2020-11-18 14:26:28 +01:00
|
|
|
import * as tf from '../../dist/tfjs.esm.js';
|
2020-10-14 19:23:02 +02:00
|
|
|
|
2020-12-17 00:36:24 +01:00
|
|
|
const imageNetMean = [-123.15, -115.90, -103.06];
|
|
|
|
|
|
|
|
function nameOutputResultsMobileNet(results) {
|
|
|
|
const [offsets, heatmap, displacementFwd, displacementBwd] = results;
|
|
|
|
return { offsets, heatmap, displacementFwd, displacementBwd };
|
|
|
|
}
|
|
|
|
|
|
|
|
function nameOutputResultsResNet(results) {
|
|
|
|
const [displacementFwd, displacementBwd, offsets, heatmap] = results;
|
|
|
|
return { offsets, heatmap, displacementFwd, displacementBwd };
|
|
|
|
}
|
|
|
|
|
2020-10-12 01:22:43 +02:00
|
|
|
class BaseModel {
|
2020-12-17 00:36:24 +01:00
|
|
|
constructor(model) {
|
2020-10-12 01:22:43 +02:00
|
|
|
this.model = model;
|
|
|
|
}
|
|
|
|
|
2020-12-17 00:36:24 +01:00
|
|
|
predict(input, config) {
|
2020-10-12 01:22:43 +02:00
|
|
|
return tf.tidy(() => {
|
2020-12-17 00:36:24 +01:00
|
|
|
const asFloat = (config.body.modelType === 'ResNet') ? input.toFloat().add(imageNetMean) : input.toFloat().div(127.5).sub(1.0);
|
2020-10-12 01:22:43 +02:00
|
|
|
const asBatch = asFloat.expandDims(0);
|
|
|
|
const results = this.model.predict(asBatch);
|
|
|
|
const results3d = results.map((y) => y.squeeze([0]));
|
2020-12-17 00:36:24 +01:00
|
|
|
const namedResults = (config.body.modelType === 'ResNet') ? nameOutputResultsResNet(results3d) : nameOutputResultsMobileNet(results3d);
|
2020-10-12 01:22:43 +02:00
|
|
|
return {
|
|
|
|
heatmapScores: namedResults.heatmap.sigmoid(),
|
|
|
|
offsets: namedResults.offsets,
|
|
|
|
displacementFwd: namedResults.displacementFwd,
|
|
|
|
displacementBwd: namedResults.displacementBwd,
|
|
|
|
};
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
dispose() {
|
|
|
|
this.model.dispose();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
exports.BaseModel = BaseModel;
|