2021-11-13 23:26:19 +01:00
/ * *
2022-08-08 21:09:26 +02:00
* MobileFaceNet model implementation
2021-11-13 23:26:19 +01:00
*
* Based on : [ * * BecauseofAI MobileFace * * ] ( https : //github.com/becauseofAI/MobileFace)
*
* Obsolete and replaced by ` faceres ` that performs age / gender / descriptor analysis
* /
2022-01-17 17:03:21 +01:00
import { log , now } from '../util/util' ;
2021-11-13 23:26:19 +01:00
import * as tf from '../../dist/tfjs.esm.js' ;
2022-01-16 15:49:55 +01:00
import { loadModel } from '../tfjs/load' ;
2021-11-13 23:26:19 +01:00
import type { Tensor , GraphModel } from '../tfjs/types' ;
import type { Config } from '../config' ;
import { env } from '../util/env' ;
let model : GraphModel | null ;
const last : Array < number [ ] > = [ ] ;
let lastCount = 0 ;
let lastTime = 0 ;
let skipped = Number . MAX_SAFE_INTEGER ;
export async function load ( config : Config ) : Promise < GraphModel > {
if ( env . initial ) model = null ;
2022-01-17 17:03:21 +01:00
if ( ! model ) model = await loadModel ( config . face [ 'mobilefacenet' ] . modelPath ) ;
else if ( config . debug ) log ( 'cached model:' , model [ 'modelUrl' ] ) ;
2021-11-13 23:26:19 +01:00
return model ;
}
/ *
// convert to black&white to avoid colorization impact
const rgb = [ 0.2989 , 0.5870 , 0.1140 ] ; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html
const [ red , green , blue ] = tf . split ( crop , 3 , 3 ) ;
const redNorm = tf . mul ( red , rgb [ 0 ] ) ;
const greenNorm = tf . mul ( green , rgb [ 1 ] ) ;
const blueNorm = tf . mul ( blue , rgb [ 2 ] ) ;
const grayscale = tf . addN ( [ redNorm , greenNorm , blueNorm ] ) ;
const merge = tf . stack ( [ grayscale , grayscale , grayscale ] , 3 ) . squeeze ( 4 ) ;
// optional increase image contrast
// or do it per-channel so mean is done on each channel
// or do it based on histogram
const mean = merge . mean ( ) ;
const factor = 5 ;
const contrast = merge . sub ( mean ) . mul ( factor ) . add ( mean ) ;
* /
export async function predict ( input : Tensor , config : Config , idx , count ) : Promise < number [ ] > {
if ( ! model ) return [ ] ;
2022-08-08 21:09:26 +02:00
const skipFrame = skipped < ( config . face [ 'mobilefacenet' ] ? . skipFrames || 0 ) ;
const skipTime = ( config . face [ 'mobilefacenet' ] ? . skipTime || 0 ) > ( now ( ) - lastTime ) ;
2021-11-13 23:26:19 +01:00
if ( config . skipAllowed && skipTime && skipFrame && ( lastCount === count ) && last [ idx ] ) {
skipped ++ ;
return last [ idx ] ;
}
return new Promise ( async ( resolve ) = > {
let data : Array < number > = [ ] ;
2022-08-08 21:09:26 +02:00
if ( config . face [ 'mobilefacenet' ] ? . enabled && model ? . inputs [ 0 ] . shape ) {
2021-11-13 23:26:19 +01:00
const t : Record < string , Tensor > = { } ;
t . crop = tf . image . resizeBilinear ( input , [ model . inputs [ 0 ] . shape [ 2 ] , model . inputs [ 0 ] . shape [ 1 ] ] , false ) ; // just resize to fit the embedding model
// do a tight crop of image and resize it to fit the model
// const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right
// t.crop = tf.image.cropAndResize(input, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);
t . data = model ? . execute ( t . crop ) as Tensor ;
/ *
// optional normalize outputs with l2 normalization
const scaled = tf . tidy ( ( ) = > {
const l2 = res . norm ( 'euclidean' ) ;
const scale = res . div ( l2 ) ;
return scale ;
} ) ;
// optional reduce feature vector complexity
const reshape = tf . reshape ( res , [ 128 , 2 ] ) ; // split 256 vectors into 128 x 2
const reduce = reshape . logSumExp ( 1 ) ; // reduce 2nd dimension by calculating logSumExp on it
* /
const output = await t . data . data ( ) ;
data = Array . from ( output ) ; // convert typed array to simple array
2022-08-08 21:09:26 +02:00
Object . keys ( t ) . forEach ( ( tensor ) = > tf . dispose ( t [ tensor ] ) ) ;
2021-11-13 23:26:19 +01:00
}
last [ idx ] = data ;
lastCount = count ;
lastTime = now ( ) ;
resolve ( data ) ;
} ) ;
}