human/src/faceres/faceres.ts

143 lines
5.5 KiB
TypeScript
Raw Normal View History

2021-04-09 14:07:58 +02:00
import { log, join } from '../helpers';
2021-03-21 19:18:51 +01:00
import * as tf from '../../dist/tfjs.esm.js';
let model;
let last = { age: 0 };
let skipped = Number.MAX_SAFE_INTEGER;
type Tensor = typeof tf.Tensor;
type DB = Array<{ name: string, source: string, embedding: number[] }>;
export async function load(config) {
if (!model) {
2021-04-09 14:07:58 +02:00
model = await tf.loadGraphModel(join(config.modelBasePath, config.face.description.modelPath));
if (!model || !model.modelUrl) log('load model failed:', config.face.description.modelPath);
else if (config.debug) log('load model:', model.modelUrl);
} else if (config.debug) log('cached model:', model.modelUrl);
2021-03-21 19:18:51 +01:00
return model;
}
export function similarity(embedding1, embedding2, order = 2): number {
if (!embedding1 || !embedding2) return 0;
if (embedding1?.length === 0 || embedding2?.length === 0) return 0;
if (embedding1?.length !== embedding2?.length) return 0;
// general minkowski distance, euclidean distance is limited case where order is 2
2021-04-13 17:05:52 +02:00
const distance = 5.0 * embedding1
2021-03-21 19:18:51 +01:00
.map((val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared
.reduce((sum, now) => (sum + now), 0) // sum all distances
** (1 / order); // get root of
const res = Math.max(0, 100 - distance) / 100.0;
return res;
}
export function match(embedding: Array<number>, db: DB, threshold = 0) {
let best = { similarity: 0, name: '', source: '', embedding: [] as number[] };
if (!embedding || !db || !Array.isArray(embedding) || !Array.isArray(db)) return best;
for (const f of db) {
if (f.embedding && f.name) {
const perc = similarity(embedding, f.embedding);
if (perc > threshold && perc > best.similarity) best = { ...f, similarity: perc };
}
}
return best;
}
export function enhance(input): Tensor {
const image = tf.tidy(() => {
// input received from detector is already normalized to 0..1
// input is also assumed to be straightened
const tensor = input.image || input.tensor || input;
2021-03-23 20:24:58 +01:00
if (!(tensor instanceof tf.Tensor)) return null;
2021-03-21 19:18:51 +01:00
// do a tight crop of image and resize it to fit the model
const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right
2021-04-13 17:05:52 +02:00
// const box = [[0.0, 0.0, 1.0, 1.0]]; // basically no crop for test
2021-03-21 19:18:51 +01:00
const crop = (tensor.shape.length === 3)
? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing
: tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);
2021-05-17 14:56:57 +02:00
/*
// just resize to fit the embedding model instead of cropping
const crop = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);
*/
2021-03-21 19:18:51 +01:00
/*
// convert to black&white to avoid colorization impact
const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html
const [red, green, blue] = tf.split(crop, 3, 3);
const redNorm = tf.mul(red, rgb[0]);
const greenNorm = tf.mul(green, rgb[1]);
const blueNorm = tf.mul(blue, rgb[2]);
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);
*/
/*
2021-05-17 14:56:57 +02:00
// increase image pseudo-contrast 100%
// (or do it per-channel so mean is done on each channel)
// (or calculate histogram and do it based on histogram)
2021-03-21 19:18:51 +01:00
const mean = merge.mean();
2021-05-17 14:56:57 +02:00
const factor = 2;
2021-03-21 19:18:51 +01:00
const contrast = merge.sub(mean).mul(factor).add(mean);
*/
2021-04-13 17:05:52 +02:00
2021-03-21 19:18:51 +01:00
/*
// normalize brightness from 0..1
2021-05-17 14:56:57 +02:00
// silly way of creating pseudo-hdr of image
2021-03-21 19:18:51 +01:00
const darken = crop.sub(crop.min());
const lighten = darken.div(darken.max());
*/
2021-04-13 17:05:52 +02:00
2021-03-21 19:18:51 +01:00
const norm = crop.mul(255);
return norm;
});
return image;
}
export async function predict(image, config) {
if (!model) return null;
if ((skipped < config.face.description.skipFrames) && config.videoOptimized && last.age && (last.age > 0)) {
skipped++;
return last;
}
if (config.videoOptimized) skipped = 0;
else skipped = Number.MAX_SAFE_INTEGER;
return new Promise(async (resolve) => {
const enhanced = enhance(image);
let resT;
const obj = {
age: <number>0,
gender: <string>'unknown',
genderConfidence: <number>0,
descriptor: <number[]>[] };
2021-04-25 19:16:04 +02:00
if (config.face.description.enabled) resT = await model.predict(enhanced);
2021-03-21 19:18:51 +01:00
tf.dispose(enhanced);
if (resT) {
tf.tidy(() => {
const gender = resT.find((t) => t.shape[1] === 1).dataSync();
const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;
2021-04-25 00:43:59 +02:00
if (confidence > config.face.description.minConfidence) {
2021-03-21 19:18:51 +01:00
obj.gender = gender[0] <= 0.5 ? 'female' : 'male';
obj.genderConfidence = Math.min(0.99, confidence);
}
const age = resT.find((t) => t.shape[1] === 100).argMax(1).dataSync()[0];
const all = resT.find((t) => t.shape[1] === 100).dataSync();
obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;
const desc = resT.find((t) => t.shape[1] === 1024);
2021-05-17 14:56:57 +02:00
// const reshape = desc.reshape([128, 8]); // reshape large 1024-element descriptor to 128 x 8
// const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it which leaves us with 128-element descriptor
2021-03-21 19:18:51 +01:00
obj.descriptor = [...desc.dataSync()];
});
resT.forEach((t) => tf.dispose(t));
}
last = obj;
resolve(obj);
});
}