human/demo/node.js

102 lines
3.5 KiB
JavaScript
Raw Normal View History

const log = require('@vladmandic/pilogger');
2020-10-14 02:52:30 +02:00
const fs = require('fs');
const process = require('process');
2021-03-12 18:54:08 +01:00
// for NodeJS, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
const tf = require('@tensorflow/tfjs-node'); // or const tf = require('@tensorflow/tfjs-node-gpu');
2021-03-12 18:54:08 +01:00
// load specific version of Human library that matches TensorFlow mode
const Human = require('../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default;
2020-10-14 02:52:30 +02:00
2021-01-30 19:23:07 +01:00
let human = null;
const myConfig = {
2021-03-21 22:47:00 +01:00
// backend: 'tensorflow',
2020-10-16 16:12:12 +02:00
console: true,
videoOptimized: false,
2021-02-06 23:41:53 +01:00
async: false,
2020-10-14 02:52:30 +02:00
face: {
2021-03-04 16:33:08 +01:00
enabled: true,
2021-03-12 18:54:08 +01:00
detector: { modelPath: 'file://models/blazeface-back.json', enabled: true, rotation: false },
2021-03-10 00:32:35 +01:00
mesh: { modelPath: 'file://models/facemesh.json', enabled: true },
2021-03-04 16:33:08 +01:00
iris: { modelPath: 'file://models/iris.json', enabled: true },
2021-03-21 22:47:00 +01:00
description: { modelPath: 'file://models/faceres.json', enabled: true },
2021-03-04 16:33:08 +01:00
emotion: { modelPath: 'file://models/emotion.json', enabled: true },
2021-03-21 22:47:00 +01:00
age: { modelPath: 'file://models/age.json', enabled: false },
gender: { modelPath: 'file://models/gender.json', enabled: false },
embedding: { modelPath: 'file://models/mobileface.json', enabled: false },
2020-10-14 02:52:30 +02:00
},
2021-03-12 18:54:08 +01:00
// body: { modelPath: 'file://models/blazepose.json', enabled: true },
body: { modelPath: 'file://models/posenet.json', enabled: true },
2020-10-14 02:52:30 +02:00
hand: {
2021-03-04 16:33:08 +01:00
enabled: true,
2020-11-03 15:34:36 +01:00
detector: { modelPath: 'file://models/handdetect.json' },
skeleton: { modelPath: 'file://models/handskeleton.json' },
2020-10-14 02:52:30 +02:00
},
2021-03-17 23:36:12 +01:00
object: { modelPath: 'file://models/nanodet.json', enabled: true },
2020-10-14 02:52:30 +02:00
};
2021-01-30 19:23:07 +01:00
async function init() {
// wait until tf is ready
2020-10-14 02:52:30 +02:00
await tf.ready();
// create instance of human
2021-01-30 19:23:07 +01:00
human = new Human(myConfig);
// pre-load models
2021-03-04 16:33:08 +01:00
log.info('Human:', human.version);
log.info('Active Configuration', human.config);
await human.load();
2021-03-04 16:33:08 +01:00
const loaded = Object.keys(human.models).filter((a) => human.models[a]);
log.info('Loaded:', loaded);
log.info('Memory state:', human.tf.engine().memory());
2021-01-30 19:23:07 +01:00
}
async function detect(input) {
// read input image file and create tensor to be used for processing
2020-10-14 02:52:30 +02:00
const buffer = fs.readFileSync(input);
const decoded = human.tf.node.decodeImage(buffer);
const casted = decoded.toFloat();
const image = casted.expandDims(0);
decoded.dispose();
casted.dispose();
// image shape contains image dimensions and depth
log.state('Processing:', image.shape);
// run actual detection
const result = await human.detect(image, myConfig);
2021-03-10 00:32:35 +01:00
// no need to print results as they are printed to console during detection from within the library due to human.config.debug set
// dispose image tensor as we no longer need it
2020-10-14 17:43:33 +02:00
image.dispose();
// print data to console
2021-03-10 00:32:35 +01:00
return result;
2020-10-14 02:52:30 +02:00
}
2021-01-30 19:23:07 +01:00
async function test() {
2021-03-06 16:38:04 +01:00
// test with embedded full body image
let result;
2021-02-06 23:41:53 +01:00
log.state('Processing embedded warmup image: face');
myConfig.warmup = 'face';
2021-03-06 16:38:04 +01:00
result = await human.warmup(myConfig);
2021-02-08 17:39:09 +01:00
2021-02-06 23:41:53 +01:00
log.state('Processing embedded warmup image: full');
2021-01-30 19:23:07 +01:00
myConfig.warmup = 'full';
2021-03-06 16:38:04 +01:00
result = await human.warmup(myConfig);
2021-03-10 00:32:35 +01:00
// no need to print results as they are printed to console during detection from within the library due to human.config.debug set
return result;
2021-01-30 19:23:07 +01:00
}
2020-10-14 02:52:30 +02:00
async function main() {
2021-03-06 16:38:04 +01:00
log.header();
2021-03-04 16:33:08 +01:00
log.info('Current folder:', process.env.PWD);
2021-01-30 19:23:07 +01:00
await init();
if (process.argv.length !== 3) {
log.warn('Parameters: <input image> missing');
await test();
} else if (!fs.existsSync(process.argv[2])) {
log.error(`File not found: ${process.argv[2]}`);
} else {
await detect(process.argv[2]);
}
2020-10-14 02:52:30 +02:00
}
main();