human/src/hand/handpipeline.js

176 lines
7.4 KiB
JavaScript
Raw Normal View History

2020-11-04 07:11:24 +01:00
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const tf = require('@tensorflow/tfjs');
const box = require('./box');
const util = require('./util');
const PALM_BOX_SHIFT_VECTOR = [0, -0.4];
const PALM_BOX_ENLARGE_FACTOR = 3;
2020-11-04 16:18:22 +01:00
const HAND_BOX_SHIFT_VECTOR = [0, -0.1]; // move detected hand box by x,y to ease landmark detection
const HAND_BOX_ENLARGE_FACTOR = 1.65; // increased from model default 1.65;
2020-11-04 07:11:24 +01:00
const PALM_LANDMARK_IDS = [0, 5, 9, 13, 17, 1, 2];
const PALM_LANDMARKS_INDEX_OF_PALM_BASE = 0;
const PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE = 2;
class HandPipeline {
constructor(boundingBoxDetector, meshDetector, inputSize) {
2020-11-08 07:17:25 +01:00
this.boxDetector = boundingBoxDetector;
2020-11-04 07:11:24 +01:00
this.meshDetector = meshDetector;
this.inputSize = inputSize;
2020-11-08 07:17:25 +01:00
this.storedBoxes = [];
2020-11-09 20:26:10 +01:00
this.skipped = 1000;
2020-11-04 20:59:30 +01:00
this.detectedHands = 0;
2020-11-04 07:11:24 +01:00
}
getBoxForPalmLandmarks(palmLandmarks, rotationMatrix) {
const rotatedPalmLandmarks = palmLandmarks.map((coord) => {
const homogeneousCoordinate = [...coord, 1];
return util.rotatePoint(homogeneousCoordinate, rotationMatrix);
});
const boxAroundPalm = this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);
return box.enlargeBox(box.squarifyBox(box.shiftBox(boxAroundPalm, PALM_BOX_SHIFT_VECTOR)), PALM_BOX_ENLARGE_FACTOR);
}
getBoxForHandLandmarks(landmarks) {
const boundingBox = this.calculateLandmarksBoundingBox(landmarks);
const boxAroundHand = box.enlargeBox(box.squarifyBox(box.shiftBox(boundingBox, HAND_BOX_SHIFT_VECTOR)), HAND_BOX_ENLARGE_FACTOR);
const palmLandmarks = [];
for (let i = 0; i < PALM_LANDMARK_IDS.length; i++) {
palmLandmarks.push(landmarks[PALM_LANDMARK_IDS[i]].slice(0, 2));
}
boxAroundHand.palmLandmarks = palmLandmarks;
return boxAroundHand;
}
transformRawCoords(rawCoords, box2, angle, rotationMatrix) {
const boxSize = box.getBoxSize(box2);
const scaleFactor = [boxSize[0] / this.inputSize, boxSize[1] / this.inputSize];
const coordsScaled = rawCoords.map((coord) => [
scaleFactor[0] * (coord[0] - this.inputSize / 2),
scaleFactor[1] * (coord[1] - this.inputSize / 2),
coord[2],
]);
const coordsRotationMatrix = util.buildRotationMatrix(angle, [0, 0]);
const coordsRotated = coordsScaled.map((coord) => {
const rotated = util.rotatePoint(coord, coordsRotationMatrix);
return [...rotated, coord[2]];
});
const inverseRotationMatrix = util.invertTransformMatrix(rotationMatrix);
const boxCenter = [...box.getBoxCenter(box2), 1];
const originalBoxCenter = [
util.dot(boxCenter, inverseRotationMatrix[0]),
util.dot(boxCenter, inverseRotationMatrix[1]),
];
return coordsRotated.map((coord) => [
coord[0] + originalBoxCenter[0],
coord[1] + originalBoxCenter[1],
coord[2],
]);
}
async estimateHands(image, config) {
2020-11-08 07:17:25 +01:00
this.skipped++;
let useFreshBox = false;
2020-11-08 15:56:02 +01:00
// run new detector every skipFrames unless we only want box to start with
let boxes;
if ((this.skipped > config.skipFrames) || !config.landmarks) {
boxes = await this.boxDetector.estimateHandBounds(image, config);
2020-11-09 20:26:10 +01:00
// don't reset on test image
if ((image.shape[1] !== 255) && (image.shape[2] !== 255)) this.skipped = 0;
2020-11-08 15:56:02 +01:00
}
2020-11-08 07:17:25 +01:00
// if detector result count doesn't match current working set, use it to reset current working set
2020-11-08 15:56:02 +01:00
if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.maxHands) || !config.landmarks)) {
2020-11-08 07:17:25 +01:00
this.storedBoxes = [];
this.detectedHands = 0;
for (const possible of boxes) this.storedBoxes.push(possible);
if (this.storedBoxes.length > 0) useFreshBox = true;
2020-11-04 07:11:24 +01:00
}
const hands = [];
2020-11-08 15:56:02 +01:00
// console.log(`skipped: ${this.skipped} max: ${config.maxHands} detected: ${this.detectedHands} stored: ${this.storedBoxes.length} new: ${boxes?.length}`);
2020-11-08 07:17:25 +01:00
// go through working set of boxes
for (const i in this.storedBoxes) {
const currentBox = this.storedBoxes[i];
2020-11-04 07:11:24 +01:00
if (!currentBox) continue;
2020-11-08 15:56:02 +01:00
if (config.landmarks) {
const angle = util.computeRotation(currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_PALM_BASE], currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE]);
const palmCenter = box.getBoxCenter(currentBox);
const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];
const rotatedImage = tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized);
const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);
const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;
const croppedInput = box.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);
const handImage = croppedInput.div(255);
croppedInput.dispose();
rotatedImage.dispose();
const [confidence, keypoints] = await this.meshDetector.predict(handImage);
handImage.dispose();
const confidenceValue = confidence.dataSync()[0];
confidence.dispose();
if (confidenceValue >= config.minConfidence) {
const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);
const rawCoords = keypointsReshaped.arraySync();
keypoints.dispose();
keypointsReshaped.dispose();
const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);
const nextBoundingBox = this.getBoxForHandLandmarks(coords);
this.storedBoxes[i] = nextBoundingBox;
const result = {
landmarks: coords,
confidence: confidenceValue,
box: {
topLeft: nextBoundingBox.startPoint,
bottomRight: nextBoundingBox.endPoint,
},
};
hands.push(result);
} else {
this.storedBoxes[i] = null;
}
2020-11-04 07:11:24 +01:00
keypoints.dispose();
2020-11-04 20:59:30 +01:00
} else {
2020-11-08 15:56:02 +01:00
const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), HAND_BOX_ENLARGE_FACTOR);
2020-11-04 20:59:30 +01:00
const result = {
2020-11-08 15:56:02 +01:00
confidence: currentBox.confidence,
box: {
topLeft: enlarged.startPoint,
bottomRight: enlarged.endPoint,
2020-11-04 20:59:30 +01:00
},
};
hands.push(result);
2020-11-04 07:11:24 +01:00
}
}
2020-11-08 07:17:25 +01:00
this.storedBoxes = this.storedBoxes.filter((a) => a !== null);
2020-11-04 20:59:30 +01:00
this.detectedHands = hands.length;
2020-11-04 07:11:24 +01:00
return hands;
}
// eslint-disable-next-line class-methods-use-this
calculateLandmarksBoundingBox(landmarks) {
const xs = landmarks.map((d) => d[0]);
const ys = landmarks.map((d) => d[1]);
const startPoint = [Math.min(...xs), Math.min(...ys)];
const endPoint = [Math.max(...xs), Math.max(...ys)];
return { startPoint, endPoint };
}
}
exports.HandPipeline = HandPipeline;