human/src/object/centernet.ts

86 lines
3.0 KiB
TypeScript
Raw Normal View History

2021-05-25 14:58:20 +02:00
/**
* CenterNet object detection module
*/
import { log, join } from '../helpers';
import * as tf from '../../dist/tfjs.esm.js';
import { labels } from './labels';
2021-05-22 18:33:19 +02:00
import { Item } from '../result';
let model;
2021-05-22 18:33:19 +02:00
let last: Item[] = [];
let skipped = Number.MAX_SAFE_INTEGER;
export async function load(config) {
if (!model) {
model = await tf.loadGraphModel(join(config.modelBasePath, config.object.modelPath));
const inputs = Object.values(model.modelSignature['inputs']);
model.inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : null;
if (!model.inputSize) throw new Error(`Human: Cannot determine model inputSize: ${config.object.modelPath}`);
if (!model || !model.modelUrl) log('load model failed:', config.object.modelPath);
else if (config.debug) log('load model:', model.modelUrl);
} else if (config.debug) log('cached model:', model.modelUrl);
return model;
}
async function process(res, inputSize, outputShape, config) {
2021-05-24 13:16:38 +02:00
const results: Array<Item> = [];
const detections = res.arraySync();
const squeezeT = tf.squeeze(res);
res.dispose();
const arr = tf.split(squeezeT, 6, 1); // x1, y1, x2, y2, score, class
squeezeT.dispose();
const stackT = tf.stack([arr[1], arr[0], arr[3], arr[2]], 1); // tf.nms expects y, x
const boxesT = stackT.squeeze();
const scoresT = arr[4].squeeze();
const classesT = arr[5].squeeze();
arr.forEach((t) => t.dispose());
// @ts-ignore boxesT type is not correctly inferred
const nmsT = await tf.image.nonMaxSuppressionAsync(boxesT, scoresT, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);
boxesT.dispose();
scoresT.dispose();
classesT.dispose();
const nms = nmsT.dataSync();
nmsT.dispose();
2021-05-24 13:16:38 +02:00
let i = 0;
for (const id of nms) {
const score = detections[0][id][4];
const classVal = detections[0][id][5];
const label = labels[classVal].label;
const boxRaw = [
detections[0][id][0] / inputSize,
detections[0][id][1] / inputSize,
detections[0][id][2] / inputSize,
detections[0][id][3] / inputSize,
];
const box = [
Math.trunc(boxRaw[0] * outputShape[0]),
Math.trunc(boxRaw[1] * outputShape[1]),
Math.trunc(boxRaw[2] * outputShape[0]),
Math.trunc(boxRaw[3] * outputShape[1]),
];
2021-05-24 13:16:38 +02:00
results.push({ id: i++, score, class: classVal, label, box, boxRaw });
}
return results;
}
2021-05-22 18:33:19 +02:00
export async function predict(image, config): Promise<Item[]> {
if ((skipped < config.object.skipFrames) && config.skipFrame && (last.length > 0)) {
skipped++;
return last;
}
skipped = 0;
return new Promise(async (resolve) => {
const outputSize = [image.shape[2], image.shape[1]];
const resize = tf.image.resizeBilinear(image, [model.inputSize, model.inputSize], false);
let objectT;
if (config.object.enabled) objectT = model.execute(resize, 'tower_0/detections');
resize.dispose();
const obj = await process(objectT, model.inputSize, outputSize, config);
last = obj;
resolve(obj);
});
}