mirror of https://github.com/vladmandic/human
87 lines
3.5 KiB
TypeScript
87 lines
3.5 KiB
TypeScript
![]() |
import * as tf from '../../dist/tfjs.esm.js';
|
||
![]() |
import * as box from './box';
|
||
![]() |
|
||
![]() |
export class HandDetector {
|
||
|
model: any;
|
||
|
anchors: any;
|
||
|
anchorsTensor: any;
|
||
|
inputSizeTensor: any;
|
||
|
doubleInputSizeTensor: any;
|
||
|
|
||
![]() |
constructor(model, inputSize, anchorsAnnotated) {
|
||
![]() |
this.model = model;
|
||
![]() |
this.anchors = anchorsAnnotated.map((anchor) => [anchor.x_center, anchor.y_center]);
|
||
![]() |
this.anchorsTensor = tf.tensor2d(this.anchors);
|
||
![]() |
this.inputSizeTensor = tf.tensor1d([inputSize, inputSize]);
|
||
|
this.doubleInputSizeTensor = tf.tensor1d([inputSize * 2, inputSize * 2]);
|
||
![]() |
}
|
||
|
|
||
|
normalizeBoxes(boxes) {
|
||
|
return tf.tidy(() => {
|
||
|
const boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);
|
||
|
const boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);
|
||
|
const boxCenterPoints = tf.add(tf.div(boxOffsets, this.inputSizeTensor), this.anchorsTensor);
|
||
|
const halfBoxSizes = tf.div(boxSizes, this.doubleInputSizeTensor);
|
||
|
const startPoints = tf.mul(tf.sub(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);
|
||
|
const endPoints = tf.mul(tf.add(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);
|
||
|
return tf.concat2d([startPoints, endPoints], 1);
|
||
|
});
|
||
|
}
|
||
|
|
||
|
normalizeLandmarks(rawPalmLandmarks, index) {
|
||
|
return tf.tidy(() => {
|
||
|
const landmarks = tf.add(tf.div(rawPalmLandmarks.reshape([-1, 7, 2]), this.inputSizeTensor), this.anchors[index]);
|
||
|
return tf.mul(landmarks, this.inputSizeTensor);
|
||
|
});
|
||
|
}
|
||
|
|
||
![]() |
async getBoxes(input, config) {
|
||
|
const batched = this.model.predict(input);
|
||
|
const predictions = batched.squeeze();
|
||
![]() |
batched.dispose();
|
||
![]() |
const scoresT = tf.tidy(() => tf.sigmoid(tf.slice(predictions, [0, 0], [-1, 1])).squeeze());
|
||
|
const scores = scoresT.dataSync();
|
||
![]() |
const rawBoxes = tf.slice(predictions, [0, 1], [-1, 4]);
|
||
![]() |
const boxes = this.normalizeBoxes(rawBoxes);
|
||
![]() |
rawBoxes.dispose();
|
||
![]() |
const filteredT = await tf.image.nonMaxSuppressionAsync(boxes, scores, config.hand.maxHands, config.hand.iouThreshold, config.hand.scoreThreshold);
|
||
![]() |
const filtered = filteredT.arraySync();
|
||
![]() |
|
||
![]() |
scoresT.dispose();
|
||
![]() |
filteredT.dispose();
|
||
![]() |
const hands = [];
|
||
![]() |
for (const index of filtered) {
|
||
|
if (scores[index] >= config.hand.minConfidence) {
|
||
|
const matchingBox = tf.slice(boxes, [index, 0], [1, -1]);
|
||
|
const rawPalmLandmarks = tf.slice(predictions, [index, 5], [1, 14]);
|
||
|
const palmLandmarks = tf.tidy(() => this.normalizeLandmarks(rawPalmLandmarks, index).reshape([-1, 2]));
|
||
![]() |
rawPalmLandmarks.dispose();
|
||
![]() |
hands.push({ box: matchingBox, palmLandmarks, confidence: scores[index] });
|
||
![]() |
}
|
||
![]() |
}
|
||
![]() |
predictions.dispose();
|
||
|
boxes.dispose();
|
||
![]() |
return hands;
|
||
![]() |
}
|
||
|
|
||
![]() |
async estimateHandBounds(input, config) {
|
||
![]() |
const inputHeight = input.shape[1];
|
||
|
const inputWidth = input.shape[2];
|
||
![]() |
const image = tf.tidy(() => input.resizeBilinear([config.hand.inputSize, config.hand.inputSize]).div(127.5).sub(1));
|
||
![]() |
const predictions = await this.getBoxes(image, config);
|
||
![]() |
image.dispose();
|
||
![]() |
const hands = [];
|
||
![]() |
if (!predictions || predictions.length === 0) return hands;
|
||
![]() |
for (const prediction of predictions) {
|
||
![]() |
const boxes = prediction.box.dataSync();
|
||
|
const startPoint = boxes.slice(0, 2);
|
||
|
const endPoint = boxes.slice(2, 4);
|
||
![]() |
const palmLandmarks = prediction.palmLandmarks.arraySync();
|
||
![]() |
prediction.box.dispose();
|
||
![]() |
prediction.palmLandmarks.dispose();
|
||
![]() |
hands.push(box.scaleBoxCoordinates({ startPoint, endPoint, palmLandmarks, confidence: prediction.confidence }, [inputWidth / config.hand.inputSize, inputHeight / config.hand.inputSize]));
|
||
![]() |
}
|
||
|
return hands;
|
||
![]() |
}
|
||
|
}
|