human/src/face/embedding.ts

113 lines
4.3 KiB
TypeScript
Raw Normal View History

2021-05-25 14:58:20 +02:00
/**
* EfficientPose model implementation
*
* Based on: [**BecauseofAI MobileFace**](https://github.com/becauseofAI/MobileFace)
*
* Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis
2021-05-25 14:58:20 +02:00
*/
2021-09-27 19:58:13 +02:00
import { log, join } from '../util/util';
2020-11-18 14:26:28 +01:00
import * as tf from '../../dist/tfjs.esm.js';
2021-09-13 19:28:35 +02:00
import type { Tensor, GraphModel } from '../tfjs/types';
2021-09-27 19:58:13 +02:00
import { env } from '../util/env';
2020-11-13 22:13:35 +01:00
2021-09-17 17:23:00 +02:00
let model: GraphModel | null;
2020-11-13 22:13:35 +01:00
2021-02-08 17:39:09 +01:00
export async function load(config) {
const modelUrl = join(config.modelBasePath, config.face.embedding.modelPath);
2021-09-17 17:23:00 +02:00
if (env.initial) model = null;
2021-02-08 18:47:38 +01:00
if (!model) {
2021-08-17 14:51:17 +02:00
model = await tf.loadGraphModel(modelUrl) as unknown as GraphModel;
if (!model) log('load model failed:', config.face.embedding.modelPath);
else if (config.debug) log('load model:', modelUrl);
} else if (config.debug) log('cached model:', modelUrl);
2021-02-08 18:47:38 +01:00
return model;
2020-11-13 22:13:35 +01:00
}
export function enhance(input): Tensor {
2021-03-12 18:54:08 +01:00
const image = tf.tidy(() => {
// input received from detector is already normalized to 0..1
// input is also assumed to be straightened
// const data = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model
// do a tight crop of image and resize it to fit the model
const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right
2021-03-12 18:54:08 +01:00
const tensor = input.image || input.tensor;
2021-03-13 19:47:45 +01:00
if (!(tensor instanceof tf.Tensor)) return null;
2021-08-17 14:51:17 +02:00
if (!model || !model.inputs || !model.inputs[0].shape) return null;
const crop = (tensor.shape.length === 3)
2021-03-13 19:47:45 +01:00
? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing
2021-03-12 18:54:08 +01:00
: tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);
// convert to black&white to avoid colorization impact
const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html
const [red, green, blue] = tf.split(crop, 3, 3);
const redNorm = tf.mul(red, rgb[0]);
const greenNorm = tf.mul(green, rgb[1]);
const blueNorm = tf.mul(blue, rgb[2]);
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);
2021-03-13 17:26:53 +01:00
/*
// optional increase image contrast
// or do it per-channel so mean is done on each channel
// or do it based on histogram
const mean = merge.mean();
const factor = 5;
const contrast = merge.sub(mean).mul(factor).add(mean);
*/
2021-03-12 18:54:08 +01:00
// normalize brightness from 0..1
2021-07-29 22:06:03 +02:00
const darken = tf.sub(merge, merge.min());
const lighten = tf.div(darken, darken.max());
2021-03-12 18:54:08 +01:00
return lighten;
});
return image;
}
export async function predict(input, config): Promise<number[]> {
if (!model) return [];
2020-11-13 22:13:35 +01:00
return new Promise(async (resolve) => {
2021-03-12 18:54:08 +01:00
// let data: Array<[]> = [];
let data: Array<number> = [];
2020-11-13 22:13:35 +01:00
if (config.face.embedding.enabled) {
2021-03-13 17:26:53 +01:00
const image = enhance(input);
2021-11-02 16:07:11 +01:00
const dataT = model?.execute(image) as Tensor;
/*
2021-08-14 17:16:26 +02:00
const dataT = tf.tidy(() => {
2021-04-25 19:16:04 +02:00
/*
// if needed convert from NHWC to NCHW
const nchw = image.transpose([3, 0, 1, 2]);
2021-11-02 16:07:11 +01:00
const res = model.execute(image);
2021-04-25 19:16:04 +02:00
// optionally do it twice with flipped image and average results
2021-11-02 16:07:11 +01:00
const res1 = model.execute(image);
2021-04-25 19:16:04 +02:00
const flipped = tf.image.flipLeftRight(image);
2021-11-02 16:07:11 +01:00
const res2 = model.execute(flipped);
2021-04-25 19:16:04 +02:00
const merge = tf.stack([res1, res2], 2).squeeze();
const res = reshape.logSumExp(1);
// optional normalize outputs with l2 normalization
const scaled = tf.tidy(() => {
const l2 = res.norm('euclidean');
const scale = res.div(l2);
return scale;
2021-03-11 19:31:36 +01:00
});
2021-04-25 19:16:04 +02:00
// optional reduce feature vector complexity
const reshape = tf.reshape(res, [128, 2]); // split 256 vectors into 128 x 2
2021-04-25 19:16:04 +02:00
const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it
2021-08-14 17:16:26 +02:00
return reduce;
2021-04-25 19:16:04 +02:00
});
2021-11-02 16:07:11 +01:00
*/
const output = await dataT.data();
data = Array.from(output); // convert typed array to simple array
2021-08-14 17:16:26 +02:00
tf.dispose(dataT);
tf.dispose(image);
2020-11-13 22:13:35 +01:00
}
resolve(data);
});
}