mirror of https://github.com/vladmandic/human
152 lines
5.9 KiB
TypeScript
152 lines
5.9 KiB
TypeScript
![]() |
import { log } from '../log';
|
||
![]() |
import * as tf from '../../dist/tfjs.esm.js';
|
||
![]() |
|
||
|
const NUM_LANDMARKS = 6;
|
||
![]() |
|
||
|
function generateAnchors(inputSize) {
|
||
|
const spec = { strides: [inputSize / 16, inputSize / 8], anchors: [2, 6] };
|
||
![]() |
const anchors = [];
|
||
![]() |
for (let i = 0; i < spec.strides.length; i++) {
|
||
|
const stride = spec.strides[i];
|
||
|
const gridRows = Math.floor((inputSize + stride - 1) / stride);
|
||
|
const gridCols = Math.floor((inputSize + stride - 1) / stride);
|
||
|
const anchorsNum = spec.anchors[i];
|
||
![]() |
for (let gridY = 0; gridY < gridRows; gridY++) {
|
||
|
const anchorY = stride * (gridY + 0.5);
|
||
|
for (let gridX = 0; gridX < gridCols; gridX++) {
|
||
|
const anchorX = stride * (gridX + 0.5);
|
||
|
for (let n = 0; n < anchorsNum; n++) {
|
||
|
anchors.push([anchorX, anchorY]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return anchors;
|
||
|
}
|
||
![]() |
|
||
![]() |
export const disposeBox = (box) => {
|
||
![]() |
box.startEndTensor.dispose();
|
||
|
box.startPoint.dispose();
|
||
|
box.endPoint.dispose();
|
||
|
};
|
||
|
|
||
|
const createBox = (startEndTensor) => ({
|
||
|
startEndTensor,
|
||
|
startPoint: tf.slice(startEndTensor, [0, 0], [-1, 2]),
|
||
|
endPoint: tf.slice(startEndTensor, [0, 2], [-1, 2]),
|
||
|
});
|
||
|
|
||
|
const scaleBox = (box, factors) => {
|
||
|
const starts = tf.mul(box.startPoint, factors);
|
||
|
const ends = tf.mul(box.endPoint, factors);
|
||
|
const newCoordinates = tf.concat2d([starts, ends], 1);
|
||
|
return createBox(newCoordinates);
|
||
|
};
|
||
|
|
||
![]() |
function decodeBounds(boxOutputs, anchors, inputSize) {
|
||
|
const boxStarts = tf.slice(boxOutputs, [0, 1], [-1, 2]);
|
||
|
const centers = tf.add(boxStarts, anchors);
|
||
|
const boxSizes = tf.slice(boxOutputs, [0, 3], [-1, 2]);
|
||
|
const boxSizesNormalized = tf.div(boxSizes, inputSize);
|
||
|
const centersNormalized = tf.div(centers, inputSize);
|
||
|
const halfBoxSize = tf.div(boxSizesNormalized, 2);
|
||
|
const starts = tf.sub(centersNormalized, halfBoxSize);
|
||
|
const ends = tf.add(centersNormalized, halfBoxSize);
|
||
|
const startNormalized = tf.mul(starts, inputSize);
|
||
|
const endNormalized = tf.mul(ends, inputSize);
|
||
|
const concatAxis = 1;
|
||
|
return tf.concat2d([startNormalized, endNormalized], concatAxis);
|
||
|
}
|
||
![]() |
|
||
![]() |
function scaleBoxFromPrediction(face, scaleFactor) {
|
||
|
return tf.tidy(() => {
|
||
|
const box = face['box'] ? face['box'] : face;
|
||
![]() |
return scaleBox(box, scaleFactor).startEndTensor.squeeze();
|
||
![]() |
});
|
||
|
}
|
||
![]() |
|
||
![]() |
export class BlazeFaceModel {
|
||
|
blazeFaceModel: any;
|
||
|
width: number;
|
||
|
height: number;
|
||
|
anchorsData: any;
|
||
|
anchors: any;
|
||
|
inputSize: number;
|
||
|
config: any;
|
||
|
scaleFaces: number;
|
||
|
|
||
![]() |
constructor(model, config) {
|
||
|
this.blazeFaceModel = model;
|
||
![]() |
this.width = config.face.detector.inputSize;
|
||
|
this.height = config.face.detector.inputSize;
|
||
|
this.anchorsData = generateAnchors(config.face.detector.inputSize);
|
||
![]() |
this.anchors = tf.tensor2d(this.anchorsData);
|
||
![]() |
this.inputSize = tf.tensor1d([this.width, this.height]);
|
||
![]() |
this.config = config;
|
||
![]() |
this.scaleFaces = 0.8;
|
||
![]() |
}
|
||
|
|
||
![]() |
async getBoundingBoxes(inputImage) {
|
||
![]() |
// sanity check on input
|
||
|
if ((!inputImage) || (inputImage.isDisposedInternal) || (inputImage.shape.length !== 4) || (inputImage.shape[1] < 1) || (inputImage.shape[2] < 1)) return null;
|
||
![]() |
const [detectedOutputs, boxes, scores] = tf.tidy(() => {
|
||
|
const resizedImage = inputImage.resizeBilinear([this.width, this.height]);
|
||
![]() |
// const normalizedImage = tf.mul(tf.sub(resizedImage.div(255), 0.5), 2);
|
||
|
const normalizedImage = tf.sub(resizedImage.div(127.5), 1);
|
||
![]() |
const batchedPrediction = this.blazeFaceModel.predict(normalizedImage);
|
||
![]() |
let prediction;
|
||
|
// are we using tfhub or pinto converted model?
|
||
|
if (Array.isArray(batchedPrediction)) {
|
||
|
const sorted = batchedPrediction.sort((a, b) => a.size - b.size);
|
||
|
const concat384 = tf.concat([sorted[0], sorted[2]], 2); // dim: 384, 1 + 16
|
||
|
const concat512 = tf.concat([sorted[1], sorted[3]], 2); // dim: 512, 1 + 16
|
||
|
const concat = tf.concat([concat512, concat384], 1);
|
||
|
prediction = concat.squeeze(0);
|
||
|
} else {
|
||
|
prediction = batchedPrediction.squeeze(); // when using tfhub model
|
||
|
}
|
||
![]() |
const decodedBounds = decodeBounds(prediction, this.anchors, this.inputSize);
|
||
|
const logits = tf.slice(prediction, [0, 0], [-1, 1]);
|
||
![]() |
const scoresOut = tf.sigmoid(logits).squeeze();
|
||
![]() |
return [prediction, decodedBounds, scoresOut];
|
||
|
});
|
||
![]() |
const boxIndicesTensor = await tf.image.nonMaxSuppressionAsync(boxes, scores, this.config.face.detector.maxFaces, this.config.face.detector.iouThreshold, this.config.face.detector.scoreThreshold);
|
||
![]() |
const boxIndices = boxIndicesTensor.arraySync();
|
||
![]() |
boxIndicesTensor.dispose();
|
||
![]() |
const boundingBoxesMap = boxIndices.map((boxIndex) => tf.slice(boxes, [boxIndex, 0], [1, -1]));
|
||
![]() |
const boundingBoxes = boundingBoxesMap.map((boundingBox) => {
|
||
|
const vals = boundingBox.arraySync();
|
||
![]() |
boundingBox.dispose();
|
||
|
return vals;
|
||
![]() |
});
|
||
|
|
||
![]() |
const scoresVal = scores.dataSync();
|
||
![]() |
const annotatedBoxes = [];
|
||
![]() |
for (let i = 0; i < boundingBoxes.length; i++) {
|
||
![]() |
const boxIndex = boxIndices[i];
|
||
![]() |
const confidence = scoresVal[boxIndex];
|
||
![]() |
if (confidence > this.config.face.detector.minConfidence) {
|
||
![]() |
const box = createBox(boundingBoxes[i]);
|
||
|
const anchor = this.anchorsData[boxIndex];
|
||
|
const landmarks = tf.tidy(() => tf.slice(detectedOutputs, [boxIndex, NUM_LANDMARKS - 1], [1, -1]).squeeze().reshape([NUM_LANDMARKS, -1]));
|
||
|
annotatedBoxes.push({ box, landmarks, anchor, confidence });
|
||
|
}
|
||
![]() |
}
|
||
![]() |
detectedOutputs.dispose();
|
||
![]() |
boxes.dispose();
|
||
|
scores.dispose();
|
||
|
detectedOutputs.dispose();
|
||
|
return {
|
||
|
boxes: annotatedBoxes,
|
||
![]() |
scaleFactor: [inputImage.shape[2] / this.width, inputImage.shape[1] / this.height],
|
||
![]() |
};
|
||
|
}
|
||
|
}
|
||
![]() |
|
||
![]() |
export async function load(config) {
|
||
![]() |
const blazeface = await tf.loadGraphModel(config.face.detector.modelPath, { fromTFHub: config.face.detector.modelPath.includes('tfhub.dev') });
|
||
![]() |
const model = new BlazeFaceModel(blazeface, config);
|
||
![]() |
log(`load model: ${config.face.detector.modelPath.match(/\/(.*)\./)[1]}`);
|
||
![]() |
return model;
|
||
|
}
|