mirror of https://github.com/vladmandic/human
63 lines
1.9 KiB
TypeScript
63 lines
1.9 KiB
TypeScript
![]() |
/**
|
||
![]() |
* Age model implementation
|
||
|
*
|
||
|
* Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)
|
||
|
*
|
||
|
* Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis
|
||
![]() |
*/
|
||
|
|
||
![]() |
import { log, join } from '../util/util';
|
||
![]() |
import * as tf from '../../dist/tfjs.esm.js';
|
||
![]() |
import type { Config } from '../config';
|
||
|
import type { GraphModel, Tensor } from '../tfjs/types';
|
||
![]() |
import { env } from '../util/env';
|
||
![]() |
|
||
![]() |
let model: GraphModel | null;
|
||
![]() |
|
||
|
let last = { age: 0 };
|
||
![]() |
let skipped = Number.MAX_SAFE_INTEGER;
|
||
![]() |
|
||
![]() |
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||
|
export async function load(config: Config | any) {
|
||
![]() |
if (env.initial) model = null;
|
||
![]() |
if (!model) {
|
||
![]() |
model = await tf.loadGraphModel(join(config.modelBasePath, config.face.age.modelPath)) as unknown as GraphModel;
|
||
![]() |
if (!model || !model['modelUrl']) log('load model failed:', config.face.age.modelPath);
|
||
|
else if (config.debug) log('load model:', model['modelUrl']);
|
||
![]() |
} else {
|
||
|
if (config.debug) log('cached model:', model['modelUrl']);
|
||
|
}
|
||
![]() |
return model;
|
||
![]() |
}
|
||
|
|
||
![]() |
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||
|
export async function predict(image: Tensor, config: Config | any) {
|
||
![]() |
if (!model) return null;
|
||
![]() |
if ((skipped < config.face.age.skipFrames) && config.skipFrame && last.age && (last.age > 0)) {
|
||
![]() |
skipped++;
|
||
![]() |
return last;
|
||
|
}
|
||
![]() |
skipped = 0;
|
||
![]() |
return new Promise(async (resolve) => {
|
||
![]() |
if (!model?.inputs || !model.inputs[0] || !model.inputs[0].shape) return;
|
||
![]() |
const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);
|
||
![]() |
const enhance = tf.mul(resize, [255.0]);
|
||
|
tf.dispose(resize);
|
||
|
|
||
|
let ageT;
|
||
![]() |
const obj = { age: 0 };
|
||
![]() |
|
||
![]() |
if (config.face.age.enabled) ageT = await model.predict(enhance);
|
||
![]() |
tf.dispose(enhance);
|
||
![]() |
|
||
![]() |
if (ageT) {
|
||
![]() |
const data = await ageT.data();
|
||
![]() |
obj.age = Math.trunc(10 * data[0]) / 10;
|
||
![]() |
}
|
||
![]() |
tf.dispose(ageT);
|
||
![]() |
|
||
|
last = obj;
|
||
![]() |
resolve(obj);
|
||
|
});
|
||
|
}
|