords . w ) - pads ;
int dyDCorner = dyCorner . x ;
int dyRCorner = dyCorner . y ;
int dyCCorner = dyCorner . z ;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0 ;
for ( int wD = 0 ; wD < $ { effectiveFilterDepth } ;
wD += $ { dilationDepth } ) {
float dyD = float ( dyDCorner + wD ) / $ { strideDepth } . 0 ;
if ( dyD < 0.0 || dyD >= $ { convInfo . outDepth } . 0 || fract ( dyD ) > 0.0 ) {
continue ;
}
int idyD = int ( dyD ) ;
for ( int wR = 0 ; wR < $ { effectiveFilterHeight } ;
wR += $ { dilationHeight } ) {
float dyR = float ( dyRCorner + wR ) / $ { strideHeight } . 0 ;
if ( dyR < 0.0 || dyR >= $ { convInfo . outHeight } . 0 ||
fract ( dyR ) > 0.0 ) {
continue ;
}
int idyR = int ( dyR ) ;
for ( int wC = 0 ; wC < $ { effectiveFilterWidth } ;
wC += $ { dilationWidth } ) {
float dyC = float ( dyCCorner + wC ) / $ { strideWidth } . 0 ;
if ( dyC < 0.0 || dyC >= $ { convInfo . outWidth } . 0 ||
fract ( dyC ) > 0.0 ) {
continue ;
}
int idyC = int ( dyC ) ;
float dyValue = getDy ( batch , idyD , idyR , idyC , ch ) ;
dotProd += dyValue * avgMultiplier ;
}
}
}
setOutput ( dotProd ) ;
}
` }}const CHECK_NAN_SNIPPET= `
if ( isnan ( a ) ) return a ;
if ( isnan ( b ) ) return b ;
2020-11-17 23:42:44 +01:00
` ,INT_DIV= `
2020-11-17 18:38:48 +01:00
float s = sign ( a ) * sign ( b ) ;
int ia = round ( a ) ;
int ib = round ( b ) ;
if ( ib != 0 ) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float ( idiv ( ia , ib , s ) ) ;
} else {
return NAN ;
}
2020-11-17 23:42:44 +01:00
` ,POW= `
2020-11-17 18:38:48 +01:00
if ( a < 0.0 && floor ( b ) < b ) {
return NAN ;
}
if ( b == 0.0 ) {
return 1.0 ;
}
return ( round ( mod ( b , 2.0 ) ) != 1 ) ?
pow ( abs ( a ) , b ) : sign ( a ) * pow ( abs ( a ) , b ) ;
2020-11-17 23:42:44 +01:00
` ,EQUAL="return float(a == b);",LESS="return float(a < b);",LESS_EQUAL="return float(a <= b);",GREATER="return float(a > b);",GREATER_EQUAL="return float(a >= b);",LOGICAL_AND="return float(a >= 1.0 && b >= 1.0);",LOGICAL_OR="return float(a >= 1.0 || b >= 1.0);",MAX=CHECK_NAN_SNIPPET+ `
2020-11-17 18:38:48 +01:00
return max ( a , b ) ;
2020-11-17 23:42:44 +01:00
` ,MIN=CHECK_NAN_SNIPPET+ `
2020-11-17 18:38:48 +01:00
return min ( a , b ) ;
2020-11-17 23:42:44 +01:00
` ,MOD= ` if ( b == 0.0 ) return NAN ;
return mod ( a , b ) ; ` ,ELU_DER="return (b >= 1.0) ? a : a * (b + 1.0);",PRELU="return (a < 0.) ? b * a : a;";class BinaryOpProgram{constructor(op2,aShape,bShape){this.variableNames=["A","B"],this.outputShape=backend_util_exports.assertAndGetBroadcastShape(aShape,bShape),this.userCode= `
2020-11-17 18:38:48 +01:00
float binaryOperation ( float a , float b ) {
$ { op2 }
}
void main ( ) {
float a = getAAtOutCoords ( ) ;
float b = getBAtOutCoords ( ) ;
setOutput ( binaryOperation ( a , b ) ) ;
}
` }}const CHECK_NAN_SNIPPET2= `
result . r = isNaN . r > 0. ? NAN : result . r ;
result . g = isNaN . g > 0. ? NAN : result . g ;
result . b = isNaN . b > 0. ? NAN : result . b ;
result . a = isNaN . a > 0. ? NAN : result . a ;
2020-11-17 23:42:44 +01:00
` ,INT_DIV2= `
2020-11-17 18:38:48 +01:00
ivec4 ia = round ( a ) ;
ivec4 ib = round ( b ) ;
bvec4 cond = notEqual ( ib , ivec4 ( 0 ) ) ;
ivec4 result = ivec4 ( 0 ) ;
vec4 s = sign ( a ) * sign ( b ) ;
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if ( cond [ 0 ] ) {
result [ 0 ] = idiv ( ia [ 0 ] , ib [ 0 ] , s [ 0 ] ) ;
}
if ( cond [ 1 ] ) {
result [ 1 ] = idiv ( ia [ 1 ] , ib [ 1 ] , s [ 1 ] ) ;
}
if ( cond [ 2 ] ) {
result [ 2 ] = idiv ( ia [ 2 ] , ib [ 2 ] , s [ 2 ] ) ;
}
if ( cond [ 3 ] ) {
result [ 3 ] = idiv ( ia [ 3 ] , ib [ 3 ] , s [ 3 ] ) ;
}
return vec4 ( result ) ;
2020-11-17 23:42:44 +01:00
` ,POW2= `
2020-11-17 18:38:48 +01:00
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4 ( equal ( round ( mod ( b , 2.0 ) ) , ivec4 ( 1 ) ) ) ;
vec4 multiplier = sign ( a ) * isModRound1 + ( vec4 ( 1.0 ) - isModRound1 ) ;
vec4 result = multiplier * pow ( abs ( a ) , b ) ;
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal ( b , vec4 ( 0.0 ) ) ;
result . r = isExpZero . r ? 1.0 : result . r ;
result . g = isExpZero . g ? 1.0 : result . g ;
result . b = isExpZero . b ? 1.0 : result . b ;
result . a = isExpZero . a ? 1.0 : result . a ;
vec4 isNaN = vec4 ( lessThan ( a , vec4 ( 0.0 ) ) ) * vec4 ( lessThan ( floor ( b ) , b ) ) ;
` +CHECK_NAN_SNIPPET2+ `
return result ;
2020-11-17 23:42:44 +01:00
` ,PRELU2= `
2020-11-17 18:38:48 +01:00
vec4 aLessThanZero = vec4 ( lessThan ( a , vec4 ( 0. ) ) ) ;
return ( aLessThanZero * ( b * a ) ) + ( ( vec4 ( 1.0 ) - aLessThanZero ) * a ) ;
2020-11-17 23:42:44 +01:00
` ,ELU_DER2= `
2020-11-17 18:38:48 +01:00
vec4 bGTEZero = vec4 ( greaterThanEqual ( b , vec4 ( 0. ) ) ) ;
return ( bGTEZero * a ) + ( ( vec4 ( 1.0 ) - bGTEZero ) * ( a * ( b + vec4 ( 1.0 ) ) ) ) ;
2020-11-17 23:42:44 +01:00
` ,EQUAL2= `
2020-11-17 18:38:48 +01:00
return vec4 ( equal ( a , b ) ) ;
2020-11-17 23:42:44 +01:00
` ,LESS2= `
2020-11-17 18:38:48 +01:00
return vec4 ( lessThan ( a , b ) ) ;
2020-11-17 23:42:44 +01:00
` ,LESS_EQUAL2= `
2020-11-17 18:38:48 +01:00
return vec4 ( lessThanEqual ( a , b ) ) ;
2020-11-17 23:42:44 +01:00
` ,GREATER2= `
2020-11-17 18:38:48 +01:00
return vec4 ( greaterThan ( a , b ) ) ;
2020-11-17 23:42:44 +01:00
` ,GREATER_EQUAL2= `
2020-11-17 18:38:48 +01:00
return vec4 ( greaterThanEqual ( a , b ) ) ;
2020-11-17 23:42:44 +01:00
` ,LOGICAL_AND2= `
2020-11-17 18:38:48 +01:00
return vec4 (
vec4 ( greaterThanEqual ( a , vec4 ( 1.0 ) ) ) *
vec4 ( greaterThanEqual ( b , vec4 ( 1.0 ) ) ) ) ;
2020-11-17 23:42:44 +01:00
` ,LOGICAL_OR2= `
2020-11-17 18:38:48 +01:00
return min (
vec4 ( greaterThanEqual ( a , vec4 ( 1.0 ) ) ) +
vec4 ( greaterThanEqual ( b , vec4 ( 1.0 ) ) ) ,
vec4 ( 1.0 ) ) ;
2020-11-17 23:42:44 +01:00
` ,MAX2= `
2020-11-17 18:38:48 +01:00
vec4 result = vec4 ( max ( a , b ) ) ;
vec4 isNaN = min ( vec4 ( isnan ( a ) ) + vec4 ( isnan ( b ) ) , vec4 ( 1.0 ) ) ;
` +CHECK_NAN_SNIPPET2+ `
return result ;
2020-11-17 23:42:44 +01:00
` ,MIN2= `
2020-11-17 18:38:48 +01:00
vec4 result = vec4 ( min ( a , b ) ) ;
vec4 isNaN = min ( vec4 ( isnan ( a ) ) + vec4 ( isnan ( b ) ) , vec4 ( 1.0 ) ) ;
` +CHECK_NAN_SNIPPET2+ `
return result ;
2020-11-17 23:42:44 +01:00
` ,MOD2= `
2020-11-17 18:38:48 +01:00
vec4 result = mod ( a , b ) ;
vec4 isNaN = vec4 ( equal ( b , vec4 ( 0.0 ) ) ) ;
` +CHECK_NAN_SNIPPET2+ `
return result ;
2020-11-17 23:42:44 +01:00
` ;class BinaryOpPackedProgram{constructor(op2,aShape,bShape,checkOutOfBounds=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=backend_util_exports.assertAndGetBroadcastShape(aShape,bShape);const rank=this.outputShape.length;let checkOutOfBoundsString="";if(checkOutOfBounds)if(rank===0||util_exports.sizeFromShape(this.outputShape)===1)checkOutOfBoundsString= `
2020-11-17 18:38:48 +01:00
result . y = 0. ;
result . z = 0. ;
result . w = 0. ;
2020-11-17 23:42:44 +01:00
` ;else{const dtype=getCoordsDataType(rank);if(checkOutOfBoundsString= `
2020-11-17 18:38:48 +01:00
$ { dtype } coords = getOutputCoords ( ) ;
2020-11-17 23:42:44 +01:00
` ,rank===1)checkOutOfBoundsString+= `
2020-11-17 18:38:48 +01:00
result . y = ( coords + 1 ) >= $ { this . outputShape [ 0 ] } ? 0. : result . y ;
result . z = 0. ;
result . w = 0. ;
2020-11-17 23:42:44 +01:00
` ;else{const channels=getChannels("coords",rank);checkOutOfBoundsString+= `
2020-11-17 18:38:48 +01:00
bool nextRowOutOfBounds =
( $ { channels [ rank - 2 ] } + 1 ) >= $ { this . outputShape [ rank - 2 ] } ;
bool nextColOutOfBounds =
( $ { channels [ rank - 1 ] } + 1 ) >= $ { this . outputShape [ rank - 1 ] } ;
result . y = nextColOutOfBounds ? 0. : result . y ;
result . z = nextRowOutOfBounds ? 0. : result . z ;
result . w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result . w ;
2020-11-17 23:42:44 +01:00
` }}this.userCode= `
2020-11-17 18:38:48 +01:00
vec4 binaryOperation ( vec4 a , vec4 b ) {
$ { op2 }
}
void main ( ) {
vec4 a = getAAtOutCoords ( ) ;
vec4 b = getBAtOutCoords ( ) ;
vec4 result = binaryOperation ( a , b ) ;
$ { checkOutOfBoundsString }
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` }}class ClipProgram{constructor(aShape){this.variableNames=["A"],this.outputShape=aShape,this.userCode= `
2020-11-17 18:38:48 +01:00
uniform float minVal ;
uniform float maxVal ;
void main ( ) {
float value = getAAtOutCoords ( ) ;
if ( isnan ( value ) ) {
setOutput ( value ) ;
return ;
}
setOutput ( clamp ( value , minVal , maxVal ) ) ;
}
2020-11-17 23:42:44 +01:00
` }getCustomSetupFunc(min8,max10){return(gpgpu,webGLProgram)=>{this.minLoc==null&&(this.minLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"minVal"),this.maxLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"maxVal")),gpgpu.gl.uniform1f(this.minLoc,min8),gpgpu.gl.uniform1f(this.maxLoc,max10)}}}class ClipPackedProgram{constructor(aShape){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=aShape,this.userCode= `
2020-11-17 18:38:48 +01:00
uniform float minVal ;
uniform float maxVal ;
void main ( ) {
vec4 value = getAAtOutCoords ( ) ;
if ( any ( isnan ( value ) ) ) {
setOutput ( value ) ;
return ;
}
setOutput ( clamp ( value , vec4 ( minVal ) , vec4 ( maxVal ) ) ) ;
}
2020-11-17 23:42:44 +01:00
` }getCustomSetupFunc(min8,max10){return(gpgpu,webGLProgram)=>{this.minLoc==null&&(this.minLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"minVal"),this.maxLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"maxVal")),gpgpu.gl.uniform1f(this.minLoc,min8),gpgpu.gl.uniform1f(this.maxLoc,max10)}}}class ComplexAbsProgram{constructor(shape){this.variableNames=["real","imag"],this.outputShape=shape,this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
float re = abs ( getRealAtOutCoords ( ) ) ;
float im = abs ( getImagAtOutCoords ( ) ) ;
float mx = max ( re , im ) ;
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput (
mx == 0.0 ? 0.0 : mx * length ( vec2 ( 1 , min ( re , im ) / mx ) )
) ;
}
2020-11-17 23:42:44 +01:00
` }}class Conv2DDerFilterProgram{constructor(convInfo){this.variableNames=["x","dy"],this.outputShape=convInfo.filterShape;const strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,isChannelsLast=convInfo.dataFormat==="channelsLast";this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int wR = coords . x ;
int wC = coords . y ;
int d1 = coords . z ;
int d2 = coords . w ;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0 ;
for ( int b = 0 ; b < $ { convInfo . batchSize } ; b ++ ) {
for ( int yR = 0 ; yR < $ { convInfo . outHeight } ; yR ++ ) {
int xR = wR + yR * $ { strideHeight } - $ { padTop } ;
if ( xR < 0 || xR >= $ { convInfo . inHeight } ) {
continue ;
}
for ( int yC = 0 ; yC < $ { convInfo . outWidth } ; yC ++ ) {
int xC = wC + yC * $ { strideWidth } - $ { padLeft } ;
if ( xC < 0 || xC >= $ { convInfo . inWidth } ) {
continue ;
}
if ( $ { isChannelsLast } ) {
float dyValue = getDy ( b , yR , yC , d2 ) ;
float xValue = getX ( b , xR , xC , d1 ) ;
dotProd += ( xValue * dyValue ) ;
} else {
float dyValue = getDy ( b , d2 , yR , yC ) ;
float xValue = getX ( b , d1 , xR , xC ) ;
dotProd += ( xValue * dyValue ) ;
}
}
}
}
setOutput ( dotProd ) ;
}
2020-11-17 23:42:44 +01:00
` }}class Conv2DDerInputProgram{constructor(convInfo){this.variableNames=["dy","W"],this.outputShape=convInfo.inShape;const filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,isChannelsLast=convInfo.dataFormat==="channelsLast",padTop=filterHeight-1-convInfo.padInfo.top,padLeft=filterWidth-1-convInfo.padInfo.left,rowDim=isChannelsLast?1:2,colDim=isChannelsLast?2:3,channelDim=isChannelsLast?3:1;this.userCode= `
2020-11-17 18:38:48 +01:00
const ivec2 pads = ivec2 ( $ { padTop } , $ { padLeft } ) ;
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int batch = coords [ 0 ] ;
int d1 = coords [ $ { channelDim } ] ;
ivec2 dyCorner = ivec2 ( coords [ $ { rowDim } ] , coords [ $ { colDim } ] ) - pads ;
int dyRCorner = dyCorner . x ;
int dyCCorner = dyCorner . y ;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0 ;
for ( int wR = 0 ; wR < $ { filterHeight } ; wR ++ ) {
float dyR = float ( dyRCorner + wR ) / $ { strideHeight } . 0 ;
if ( dyR < 0.0 || dyR >= $ { convInfo . outHeight } . 0 || fract ( dyR ) > 0.0 ) {
continue ;
}
int idyR = int ( dyR ) ;
int wRPerm = $ { filterHeight } - 1 - wR ;
for ( int wC = 0 ; wC < $ { filterWidth } ; wC ++ ) {
float dyC = float ( dyCCorner + wC ) / $ { strideWidth } . 0 ;
if ( dyC < 0.0 || dyC >= $ { convInfo . outWidth } . 0 ||
fract ( dyC ) > 0.0 ) {
continue ;
}
int idyC = int ( dyC ) ;
int wCPerm = $ { filterWidth } - 1 - wC ;
for ( int d2 = 0 ; d2 < $ { convInfo . outChannels } ; d2 ++ ) {
if ( $ { isChannelsLast } ) {
float xValue = getDy ( batch , idyR , idyC , d2 ) ;
float wValue = getW ( wRPerm , wCPerm , d1 , d2 ) ;
dotProd += xValue * wValue ;
} else {
float xValue = getDy ( batch , d2 , idyR , idyC ) ;
float wValue = getW ( wRPerm , wCPerm , d1 , d2 ) ;
dotProd += xValue * wValue ;
}
}
}
}
setOutput ( dotProd ) ;
}
2020-11-17 23:42:44 +01:00
` }}class Conv3DDerFilterProgram{constructor(convInfo){this.variableNames=["x","dy"],this.outputShape=convInfo.filterShape;const strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,padFront=convInfo.padInfo.front,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left;this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec5 coords = getOutputCoords ( ) ;
int wF = coords . x ;
int wR = coords . y ;
int wC = coords . z ;
int d1 = coords . w ;
int d2 = coords . u ;
float dotProd = 0.0 ;
for ( int b = 0 ; b < $ { convInfo . batchSize } ; b ++ ) {
for ( int yF = 0 ; yF < $ { convInfo . outDepth } ; yF ++ ) {
int xF = wF + yF * $ { strideDepth } - $ { padFront } ;
if ( xF < 0 || xF >= $ { convInfo . inDepth } ) {
continue ;
}
for ( int yR = 0 ; yR < $ { convInfo . outHeight } ; yR ++ ) {
int xR = wR + yR * $ { strideHeight } - $ { padTop } ;
if ( xR < 0 || xR >= $ { convInfo . inHeight } ) {
continue ;
}
for ( int yC = 0 ; yC < $ { convInfo . outWidth } ; yC ++ ) {
int xC = wC + yC * $ { strideWidth } - $ { padLeft } ;
if ( xC < 0 || xC >= $ { convInfo . inWidth } ) {
continue ;
}
float dyValue = getDy ( b , yF , yR , yC , d2 ) ;
float xValue = getX ( b , xF , xR , xC , d1 ) ;
dotProd += ( xValue * dyValue ) ;
}
}
}
}
setOutput ( dotProd ) ;
}
2020-11-17 23:42:44 +01:00
` }}class Conv3DDerInputProgram{constructor(convInfo){this.variableNames=["dy","W"],this.outputShape=convInfo.inShape;const filterDepth=convInfo.filterDepth,filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,padFront=filterDepth-1-convInfo.padInfo.front,padTop=filterHeight-1-convInfo.padInfo.top,padLeft=filterWidth-1-convInfo.padInfo.left;this.userCode= `
2020-11-17 18:38:48 +01:00
const ivec3 pads = ivec3 ( $ { padFront } , $ { padTop } , $ { padLeft } ) ;
void main ( ) {
ivec5 coords = getOutputCoords ( ) ;
int batch = coords . x ;
int d1 = coords . u ;
ivec3 dyCorner = ivec3 ( coords . y , coords . z , coords . w ) - pads ;
int dyFCorner = dyCorner . x ;
int dyRCorner = dyCorner . y ;
int dyCCorner = dyCorner . z ;
float dotProd = 0.0 ;
for ( int wF = 0 ; wF < $ { filterDepth } ; wF ++ ) {
float dyF = float ( dyFCorner + wF ) / $ { strideDepth } . 0 ;
if ( dyF < 0.0 || dyF >= $ { convInfo . outDepth } . 0 || fract ( dyF ) > 0.0 ) {
continue ;
}
int idyF = int ( dyF ) ;
int wFPerm = $ { filterDepth } - 1 - wF ;
for ( int wR = 0 ; wR < $ { filterHeight } ; wR ++ ) {
float dyR = float ( dyRCorner + wR ) / $ { strideHeight } . 0 ;
if ( dyR < 0.0 || dyR >= $ { convInfo . outHeight } . 0 ||
fract ( dyR ) > 0.0 ) {
continue ;
}
int idyR = int ( dyR ) ;
int wRPerm = $ { filterHeight } - 1 - wR ;
for ( int wC = 0 ; wC < $ { filterWidth } ; wC ++ ) {
float dyC = float ( dyCCorner + wC ) / $ { strideWidth } . 0 ;
if ( dyC < 0.0 || dyC >= $ { convInfo . outWidth } . 0 ||
fract ( dyC ) > 0.0 ) {
continue ;
}
int idyC = int ( dyC ) ;
int wCPerm = $ { filterWidth } - 1 - wC ;
for ( int d2 = 0 ; d2 < $ { convInfo . outChannels } ; d2 ++ ) {
float xValue = getDy ( batch , idyF , idyR , idyC , d2 ) ;
float wValue = getW ( wFPerm , wRPerm , wCPerm , d1 , d2 ) ;
dotProd += xValue * wValue ;
}
}
}
}
setOutput ( dotProd ) ;
}
2020-11-17 23:42:44 +01:00
` }}class DepthwiseConv2DDerFilterProgram{constructor(convInfo){this.variableNames=["x","dy"],this.outputShape=convInfo.filterShape;const strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,channelMul=convInfo.outChannels/convInfo.inChannels;this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int wR = coords . x ;
int wC = coords . y ;
int d1 = coords . z ;
int dm = coords . w ;
int d2 = d1 * $ { channelMul } + dm ;
float dotProd = 0.0 ;
// TO DO: Vec4 over the batch size
for ( int b = 0 ; b < $ { convInfo . batchSize } ; b ++ ) {
for ( int yR = 0 ; yR < $ { convInfo . outHeight } ; yR ++ ) {
int xR = wR + yR * $ { strideHeight } - $ { padTop } ;
if ( xR < 0 || xR >= $ { convInfo . inHeight } ) {
continue ;
}
for ( int yC = 0 ; yC < $ { convInfo . outWidth } ; yC ++ ) {
int xC = wC + yC * $ { strideWidth } - $ { padLeft } ;
if ( xC < 0 || xC >= $ { convInfo . inWidth } ) {
continue ;
}
float dyValue = getDy ( b , yR , yC , d2 ) ;
float xValue = getX ( b , xR , xC , d1 ) ;
dotProd += ( xValue * dyValue ) ;
}
}
}
setOutput ( dotProd ) ;
}
2020-11-17 23:42:44 +01:00
` }}class DepthwiseConv2DDerInputProgram{constructor(convInfo){this.variableNames=["dy","W"],this.outputShape=convInfo.inShape;const filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,padTop=filterHeight-1-convInfo.padInfo.top,padLeft=filterWidth-1-convInfo.padInfo.left,channelMul=convInfo.outChannels/convInfo.inChannels;this.userCode= `
2020-11-17 18:38:48 +01:00
const ivec2 pads = ivec2 ( $ { padTop } , $ { padLeft } ) ;
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int batch = coords [ 0 ] ;
int d1 = coords [ 3 ] ;
ivec2 dyCorner = coords . yz - pads ;
int dyRCorner = dyCorner . x ;
int dyCCorner = dyCorner . y ;
float dotProd = 0.0 ;
for ( int wR = 0 ; wR < $ { filterHeight } ; wR ++ ) {
float dyR = float ( dyRCorner + wR ) / $ { strideHeight } . 0 ;
if ( dyR < 0.0 || dyR >= $ { convInfo . outHeight } . 0 || fract ( dyR ) > 0.0 ) {
continue ;
}
int idyR = int ( dyR ) ;
int wRPerm = $ { filterHeight } - 1 - wR ;
for ( int wC = 0 ; wC < $ { filterWidth } ; wC ++ ) {
float dyC = float ( dyCCorner + wC ) / $ { strideWidth } . 0 ;
if ( dyC < 0.0 || dyC >= $ { convInfo . outWidth } . 0 ||
fract ( dyC ) > 0.0 ) {
continue ;
}
int idyC = int ( dyC ) ;
int wCPerm = $ { filterWidth } - 1 - wC ;
// TO DO: Vec4 over the channelMul
for ( int dm = 0 ; dm < $ { channelMul } ; dm ++ ) {
int d2 = d1 * $ { channelMul } + dm ;
float xValue = getDy ( batch , idyR , idyC , d2 ) ;
float wValue = getW ( wRPerm , wCPerm , d1 , dm ) ;
dotProd += xValue * wValue ;
}
}
}
setOutput ( dotProd ) ;
}
2020-11-17 23:42:44 +01:00
` }}class Conv2DProgram{constructor(convInfo,addBias=!1,activation2=null,hasPreluActivationWeights=!1){this.variableNames=["x","W"],this.outputShape=convInfo.outShape;const padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,inputDepthNearestVec4=Math.floor(convInfo.inChannels/4)*4,inputDepthVec4Remainder=convInfo.inChannels%4,isChannelsLast=convInfo.dataFormat==="channelsLast",rowDim=isChannelsLast?1:2,colDim=isChannelsLast?2:3,channelDim=isChannelsLast?3:1;let activationSnippet="",applyActivationSnippet="";activation2&&(hasPreluActivationWeights?activationSnippet= ` float activation ( float a ) {
2020-11-17 18:38:48 +01:00
float b = getPreluActivationWeightsAtOutCoords ( ) ;
$ { activation2 }
2020-11-17 23:42:44 +01:00
} ` :activationSnippet= `
2020-11-17 18:38:48 +01:00
float activation ( float x ) {
$ { activation2 }
}
2020-11-17 23:42:44 +01:00
` ,applyActivationSnippet="result = activation(result);");const addBiasSnippet=addBias?"result += getBiasAtOutCoords();":"";addBias&&this.variableNames.push("bias"),hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.userCode= `
2020-11-17 18:38:48 +01:00
$ { activationSnippet }
const ivec2 strides = ivec2 ( $ { strideHeight } , $ { strideWidth } ) ;
const ivec2 pads = ivec2 ( $ { padTop } , $ { padLeft } ) ;
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int batch = coords [ 0 ] ;
int d2 = coords [ $ { channelDim } ] ;
ivec2 xRCCorner =
ivec2 ( coords [ $ { rowDim } ] , coords [ $ { colDim } ] ) * strides - pads ;
int xRCorner = xRCCorner . x ;
int xCCorner = xRCCorner . y ;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0 ;
for ( int wR = 0 ; wR < $ { filterHeight } ; wR ++ ) {
int xR = xRCorner + wR * $ { dilationHeight } ;
if ( xR < 0 || xR >= $ { convInfo . inHeight } ) {
continue ;
}
for ( int wC = 0 ; wC < $ { filterWidth } ; wC ++ ) {
int xC = xCCorner + wC * $ { dilationWidth } ;
if ( xC < 0 || xC >= $ { convInfo . inWidth } ) {
continue ;
}
for ( int d1 = 0 ; d1 < $ { inputDepthNearestVec4 } ; d1 += 4 ) {
vec4 wValues = vec4 (
getW ( wR , wC , d1 , d2 ) ,
getW ( wR , wC , d1 + 1 , d2 ) ,
getW ( wR , wC , d1 + 2 , d2 ) ,
getW ( wR , wC , d1 + 3 , d2 )
) ;
if ( $ { isChannelsLast } ) {
vec4 xValues = vec4 (
getX ( batch , xR , xC , d1 ) ,
getX ( batch , xR , xC , d1 + 1 ) ,
getX ( batch , xR , xC , d1 + 2 ) ,
getX ( batch , xR , xC , d1 + 3 )
) ;
dotProd += dot ( xValues , wValues ) ;
} else {
vec4 xValues = vec4 (
getX ( batch , d1 , xR , xC ) ,
getX ( batch , d1 + 1 , xR , xC ) ,
getX ( batch , d1 + 2 , xR , xC ) ,
getX ( batch , d1 + 3 , xR , xC )
) ;
dotProd += dot ( xValues , wValues ) ;
}
}
if ( $ { inputDepthVec4Remainder === 1 } ) {
if ( $ { isChannelsLast } ) {
dotProd +=
getX ( batch , xR , xC , $ { inputDepthNearestVec4 } ) *
getW ( wR , wC , $ { inputDepthNearestVec4 } , d2 ) ;
} else {
dotProd +=
getX ( batch , $ { inputDepthNearestVec4 } , xR , xC ) *
getW ( wR , wC , $ { inputDepthNearestVec4 } , d2 ) ;
}
} else if ( $ { inputDepthVec4Remainder === 2 } ) {
vec2 wValues = vec2 (
getW ( wR , wC , $ { inputDepthNearestVec4 } , d2 ) ,
getW ( wR , wC , $ { inputDepthNearestVec4 } + 1 , d2 )
) ;
if ( $ { isChannelsLast } ) {
vec2 xValues = vec2 (
getX ( batch , xR , xC , $ { inputDepthNearestVec4 } ) ,
getX ( batch , xR , xC , $ { inputDepthNearestVec4 } + 1 )
) ;
dotProd += dot ( xValues , wValues ) ;
} else {
vec2 xValues = vec2 (
getX ( batch , $ { inputDepthNearestVec4 } , xR , xC ) ,
getX ( batch , $ { inputDepthNearestVec4 } + 1 , xR , xC )
) ;
dotProd += dot ( xValues , wValues ) ;
}
} else if ( $ { inputDepthVec4Remainder === 3 } ) {
vec3 wValues = vec3 (
getW ( wR , wC , $ { inputDepthNearestVec4 } , d2 ) ,
getW ( wR , wC , $ { inputDepthNearestVec4 } + 1 , d2 ) ,
getW ( wR , wC , $ { inputDepthNearestVec4 } + 2 , d2 )
) ;
if ( $ { isChannelsLast } ) {
vec3 xValues = vec3 (
getX ( batch , xR , xC , $ { inputDepthNearestVec4 } ) ,
getX ( batch , xR , xC , $ { inputDepthNearestVec4 } + 1 ) ,
getX ( batch , xR , xC , $ { inputDepthNearestVec4 } + 2 )
) ;
dotProd += dot ( xValues , wValues ) ;
} else {
vec3 xValues = vec3 (
getX ( batch , $ { inputDepthNearestVec4 } , xR , xC ) ,
getX ( batch , $ { inputDepthNearestVec4 } + 1 , xR , xC ) ,
getX ( batch , $ { inputDepthNearestVec4 } + 2 , xR , xC )
) ;
dotProd += dot ( xValues , wValues ) ;
}
}
}
}
float result = dotProd ;
$ { addBiasSnippet }
$ { applyActivationSnippet }
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` }}class Conv3DProgram{constructor(convInfo){this.variableNames=["x","W"],this.outputShape=convInfo.outShape;const padFront=convInfo.padInfo.front,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationDepth=convInfo.dilationDepth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,filterDepth=convInfo.filterDepth,filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,inputDepthNearestVec4=Math.floor(convInfo.inChannels/4)*4,inputDepthVec4Remainder=convInfo.inChannels%4;this.userCode= `
2020-11-17 18:38:48 +01:00
const ivec3 strides = ivec3 ( $ { strideDepth } , $ { strideHeight } , $ { strideWidth } ) ;
const ivec3 pads = ivec3 ( $ { padFront } , $ { padTop } , $ { padLeft } ) ;
void main ( ) {
ivec5 coords = getOutputCoords ( ) ;
int batch = coords . x ;
int d2 = coords . u ;
ivec3 xFRCCorner = ivec3 ( coords . y , coords . z , coords . w ) * strides - pads ;
int xFCorner = xFRCCorner . x ;
int xRCorner = xFRCCorner . y ;
int xCCorner = xFRCCorner . z ;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0 ;
for ( int wF = 0 ; wF < $ { filterDepth } ; wF ++ ) {
int xF = xFCorner + wF * $ { dilationDepth } ;
if ( xF < 0 || xF >= $ { convInfo . inDepth } ) {
continue ;
}
for ( int wR = 0 ; wR < $ { filterHeight } ; wR ++ ) {
int xR = xRCorner + wR * $ { dilationHeight } ;
if ( xR < 0 || xR >= $ { convInfo . inHeight } ) {
continue ;
}
for ( int wC = 0 ; wC < $ { filterWidth } ; wC ++ ) {
int xC = xCCorner + wC * $ { dilationWidth } ;
if ( xC < 0 || xC >= $ { convInfo . inWidth } ) {
continue ;
}
for ( int d1 = 0 ; d1 < $ { inputDepthNearestVec4 } ; d1 += 4 ) {
vec4 xValues = vec4 (
getX ( batch , xF , xR , xC , d1 ) ,
getX ( batch , xF , xR , xC , d1 + 1 ) ,
getX ( batch , xF , xR , xC , d1 + 2 ) ,
getX ( batch , xF , xR , xC , d1 + 3 )
) ;
vec4 wValues = vec4 (
getW ( wF , wR , wC , d1 , d2 ) ,
getW ( wF , wR , wC , d1 + 1 , d2 ) ,
getW ( wF , wR , wC , d1 + 2 , d2 ) ,
getW ( wF , wR , wC , d1 + 3 , d2 )
) ;
dotProd += dot ( xValues , wValues ) ;
}
if ( $ { inputDepthVec4Remainder === 1 } ) {
dotProd +=
getX ( batch , xF , xR , xC , $ { inputDepthNearestVec4 } ) *
getW ( wF , wR , wC , $ { inputDepthNearestVec4 } , d2 ) ;
} else if ( $ { inputDepthVec4Remainder === 2 } ) {
vec2 xValues = vec2 (
getX ( batch , xF , xR , xC , $ { inputDepthNearestVec4 } ) ,
getX ( batch , xF , xR , xC , $ { inputDepthNearestVec4 } + 1 )
) ;
vec2 wValues = vec2 (
getW ( wF , wR , wC , $ { inputDepthNearestVec4 } , d2 ) ,
getW ( wF , wR , wC , $ { inputDepthNearestVec4 } + 1 , d2 )
) ;
dotProd += dot ( xValues , wValues ) ;
} else if ( $ { inputDepthVec4Remainder === 3 } ) {
vec3 xValues = vec3 (
getX ( batch , xF , xR , xC , $ { inputDepthNearestVec4 } ) ,
getX ( batch , xF , xR , xC , $ { inputDepthNearestVec4 } + 1 ) ,
getX ( batch , xF , xR , xC , $ { inputDepthNearestVec4 } + 2 )
) ;
vec3 wValues = vec3 (
getW ( wF , wR , wC , $ { inputDepthNearestVec4 } , d2 ) ,
getW ( wF , wR , wC , $ { inputDepthNearestVec4 } + 1 , d2 ) ,
getW ( wF , wR , wC , $ { inputDepthNearestVec4 } + 2 , d2 )
) ;
dotProd += dot ( xValues , wValues ) ;
}
}
}
}
setOutput ( dotProd ) ;
}
2020-11-17 23:42:44 +01:00
` }}class DepthwiseConv2DProgram{constructor(convInfo,addBias=!1,activation2=null,hasPreluActivation=!1){this.variableNames=["x","W"],this.outputShape=convInfo.outShape;const xNumRows=convInfo.inHeight,xNumCols=convInfo.inWidth,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,channelMul=convInfo.outChannels/convInfo.inChannels;let activationSnippet="",applyActivationSnippet="";activation2&&(hasPreluActivation?activationSnippet= ` float activation ( float a ) {
2020-11-17 18:38:48 +01:00
float b = getPreluActivationWeightsAtOutCoords ( ) ;
$ { activation2 }
2020-11-17 23:42:44 +01:00
} ` :activationSnippet= `
2020-11-17 18:38:48 +01:00
float activation ( float x ) {
$ { activation2 }
}
2020-11-17 23:42:44 +01:00
` ,applyActivationSnippet="result = activation(result);");const addBiasSnippet=addBias?"result += getBiasAtOutCoords();":"";addBias&&this.variableNames.push("bias"),hasPreluActivation&&this.variableNames.push("preluActivationWeights"),this.userCode= `
2020-11-17 18:38:48 +01:00
$ { activationSnippet }
const ivec2 strides = ivec2 ( $ { strideHeight } , $ { strideWidth } ) ;
const ivec2 pads = ivec2 ( $ { padTop } , $ { padLeft } ) ;
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int batch = coords . x ;
ivec2 xRCCorner = coords . yz * strides - pads ;
int d2 = coords . w ;
int d1 = d2 / $ { channelMul } ;
int q = d2 - d1 * $ { channelMul } ;
int xRCorner = xRCCorner . x ;
int xCCorner = xRCCorner . y ;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0 ;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for ( int wR = 0 ; wR < $ { filterHeight } ; wR ++ ) {
int xR = xRCorner + wR * $ { dilationHeight } ;
if ( xR < 0 || xR >= $ { xNumRows } ) {
continue ;
}
for ( int wC = 0 ; wC < $ { filterWidth } ; wC ++ ) {
int xC = xCCorner + wC * $ { dilationWidth } ;
if ( xC < 0 || xC >= $ { xNumCols } ) {
continue ;
}
float xVal = getX ( batch , xR , xC , d1 ) ;
float wVal = getW ( wR , wC , d1 , q ) ;
dotProd += xVal * wVal ;
}
}
float result = dotProd ;
$ { addBiasSnippet }
$ { applyActivationSnippet }
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` }}class DepthwiseConvPacked2DProgram{constructor(convInfo,addBias=!1,activation2=null,hasPreluActivation=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=convInfo.outShape;const xNumRows=convInfo.inHeight,xNumCols=convInfo.inWidth,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,texelsAcross=filterWidth;let mainLoop="int xR; int xC; int xCOffset;";for(let r=0;r<filterHeight;r++)for(let c=0;c<filterWidth;c++)mainLoop+= `
2020-11-17 18:38:48 +01:00
vec4 xTexelR$ { r } C$ { c * 2 } = vec4 ( 0. ) ;
vec4 wR$ { r } C$ { c } = vec4 ( 0. ) ;
2020-11-17 23:42:44 +01:00
vec4 xR$ { r } C$ { c } = vec4 ( 0. ) ; ` ;for(let r=0;r<filterHeight;r++)for(let texelC=0;texelC<texelsAcross;texelC++){const c=texelC*2;if(mainLoop+= `
2020-11-17 18:38:48 +01:00
xR = xRCorner + $ { r * dilationHeight } ;
xC = xCCorner + $ { c * dilationWidth } ;
2020-11-17 23:42:44 +01:00
` ,strideWidth===1){if(c<filterWidth&&(padLeft%2===1?mainLoop+= `
2020-11-17 18:38:48 +01:00
xCOffset = xC + 1 ;
if ( xR >= 0 && xR < $ { xNumRows } && xCOffset >= 0 && xCOffset < $ { xNumCols } ) {
xTexelR$ { r } C$ { c } = getX ( batch , xR , xCOffset , d1 ) ;
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if ( xCOffset + 1 >= $ { xNumCols } ) {
xTexelR$ { r } C$ { c } . zw = vec2 ( 0. ) ;
}
} else {
xTexelR$ { r } C$ { c } = vec4 ( 0. ) ;
}
xCOffset = xC + 1 - 2 ;
if ( xR >= 0 && xR < $ { xNumRows } && xCOffset >= 0 && xCOffset < $ { xNumCols } ) {
vec4 previous = getX ( batch , xR , xCOffset , d1 ) ;
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if ( xCOffset + 1 >= $ { xNumCols } ) {
previous . zw = vec2 ( 0. ) ;
}
xR$ { r } C$ { c } = vec4 ( previous . zw , xTexelR$ { r } C$ { c } . xy ) ;
} else {
xR$ { r } C$ { c } = vec4 ( 0 , 0 , xTexelR$ { r } C$ { c } . xy ) ;
}
2020-11-17 23:42:44 +01:00
` :mainLoop+= `
2020-11-17 18:38:48 +01:00
if ( xR >= 0 && xR < $ { xNumRows } && xC >= 0 && xC < $ { xNumCols } ) {
xTexelR$ { r } C$ { c } = getX ( batch , xR , xC , d1 ) ;
} else {
xTexelR$ { r } C$ { c } = vec4 ( 0. ) ;
}
xR$ { r } C$ { c } = xTexelR$ { r } C$ { c } ;
2020-11-17 23:42:44 +01:00
` ,c+1<filterWidth)){const nextTexelOffset=padLeft%2===0?util_exports.nearestLargerEven(dilationWidth):dilationWidth;dilationWidth%2===0&&padLeft%2===1||dilationWidth%2!==0&&padLeft%2!==1?(mainLoop+= `
2020-11-17 18:38:48 +01:00
xCOffset = xC + $ { padLeft % 2 } + $ { nextTexelOffset } ;
if ( xR >= 0 && xR < $ { xNumRows } &&
xCOffset >= 0 && xCOffset < $ { xNumCols } ) {
xTexelR$ { r } C$ { c + 2 } = getX ( batch , xR , xCOffset , d1 ) ;
}
2020-11-17 23:42:44 +01:00
` ,dilationWidth>1&&(mainLoop+= `
2020-11-17 18:38:48 +01:00
xCOffset -= 2 ;
if ( xR >= 0 && xR < $ { xNumRows } &&
xCOffset >= 0 && xCOffset < $ { xNumCols } ) {
xTexelR$ { r } C$ { c } = getX ( batch , xR , xCOffset , d1 ) ;
} else {
xTexelR$ { r } C$ { c } = vec4 ( 0. ) ;
}
2020-11-17 23:42:44 +01:00
` ),mainLoop+= `
2020-11-17 18:38:48 +01:00
xR$ { r } C$ { c + 1 } = vec4 (
xTexelR$ { r } C$ { c } . zw , xTexelR$ { r } C$ { c + 2 } . xy ) ;
2020-11-17 23:42:44 +01:00
` ):mainLoop+= `
2020-11-17 18:38:48 +01:00
xCOffset = xC + $ { nextTexelOffset } ;
if ( xR >= 0 && xR < $ { xNumRows } &&
xCOffset >= 0 && xCOffset < $ { xNumCols } ) {
xTexelR$ { r } C$ { c + 2 } = getX ( batch , xR , xCOffset , d1 ) ;
}
xR$ { r } C$ { c + 1 } = xTexelR$ { r } C$ { c + 2 } ;
2020-11-17 23:42:44 +01:00
` }}else c<filterWidth&&(mainLoop+= `
2020-11-17 18:38:48 +01:00
if ( xR >= 0 && xR < $ { xNumRows } ) {
2020-11-17 23:42:44 +01:00
` ,padLeft%2===1?(mainLoop+= `
2020-11-17 18:38:48 +01:00
xCOffset = xC + 1 - $ { strideWidth } ;
if ( xCOffset >= 0 && xCOffset < $ { xNumCols } ) {
xTexelR$ { r } C$ { c } = getX ( batch , xR , xCOffset , d1 ) ;
} else {
xTexelR$ { r } C$ { c } = vec4 ( 0. ) ;
}
if ( xC + 1 >= 0 && xC + 1 < $ { xNumCols } ) {
xTexelR$ { r } C$ { c + 2 } = getX ( batch , xR , xC + 1 , d1 ) ;
} else {
xTexelR$ { r } C$ { c + 2 } = vec4 ( 0. ) ;
}
xR$ { r } C$ { c } = vec4 (
xTexelR$ { r } C$ { c } . zw , xTexelR$ { r } C$ { c + 2 } . zw ) ;
2020-11-17 23:42:44 +01:00
` ,c+1<filterWidth&&(mainLoop+= `
2020-11-17 18:38:48 +01:00
vec4 final = vec4 ( 0. ) ;
xCOffset = xC + 1 + $ { strideWidth } ;
if ( xCOffset >= 0 && xCOffset < $ { xNumCols } ) {
final = getX ( batch , xR , xCOffset , d1 ) ;
}
xR$ { r } C$ { c + 1 } = vec4 ( xTexelR$ { r } C$ { c + 2 } . xy , final . xy ) ;
2020-11-17 23:42:44 +01:00
` )):(mainLoop+= `
2020-11-17 18:38:48 +01:00
if ( xC >= 0 && xC < $ { xNumCols } ) {
xTexelR$ { r } C$ { c } = getX ( batch , xR , xC , d1 ) ;
} else {
xTexelR$ { r } C$ { c } = vec4 ( 0. ) ;
}
xCOffset = xC + $ { strideWidth } ;
if ( xCOffset >= 0 && xCOffset < $ { xNumCols } ) {
xTexelR$ { r } C$ { c + 2 } = getX ( batch , xR , xCOffset , d1 ) ;
} else {
xTexelR$ { r } C$ { c + 2 } = vec4 ( 0. ) ;
}
xR$ { r } C$ { c } = vec4 (
xTexelR$ { r } C$ { c } . xy , xTexelR$ { r } C$ { c + 2 } . xy ) ;
2020-11-17 23:42:44 +01:00
` ,c+1<filterWidth&&(mainLoop+= `
2020-11-17 18:38:48 +01:00
xR$ { r } C$ { c + 1 } = vec4 (
xTexelR$ { r } C$ { c } . zw , xTexelR$ { r } C$ { c + 2 } . zw ) ;
2020-11-17 23:42:44 +01:00
` )),mainLoop+="}");c<filterWidth&&(mainLoop+= `
2020-11-17 18:38:48 +01:00
vec4 wTexelR$ { r } C$ { c } = getW ( $ { r } , $ { c } , d1 , q ) ;
wR$ { r } C$ { c } = vec4 ( wTexelR$ { r } C$ { c } . xz , wTexelR$ { r } C$ { c } . xz ) ;
2020-11-17 23:42:44 +01:00
` ,c+1<filterWidth&&(mainLoop+= `
2020-11-17 18:38:48 +01:00
vec4 wTexelR$ { r } C$ { c + 1 } = getW ( $ { r } , $ { c + 1 } , d1 , q ) ;
wR$ { r } C$ { c + 1 } =
2020-11-17 23:42:44 +01:00
vec4 ( wTexelR$ { r } C$ { c + 1 } . xz , wTexelR$ { r } C$ { c + 1 } . xz ) ; ` ))}for(let r=0;r<filterHeight;r++)for(let c=0;c<filterWidth;c++)mainLoop+= ` dotProd += xR$ { r } C$ { c } * wR$ { r } C$ { c } ; ` ;let activationSnippet="",applyActivationSnippet="";activation2&&(hasPreluActivation?activationSnippet= ` vec4 activation ( vec4 a ) {
2020-11-17 18:38:48 +01:00
vec4 b = getPreluActivationWeightsAtOutCoords ( ) ;
$ { activation2 }
2020-11-17 23:42:44 +01:00
} ` :activationSnippet= ` vec4 activation ( vec4 x ) {
2020-11-17 18:38:48 +01:00
$ { activation2 }
2020-11-17 23:42:44 +01:00
} ` ,applyActivationSnippet="result = activation(result);");const addBiasSnippet=addBias?"result += getBiasAtOutCoords();":"";addBias&&this.variableNames.push("bias"),hasPreluActivation&&this.variableNames.push("preluActivationWeights"),this.userCode= `
2020-11-17 18:38:48 +01:00
$ { activationSnippet }
const ivec2 strides = ivec2 ( $ { strideHeight } , $ { strideWidth } ) ;
const ivec2 pads = ivec2 ( $ { padTop } , $ { padLeft } ) ;
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int batch = coords . x ;
ivec2 xRCCorner = coords . yz * strides - pads ;
int d2 = coords . w ;
int d1 = d2 ;
int q = 0 ;
int xRCorner = xRCCorner . x ;
int xCCorner = xRCCorner . y ;
vec4 dotProd = vec4 ( 0. ) ;
$ { mainLoop }
vec4 result = dotProd ;
$ { addBiasSnippet }
$ { applyActivationSnippet }
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` }}class CropAndResizeProgram{constructor(imageShape,boxShape,cropSize,method,extrapolationValue){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];const[batch,imageHeight,imageWidth,depth]=imageShape,[numBoxes]=boxShape,[cropHeight,cropWidth]=cropSize;this.outputShape=[numBoxes,cropHeight,cropWidth,depth];const methodId=method==="bilinear"?1:0,[inputHeightFloat,inputWidthFloat]=[ ` $ { imageHeight - 1 } . 0 ` , ` $ { imageWidth - 1 } . 0 ` ],[heightRatio,heightScale,inY]=cropHeight>1?[ ` $ { ( imageHeight - 1 ) / ( cropHeight - 1 ) } ` ,"(y2-y1) * height_ratio", ` y1 * $ { inputHeightFloat } + float ( y ) * ( height _scale ) ` ]:["0.0","0.0", ` 0.5 * ( y1 + y2 ) * $ { inputHeightFloat } ` ],[widthRatio,widthScale,inX]=cropWidth>1?[ ` $ { ( imageWidth - 1 ) / ( cropWidth - 1 ) } ` ,"(x2-x1) * width_ratio", ` x1 * $ { inputWidthFloat } + float ( x ) * ( width _scale ) ` ]:["0.0","0.0", ` 0.5 * ( x1 + x2 ) * $ { inputWidthFloat } ` ];this.userCode= `
2020-11-17 18:38:48 +01:00
const float height _ratio = float ( $ { heightRatio } ) ;
const float width _ratio = float ( $ { widthRatio } ) ;
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int b = coords [ 0 ] ;
int y = coords [ 1 ] ;
int x = coords [ 2 ] ;
int d = coords [ 3 ] ;
// get box vals
float y1 = getBoxes ( b , 0 ) ;
float x1 = getBoxes ( b , 1 ) ;
float y2 = getBoxes ( b , 2 ) ;
float x2 = getBoxes ( b , 3 ) ;
// get image in batch index
int bInd = round ( getBoxInd ( b ) ) ;
if ( bInd < 0 || bInd >= $ { batch } ) {
return ;
}
float height _scale = $ { heightScale } ;
float width _scale = $ { widthScale } ;
float in _y = $ { inY } ;
if ( in _y < 0.0 || in _y > $ { inputHeightFloat } ) {
setOutput ( float ( $ { extrapolationValue } ) ) ;
return ;
}
float in _x = $ { inX } ;
if ( in _x < 0.0 || in _x > $ { inputWidthFloat } ) {
setOutput ( float ( $ { extrapolationValue } ) ) ;
return ;
}
vec2 sourceFracIndexCR = vec2 ( in _x , in _y ) ;
if ( $ { methodId } == 1 ) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2 ( sourceFracIndexCR ) ;
ivec2 sourceCeilCR = ivec2 ( ceil ( sourceFracIndexCR ) ) ;
float topLeft = getImage ( b , sourceFloorCR . y , sourceFloorCR . x , d ) ;
float bottomLeft = getImage ( b , sourceCeilCR . y , sourceFloorCR . x , d ) ;
float topRight = getImage ( b , sourceFloorCR . y , sourceCeilCR . x , d ) ;
float bottomRight = getImage ( b , sourceCeilCR . y , sourceCeilCR . x , d ) ;
vec2 fracCR = sourceFracIndexCR - vec2 ( sourceFloorCR ) ;
float top = topLeft + ( topRight - topLeft ) * fracCR . x ;
float bottom = bottomLeft + ( bottomRight - bottomLeft ) * fracCR . x ;
float newValue = top + ( bottom - top ) * fracCR . y ;
setOutput ( newValue ) ;
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2 ( floor (
sourceFracIndexCR + vec2 ( 0.5 , 0.5 ) ) ) ;
float newValue = getImage ( b , sourceNearestCR . y , sourceNearestCR . x , d ) ;
setOutput ( newValue ) ;
}
}
2020-11-17 23:42:44 +01:00
` }}class CumSumProgram{constructor(shape,exclusive,reverse12){this.variableNames=["x"],this.outputShape=shape;const rank=shape.length,val=exclusive?"0.0": ` getX ( $ { getCoords ( rank , "coords" ) } ) ` ,length=shape[shape.length-1];let condition="",idxString="";exclusive?(condition=reverse12? ` end != $ { length - 1 } ` :"end != 0",idxString=reverse12?"end + 1":"end - 1"):(condition=reverse12? ` end + pow2 < $ { length } ` :"end >= pow2",idxString=reverse12?"end + pow2":"end - pow2"),this.userCode= `
2020-11-17 18:38:48 +01:00
uniform float index ;
void main ( ) {
$ { getCoordsDataType ( rank ) } coords = getOutputCoords ( ) ;
int end = $ { getFinalCoord ( rank , "coords" ) } ;
float val = $ { val } ;
int pow2 = int ( pow ( 2.0 , index ) ) ;
if ( $ { condition } ) {
int idx = $ { idxString } ;
$ { getFinalCoord ( rank , "coords" ) } = idx ;
val += getX ( $ { getCoords ( rank , "coords" ) } ) ;
}
setOutput ( val ) ;
}
2020-11-17 23:42:44 +01:00
` }getCustomSetupFunc(index){return(gpgpu,webGLProgram)=>{this.index==null&&(this.index=gpgpu.getUniformLocation(webGLProgram,"index")),gpgpu.gl.uniform1f(this.index,index)}}}function getCoords(rank,name){if(rank===1)return ` $ { name } ` ;if(rank===2)return ` $ { name } . x , $ { name } . y ` ;if(rank===3)return ` $ { name } . x , $ { name } . y , $ { name } . z ` ;if(rank===4)return ` $ { name } . x , $ { name } . y , $ { name } . z , $ { name } . w ` ;throw Error( ` Cumulative sum for rank $ { rank } is not yet supported ` )}function getFinalCoord(rank,name){if(rank===1)return ` $ { name } ` ;if(rank===2)return ` $ { name } . y ` ;if(rank===3)return ` $ { name } . z ` ;if(rank===4)return ` $ { name } . w ` ;throw Error( ` Cumulative sum for rank $ { rank } is not yet supported ` )}class DecodeMatrixProgram{constructor(outputShape){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=PackingScheme.DENSE;const texShape=getDenseTexShape(outputShape),glsl=getGlslDifferences();this.outputShape=outputShape,this.userCode= `
2020-11-17 18:38:48 +01:00
ivec3 outCoordsFromFlatIndex ( int index ) {
$ { getLogicalCoordinatesFromFlatIndex ( [ "r" , "c" , "d" ] , outputShape ) }
return ivec3 ( r , c , d ) ;
}
void main ( ) {
ivec2 resTexRC = ivec2 ( resultUV . yx *
vec2 ( $ { texShape [ 0 ] } , $ { texShape [ 1 ] } ) ) ;
int index = 4 * ( resTexRC . x * $ { texShape [ 1 ] } + resTexRC . y ) ;
vec4 result = vec4 ( 0. ) ;
for ( int i = 0 ; i < 4 ; i ++ ) {
int flatIndex = index + i ;
ivec3 rc = outCoordsFromFlatIndex ( flatIndex ) ;
result [ i ] = getA ( rc . x , rc . y , rc . z ) ;
}
$ { glsl . output } = result ;
}
2020-11-17 23:42:44 +01:00
` }}class DecodeMatrixPackedProgram{constructor(outputShape){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=PackingScheme.DENSE;const texShape=getDenseTexShape(outputShape),glsl=getGlslDifferences();this.outputShape=outputShape,this.userCode= `
2020-11-17 18:38:48 +01:00
ivec3 outCoordsFromFlatIndex ( int index ) {
$ { getLogicalCoordinatesFromFlatIndex ( [ "r" , "c" , "d" ] , outputShape ) }
return ivec3 ( r , c , d ) ;
}
void main ( ) {
ivec2 resTexRC = ivec2 ( resultUV . yx *
vec2 ( $ { texShape [ 0 ] } , $ { texShape [ 1 ] } ) ) ;
int index = 4 * ( resTexRC . x * $ { texShape [ 1 ] } + resTexRC . y ) ;
vec4 result = vec4 ( 0. ) ;
for ( int i = 0 ; i < 4 ; i ++ ) {
int flatIndex = index + i ;
ivec3 rc = outCoordsFromFlatIndex ( flatIndex ) ;
result [ i ] = getChannel ( getA ( rc . x , rc . y , rc . z ) , vec2 ( rc . y , rc . z ) ) ;
}
$ { glsl . output } = result ;
}
2020-11-17 23:42:44 +01:00
` }}class DepthToSpaceProgram{constructor(outputShape,blockSize,dataFormat){this.variableNames=["x"],this.outputShape=[],this.outputShape=outputShape,this.blockSize=blockSize,this.dataFormat=dataFormat,this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int b = coords [ 0 ] ;
int h = $ { this . getHeightCoordString ( ) } ;
int w = $ { this . getWidthCoordString ( ) } ;
int d = $ { this . getDepthCoordString ( ) } ;
int in _h = h / $ { blockSize } ;
int offset _h = imod ( h , $ { blockSize } ) ;
int in _w = w / $ { blockSize } ;
int offset _w = imod ( w , $ { blockSize } ) ;
int offset _d = ( offset _h * $ { blockSize } + offset _w ) *
$ { this . getOutputDepthSize ( ) } ;
int in _d = d + offset _d ;
float result = $ { this . getInputSamplingString ( ) } ;
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` }getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}}class DiagProgram{constructor(size){this.variableNames=["X"],this.outputShape=[size,size],this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec2 coords = getOutputCoords ( ) ;
float val = coords [ 0 ] == coords [ 1 ] ? getX ( coords [ 0 ] ) : 0.0 ;
setOutput ( val ) ;
}
2020-11-17 23:42:44 +01:00
` }}class EncodeFloatProgram{constructor(outputShape){this.variableNames=["A"],this.outTexUsage=TextureUsage.DOWNLOAD;const glsl=getGlslDifferences();this.outputShape=outputShape,this.userCode= `
2020-11-17 18:38:48 +01:00
$ { ENCODE _FLOAT _SNIPPET }
void main ( ) {
float x = getAAtOutCoords ( ) ;
$ { glsl . output } = encode _float ( x ) ;
}
2020-11-17 23:42:44 +01:00
` }}class EncodeFloatPackedProgram{constructor(outputShape){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=TextureUsage.DOWNLOAD;const glsl=getGlslDifferences();this.outputShape=outputShape,this.userCode= `
2020-11-17 18:38:48 +01:00
$ { ENCODE _FLOAT _SNIPPET }
void main ( ) {
ivec3 coords = getOutputCoords ( ) ;
float x = getChannel ( getAAtOutCoords ( ) , vec2 ( coords . y , coords . z ) ) ;
$ { glsl . output } = encode _float ( x ) ;
}
2020-11-17 23:42:44 +01:00
` }}class EncodeMatrixProgram{constructor(outputShape,texShape,inputIsUnsignedByte=!1){this.variableNames=["A"];const glsl=getGlslDifferences(),[height,width]=texShape;this.outputShape=outputShape;let output="result";inputIsUnsignedByte&&(output="floor(result * 255. + 0.5)"),this.userCode= `
2020-11-17 18:38:48 +01:00
$ { getFlatIndexFrom3D ( outputShape ) }
void main ( ) {
ivec3 coords = getOutputCoords ( ) ;
int flatIndex = getFlatIndex ( coords ) ;
int offset = imod ( flatIndex , 4 ) ;
flatIndex = idiv ( flatIndex , 4 , 1. ) ;
int r = flatIndex / $ { width } ;
int c = imod ( flatIndex , $ { width } ) ;
vec2 uv = ( vec2 ( c , r ) + halfCR ) / vec2 ( $ { width } . 0 , $ { height } . 0 ) ;
vec4 values = $ { glsl . texture2D } ( A , uv ) ;
float result ;
if ( offset == 0 ) {
result = values [ 0 ] ;
} else if ( offset == 1 ) {
result = values [ 1 ] ;
} else if ( offset == 2 ) {
result = values [ 2 ] ;
} else {
result = values [ 3 ] ;
}
$ { glsl . output } = vec4 ( $ { output } , 0. , 0. , 0. ) ;
}
2020-11-17 23:42:44 +01:00
` }}class EncodeMatrixPackedProgram{constructor(outputShape,texShape,inputIsUnsignedByte=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;const glsl=getGlslDifferences(),[height,width]=texShape;this.outputShape=outputShape;let mainLoop="",output="result";inputIsUnsignedByte&&(output="floor(result * 255. + 0.5)");for(let row=0;row<=1;row++)for(let col=0;col<=1;col++){const channel=row*2+col;mainLoop+= `
2020-11-17 18:38:48 +01:00
localCoords = coords ;
if ( localCoords [ 2 ] + $ { col } < $ { outputShape [ 2 ] } ) {
localCoords [ 2 ] += $ { col } ;
if ( localCoords [ 1 ] + $ { row } < $ { outputShape [ 1 ] } ) {
localCoords [ 1 ] += $ { row } ;
flatIndex = getFlatIndex ( localCoords ) ;
offset = imod ( flatIndex , 4 ) ;
flatIndex = idiv ( flatIndex , 4 , 1. ) ;
r = flatIndex / $ { width } ;
c = imod ( flatIndex , $ { width } ) ;
uv = ( vec2 ( c , r ) + halfCR ) / vec2 ( $ { width } . 0 , $ { height } . 0 ) ;
values = $ { glsl . texture2D } ( A , uv ) ;
if ( offset == 0 ) {
result [ $ { channel } ] = values [ 0 ] ;
} else if ( offset == 1 ) {
result [ $ { channel } ] = values [ 1 ] ;
} else if ( offset == 2 ) {
result [ $ { channel } ] = values [ 2 ] ;
} else {
result [ $ { channel } ] = values [ 3 ] ;
}
}
}
2020-11-17 23:42:44 +01:00
` }this.userCode= `
2020-11-17 18:38:48 +01:00
$ { getFlatIndexFrom3D ( outputShape ) }
void main ( ) {
ivec3 coords = getOutputCoords ( ) ;
vec4 result = vec4 ( 0. ) ;
int flatIndex , r , c , offset ;
ivec3 localCoords ;
vec2 uv ;
vec4 values ;
$ { mainLoop }
$ { glsl . output } = $ { output } ;
}
2020-11-17 23:42:44 +01:00
` }}class FillProgram{constructor(shape,value){this.outputShape=[],this.variableNames=["x"],this.outputShape=shape,this.userCode= `
2020-11-17 18:38:48 +01:00
uniform float value ;
void main ( ) {
// Input can be obtained from uniform value.
setOutput ( value ) ;
}
2020-11-17 23:42:44 +01:00
` }getCustomSetupFunc(value){return(gpgpu,webGLProgram)=>{this.valueLoc==null&&(this.valueLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"value")),gpgpu.gl.uniform1f(this.valueLoc,value)}}}class GatherProgram{constructor(aShape,indicesLength,axis){this.variableNames=["A","indices"];const outputShape=aShape.slice();outputShape[axis]=indicesLength,this.outputShape=outputShape,this.rank=outputShape.length;const dtype=getCoordsDataType(this.rank),sourceCoords=getSourceCoords2(aShape,axis);this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
$ { dtype } resRC = getOutputCoords ( ) ;
setOutput ( getA ( $ { sourceCoords } ) ) ;
}
2020-11-17 23:42:44 +01:00
` }}function getSourceCoords2(aShape,axis){const rank=aShape.length;if(rank>4)throw Error( ` Gather for rank $ { rank } is not yet supported ` );if(rank===1)return"int(getIndices(resRC))";const currentCoords=["resRC.x","resRC.y","resRC.z","resRC.w"],sourceCoords=[];for(let i=0;i<aShape.length;i++)i===axis?sourceCoords.push( ` int ( getIndices ( $ { currentCoords [ i ] } ) ) ` ):sourceCoords.push( ` $ { currentCoords [ i ] } ` );return sourceCoords.join()}class GatherNDProgram{constructor(sliceDim,strides,shape){this.sliceDim=sliceDim,this.strides=strides,this.variableNames=["x","indices"],this.outputShape=shape;const stridesType=getCoordsDataType(strides.length),dtype=getCoordsDataType(shape.length),strideString=this.sliceDim>1?"strides[j]":"strides";this.userCode= `
2020-11-17 18:38:48 +01:00
$ { stridesType } strides = $ { stridesType } ( $ { this . strides } ) ;
void main ( ) {
$ { dtype } coords = getOutputCoords ( ) ;
int flattenIndex = 0 ;
for ( int j = 0 ; j < $ { this . sliceDim } ; j ++ ) {
int index = round ( getIndices ( coords [ 0 ] , j ) ) ;
flattenIndex += index * $ { strideString } ;
}
setOutput ( getX ( flattenIndex , coords [ 1 ] ) ) ;
}
2020-11-17 23:42:44 +01:00
` }}function createVertexShader2(gl){const glsl=getGlslDifferences(),vertexShaderSource= ` $ { glsl . version }
2020-11-17 18:38:48 +01:00
precision highp float ;
$ { glsl . attribute } vec3 clipSpacePos ;
$ { glsl . attribute } vec2 uv ;
$ { glsl . varyingVs } vec2 resultUV ;
void main ( ) {
gl _Position = vec4 ( clipSpacePos , 1 ) ;
resultUV = uv ;
2020-11-17 23:42:44 +01:00
} ` ;return createVertexShader(gl,vertexShaderSource)}function createVertexBuffer(gl){const vertexArray=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return createStaticVertexBuffer(gl,vertexArray)}function createIndexBuffer(gl){const triangleVertexIndices=new Uint16Array([0,1,2,2,1,3]);return createStaticIndexBuffer(gl,triangleVertexIndices)}function createAndConfigureTexture(gl,width,height,internalFormat,textureFormat,textureType){validateTextureSize(width,height);const texture=createTexture(gl),tex2d=gl.TEXTURE_2D;return callAndCheck(gl,()=>gl.bindTexture(tex2d,texture)),callAndCheck(gl,()=>gl.texParameteri(tex2d,gl.TEXTURE_WRAP_S,gl.CLAMP_TO_EDGE)),callAndCheck(gl,()=>gl.texParameteri(tex2d,gl.TEXTURE_WRAP_T,gl.CLAMP_TO_EDGE)),callAndCheck(gl,()=>gl.texParameteri(tex2d,gl.TEXTURE_MIN_FILTER,gl.NEAREST)),callAndCheck(gl,()=>gl.texParameteri(tex2d,gl.TEXTURE_MAG_FILTER,gl.NEAREST)),callAndCheck(gl,()=>gl.texImage2D(tex2d,0,internalFormat,width,height,0,textureFormat,textureType,null)),callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,null)),texture}function getInternalFormatForFloat32MatrixTexture(textureConfig){return textureConfig.internalFormatFloat}function createFloat32MatrixTexture(gl,rows,columns,textureConfig){const[width,height]=getUnpackedMatrixTextureShapeWidthHeight(rows,columns);return createAndConfigureTexture(gl,width,height,getInternalFormatForFloat32MatrixTexture(textureConfig),textureConfig.textureFormatFloat,gl.FLOAT)}function getInternalFormatForFloat16MatrixTexture(textureConfig){return textureConfig.internalFormatHalfFloat}function createFloat16MatrixTexture(gl,rows,columns,textureConfig){const[width,height]=getUnpackedMatrixTextureShapeWidthHeight(rows,columns);return createAndConfigureTexture(gl,width,height,getInternalFormatForFloat16MatrixTexture(textureConfig),textureConfig.textureFormatFloat,textureConfig.textureTypeHalfFloat)}function getInternalFormatForUnsignedBytesMatrixTexture(textureConfig){return textureConfig.downloadTextureFormat}function createUnsignedBytesMatrixTexture(gl,rows,columns,textureConfig){const[width,height]=getUnpackedMatrixTextureShapeWidthHeight(rows,columns);return createAndConfigureTexture(gl,width,height,getInternalFormatForUnsignedBytesMatrixTexture(textureConfig),gl.RGBA,gl.UNSIGNED_BYTE)}function getInternalFormatForPackedMatrixTexture(textureConfig){return textureConfig.internalFormatPackedFloat}function createPackedMatrixTexture(gl,rows,columns,textureConfig){const[width,height]=getPackedMatrixTextureShapeWidthHeight(rows,columns);return createAndConfigureTexture(gl,width,height,getInternalFormatForPackedMatrixTexture(textureConfig),gl.RGBA,gl.FLOAT)}function getInternalFormatForFloat16PackedMatrixTexture(textureConfig){return textureConfig.internalFormatPackedHalfFloat}function createFloat16PackedMatrixTexture(gl,rows,columns,textureConfig){const[width,height]=getPackedMatrixTextureShapeWidthHeight(rows,columns);return createAndConfigureTexture(gl,width,height,getInternalFormatForFloat16PackedMatrixTexture(textureConfig),gl.RGBA,textureConfig.textureTypeHalfFloat)}function bindVertexProgramAttributeStreams(gl,program,vertexBuffer){const posOffset=0,uvOffset=3*4,stride=3*4+2*4;callAndCheck(gl,()=>gl.bindBuffer(gl.ARRAY_BUFFER,vertexBuffer));const success=bindVertexBufferToProgramAttribute(gl,program,"clipSpacePos",vertexBuffer,3,stride,posOffset);return success&&bindVertexBufferToProgramAttribute(gl,program,"uv",vertexBuffer,2,stride,uvOffset)}function uploadDenseMatrixToTexture(gl,texture,width,height,data2,textureConfig){callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,texture));let dataForUpload,texelDataType,internalFormat;data2 instanceof Uint8Array?(dataForUpload=new Uint8Array(width*height*4),texelDataType=gl.UNSIGNED_BYTE,internalFormat=gl.RGBA):(dataForUpload=new Float32Array(width*height*4),texelDataType=gl.FLOAT,internalFormat=textureConfig.internalFormatPackedFloat),dataForUpload.set(data2),callAndCheck(gl,()=>gl.texImage2D(gl.TEXTURE_2D,0,internalFormat,width,height,0,gl.RGBA,texelDataType,dataForUpload)),callAndCheck(gl,()=>
2020-11-17 18:38:48 +01:00
blockIndex = rc . y + $ { col } ;
pos = rc . x + $ { row } ;
if ( blockIndex < $ { outputShape [ 1 ] } && pos < $ { outputShape [ 0 ] } ) {
offsetY = int ( blockIndex / ( $ { outWidth } ) ) * $ { strideHeight } - $ { top } ;
d0 = offsetY + $ { dilationHeight } * ( pos / $ { itemsPerBlockRow } ) ;
if ( d0 < $ { inputShape [ rowDim ] } && d0 >= 0 ) {
offsetX = int ( mod ( float ( blockIndex ) , $ { outWidth } . ) * $ { strideWidth } . - $ { left } . ) ;
d1 = offsetX + $ { dilationWidth } * ( int ( mod ( float ( pos ) , $ { itemsPerBlockRow } . ) / $ { inChannels } . ) ) ;
if ( d1 < $ { inputShape [ colDim ] } && d1 >= 0 ) {
ch = int ( mod ( float ( pos ) , $ { inChannels } . ) ) ;
if ( $ { isChannelsLast } ) {
innerDims = vec2 ( d1 , ch ) ;
result [ $ { row * 2 + col } ] = getChannel (
getA ( d0 , int ( innerDims . x ) ,
int ( innerDims . y ) ) , innerDims ) ;
} else {
innerDims = vec2 ( d0 , d1 ) ;
result [ $ { row * 2 + col } ] = getChannel (
getA ( ch , int ( innerDims . x ) ,
int ( innerDims . y ) ) , innerDims ) ;
}
}
}
}
2020-11-17 23:42:44 +01:00
` ;this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec2 rc = getOutputCoords ( ) ;
vec4 result = vec4 ( 0 ) ;
int blockIndex , pos , offsetY , d0 , offsetX , d1 , ch ;
vec2 innerDims ;
$ { unrolled }
$ { glsl . output } = result ;
}
2020-11-17 23:42:44 +01:00
` }}class LRNProgram{constructor(xShape,radius,bias,alpha,beta){this.variableNames=["x"],this.outputShape=[];const rad=radius,maxD=xShape[3]-1;this.outputShape=xShape;let powOperator;const basis= ` float ( $ { bias } ) + float ( $ { alpha } ) * sum ` ;beta===.5?powOperator= ` inversesqrt ( $ { basis } ) ` :beta===1?powOperator= ` 1.0 / ( $ { basis } ) ` :powOperator= ` exp ( log ( $ { basis } ) * float ( - $ { beta } ) ) ; ` ,this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int b = coords [ 0 ] ;
int r = coords [ 1 ] ;
int c = coords [ 2 ] ;
int d = coords [ 3 ] ;
float x = getX ( b , r , c , d ) ;
float sum = 0.0 ;
for ( int j = - $ { rad } ; j <= $ { rad } ; j ++ ) {
int idx = d + j ;
if ( idx >= 0 && idx <= $ { maxD } ) {
float z = getX ( b , r , c , idx ) ;
sum += z * z ;
}
}
float val = x * $ { powOperator } ;
setOutput ( val ) ;
}
2020-11-17 23:42:44 +01:00
` }}class LRNGradProgram{constructor(inputShape,depthRadius,bias,alpha,beta){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=inputShape,this.depth=inputShape[3],this.depthRadius=depthRadius,this.bias=bias,this.alpha=alpha,this.beta=beta,this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int b = coords [ 0 ] ;
int r = coords [ 1 ] ;
int c = coords [ 2 ] ;
float result = 0.0 ;
for ( int d = 0 ; d < $ { this . depth } ; ++ d ) {
int depthBegin = int ( max ( 0.0 , float ( d - $ { depthRadius } ) ) ) ;
int depthEnd = int ( min ( float ( $ { this . depth } ) ,
float ( d + $ { depthRadius } + 1 ) ) ) ;
const int MIN _DEPTH _BEGIN = 0 ;
const int MAX _DEPTH _END = $ { this . depth } ;
float norm = 0.0 ;
for ( int k = MIN _DEPTH _BEGIN ; k < MAX _DEPTH _END ; ++ k ) {
if ( k < depthBegin ) {
continue ;
}
else if ( k >= depthBegin && k < depthEnd ) {
norm += getInputImage ( b , r , c , k ) * getInputImage ( b , r , c , k ) ;
}
else {
break ;
}
}
norm = float ( $ { alpha } ) * norm + float ( $ { bias } ) ;
for ( int k = MIN _DEPTH _BEGIN ; k < MAX _DEPTH _END ; ++ k ) {
if ( k < depthBegin ) {
continue ;
}
else if ( k >= depthBegin && k < depthEnd ) {
float dyi = - 2.0 * float ( $ { alpha } )
* float ( $ { beta } )
* getInputImage ( b , r , c , k ) * getOutputImage ( b , r , c , d )
/ n o r m ;
if ( k == d ) {
dyi += pow ( norm , - 1.0 * $ { beta } ) ;
}
if ( k == coords [ 3 ] ) {
dyi *= getDy ( b , r , c , d ) ;
result += dyi ;
}
}
else {
break ;
}
}
}
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` }}class LRNPackedProgram{constructor(xShape,radius,bias,alpha,beta){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;const rad=radius,maxD=xShape[3]-1;this.outputShape=xShape;let powOperator;const basis= ` float ( $ { bias } ) + float ( $ { alpha } ) * sum ` ;beta===.5?powOperator= ` inversesqrt ( $ { basis } ) ` :beta===1?powOperator= ` 1.0 / ( $ { basis } ) ` :powOperator= ` exp ( log ( $ { basis } ) * float ( - $ { beta } ) ) ; ` ,this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int b = coords . x ;
int r = coords . y ;
int c = coords . z ;
int d = coords . w ;
bool hasNextCol = d < $ { this . outputShape [ 3 ] } ;
bool hasNextRow = c < $ { this . outputShape [ 2 ] } ;
vec4 sum = vec4 ( 0. ) ;
vec4 xFragAtOutputCoords = getX ( b , r , c , d ) ;
vec4 xAtOutputCoords = vec4 (
getChannel ( xFragAtOutputCoords , vec2 ( c , d ) ) ,
hasNextCol ?
getChannel ( xFragAtOutputCoords , vec2 ( c , d + 1 ) ) : 0.0 ,
hasNextRow ?
getChannel ( xFragAtOutputCoords , vec2 ( c + 1 , d ) ) : 0.0 ,
( hasNextRow && hasNextCol ) ?
getChannel ( xFragAtOutputCoords , vec2 ( c + 1 , d + 1 ) ) : 0.0
) ;
int firstChannel = d - $ { rad } ;
vec2 cache = vec2 ( 0. ) ;
if ( firstChannel >= 0 ) {
vec4 firstChannelFrag = getX ( b , r , c , firstChannel ) ;
cache . x = getChannel ( firstChannelFrag , vec2 ( c , firstChannel ) ) ;
if ( hasNextRow ) {
cache . y = getChannel ( firstChannelFrag , vec2 ( c + 1 , firstChannel ) ) ;
}
}
ivec2 depth = ivec2 ( d , d + 1 ) ;
for ( int j = - $ { rad } ; j <= $ { rad } ; j ++ ) {
ivec2 idx = depth + j ;
bvec2 aboveLowerBound = greaterThanEqual ( idx , ivec2 ( 0 ) ) ;
bvec2 belowUpperBound = lessThanEqual ( idx , ivec2 ( $ { maxD } ) ) ;
bool depthInRange = aboveLowerBound . x && belowUpperBound . x ;
bool depthPlusOneInRange = aboveLowerBound . y && belowUpperBound . y ;
if ( depthInRange || depthPlusOneInRange ) {
vec4 z = vec4 ( 0. ) ;
vec4 xFragAtCurrentDepth ;
z . xz = cache . xy ;
if ( depthPlusOneInRange && hasNextCol ) {
xFragAtCurrentDepth = idx . y != d ?
getX ( b , r , c , idx . y ) : xFragAtOutputCoords ;
z . y = getChannel ( xFragAtCurrentDepth , vec2 ( c , idx . y ) ) ;
if ( hasNextRow ) {
z . w = getChannel ( xFragAtCurrentDepth , vec2 ( c + 1 , idx . y ) ) ;
}
}
cache . xy = z . yw ;
sum += z * z ;
}
}
vec4 result = xAtOutputCoords * $ { powOperator } ;
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` }}class MaxPool2DBackpropProgram{constructor(convInfo){this.variableNames=["dy","maxPos"],this.outputShape=convInfo.inShape;const strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationHeight=convInfo.dilationHeight,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padTop=effectiveFilterHeight-1-convInfo.padInfo.top,padLeft=effectiveFilterWidth-1-convInfo.padInfo.left,lastIndex=effectiveFilterHeight*effectiveFilterWidth-1;this.userCode= `
2020-11-17 18:38:48 +01:00
const ivec2 pads = ivec2 ( $ { padTop } , $ { padLeft } ) ;
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int b = coords [ 0 ] ;
int d = coords [ 3 ] ;
ivec2 dyRCCorner = coords . yz - pads ;
int dyRCorner = dyRCCorner . x ;
int dyCCorner = dyRCCorner . y ;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0 ;
for ( int wR = 0 ; wR < $ { effectiveFilterHeight } ;
wR += $ { dilationHeight } ) {
float dyR = float ( dyRCorner + wR ) / $ { strideHeight } . 0 ;
if ( dyR < 0.0 || dyR >= $ { convInfo . outHeight } . 0 || fract ( dyR ) > 0.0 ) {
continue ;
}
int idyR = int ( dyR ) ;
for ( int wC = 0 ; wC < $ { effectiveFilterWidth } ; wC ++ ) {
float dyC = float ( dyCCorner + wC ) / $ { strideWidth } . 0 ;
if ( dyC < 0.0 || dyC >= $ { convInfo . outWidth } . 0 ||
fract ( dyC ) > 0.0 ) {
continue ;
}
int idyC = int ( dyC ) ;
float dyValue = getDy ( b , idyR , idyC , d ) ;
int maxPosValue = $ { lastIndex } - int ( getMaxPos ( b , idyR , idyC , d ) ) ;
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * $ { effectiveFilterWidth } + wC ;
float mask = float ( maxPosValue == curPosValue ? 1.0 : 0.0 ) ;
dotProd += dyValue * mask ;
}
}
setOutput ( dotProd ) ;
}
2020-11-17 23:42:44 +01:00
` }}class MaxPool3DBackpropProgram{constructor(convInfo){this.variableNames=["dy","maxPos"],this.outputShape=convInfo.inShape;const strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationDepth=convInfo.dilationDepth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterDepth=convInfo.effectiveFilterDepth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padFront=effectiveFilterDepth-1-convInfo.padInfo.front,padTop=effectiveFilterHeight-1-convInfo.padInfo.top,padLeft=effectiveFilterWidth-1-convInfo.padInfo.left,lastIndex=effectiveFilterDepth*effectiveFilterHeight*effectiveFilterWidth-1;this.userCode= `
2020-11-17 18:38:48 +01:00
const ivec3 pads = ivec3 ( $ { padFront } , $ { padTop } , $ { padLeft } ) ;
void main ( ) {
ivec5 coords = getOutputCoords ( ) ;
int batch = coords . x ;
int ch = coords . u ;
ivec3 dyCorner = ivec3 ( coords . y , coords . z , coords . w ) - pads ;
int dyDCorner = dyCorner . x ;
int dyRCorner = dyCorner . y ;
int dyCCorner = dyCorner . z ;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0 ;
for ( int wD = 0 ; wD < $ { effectiveFilterDepth } ;
wD += $ { dilationDepth } ) {
float dyD = float ( dyDCorner + wD ) / $ { strideDepth } . 0 ;
if ( dyD < 0.0 || dyD >= $ { convInfo . outDepth } . 0 || fract ( dyD ) > 0.0 ) {
continue ;
}
int idyD = int ( dyD ) ;
for ( int wR = 0 ; wR < $ { effectiveFilterHeight } ;
wR += $ { dilationHeight } ) {
float dyR = float ( dyRCorner + wR ) / $ { strideHeight } . 0 ;
if ( dyR < 0.0 || dyR >= $ { convInfo . outHeight } . 0 ||
fract ( dyR ) > 0.0 ) {
continue ;
}
int idyR = int ( dyR ) ;
for ( int wC = 0 ; wC < $ { effectiveFilterWidth } ;
wC += $ { dilationWidth } ) {
float dyC = float ( dyCCorner + wC ) / $ { strideWidth } . 0 ;
if ( dyC < 0.0 || dyC >= $ { convInfo . outWidth } . 0 ||
fract ( dyC ) > 0.0 ) {
continue ;
}
int idyC = int ( dyC ) ;
float dyValue = getDy ( batch , idyD , idyR , idyC , ch ) ;
int maxPosValue = $ { lastIndex } -
int ( getMaxPos ( batch , idyD , idyR , idyC , ch ) ) ;
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * $ { effectiveFilterHeight } * $ { effectiveFilterWidth } +
wR * $ { effectiveFilterWidth } + wC ;
float mask = float ( maxPosValue == curPosValue ? 1.0 : 0.0 ) ;
dotProd += dyValue * mask ;
}
}
}
setOutput ( dotProd ) ;
}
2020-11-17 23:42:44 +01:00
` }}class MatMulPackedProgram{constructor(aShape,bShape,outputShape,transposeA=!1,transposeB=!1,addBias=!1,activation2=null,hasPreluActivation=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=outputShape;const sharedDim=transposeA?aShape[1]:aShape[2],sharedDimensionPacked=Math.ceil(sharedDim/2),aSample=transposeA?"i * 2, rc.y":"rc.y, i * 2",bSample=transposeB?"rc.z, i * 2":"i * 2, rc.z",aSwizzle=transposeA?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],bSwizzle=transposeB?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"];let activationSnippet="",applyActivationSnippet="";activation2&&(hasPreluActivation?activationSnippet= ` vec4 activation ( vec4 a ) {
2020-11-17 18:38:48 +01:00
vec4 b = getPreluActivationWeightsAtOutCoords ( ) ;
$ { activation2 }
2020-11-17 23:42:44 +01:00
} ` :activationSnippet= ` vec4 activation ( vec4 x ) {
2020-11-17 18:38:48 +01:00
$ { activation2 }
2020-11-17 23:42:44 +01:00
} ` ,applyActivationSnippet="result = activation(result);");const addBiasSnippet=addBias?"result += getBiasAtOutCoords();":"";addBias&&this.variableNames.push("bias"),hasPreluActivation&&this.variableNames.push("preluActivationWeights");let batchASnippet="rc.x",batchBSnippet="rc.x";aShape[0]<bShape[0]?batchASnippet= ` int ( min ( float ( rc . x ) , $ { aShape [ 0 ] - 1 } . ) ) ` :bShape[0]<aShape[0]&&(batchBSnippet= ` int ( min ( float ( rc . x ) , $ { bShape [ 0 ] - 1 } . ) ) ` ),this.userCode= `
2020-11-17 18:38:48 +01:00
$ { activationSnippet }
const float sharedDimension = $ { sharedDimensionPacked } . 0 ;
vec4 dot2x2ARowBCol ( ivec3 rc ) {
vec4 result = vec4 ( 0 ) ;
for ( int i = 0 ; i < $ { sharedDimensionPacked } ; i ++ ) {
int batchA = $ { batchASnippet } ;
int batchB = $ { batchBSnippet } ;
vec4 a = getMatrixA ( batchA , $ { aSample } ) ;
vec4 b = getMatrixB ( batchB , $ { bSample } ) ;
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += ( $ { aSwizzle [ 0 ] } * $ { bSwizzle [ 0 ] } ) ;
result += ( $ { aSwizzle [ 1 ] } * $ { bSwizzle [ 1 ] } ) ;
}
return result ;
}
void main ( ) {
ivec3 rc = getOutputCoords ( ) ;
vec4 result = dot2x2ARowBCol ( rc ) ;
$ { addBiasSnippet }
$ { applyActivationSnippet }
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` }}class MultinomialProgram{constructor(batchSize,numOutcomes,numSamples){this.variableNames=["probs"],this.outputShape=[batchSize,numSamples],this.userCode= `
2020-11-17 18:38:48 +01:00
uniform float seed ;
void main ( ) {
ivec2 coords = getOutputCoords ( ) ;
int batch = coords [ 0 ] ;
float r = random ( seed ) ;
float cdf = 0.0 ;
for ( int i = 0 ; i < $ { numOutcomes - 1 } ; i ++ ) {
cdf += getProbs ( batch , i ) ;
if ( r < cdf ) {
setOutput ( float ( i ) ) ;
return ;
}
}
// If no other event happened, last event happened.
setOutput ( float ( $ { numOutcomes - 1 } ) ) ;
}
2020-11-17 23:42:44 +01:00
` }getCustomSetupFunc(seed){return(gpgpu,webGLProgram)=>{this.seedLoc==null&&(this.seedLoc=gpgpu.getUniformLocation(webGLProgram,"seed")),gpgpu.gl.uniform1f(this.seedLoc,seed)}}}class OneHotProgram{constructor(numIndices,depth,onValue,offValue){this.variableNames=["indices"],this.outputShape=[numIndices,depth],this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec2 coords = getOutputCoords ( ) ;
int index = round ( getIndices ( coords . x ) ) ;
setOutput ( mix ( float ( $ { offValue } ) , float ( $ { onValue } ) ,
float ( index == coords . y ) ) ) ;
}
2020-11-17 23:42:44 +01:00
` }}class PackProgram{constructor(outputShape){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=outputShape;const rank=outputShape.length;if(rank===0)this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
setOutput ( vec4 ( getA ( ) , 0. , 0. , 0. ) ) ;
}
2020-11-17 23:42:44 +01:00
` ;else{const channels=getChannels("rc",rank),dtype=getCoordsDataType(rank),outOfBoundsCondition=getOutOfBoundsCondition(rank,outputShape,channels),setup38=getSetup(rank,outputShape[outputShape.length-1],outputShape[outputShape.length-2],channels),output=getOutput(outputShape,channels);this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
$ { dtype } rc = getOutputCoords ( ) ;
if ( $ { outOfBoundsCondition } ) {
setOutput ( vec4 ( 0 ) ) ;
} else {
$ { setup38 }
setOutput ( vec4 ( $ { output } ) ) ;
}
}
2020-11-17 23:42:44 +01:00
` }}}function getSourceCoordsArr(rank,dims){const coords2=[];for(let row=0;row<=1;row++)for(let col=0;col<=1;col++){let coord= ` $ { row === 0 ? "r" : "rp1" } , $ { col === 0 ? "c" : "cp1" } ` ;for(let d=2;d<rank;d++)coord= ` $ { dims [ dims . length - 1 - d ] } , ` +coord;coords2.push(coord)}return coords2}function getOutOfBoundsCondition(rank,shape,dims){if(rank===1)return ` rc > $ { shape [ 0 ] } ` ;let cond="";for(let i=rank-2;i<rank;i++)cond+= ` $ { dims [ i ] } >= $ { shape [ i ] } ` ,i<rank-1&&(cond+="||");return cond}function getSetup(rank,cols,rows,dims){if(rank===1)return"";const innerDims=dims.slice(-2);return `
2020-11-17 18:38:48 +01:00
int r = $ { innerDims [ 0 ] } ;
int c = $ { innerDims [ 1 ] } ;
int rp1 = r + 1 ;
int cp1 = c + 1 ;
bool cEdge = cp1 >= $ { cols } ;
bool rEdge = rp1 >= $ { rows } ;
2020-11-17 23:42:44 +01:00
` }function getOutput(shape,dims){const rank=shape.length,sourceCoords=getSourceCoordsArr(rank,dims);return rank===1? ` getA ( rc ) ,
2020-11-17 18:38:48 +01:00
rc + 1 >= $ { shape [ 0 ] } ? 0. : getA ( rc + 1 ) ,
2020-11-17 23:42:44 +01:00
0 , 0 ` : ` getA ( $ { sourceCoords [ 0 ] } ) ,
2020-11-17 18:38:48 +01:00
cEdge ? 0. : getA ( $ { sourceCoords [ 1 ] } ) ,
rEdge ? 0. : getA ( $ { sourceCoords [ 2 ] } ) ,
2020-11-17 23:42:44 +01:00
rEdge || cEdge ? 0. : getA ( $ { sourceCoords [ 3 ] } ) ` }class PadProgram{constructor(xShape,paddings,constantValue){this.variableNames=["x"],this.outputShape=paddings.map((p2,i)=>p2[0]+xShape[i]+p2[1]);const rank=xShape.length,type=getCoordsDataType(rank),start=paddings.map(p2=>p2[0]).join(","),end=paddings.map((p2,i)=>p2[0]+xShape[i]).join(","),unpackedCoords=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,rank);if(rank===1){this.userCode= `
2020-11-17 18:38:48 +01:00
int start = $ { start } ;
int end = $ { end } ;
void main ( ) {
int outC = getOutputCoords ( ) ;
if ( outC < start || outC >= end ) {
setOutput ( float ( $ { constantValue } ) ) ;
} else {
setOutput ( getX ( outC - start ) ) ;
}
}
` ;return}this.userCode= `
$ { type } start = $ { type } ( $ { start } ) ;
$ { type } end = $ { type } ( $ { end } ) ;
void main ( ) {
$ { type } outC = getOutputCoords ( ) ;
if ( any ( lessThan ( outC , start ) ) || any ( greaterThanEqual ( outC , end ) ) ) {
setOutput ( float ( $ { constantValue } ) ) ;
} else {
$ { type } coords = outC - start ;
setOutput ( getX ( $ { unpackedCoords } ) ) ;
}
}
2020-11-17 23:42:44 +01:00
` }}class PadPackedProgram{constructor(xShape,paddings,constantValue){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=paddings.map((p2,i)=>p2[0]+xShape[i]+p2[1]);const rank=xShape.length,dtype=getCoordsDataType(rank),start=paddings.map(p2=>p2[0]).join(","),end=paddings.map((p2,i)=>p2[0]+xShape[i]).join(","),coords2=getChannels("rc",rank),source=getChannels("source",rank),cLimit= ` $ { coords2 [ rank - 1 ] } < $ { this . outputShape [ rank - 1 ] } ` ,innerDims=rank===1?"source": ` vec2 ( $ { source . slice ( - 2 ) . join ( ) } ) ` ,componentSetup=[ ` $ { dtype } rc = outputLoc ; ` , ` $ { coords2 [ rank - 1 ] } += 1 ;
2020-11-17 18:38:48 +01:00
if ( $ { cLimit } ) {
` ,rank===1?"": ` }
rc = outputLoc ;
$ { coords2 [ rank - 2 ] } += 1 ;
if ( $ { coords2 [ rank - 2 ] } < $ { this . outputShape [ rank - 2 ] } ) { ` ,rank===1?"": ` $ { coords2 [ rank - 1 ] } += 1 ;
2020-11-17 23:42:44 +01:00
if ( $ { cLimit } ) { ` ],paddingArea=rank===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))";let mainLoop="";for(let i=0,j=rank===1?2:4;i<j;i++)mainLoop+= `
2020-11-17 18:38:48 +01:00
$ { componentSetup [ i ] }
if ( $ { paddingArea } ) {
result [ $ { i } ] = float ( $ { constantValue } ) ;
} else {
$ { dtype } source = rc - start ;
result [ $ { i } ] = getChannel ( getX ( $ { source . join ( ) } ) , $ { innerDims } ) ;
}
2020-11-17 23:42:44 +01:00
` ;mainLoop+=rank===1?"} ":"}}",this.userCode= `
2020-11-17 18:38:48 +01:00
const $ { dtype } start = $ { dtype } ( $ { start } ) ;
const $ { dtype } end = $ { dtype } ( $ { end } ) ;
void main ( ) {
$ { dtype } outputLoc = getOutputCoords ( ) ;
vec4 result = vec4 ( 0. ) ;
$ { mainLoop }
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` }}class Pool2DProgram{constructor(convInfo,poolType,computePositions,flattenPositions=!1,includeBatchInIndex=!1){if(this.variableNames=["x"],poolType==="avg"&&computePositions)throw new Error("Cannot compute positions for average pool.");const filterWidth=convInfo.filterWidth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left;this.outputShape=convInfo.outShape;const isAvgPool=poolType==="avg",batchFlattenPositionStr= ` ( ( batch * $ { convInfo . inHeight } + xR ) * $ { convInfo . inWidth } + xC ) * $ { convInfo . inChannels } + d ` ,flattenPositionStr= ` ( xR * $ { convInfo . inWidth } + xC ) * $ { convInfo . inChannels } + d ` ;let initializationValue="0.0";if(isAvgPool||(initializationValue="-1.0 / 1e-20"),computePositions){const compareOp2=">=";this.userCode= `
2020-11-17 18:38:48 +01:00
const ivec2 strides = ivec2 ( $ { strideHeight } , $ { strideWidth } ) ;
const ivec2 pads = ivec2 ( $ { padTop } , $ { padLeft } ) ;
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int batch = coords [ 0 ] ;
int d = coords [ 3 ] ;
ivec2 xRCCorner = coords . yz * strides - pads ;
int xRCorner = xRCCorner . x ;
int xCCorner = xRCCorner . y ;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0 ;
float minMaxValueFound = 0.0 ;
int minMaxPosition = 0 ;
float avgValue = 0.0 ;
for ( int wR = 0 ; wR < $ { effectiveFilterHeight } ;
wR += $ { dilationHeight } ) {
int xR = xRCorner + wR ;
if ( xR < 0 || xR >= $ { convInfo . inHeight } ) {
continue ;
}
for ( int wC = 0 ; wC < $ { effectiveFilterWidth } ;
wC += $ { dilationWidth } ) {
int xC = xCCorner + wC ;
if ( xC < 0 || xC >= $ { convInfo . inWidth } ) {
continue ;
}
float value = getX ( batch , xR , xC , d ) ;
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix (
value , minMaxValue , minMaxValueFound ) ;
if ( value $ { compareOp2 } currMinMaxValue ) {
minMaxValue = value ;
minMaxValueFound = 1.0 ;
minMaxPosition = $ { flattenPositions ? includeBatchInIndex ? batchFlattenPositionStr : flattenPositionStr : ` wR * ${ effectiveFilterWidth } + wC ` } ;
}
}
}
setOutput ( float ( minMaxPosition ) ) ;
}
2020-11-17 23:42:44 +01:00
` ;return}const compareOp="max";let returnValue= ` $ { poolType } ( $ { poolType } ( $ { poolType } ( minMaxValue [ 0 ] , minMaxValue [ 1 ] ) , minMaxValue [ 2 ] ) , minMaxValue [ 3 ] ) ` ;poolType==="avg"&&(returnValue="avgValue / count");const filterWidthNearestVec4=Math.floor(filterWidth/4)*4,filterWidthVec4Remainder=filterWidth%4,updateSnippet= `
2020-11-17 18:38:48 +01:00
if ( $ { isAvgPool } ) {
avgValue += dot ( values , ones ) ;
} else {
minMaxValue = $ { compareOp } ( values , minMaxValue ) ;
}
` ;this.userCode= `
const ivec2 strides = ivec2 ( $ { strideHeight } , $ { strideWidth } ) ;
const ivec2 pads = ivec2 ( $ { padTop } , $ { padLeft } ) ;
const float initializationValue = $ { initializationValue } ;
const vec4 ones = vec4 ( 1.0 , 1.0 , 1.0 , 1.0 ) ;
float count = 0.0 ;
float getValue ( int batch , int xR , int xC , int d ) {
if ( xC < 0 || xC >= $ { convInfo . inWidth } ) {
return initializationValue ;
}
count += 1.0 ;
return getX ( batch , xR , xC , d ) ;
}
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int batch = coords [ 0 ] ;
int d = coords [ 3 ] ;
ivec2 xRCCorner = coords . yz * strides - pads ;
int xRCorner = xRCCorner . x ;
int xCCorner = xRCCorner . y ;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4 ( $ { initializationValue } ) ;
float avgValue = 0.0 ;
count = 0.0 ;
for ( int wR = 0 ; wR < $ { effectiveFilterHeight } ;
wR += $ { dilationHeight } ) {
int xR = xRCorner + wR ;
if ( xR < 0 || xR >= $ { convInfo . inHeight } ) {
continue ;
}
for ( int wC = 0 ; wC < $ { filterWidthNearestVec4 } ; wC += 4 ) {
int xC = xCCorner + wC * $ { dilationWidth } ;
vec4 values = vec4 (
getValue ( batch , xR , xC , d ) ,
getValue ( batch , xR , xC + $ { dilationWidth } , d ) ,
getValue ( batch , xR , xC + 2 * $ { dilationWidth } , d ) ,
getValue ( batch , xR , xC + 3 * $ { dilationWidth } , d )
) ;
$ { updateSnippet }
}
int xC = xCCorner + $ { filterWidthNearestVec4 } ;
if ( $ { filterWidthVec4Remainder === 1 } ) {
vec4 values = vec4 (
getValue ( batch , xR , xC , d ) ,
initializationValue ,
initializationValue ,
initializationValue
) ;
$ { updateSnippet }
} else if ( $ { filterWidthVec4Remainder === 2 } ) {
vec4 values = vec4 (
getValue ( batch , xR , xC , d ) ,
getValue ( batch , xR , xC + $ { dilationWidth } , d ) ,
initializationValue ,
initializationValue
) ;
$ { updateSnippet }
} else if ( $ { filterWidthVec4Remainder === 3 } ) {
vec4 values = vec4 (
getValue ( batch , xR , xC , d ) ,
getValue ( batch , xR , xC + $ { dilationWidth } , d ) ,
getValue ( batch , xR , xC + 2 * $ { dilationWidth } , d ) ,
initializationValue
) ;
$ { updateSnippet }
}
}
setOutput ( $ { returnValue } ) ;
}
2020-11-17 23:42:44 +01:00
` }}class Pool3DProgram{constructor(convInfo,poolType,computePositions,flattenPositions=!1,includeBatchInIndex=!1){if(this.variableNames=["x"],poolType==="avg"&&computePositions)throw new Error("Cannot compute positions for average pool.");const filterWidth=convInfo.filterWidth,strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationDepth=convInfo.dilationDepth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterDepth=convInfo.effectiveFilterDepth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padFront=convInfo.padInfo.front,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left;this.outputShape=convInfo.outShape;const isAvgPool=poolType==="avg";let initializationValue="0.0";if(isAvgPool||(initializationValue="-1.0 / 1e-20"),computePositions){const compareOp2=">=";this.userCode= `
2020-11-17 18:38:48 +01:00
const ivec3 strides =
ivec3 ( $ { strideDepth } , $ { strideHeight } , $ { strideWidth } ) ;
const ivec3 pads = ivec3 ( $ { padFront } , $ { padTop } , $ { padLeft } ) ;
void main ( ) {
ivec5 coords = getOutputCoords ( ) ;
int batch = coords . x ;
int ch = coords . u ;
ivec3 xCorner = ivec3 ( coords . y , coords . z , coords . w ) * strides - pads ;
int xDCorner = xCorner . x ;
int xRCorner = xCorner . y ;
int xCCorner = xCorner . z ;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0 ;
float minMaxValueFound = 0.0 ;
int minMaxPosition = 0 ;
for ( int wD = 0 ; wD < $ { effectiveFilterDepth } ;
wD += $ { dilationDepth } ) {
int xD = xDCorner + wD ;
if ( xD < 0 || xD >= $ { convInfo . inDepth } ) {
continue ;
}
for ( int wR = 0 ; wR < $ { effectiveFilterHeight } ;
wR += $ { dilationHeight } ) {
int xR = xRCorner + wR ;
if ( xR < 0 || xR >= $ { convInfo . inHeight } ) {
continue ;
}
for ( int wC = 0 ; wC < $ { effectiveFilterWidth } ;
wC += $ { dilationWidth } ) {
int xC = xCCorner + wC ;
if ( xC < 0 || xC >= $ { convInfo . inWidth } ) {
continue ;
}
float value = getX ( batch , xD , xR , xC , ch ) ;
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix (
value , minMaxValue , minMaxValueFound ) ;
if ( value $ { compareOp2 } currMinMaxValue ) {
minMaxValue = value ;
minMaxValueFound = 1.0 ;
minMaxPosition = $ { flattenPositions ? includeBatchInIndex ? ` (((batch * ${ convInfo . inDepth } + xD) * ${ convInfo . inHeight } + xR) * ${ convInfo . inWidth } + xC) * ${ convInfo . inChannels } + ch ` : ` ((xD * ${ convInfo . inHeight } + xR) * ${ convInfo . inWidth } + xC) * ${ convInfo . inChannels } + ch ` : ` wD * ${ effectiveFilterHeight } * ${ effectiveFilterWidth } +
wR * $ { effectiveFilterWidth } + wC ` };
}
}
}
}
setOutput ( float ( minMaxPosition ) ) ;
}
2020-11-17 23:42:44 +01:00
` ;return}const compareOp="max";let returnValue= ` $ { poolType } ( $ { poolType } ( $ { poolType } ( minMaxValue [ 0 ] , minMaxValue [ 1 ] ) , minMaxValue [ 2 ] ) , minMaxValue [ 3 ] ) ` ;poolType==="avg"&&(returnValue="avgValue / count");const filterWidthNearestVec4=Math.floor(filterWidth/4)*4,filterWidthVec4Remainder=filterWidth%4,updateSnippet= `
2020-11-17 18:38:48 +01:00
if ( $ { isAvgPool } ) {
avgValue += dot ( values , ones ) ;
} else {
minMaxValue = $ { compareOp } ( values , minMaxValue ) ;
}
` ;this.userCode= `
const ivec3 strides =
ivec3 ( $ { strideDepth } , $ { strideHeight } , $ { strideWidth } ) ;
const ivec3 pads = ivec3 ( $ { padFront } , $ { padTop } , $ { padLeft } ) ;
const float initializationValue = $ { initializationValue } ;
const vec4 ones = vec4 ( 1.0 , 1.0 , 1.0 , 1.0 ) ;
float count = 0.0 ;
float getValue ( int batch , int xD , int xR , int xC , int ch ) {
if ( xC < 0 || xC >= $ { convInfo . inWidth } ) {
return initializationValue ;
}
count += 1.0 ;
return getX ( batch , xD , xR , xC , ch ) ;
}
void main ( ) {
ivec5 coords = getOutputCoords ( ) ;
int batch = coords . x ;
int ch = coords . u ;
ivec3 xCorner = ivec3 ( coords . y , coords . z , coords . w ) * strides - pads ;
int xDCorner = xCorner . x ;
int xRCorner = xCorner . y ;
int xCCorner = xCorner . z ;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4 ( $ { initializationValue } ) ;
float avgValue = 0.0 ;
count = 0.0 ;
for ( int wD = 0 ; wD < $ { effectiveFilterDepth } ;
wD += $ { dilationDepth } ) {
int xD = xDCorner + wD ;
if ( xD < 0 || xD >= $ { convInfo . inDepth } ) {
continue ;
}
for ( int wR = 0 ; wR < $ { effectiveFilterHeight } ;
wR += $ { dilationHeight } ) {
int xR = xRCorner + wR ;
if ( xR < 0 || xR >= $ { convInfo . inHeight } ) {
continue ;
}
for ( int wC = 0 ; wC < $ { filterWidthNearestVec4 } ; wC += 4 ) {
int xC = xCCorner + wC * $ { dilationWidth } ;
vec4 values = vec4 (
getValue ( batch , xD , xR , xC , ch ) ,
getValue ( batch , xD , xR , xC + $ { dilationWidth } , ch ) ,
getValue ( batch , xD , xR , xC + 2 * $ { dilationWidth } , ch ) ,
getValue ( batch , xD , xR , xC + 3 * $ { dilationWidth } , ch )
) ;
$ { updateSnippet }
}
int xC = xCCorner + $ { filterWidthNearestVec4 } ;
if ( $ { filterWidthVec4Remainder === 1 } ) {
vec4 values = vec4 (
getValue ( batch , xD , xR , xC , ch ) ,
initializationValue ,
initializationValue ,
initializationValue
) ;
$ { updateSnippet }
} else if ( $ { filterWidthVec4Remainder === 2 } ) {
vec4 values = vec4 (
getValue ( batch , xD , xR , xC , ch ) ,
getValue ( batch , xD , xR , xC + $ { dilationWidth } , ch ) ,
initializationValue ,
initializationValue
) ;
$ { updateSnippet }
} else if ( $ { filterWidthVec4Remainder === 3 } ) {
vec4 values = vec4 (
getValue ( batch , xD , xR , xC , ch ) ,
getValue ( batch , xD , xR , xC + $ { dilationWidth } , ch ) ,
getValue ( batch , xD , xR , xC + 2 * $ { dilationWidth } , ch ) ,
initializationValue
) ;
$ { updateSnippet }
}
}
setOutput ( $ { returnValue } ) ;
}
}
2020-11-17 23:42:44 +01:00
` }}class ReduceProgram{constructor(reduceInfo,reduceType){this.variableNames=["x"];const{windowSize,batchSize,inSize,outSize}=reduceInfo;this.outputShape=[batchSize,outSize];let initializationValue="0.0",compareOp="";reduceType==="prod"?initializationValue="1.0":reduceType==="min"?(initializationValue="1.0 / 1e-20",compareOp="min"):reduceType==="max"&&(initializationValue="-1.0 / 1e-20",compareOp="max");let returnValue= ` $ { reduceType } ( $ { reduceType } ( $ { reduceType } ( minMaxValue [ 0 ] , minMaxValue [ 1 ] ) , minMaxValue [ 2 ] ) , minMaxValue [ 3 ] ) ` ;reduceType==="sum"?returnValue="sumValue":reduceType==="prod"?returnValue="prodValue":reduceType==="all"?returnValue="allValue":reduceType==="any"&&(returnValue="anyValue");const windowSizeNearestVec4=Math.floor(windowSize/4)*4,windowSizeVec4Remainder=windowSize%4;let updateSnippet= `
2020-11-17 18:38:48 +01:00
if ( $ { reduceType === "sum" } ) {
sumValue += dot ( values , ones ) ;
} else if ( $ { reduceType === "prod" } ) {
vec2 tmp = vec2 ( values [ 0 ] , values [ 1 ] ) * vec2 ( values [ 2 ] , values [ 3 ] ) ;
prodValue *= tmp [ 0 ] * tmp [ 1 ] ;
} else {
minMaxValue = $ { compareOp } ( values , minMaxValue ) ;
}
2020-11-17 23:42:44 +01:00
` ,vecType="vec4";reduceType==="all"?(initializationValue="1.0",updateSnippet= `
2020-11-17 18:38:48 +01:00
bool reducedAllValue = all ( values ) ;
float floatedReducedAllValue = float ( reducedAllValue ) ;
allValue = float ( allValue >= 1.0 && floatedReducedAllValue >= 1.0 ) ;
2020-11-17 23:42:44 +01:00
` ,vecType="bvec4"):reduceType==="any"&&(initializationValue="0.0",updateSnippet= `
2020-11-17 18:38:48 +01:00
bool reducedAnyValue = any ( values ) ;
float floatedReducedAnyValue = float ( reducedAnyValue ) ;
anyValue = float ( anyValue >= 1.0 || floatedReducedAnyValue >= 1.0 ) ;
2020-11-17 23:42:44 +01:00
` ,vecType="bvec4");let checkOutOfBounds="";inSize%windowSize>0&&(checkOutOfBounds= `
2020-11-17 18:38:48 +01:00
if ( inIdx < 0 || inIdx >= $ { inSize } ) {
return initializationValue ;
}
2020-11-17 23:42:44 +01:00
` ),this.userCode= `
2020-11-17 18:38:48 +01:00
const float initializationValue = $ { initializationValue } ;
const vec4 ones = vec4 ( 1.0 , 1.0 , 1.0 , 1.0 ) ;
float getValue ( int batch , int inIdx ) {
$ { checkOutOfBounds }
return getX ( batch , inIdx ) ;
}
void main ( ) {
ivec2 coords = getOutputCoords ( ) ;
int batch = coords [ 0 ] ;
int outIdx = coords [ 1 ] ;
int inOffset = outIdx * $ { windowSize } ;
vec4 minMaxValue = vec4 ( $ { initializationValue } ) ;
float prodValue = 1.0 ;
float sumValue = 0.0 ;
float allValue = 1.0 ;
float anyValue = 0.0 ;
for ( int i = 0 ; i < $ { windowSizeNearestVec4 } ; i += 4 ) {
int inIdx = inOffset + i ;
$ { vecType } values = $ { vecType } (
getValue ( batch , inIdx ) ,
getValue ( batch , inIdx + 1 ) ,
getValue ( batch , inIdx + 2 ) ,
getValue ( batch , inIdx + 3 )
) ;
$ { updateSnippet }
}
int inIdx = inOffset + $ { windowSizeNearestVec4 } ;
if ( $ { windowSizeVec4Remainder === 1 } ) {
$ { vecType } values = $ { vecType } (
getValue ( batch , inIdx ) ,
initializationValue ,
initializationValue ,
initializationValue
) ;
$ { updateSnippet }
} else if ( $ { windowSizeVec4Remainder === 2 } ) {
$ { vecType } values = $ { vecType } (
getValue ( batch , inIdx ) ,
getValue ( batch , inIdx + 1 ) ,
initializationValue ,
initializationValue
) ;
$ { updateSnippet }
} else if ( $ { windowSizeVec4Remainder === 3 } ) {
$ { vecType } values = $ { vecType } (
getValue ( batch , inIdx ) ,
getValue ( batch , inIdx + 1 ) ,
getValue ( batch , inIdx + 2 ) ,
initializationValue
) ;
$ { updateSnippet }
}
setOutput ( $ { returnValue } ) ;
}
2020-11-17 23:42:44 +01:00
` }}class ReshapePackedProgram{constructor(outputShape,inputShape){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=outputShape;let mainLoop="";for(let i=0;i<4;i++){let thisRC="thisRC = rc;";i%2===1&&(thisRC+="thisRC.z += 1;"),i>1&&(thisRC+="thisRC.y += 1;"),mainLoop+= `
2020-11-17 18:38:48 +01:00
$ { thisRC }
2020-11-17 23:42:44 +01:00
$ { i > 0 ? "if(thisRC.y < rows && thisRC.z < cols){" : "" }
2020-11-17 18:38:48 +01:00
int flatIndex = getFlatIndex ( thisRC ) ;
ivec3 inputRC = inputCoordsFromReshapedOutCoords ( flatIndex ) ;
vec2 inputRCInnerDims = vec2 ( float ( inputRC . y ) , float ( inputRC . z ) ) ;
result [ $ { i } ] =
getChannel ( getA ( inputRC . x , inputRC . y , inputRC . z ) , inputRCInnerDims ) ;
$ { i > 0 ? "}" : "" }
` }this.userCode= `
$ { getReshapedInputCoords ( inputShape ) }
$ { getFlatIndexFrom3D ( outputShape ) }
void main ( ) {
ivec3 rc = getOutputCoords ( ) ;
vec4 result = vec4 ( 0. ) ;
ivec3 thisRC ;
int rows = $ { outputShape [ 1 ] } ;
int cols = $ { outputShape [ 2 ] } ;
$ { mainLoop }
setOutput ( result ) ;
}
` }}function getReshapedInputCoords(shape){const coordsFromIndexSnippet=getLogicalCoordinatesFromFlatIndex(["r","c","d"],shape);return `
ivec3 inputCoordsFromReshapedOutCoords ( int index ) {
$ { coordsFromIndexSnippet }
return ivec3 ( r , c , d ) ;
}
2020-11-17 23:42:44 +01:00
` }class ResizeBilinearBackpropProgram{constructor(dy,x,alignCorners){this.variableNames=["dy"],this.outputShape=[],this.outputShape=x.shape;const[,xHeight,xWidth]=x.shape,[,yHeight,yWidth]=dy.shape,effectiveXSize=[alignCorners&&yHeight>1?xHeight-1:xHeight,alignCorners&&yWidth>1?xWidth-1:xWidth],effectiveYSize=[alignCorners&&yHeight>1?yHeight-1:yHeight,alignCorners&&yWidth>1?yWidth-1:yWidth],heightScale=effectiveXSize[0]/effectiveYSize[0],widthScale=effectiveXSize[1]/effectiveYSize[1],invHeightScale=1/heightScale,invWidthScale=1/widthScale,winHeight=Math.ceil(invHeightScale)*2+2,winWidth=Math.ceil(invWidthScale)*2+2;this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int b = coords [ 0 ] ;
int d = coords [ 3 ] ;
int r = coords [ 1 ] ;
int c = coords [ 2 ] ;
float accumulator = 0.0 ;
const float heightScale = float ( $ { heightScale } ) ;
const float widthScale = float ( $ { widthScale } ) ;
const float invHeightScale = float ( $ { invHeightScale } ) ;
const float invWidthScale = float ( $ { invWidthScale } ) ;
const int winHeight = int ( $ { winHeight } ) ;
const int winWidth = int ( $ { winWidth } ) ;
// Compute bounds for where in dy we will look
float startRLerp = floor ( float ( r ) * invHeightScale ) ;
int startDyR = int ( startRLerp - float ( winHeight / 2 ) ) ;
float startCLerp = floor ( float ( c ) * invWidthScale ) ;
int startDyC = int ( startCLerp - float ( winWidth / 2 ) ) ;
// Loop over dy
for ( int dyROffset = 0 ; dyROffset < winHeight ; dyROffset ++ ) {
int dyR = dyROffset + startDyR ;
// Guard against the window exceeding the bounds of dy
if ( dyR < 0 || dyR >= $ { yHeight } ) {
continue ;
}
for ( int dyCOffset = 0 ; dyCOffset < winWidth ; dyCOffset ++ ) {
int dyC = dyCOffset + startDyC ;
// Guard against the window exceeding the bounds of dy
if ( dyC < 0 || dyC >= $ { yWidth } ) {
continue ;
}
float dxR = float ( dyR ) * heightScale ;
int topDxRIndex = int ( floor ( dxR ) ) ;
int bottomDxRIndex = int ( min ( ceil ( dxR ) , $ { xHeight - 1 } . 0 ) ) ;
float dxRLerp = dxR - float ( topDxRIndex ) ;
float inverseDxRLerp = 1.0 - dxRLerp ;
float dxC = float ( dyC ) * widthScale ;
int leftDxCIndex = int ( floor ( dxC ) ) ;
int rightDxCIndex = int ( min ( ceil ( dxC ) , $ { xWidth - 1 } . 0 ) ) ;
float dxCLerp = dxC - float ( leftDxCIndex ) ;
float inverseDxCLerp = 1.0 - dxCLerp ;
if ( r == topDxRIndex && c == leftDxCIndex ) {
// topLeft
accumulator +=
getDy ( b , dyR , dyC , d ) * inverseDxRLerp * inverseDxCLerp ;
}
if ( r == topDxRIndex && c == rightDxCIndex ) {
// topRight
accumulator += getDy ( b , dyR , dyC , d ) * inverseDxRLerp * dxCLerp ;
}
if ( r == bottomDxRIndex && c == leftDxCIndex ) {
// bottomLeft
accumulator += getDy ( b , dyR , dyC , d ) * dxRLerp * inverseDxCLerp ;
}
if ( r == bottomDxRIndex && c == rightDxCIndex ) {
// bottomRight
accumulator += getDy ( b , dyR , dyC , d ) * dxRLerp * dxCLerp ;
}
}
}
// End loop over dy
setOutput ( accumulator ) ;
}
2020-11-17 23:42:44 +01:00
` }}class ResizeBilinearProgram{constructor(inputShape,newHeight,newWidth,alignCorners){this.variableNames=["A"],this.outputShape=[];const[batch,oldHeight,oldWidth,depth]=inputShape;this.outputShape=[batch,newHeight,newWidth,depth];const effectiveInSize=[alignCorners&&newHeight>1?oldHeight-1:oldHeight,alignCorners&&newWidth>1?oldWidth-1:oldWidth],effectiveOutSize=[alignCorners&&newHeight>1?newHeight-1:newHeight,alignCorners&&newWidth>1?newWidth-1:newWidth];this.userCode= `
2020-11-17 18:38:48 +01:00
const vec2 effectiveInputOverOutputRatioRC = vec2 (
$ { effectiveInSize [ 0 ] / effectiveOutSize [ 0 ] } ,
$ { effectiveInSize [ 1 ] / effectiveOutSize [ 1 ] } ) ;
const vec2 inputShapeRC = vec2 ( $ { oldHeight } . 0 , $ { oldWidth } . 0 ) ;
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int b = coords [ 0 ] ;
int d = coords [ 3 ] ;
ivec2 yRC = coords . yz ;
// Fractional source index.
vec2 sourceFracIndexRC = vec2 ( yRC ) * effectiveInputOverOutputRatioRC ;
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2 ( sourceFracIndexRC ) ;
ivec2 sourceCeilRC = ivec2 (
min ( inputShapeRC - 1.0 , ceil ( sourceFracIndexRC ) ) ) ;
float topLeft = getA ( b , sourceFloorRC . x , sourceFloorRC . y , d ) ;
float bottomLeft = getA ( b , sourceCeilRC . x , sourceFloorRC . y , d ) ;
float topRight = getA ( b , sourceFloorRC . x , sourceCeilRC . y , d ) ;
float bottomRight = getA ( b , sourceCeilRC . x , sourceCeilRC . y , d ) ;
vec2 fracRC = sourceFracIndexRC - vec2 ( sourceFloorRC ) ;
float top = topLeft + ( topRight - topLeft ) * fracRC . y ;
float bottom = bottomLeft + ( bottomRight - bottomLeft ) * fracRC . y ;
float newValue = top + ( bottom - top ) * fracRC . x ;
setOutput ( newValue ) ;
}
2020-11-17 23:42:44 +01:00
` }}class ResizeBilinearPackedProgram{constructor(inputShape,newHeight,newWidth,alignCorners){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];const[batch,oldHeight,oldWidth,depth]=inputShape;this.outputShape=[batch,newHeight,newWidth,depth];const effectiveInSize=[alignCorners&&newHeight>1?oldHeight-1:oldHeight,alignCorners&&newWidth>1?oldWidth-1:oldWidth],effectiveOutSize=[alignCorners&&newHeight>1?newHeight-1:newHeight,alignCorners&&newWidth>1?newWidth-1:newWidth];this.userCode= `
2020-11-17 18:38:48 +01:00
const vec3 effectiveInputOverOutputRatioRC = vec3 (
$ { effectiveInSize [ 0 ] / effectiveOutSize [ 0 ] } ,
$ { effectiveInSize [ 1 ] / effectiveOutSize [ 1 ] } ,
$ { effectiveInSize [ 1 ] / effectiveOutSize [ 1 ] } ) ;
const vec3 inputShapeRC = vec3 ( $ { oldHeight } . 0 , $ { oldWidth } . 0 ,
$ { oldWidth } . 0 ) ;
float getAValue ( int b , int r , int c , int d ) {
return getChannel ( getA ( b , r , c , d ) , vec2 ( c , d ) ) ;
}
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int b = coords [ 0 ] ;
int d = coords [ 3 ] ;
// Calculate values for next column in yRC.z.
ivec3 yRC = coords . yzz + ivec3 ( 0 , 0 , 1 ) ;
// Fractional source index.
vec3 sourceFracIndexRC = vec3 ( yRC ) * effectiveInputOverOutputRatioRC ;
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3 ( sourceFracIndexRC ) ;
ivec3 sourceCeilRC = ivec3 (
min ( inputShapeRC - 1.0 , ceil ( sourceFracIndexRC ) ) ) ;
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < $ { depth - 1 } ;
bool hasNextRow = coords . z < $ { newWidth - 1 } ;
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4 (
getAValue ( b , sourceFloorRC . x , sourceFloorRC . y , d ) ,
hasNextCol ? getAValue ( b , sourceFloorRC . x , sourceFloorRC . y , d + 1 )
: 0.0 ,
hasNextRow ? getAValue ( b , sourceFloorRC . x , sourceFloorRC . z , d )
: 0.0 ,
( hasNextRow && hasNextCol ) ?
getAValue ( b , sourceFloorRC . x , sourceFloorRC . z , d + 1 ) : 0.0 ) ;
vec4 bottomLeft = vec4 (
getAValue ( b , sourceCeilRC . x , sourceFloorRC . y , d ) ,
hasNextCol ? getAValue ( b , sourceCeilRC . x , sourceFloorRC . y , d + 1 )
: 0.0 ,
hasNextRow ? getAValue ( b , sourceCeilRC . x , sourceFloorRC . z , d )
: 0.0 ,
( hasNextRow && hasNextCol ) ?
getAValue ( b , sourceCeilRC . x , sourceFloorRC . z , d + 1 ) : 0.0 ) ;
vec4 topRight = vec4 (
getAValue ( b , sourceFloorRC . x , sourceCeilRC . y , d ) ,
hasNextCol ? getAValue ( b , sourceFloorRC . x , sourceCeilRC . y , d + 1 )
: 0.0 ,
hasNextRow ? getAValue ( b , sourceFloorRC . x , sourceCeilRC . z , d )
: 0.0 ,
( hasNextRow && hasNextCol ) ?
getAValue ( b , sourceFloorRC . x , sourceCeilRC . z , d + 1 ) : 0.0 ) ;
vec4 bottomRight = vec4 (
getAValue ( b , sourceCeilRC . x , sourceCeilRC . y , d ) ,
hasNextCol ? getAValue ( b , sourceCeilRC . x , sourceCeilRC . y , d + 1 )
: 0.0 ,
hasNextRow ? getAValue ( b , sourceCeilRC . x , sourceCeilRC . z , d )
: 0.0 ,
( hasNextRow && hasNextCol ) ?
getAValue ( b , sourceCeilRC . x , sourceCeilRC . z , d + 1 ) : 0.0 ) ;
vec3 fracRC = sourceFracIndexRC - vec3 ( sourceFloorRC ) ;
vec4 top = mix ( topLeft , topRight , fracRC . yyzz ) ;
vec4 bottom = mix ( bottomLeft , bottomRight , fracRC . yyzz ) ;
vec4 newValue = mix ( top , bottom , fracRC . x ) ;
setOutput ( newValue ) ;
}
2020-11-17 23:42:44 +01:00
` }}class ResizeNearestNeigborBackpropProgram{constructor(dy,x,alignCorners){this.variableNames=["dy"],this.outputShape=[],this.outputShape=x.shape;const[,xHeight,xWidth]=x.shape,[,yHeight,yWidth]=dy.shape,effectiveXSize=[alignCorners&&yHeight>1?xHeight-1:xHeight,alignCorners&&yWidth>1?xWidth-1:xWidth],effectiveYSize=[alignCorners&&yHeight>1?yHeight-1:yHeight,alignCorners&&yWidth>1?yWidth-1:yWidth],heightScale=effectiveXSize[0]/effectiveYSize[0],widthScale=effectiveXSize[1]/effectiveYSize[1],invHeightScale=1/heightScale,invWidthScale=1/widthScale,winHeight=Math.ceil(invHeightScale)*2+2,winWidth=Math.ceil(invWidthScale)*2+2;this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int b = coords [ 0 ] ;
int d = coords [ 3 ] ;
int r = coords [ 1 ] ;
int c = coords [ 2 ] ;
float accumulator = 0.0 ;
const float heightScale = float ( $ { heightScale } ) ;
const float widthScale = float ( $ { widthScale } ) ;
const float invHeightScale = float ( $ { invHeightScale } ) ;
const float invWidthScale = float ( $ { invWidthScale } ) ;
const int winHeight = int ( $ { winHeight } ) ;
const int winWidth = int ( $ { winWidth } ) ;
// Compute bounds for where in dy we will look
float startRLerp = floor ( float ( r ) * invHeightScale ) ;
int startDyR = int ( floor ( startRLerp - float ( winHeight / 2 ) ) ) ;
float startCLerp = floor ( float ( c ) * invWidthScale ) ;
int startDyC = int ( floor ( startCLerp - float ( winWidth / 2 ) ) ) ;
// Loop over dy
for ( int dyROffset = 0 ; dyROffset < winHeight ; dyROffset ++ ) {
int dyR = dyROffset + startDyR ;
// Guard against the window exceeding the bounds of dy
if ( dyR < 0 || dyR >= $ { yHeight } ) {
continue ;
}
for ( int dyCOffset = 0 ; dyCOffset < winWidth ; dyCOffset ++ ) {
int dyC = dyCOffset + startDyC ;
// Guard against the window exceeding the bounds of dy
if ( dyC < 0 || dyC >= $ { yWidth } ) {
continue ;
}
float sourceFracRow =
float ( $ { effectiveXSize [ 0 ] } ) *
( float ( dyR ) / float ( $ { effectiveYSize [ 0 ] } ) ) ;
float sourceFracCol =
float ( $ { effectiveXSize [ 1 ] } ) *
( float ( dyC ) / float ( $ { effectiveYSize [ 1 ] } ) ) ;
int sourceNearestRow = int ( min (
float ( int ( $ { xHeight } ) - 1 ) ,
$ { alignCorners } ? float ( round ( sourceFracRow ) ) :
float ( floor ( sourceFracRow ) ) ) ) ;
int sourceNearestCol = int ( min (
float ( int ( $ { xWidth } ) - 1 ) ,
$ { alignCorners } ? float ( round ( sourceFracCol ) ) :
float ( floor ( sourceFracCol ) ) ) ) ;
if ( r == sourceNearestRow && c == sourceNearestCol ) {
accumulator += getDy ( b , dyR , dyC , d ) ;
}
}
}
// End loop over dy
setOutput ( accumulator ) ;
}
2020-11-17 23:42:44 +01:00
` }}class ResizeNearestNeighborProgram{constructor(inputShape,newHeight,newWidth,alignCorners){this.variableNames=["A"],this.outputShape=[];const[batch,oldHeight,oldWidth,depth]=inputShape;this.outputShape=[batch,newHeight,newWidth,depth];const effectiveInSize=[alignCorners&&newHeight>1?oldHeight-1:oldHeight,alignCorners&&newWidth>1?oldWidth-1:oldWidth],effectiveOutSize=[alignCorners&&newHeight>1?newHeight-1:newHeight,alignCorners&&newWidth>1?newWidth-1:newWidth],roundBase=alignCorners?"0.5":"0.0";this.userCode= `
2020-11-17 18:38:48 +01:00
const vec2 effectiveInputOverOutputRatioRC = vec2 (
$ { effectiveInSize [ 0 ] / effectiveOutSize [ 0 ] } ,
$ { effectiveInSize [ 1 ] / effectiveOutSize [ 1 ] } ) ;
const vec2 inputShapeRC = vec2 ( $ { oldHeight } . 0 , $ { oldWidth } . 0 ) ;
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int b = coords [ 0 ] ;
int d = coords [ 3 ] ;
ivec2 yRC = coords . yz ;
// Fractional source index.
vec2 sourceFracIndexRC = vec2 ( yRC ) * effectiveInputOverOutputRatioRC ;
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2 (
min ( inputShapeRC - 1.0 , floor ( sourceFracIndexRC + $ { roundBase } ) ) ) ;
float newValue = getA ( b , sourceNearestRC . x , sourceNearestRC . y , d ) ;
setOutput ( newValue ) ;
}
2020-11-17 23:42:44 +01:00
` }}class ReverseProgram{constructor(xShape,axis){this.variableNames=["x"];const rank=xShape.length;if(rank>4)throw new Error( ` WebGL backend : Reverse of rank - $ { rank } tensor is not yet supported ` );if(this.outputShape=xShape,rank===1){this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
int coord = getOutputCoords ( ) ;
setOutput ( getX ( $ { xShape [ 0 ] } - coord - 1 ) ) ;
}
2020-11-17 23:42:44 +01:00
` ;return}const getInCoord=i=>axis.indexOf(i)!==-1&&xShape[i]!==1? ` $ { xShape [ i ] } - coords [ $ { i } ] - 1 ` : ` coords [ $ { i } ] ` ,inCoords=xShape.map((_,i)=>getInCoord(i)).join(","),type=getCoordsDataType(rank);this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
$ { type } coords = getOutputCoords ( ) ;
setOutput ( getX ( $ { inCoords } ) ) ;
}
2020-11-17 23:42:44 +01:00
` }}class ReversePackedProgram{constructor(xShape,axis){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;const rank=xShape.length;if(rank>4)throw new Error( ` WebGL backend : Reverse of rank - $ { rank } tensor is not yet supported ` );this.outputShape=xShape;const channels=getChannels("rc",rank),nextColumn= ` $ { channels [ rank - 1 ] } + 1 < $ { this . outputShape [ rank - 1 ] } ` ,nextRow= ` $ { channels [ rank - 2 ] } + 1 < $ { this . outputShape [ rank - 2 ] } ` ,type=getCoordsDataType(rank);rank===1?this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
int rc = getOutputCoords ( ) ;
vec4 result = vec4 ( 0. ) ;
result . r = getChannel ( getX ( $ { xShape [ 0 ] } - rc - 1 ) ,
$ { xShape [ 0 ] } - rc - 1 ) ;
if ( $ { nextColumn } ) {
result . g = getChannel ( getX ( $ { xShape [ 0 ] } - ( rc + 1 ) - 1 ) ,
$ { xShape [ 0 ] } - ( rc + 1 ) - 1 ) ;
}
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` :this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
$ { type } rc = getOutputCoords ( ) ;
vec4 result = vec4 ( 0. ) ;
result . r = $ { getR ( channels . slice ( ) ) } ;
if ( $ { nextColumn } ) {
result . g = $ { getG ( channels . slice ( ) ) } ;
}
if ( $ { nextRow } ) {
result . b = $ { getB ( channels . slice ( ) ) } ;
if ( $ { nextColumn } ) {
result . a = $ { getA ( channels . slice ( ) ) } ;
}
}
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` ;function getR(channels2){return getChannel(channels2)}function getG(channels2){return channels2[rank-1]="("+channels2[rank-1]+" + 1)",getChannel(channels2)}function getB(channels2){return channels2[rank-2]="("+channels2[rank-2]+" + 1)",getChannel(channels2)}function getA(channels2){return channels2[rank-1]="("+channels2[rank-1]+" + 1)",channels2[rank-2]="("+channels2[rank-2]+" + 1)",getChannel(channels2)}function getChannel(channels2){const inCoordsArray=xShape.map((_,i)=>getInCoord(i,channels2)),inCoords=inCoordsArray.join(","),innerDims=inCoordsArray.slice(-2).join(",");return ` getChannel ( getX ( $ { inCoords } ) , vec2 ( $ { innerDims } ) ) ` }function getInCoord(i,channels1){return axis.indexOf(i)!==-1&&xShape[i]!==1? ` $ { xShape [ i ] } - $ { channels1 [ i ] } - 1 ` : ` $ { channels1 [ i ] } ` }}}class ScatterProgram{constructor(updateSize,sliceDim,indicesRank,updatesRank,strides,shape,summingDupeIndex=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=shape;const stridesType=getCoordsDataType(strides.length),dtype=getCoordsDataType(shape.length);let indicesString="";indicesRank===1?indicesString="i":indicesRank===2&&(indicesString="i, j");const indicesSnippet= ` getIndices ( $ { indicesString } ) ` ;let updatesString="";updatesRank===1?updatesString="i":updatesRank===2&&(updatesString="i, coords[1]");const updatesSnippet= ` getUpdates ( $ { updatesString } ) ` ,strideString=sliceDim>1?"strides[j]":"strides";this.userCode= `
2020-11-17 18:38:48 +01:00
$ { stridesType } strides = $ { stridesType } ( $ { strides } ) ;
void main ( ) {
$ { dtype } coords = getOutputCoords ( ) ;
float sum = 0.0 ;
bool found = false ;
for ( int i = 0 ; i < $ { updateSize } ; i ++ ) {
int flattenedIndex = 0 ;
for ( int j = 0 ; j < $ { sliceDim } ; j ++ ) {
int index = round ( $ { indicesSnippet } ) ;
flattenedIndex += index * $ { strideString } ;
}
if ( flattenedIndex == coords [ 0 ] ) {
sum += $ { updatesSnippet } ;
found = true ;
}
}
setOutput ( mix ( getDefaultValue ( ) , sum , float ( found ) ) ) ;
}
2020-11-17 23:42:44 +01:00
` }}class SegmentOpProgram{constructor(segOpInfo,segOpType){this.variableNames=["x","segmentIds"];const windowSize=segOpInfo.windowSize,batchSize=segOpInfo.batchSize,inSize=segOpInfo.inSize,numSegments=segOpInfo.numSegments,outSize=numSegments*Math.ceil(inSize/windowSize);this.outputShape=[batchSize,outSize];const initializationValue="0.0",returnValue="sumValue",windowSizeNearestVec4=Math.floor(windowSize/4)*4,windowSizeVec4Remainder=windowSize%4,updateSnippet= `
2020-11-17 18:38:48 +01:00
sumValue += dot ( values , segFilter ) ;
2020-11-17 23:42:44 +01:00
` ;let checkValueOutOfBounds="";inSize%windowSize>0&&(checkValueOutOfBounds= `
2020-11-17 18:38:48 +01:00
if ( inIdx < 0 || inIdx >= $ { inSize } ) {
return initializationValue ;
}
2020-11-17 23:42:44 +01:00
` );let checkSegmentIdOutOfBounds="";inSize%windowSize>0&&(checkSegmentIdOutOfBounds= `
2020-11-17 18:38:48 +01:00
if ( inIdx < 0 || inIdx >= $ { inSize } ) {
return - 1.0 ;
}
2020-11-17 23:42:44 +01:00
` ),this.userCode= `
2020-11-17 18:38:48 +01:00
const float initializationValue = $ { initializationValue } ;
float getValue ( int batch , int inIdx ) {
$ { checkValueOutOfBounds }
return getX ( batch , inIdx ) ;
}
float getSegmentIdAtIndex ( int inIdx ) {
$ { checkSegmentIdOutOfBounds }
return getSegmentIds ( inIdx ) ;
}
void main ( ) {
ivec2 coords = getOutputCoords ( ) ;
int batch = coords [ 0 ] ;
int outIdx = coords [ 1 ] ;
int inOffset = int ( floor ( float ( outIdx ) / float (
$ { numSegments } ) ) * float ( $ { windowSize } ) ) ;
int currentSeg = int ( mod ( float ( outIdx ) , float ( $ { numSegments } ) ) ) ;
float sumValue = 0.0 ;
for ( int i = 0 ; i < $ { windowSizeNearestVec4 } ; i += 4 ) {
int inIdx = inOffset + i ;
vec4 values = vec4 (
getValue ( batch , inIdx ) ,
getValue ( batch , inIdx + 1 ) ,
getValue ( batch , inIdx + 2 ) ,
getValue ( batch , inIdx + 3 )
) ;
vec4 segFilter = vec4 (
int ( getSegmentIdAtIndex ( inIdx ) ) == currentSeg ? 1 : 0 ,
int ( getSegmentIdAtIndex ( inIdx + 1 ) ) == currentSeg ? 1 : 0 ,
int ( getSegmentIdAtIndex ( inIdx + 2 ) ) == currentSeg ? 1 : 0 ,
int ( getSegmentIdAtIndex ( inIdx + 3 ) ) == currentSeg ? 1 : 0
) ;
$ { updateSnippet }
}
int inIdx = inOffset + $ { windowSizeNearestVec4 } ;
if ( $ { windowSizeVec4Remainder === 1 } ) {
vec4 values = vec4 (
getValue ( batch , inIdx ) ,
initializationValue ,
initializationValue ,
initializationValue
) ;
int inIdxSeg = int ( getSegmentIdAtIndex ( inIdx ) ) ;
vec4 segFilter = vec4 (
int ( getSegmentIdAtIndex ( inIdx ) ) == currentSeg ? 1 : 0 ,
0 ,
0 ,
0
) ;
$ { updateSnippet }
} else if ( $ { windowSizeVec4Remainder === 2 } ) {
vec4 values = vec4 (
getValue ( batch , inIdx ) ,
getValue ( batch , inIdx + 1 ) ,
initializationValue ,
initializationValue
) ;
vec4 segFilter = vec4 (
int ( getSegmentIdAtIndex ( inIdx ) ) == currentSeg ? 1 : 0 ,
int ( getSegmentIdAtIndex ( inIdx + 1 ) ) == currentSeg ? 1 : 0 ,
0 ,
0
) ;
$ { updateSnippet }
} else if ( $ { windowSizeVec4Remainder === 3 } ) {
vec4 values = vec4 (
getValue ( batch , inIdx ) ,
getValue ( batch , inIdx + 1 ) ,
getValue ( batch , inIdx + 2 ) ,
initializationValue
) ;
vec4 segFilter = vec4 (
int ( getSegmentIdAtIndex ( inIdx ) ) == currentSeg ? 1 : 0 ,
int ( getSegmentIdAtIndex ( inIdx + 1 ) ) == currentSeg ? 1 : 0 ,
int ( getSegmentIdAtIndex ( inIdx + 2 ) ) == currentSeg ? 1 : 0 ,
0
) ;
$ { updateSnippet }
}
setOutput ( $ { returnValue } ) ;
}
2020-11-17 23:42:44 +01:00
` }}class SelectProgram{constructor(cRank,shape,rank){this.variableNames=["c","a","b"],this.outputShape=shape;let cCoords,abCoords;if(rank>4)throw Error( ` Where for rank $ { rank } is not yet supported ` );if(rank===1)abCoords="resRC",cCoords="resRC";else{const currentCoords=["resRC.x","resRC.y","resRC.z","resRC.w"],cCoordVars=[],abCoordVars=[];for(let i=0;i<shape.length;i++)abCoordVars.push( ` $ { currentCoords [ i ] } ` ),i<cRank&&cCoordVars.push( ` $ { currentCoords [ i ] } ` );cCoords=cCoordVars.join(),abCoords=abCoordVars.join()}const dtype=getCoordsDataType(rank);this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
$ { dtype } resRC = getOutputCoords ( ) ;
float cVal = getC ( $ { cCoords } ) ;
if ( cVal >= 1.0 ) {
setOutput ( getA ( $ { abCoords } ) ) ;
} else {
setOutput ( getB ( $ { abCoords } ) ) ;
}
}
2020-11-17 23:42:44 +01:00
` }}class SliceProgram{constructor(destSize){this.variableNames=["source"],this.outputShape=destSize,this.rank=destSize.length;const dtype=getCoordsDataType(this.rank),uniformPart= ` uniform int start [ $ { this . rank } ] ; ` ,sourceCoords=getCoords2(this.rank);let body2;const coordSum=destSize.map((_,i)=> ` sourceLoc . $ { coords [ i ] } = start [ $ { i } ] + coords . $ { coords [ i ] } ; ` );body2= `
2020-11-17 18:38:48 +01:00
$ { dtype } sourceLoc ;
$ { dtype } coords = getOutputCoords ( ) ;
2020-11-17 23:42:44 +01:00
$ { coordSum . join ( `
` )}
` ,this.userCode= `
2020-11-17 18:38:48 +01:00
$ { uniformPart }
void main ( ) {
$ { body2 }
setOutput ( getSource ( $ { sourceCoords } ) ) ;
}
2020-11-17 23:42:44 +01:00
` }getCustomSetupFunc(start){if(start.length!==this.rank)throw Error( ` The rank ( $ { this . rank } ) of the program must match the length of start ( $ { start . length } ) ` );return(gpgpu,webGLProgram)=>{if(this.startLoc==null&&(this.startLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"start"),this.startLoc==null))return;gpgpu.gl.uniform1iv(this.startLoc,start)}}}const coords=["x","y","z","w","u","v"];function getCoords2(rank){if(rank===1)return"sourceLoc";if(rank<=6)return coords.slice(0,rank).map(x=>"sourceLoc."+x).join(",");throw Error( ` Slicing for rank $ { rank } is not yet supported ` )}class SlicePackedProgram{constructor(destSize){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=destSize,this.rank=destSize.length;const dtype=getCoordsDataType(this.rank),coords2=getChannels("coords",this.rank),sourceLoc=getChannels("sourceLoc",this.rank),innerDims=this.rank===1?"sourceLoc": ` vec2 ( $ { sourceLoc . slice ( - 2 ) . join ( ) } ) ` ,getChannel= ` getChannel ( getSource ( $ { sourceLoc . join ( ) } ) , $ { innerDims } ) ` ,upperRow= `
2020-11-17 18:38:48 +01:00
result . x = $ { getChannel } ;
if ( ++ $ { coords2 [ this . rank - 1 ] } < $ { destSize [ this . rank - 1 ] } ) {
++ $ { sourceLoc [ this . rank - 1 ] } ;
result . y = $ { getChannel } ;
-- $ { sourceLoc [ this . rank - 1 ] } ;
}
2020-11-17 23:42:44 +01:00
` ,lowerRow=this.rank===1?"": `
2020-11-17 18:38:48 +01:00
-- $ { coords2 [ this . rank - 1 ] } ;
if ( ++ $ { coords2 [ this . rank - 2 ] } < $ { destSize [ this . rank - 2 ] } ) {
++ $ { sourceLoc [ this . rank - 2 ] } ;
result . z = $ { getChannel } ;
if ( ++ $ { coords2 [ this . rank - 1 ] } < $ { destSize [ this . rank - 1 ] } ) {
++ $ { sourceLoc [ this . rank - 1 ] } ;
result . w = $ { getChannel } ;
}
}
2020-11-17 23:42:44 +01:00
` ,sourceLocSetup=this.rank<=4? ` sourceLoc = coords +
$ { dtype } ( $ { destSize . map ( ( _ , i ) => ` start[ ${ i } ] ` ) . join ( ) } ) ; ` :destSize.map((_,i)=> ` $ { sourceLoc [ i ] } = $ { coords2 [ i ] } + start [ $ { i } ] ; ` ).join( `
` );this.userCode= `
2020-11-17 18:38:48 +01:00
uniform int start [ $ { this . rank } ] ;
void main ( ) {
$ { dtype } coords = getOutputCoords ( ) ;
$ { dtype } sourceLoc ;
$ { sourceLocSetup }
vec4 result = vec4 ( 0. ) ;
$ { upperRow }
$ { lowerRow }
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` }getCustomSetupFunc(start){if(start.length!==this.rank)throw Error( ` The rank ( $ { this . rank } ) of the program must match the length of start ( $ { start . length } ) ` );return(gpgpu,webGLProgram)=>{if(this.startLoc==null&&(this.startLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"start"),this.startLoc==null))return;gpgpu.gl.uniform1iv(this.startLoc,start)}}}class StridedSliceProgram{constructor(begin,strides,size){this.variableNames=["x"],this.outputShape=size;const rank=size.length,inputDtype=getCoordsDataType(size.length),dtype=getCoordsDataType(size.length);let newCoords="";if(rank===1)newCoords="coords * strides + begin";else{let outputAxis=0;newCoords=size.map((_,i)=>(outputAxis++,size.length===1? ` coords * strides [ $ { i } ] + begin [ $ { i } ] ` : ` coords [ $ { outputAxis - 1 } ] * strides [ $ { i } ] + begin [ $ { i } ] ` )).join(",")}this.userCode= `
2020-11-17 18:38:48 +01:00
$ { inputDtype } begin = $ { inputDtype } ( $ { begin } ) ;
$ { inputDtype } strides = $ { inputDtype } ( $ { strides } ) ;
void main ( ) {
$ { dtype } coords = getOutputCoords ( ) ;
setOutput ( getX ( $ { newCoords } ) ) ;
}
2020-11-17 23:42:44 +01:00
` }}class TextureManager{constructor(gpgpu){this.gpgpu=gpgpu,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(shapeRC,usage,isPacked){const physicalTexType=getPhysicalFromLogicalTextureType(usage,isPacked),shapeKey=getKeyFromTextureShape(shapeRC,physicalTexType,isPacked);shapeKey in this.freeTextures||(this.freeTextures[shapeKey]=[]),shapeKey in this.usedTextures||(this.usedTextures[shapeKey]=[]);const texBytes=computeBytes(shapeRC,physicalTexType,this.gpgpu.gl,this.gpgpu.textureConfig,isPacked);if(this.freeTextures[shapeKey].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=texBytes,this.log();const newTexture2=this.freeTextures[shapeKey].shift();return this.usedTextures[shapeKey].push(newTexture2),newTexture2}let newTexture;return physicalTexType===PhysicalTextureType.PACKED_2X2_FLOAT32?newTexture=this.gpgpu.createPackedMatrixTexture(shapeRC[0],shapeRC[1]):physicalTexType===PhysicalTextureType.PACKED_2X2_FLOAT16?newTexture=this.gpgpu.createFloat16PackedMatrixTexture(shapeRC[0],shapeRC[1]):physicalTexType===PhysicalTextureType.UNPACKED_FLOAT32?newTexture=this.gpgpu.createFloat32MatrixTexture(shapeRC[0],shapeRC[1]):physicalTexType===PhysicalTextureType.UNPACKED_FLOAT16?newTexture=this.gpgpu.createFloat16MatrixTexture(shapeRC[0],shapeRC[1]):physicalTexType===PhysicalTextureType.PACKED_4X1_UNSIGNED_BYTE&&(newTexture=this.gpgpu.createUnsignedBytesMatrixTexture(shapeRC[0],shapeRC[1])),this.usedTextures[shapeKey].push(newTexture),this.numUsedTextures++,this._numBytesAllocated+=texBytes,this.log(),newTexture}releaseTexture(texture,shape,logicalTexType,isPacked){if(this.freeTextures==null)return;const physicalTexType=getPhysicalFromLogicalTextureType(logicalTexType,isPacked),shapeKey=getKeyFromTextureShape(shape,physicalTexType,isPacked);shapeKey in this.freeTextures||(this.freeTextures[shapeKey]=[]);const texBytes=computeBytes(shape,physicalTexType,this.gpgpu.gl,this.gpgpu.textureConfig,isPacked),deleteTexThreshold=env().get("WEBGL_DELETE_TEXTURE_THRESHOLD");deleteTexThreshold!==-1&&this._numBytesAllocated>deleteTexThreshold?(this.gpgpu.deleteMatrixTexture(texture),this._numBytesAllocated-=texBytes):(this.freeTextures[shapeKey].push(texture),this.numFreeTextures++,this._numBytesFree+=texBytes),this.numUsedTextures--;const texList=this.usedTextures[shapeKey],texIndex=texList.indexOf(texture);if(texIndex<0)throw new Error("Cannot release a texture that was never provided by this texture manager");texList.splice(texIndex,1),this.log()}log(){if(!this.logEnabled)return;const total=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used", ` $ { this . numFreeTextures } / $ { this . numUsedTextures } ` , ` ( $ { total } ) ` );const freeRatio=this._numBytesFree/this._numBytesAllocated;console.log( ` Bytes allocated : $ { this . _numBytesAllocated } ` ),console.log( ` Bytes unused : $ { this . _numBytesFree } ( $ { Math . round ( 100 * freeRatio ) } % ) ` )}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures==null)return;for(const texShape in this.freeTextures)this.freeTextures[texShape].forEach(tex=>{this.gpgpu.deleteMatrixTexture(tex)});for(const texShape in this.usedTextures)this.usedTextures[texShape].forEach(tex=>{this.gpgpu.deleteMatrixTexture(tex)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}function numBytesForInternalFormat(gl,internalFormat){const glany=gl;if(internalFormat===glany.R32F)return 4;if(internalFormat===glany.R16F)return 2;if(internalFormat===glany.RGBA32F)return 16;if(internalFormat===gl.RGBA)return 16;if(internalFormat===glany.RGBA16F)return 8;throw new Error( ` Unknown internal format $ { internalFormat } ` )}function computeBytes(shape,physicalTexType,gl,textureConfig,isPacked){const internalFormat=internalFormatForPhysicalTexType(physicalTexType,
2020-11-17 18:38:48 +01:00
void main ( ) {
$ { dtype } resRC = getOutputCoords ( ) ;
setOutput ( getA ( $ { sourceCoords } ) ) ;
}
2020-11-17 23:42:44 +01:00
` }}function getSourceCoords3(aShape){const rank=aShape.length;if(rank>5)throw Error( ` Tile for rank $ { rank } is not yet supported ` );if(rank===1)return ` imod ( resRC , $ { aShape [ 0 ] } ) ` ;const currentCoords=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],sourceCoords=[];for(let i=0;i<aShape.length;i++)sourceCoords.push( ` imod ( $ { currentCoords [ i ] } , $ { aShape [ i ] } ) ` );return sourceCoords.join()}class UnaryOpProgram{constructor(aShape,opSnippet){this.variableNames=["A"],this.outputShape=aShape,this.userCode= `
2020-11-17 18:38:48 +01:00
float unaryOperation ( float x ) {
$ { opSnippet }
}
void main ( ) {
float x = getAAtOutCoords ( ) ;
float y = unaryOperation ( x ) ;
setOutput ( y ) ;
}
2020-11-17 23:42:44 +01:00
` }}const CHECK_NAN_SNIPPET3="if (isnan(x)) return x;",LINEAR="return x;",ABS="return abs(x);",RELU=CHECK_NAN_SNIPPET3+ `
2020-11-17 18:38:48 +01:00
return ( x < 0.0 ) ? 0.0 : x ;
2020-11-17 23:42:44 +01:00
` ,RELU6=CHECK_NAN_SNIPPET3+ `
2020-11-17 18:38:48 +01:00
return ( x < 0.0 ) ? 0.0 : min ( 6.0 , x ) ;
2020-11-17 23:42:44 +01:00
` ,ELU2="return (x >= 0.0) ? x : (exp(x) - 1.0);",SELU= `
2020-11-17 18:38:48 +01:00
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = $ { backend _util _exports . SELU _SCALEALPHA } ;
float scale = $ { backend _util _exports . SELU _SCALE } ;
return ( x >= 0.0 ) ? scale * x : scaleAlpha * ( exp ( x ) - 1.0 ) ;
` ;function STEP(alpha=0){return CHECK_NAN_SNIPPET3+ `
return x > 0.0 ? 1.0 : float ( $ { alpha } ) ;
2020-11-17 23:42:44 +01:00
` }const NEG="return -x;",CEIL="return ceil(x);",FLOOR="return floor(x);",SIGN= `
2020-11-17 18:38:48 +01:00
if ( isnan ( x ) ) { return 0.0 ; }
return sign ( x ) ;
2020-11-17 23:42:44 +01:00
` ,IS_NAN="return float(isnan(x));",IS_INF="return float(isinf(x));",IS_FINITE="return float(!isnan(x) && !isinf(x));",ROUND= `
2020-11-17 18:38:48 +01:00
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor ( x ) ;
if ( ( x - base ) < 0.5 ) {
return floor ( x ) ;
} else if ( ( x - base ) > 0.5 ) {
return ceil ( x ) ;
} else {
if ( mod ( base , 2.0 ) == 0.0 ) {
return base ;
} else {
return base + 1.0 ;
}
}
2020-11-17 23:42:44 +01:00
` ,EXP="return exp(x);",EXPM1="return exp(x) - 1.0;",LOG= ` if ( x < 0.0 ) return NAN ;
return log ( x ) ; ` ,LOG1P="return log(1.0 + x);",SQRT="return sqrt(x);",RSQRT="return inversesqrt(x);",SIGMOID="return 1.0 / (1.0 + exp(-1.0 * x));",SOFTPLUS= `
2020-11-17 18:38:48 +01:00
float epsilon = 1.1920928955078125 e - 7 ;
float threshold = log ( epsilon ) + 2.0 ;
bool too _large = x > - threshold ;
bool too _small = x < threshold ;
float result ;
float exp _x = exp ( x ) ;
if ( too _large ) {
result = x ;
}
else if ( too _small ) {
result = exp _x ;
}
else {
result = log ( exp _x + 1.0 ) ;
}
return result ;
2020-11-17 23:42:44 +01:00
` ,ASIN=CHECK_NAN_SNIPPET3+ `
2020-11-17 18:38:48 +01:00
if ( abs ( x ) > 1. ) {
return NAN ;
}
return asin ( x ) ;
2020-11-17 23:42:44 +01:00
` ,ACOS=CHECK_NAN_SNIPPET3+ `
2020-11-17 18:38:48 +01:00
if ( abs ( x ) > 1. ) {
return NAN ;
}
return acos ( x ) ;
2020-11-17 23:42:44 +01:00
` ,ATAN=CHECK_NAN_SNIPPET3+ `
2020-11-17 18:38:48 +01:00
return atan ( x ) ;
2020-11-17 23:42:44 +01:00
` ,SINH= `
2020-11-17 18:38:48 +01:00
float e2x = exp ( x ) ;
return ( e2x - 1.0 / e2x ) / 2.0 ;
2020-11-17 23:42:44 +01:00
` ,COSH= `
2020-11-17 18:38:48 +01:00
float e2x = exp ( - x ) ;
return ( e2x + 1.0 / e2x ) / 2.0 ;
2020-11-17 23:42:44 +01:00
` ,TANH= `
2020-11-17 18:38:48 +01:00
float e2x = exp ( - 2.0 * abs ( x ) ) ;
return sign ( x ) * ( 1.0 - e2x ) / ( 1.0 + e2x ) ;
2020-11-17 23:42:44 +01:00
` ,ASINH=CHECK_NAN_SNIPPET3+"return log(x + sqrt(x * x + 1.0));",ACOSH=CHECK_NAN_SNIPPET3+ `
2020-11-17 18:38:48 +01:00
if ( x < 1.0 ) return NAN ;
2020-11-17 23:42:44 +01:00
return log ( x + sqrt ( x * x - 1.0 ) ) ; ` ,ATANH=CHECK_NAN_SNIPPET3+ `
2020-11-17 18:38:48 +01:00
if ( ( x < - 1.0 ) || ( x > 1.0 ) ) return NAN ;
2020-11-17 23:42:44 +01:00
return ( log ( 1.0 + x ) - log ( 1.0 - x ) ) / 2.0 ; ` ,ERF= `
2020-11-17 18:38:48 +01:00
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = $ { backend _util _exports . ERF _P } ;
float a1 = $ { backend _util _exports . ERF _A1 } ;
float a2 = $ { backend _util _exports . ERF _A2 } ;
float a3 = $ { backend _util _exports . ERF _A3 } ;
float a4 = $ { backend _util _exports . ERF _A4 } ;
float a5 = $ { backend _util _exports . ERF _A5 } ;
float sign = sign ( x ) ;
x = abs ( x ) ;
float t = 1.0 / ( 1.0 + p * x ) ;
return sign * ( 1.0 - ( ( ( ( ( a5 * t + a4 ) * t ) + a3 ) * t + a2 ) * t + a1 ) * t * exp ( - x * x ) ) ;
2020-11-17 23:42:44 +01:00
` ,RECIPROCAL="return 1.0 / x;",LOGICAL_NOT="return float(!(x >= 1.0));",CLONE="return x;",LINEAR2="return x;",LOG2= `
2020-11-17 18:38:48 +01:00
vec4 result = log ( x ) ;
vec4 isNaN = vec4 ( lessThan ( x , vec4 ( 0.0 ) ) ) ;
result . r = isNaN . r == 1.0 ? NAN : result . r ;
result . g = isNaN . g == 1.0 ? NAN : result . g ;
result . b = isNaN . b == 1.0 ? NAN : result . b ;
result . a = isNaN . a == 1.0 ? NAN : result . a ;
return result ;
2020-11-17 23:42:44 +01:00
` ,RELU2= `
2020-11-17 18:38:48 +01:00
vec4 result = x * vec4 ( greaterThanEqual ( x , vec4 ( 0.0 ) ) ) ;
bvec4 isNaN = isnan ( x ) ;
result . r = isNaN . r ? x . r : result . r ;
result . g = isNaN . g ? x . g : result . g ;
result . b = isNaN . b ? x . b : result . b ;
result . a = isNaN . a ? x . a : result . a ;
return result ;
2020-11-17 23:42:44 +01:00
` ,RELU62= `
2020-11-17 18:38:48 +01:00
vec4 result = min ( x , vec4 ( 6. ) ) * vec4 ( greaterThanEqual ( x , vec4 ( 0.0 ) ) ) ;
bvec4 isNaN = isnan ( x ) ;
result . r = isNaN . r ? x . r : result . r ;
result . g = isNaN . g ? x . g : result . g ;
result . b = isNaN . b ? x . b : result . b ;
result . a = isNaN . a ? x . a : result . a ;
return result ;
2020-11-17 23:42:44 +01:00
` ,ELU3= `
2020-11-17 18:38:48 +01:00
vec4 result ;
result . r = ( x . r >= 0.0 ) ? x . r : ( exp ( x . r ) - 1.0 ) ;
result . g = ( x . g >= 0.0 ) ? x . g : ( exp ( x . g ) - 1.0 ) ;
result . b = ( x . b >= 0.0 ) ? x . b : ( exp ( x . b ) - 1.0 ) ;
result . a = ( x . a >= 0.0 ) ? x . a : ( exp ( x . a ) - 1.0 ) ;
return result ;
2020-11-17 23:42:44 +01:00
` ;class UnaryOpPackedProgram{constructor(aShape,opSnippet){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=aShape,this.userCode= `
2020-11-17 18:38:48 +01:00
vec4 unaryOperation ( vec4 x ) {
$ { opSnippet }
}
void main ( ) {
vec4 x = getAAtOutCoords ( ) ;
vec4 y = unaryOperation ( x ) ;
setOutput ( y ) ;
}
2020-11-17 23:42:44 +01:00
` }}class UnpackProgram{constructor(outputShape){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=outputShape;const rank=outputShape.length,channels=getChannels("rc",rank),dtype=getCoordsDataType(rank),sourceCoords=getSourceCoords(rank,channels),innerDims=channels.slice(-2),coords2=rank<=1?"rc": ` vec2 ( $ { innerDims . join ( "," ) } ) ` ;this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
$ { dtype } rc = getOutputCoords ( ) ;
vec4 packedInput = getA ( $ { sourceCoords } ) ;
setOutput ( getChannel ( packedInput , $ { coords2 } ) ) ;
}
2020-11-17 23:42:44 +01:00
` }}const{segment_util:segment_util2}=backend_util_exports,split11=kernel_impls_exports.split,tile10=kernel_impls_exports.tile,topkImpl3=kernel_impls_exports.topkImpl,whereImpl3=kernel_impls_exports.whereImpl,EPSILON_FLOAT322=1e-7,EPSILON_FLOAT162=1e-4,binaryCaches={};function getBinaryCache(webGLVersion){return webGLVersion in binaryCaches||(binaryCaches[webGLVersion]={}),binaryCaches[webGLVersion]}function mapActivationToShaderProgram(activation2,packed=!1){if(activation2==="linear")return packed?LINEAR2:LINEAR;if(activation2==="relu")return packed?RELU2:RELU;if(activation2==="elu")return packed?ELU3:ELU2;if(activation2==="relu6")return packed?RELU62:RELU6;if(activation2==="prelu")return packed?PRELU2:PRELU;throw new Error( ` Activation $ { activation2 } has not been implemented for the WebGL backend . ` )}const CPU_HANDOFF_SIZE_THRESHOLD=128,BEFORE_PAGING_CONSTANT=600;function numMBBeforeWarning(){return env().global.screen==null?1024:env().global.screen.height*env().global.screen.width*window.devicePixelRatio*BEFORE_PAGING_CONSTANT/1024/1024}const MATMUL_SHARED_DIM_THRESHOLD=1e3;class MathBackendWebGL extends KernelBackend{constructor(gpgpu){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!env().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(gpgpu==null){const gl=getWebGLContext(env().getNumber("WEBGL_VERSION"));this.binaryCache=getBinaryCache(env().getNumber("WEBGL_VERSION")),this.gpgpu=new GPGPUContext(gl),this.canvas=gl.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=gpgpu,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=gpgpu.gl.canvas;this.textureManager=new TextureManager(this.gpgpu),this.numMBBeforeWarning=numMBBeforeWarning(),this.texData=new DataStorage(this,engine15())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(values,shape,dtype){if((env().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||env().getBool("DEBUG"))&&this.checkNumericalProblems(values),dtype==="complex64"&&values!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");const dataId={};return this.texData.set(dataId,{shape,dtype,values,usage:TextureUsage.UPLOAD,refCount:1,complexParentRefCount:0}),dataId}incRef(dataId){const texData=this.texData.get(dataId);texData.refCount++}decRef(dataId){if(this.texData.has(dataId)){const texData=this.texData.get(dataId);texData.refCount--}}move(dataId,values,shape,dtype){if(env().getBool("DEBUG")&&this.checkNumericalProblems(values),dtype==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(dataId,{shape,dtype,values,usage:TextureUsage.UPLOAD,refCount:1,complexParentRefCount:0})}disposeIntermediateTensorInfo(tensorInfo){const dataId=tensorInfo.dataId;if(this.texData.has(dataId)){const textureData=this.texData.get(dataId);textureData.refCount--,textureData.refCount<1&&this.disposeData(dataId)}}readSync(dataId){const texData=this.texData.get(dataId),{values,dtype,complexTensorInfos,slice:slice21,shape,isPacked}=texData;if(slice21!=null){let program;isPacked?program=new UnaryOpPackedProgram(shape,CLONE):program=new UnaryOpProgram(shape,CLONE);const res=this.runWebGLProgram(program,[{dataId,shape,dtype}],dtype),data2=this.readSync(res.dataId);return this.disposeIntermediateTensorInfo(res),data2}if(values!=null)return this.convertAndCacheOnCPU(dataId);if(dtype==="string")return values;const shouldTimeProgram=this.activeTimers!=null;let start;shouldTimeProgram&&(start=util_exports.now());let result;if(dtype==="complex64"){const realValues=this.readSync(complexTensorInfos.real.dataId),imagValues=this.readSync(complexTensorInfos.imag.dataId);result=backend_util_exports.mergeRealAndImagArrays(realValues,imagValues)}else result=this.getValuesFromTexture(dataId);return shouldTimeProgram&&(this
2020-11-17 18:38:48 +01:00
if ( isnan ( a ) ) return a ;
if ( isnan ( b ) ) return b ;
2020-11-17 23:42:44 +01:00
` ,CHECK_NAN_SNIPPET_BINARY_PACKED= `
2020-11-17 18:38:48 +01:00
result . r = isNaN . r > 0. ? NAN : result . r ;
result . g = isNaN . g > 0. ? NAN : result . g ;
result . b = isNaN . b > 0. ? NAN : result . b ;
result . a = isNaN . a > 0. ? NAN : result . a ;
2020-11-17 23:42:44 +01:00
` ;function unaryKernelFunc2(opSnippet){return({inputs,backend:backend3})=>{const{x}=inputs,webglBackend=backend3,program=new UnaryOpProgram(x.shape,opSnippet);return webglBackend.runWebGLProgram(program,[x],x.dtype)}}function binaryKernelFunc2({opSnippet,packedOpSnippet,checkOutOfBounds=!1,supportsComplex=!1,cpuKernelImpl,dtype}){return({inputs,backend:backend3})=>{const{a,b}=inputs,webglBackend=backend3;if(supportsComplex&&a.dtype==="complex64"){const aData=webglBackend.texData.get(a.dataId),bData=webglBackend.texData.get(b.dataId),[real8,imag8]=[[aData.complexTensorInfos.real,bData.complexTensorInfos.real],[aData.complexTensorInfos.imag,bData.complexTensorInfos.imag]].map(complexParts=>{const[aPart,bPart]=complexParts,aHandle={dataId:aPart.dataId,dtype:aPart.dtype,shape:a.shape},bHandle={dataId:bPart.dataId,dtype:bPart.dtype,shape:b.shape},program2=new BinaryOpProgram(opSnippet,a.shape,b.shape);return webglBackend.runWebGLProgram(program2,[aHandle,bHandle],upcastType(aPart.dtype,bPart.dtype))}),complexOutput=complex10({inputs:{real:real8,imag:imag8},backend:webglBackend});return webglBackend.disposeIntermediateTensorInfo(real8),webglBackend.disposeIntermediateTensorInfo(imag8),complexOutput}const $ dtype=dtype||upcastType(a.dtype,b.dtype);if(webglBackend.shouldExecuteOnCPU([a,b])&&cpuKernelImpl!=null){const aData=webglBackend.texData.get(a.dataId),bData=webglBackend.texData.get(b.dataId),[outValues,outShape]=cpuKernelImpl(a.shape,b.shape,aData.values,bData.values, $ dtype),out=webglBackend.makeTensorInfo(outShape, $ dtype),outData=webglBackend.texData.get(out.dataId);return outData.values=outValues,out}const shouldUsePackedProgram=env().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&packedOpSnippet!=null;let program;return shouldUsePackedProgram?program=new BinaryOpPackedProgram(packedOpSnippet,a.shape,b.shape,checkOutOfBounds):program=new BinaryOpProgram(opSnippet,a.shape,b.shape),webglBackend.runWebGLProgram(program,[a,b], $ dtype)}}const ADD="return a + b;",addKernelFunc=binaryKernelFunc2({opSnippet:ADD,packedOpSnippet:ADD,supportsComplex:!0,cpuKernelImpl:addImplCPU}),addConfig2={kernelName:Add,backendName:"webgl",kernelFunc:addKernelFunc},ATAN2=CHECK_NAN_SNIPPET_BINARY+ `
2020-11-17 18:38:48 +01:00
return atan ( a , b ) ;
2020-11-17 23:42:44 +01:00
` ,ATAN2_PACKED= `
2020-11-17 18:38:48 +01:00
vec4 result = atan ( a , b ) ;
vec4 isNaN = min ( vec4 ( isnan ( a ) ) + vec4 ( isnan ( b ) ) , vec4 ( 1.0 ) ) ;
` +CHECK_NAN_SNIPPET_BINARY_PACKED+ `
return result ;
2020-11-17 23:42:44 +01:00
` ,atan25=binaryKernelFunc2({opSnippet:ATAN2,packedOpSnippet:ATAN2_PACKED}),atan2Config={kernelName:Atan2,backendName:"webgl",kernelFunc:atan25};function avgPool3(args){const{inputs,backend:backend3,attrs}=args,{x}=inputs;assertNotComplex2(x,"avgPool");const{filterSize,strides,pad:pad11,dimRoundingMode}=attrs,dilations=1;util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides,dilations),()=> ` Error in avgPool : Either strides or dilations must be 1. Got strides $ { strides } and dilations '${dilations}' ` );const convInfo=backend_util_exports.computePool2DInfo(x.shape,filterSize,strides,dilations,pad11,dimRoundingMode);if(convInfo.filterWidth===1&&convInfo.filterHeight===1&&util_exports.arraysEqual(convInfo.inShape,convInfo.outShape))return identity3({inputs:{x},backend:backend3});const avgPoolProgram=new Pool2DProgram(convInfo,"avg",!1);return backend3.runWebGLProgram(avgPoolProgram,[x],"float32")}const avgPoolConfig2={kernelName:AvgPool,backendName:"webgl",kernelFunc:avgPool3};function avgPoolBackprop3(args){const{inputs,backend:backend3,attrs}=args,{dy,input:input2}=inputs,x=input2;assertNotComplex2([dy,input2],"avgPoolBackprop");const{filterSize,strides,pad:pad11}=attrs,convInfo=backend_util_exports.computePool2DInfo(x.shape,filterSize,strides,1,pad11),avgPoolBackpropProgram=new AvgPool2DBackpropProgram(convInfo);return backend3.runWebGLProgram(avgPoolBackpropProgram,[dy],x.dtype)}const avgPoolBackpropConfig2={kernelName:AvgPoolBackprop,backendName:"webgl",kernelFunc:avgPoolBackprop3};class BatchNormProgram{constructor(xShape,meanShape,varianceShape,offsetShape,scaleShape,varianceEpsilon){this.outputShape=[],this.variableNames=["x","mean","variance"],backend_util_exports.assertAndGetBroadcastShape(xShape,meanShape),backend_util_exports.assertAndGetBroadcastShape(xShape,varianceShape);let offsetSnippet="0.0";offsetShape!=null&&(backend_util_exports.assertAndGetBroadcastShape(xShape,offsetShape),this.variableNames.push("offset"),offsetSnippet="getOffsetAtOutCoords()");let scaleSnippet="1.0";scaleShape!=null&&(backend_util_exports.assertAndGetBroadcastShape(xShape,scaleShape),this.variableNames.push("scale"),scaleSnippet="getScaleAtOutCoords()"),this.outputShape=xShape,this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
float x = getXAtOutCoords ( ) ;
float mean = getMeanAtOutCoords ( ) ;
float variance = getVarianceAtOutCoords ( ) ;
float offset = $ { offsetSnippet } ;
float scale = $ { scaleSnippet } ;
float inv = scale * inversesqrt ( variance + float ( $ { varianceEpsilon } ) ) ;
setOutput ( dot ( vec3 ( x , - mean , offset ) , vec3 ( inv , inv , 1 ) ) ) ;
}
2020-11-17 23:42:44 +01:00
` }}class BatchNormPackedProgram{constructor(xShape,meanShape,varianceShape,offsetShape,scaleShape,varianceEpsilon){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],backend_util_exports.assertAndGetBroadcastShape(xShape,meanShape),backend_util_exports.assertAndGetBroadcastShape(xShape,varianceShape);let offsetSnippet="vec4(0.0)";offsetShape!=null&&(backend_util_exports.assertAndGetBroadcastShape(xShape,offsetShape),this.variableNames.push("offset"),offsetSnippet="getOffsetAtOutCoords()");let scaleSnippet="vec4(1.0)";scaleShape!=null&&(backend_util_exports.assertAndGetBroadcastShape(xShape,scaleShape),this.variableNames.push("scale"),scaleSnippet="getScaleAtOutCoords()"),this.outputShape=xShape,this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
vec4 offset = $ { offsetSnippet } ;
vec4 scale = $ { scaleSnippet } ;
vec4 x = getXAtOutCoords ( ) ;
vec4 mean = getMeanAtOutCoords ( ) ;
vec4 variance = getVarianceAtOutCoords ( ) ;
vec4 inv = scale * inversesqrt ( variance + vec4 ( $ { varianceEpsilon } ) ) ;
setOutput ( ( x - mean ) * inv + offset ) ;
}
2020-11-17 23:42:44 +01:00
` }}const batchNorm3=({inputs,backend:backend3,attrs})=>{const{x,mean:mean7,variance,offset,scale:scale2}=inputs;util_exports.assert(mean7.shape.length===variance.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),util_exports.assert(offset==null||mean7.shape.length===offset.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),util_exports.assert(scale2==null||mean7.shape.length===scale2.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon}=attrs;varianceEpsilon==null&&(varianceEpsilon=.001);const finalInputs=[x,mean7,variance];let offsetShape=null;offset!=null&&(offsetShape=offset.shape,finalInputs.push(offset));let scaleShape=null;scale2!=null&&(scaleShape=scale2.shape,finalInputs.push(scale2));const program=env().getBool("WEBGL_PACK_NORMALIZATION")?new BatchNormPackedProgram(x.shape,mean7.shape,variance.shape,offsetShape,scaleShape,varianceEpsilon):new BatchNormProgram(x.shape,mean7.shape,variance.shape,offsetShape,scaleShape,varianceEpsilon),output=backend3.runWebGLProgram(program,finalInputs,finalInputs[0].dtype);return output},batchNormConfig2={kernelName:FusedBatchNorm,backendName:"webgl",kernelFunc:batchNorm3},NOT_EQUAL="return float(a != b);",notEqual3=binaryKernelFunc2({opSnippet:NOT_EQUAL,dtype:"bool"}),notEqualConfig2={kernelName:NotEqual,backendName:"webgl",kernelFunc:notEqual3};function real7(args){const{inputs,backend:backend3}=args,{input:input2}=inputs,inputData=backend3.texData.get(input2.dataId);return identity3({inputs:{x:inputData.complexTensorInfos.real},backend:backend3})}const realConfig2={kernelName:Real,backendName:"webgl",kernelFunc:real7},TO_INT="return float(int(x));";function int(input2,backend3){const program=new UnaryOpProgram(input2.shape,TO_INT),output=backend3.runWebGLProgram(program,[input2],"int32");return{dataId:output.dataId,shape:output.shape,dtype:output.dtype}}function cast50(args){const{inputs,backend:backend3,attrs}=args,{x}=inputs,{dtype}=attrs;if(dtype==="complex64"){if(x.dtype==="complex64")return identity3({inputs:{x},backend:backend3});const zerosTensor=zeros(x.shape),floatX=cast50({inputs:{x},backend:backend3,attrs:{dtype:"float32"}}),result=complex10({inputs:{real:floatX,imag:zerosTensor},backend:backend3});return zerosTensor.dispose(),backend3.disposeIntermediateTensorInfo(floatX),result}if(x.dtype==="complex64"){const realPart=real7({inputs:{input:x},backend:backend3}),result=cast50({inputs:{x:realPart},backend:backend3,attrs:{dtype}});return backend3.disposeIntermediateTensorInfo(realPart),result}if(!util_exports.hasEncodingLoss(x.dtype,dtype)){const result=identity3({inputs:{x},backend:backend3});return{dataId:result.dataId,shape:result.shape,dtype}}if(dtype==="int32")return int(x,backend3);if(dtype==="bool"){const zerosTensorInfo=backend3.makeTensorInfo([],"bool",util_exports.getTypedArrayFromDType("bool",1)),binaryInputs={a:x,b:zerosTensorInfo},result=notEqual3({inputs:binaryInputs,backend:backend3});return backend3.disposeIntermediateTensorInfo(zerosTensorInfo),result}throw new Error( ` Error in Cast : failed to cast $ { x . dtype } to $ { dtype } ` )}const castConfig2={kernelName:Cast,backendName:"webgl",kernelFunc:cast50};class ConcatProgram{constructor(shapes){this.outputShape=[],this.outputShape=backend_util_exports.computeOutShape(shapes,1),this.variableNames=shapes.map((_,i)=> ` T$ { i } ` );const offsets=new Array(shapes.length-1);offsets[0]=shapes[0][1];for(let i=1;i<offsets.length;i++)offsets[i]=offsets[i-1]+shapes[i][1];const snippets=[ ` if ( yC < $ { offsets [ 0 ] } ) setOutput ( getT0 ( yR , yC ) ) ; ` ];for(let i=1;i<offsets.length;i++){const shift=offsets[i-1];snippets.push( ` else if ( yC < $ { offsets [ i ] } ) setOutput ( getT$ { i } ( yR , yC - $ { shift } ) ) ; ` )}const lastIndex=offsets.length,lastShift=offsets[offsets.length-1];snippets.push( ` else setOutput ( getT$ { lastIndex } ( yR , yC - $ { lastShift } ) ) ; ` ),this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec2 coords = getOutputCoords ( ) ;
int yR = coords . x ;
int yC = coords . y ;
2020-11-17 23:42:44 +01:00
$ { snippets . join ( `
` )}
2020-11-17 18:38:48 +01:00
}
2020-11-17 23:42:44 +01:00
` }}class ConcatPackedProgram{constructor(shapes,axis){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=backend_util_exports.computeOutShape(shapes,axis);const shape=this.outputShape,rank=shape.length,dtype=getCoordsDataType(rank),coords2=getChannels("coords",rank),channels=["x","y","z","w","u","v"].slice(0,rank);this.variableNames=shapes.map((_,i)=> ` T$ { i } ` );const offsets=new Array(shapes.length-1);offsets[0]=shapes[0][axis];for(let i=1;i<offsets.length;i++)offsets[i]=offsets[i-1]+shapes[i][axis];const channel=channels[axis],lastChannels=channels.slice(-2),allChannels=channels.join();let getValueSnippet= ` if ( $ { channel } < $ { offsets [ 0 ] } ) {
2020-11-17 18:38:48 +01:00
return getChannel (
getT0 ( $ { allChannels } ) , vec2 ( $ { lastChannels . join ( ) } ) ) ;
} ` ;for(let i=1;i<offsets.length;i++){const shift2=offsets[i-1];getValueSnippet+= `
if ( $ { channel } < $ { offsets [ i ] } && $ { channel } >= $ { offsets [ i - 1 ] } ) {
return getChannel (
getT$ { i } ( $ { shiftedChannels ( channels , channel , shift2 ) } ) ,
vec2 ( $ { shiftedChannels ( lastChannels , channel , shift2 ) } ) ) ;
2020-11-17 23:42:44 +01:00
} ` }const lastIndex=offsets.length,shift=offsets[offsets.length-1];getValueSnippet+= `
2020-11-17 18:38:48 +01:00
return getChannel (
getT$ { lastIndex } ( $ { shiftedChannels ( channels , channel , shift ) } ) ,
2020-11-17 23:42:44 +01:00
vec2 ( $ { shiftedChannels ( lastChannels , channel , shift ) } ) ) ; ` ,this.userCode= `
2020-11-17 18:38:48 +01:00
float getValue ( $ { channels . map ( x => "int " + x ) } ) {
$ { getValueSnippet }
}
void main ( ) {
$ { dtype } coords = getOutputCoords ( ) ;
vec4 result = vec4 ( getValue ( $ { coords2 } ) , 0. , 0. , 0. ) ;
$ { coords2 [ rank - 1 ] } = $ { coords2 [ rank - 1 ] } + 1 ;
if ( $ { coords2 [ rank - 1 ] } < $ { shape [ rank - 1 ] } ) {
result . g = getValue ( $ { coords2 } ) ;
}
$ { coords2 [ rank - 2 ] } = $ { coords2 [ rank - 2 ] } + 1 ;
if ( $ { coords2 [ rank - 2 ] } < $ { shape [ rank - 2 ] } ) {
result . a = getValue ( $ { coords2 } ) ;
}
$ { coords2 [ rank - 1 ] } = $ { coords2 [ rank - 1 ] } - 1 ;
if ( $ { coords2 [ rank - 2 ] } < $ { shape [ rank - 2 ] } &&
$ { coords2 [ rank - 1 ] } < $ { shape [ rank - 1 ] } ) {
result . b = getValue ( $ { coords2 } ) ;
}
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` }}function shiftedChannels(channels,channel,shift){const channelIdx=channels.indexOf(channel),res=channels.map((c,idx)=>idx===channelIdx? ` $ { c } - $ { shift } ` :c);return res.join()}function imag7(args){const{inputs,backend:backend3}=args,{input:input2}=inputs,inputData=backend3.texData.get(input2.dataId);return identity3({inputs:{x:inputData.complexTensorInfos.imag},backend:backend3})}const imagConfig2={kernelName:Imag,backendName:"webgl",kernelFunc:imag7};function packedReshape(input2,afterShape,backend3){const input3DShape=[getBatchDim(input2.shape),...getRowsCols(input2.shape)],input3D={dtype:input2.dtype,shape:input3DShape,dataId:input2.dataId},afterShapeAs3D=[getBatchDim(afterShape),...getRowsCols(afterShape)],program=new ReshapePackedProgram(afterShapeAs3D,input3DShape),preventEagerUnpackingOfOutput=!0,output=backend3.runWebGLProgram(program,[input3D],input2.dtype,null,preventEagerUnpackingOfOutput);return{dataId:output.dataId,shape:afterShape,dtype:output.dtype}}function reshape90(args){const{inputs,backend:backend3,attrs}=args,{x}=inputs,{shape}=attrs,webglBackend=backend3,xSize=util_exports.sizeFromShape(x.shape), $ shape=util_exports.inferFromImplicitShape(shape,xSize), $ xSize=util_exports.sizeFromShape( $ shape);util_exports.assert(xSize=== $ xSize,()=> ` The new shape ( $ { $shape } ) has $ { $xSize } elements and the old shape ( $ { x . shape } ) has $ { xSize } elements . The new shape and old shape must have the same number of elements . ` );const xTexData=webglBackend.texData.get(x.dataId);return xTexData.isPacked&&!isReshapeFree(x.shape, $ shape)&&!(xTexData.texture!==null&&isReshapeFree(xTexData.shape, $ shape))?packedReshape(x, $ shape,webglBackend):(webglBackend.incRef(x.dataId),{dataId:x.dataId,shape: $ shape,dtype:x.dtype})}const reshapeConfig2={kernelName:Reshape,backendName:"webgl",kernelFunc:reshape90};function concatImpl(inputs,axis,backend3){const dtype=inputs[0].dtype;if(dtype==="complex64"){const reals=inputs.map(t=>real7({inputs:{input:t},backend:backend3})),imags=inputs.map(t=>imag7({inputs:{input:t},backend:backend3})),realConcated=concatImpl(reals,axis,backend3),imagConcated=concatImpl(imags,axis,backend3),result2=complex10({inputs:{real:realConcated,imag:imagConcated},backend:backend3});return reals.forEach(r=>backend3.disposeIntermediateTensorInfo(r)),imags.forEach(i=>backend3.disposeIntermediateTensorInfo(i)),backend3.disposeIntermediateTensorInfo(realConcated),backend3.disposeIntermediateTensorInfo(imagConcated),result2}if(inputs.length>env().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){const midIndex=Math.floor(inputs.length/2),leftSide=concatImpl(inputs.slice(0,midIndex),axis,backend3),rightSide=concatImpl(inputs.slice(midIndex),axis,backend3),result2=concatImpl([leftSide,rightSide],axis,backend3);return backend3.disposeIntermediateTensorInfo(leftSide),backend3.disposeIntermediateTensorInfo(rightSide),result2}if(env().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&inputs[0].shape.length>1){const program2=new ConcatPackedProgram(inputs.map(t=>t.shape),axis);return backend3.runWebGLProgram(program2,inputs,dtype)}const outShape=backend_util_exports.computeOutShape(inputs.map(t=>t.shape),axis),tensors2D=inputs.map(x=>reshape90({inputs:{x},attrs:{shape:[-1,util_exports.sizeFromShape(x.shape.slice(axis))]},backend:backend3})),program=new ConcatProgram(tensors2D.map(t=>t.shape)),result=backend3.runWebGLProgram(program,tensors2D,dtype);tensors2D.forEach(r=>backend3.disposeIntermediateTensorInfo(r));const reshapedResult=reshape90({inputs:{x:result},attrs:{shape:outShape},backend:backend3});return backend3.disposeIntermediateTensorInfo(result),reshapedResult}function concat18(args){const{inputs,backend:backend3,attrs}=args,{axis}=attrs, $ axis=util_exports.parseAxisParam(axis,inputs[0].shape)[0],outShape=backend_util_exports.computeOutShape(inputs.map(t=>t.shape), $ axis);if(util_exports.sizeFromShape(outShape)===0)return backend3.makeTensorInfo(outShape,inputs[0].dtype,[]);const $ inputs=inputs.filter(t=>util_exports.sizeFromShape(t.shape)>0);if( $ inputs.length===1)return $ inputs[0];const shapes= $ inputs.map(t=>t.shape);return backend_util_expo
2020-11-17 18:38:48 +01:00
return cos ( x ) ;
2020-11-17 23:42:44 +01:00
` ,cos7=unaryKernelFunc2(COS),cosConfig2={kernelName:Cos,backendName:"webgl",kernelFunc:cos7},DIV= `
2020-11-17 18:38:48 +01:00
if ( a == b ) {
return 1.0 ;
} ;
2020-11-17 23:42:44 +01:00
return a / b ; ` ,DIV_PACKED= `
2020-11-17 18:38:48 +01:00
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b ;
if ( a . x == b . x ) {
result . x = 1. ;
}
if ( a . y == b . y ) {
result . y = 1. ;
}
if ( a . z == b . z ) {
result . z = 1. ;
}
if ( a . w == b . w ) {
result . w = 1. ;
}
return result ;
2020-11-17 23:42:44 +01:00
` ,div36=binaryKernelFunc2({opSnippet:DIV,packedOpSnippet:DIV_PACKED,checkOutOfBounds:!0}),divConfig2={kernelName:Div,backendName:"webgl",kernelFunc:div36};class FFTProgram{constructor(component,inputShape,inverse){this.variableNames=["real","imag"];const innerDim=inputShape[1];this.outputShape=inputShape;const exponentMultiplierSnippet=inverse? ` 2.0 * $ { Math . PI } ` : ` - 2.0 * $ { Math . PI } ` ,resultDenominator=inverse? ` $ { innerDim } . 0 ` :"1.0";let opString;if(component==="real")opString="return real * expR - imag * expI;";else if(component==="imag")opString="return real * expI + imag * expR;";else throw new Error( ` FFT component must be either "real" or "imag" , got $ { component } . ` );this.userCode= `
2020-11-17 18:38:48 +01:00
const float exponentMultiplier = $ { exponentMultiplierSnippet } ;
float unaryOpComplex ( float real , float expR , float imag , float expI ) {
$ { opString }
}
float mulMatDFT ( int batch , int index ) {
float indexRatio = float ( index ) / float ( $ { innerDim } ) ;
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio ;
float result = 0.0 ;
for ( int i = 0 ; i < $ { innerDim } ; i ++ ) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float ( i ) ;
float expR = cos ( x ) ;
float expI = sin ( x ) ;
float real = getReal ( batch , i ) ;
float imag = getImag ( batch , i ) ;
result +=
unaryOpComplex ( real , expR , imag , expI ) / $ { resultDenominator } ;
}
return result ;
}
void main ( ) {
ivec2 coords = getOutputCoords ( ) ;
setOutput ( mulMatDFT ( coords [ 0 ] , coords [ 1 ] ) ) ;
}
2020-11-17 23:42:44 +01:00
` }}function fftImpl2(x,inverse,backend3){const xData=backend3.texData.get(x.dataId),inputSize=util_exports.sizeFromShape(x.shape),innerDimensionSize=x.shape[x.shape.length-1],batch=inputSize/innerDimensionSize,input2D=reshape90({inputs:{x},backend:backend3,attrs:{shape:[batch,innerDimensionSize]}}),xShape=input2D.shape,realProgram=new FFTProgram("real",xShape,inverse),imagProgram=new FFTProgram("imag",xShape,inverse),inputs=[{dataId:xData.complexTensorInfos.real.dataId,dtype:xData.complexTensorInfos.real.dtype,shape:xShape},{dataId:xData.complexTensorInfos.imag.dataId,dtype:xData.complexTensorInfos.imag.dtype,shape:xShape}],realPart=backend3.runWebGLProgram(realProgram,inputs,"float32"),imagPart=backend3.runWebGLProgram(imagProgram,inputs,"float32"),complexOutput=complex10({inputs:{real:realPart,imag:imagPart},backend:backend3});backend3.disposeIntermediateTensorInfo(realPart),backend3.disposeIntermediateTensorInfo(imagPart);const complexOutputReshaped=reshape90({inputs:{x:complexOutput},backend:backend3,attrs:{shape:x.shape}});return backend3.disposeIntermediateTensorInfo(complexOutputReshaped),complexOutputReshaped}function fft7(args){const{inputs,backend:backend3}=args,{input:input2}=inputs;return fftImpl2(input2,!1,backend3)}const fftConfig2={kernelName:FFT,backendName:"webgl",kernelFunc:fft7};class FlipLeftRightProgram{constructor(imageShape){this.variableNames=["Image"],this.outputShape=[];const imageWidth=imageShape[2];this.outputShape=imageShape,this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int x = coords [ 2 ] ;
int coordX = $ { imageWidth } - x ;
float outputValue ;
if ( coordX >= 0 && coordX < $ { imageWidth } ) {
outputValue = getImage ( coords [ 0 ] , coords [ 1 ] , coordX , coords [ 3 ] ) ;
} else {
outputValue = getImage ( coords [ 0 ] , coords [ 1 ] , coords [ 2 ] , coords [ 3 ] ) ;
}
setOutput ( outputValue ) ;
}
2020-11-17 23:42:44 +01:00
` }}const flipLeftRightConfig2={kernelName:FlipLeftRight,backendName:"webgl",kernelFunc:({inputs,backend:backend3})=>{const{image:image3}=inputs,webglBackend=backend3,program=new FlipLeftRightProgram(image3.shape),output=webglBackend.runWebGLProgram(program,[image3],image3.dtype);return output}};class FromPixelsProgram{constructor(outputShape){this.variableNames=["A"];const glsl=getGlslDifferences(),[height,width]=outputShape;this.outputShape=outputShape,this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec3 coords = getOutputCoords ( ) ;
int texR = coords [ 0 ] ;
int texC = coords [ 1 ] ;
int depth = coords [ 2 ] ;
vec2 uv = ( vec2 ( texC , texR ) + halfCR ) / vec2 ( $ { width } . 0 , $ { height } . 0 ) ;
vec4 values = $ { glsl . texture2D } ( A , uv ) ;
float value ;
if ( depth == 0 ) {
value = values . r ;
} else if ( depth == 1 ) {
value = values . g ;
} else if ( depth == 2 ) {
value = values . b ;
} else if ( depth == 3 ) {
value = values . a ;
}
setOutput ( floor ( value * 255.0 + 0.5 ) ) ;
}
2020-11-17 23:42:44 +01:00
` }}class FromPixelsPackedProgram{constructor(outputShape){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;const glsl=getGlslDifferences(),[height,width]=outputShape;this.outputShape=outputShape,this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec3 coords = getOutputCoords ( ) ;
int texR = coords [ 0 ] ;
int texC = coords [ 1 ] ;
int depth = coords [ 2 ] ;
vec4 result = vec4 ( 0. ) ;
for ( int row = 0 ; row <= 1 ; row ++ ) {
for ( int col = 0 ; col <= 1 ; col ++ ) {
texC = coords [ 1 ] + row ;
depth = coords [ 2 ] + col ;
vec2 uv = ( vec2 ( texC , texR ) + halfCR ) /
vec2 ( $ { width } . 0 , $ { height } . 0 ) ;
vec4 values = $ { glsl . texture2D } ( A , uv ) ;
float value ;
if ( depth == 0 ) {
value = values . r ;
} else if ( depth == 1 ) {
value = values . g ;
} else if ( depth == 2 ) {
value = values . b ;
} else if ( depth == 3 ) {
value = values . a ;
}
result [ row * 2 + col ] = floor ( value * 255.0 + 0.5 ) ;
}
}
$ { glsl . output } = result ;
}
2020-11-17 23:42:44 +01:00
` }}const fromPixelsConfig={kernelName:FromPixels,backendName:"webgl",kernelFunc:fromPixels2};let fromPixels2DContext2;function fromPixels2(args){const{inputs,backend:backend3,attrs}=args;let{pixels}=inputs;const{numChannels}=attrs,isVideo=typeof HTMLVideoElement!="undefined"&&pixels instanceof HTMLVideoElement,isImage=typeof HTMLImageElement!="undefined"&&pixels instanceof HTMLImageElement,[width,height]=isVideo?[pixels.videoWidth,pixels.videoHeight]:[pixels.width,pixels.height],texShape=[height,width],outShape=[height,width,numChannels];(isImage||isVideo)&&(fromPixels2DContext2==null&&(fromPixels2DContext2=document.createElement("canvas").getContext("2d")),fromPixels2DContext2.canvas.width=width,fromPixels2DContext2.canvas.height=height,fromPixels2DContext2.drawImage(pixels,0,0,width,height),pixels=fromPixels2DContext2.canvas);const tempPixelHandle=backend3.makeTensorInfo(texShape,"int32");backend3.texData.get(tempPixelHandle.dataId).usage=TextureUsage.PIXELS,backend3.gpgpu.uploadPixelDataToTexture(backend3.getTexture(tempPixelHandle.dataId),pixels);const program=env().getBool("WEBGL_PACK")?new FromPixelsPackedProgram(outShape):new FromPixelsProgram(outShape),res=backend3.runWebGLProgram(program,[tempPixelHandle],"int32");return backend3.disposeData(tempPixelHandle.dataId),res}function ifft7(args){const{inputs,backend:backend3}=args,{input:input2}=inputs;return fftImpl2(input2,!0,backend3)}const ifftConfig2={kernelName:IFFT,backendName:"webgl",kernelFunc:ifft7};class MeanProgram{constructor(reduceInfo,divisor){this.variableNames=["x"];const{windowSize,batchSize,inSize,outSize}=reduceInfo;this.outputShape=[batchSize,outSize];const windowSizeNearestVec4=Math.floor(windowSize/4)*4,windowSizeVec4Remainder=windowSize%4;let updateSnippet="sumValue += dot(values, ones);";if(divisor!=null){const denominator=1/divisor;updateSnippet= ` sumValue += dot ( values * $ { util _exports . isInt ( denominator ) ? denominator . toPrecision ( 2 ) : denominator } , ones ) ; ` }let checkOutOfBounds="";inSize%windowSize>0&&(checkOutOfBounds= `
2020-11-17 18:38:48 +01:00
if ( inIdx < 0 || inIdx >= $ { inSize } ) {
return 0.0 ;
}
2020-11-17 23:42:44 +01:00
` ),this.userCode= `
2020-11-17 18:38:48 +01:00
const vec4 ones = vec4 ( 1.0 , 1.0 , 1.0 , 1.0 ) ;
float getValue ( int batch , int inIdx ) {
$ { checkOutOfBounds }
return getX ( batch , inIdx ) ;
}
void main ( ) {
ivec2 coords = getOutputCoords ( ) ;
int batch = coords [ 0 ] ;
int outIdx = coords [ 1 ] ;
int inOffset = outIdx * $ { windowSize } ;
float sumValue = 0.0 ;
for ( int i = 0 ; i < $ { windowSizeNearestVec4 } ; i += 4 ) {
int inIdx = inOffset + i ;
vec4 values = vec4 (
getValue ( batch , inIdx ) ,
getValue ( batch , inIdx + 1 ) ,
getValue ( batch , inIdx + 2 ) ,
getValue ( batch , inIdx + 3 )
) ;
$ { updateSnippet }
}
int inIdx = inOffset + $ { windowSizeNearestVec4 } ;
if ( $ { windowSizeVec4Remainder === 1 } ) {
vec4 values = vec4 ( getValue ( batch , inIdx ) , 0.0 , 0.0 , 0.0 ) ;
$ { updateSnippet }
} else if ( $ { windowSizeVec4Remainder === 2 } ) {
vec4 values = vec4 (
getValue ( batch , inIdx ) ,
getValue ( batch , inIdx + 1 ) , 0.0 , 0.0 ) ;
$ { updateSnippet }
} else if ( $ { windowSizeVec4Remainder === 3 } ) {
vec4 values = vec4 (
getValue ( batch , inIdx ) ,
getValue ( batch , inIdx + 1 ) ,
getValue ( batch , inIdx + 2 ) , 0.0 ) ;
$ { updateSnippet }
}
setOutput ( sumValue ) ;
}
2020-11-17 23:42:44 +01:00
` }}function getReductionStages(inShape){const stages=[];for(;stages.length===0||stages[stages.length-1].outSize!==1;){const outSize=stages.length?stages[stages.length-1].outSize:inShape[1],windowSize=backend_util_exports.computeOptimalWindowSize(outSize);stages.push({inSize:outSize,windowSize,outSize:Math.ceil(outSize/windowSize)})}return stages}function reduce(x,dtype,reductionType,backend3){const reductionStages=getReductionStages(x.shape);let result=x;for(let i=0;i<reductionStages.length;i++){const{inSize,windowSize,outSize}=reductionStages[i];let program,previousResult;reductionType==="mean"?program=i===0?new MeanProgram({windowSize,inSize,batchSize:x.shape[0],outSize},inSize):new MeanProgram({windowSize,inSize,batchSize:x.shape[0],outSize}):program=new ReduceProgram({windowSize,inSize,batchSize:x.shape[0],outSize},reductionType),previousResult=result,result=backend3.runWebGLProgram(program,[result],dtype),previousResult.dataId!==x.dataId&&backend3.disposeIntermediateTensorInfo(previousResult)}return result}function maxImpl2(x,reduceShape,outShape,backend3){const inSize=util_exports.sizeFromShape(reduceShape),xSize=util_exports.sizeFromShape(x.shape),batchSize=xSize/inSize,reshapedInput=reshape90({inputs:{x},attrs:{shape:[batchSize,inSize]},backend:backend3}),reduced=reduce(reshapedInput,x.dtype,"max",backend3),reshapedOutput=reshape90({inputs:{x:reduced},attrs:{shape:outShape},backend:backend3});return backend3.disposeIntermediateTensorInfo(reshapedInput),backend3.disposeIntermediateTensorInfo(reduced),reshapedOutput}class TransposeProgram{constructor(aShape,newDim){this.variableNames=["A"];const outputShape=new Array(aShape.length);for(let i=0;i<outputShape.length;i++)outputShape[i]=aShape[newDim[i]];this.outputShape=outputShape,this.rank=outputShape.length;const dtype=getCoordsDataType(this.rank),switched=getSwitchedCoords(newDim);this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
$ { dtype } resRC = getOutputCoords ( ) ;
setOutput ( getA ( $ { switched } ) ) ;
}
2020-11-17 23:42:44 +01:00
` }}function getSwitchedCoords(newDim){const rank=newDim.length;if(rank>6)throw Error( ` Transpose for rank $ { rank } is not yet supported ` );const originalOrder=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],switchedCoords=new Array(rank);for(let i=0;i<newDim.length;i++)switchedCoords[newDim[i]]=originalOrder[i];return switchedCoords.join()}class TransposePackedProgram{constructor(aShape,newDim){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;const outputShape=new Array(aShape.length);for(let i=0;i<outputShape.length;i++)outputShape[i]=aShape[newDim[i]];if(this.outputShape=outputShape,this.rank=outputShape.length,this.rank>6)throw Error( ` Packed transpose for rank $ { this . rank } is not yet supported . ` );const dtype=getCoordsDataType(this.rank),outputOrder=getVecChannels("rc",this.rank),switchedOrder=new Array(this.rank);for(let i=0;i<newDim.length;i++)switchedOrder[newDim[i]]=outputOrder[i];const innerDims= ` vec2 ( $ { switchedOrder . slice ( - 2 ) . join ( ) } ) ` ,nextColumn= ` ++ $ { outputOrder [ this . rank - 1 ] } < $ { outputShape [ this . rank - 1 ] } ` ,getc= ` getChannel ( getA ( $ { switchedOrder . join ( ) } ) , $ { innerDims } ) ` ;this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
$ { dtype } rc = getOutputCoords ( ) ;
vec4 result = vec4 ( 0. ) ;
result [ 0 ] = $ { getc } ;
if ( $ { nextColumn } ) {
result [ 1 ] = $ { getc } ;
}
-- $ { outputOrder [ this . rank - 1 ] } ;
if ( ++ $ { outputOrder [ this . rank - 2 ] } < $ { outputShape [ this . rank - 2 ] } ) {
result [ 2 ] = $ { getc } ;
if ( $ { nextColumn } ) {
result [ 3 ] = $ { getc } ;
}
}
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` }}function transposeImpl2(x,perm,backend3){const program=env().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new TransposePackedProgram(x.shape,perm):new TransposeProgram(x.shape,perm);return backend3.runWebGLProgram(program,[x],x.dtype)}const maxConfig2={kernelName:Max,backendName:"webgl",kernelFunc:({inputs,attrs,backend:backend3})=>{const{x}=inputs,{reductionIndices,keepDims}=attrs,webglBackend=backend3,xRank=x.shape.length,origAxes=util_exports.parseAxisParam(reductionIndices,x.shape);let axes=origAxes;const permutedAxes=backend_util_exports.getAxesPermutation(axes,xRank),maxInputIsTransposed=permutedAxes!=null,shouldExecuteOnCPU=webglBackend.shouldExecuteOnCPU([x]);let maxInput=x;if(maxInputIsTransposed){if(shouldExecuteOnCPU){const xTexData=webglBackend.texData.get(maxInput.dataId),values=xTexData.values,newShape=new Array(xRank);for(let i=0;i<newShape.length;i++)newShape[i]=x.shape[permutedAxes[i]];const maxInputValues=transposeImplCPU(values,x.shape,x.dtype,permutedAxes,newShape);maxInput=webglBackend.makeTensorInfo(newShape,x.dtype);const maxInputData=webglBackend.texData.get(maxInput.dataId);maxInputData.values=maxInputValues}else maxInput=transposeImpl2(x,permutedAxes,webglBackend);axes=backend_util_exports.getInnerMostAxes(axes.length,xRank)}backend_util_exports.assertAxesAreInnerMostDims("max",axes,xRank);const[maxOutShape,reduceShape]=backend_util_exports.computeOutAndReduceShapes(maxInput.shape,axes);let outShape=maxOutShape;keepDims&&(outShape=backend_util_exports.expandShapeToKeepDim(maxOutShape,origAxes));let out;if(shouldExecuteOnCPU){const xTexData=webglBackend.texData.get(maxInput.dataId),values=xTexData.values,outValues=maxImplCPU(values,util_exports.sizeFromShape(reduceShape),outShape,x.dtype);out=webglBackend.makeTensorInfo(outShape,x.dtype);const outData=webglBackend.texData.get(out.dataId);outData.values=outValues}else out=maxImpl2(maxInput,reduceShape,outShape,webglBackend);return maxInputIsTransposed&&webglBackend.disposeIntermediateTensorInfo(maxInput),out}};function maxPool3(args){const{inputs,backend:backend3,attrs}=args,{x}=inputs;assertNotComplex2(x,"maxPool");const{filterSize,strides,pad:pad11,dimRoundingMode}=attrs,dilations=1;util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides,dilations),()=> ` Error in maxPool : Either strides or dilations must be 1. Got strides $ { strides } and dilations '${dilations}' ` );const convInfo=backend_util_exports.computePool2DInfo(x.shape,filterSize,strides,dilations,pad11,dimRoundingMode);if(convInfo.filterWidth===1&&convInfo.filterHeight===1&&util_exports.arraysEqual(convInfo.inShape,convInfo.outShape))return identity3({inputs:{x},backend:backend3});const maxPoolProgram=new Pool2DProgram(convInfo,"max",!1);return backend3.runWebGLProgram(maxPoolProgram,[x],x.dtype)}const maxPoolConfig2={kernelName:MaxPool,backendName:"webgl",kernelFunc:maxPool3};function maxPoolBackprop3(args){const{inputs,backend:backend3,attrs}=args,{dy,input:input2,output}=inputs,x=input2;assertNotComplex2([input2,output],"maxPoolBackprop");const{filterSize,strides,pad:pad11,dimRoundingMode}=attrs,convInfo=backend_util_exports.computePool2DInfo(x.shape,filterSize,strides,1,pad11,dimRoundingMode),getPositions=!0,maxPoolPositionsProgram=new Pool2DProgram(convInfo,"max",getPositions),maxPoolPositions2=backend3.runWebGLProgram(maxPoolPositionsProgram,[x],x.dtype),maxPoolBackPropProgram=new MaxPool2DBackpropProgram(convInfo),result=backend3.runWebGLProgram(maxPoolBackPropProgram,[dy,maxPoolPositions2],x.dtype);return backend3.disposeIntermediateTensorInfo(maxPoolPositions2),result}const maxPoolBackpropConfig2={kernelName:MaxPoolBackprop,backendName:"webgl",kernelFunc:maxPoolBackprop3};function maxPoolWithArgmaxImpl2(x,includeBatchInIndex,convInfo,backend3){let program=new Pool2DProgram(convInfo,"max",!1);const poolOutput=backend3.runWebGLProgram(program,[x],"float32");program=new Pool2DProgram(convInfo,"max",!0,!0,includeBatchInIndex);const indexOutput=backend3.runWebGLProgram(program,[x],"float32");return[poolOutput,indexOutput]}const maxPoolWithArgmaxConfig2={kernelN
2020-11-17 18:38:48 +01:00
int start = $ { start } ;
int end = $ { end } ;
void main ( ) {
int outC = getOutputCoords ( ) ;
if ( outC < start ) {
outC = start * 2 - outC - $ { offset } ;
} else if ( outC >= end ) {
outC = ( end - 1 ) * 2 - outC + $ { offset } ;
}
setOutput ( getX ( outC - start ) ) ;
}
` ;return}this.userCode= `
$ { dtype } start = $ { dtype } ( $ { start } ) ;
$ { dtype } end = $ { dtype } ( $ { end } ) ;
void main ( ) {
$ { dtype } outC = getOutputCoords ( ) ;
for ( int i = 0 ; i < $ { rank } ; i ++ ) {
if ( outC [ i ] < start [ i ] ) {
outC [ i ] = start [ i ] * 2 - outC [ i ] - $ { offset } ;
} else if ( outC [ i ] >= end [ i ] ) {
outC [ i ] = ( end [ i ] - 1 ) * 2 - outC [ i ] + $ { offset } ;
}
}
$ { dtype } coords = outC - start ;
setOutput ( getX ( $ { unpackedCoords } ) ) ;
}
2020-11-17 23:42:44 +01:00
` }}class MirrorPadPackedProgram{constructor(xShape,paddings,mode){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=paddings.map((p2,i)=>p2[0]+xShape[i]+p2[1]);const rank=xShape.length,dtype=getCoordsDataType(rank),start=paddings.map(p2=>p2[0]).join(","),end=paddings.map((p2,i)=>p2[0]+xShape[i]).join(","),coords2=getChannels("rc",rank),source=getChannels("source",rank),cLimit= ` $ { coords2 [ rank - 1 ] } < $ { this . outputShape [ rank - 1 ] } ` ,innerDims=rank===1?"source": ` vec2 ( $ { source . slice ( - 2 ) . join ( ) } ) ` ,offset=mode==="reflect"?0:1;let mainLoop="";if(rank===1){const padSetup= `
2020-11-17 18:38:48 +01:00
$ { dtype } source = rc ;
if ( source < start ) {
source = start * 2 - source - $ { offset } ;
} else if ( source >= end ) {
source = ( end - 1 ) * 2 - source + $ { offset } ;
}
source -= start ;
` ;mainLoop= `
$ { dtype } rc = outputLoc ;
$ { padSetup }
result [ 0 ] = getChannel ( getX ( $ { source . join ( ) } ) , $ { innerDims } ) ;
$ { coords2 [ rank - 1 ] } += 1 ;
if ( $ { cLimit } ) {
$ { padSetup }
result [ 1 ] = getChannel ( getX ( $ { source . join ( ) } ) , $ { innerDims } ) ;
}
` }else{const padSetup= `
$ { dtype } source = rc ;
$ { dtype } lt = $ { dtype } ( lessThan ( source , start ) ) ;
$ { dtype } gte = $ { dtype } ( greaterThanEqual ( source , end ) ) ;
$ { dtype } orig = 1 - ( lt + gte ) ;
source = orig * source +
lt * ( start * 2 - source - $ { offset } ) +
gte * ( ( end - 1 ) * 2 - source + $ { offset } ) ;
source -= start ;
` ;mainLoop= `
$ { dtype } rc = outputLoc ;
$ { padSetup }
result [ 0 ] = getChannel ( getX ( $ { source . join ( ) } ) , $ { innerDims } ) ;
$ { coords2 [ rank - 1 ] } += 1 ;
if ( $ { cLimit } ) {
$ { padSetup }
result [ 1 ] = getChannel ( getX ( $ { source . join ( ) } ) , $ { innerDims } ) ;
}
rc = outputLoc ;
$ { coords2 [ rank - 2 ] } += 1 ;
if ( $ { coords2 [ rank - 2 ] } < $ { this . outputShape [ rank - 2 ] } ) {
$ { padSetup }
result [ 2 ] = getChannel ( getX ( $ { source . join ( ) } ) , $ { innerDims } ) ;
$ { coords2 [ rank - 1 ] } += 1 ;
if ( $ { cLimit } ) {
$ { padSetup }
result [ 3 ] = getChannel ( getX ( $ { source . join ( ) } ) , $ { innerDims } ) ;
}
}
` }this.userCode= `
const $ { dtype } start = $ { dtype } ( $ { start } ) ;
const $ { dtype } end = $ { dtype } ( $ { end } ) ;
void main ( ) {
$ { dtype } outputLoc = getOutputCoords ( ) ;
vec4 result = vec4 ( 0. ) ;
$ { mainLoop }
setOutput ( result ) ;
}
2020-11-17 23:42:44 +01:00
` }}const mirrorPadKernelFunc=({inputs,backend:backend3,attrs})=>{const{x}=inputs,{paddings,mode}=attrs,program=env().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new MirrorPadPackedProgram(x.shape,paddings,mode):new MirrorPadProgram(x.shape,paddings,mode),output=backend3.runWebGLProgram(program,[x],x.dtype);return output},mirrorPadConfig2={kernelName:MirrorPad,backendName:"webgl",kernelFunc:mirrorPadKernelFunc},COMPLEX_MULTIPLY={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"};class BinaryOpComplexProgram{constructor(op2,aShape,bShape){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=backend_util_exports.assertAndGetBroadcastShape(aShape,bShape),this.userCode= `
2020-11-17 18:38:48 +01:00
float binaryOpComplex (
float areal , float aimag , float breal , float bimag ) {
$ { op2 }
}
void main ( ) {
float areal = getARealAtOutCoords ( ) ;
float aimag = getAImagAtOutCoords ( ) ;
float breal = getBRealAtOutCoords ( ) ;
float bimag = getBImagAtOutCoords ( ) ;
setOutput ( binaryOpComplex ( areal , aimag , breal , bimag ) ) ;
}
2020-11-17 23:42:44 +01:00
` }}const MUL="return a * b;";function multiply3(args){const{inputs,backend:backend3}=args,{a,b}=inputs,dtype=backend_util_exports.upcastType(a.dtype,b.dtype);if(a.dtype==="complex64"){const aData=backend3.texData.get(a.dataId),bData=backend3.texData.get(b.dataId),realProgram=new BinaryOpComplexProgram(COMPLEX_MULTIPLY.REAL,a.shape,b.shape),imagProgram=new BinaryOpComplexProgram(COMPLEX_MULTIPLY.IMAG,a.shape,b.shape),inputs2=[{dataId:aData.complexTensorInfos.real.dataId,dtype:aData.complexTensorInfos.real.dtype,shape:a.shape},{dataId:aData.complexTensorInfos.imag.dataId,dtype:aData.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:bData.complexTensorInfos.real.dataId,dtype:bData.complexTensorInfos.real.dtype,shape:b.shape},{dataId:bData.complexTensorInfos.imag.dataId,dtype:bData.complexTensorInfos.imag.dtype,shape:b.shape}],realPart=backend3.runWebGLProgram(realProgram,inputs2,"float32"),imagPart=backend3.runWebGLProgram(imagProgram,inputs2,"float32"),complexOutput=complex10({inputs:{real:realPart,imag:imagPart},backend:backend3});return backend3.disposeIntermediateTensorInfo(realPart),backend3.disposeIntermediateTensorInfo(imagPart),complexOutput}if(backend3.shouldExecuteOnCPU([a,b])){const aData=backend3.texData.get(a.dataId),bData=backend3.texData.get(b.dataId),[outValues,outShape]=multiplyImplCPU(a.shape,b.shape,aData.values,bData.values,dtype),out=backend3.makeTensorInfo(outShape,dtype),outData=backend3.texData.get(out.dataId);return outData.values=outValues,out}let program;return env().getBool("WEBGL_PACK_BINARY_OPERATIONS")?program=new BinaryOpPackedProgram(MUL,a.shape,b.shape):program=new BinaryOpProgram(MUL,a.shape,b.shape),backend3.runWebGLProgram(program,[a,b],dtype)}const multiplyConfig2={kernelName:Multiply,backendName:"webgl",kernelFunc:multiply3},nonMaxSuppressionV3Config={kernelName:NonMaxSuppressionV3,backendName:"webgl",kernelFunc:({inputs,backend:backend3,attrs})=>{backend_util_exports.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");const{boxes,scores}=inputs,{maxOutputSize,iouThreshold,scoreThreshold}=attrs,gpuBackend=backend3,boxesVals=gpuBackend.readSync(boxes.dataId),scoresVals=gpuBackend.readSync(scores.dataId),maxOutputSizeVal=maxOutputSize,iouThresholdVal=iouThreshold,scoreThresholdVal=scoreThreshold;return kernel_impls_exports.nonMaxSuppressionV3Impl(boxesVals,scoresVals,maxOutputSizeVal,iouThresholdVal,scoreThresholdVal)}},nonMaxSuppressionV4Impl3=kernel_impls_exports.nonMaxSuppressionV4Impl,nonMaxSuppressionV4Config2={kernelName:NonMaxSuppressionV4,backendName:"webgl",kernelFunc:({inputs,backend:backend3,attrs})=>{backend_util_exports.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");const{boxes,scores}=inputs,{maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize}=attrs,gpuBackend=backend3,boxesVals=gpuBackend.readSync(boxes.dataId),scoresVals=gpuBackend.readSync(scores.dataId),{selectedIndices,validOutputs}=nonMaxSuppressionV4Impl3(boxesVals,scoresVals,maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize);return[selectedIndices,validOutputs]}},nonMaxSuppressionV5Impl3=kernel_impls_exports.nonMaxSuppressionV5Impl,nonMaxSuppressionV5Config2={kernelName:NonMaxSuppressionV5,backendName:"webgl",kernelFunc:({inputs,backend:backend3,attrs})=>{backend_util_exports.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");const{boxes,scores}=inputs,{maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma}=attrs,gpuBackend=backend3,boxesVals=gpuBackend.readSync(boxes.dataId),scoresVals=gpuBackend.readSync(scores.dataId),maxOutputSizeVal=maxOutputSize,iouThresholdVal=iouThreshold,scoreThresholdVal=scoreThreshold,softNmsSigmaVal=softNmsSigma,{selectedIndices,selectedScores}=nonMaxSuppressionV5Impl3(boxesVals,scoresVals,maxOutputSizeVal,iouThresholdVal,scoreThresholdVal,softNmsSigmaVal);return[selectedIndices,selectedScores]}};class RotateProgram{constructor(imageShape,radians,fillValue,center){this.variableNames=["Image"],this.outputS
2020-11-17 18:38:48 +01:00
vec3 fill = vec3 ( $ { fillValue . join ( "," ) } ) ;
2020-11-17 23:42:44 +01:00
float outputValue = fill [ coords [ 3 ] ] ; ` ,this.userCode= `
2020-11-17 18:38:48 +01:00
void main ( ) {
ivec4 coords = getOutputCoords ( ) ;
int x = coords [ 2 ] ;
int y = coords [ 1 ] ;
float coordXFloat = ( float ( x ) - $ { centerXString } ) * $ { cosFactor } - ( float ( y ) - $ { centerYString } ) * $ { sinFactor } ;
float coordYFloat = ( float ( x ) - $ { centerXString } ) * $ { sinFactor } + ( float ( y ) - $ { centerYString } ) * $ { cosFactor } ;
int coordX = int ( round ( coordXFloat + $ { centerXString } ) ) ;
int coordY = int ( round ( coordYFloat + $ { centerYString } ) ) ;
$ { fillSnippet }
if ( coordX >= 0 && coordX < $ { imageWidth } && coordY >= 0 && coordY < $ { imageHeight } ) {
outputValue = getImage ( coords [ 0 ] , coordY , coordX , coords [ 3 ] ) ;
}
setOutput ( outputValue ) ;
}
2020-11-17 23:42:44 +01:00
` }}const rotateWithOffsetConfig2={kernelName:RotateWithOffset,backendName:"webgl",kernelFunc:({inputs,attrs,backend:backend3})=>{const{image:image3}=inputs,{radians,fillValue,center}=attrs,webglBackend=backend3,program=new RotateProgram(image3.shape,radians,fillValue,center),output=webglBackend.runWebGLProgram(program,[image3],image3.dtype);return output}},SIN=CHECK_NAN_SNIPPET_UNARY+ `
2020-11-17 18:38:48 +01:00
return sin ( x ) ;
2020-11-20 13:52:50 +01:00
` ,sin6=unaryKernelFunc2(SIN),sinConfig2={kernelName:Sin,backendName:"webgl",kernelFunc:sin6},SQUARE="return x * x;",square25=unaryKernelFunc2(SQUARE),squareConfig2={kernelName:Square,backendName:"webgl",kernelFunc:square25},SQUARED_DIFFERENCE="return (a - b) * (a - b);",squaredDifference3=binaryKernelFunc2({opSnippet:SQUARED_DIFFERENCE,packedOpSnippet:SQUARED_DIFFERENCE}),squaredDifferenceConfig2={kernelName:SquaredDifference,backendName:"webgl",kernelFunc:squaredDifference3},SUB="return a - b;",subKernelFunc=binaryKernelFunc2({opSnippet:SUB,packedOpSnippet:SUB,supportsComplex:!0,cpuKernelImpl:subImplCPU}),subConfig2={kernelName:Sub,backendName:"webgl",kernelFunc:subKernelFunc},TAN="return tan(x);",tan5=unaryKernelFunc2(TAN),tanConfig2={kernelName:Tan,backendName:"webgl",kernelFunc:tan5},transposeConfig2={kernelName:Transpose,backendName:"webgl",kernelFunc:({inputs,attrs,backend:backend3})=>{const{x}=inputs,{perm}=attrs,webglBackend=backend3,xRank=x.shape.length,newShape=new Array(xRank);for(let i=0;i<newShape.length;i++)newShape[i]=x.shape[perm[i]];let out;if(webglBackend.shouldExecuteOnCPU([x])){const xTexData=webglBackend.texData.get(x.dataId),values=xTexData.values,outValues=transposeImplCPU(values,x.shape,x.dtype,perm,newShape);out=webglBackend.makeTensorInfo(newShape,x.dtype);const outData=webglBackend.texData.get(out.dataId);outData.values=outValues}else out=transposeImpl2(x,perm,webglBackend);return out}};function unique7(args){const{inputs,attrs,backend:backend3}=args,{axis}=attrs,{x}=inputs;assertNotComplex2(x,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");const values=backend3.readSync(x.dataId),{outputValues,outputShape,indices}=uniqueImplCPU(values,axis,x.shape,x.dtype);return[backend3.makeTensorInfo(outputShape,x.dtype,outputValues),backend3.makeTensorInfo([indices.length],"int32",indices)]}const uniqueConfig2={kernelName:Unique,backendName:"webgl",kernelFunc:unique7},kernelConfigs2=[addConfig2,atan2Config,avgPoolConfig2,avgPoolBackpropConfig2,batchNormConfig2,castConfig2,complexConfig2,concatConfig2,cosConfig2,divConfig2,fftConfig2,flipLeftRightConfig2,fromPixelsConfig,identityConfig2,ifftConfig2,imagConfig2,maxConfig2,maxPoolConfig2,maxPoolBackpropConfig2,maxPoolWithArgmaxConfig2,meanConfig,mirrorPadConfig2,multiplyConfig2,nonMaxSuppressionV3Config,nonMaxSuppressionV4Config2,nonMaxSuppressionV5Config2,notEqualConfig2,realConfig2,reshapeConfig2,rotateWithOffsetConfig2,sinConfig2,squareConfig2,subConfig2,squaredDifferenceConfig2,tanConfig2,transposeConfig2,uniqueConfig2];for(const kernelConfig of kernelConfigs2)registerKernel(kernelConfig);const version14="2.7.0",version16={"tfjs-core":version,"tfjs-backend-cpu":version10,"tfjs-backend-webgl":version12,"tfjs-data":version8,"tfjs-layers":version2,"tfjs-converter":version6,tfjs:version14};var CppDType;(function(CppDType2){CppDType2[CppDType2.float32=0]="float32",CppDType2[CppDType2.int32=1]="int32",CppDType2[CppDType2.bool=2]="bool",CppDType2[CppDType2.string=3]="string",CppDType2[CppDType2.complex64=4]="complex64"})(CppDType||(CppDType={}));var FusableActivation;(function(FusableActivation2){FusableActivation2[FusableActivation2.linear=0]="linear",FusableActivation2[FusableActivation2.relu=1]="relu",FusableActivation2[FusableActivation2.relu6=2]="relu6",FusableActivation2[FusableActivation2.prelu=3]="prelu"})(FusableActivation||(FusableActivation={}));let wasmFusedMatMul;function setup(backend3){wasmFusedMatMul=backend3.wasm.cwrap(_FusedMatMul,null,["number","array","number","number","array","number","number","number","number","number","number","number"])}function fusedBatchMatMul(args){const{inputs,backend:backend3,attrs}=args,{a,b,bias,preluActivationWeights}=inputs;if(a.dtype!=="float32"||b.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");const{transposeA,transposeB,activation:activation2}=attrs,aId=backend3.dataIdMap.get(a.dataId).id,bId=backend3.dataIdMap.get(b.dataId).id;let biasId=0;if(bias!=null){const biasData=backend3.dataIdMap.get(bias.dataId);if(bia
2020-11-03 15:34:36 +01:00
/ * *
* @ license
2020-11-16 21:51:46 +01:00
* Copyright 2017 Google LLC . All Rights Reserved .
2020-11-03 15:34:36 +01:00
* Licensed under the Apache License , Version 2.0 ( the "License" ) ;
* you may not use this file except in compliance with the License .
* You may obtain a copy of the License at
*
* http : //www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an "AS IS" BASIS ,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied .
* See the License for the specific language governing permissions and
* limitations under the License .
* === === === === === === === === === === === === === === === === === === === === === === === === === ==
* /
/ * *
* @ license
2020-11-16 21:51:46 +01:00
* Copyright 2018 Google LLC
2020-11-10 02:13:38 +01:00
*
2020-11-16 21:51:46 +01:00
* Use of this source code is governed by an MIT - style
* license that can be found in the LICENSE file or at
* https : //opensource.org/licenses/MIT.
2020-11-03 15:34:36 +01:00
* === === === === === === === === === === === === === === === === === === === === === === === === === ==
* /
/ * *
* @ license
2020-11-16 21:51:46 +01:00
* Copyright 2018 Google LLC . All Rights Reserved .
2020-11-03 15:34:36 +01:00
* Licensed under the Apache License , Version 2.0 ( the "License" ) ;
* you may not use this file except in compliance with the License .
* You may obtain a copy of the License at
*
* http : //www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an "AS IS" BASIS ,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied .
* See the License for the specific language governing permissions and
* limitations under the License .
2020-11-16 21:51:46 +01:00
*
2020-11-03 15:34:36 +01:00
* === === === === === === === === === === === === === === === === === === === === === === === === === ==
* /
/ * *
* @ license
2020-11-16 21:51:46 +01:00
* Copyright 2018 Google LLC . All Rights Reserved .
2020-11-03 15:34:36 +01:00
* Licensed under the Apache License , Version 2.0 ( the "License" ) ;
* you may not use this file except in compliance with the License .
* You may obtain a copy of the License at
*
* http : //www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an "AS IS" BASIS ,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied .
* See the License for the specific language governing permissions and
* limitations under the License .
* === === === === === === === === === === === === === === === === === === === === === === === === === ==
* /
/ * *
* @ license
2020-11-16 21:51:46 +01:00
* Copyright 2019 Google LLC
2020-11-10 02:13:38 +01:00
*
2020-11-16 21:51:46 +01:00
* Use of this source code is governed by an MIT - style
* license that can be found in the LICENSE file or at
* https : //opensource.org/licenses/MIT.
2020-11-03 15:34:36 +01:00
* === === === === === === === === === === === === === === === === === === === === === === === === === ==
* /
/ * *
* @ license
* Copyright 2019 Google LLC . All Rights Reserved .
* Licensed under the Apache License , Version 2.0 ( the "License" ) ;
* you may not use this file except in compliance with the License .
* You may obtain a copy of the License at
*
* http : //www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an "AS IS" BASIS ,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied .
* See the License for the specific language governing permissions and
* limitations under the License .
*
* === === === === === === === === === === === === === === === === === === === === === === === === === ==
* /
/ * *
* @ license
2020-11-16 21:51:46 +01:00
* Copyright 2019 Google LLC . All Rights Reserved .
2020-11-03 15:34:36 +01:00
* Licensed under the Apache License , Version 2.0 ( the "License" ) ;
* you may not use this file except in compliance with the License .
* You may obtain a copy of the License at
*
* http : //www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an "AS IS" BASIS ,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied .
* See the License for the specific language governing permissions and
* limitations under the License .
* === === === === === === === === === === === === === === === === === === === === === === === === === ==
* /
/ * *
* @ license
2020-11-16 21:51:46 +01:00
* Copyright 2020 Google Inc . All Rights Reserved .
2020-11-03 15:34:36 +01:00
* Licensed under the Apache License , Version 2.0 ( the "License" ) ;
* you may not use this file except in compliance with the License .
* You may obtain a copy of the License at
*
* http : //www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an "AS IS" BASIS ,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied .
* See the License for the specific language governing permissions and
* limitations under the License .
* === === === === === === === === === === === === === === === === === === === === === === === === === ==
* /
/ * *
* @ license
2020-11-16 21:51:46 +01:00
* Copyright 2020 Google LLC
2020-11-10 02:13:38 +01:00
*
2020-11-16 21:51:46 +01:00
* Use of this source code is governed by an MIT - style
* license that can be found in the LICENSE file or at
* https : //opensource.org/licenses/MIT.
2020-11-03 15:34:36 +01:00
* === === === === === === === === === === === === === === === === === === === === === === === === === ==
* /
/ * *
* @ license
* Copyright 2020 Google LLC . All Rights Reserved .
* Licensed under the Apache License , Version 2.0 ( the "License" ) ;
* you may not use this file except in compliance with the License .
* You may obtain a copy of the License at
*
* http : //www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an "AS IS" BASIS ,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied .
* See the License for the specific language governing permissions and
* limitations under the License .
* === === === === === === === === === === === === === === === === === === === === === === === === === ==
* /
2020-11-04 07:11:24 +01:00
/ * *
* @ license
* Copyright 2020 Google LLC . All Rights Reserved .
* Licensed under the Apache License , Version 2.0 ( the "License" ) ;
* you may not use this file except in compliance with the License .
* You may obtain a copy of the License at
*
* https : //www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an "AS IS" BASIS ,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied .
* See the License for the specific language governing permissions and
* limitations under the License .
* === === === === === === === === === === === === === === === === === === === === === === === === === ==
* /
2020-11-03 15:34:36 +01:00
/ * *
* @ license
* Copyright 2020 Google LLC . All Rights Reserved .
2020-11-16 21:51:46 +01:00
* Licensed under the Apache License , Version 2.0 ( the License ) ;
2020-11-03 15:34:36 +01:00
* you may not use this file except in compliance with the License .
* You may obtain a copy of the License at
*
2020-11-16 21:51:46 +01:00
* http : //www.apache.org/licenses/LICENSE-2.0
2020-11-03 15:34:36 +01:00
*
* Unless required by applicable law or agreed to in writing , software
2020-11-16 21:51:46 +01:00
* distributed under the License is distributed on an AS IS BASIS ,
2020-11-03 15:34:36 +01:00
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied .
* See the License for the specific language governing permissions and
* limitations under the License .
* === === === === === === === === === === === === === === === === === === === === === === === === === ==
* /
2020-11-16 21:51:46 +01:00
/** @license See the LICENSE file. */
2020-10-27 17:49:52 +01:00
//# sourceMappingURL=human.node.js.map