human/demo/benchmark/node.js

72 lines
2.5 KiB
JavaScript
Raw Normal View History

2021-09-05 22:42:11 +02:00
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node-gpu');
const log = require('@vladmandic/pilogger');
const canvasJS = require('canvas');
const Human = require('../../dist/human.node-gpu.js').default;
const input = 'samples/groups/group1.jpg';
const loop = 20;
const myConfig = {
backend: 'tensorflow',
modelBasePath: 'https://vladmandic.github.io/human/models',
wasmPath: 'https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.9.0/dist/',
debug: true,
async: true,
cacheSensitivity: 0,
filter: { enabled: false },
face: {
enabled: true,
detector: { enabled: true, rotation: false },
mesh: { enabled: true },
iris: { enabled: true },
description: { enabled: true },
emotion: { enabled: true },
},
hand: {
enabled: true,
},
body: { enabled: true },
object: { enabled: false },
};
async function getImage(human) {
const img = await canvasJS.loadImage(input);
const canvas = canvasJS.createCanvas(img.width, img.height);
const ctx = canvas.getContext('2d');
ctx.drawImage(img, 0, 0, img.width, img.height);
const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
const res = human.tf.tidy(() => {
const tensor = human.tf.tensor(Array.from(imageData.data), [canvas.height, canvas.width, 4], 'int32'); // create rgba image tensor from flat array
const channels = human.tf.split(tensor, 4, 2); // split rgba to channels
const rgb = human.tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb
const reshape = human.tf.reshape(rgb, [1, canvas.height, canvas.width, 3]); // move extra dim from the end of tensor and use it as batch number instead
return reshape;
});
log.info('Image:', input, res.shape);
return res;
}
async function main() {
log.header();
const human = new Human(myConfig);
await human.tf.ready();
log.info('Human:', human.version);
await human.load();
const loaded = Object.keys(human.models).filter((a) => human.models[a]);
log.info('Loaded:', loaded);
log.info('Memory state:', human.tf.engine().memory());
const tensor = await getImage(human);
log.state('Processing:', tensor['shape']);
2021-10-19 17:28:59 +02:00
const t0 = human.now();
2021-09-05 22:42:11 +02:00
await human.detect(tensor, myConfig);
2021-10-19 17:28:59 +02:00
const t1 = human.now();
2021-09-05 22:42:11 +02:00
log.state('Backend:', human.tf.getBackend());
log.data('Warmup:', Math.round(t1 - t0));
for (let i = 0; i < loop; i++) await human.detect(tensor, myConfig);
2021-10-19 17:28:59 +02:00
const t2 = human.now();
2021-09-05 22:42:11 +02:00
log.data('Average:', Math.round((t2 - t1) / loop));
}
main();