human/assets/tf-backend-wasm.es2017.js

4113 lines
262 KiB
JavaScript
Raw Normal View History

2020-10-30 15:23:49 +01:00
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('@tensorflow/tfjs-core'), require('path'), require('fs'), require('worker_threads'), require('perf_hooks')) :
typeof define === 'function' && define.amd ? define(['exports', '@tensorflow/tfjs-core', 'path', 'fs', 'worker_threads', 'perf_hooks'], factory) :
(global = global || self, factory((global.tf = global.tf || {}, global.tf.wasm = global.tf.wasm || {}), global.tf, global.path, global.fs, global.worker_threads, global.perf_hooks));
}(this, (function (exports, tfjsCore, path, fs, worker_threads, perf_hooks) { 'use strict';
path = path && path.hasOwnProperty('default') ? path['default'] : path;
fs = fs && fs.hasOwnProperty('default') ? fs['default'] : fs;
worker_threads = worker_threads && worker_threads.hasOwnProperty('default') ? worker_threads['default'] : worker_threads;
perf_hooks = perf_hooks && perf_hooks.hasOwnProperty('default') ? perf_hooks['default'] : perf_hooks;
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
// This enum must align with the enum defined in cc/backend.h.
var CppDType;
(function (CppDType) {
CppDType[CppDType["float32"] = 0] = "float32";
CppDType[CppDType["int32"] = 1] = "int32";
CppDType[CppDType["bool"] = 2] = "bool";
CppDType[CppDType["string"] = 3] = "string";
CppDType[CppDType["complex64"] = 4] = "complex64";
})(CppDType || (CppDType = {}));
// Must match enum in cc/fusable_activations.h.
var FusableActivation;
(function (FusableActivation) {
FusableActivation[FusableActivation["linear"] = 0] = "linear";
FusableActivation[FusableActivation["relu"] = 1] = "relu";
FusableActivation[FusableActivation["relu6"] = 2] = "relu6";
FusableActivation[FusableActivation["prelu"] = 3] = "prelu";
})(FusableActivation || (FusableActivation = {}));
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmFusedMatMul;
function setup(backend) {
wasmFusedMatMul = backend.wasm.cwrap(tfjsCore._FusedMatMul, null /* void */, [
'number',
'array',
'number',
'number',
'array',
'number',
'number',
'number',
'number',
'number',
'number',
'number' // out_id
]);
}
function fusedBatchMatMul(args) {
const { inputs, backend, attrs } = args;
const { a, b, bias, preluActivationWeights } = inputs;
if (a.dtype !== 'float32' || b.dtype !== 'float32') {
throw new Error(`_FusedMatMul for non non-float32 tensors not yet supported.`);
}
const { transposeA, transposeB, activation } = attrs;
const aId = backend.dataIdMap.get(a.dataId).id;
const bId = backend.dataIdMap.get(b.dataId).id;
let biasId = 0;
if (bias != null) {
const biasData = backend.dataIdMap.get(bias.dataId);
if (biasData.shape.length !== 1) {
throw new Error(`_FusedMatMul only supports rank-1 bias but got ` +
`rank ${biasData.shape.length}.`);
}
biasId = biasData.id;
}
const preluActivationWeightsId = preluActivationWeights == null ?
0 :
backend.dataIdMap.get(preluActivationWeights.dataId).id;
const fusedActivation = FusableActivation[activation];
if (fusedActivation == null) {
throw new Error(`${activation} activation not yet supported for FusedConv2D ` +
`in the wasm backend.`);
}
const leftDim = transposeA ? a.shape[2] : a.shape[1];
const rightDim = transposeB ? b.shape[1] : b.shape[2];
const batchDim = a.shape[0];
const out = backend.makeOutput([batchDim, leftDim, rightDim], a.dtype);
const outId = backend.dataIdMap.get(out.dataId).id;
const aShapeBytes = new Uint8Array(new Int32Array(a.shape).buffer);
const bShapeBytes = new Uint8Array(new Int32Array(b.shape).buffer);
wasmFusedMatMul(aId, aShapeBytes, a.shape.length, bId, bShapeBytes, b.shape.length, transposeA, transposeB, fusedActivation, biasId, preluActivationWeightsId, outId);
return out;
}
const fusedMatMulConfig = {
kernelName: tfjsCore._FusedMatMul,
backendName: 'wasm',
setupFunc: setup,
kernelFunc: fusedBatchMatMul
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
function createUnaryKernelConfig(kernelName) {
let wasmFunc;
function setupFunc(backend) {
wasmFunc =
backend.wasm.cwrap(kernelName, null /* void */, ['number', 'number']);
}
function kernelFunc(args) {
const { backend, inputs: { x } } = args;
const xId = backend.dataIdMap.get(x.dataId).id;
const out = backend.makeOutput(x.shape, x.dtype);
const outId = backend.dataIdMap.get(out.dataId).id;
// Short-circuit zero-sized tensors.
if (tfjsCore.util.sizeFromShape(out.shape) === 0) {
return out;
}
wasmFunc(xId, outId);
return out;
}
return { kernelName, backendName: 'wasm', setupFunc, kernelFunc };
}
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const absConfig = createUnaryKernelConfig(tfjsCore.Abs);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
function createBinaryKernelConfig(kernelName, supportsFullBroadcast, dtype) {
let wasmFunc;
function setupFunc(backend) {
wasmFunc = backend.wasm.cwrap(kernelName, null /* void */, [
'number',
'array',
'number',
'number',
'array',
'number',
'number',
'number' // out_id
]);
}
function kernelFunc(args) {
const { backend, inputs } = args;
const { a, b } = inputs;
const aId = backend.dataIdMap.get(a.dataId).id;
const bId = backend.dataIdMap.get(b.dataId).id;
const outputType = dtype != null ? dtype : a.dtype;
const newShape = tfjsCore.backend_util.assertAndGetBroadcastShape(a.shape, b.shape);
const out = backend.makeOutput(newShape, outputType);
// Short-circuit zero-sized tensors.
if (tfjsCore.util.sizeFromShape(newShape) === 0) {
return out;
}
const aShapeBytes = new Uint8Array(new Int32Array(a.shape).buffer);
const bShapeBytes = new Uint8Array(new Int32Array(b.shape).buffer);
const outId = backend.dataIdMap.get(out.dataId).id;
const kernelFunc = () => wasmFunc(aId, aShapeBytes, a.shape.length, bId, bShapeBytes, b.shape.length, CppDType[a.dtype], outId);
// Currently only some float operations support full broadcast.
if (supportsFullBroadcast && a.dtype === 'float32') {
kernelFunc();
return out;
}
const aBroadcastDims = tfjsCore.backend_util.getBroadcastDims(a.shape, newShape);
const bBroadcastDims = tfjsCore.backend_util.getBroadcastDims(b.shape, newShape);
const loopsOverAllOfA = aBroadcastDims.every((v, i) => v === i);
const loopsOverAllOfB = bBroadcastDims.every((v, i) => v === i);
if (loopsOverAllOfA && loopsOverAllOfB) {
kernelFunc();
return out;
}
else {
throw new Error(`Broadcasting along outer dims is not yet ` +
`supported for ${a.dtype} ${kernelName}.`);
}
}
return { kernelName, backendName: 'wasm', setupFunc, kernelFunc };
}
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast = true;
const addConfig = createBinaryKernelConfig(tfjsCore.Add, supportsFullBroadcast);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmFunc;
function setupFunc(backend) {
wasmFunc = backend.wasm.cwrap(tfjsCore.AddN, null /* void */, [
'array',
'number',
'number',
'number',
]);
}
function addn(args) {
const { inputs, backend } = args;
const out = backend.makeOutput(inputs[0].shape, inputs[0].dtype);
// Short-circuit zero-sized tensors.
if (tfjsCore.util.sizeFromShape(out.shape) === 0) {
return out;
}
const inputIds = inputs.map(x => backend.dataIdMap.get(x.dataId).id);
const inputIdsBytes = new Uint8Array(new Int32Array(inputIds).buffer);
const outId = backend.dataIdMap.get(out.dataId).id;
wasmFunc(inputIdsBytes, inputIds.length, CppDType[out.dtype], outId);
return out;
}
const addNConfig = {
kernelName: tfjsCore.AddN,
backendName: 'wasm',
setupFunc,
kernelFunc: addn,
};
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
function identity(args) {
const { inputs: { x }, backend } = args;
const out = backend.makeOutput(x.shape, x.dtype);
const inVals = backend.typedArrayFromHeap(x);
const outVals = backend.typedArrayFromHeap(out);
outVals.set(inVals);
return out;
}
const identityConfig = {
kernelName: tfjsCore.Identity,
backendName: 'wasm',
kernelFunc: identity,
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmTranspose;
function setup$1(backend) {
wasmTranspose = backend.wasm.cwrap(tfjsCore.Transpose, null /* void */, [
'number',
'array',
'number',
'number',
'number',
'array',
'number',
]);
}
function transpose(args) {
const { inputs, backend, attrs } = args;
// Reduce any dimensions with size one. Lower-rank transpose kernel performs
// better due to simpler memory access pattern.
const [reducedShape, perm] = removeOneSizeDims(inputs.x.shape, attrs.perm);
let permIsNoOp = true;
for (let i = 0; i < perm.length; i++) {
if (perm[i] !== i) {
permIsNoOp = false;
}
}
const outShape = computeOutShape(inputs.x.shape, attrs.perm);
const x = {
dataId: inputs.x.dataId,
shape: reducedShape,
dtype: inputs.x.dtype
};
if (permIsNoOp) {
const cloned = identity({ inputs, backend });
cloned.shape = outShape;
return cloned;
}
const out = backend.makeOutput(outShape, x.dtype);
const xId = backend.dataIdMap.get(x.dataId).id;
const outId = backend.dataIdMap.get(out.dataId).id;
const permBytes = new Uint8Array(new Int32Array(perm).buffer);
const xShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);
wasmTranspose(xId, xShapeBytes, x.shape.length, CppDType[x.dtype], outId, permBytes, perm.length);
return out;
}
function computeOutShape(inShape, perm) {
const outShape = new Array(inShape.length);
for (let i = 0; i < outShape.length; i++) {
outShape[i] = inShape[perm[i]];
}
return outShape;
}
function removeOneSizeDims(shape, perm) {
const newShape = [];
const newPerm = [];
for (let i = 0; i < shape.length; ++i) {
if (shape[i] !== 1) {
newShape.push(shape[i]);
}
if (shape[perm[i]] !== 1) {
newPerm.push(perm[i]);
}
}
for (let i = 0; i < newPerm.length; ++i) {
let minValIdx = -1;
for (let j = 0; j < newPerm.length; ++j) {
if (newPerm[j] >= i &&
(minValIdx === -1 || newPerm[minValIdx] > newPerm[j])) {
minValIdx = j;
}
}
newPerm[minValIdx] = i;
}
return [newShape, newPerm];
}
const transposeConfig = {
kernelName: tfjsCore.Transpose,
backendName: 'wasm',
kernelFunc: transpose,
setupFunc: setup$1,
};
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Compute permutation axes and do a transpose if necessary.
*
* Used by reduction ops.
* @param x input TensorInfo
* @param axis reduction axes
* @param backend wasm backend instance
*/
function permuteAxesAndTranspose(x, axis, backend) {
const xShape = x.shape;
const xRank = x.shape.length;
const originalAxes = tfjsCore.util.parseAxisParam(axis, xShape);
let axes = originalAxes;
const permutedAxes = tfjsCore.backend_util.getAxesPermutation(axes, xRank);
let xTransposed = null;
let inputWasTransposed = false;
if (permutedAxes != null) {
const newShape = new Array(xRank);
for (let i = 0; i < newShape.length; i++) {
newShape[i] = xShape[permutedAxes[i]];
}
axes = tfjsCore.backend_util.getInnerMostAxes(axes.length, xRank);
xTransposed =
transpose({ inputs: { x }, attrs: { perm: permutedAxes }, backend });
const xId = backend.dataIdMap.get(x.dataId).id;
const transposedId = backend.dataIdMap.get(xTransposed.dataId).id;
if (transposedId !== xId) {
inputWasTransposed = true;
}
}
return { transposed: xTransposed, originalAxes, axes, inputWasTransposed };
}
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmFunc$1;
function setup$2(backend) {
wasmFunc$1 = backend.wasm.cwrap(tfjsCore.ArgMax, null /* void */, [
'number',
'number',
'number',
'number',
'number' // out_id
]);
}
function argmax(args) {
const { backend, inputs, attrs } = args;
const { axis } = attrs;
const { x } = inputs;
const xId = backend.dataIdMap.get(x.dataId).id;
let inputId = xId;
let input = x;
const { transposed, axes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend);
if (inputWasTransposed) {
const transposedId = backend.dataIdMap.get(transposed.dataId).id;
if (transposedId !== xId) {
// transpose was not a no-op. We will need to dispose of this
// once we are done.
input = transposed;
inputId = transposedId;
}
}
const outShape = input.shape.slice(0, -1);
const out = backend.makeOutput(outShape, 'int32');
const outId = backend.dataIdMap.get(out.dataId).id;
const outerSize = tfjsCore.util.sizeFromShape(out.shape);
const innerSize = input.shape[axes[0]];
wasmFunc$1(inputId, CppDType[input.dtype], outerSize, innerSize, outId);
if (inputWasTransposed) {
// dispose of the transposed tensor.
backend.disposeData(transposed.dataId);
}
return out;
}
const argMaxConfig = {
kernelName: tfjsCore.ArgMax,
backendName: 'wasm',
kernelFunc: argmax,
setupFunc: setup$2
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmAvgPool;
function setup$3(backend) {
wasmAvgPool = backend.wasm.cwrap(tfjsCore.AvgPool, null /* void */, [
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
]);
}
function avgPool(args) {
const { inputs, attrs, backend } = args;
const x = inputs.x;
const xId = backend.dataIdMap.get(x.dataId).id;
const { filterSize, strides, pad, dimRoundingMode } = attrs;
const convInfo = tfjsCore.backend_util.computePool2DInfo(x.shape, filterSize, strides, 1 /* dilations */, pad, dimRoundingMode);
const filterHeight = convInfo.filterHeight;
const filterWidth = convInfo.filterWidth;
const padTop = convInfo.padInfo.top;
const padRight = convInfo.padInfo.right;
const padBottom = convInfo.padInfo.bottom;
const padLeft = convInfo.padInfo.left;
const strideHeight = convInfo.strideHeight;
const strideWidth = convInfo.strideWidth;
const channels = convInfo.inChannels;
if (convInfo.dataFormat !== 'channelsLast') {
throw new Error(`wasm backend does not support dataFormat:'` +
`${convInfo.dataFormat}'. Please use 'channelsLast'.`);
}
if (convInfo.dilationWidth !== 1 || convInfo.dilationHeight !== 1) {
throw new Error(`was backend only supports average pooling with dilation = [1, 1], ` +
`got [${convInfo.dilationHeight}, ${convInfo.dilationWidth}].`);
}
const out = backend.makeOutput(convInfo.outShape, 'float32');
const outId = backend.dataIdMap.get(out.dataId).id;
wasmAvgPool(xId, x.shape[0], x.shape[1], x.shape[2], filterHeight, filterWidth, padTop, padRight, padBottom, padLeft, strideHeight, strideWidth, channels, outId);
return out;
}
const avgPoolConfig = {
kernelName: tfjsCore.AvgPool,
backendName: 'wasm',
setupFunc: setup$3,
kernelFunc: avgPool
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
function reshape(args) {
const { inputs, attrs } = args;
const { x } = inputs;
const { shape } = attrs;
const xSize = tfjsCore.util.sizeFromShape(x.shape);
const $shape = tfjsCore.util.inferFromImplicitShape(shape, xSize);
tfjsCore.util.assert(xSize === tfjsCore.util.sizeFromShape($shape), () => `new shape: ${$shape}, old shape: ${x.shape}. New shape and old ` +
`shape must have the same number of elements.`);
return { dataId: x.dataId, shape: $shape, dtype: x.dtype };
}
const reshapeConfig = {
kernelName: tfjsCore.Reshape,
backendName: 'wasm',
kernelFunc: reshape,
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmBatchMatMul;
function setup$4(backend) {
wasmBatchMatMul = backend.wasm.cwrap(tfjsCore.BatchMatMul, null /* void */, [
'number',
'array',
'number',
'number',
'array',
'number',
'number',
'number',
'number' // out_id
]);
}
function batchMatMul(args) {
const { inputs, backend, attrs } = args;
const { a, b } = inputs;
const { transposeA, transposeB } = attrs;
if (a.dtype !== 'float32' || b.dtype !== 'float32') {
throw new Error(`BatchMatMul for non non-float32 tensors not yet supported.`);
}
const aRank = a.shape.length;
const bRank = b.shape.length;
const innerShapeA = transposeA ? a.shape[aRank - 2] : a.shape[aRank - 1];
const innerShapeB = transposeB ? b.shape[bRank - 1] : b.shape[bRank - 2];
const outerShapeA = transposeA ? a.shape[aRank - 1] : a.shape[aRank - 2];
const outerShapeB = transposeB ? b.shape[bRank - 2] : b.shape[bRank - 1];
const outerDimsA = a.shape.slice(0, -2);
const outerDimsB = b.shape.slice(0, -2);
const batchDimA = tfjsCore.util.sizeFromShape(outerDimsA);
const batchDimB = tfjsCore.util.sizeFromShape(outerDimsB);
const batchDimsCompatible = batchDimA === batchDimB || batchDimA === 1 || batchDimB === 1;
tfjsCore.util.assert(aRank >= 2 && bRank >= 2 && batchDimsCompatible, () => `Error in matMul: the input batch dimensions must either be the ` +
`same or at least one input batch dimension must be 1. Got input ` +
`batch dimensions of (${outerDimsA}) and (${outerDimsB}).`);
const outShapeOuterDims = batchDimA > batchDimB ? a.shape.slice(0, -2) : b.shape.slice(0, -2);
const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]);
tfjsCore.util.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (` +
`${innerShapeB}) of Tensors with shapes ${a.shape} and ` +
`${b.shape} and transposeA=${transposeA}` +
` and transposeB=${transposeB} must match.`);
const a3dShape = transposeA ? [batchDimA, innerShapeA, outerShapeA] :
[batchDimA, outerShapeA, innerShapeA];
const b3dShape = transposeB ? [batchDimB, outerShapeB, innerShapeB] :
[batchDimB, innerShapeB, outerShapeB];
// The rest of the implementation is designed to operate on rank-3 tensors
const a3d = reshape({ inputs: { x: a }, backend, attrs: { shape: a3dShape } });
const b3d = reshape({ inputs: { x: b }, backend, attrs: { shape: b3dShape } });
const a3dId = backend.dataIdMap.get(a3d.dataId).id;
const b3dId = backend.dataIdMap.get(b3d.dataId).id;
const leftDim = transposeA ? a3d.shape[2] : a3d.shape[1];
const rightDim = transposeB ? b3d.shape[1] : b3d.shape[2];
const batchDim = Math.max(batchDimA, batchDimB);
const out = backend.makeOutput([batchDim, leftDim, rightDim], a3d.dtype);
const outId = backend.dataIdMap.get(out.dataId).id;
const aShapeBytes = new Uint8Array(new Int32Array(a3d.shape).buffer);
const bShapeBytes = new Uint8Array(new Int32Array(b3d.shape).buffer);
wasmBatchMatMul(a3dId, aShapeBytes, a3d.shape.length, b3dId, bShapeBytes, b3d.shape.length, transposeA, transposeB, outId);
out.shape = outShape;
return out;
}
const batchMatMulConfig = {
kernelName: tfjsCore.BatchMatMul,
backendName: 'wasm',
setupFunc: setup$4,
kernelFunc: batchMatMul
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
function cast(args) {
const { inputs: { x }, attrs: { dtype }, backend } = args;
const out = backend.makeOutput(x.shape, dtype);
const inVals = backend.typedArrayFromHeap(x);
const outVals = backend.typedArrayFromHeap(out);
outVals.set(inVals);
return out;
}
const castConfig = {
kernelName: tfjsCore.Cast,
backendName: 'wasm',
kernelFunc: cast,
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmClip;
function setup$5(backend) {
wasmClip = backend.wasm.cwrap(tfjsCore.ClipByValue, null /* void */, [
'number',
'number',
'number',
'number' // out_id
]);
}
function clip(args) {
const { inputs, backend, attrs } = args;
const { x } = inputs;
const { clipValueMin, clipValueMax } = attrs;
const xId = backend.dataIdMap.get(x.dataId).id;
const out = backend.makeOutput(x.shape, x.dtype);
const outId = backend.dataIdMap.get(out.dataId).id;
wasmClip(xId, clipValueMin, clipValueMax, outId);
return out;
}
const clipByValueConfig = {
kernelName: tfjsCore.ClipByValue,
backendName: 'wasm',
setupFunc: setup$5,
kernelFunc: clip
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
function concat(args) {
const { inputs, backend } = args;
const axis = tfjsCore.util.parseAxisParam(args.attrs.axis, inputs[0].shape)[0];
const outShape = tfjsCore.backend_util.computeOutShape(inputs.map(t => t.shape), axis);
const out = backend.makeOutput(outShape, inputs[0].dtype);
if (tfjsCore.util.sizeFromShape(outShape) === 0) {
return out;
}
// Keep only non-empty tensors (ignore tensors with 0 in their shape).
const $inputs = inputs.filter(t => tfjsCore.util.sizeFromShape(t.shape) > 0);
if ($inputs.length === 1) {
return $inputs[0];
}
const shapes = $inputs.map(t => t.shape);
tfjsCore.backend_util.assertParamsConsistent(shapes, axis);
const batchDim = tfjsCore.util.sizeFromShape($inputs[0].shape.slice(0, axis));
let sumInnerDims = 0;
const innerDims = $inputs.map(input => {
const innerDim = tfjsCore.util.sizeFromShape(input.shape.slice(axis));
sumInnerDims += innerDim;
return innerDim;
});
const inVals = $inputs.map(input => backend.typedArrayFromHeap(input));
const outVals = backend.typedArrayFromHeap(out);
for (let b = 0; b < batchDim; b++) {
let outOffset = b * sumInnerDims;
for (let i = 0; i < inVals.length; i++) {
const innerDim = innerDims[i];
const inOffset = b * innerDim;
const vals = inVals[i].subarray(inOffset, inOffset + innerDim);
outVals.set(vals, outOffset);
outOffset += innerDim;
}
}
return out;
}
const concatConfig = {
kernelName: tfjsCore.Concat,
backendName: 'wasm',
kernelFunc: concat,
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmConv2d;
function setup$6(backend) {
wasmConv2d = backend.wasm.cwrap(tfjsCore.Conv2D, null /* void */, [
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
]);
}
function conv2d(args) {
const { inputs, attrs, backend } = args;
const { x, filter } = inputs;
const xId = backend.dataIdMap.get(x.dataId).id;
const filterId = backend.dataIdMap.get(filter.dataId).id;
const { strides, dilations, pad, dimRoundingMode, dataFormat } = attrs;
const $dataFormat = tfjsCore.backend_util.convertConv2DDataFormat(dataFormat);
const convInfo = tfjsCore.backend_util.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad, dimRoundingMode, false, $dataFormat);
const filterHeight = convInfo.filterHeight;
const filterWidth = convInfo.filterWidth;
const padTop = convInfo.padInfo.top;
const padRight = convInfo.padInfo.right;
const padBottom = convInfo.padInfo.bottom;
const padLeft = convInfo.padInfo.left;
const dilationHeight = convInfo.dilationHeight;
const dilationWidth = convInfo.dilationWidth;
const strideHeight = convInfo.strideHeight;
const strideWidth = convInfo.strideWidth;
const inputChannels = convInfo.inChannels;
const outputChannels = convInfo.outChannels;
const isSamePad = convInfo.padInfo.type === 'SAME' ? 1 : 0;
if (convInfo.dataFormat !== 'channelsLast') {
throw new Error(`wasm backend Conv2D does not support dataFormat:'` +
`${convInfo.dataFormat}'. Please use 'channelsLast'.`);
}
const out = backend.makeOutput(convInfo.outShape, 'float32');
const outId = backend.dataIdMap.get(out.dataId).id;
wasmConv2d(xId, x.shape[0], x.shape[1], x.shape[2], filterId, filterHeight, filterWidth, padTop, padRight, padBottom, padLeft, isSamePad, dilationHeight, dilationWidth, strideHeight, strideWidth, inputChannels, outputChannels, outId);
return out;
}
const conv2DConfig = {
kernelName: tfjsCore.Conv2D,
backendName: 'wasm',
setupFunc: setup$6,
kernelFunc: conv2d
};
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmConv2DBackpropInput;
function setup$7(backend) {
wasmConv2DBackpropInput = backend.wasm.cwrap(tfjsCore.Conv2DBackpropInput, null, [
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
]);
}
function conv2DBackpropInput(args) {
const { backend, inputs, attrs } = args;
const { dy, filter } = inputs;
const { strides, pad, dataFormat, dimRoundingMode, inputShape } = attrs;
const dilations = 1;
const $dataFormat = tfjsCore.backend_util.convertConv2DDataFormat(dataFormat);
const convInfo = tfjsCore.backend_util.computeConv2DInfo(inputShape, filter.shape, strides, dilations, pad, dimRoundingMode, false /* depthwise */, $dataFormat);
const { batchSize, filterHeight, filterWidth, inChannels, inHeight, inWidth, outChannels, outHeight, outWidth, strideHeight, strideWidth } = convInfo;
const topPad = filterHeight - 1 - convInfo.padInfo.top;
const leftPad = filterWidth - 1 - convInfo.padInfo.left;
const isChannelsLast = convInfo.dataFormat === 'channelsLast';
const dxStrides = tfjsCore.util.computeStrides(convInfo.inShape);
const dyStrides = tfjsCore.util.computeStrides(dy.shape);
const [fltS0, fltS1, fltS2] = tfjsCore.util.computeStrides(filter.shape);
const xBatchStride = dxStrides[0];
const xRowStride = isChannelsLast ? dxStrides[1] : dxStrides[2];
const xColStride = isChannelsLast ? dxStrides[2] : 1;
const xChannelStride = isChannelsLast ? 1 : dxStrides[1];
const yBatchStride = dyStrides[0];
const yRowStride = isChannelsLast ? dyStrides[1] : dyStrides[2];
const yColStride = isChannelsLast ? dyStrides[2] : 1;
const yChannelStride = isChannelsLast ? 1 : dyStrides[1];
const out = backend.makeOutput(convInfo.inShape, 'float32');
const outId = backend.dataIdMap.get(out.dataId).id;
const dyId = backend.dataIdMap.get(dy.dataId).id;
const filterId = backend.dataIdMap.get(filter.dataId).id;
wasmConv2DBackpropInput(dyId, filterId, batchSize, filterHeight, filterWidth, inHeight, inWidth, inChannels, outHeight, outWidth, outChannels, strideHeight, strideWidth, topPad, leftPad, fltS0, fltS1, fltS2, xBatchStride, xRowStride, xColStride, xChannelStride, yBatchStride, yRowStride, yColStride, yChannelStride, outId);
return out;
}
const conv2DBackpropInputConfig = {
kernelName: tfjsCore.Conv2DBackpropInput,
backendName: 'wasm',
setupFunc: setup$7,
kernelFunc: conv2DBackpropInput
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const cosConfig = createUnaryKernelConfig(tfjsCore.Cos);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
// Must match enum in CropAndResize.cc
var InterpolationMethod;
(function (InterpolationMethod) {
InterpolationMethod[InterpolationMethod["bilinear"] = 0] = "bilinear";
InterpolationMethod[InterpolationMethod["nearest"] = 1] = "nearest";
})(InterpolationMethod || (InterpolationMethod = {}));
let wasmCropAndResize;
function setup$8(backend) {
wasmCropAndResize = backend.wasm.cwrap(tfjsCore.CropAndResize, null /*void*/, [
'number',
'number',
'number',
'number',
'array',
'number',
'number',
'number',
'number',
'number' // out id
]);
}
function cropAndResize(args) {
const { backend, inputs, attrs } = args;
const { method, extrapolationValue, cropSize } = attrs;
const { image, boxes, boxInd } = inputs;
const numBoxes = boxes.shape[0];
const [cropHeight, cropWidth] = cropSize;
const outShape = [numBoxes, cropHeight, cropWidth, image.shape[3]];
let imagesData = backend.dataIdMap.get(image.dataId);
let castedData;
if (image.dtype !== 'float32') {
castedData = cast({ backend, inputs: { x: image }, attrs: { dtype: 'float32' } });
imagesData = backend.dataIdMap.get(castedData.dataId);
}
const imagesId = imagesData.id;
const boxesId = backend.dataIdMap.get(boxes.dataId).id;
const boxIndId = backend.dataIdMap.get(boxInd.dataId).id;
const out = backend.makeOutput(outShape, 'float32');
const outId = backend.dataIdMap.get(out.dataId).id;
const imagesShapeBytes = new Uint8Array(new Int32Array(image.shape).buffer);
wasmCropAndResize(imagesId, boxesId, boxIndId, numBoxes, imagesShapeBytes, cropHeight, cropWidth, InterpolationMethod[method], extrapolationValue, outId);
if (castedData != null) {
backend.disposeData(castedData.dataId);
}
return out;
}
const cropAndResizeConfig = {
kernelName: tfjsCore.CropAndResize,
backendName: 'wasm',
setupFunc: setup$8,
kernelFunc: cropAndResize
};
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmCumsum;
function setup$9(backend) {
wasmCumsum = backend.wasm.cwrap(tfjsCore.Cumsum, null /* void */, [
'number',
'number',
'number',
'number',
'number',
'number' // dtype
]);
}
function cumsum(args) {
const { inputs, backend, attrs } = args;
const { x } = inputs;
const { axis, exclusive, reverse } = attrs;
const xRank = x.shape.length;
tfjsCore.util.assert(x.dtype === 'float32' || x.dtype === 'int32', () => `cumsum does not support ${x.dtype} tensors in the WASM backend`);
// permute required axis to inner most axis
const permutation = tfjsCore.backend_util.getAxesPermutation([axis], xRank);
let permutedX = x;
if (permutation !== null) {
permutedX = transpose({ inputs: { x }, attrs: { perm: permutation }, backend });
}
const permutedAxis = tfjsCore.backend_util.getInnerMostAxes(1, xRank)[0];
tfjsCore.backend_util.assertAxesAreInnerMostDims('cumsum', [permutedAxis], xRank);
const permutedOut = backend.makeOutput(permutedX.shape, permutedX.dtype);
const finalDim = permutedX.shape[permutedAxis];
const permutedXId = backend.dataIdMap.get(permutedX.dataId).id;
const permutedOutId = backend.dataIdMap.get(permutedOut.dataId).id;
wasmCumsum(permutedXId, exclusive ? 1 : 0, reverse ? 1 : 0, finalDim, permutedOutId, CppDType[x.dtype]);
// transpose data back if permuted
let out = permutedOut;
if (permutation !== null) {
const undoPermutation = tfjsCore.backend_util.getUndoAxesPermutation(permutation);
out = transpose({ inputs: { x: permutedOut }, attrs: { perm: undoPermutation }, backend });
backend.disposeData(permutedX.dataId);
backend.disposeData(permutedOut.dataId);
}
return out;
}
const cumsumConfig = {
kernelName: tfjsCore.Cumsum,
backendName: 'wasm',
setupFunc: setup$9,
kernelFunc: cumsum
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmDepthToSpace;
function setup$a(backend) {
wasmDepthToSpace = backend.wasm.cwrap(tfjsCore.DepthToSpace, null /*void*/, [
'number',
'number',
'number',
'array',
'number',
'array',
'array',
'number',
'number',
]);
}
function depthToSpace(args) {
const { backend, inputs, attrs } = args;
const { x } = inputs;
const { blockSize, dataFormat } = attrs;
tfjsCore.util.assert(blockSize > 1, () => `blockSize should be > 1 for depthToSpace, but was: ${blockSize}`);
const batchSize = x.shape[0];
const inputHeight = (dataFormat === 'NHWC') ? x.shape[1] : x.shape[2];
const inputWidth = (dataFormat === 'NHWC') ? x.shape[2] : x.shape[3];
const inputDepth = (dataFormat === 'NHWC') ? x.shape[3] : x.shape[1];
const outputHeight = inputHeight * blockSize;
const outputWidth = inputWidth * blockSize;
const outputDepth = inputDepth / (blockSize * blockSize);
const outputShape = (dataFormat === 'NHWC') ?
[batchSize, outputHeight, outputWidth, outputDepth] :
[batchSize, outputDepth, outputHeight, outputWidth];
const out = backend.makeOutput(outputShape, 'float32');
const xData = backend.dataIdMap.get(x.dataId);
const xId = xData.id;
const xStridesBytes = new Uint8Array(new Int32Array(tfjsCore.util.computeStrides(x.shape)).buffer);
const outputShapeBytes = new Uint8Array(new Int32Array(outputShape).buffer);
const outStridesBytes = new Uint8Array(new Int32Array(tfjsCore.util.computeStrides(outputShape)).buffer);
const outId = backend.dataIdMap.get(out.dataId).id;
const channelsLast = dataFormat === 'NHWC' ? 1 : 0;
wasmDepthToSpace(xId, blockSize, channelsLast, xStridesBytes, x.shape.length - 1, outputShapeBytes, outStridesBytes, outputShape.length, outId);
return out;
}
const depthToSpaceConfig = {
kernelName: tfjsCore.DepthToSpace,
backendName: 'wasm',
setupFunc: setup$a,
kernelFunc: depthToSpace
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmDepthwiseConv2d;
function setup$b(backend) {
wasmDepthwiseConv2d =
backend.wasm.cwrap(tfjsCore.DepthwiseConv2dNative, null /* void */, [
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
]);
}
function depthwiseConv2d(args) {
const { inputs, attrs, backend } = args;
const { x, filter } = inputs;
const xId = backend.dataIdMap.get(x.dataId).id;
const filterId = backend.dataIdMap.get(filter.dataId).id;
const { strides, dilations, pad, dimRoundingMode } = attrs;
const $dilations = dilations == null ? [1, 1] : dilations;
const convInfo = tfjsCore.backend_util.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad, dimRoundingMode, true /* depthwise */);
const filterHeight = convInfo.filterHeight;
const filterWidth = convInfo.filterWidth;
const padTop = convInfo.padInfo.top;
const padRight = convInfo.padInfo.right;
const padBottom = convInfo.padInfo.bottom;
const padLeft = convInfo.padInfo.left;
const dilationHeight = convInfo.dilationHeight;
const dilationWidth = convInfo.dilationWidth;
const strideHeight = convInfo.strideHeight;
const strideWidth = convInfo.strideWidth;
const inputChannels = convInfo.inChannels;
const outputChannels = convInfo.outChannels;
const isSamePad = convInfo.padInfo.type === 'SAME' ? 1 : 0;
if (convInfo.dataFormat !== 'channelsLast') {
throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'` +
`${convInfo.dataFormat}'. Please use 'channelsLast'.`);
}
const out = backend.makeOutput(convInfo.outShape, 'float32');
const outId = backend.dataIdMap.get(out.dataId).id;
wasmDepthwiseConv2d(xId, x.shape[0], x.shape[1], x.shape[2], filterId, filterHeight, filterWidth, padTop, padRight, padBottom, padLeft, isSamePad, dilationHeight, dilationWidth, strideHeight, strideWidth, inputChannels, outputChannels, outId);
return out;
}
const depthwiseConv2dNativeConfig = {
kernelName: tfjsCore.DepthwiseConv2dNative,
backendName: 'wasm',
setupFunc: setup$b,
kernelFunc: depthwiseConv2d
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast$1 = true;
const divConfig = createBinaryKernelConfig(tfjsCore.Div, supportsFullBroadcast$1);
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast$2 = false;
const equalConfig = createBinaryKernelConfig(tfjsCore.Equal, supportsFullBroadcast$2, 'bool');
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const expConfig = createUnaryKernelConfig(tfjsCore.Exp);
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
function fill(args) {
const { attrs: { shape, value, dtype }, backend } = args;
const out = backend.makeOutput(shape, dtype);
const outVals = backend.typedArrayFromHeap(out);
outVals.fill(value);
return out;
}
const fillConfig = {
kernelName: tfjsCore.Fill,
backendName: 'wasm',
kernelFunc: fill,
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmFlipLeftRight;
function setup$c(backend) {
wasmFlipLeftRight = backend.wasm.cwrap(tfjsCore.FlipLeftRight, null /* void */, [
'number',
'number',
'number',
'number',
'number',
'number',
]);
}
function flipLeftRight(args) {
const { inputs, backend } = args;
const { image } = inputs;
const out = backend.makeOutput(image.shape, image.dtype);
const imageId = backend.dataIdMap.get(image.dataId).id;
const outId = backend.dataIdMap.get(out.dataId).id;
const [batch, imageHeight, imageWidth, numChannels] = image.shape;
wasmFlipLeftRight(imageId, batch, imageHeight, imageWidth, numChannels, outId);
return out;
}
const flipLeftRightConfig = {
kernelName: tfjsCore.FlipLeftRight,
backendName: 'wasm',
kernelFunc: flipLeftRight,
setupFunc: setup$c
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast$3 = false;
const floorDivConfig = createBinaryKernelConfig(tfjsCore.FloorDiv, supportsFullBroadcast$3);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmBatchNorm;
function setup$d(backend) {
wasmBatchNorm = backend.wasm.cwrap(tfjsCore.FusedBatchNorm, null /* void */, ['number', 'number', 'number', 'number', 'number', 'number', 'number']);
}
function fusedBatchNorm(args) {
const { backend, inputs, attrs } = args;
const { varianceEpsilon } = attrs;
const { x, mean, variance, offset, scale } = inputs;
const xId = backend.dataIdMap.get(x.dataId).id;
const meanId = backend.dataIdMap.get(mean.dataId).id;
const varianceId = backend.dataIdMap.get(variance.dataId).id;
const offsetId = offset != null ? backend.dataIdMap.get(offset.dataId).id : 0;
const scaleId = scale != null ? backend.dataIdMap.get(scale.dataId).id : 0;
const out = backend.makeOutput(x.shape, x.dtype);
// Short-circuit zero-sized tensors.
if (tfjsCore.util.sizeFromShape(x.shape) === 0) {
return out;
}
const outId = backend.dataIdMap.get(out.dataId).id;
wasmBatchNorm(xId, meanId, varianceId, offsetId, scaleId, varianceEpsilon, outId);
return out;
}
const fusedBatchNormConfig = {
kernelName: tfjsCore.FusedBatchNorm,
backendName: 'wasm',
setupFunc: setup$d,
kernelFunc: fusedBatchNorm
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmFusedConv2d;
function setup$e(backend) {
wasmFusedConv2d = backend.wasm.cwrap(tfjsCore.FusedConv2D, null /* void */, [
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
]);
}
function fusedConv2d(args) {
const { inputs, attrs, backend } = args;
const { x, filter, bias, preluActivationWeights } = inputs;
const { strides, pad, dilations, dataFormat, dimRoundingMode, activation } = attrs;
const convInfo = tfjsCore.backend_util.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad, dimRoundingMode);
const fusedActivation = FusableActivation[activation];
if (fusedActivation == null) {
throw new Error(`${activation} activation not yet supported for FusedConv2D ` +
`in the wasm backend.`);
}
const xId = backend.dataIdMap.get(x.dataId).id;
const filterId = backend.dataIdMap.get(filter.dataId).id;
const outputChannels = convInfo.outChannels;
let biasId = 0;
if (bias != null) {
const biasData = backend.dataIdMap.get(bias.dataId);
if (biasData.shape.length !== 1) {
throw new Error(`FusedConv2D only supports rank-1 bias but got ` +
`rank ${biasData.shape.length}.`);
}
if (biasData.shape[0] !== outputChannels) {
throw new Error(`FusedConv2D bias shape (${biasData.shape}) does not ` +
`match the number of output channels (${outputChannels})`);
}
biasId = biasData.id;
}
const filterHeight = convInfo.filterHeight;
const filterWidth = convInfo.filterWidth;
const padTop = convInfo.padInfo.top;
const padRight = convInfo.padInfo.right;
const padBottom = convInfo.padInfo.bottom;
const padLeft = convInfo.padInfo.left;
const dilationHeight = convInfo.dilationHeight;
const dilationWidth = convInfo.dilationWidth;
const strideHeight = convInfo.strideHeight;
const strideWidth = convInfo.strideWidth;
const inputChannels = convInfo.inChannels;
const isSamePad = convInfo.padInfo.type === 'SAME' ? 1 : 0;
const batchSize = convInfo.batchSize;
const inHeight = convInfo.inHeight;
const inWidth = convInfo.inWidth;
if (dataFormat !== 'NHWC') {
throw new Error(`wasm backend FusedConv2D does not support dataFormat:'` +
`${dataFormat}'. Please use 'NHWC'.`);
}
const out = backend.makeOutput(convInfo.outShape, 'float32');
const outId = backend.dataIdMap.get(out.dataId).id;
const preluActivationWeightsId = preluActivationWeights == null ?
0 :
backend.dataIdMap.get(preluActivationWeights.dataId).id;
wasmFusedConv2d(xId, batchSize, inHeight, inWidth, filterId, filterHeight, filterWidth, biasId, padTop, padRight, padBottom, padLeft, isSamePad, dilationHeight, dilationWidth, strideHeight, strideWidth, inputChannels, outputChannels, fusedActivation, preluActivationWeightsId, outId);
return out;
}
const fusedConv2DConfig = {
kernelName: tfjsCore.FusedConv2D,
backendName: 'wasm',
setupFunc: setup$e,
kernelFunc: fusedConv2d
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmFusedDepthwiseConv2d;
function setup$f(backend) {
wasmFusedDepthwiseConv2d =
backend.wasm.cwrap(tfjsCore.FusedDepthwiseConv2D, null /* void */, [
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
]);
}
function fusedDepthwiseConv2d(args) {
const { inputs, attrs, backend } = args;
const { x, filter, bias, preluActivationWeights } = inputs;
const { strides, pad, dilations, dataFormat, dimRoundingMode, activation } = attrs;
const convInfo = tfjsCore.backend_util.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad, dimRoundingMode, true /* depthwise */);
const fusedActivation = FusableActivation[activation];
if (fusedActivation == null) {
throw new Error(`${activation} activation not yet supported for FusedDepthwiseConv2D ` +
`in the wasm backend.`);
}
const xId = backend.dataIdMap.get(x.dataId).id;
const filterId = backend.dataIdMap.get(filter.dataId).id;
const outputChannels = convInfo.outChannels;
let biasId = 0;
if (bias != null) {
const biasData = backend.dataIdMap.get(bias.dataId);
if (biasData.shape.length !== 1) {
throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got ` +
`rank ${biasData.shape.length}.`);
}
if (biasData.shape[0] !== outputChannels) {
throw new Error(`FusedDepthwiseConv2D bias shape (${biasData.shape}) does not ` +
`match the number of output channels (${outputChannels})`);
}
biasId = biasData.id;
}
const filterHeight = convInfo.filterHeight;
const filterWidth = convInfo.filterWidth;
const padTop = convInfo.padInfo.top;
const padRight = convInfo.padInfo.right;
const padBottom = convInfo.padInfo.bottom;
const padLeft = convInfo.padInfo.left;
const dilationHeight = convInfo.dilationHeight;
const dilationWidth = convInfo.dilationWidth;
const strideHeight = convInfo.strideHeight;
const strideWidth = convInfo.strideWidth;
const inputChannels = convInfo.inChannels;
const isSamePad = convInfo.padInfo.type === 'SAME' ? 1 : 0;
const batchSize = convInfo.batchSize;
const inHeight = convInfo.inHeight;
const inWidth = convInfo.inWidth;
if (dataFormat !== 'NHWC') {
throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'` +
`${dataFormat}'. Please use 'NHWC'.`);
}
const out = backend.makeOutput(convInfo.outShape, 'float32');
const outId = backend.dataIdMap.get(out.dataId).id;
const preluActivationWeightsId = preluActivationWeights == null ?
0 :
backend.dataIdMap.get(preluActivationWeights.dataId).id;
wasmFusedDepthwiseConv2d(xId, batchSize, inHeight, inWidth, filterId, filterHeight, filterWidth, biasId, padTop, padRight, padBottom, padLeft, isSamePad, dilationHeight, dilationWidth, strideHeight, strideWidth, inputChannels, outputChannels, fusedActivation, preluActivationWeightsId, outId);
return out;
}
const fusedDepthwiseConv2DConfig = {
kernelName: tfjsCore.FusedDepthwiseConv2D,
backendName: 'wasm',
setupFunc: setup$f,
kernelFunc: fusedDepthwiseConv2d
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmGatherNd;
function setup$g(backend) {
wasmGatherNd = backend.wasm.cwrap(tfjsCore.GatherNd, null /*void*/, [
'number',
'number',
'number',
'number',
'number',
'number',
'array',
'number' // outId
]);
}
function gatherNd(args) {
const { backend, inputs } = args;
const { params, indices } = inputs;
const [resultShape, numSlices, sliceSize, strides] = tfjsCore.gather_util.prepareAndValidate(params, indices);
const out = backend.makeOutput(resultShape, params.dtype);
if (numSlices === 0) {
return out;
}
const indicesShape = indices.shape;
const sliceRank = indicesShape[indicesShape.length - 1];
const xData = backend.dataIdMap.get(params.dataId);
const xId = xData.id;
const indicesData = backend.dataIdMap.get(indices.dataId);
const indicesId = indicesData.id;
const stridesBytes = new Uint8Array(new Int32Array(strides).buffer);
const outId = backend.dataIdMap.get(out.dataId).id;
wasmGatherNd(xId, CppDType[params.dtype], indicesId, numSlices, sliceRank, sliceSize, stridesBytes, outId);
return out;
}
const gatherNdConfig = {
kernelName: tfjsCore.GatherNd,
backendName: 'wasm',
setupFunc: setup$g,
kernelFunc: gatherNd
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmGather;
function setup$h(backend) {
wasmGather = backend.wasm.cwrap('Gather', null /*void*/, [
'number',
'number',
'array',
'number',
'number',
'number',
'array',
'number' // outId
]);
}
function gatherV2(args) {
const { backend, inputs, attrs } = args;
const { x, indices } = inputs;
const { axis } = attrs;
const newShape = x.shape.slice();
newShape[axis] = tfjsCore.util.sizeFromShape(indices.shape);
const stridesSize = x.shape.length - 1;
const out = backend.makeOutput(newShape, x.dtype);
if (tfjsCore.util.sizeFromShape(x.shape) === 0) {
return out;
}
const xData = backend.dataIdMap.get(x.dataId);
const xId = xData.id;
const indicesData = backend.dataIdMap.get(indices.dataId);
const indicesId = indicesData.id;
const outId = backend.dataIdMap.get(out.dataId).id;
const xStridesBytes = new Uint8Array(new Int32Array(tfjsCore.util.computeStrides(x.shape)).buffer);
const outStridesBytes = new Uint8Array(new Int32Array(tfjsCore.util.computeStrides(newShape)).buffer);
wasmGather(xId, CppDType[x.dtype], xStridesBytes, stridesSize, indicesId, axis, outStridesBytes, outId);
// reshape
const parsedAxis = tfjsCore.util.parseAxisParam(axis, x.shape)[0];
const shapeInfo = tfjsCore.backend_util.segment_util.collectGatherOpShapeInfo(x, indices, parsedAxis);
out.shape = shapeInfo.outputShape;
return out;
}
const gatherV2Config = {
kernelName: tfjsCore.GatherV2,
backendName: 'wasm',
setupFunc: setup$h,
kernelFunc: gatherV2
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast$4 = false;
const greaterConfig = createBinaryKernelConfig(tfjsCore.Greater, supportsFullBroadcast$4, 'bool');
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast$5 = false;
const greaterEqualConfig = createBinaryKernelConfig(tfjsCore.GreaterEqual, supportsFullBroadcast$5, 'bool');
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast$6 = false;
const lessConfig = createBinaryKernelConfig(tfjsCore.Less, supportsFullBroadcast$6, 'bool');
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast$7 = false;
const lessEqualConfig = createBinaryKernelConfig(tfjsCore.LessEqual, supportsFullBroadcast$7, 'bool');
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const logConfig = createUnaryKernelConfig(tfjsCore.Log);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast$8 = false;
const logicalAndConfig = createBinaryKernelConfig(tfjsCore.LogicalAnd, supportsFullBroadcast$8, 'bool');
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmMax;
function setup$i(backend) {
wasmMax = backend.wasm.cwrap(tfjsCore.Max, null /*void*/, ['number, number, number']);
}
function max(args) {
const { backend, inputs, attrs } = args;
const { reductionIndices: axis, keepDims } = attrs;
const { x } = inputs;
const xId = backend.dataIdMap.get(x.dataId).id;
let inputId = xId;
let input = x;
const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend);
if (inputWasTransposed) {
const transposedId = backend.dataIdMap.get(transposed.dataId).id;
input = transposed;
inputId = transposedId;
}
const inputRank = input.shape.length;
tfjsCore.backend_util.assertAxesAreInnerMostDims('max', axes, inputRank);
const [outShape, reduceShape] = tfjsCore.backend_util.computeOutAndReduceShapes(input.shape, axes);
const reduceSize = tfjsCore.util.sizeFromShape(reduceShape);
const out = backend.makeOutput(outShape, x.dtype);
if (tfjsCore.util.sizeFromShape(input.shape) !== 0) {
const outId = backend.dataIdMap.get(out.dataId).id;
wasmMax(inputId, reduceSize, outId);
}
if (inputWasTransposed) {
// dispose of the transposed tensor.
backend.disposeData(transposed.dataId);
}
if (keepDims) {
// reshape
const newShape = tfjsCore.backend_util.expandShapeToKeepDim(out.shape, originalAxes);
out.shape = newShape;
}
return out;
}
const maxConfig = {
kernelName: tfjsCore.Max,
backendName: 'wasm',
setupFunc: setup$i,
kernelFunc: max
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast$9 = false;
const maximumConfig = createBinaryKernelConfig(tfjsCore.Maximum, supportsFullBroadcast$9);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmMaxPool;
function setup$j(backend) {
wasmMaxPool = backend.wasm.cwrap(tfjsCore.MaxPool, null /* void */, [
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
]);
}
function maxPool(args) {
const { inputs, attrs, backend } = args;
const x = inputs.x;
const xId = backend.dataIdMap.get(x.dataId).id;
const { filterSize, strides, pad, dimRoundingMode } = attrs;
const convInfo = tfjsCore.backend_util.computePool2DInfo(x.shape, filterSize, strides, 1 /* dilations */, pad, dimRoundingMode);
const filterHeight = convInfo.filterHeight;
const filterWidth = convInfo.filterWidth;
const padTop = convInfo.padInfo.top;
const padRight = convInfo.padInfo.right;
const padBottom = convInfo.padInfo.bottom;
const padLeft = convInfo.padInfo.left;
const dilationHeight = convInfo.dilationHeight;
const dilationWidth = convInfo.dilationWidth;
const strideHeight = convInfo.strideHeight;
const strideWidth = convInfo.strideWidth;
const inputChannels = convInfo.inChannels;
const outputChannels = convInfo.outChannels;
if (convInfo.dataFormat !== 'channelsLast') {
throw new Error(`wasm backend does not support dataFormat:'` +
`${convInfo.dataFormat}'. Please use 'channelsLast'.`);
}
const out = backend.makeOutput(convInfo.outShape, 'float32');
const outId = backend.dataIdMap.get(out.dataId).id;
wasmMaxPool(xId, x.shape[0], x.shape[1], x.shape[2], filterHeight, filterWidth, padTop, padRight, padBottom, padLeft, dilationHeight, dilationWidth, strideHeight, strideWidth, inputChannels, outputChannels, outId);
return out;
}
const maxPoolConfig = {
kernelName: tfjsCore.MaxPool,
backendName: 'wasm',
setupFunc: setup$j,
kernelFunc: maxPool
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmMin;
function setup$k(backend) {
wasmMin = backend.wasm.cwrap(tfjsCore.Min, null /*void*/, ['number, number, number']);
}
function min(args) {
const { backend, inputs, attrs } = args;
const { axis, keepDims } = attrs;
const { x } = inputs;
const xId = backend.dataIdMap.get(x.dataId).id;
let inputId = xId;
let input = x;
const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend);
if (inputWasTransposed) {
const transposedId = backend.dataIdMap.get(transposed.dataId).id;
if (transposedId !== xId) {
// transpose was not a no-op. We will need to dispose of this
// once we are done.
input = transposed;
inputId = transposedId;
}
}
const inputRank = input.shape.length;
tfjsCore.backend_util.assertAxesAreInnerMostDims('min', axes, inputRank);
const [outShape, reduceShape] = tfjsCore.backend_util.computeOutAndReduceShapes(input.shape, axes);
const reduceSize = tfjsCore.util.sizeFromShape(reduceShape);
const out = backend.makeOutput(outShape, input.dtype);
if (tfjsCore.util.sizeFromShape(input.shape) !== 0) {
const outId = backend.dataIdMap.get(out.dataId).id;
wasmMin(inputId, reduceSize, outId);
}
if (inputWasTransposed) {
// dispose of the transposed tensor.
backend.disposeData(transposed.dataId);
}
if (keepDims) {
// reshape
const newShape = tfjsCore.backend_util.expandShapeToKeepDim(out.shape, originalAxes);
out.shape = newShape;
}
return out;
}
const minConfig = {
kernelName: tfjsCore.Min,
backendName: 'wasm',
setupFunc: setup$k,
kernelFunc: min
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast$a = false;
const minimumConfig = createBinaryKernelConfig(tfjsCore.Minimum, supportsFullBroadcast$a);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast$b = true;
const multiplyConfig = createBinaryKernelConfig(tfjsCore.Multiply, supportsFullBroadcast$b);
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const negateConfig = createUnaryKernelConfig(tfjsCore.Negate);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Parse the result of the c++ method, which has the shape equivalent to
* `Result`.
*/
function parseResultStruct(backend, resOffset) {
const result = new Int32Array(backend.wasm.HEAPU8.buffer, resOffset, 4);
const pSelectedIndices = result[0];
const selectedSize = result[1];
const pSelectedScores = result[2];
const pValidOutputs = result[3];
// Since the result was allocated on the heap, we have to delete it.
backend.wasm._free(resOffset);
return { pSelectedIndices, selectedSize, pSelectedScores, pValidOutputs };
}
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmFunc$2;
function setup$l(backend) {
wasmFunc$2 = backend.wasm.cwrap(tfjsCore.NonMaxSuppressionV3, 'number', // Result*
[
'number',
'number',
'number',
'number',
'number',
]);
}
function kernelFunc(args) {
const { backend, inputs, attrs } = args;
const { iouThreshold, maxOutputSize, scoreThreshold } = attrs;
const { boxes, scores } = inputs;
const boxesId = backend.dataIdMap.get(boxes.dataId).id;
const scoresId = backend.dataIdMap.get(scores.dataId).id;
const resOffset = wasmFunc$2(boxesId, scoresId, maxOutputSize, iouThreshold, scoreThreshold);
const { pSelectedIndices, selectedSize, pSelectedScores, pValidOutputs } = parseResultStruct(backend, resOffset);
// Since we are not using scores for V3, we have to delete it from the heap.
backend.wasm._free(pSelectedScores);
backend.wasm._free(pValidOutputs);
const selectedIndicesTensor = backend.makeOutput([selectedSize], 'int32', pSelectedIndices);
return selectedIndicesTensor;
}
const nonMaxSuppressionV3Config = {
kernelName: tfjsCore.NonMaxSuppressionV3,
backendName: 'wasm',
setupFunc: setup$l,
kernelFunc: kernelFunc,
};
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmFunc$3;
function setup$m(backend) {
wasmFunc$3 = backend.wasm.cwrap(tfjsCore.NonMaxSuppressionV4, 'number', // Result*
[
'number',
'number',
'number',
'number',
'number',
'bool',
]);
}
function nonMaxSuppressionV4(args) {
const { backend, inputs, attrs } = args;
const { iouThreshold, maxOutputSize, scoreThreshold, padToMaxOutputSize } = attrs;
const { boxes, scores } = inputs;
const boxesId = backend.dataIdMap.get(boxes.dataId).id;
const scoresId = backend.dataIdMap.get(scores.dataId).id;
const resOffset = wasmFunc$3(boxesId, scoresId, maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize);
const { pSelectedIndices, selectedSize, pSelectedScores, pValidOutputs } = parseResultStruct(backend, resOffset);
// Since we are not using scores for V4, we have to delete it from the heap.
backend.wasm._free(pSelectedScores);
const selectedIndicesTensor = backend.makeOutput([selectedSize], 'int32', pSelectedIndices);
const validOutputsTensor = backend.makeOutput([], 'int32', pValidOutputs);
return [selectedIndicesTensor, validOutputsTensor];
}
const nonMaxSuppressionV4Config = {
kernelName: tfjsCore.NonMaxSuppressionV4,
backendName: 'wasm',
setupFunc: setup$m,
kernelFunc: nonMaxSuppressionV4,
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmFunc$4;
function setup$n(backend) {
wasmFunc$4 = backend.wasm.cwrap(tfjsCore.NonMaxSuppressionV5, 'number', // Result*
[
'number',
'number',
'number',
'number',
'number',
'number',
]);
}
function kernelFunc$1(args) {
const { backend, inputs, attrs } = args;
const { iouThreshold, maxOutputSize, scoreThreshold, softNmsSigma } = attrs;
const { boxes, scores } = inputs;
const boxesId = backend.dataIdMap.get(boxes.dataId).id;
const scoresId = backend.dataIdMap.get(scores.dataId).id;
const resOffset = wasmFunc$4(boxesId, scoresId, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma);
const { pSelectedIndices, selectedSize, pSelectedScores, pValidOutputs } = parseResultStruct(backend, resOffset);
// Since we are not using validOutputs for V5, we have to delete it from the
// heap.
backend.wasm._free(pValidOutputs);
const selectedIndicesTensor = backend.makeOutput([selectedSize], 'int32', pSelectedIndices);
const selectedScoresTensor = backend.makeOutput([selectedSize], 'float32', pSelectedScores);
return [selectedIndicesTensor, selectedScoresTensor];
}
const nonMaxSuppressionV5Config = {
kernelName: tfjsCore.NonMaxSuppressionV5,
backendName: 'wasm',
setupFunc: setup$n,
kernelFunc: kernelFunc$1,
};
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast$c = false;
const notEqualConfig = createBinaryKernelConfig(tfjsCore.NotEqual, supportsFullBroadcast$c, 'bool');
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmOneHot;
function setup$o(backend) {
wasmOneHot = backend.wasm.cwrap(tfjsCore.OneHot, null /* void */, [
'number',
'number',
'number',
'number',
'number' // out_id
]);
}
function oneHot(args) {
const { inputs, backend, attrs } = args;
const { indices } = inputs;
const { depth, onValue, offValue } = attrs;
const out = backend.makeOutput([...indices.shape, depth], 'int32');
const outId = backend.dataIdMap.get(out.dataId).id;
const indicesData = backend.dataIdMap.get(indices.dataId);
const indicesId = indicesData.id;
wasmOneHot(indicesId, depth, onValue, offValue, outId);
return out;
}
const oneHotConfig = {
kernelName: tfjsCore.OneHot,
backendName: 'wasm',
setupFunc: setup$o,
kernelFunc: oneHot,
};
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
function onesLike(args) {
const { inputs: { x }, backend } = args;
const out = backend.makeOutput(x.shape, x.dtype);
const outVals = backend.typedArrayFromHeap(out);
outVals.fill(1);
return out;
}
const onesLikeConfig = {
kernelName: tfjsCore.OnesLike,
backendName: 'wasm',
kernelFunc: onesLike,
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmPadV2;
function setup$p(backend) {
wasmPadV2 = backend.wasm.cwrap(tfjsCore.PadV2, null /* void */, [
'number',
'array',
'number',
'number',
'array',
'array',
'number',
'number',
]);
}
function pad(args) {
const { inputs: { x }, backend, attrs: { paddings, constantValue } } = args;
const outShape = paddings.map((p, i) => p[0] /* beforePad */ + x.shape[i] + p[1] /* afterPad */);
const xId = backend.dataIdMap.get(x.dataId).id;
const out = backend.makeOutput(outShape, x.dtype);
const outId = backend.dataIdMap.get(out.dataId).id;
const xShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);
const prePaddingsFlat = paddings.map(padTuple => padTuple[0]);
const postPaddingsFlat = paddings.map(padTuple => padTuple[1]);
const prePaddingsBytes = new Uint8Array(new Int32Array(prePaddingsFlat).buffer);
const postPaddingsBytes = new Uint8Array(new Int32Array(postPaddingsFlat).buffer);
wasmPadV2(xId, xShapeBytes, x.shape.length, CppDType[x.dtype], prePaddingsBytes, postPaddingsBytes, constantValue, outId);
return out;
}
const padV2Config = {
kernelName: tfjsCore.PadV2,
backendName: 'wasm',
kernelFunc: pad,
setupFunc: setup$p
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast$d = false;
const powConfig = createBinaryKernelConfig(tfjsCore.Pow, supportsFullBroadcast$d);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmPrelu;
function setup$q(backend) {
wasmPrelu = backend.wasm.cwrap(tfjsCore.Prelu, null /* void */, [
'number',
'number',
'number' // out_id
]);
}
function prelu(args) {
const { inputs, backend } = args;
const { x, alpha } = inputs;
const xId = backend.dataIdMap.get(x.dataId).id;
const weightsId = backend.dataIdMap.get(alpha.dataId).id;
const out = backend.makeOutput(x.shape, 'float32');
const outId = backend.dataIdMap.get(out.dataId).id;
wasmPrelu(xId, weightsId, outId);
return out;
}
const preluConfig = {
kernelName: tfjsCore.Prelu,
backendName: 'wasm',
setupFunc: setup$q,
kernelFunc: prelu
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const reluConfig = createUnaryKernelConfig(tfjsCore.Relu);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const relu6Config = createUnaryKernelConfig(tfjsCore.Relu6);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmResizeBilinear;
function setup$r(backend) {
wasmResizeBilinear = backend.wasm.cwrap(tfjsCore.ResizeBilinear, null /*void*/, [
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number' // outId
]);
}
function resizeBilinear(args) {
const { backend, inputs, attrs } = args;
const { images } = inputs;
const { alignCorners, size } = attrs;
const [newHeight, newWidth] = size;
const [batch, oldHeight, oldWidth, numChannels] = images.shape;
const outShape = [batch, newHeight, newWidth, numChannels];
let xData = backend.dataIdMap.get(images.dataId);
let castedData;
if (xData.dtype !== 'float32') {
castedData =
cast({ backend, inputs: { x: images }, attrs: { dtype: 'float32' } });
xData = backend.dataIdMap.get(castedData.dataId);
}
const xId = xData.id;
const out = backend.makeOutput(outShape, 'float32');
if (tfjsCore.util.sizeFromShape(images.shape) === 0) {
return out;
}
const outId = backend.dataIdMap.get(out.dataId).id;
wasmResizeBilinear(xId, batch, oldHeight, oldWidth, numChannels, newHeight, newWidth, alignCorners ? 1 : 0, outId);
if (castedData != null) {
backend.disposeData(castedData.dataId);
}
return out;
}
const resizeBilinearConfig = {
kernelName: tfjsCore.ResizeBilinear,
backendName: 'wasm',
setupFunc: setup$r,
kernelFunc: resizeBilinear
};
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmReverse;
function setup$s(backend) {
wasmReverse = backend.wasm.cwrap(tfjsCore.Reverse, null, [
'number',
'array',
'number',
'array',
'number',
'number' // out_id
]);
}
function reverse(args) {
const { inputs, backend, attrs } = args;
const { x } = inputs;
const { dims } = attrs;
const axes = tfjsCore.util.parseAxisParam(dims, x.shape);
if (x.shape.length === 0) {
return identity({ inputs: { x }, backend });
}
const out = backend.makeOutput(x.shape, x.dtype);
const xId = backend.dataIdMap.get(x.dataId).id;
const outId = backend.dataIdMap.get(out.dataId).id;
const axesBytes = new Uint8Array(new Int32Array(axes).buffer);
const outShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);
wasmReverse(xId, axesBytes, axes.length, outShapeBytes, x.shape.length, outId);
return reshape({ inputs: { x: out }, attrs: { shape: x.shape }, backend });
}
const reverseConfig = {
kernelName: tfjsCore.Reverse,
backendName: 'wasm',
kernelFunc: reverse,
setupFunc: setup$s
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmRotate;
function setup$t(backend) {
wasmRotate = backend.wasm.cwrap(tfjsCore.RotateWithOffset, null /* void */, [
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'number',
'array',
'number',
'number',
]);
}
function rotateWithOffset(args) {
const { inputs, backend, attrs } = args;
const { image } = inputs;
const { radians, fillValue, center } = attrs;
const out = backend.makeOutput(image.shape, image.dtype);
const imageId = backend.dataIdMap.get(image.dataId).id;
const outId = backend.dataIdMap.get(out.dataId).id;
const [batch, imageHeight, imageWidth, numChannels] = image.shape;
const [centerX, centerY] = tfjsCore.backend_util.getImageCenter(center, imageHeight, imageWidth);
const fillIsBlack = fillValue === 0;
const fullOpacityValue = 255;
const fillValues = typeof fillValue === 'number' ?
[fillValue, fillValue, fillValue, fillIsBlack ? 0 : fullOpacityValue] :
[...fillValue, fullOpacityValue];
const fillBytes = new Uint8Array(new Int32Array(fillValues).buffer);
wasmRotate(imageId, batch, imageHeight, imageWidth, numChannels, radians, centerX, centerY, fillBytes, fillValues.length, outId);
return out;
}
const rotateWithOffsetConfig = {
kernelName: tfjsCore.RotateWithOffset,
backendName: 'wasm',
kernelFunc: rotateWithOffset,
setupFunc: setup$t
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const rsqrtConfig = createUnaryKernelConfig(tfjsCore.Rsqrt);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmScatterNd;
function setup$u(backend) {
wasmScatterNd = backend.wasm.cwrap(tfjsCore.ScatterNd, null /*void*/, [
'number',
'number',
'number',
'number',
'number',
'number',
'array',
'number',
'number' // outId
]);
}
function scatterNd(args) {
const { backend, inputs, attrs } = args;
const { indices, updates } = inputs;
const { shape } = attrs;
const out = backend.makeOutput(shape, updates.dtype);
if (tfjsCore.util.sizeFromShape(shape) === 0) {
return out;
}
const { sliceRank, numUpdates, sliceSize, strides, outputSize } = tfjsCore.scatter_util.calculateShapes(updates, indices, shape);
const indicesData = backend.dataIdMap.get(indices.dataId);
const indicesId = indicesData.id;
const updatesData = backend.dataIdMap.get(updates.dataId);
const updatesId = updatesData.id;
const stridesBytes = new Uint8Array(new Int32Array(strides).buffer);
const outId = backend.dataIdMap.get(out.dataId).id;
wasmScatterNd(indicesId, updatesId, CppDType[updates.dtype], sliceRank, numUpdates, sliceSize, stridesBytes, outputSize, outId);
return out;
}
const scatterNdConfig = {
kernelName: tfjsCore.ScatterNd,
backendName: 'wasm',
setupFunc: setup$u,
kernelFunc: scatterNd
};
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmSelect;
function setup$v(backend) {
wasmSelect = backend.wasm.cwrap(tfjsCore.SelectV2, null, [
'number',
'number',
'number',
'number',
'number',
]);
}
function select(args) {
const { inputs, backend } = args;
const { condition, t, e } = inputs;
const conditionId = backend.dataIdMap.get(condition.dataId).id;
const tId = backend.dataIdMap.get(t.dataId).id;
const eId = backend.dataIdMap.get(e.dataId).id;
const out = backend.makeOutput(t.shape, t.dtype);
const outId = backend.dataIdMap.get(out.dataId).id;
const cRank = condition.shape.length;
const tRank = t.shape.length;
const offset = cRank === 0 || cRank > 1 || tRank === 1 ?
1 :
tfjsCore.util.sizeFromShape(t.shape.slice(1));
wasmSelect(conditionId, tId, eId, offset, outId);
return out;
}
const selectV2Config = {
kernelName: tfjsCore.SelectV2,
backendName: 'wasm',
kernelFunc: select,
setupFunc: setup$v
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmFunc$5;
function setup$w(backend) {
wasmFunc$5 = backend.wasm.cwrap(tfjsCore.Sigmoid, null /* void */, ['number', 'number']);
}
function sigmoid(args) {
const { backend, inputs: { x } } = args;
const xId = backend.dataIdMap.get(x.dataId).id;
const out = backend.makeOutput(x.shape, x.dtype);
const outId = backend.dataIdMap.get(out.dataId).id;
// Short-circuit zero-sized tensors.
if (tfjsCore.util.sizeFromShape(out.shape) === 0) {
return out;
}
wasmFunc$5(xId, outId);
return out;
}
const sigmoidConfig = {
kernelName: 'Sigmoid',
backendName: 'wasm',
setupFunc: setup$w,
kernelFunc: sigmoid
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const sinConfig = createUnaryKernelConfig(tfjsCore.Sin);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
function slice(args) {
const { inputs: { x }, attrs: { begin, size }, backend } = args;
const [begin_, size_] = tfjsCore.slice_util.parseSliceParams(x, begin, size);
const isContinous = tfjsCore.slice_util.isSliceContinous(x.shape, begin_, size_);
const xVals = backend.typedArrayFromHeap(x);
const out = backend.makeOutput(size_, x.dtype);
const outVals = backend.typedArrayFromHeap(out);
const xStrides = tfjsCore.util.computeStrides(x.shape);
if (isContinous) {
const flatOffset = tfjsCore.slice_util.computeFlatOffset(begin_, xStrides);
outVals.set(xVals.subarray(flatOffset, flatOffset + tfjsCore.util.sizeFromShape(size_)));
return out;
}
const rank = x.shape.length;
if (rank === 2) {
slice2d(xVals, xStrides[0], outVals, begin_, size_);
}
else if (rank === 3) {
slice3d(xVals, xStrides[0], xStrides[1], outVals, begin_, size_);
}
else if (rank === 4) {
slice4d(xVals, xStrides[0], xStrides[1], xStrides[2], outVals, begin_, size_);
}
else {
genericSliceSlow(xVals, x, outVals, begin_, size_);
}
return out;
}
function slice2d(xVals, xStride, outVals, begin, size) {
let outOffset = 0;
const beginI = begin[0];
const beginJ = begin[1];
const endI = beginI + size[0];
for (let i = beginI; i < endI; i++) {
const xOffset = i * xStride + beginJ;
outVals.set(xVals.subarray(xOffset, xOffset + size[1]), outOffset);
outOffset += size[1];
}
}
function slice3d(xVals, xStride1, xStride2, outVals, begin, size) {
let outOffset = 0;
const beginI = begin[0];
const beginJ = begin[1];
const beginK = begin[2];
const endI = beginI + size[0];
const endJ = beginJ + size[1];
for (let i = beginI; i < endI; i++) {
for (let j = beginJ; j < endJ; j++) {
const xOffset = i * xStride1 + j * xStride2 + beginK;
outVals.set(xVals.subarray(xOffset, xOffset + size[2]), outOffset);
outOffset += size[2];
}
}
}
function slice4d(xVals, xStride1, xStride2, xStride3, outVals, begin, size) {
let outOffset = 0;
const beginI = begin[0];
const beginJ = begin[1];
const beginK = begin[2];
const endI = beginI + size[0];
const endJ = beginJ + size[1];
const endK = beginK + size[2];
const beginL = begin[3];
for (let i = beginI; i < endI; i++) {
for (let j = beginJ; j < endJ; j++) {
for (let k = beginK; k < endK; k++) {
const xOffset = i * xStride1 + j * xStride2 + k * xStride3 + beginL;
outVals.set(xVals.subarray(xOffset, xOffset + size[3]), outOffset);
outOffset += size[3];
}
}
}
}
function genericSliceSlow(xVals, xInfo, outVals, begin, size) {
const outBuf = tfjsCore.buffer(size, xInfo.dtype, outVals);
const xBuf = tfjsCore.buffer(xInfo.shape, xInfo.dtype, xVals);
for (let i = 0; i < outBuf.size; ++i) {
const loc = outBuf.indexToLoc(i);
const xLoc = loc.map((idx, j) => idx + begin[j]);
outVals[i] = xBuf.get(...xLoc);
}
}
const sliceConfig = {
kernelName: tfjsCore.Slice,
backendName: 'wasm',
kernelFunc: slice,
};
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmFunc$6;
function setup$x(backend) {
wasmFunc$6 = backend.wasm.cwrap(tfjsCore.Softmax, null /* void */, [
'number',
'number',
'number',
'number' // batch
]);
}
function softmax(args) {
const { backend, inputs: { logits }, attrs: { dim } } = args;
const xId = backend.dataIdMap.get(logits.dataId).id;
const out = backend.makeOutput(logits.shape, logits.dtype);
const outId = backend.dataIdMap.get(out.dataId).id;
const channels = logits.shape[dim];
const batch = tfjsCore.util.sizeFromShape(logits.shape) / channels;
// Short-circuit zero-sized tensors.
if (tfjsCore.util.sizeFromShape(out.shape) === 0) {
return out;
}
wasmFunc$6(xId, outId, channels, batch);
return out;
}
const softmaxConfig = {
kernelName: tfjsCore.Softmax,
backendName: 'wasm',
setupFunc: setup$x,
kernelFunc: softmax
};
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
function split(args) {
const { inputs, attrs, backend } = args;
const { x } = inputs;
const { numOrSizeSplits, axis } = attrs;
const $axis = tfjsCore.util.parseAxisParam(axis, x.shape)[0];
const splitSizes = tfjsCore.backend_util.prepareSplitSize(x, numOrSizeSplits, axis);
const begin = new Array(x.shape.length).fill(0);
const size = x.shape.slice();
return splitSizes.map(s => {
const xSliceSize = [...size];
xSliceSize[$axis] = s;
const xSlice = slice({ inputs: { x }, attrs: { begin, size: xSliceSize }, backend });
begin[$axis] += s;
return xSlice;
});
}
const splitVConfig = {
kernelName: tfjsCore.SplitV,
backendName: 'wasm',
kernelFunc: split
};
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const sqrtConfig = createUnaryKernelConfig(tfjsCore.Sqrt);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const squareConfig = createUnaryKernelConfig(tfjsCore.Square);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast$e = true;
const squaredDifferenceConfig = createBinaryKernelConfig(tfjsCore.SquaredDifference, supportsFullBroadcast$e);
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmStridedSlice;
function setup$y(backend) {
wasmStridedSlice = backend.wasm.cwrap(tfjsCore.StridedSlice, null /*void*/, [
'number',
'array',
'number',
'array',
'array',
'array',
'array',
'array',
'number',
'number',
]);
}
function stridedSlice(args) {
const { backend, inputs, attrs } = args;
const { x } = inputs;
let { begin, end, strides } = attrs;
if (strides == null) {
strides = new Array(begin.length);
}
const { beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask } = attrs;
const ellipsisAxes = tfjsCore.backend_util.slice_util.maskToAxes(ellipsisMask);
if (ellipsisAxes.length > 1) {
throw new Error('Multiple ellipses in slice is not allowed.');
}
if (ellipsisMask !== 0 && newAxisMask !== 0) {
throw new Error('Using both ellipsisMask and newAxisMask is not yet supported.');
}
if (ellipsisMask !== 0 && shrinkAxisMask !== 0) {
throw new Error('Using both ellipsisMask and shrinkAxisMask is not yet supported.');
}
const numInterpolatedAxes = x.shape.length - begin.length;
// Expand the dims of x based on the newAxisMask.
const expandAxes = tfjsCore.backend_util.slice_util.maskToAxes(newAxisMask);
const newShape = x.shape.slice();
expandAxes.forEach(axis => {
begin[axis] = 0;
end[axis] = 1;
newShape.splice(axis, 0, 1);
});
const xReshaped = reshape({ inputs: { x }, attrs: { shape: newShape }, backend });
const { begin: normalizedBegin, end: normalizedEnd, strides: normalizedStrides } = tfjsCore.backend_util.slice_util.getNormalizedAxes(xReshaped.shape, ellipsisAxes, numInterpolatedAxes, begin, end, strides, beginMask, endMask, ellipsisMask);
begin = normalizedBegin;
end = normalizedEnd;
strides = normalizedStrides;
const shrinkAxes = tfjsCore.backend_util.slice_util.maskToAxes(shrinkAxisMask);
// Adjust the ends based on the shrink mask.
shrinkAxes.forEach(axis => {
end[axis] = begin[axis] + 1;
strides[axis] = 1;
});
// Figure out the output shape.
const size = tfjsCore.backend_util.slice_util.computeOutShape(begin, end, strides);
// Remove the axes based on shrinkMask.
const outShape = size.filter((_, axis) => shrinkAxes.indexOf(axis) === -1);
const nonStrided = strides.every(v => v === 1);
if (nonStrided) {
const xSliced = slice({ inputs: { x }, attrs: { begin, size }, backend });
return reshape({ inputs: { x: xSliced }, attrs: { shape: outShape }, backend });
}
const out = backend.makeOutput(outShape, 'float32');
if (!outShape.some(axis => axis === 0)) {
const xId = backend.dataIdMap.get(xReshaped.dataId).id;
const xStridesBytes = new Uint8Array(new Int32Array(tfjsCore.util.computeStrides(xReshaped.shape)).buffer);
const beginBytes = new Uint8Array(new Int32Array(begin).buffer);
const endBytes = new Uint8Array(new Int32Array(end).buffer);
const stridesBytes = new Uint8Array(new Int32Array(strides).buffer);
const outputShapeBytes = new Uint8Array(new Int32Array(outShape).buffer);
const outStridesBytes = new Uint8Array(new Int32Array(tfjsCore.util.computeStrides(outShape)).buffer);
const outId = backend.dataIdMap.get(out.dataId).id;
wasmStridedSlice(xId, xStridesBytes, xReshaped.shape.length, beginBytes, endBytes, stridesBytes, outputShapeBytes, outStridesBytes, outShape.length, outId);
}
return reshape({ inputs: { x: out }, attrs: { shape: outShape }, backend });
}
const stridedSliceConfig = {
kernelName: tfjsCore.StridedSlice,
backendName: 'wasm',
setupFunc: setup$y,
kernelFunc: stridedSlice
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const supportsFullBroadcast$f = true;
const subConfig = createBinaryKernelConfig(tfjsCore.Sub, supportsFullBroadcast$f);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmSum;
function setup$z(backend) {
wasmSum = backend.wasm.cwrap(tfjsCore.Sum, null /*void*/, ['number, number, number']);
}
function sum(args) {
const { backend, inputs, attrs } = args;
const { axis, keepDims } = attrs;
const { x } = inputs;
const xId = backend.dataIdMap.get(x.dataId).id;
let inputId = xId;
let input = x;
const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend);
let reductionAxes = axes;
if (inputWasTransposed) {
const transposedId = backend.dataIdMap.get(transposed.dataId).id;
if (transposedId !== xId) {
// transpose was not a no-op. We will need to dispose of this
// once we are done.
input = transposed;
inputId = transposedId;
reductionAxes = tfjsCore.backend_util.getInnerMostAxes(reductionAxes.length, input.shape.length);
}
}
tfjsCore.backend_util.assertAxesAreInnerMostDims('sum', reductionAxes, input.shape.length);
const [outShape, reduceShape] = tfjsCore.backend_util.computeOutAndReduceShapes(input.shape, reductionAxes);
const reduceSize = tfjsCore.util.sizeFromShape(reduceShape);
const out = backend.makeOutput(outShape, input.dtype);
if (tfjsCore.util.sizeFromShape(input.shape) !== 0) {
const outId = backend.dataIdMap.get(out.dataId).id;
wasmSum(inputId, reduceSize, outId);
}
if (inputWasTransposed) {
// dispose of the transposed tensor.
backend.disposeData(transposed.dataId);
}
if (keepDims) {
// reshape
const newShape = tfjsCore.backend_util.expandShapeToKeepDim(out.shape, originalAxes);
out.shape = newShape;
}
return out;
}
const sumConfig = {
kernelName: tfjsCore.Sum,
backendName: 'wasm',
setupFunc: setup$z,
kernelFunc: sum
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const tanhConfig = createUnaryKernelConfig(tfjsCore.Tanh);
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
let wasmTile;
function setup$A(backend) {
wasmTile = backend.wasm.cwrap(tfjsCore.Tile, null /* void */, [
'number',
'array',
'number',
'array',
'number',
'number' // out_id
]);
}
function tile(args) {
const { inputs, backend, attrs } = args;
const { x } = inputs;
const xId = backend.dataIdMap.get(x.dataId).id;
const { reps } = attrs;
const newShape = new Array(x.shape.length);
for (let i = 0; i < newShape.length; i++) {
newShape[i] = x.shape[i] * reps[i];
}
const xShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);
const newShapeBytes = new Uint8Array(new Int32Array(newShape).buffer);
const out = backend.makeOutput(newShape, x.dtype);
const outId = backend.dataIdMap.get(out.dataId).id;
wasmTile(xId, xShapeBytes, x.shape.length, newShapeBytes, newShape.length, CppDType[out.dtype], outId);
return out;
}
const tileConfig = {
kernelName: tfjsCore.Tile,
backendName: 'wasm',
setupFunc: setup$A,
kernelFunc: tile
};
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
function unpack(args) {
const { inputs, backend, attrs } = args;
const { value } = inputs;
const { axis } = attrs;
const numOutputs = value.shape[axis];
const rank = value.shape.length;
const outShape = new Array(rank - 1);
let outIndex = 0;
for (let i = 0; i < rank; i++) {
if (i !== axis) {
outShape[outIndex++] = value.shape[i];
}
}
const outs = new Array(numOutputs);
const begin = new Array(rank).fill(0);
const size = value.shape.slice();
size[axis] = 1;
for (let i = 0; i < outs.length; i++) {
begin[axis] = i;
outs[i] = slice({ inputs: { x: value }, attrs: { begin, size }, backend });
}
return outs.map(({ dataId, dtype }) => ({ dataId, dtype, shape: outShape }));
}
const unpackConfig = {
kernelName: tfjsCore.Unpack,
backendName: 'wasm',
kernelFunc: unpack,
};
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
function zerosLike(args) {
const { inputs: { x }, backend } = args;
const out = backend.makeOutput(x.shape, x.dtype);
const outVals = backend.typedArrayFromHeap(out);
outVals.fill(0);
return out;
}
const zerosLikeConfig = {
kernelName: tfjsCore.ZerosLike,
backendName: 'wasm',
kernelFunc: zerosLike,
};
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
// List all kernel configs here
const kernelConfigs = [
absConfig,
addConfig,
addNConfig,
argMaxConfig,
avgPoolConfig,
batchMatMulConfig,
castConfig,
clipByValueConfig,
concatConfig,
conv2DConfig,
conv2DBackpropInputConfig,
cosConfig,
cropAndResizeConfig,
cumsumConfig,
depthToSpaceConfig,
depthwiseConv2dNativeConfig,
divConfig,
equalConfig,
expConfig,
fillConfig,
flipLeftRightConfig,
floorDivConfig,
fusedMatMulConfig,
fusedBatchNormConfig,
fusedConv2DConfig,
fusedDepthwiseConv2DConfig,
gatherNdConfig,
gatherV2Config,
greaterConfig,
greaterEqualConfig,
identityConfig,
lessConfig,
lessEqualConfig,
logConfig,
logicalAndConfig,
maxConfig,
maximumConfig,
maxPoolConfig,
minConfig,
minimumConfig,
multiplyConfig,
negateConfig,
nonMaxSuppressionV3Config,
nonMaxSuppressionV4Config,
nonMaxSuppressionV5Config,
notEqualConfig,
oneHotConfig,
onesLikeConfig,
padV2Config,
powConfig,
preluConfig,
reluConfig,
relu6Config,
reshapeConfig,
resizeBilinearConfig,
reverseConfig,
rotateWithOffsetConfig,
rsqrtConfig,
scatterNdConfig,
selectV2Config,
sigmoidConfig,
sinConfig,
sliceConfig,
softmaxConfig,
splitVConfig,
sqrtConfig,
squareConfig,
squaredDifferenceConfig,
stridedSliceConfig,
subConfig,
sumConfig,
tanhConfig,
tileConfig,
transposeConfig,
unpackConfig,
zerosLikeConfig
];
for (const kernelConfig of kernelConfigs) {
tfjsCore.registerKernel(kernelConfig);
}
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const ENV = tfjsCore.env();
/**
* True if SIMD is supported.
*/
// From: https://github.com/GoogleChromeLabs/wasm-feature-detect
ENV.registerFlag(
// This typed array passed in to WebAssembly.validate is WebAssembly binary
// code. In this case it is a small program that contains SIMD
// instructions.
'WASM_HAS_SIMD_SUPPORT', async () => WebAssembly.validate(new Uint8Array([
0, 97, 115, 109, 1, 0, 0, 0, 1, 4, 1, 96, 0, 0, 3,
2, 1, 0, 10, 9, 1, 7, 0, 65, 0, 253, 15, 26, 11
])));
/**
* True if threads are supported.
*/
// From: https://github.com/GoogleChromeLabs/wasm-feature-detect
ENV.registerFlag('WASM_HAS_MULTITHREAD_SUPPORT', async () => {
// TODO(annxingyuan): Enable node support once this is resolved:
// https://github.com/tensorflow/tfjs/issues/3830
if (ENV.get('IS_NODE')) {
return false;
}
try {
// Test for transferability of SABs (needed for Firefox)
// https://groups.google.com/forum/#!msg/mozilla.dev.platform/IHkBZlHETpA/dwsMNchWEQAJ
new MessageChannel().port1.postMessage(new SharedArrayBuffer(1));
// This typed array is a WebAssembly program containing threaded
// instructions.
return WebAssembly.validate(new Uint8Array([
0, 97, 115, 109, 1, 0, 0, 0, 1, 4, 1, 96, 0, 0, 3, 2, 1, 0, 5,
4, 1, 3, 1, 1, 10, 11, 1, 9, 0, 65, 0, 254, 16, 2, 0, 26, 11
]));
}
catch (e) {
return false;
}
});
function createCommonjsModule(fn, module) {
return module = { exports: {} }, fn(module, module.exports), module.exports;
}
var tfjsBackendWasmThreadedSimd = createCommonjsModule(function (module, exports) {
var WasmBackendModuleThreadedSimd = (function() {
var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined;
if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename;
return (
function(WasmBackendModuleThreadedSimd) {
WasmBackendModuleThreadedSimd = WasmBackendModuleThreadedSimd || {};
function GROWABLE_HEAP_I8(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer);}return HEAP8}function GROWABLE_HEAP_U8(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer);}return HEAPU8}function GROWABLE_HEAP_I32(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer);}return HEAP32}function GROWABLE_HEAP_U32(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer);}return HEAPU32}function GROWABLE_HEAP_F64(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer);}return HEAPF64}var Module=typeof WasmBackendModuleThreadedSimd!=="undefined"?WasmBackendModuleThreadedSimd:{};var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key];}}var arguments_=[];var thisProgram="./this.program";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window==="object";ENVIRONMENT_IS_WORKER=typeof importScripts==="function";ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var ENVIRONMENT_IS_PTHREAD=Module["ENVIRONMENT_IS_PTHREAD"]||false;if(ENVIRONMENT_IS_PTHREAD){buffer=Module["buffer"];DYNAMIC_BASE=Module["DYNAMIC_BASE"];DYNAMICTOP_PTR=Module["DYNAMICTOP_PTR"];}var scriptDirectory="";function locateFile(path){if(Module["locateFile"]){return Module["locateFile"](path,scriptDirectory)}return scriptDirectory+path}var read_,readBinary;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=path.dirname(scriptDirectory)+"/";}else{scriptDirectory=__dirname+"/";}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=fs;if(!nodePath)nodePath=path;filename=nodePath["normalize"](filename);return nodeFS["readFileSync"](filename,binary?null:"utf8")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret);}assert(ret.buffer);return ret};if(process["argv"].length>1){thisProgram=process["argv"][1].replace(/\\/g,"/");}arguments_=process["argv"].slice(2);process["on"]("uncaughtException",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process["on"]("unhandledRejection",abort);quit_=function(status){process["exit"](status);};Module["inspect"]=function(){return "[Emscripten Module object]"};var nodeWorkerThreads;try{nodeWorkerThreads=worker_threads;}catch(e){console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?');throw e}Worker=nodeWorkerThreads.Worker;}else if(ENVIRONMENT_IS_SHELL){if(typeof read!="undefined"){read_=function shell_read(f){return read(f)};}readBinary=function readBinary(f){var data;if(typeof readbuffer==="function"){return new Uint8Array(readbuffer(f))}data=read(f,"binary");assert(typeof data==="object");return data};if(typeof scriptArgs!="undefined"){arguments_=scriptArgs;}else if(typeof arguments!="undefined"){arguments_=arguments;}if(typeof quit==="function"){quit_=function(status){quit(status);};}if(typeof print!=="undefined"){if(typeof console==="undefined")console={};console.log=print;console.warn=console.error=typeof printErr!=="undefined"?printErr:print;}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href;}else if(document.currentScript){scriptDirectory=document.currentScript.src;}if(_scriptDir){scriptDirectory=_scriptDir;}if(scriptDirectory.indexOf("blob:")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf("/")+1);}else{scriptDirectory="";}if(ENVIRONMENT_IS_NODE){read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=fs;if(!nodePath)nodePath=path;filename=nodePath["normalize"](filename);return nodeFS["readFileSync"](filename,binary?null:"utf8")};readBinary=function readBinary(filename){var ret=read_(filena
return WasmBackendModuleThreadedSimd
}
);
})();
module.exports = WasmBackendModuleThreadedSimd;
});
const wasmWorkerContents = 'var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}';
var tfjsBackendWasm = createCommonjsModule(function (module, exports) {
var WasmBackendModule = (function() {
var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined;
if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename;
return (
function(WasmBackendModule) {
WasmBackendModule = WasmBackendModule || {};
var Module=typeof WasmBackendModule!=="undefined"?WasmBackendModule:{};var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key];}}var arguments_=[];var thisProgram="./this.program";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window==="object";ENVIRONMENT_IS_WORKER=typeof importScripts==="function";ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var scriptDirectory="";function locateFile(path){if(Module["locateFile"]){return Module["locateFile"](path,scriptDirectory)}return scriptDirectory+path}var read_,readBinary;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=path.dirname(scriptDirectory)+"/";}else{scriptDirectory=__dirname+"/";}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=fs;if(!nodePath)nodePath=path;filename=nodePath["normalize"](filename);return nodeFS["readFileSync"](filename,binary?null:"utf8")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret);}assert(ret.buffer);return ret};if(process["argv"].length>1){thisProgram=process["argv"][1].replace(/\\/g,"/");}arguments_=process["argv"].slice(2);process["on"]("uncaughtException",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process["on"]("unhandledRejection",abort);quit_=function(status){process["exit"](status);};Module["inspect"]=function(){return "[Emscripten Module object]"};}else if(ENVIRONMENT_IS_SHELL){if(typeof read!="undefined"){read_=function shell_read(f){return read(f)};}readBinary=function readBinary(f){var data;if(typeof readbuffer==="function"){return new Uint8Array(readbuffer(f))}data=read(f,"binary");assert(typeof data==="object");return data};if(typeof scriptArgs!="undefined"){arguments_=scriptArgs;}else if(typeof arguments!="undefined"){arguments_=arguments;}if(typeof quit==="function"){quit_=function(status){quit(status);};}if(typeof print!=="undefined"){if(typeof console==="undefined")console={};console.log=print;console.warn=console.error=typeof printErr!=="undefined"?printErr:print;}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href;}else if(document.currentScript){scriptDirectory=document.currentScript.src;}if(_scriptDir){scriptDirectory=_scriptDir;}if(scriptDirectory.indexOf("blob:")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf("/")+1);}else{scriptDirectory="";}{read_=function shell_read(url){var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function readBinary(url){var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.responseType="arraybuffer";xhr.send(null);return new Uint8Array(xhr.response)};}}}var out=Module["print"]||console.log.bind(console);var err=Module["printErr"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key];}}moduleOverrides=null;if(Module["arguments"])arguments_=Module["arguments"];if(Module["thisProgram"])thisProgram=Module["thisProgram"];if(Module["quit"])quit_=Module["quit"];var wasmBinary;if(Module["wasmBinary"])wasmBinary=Module["wasmBinary"];var noExitRuntime;if(Module["noExitRuntime"])noExitRuntime=Module["noExitRuntime"];if(typeof WebAssembly!=="object"){err("no native wasm support detected");}var wasmMemory;var wasmTable=new WebAssembly.Table({"initial":147,"maximum":147+0,"element":"anyfunc"});var ABORT=false;function assert(condition,text){if(!condition){abort("Assertion failed: "+text);}}function getCFunc(ident){var func=Module["_"+ident];assert(func,"Cannot call unknown function "+ident+", make sure it is exported");return func}function ccall(ident,returnType,argTypes,ar
return WasmBackendModule
}
);
})();
module.exports = WasmBackendModule;
});
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const WASM_PRIORITY = 2;
class BackendWasm extends tfjsCore.KernelBackend {
constructor(wasm) {
super();
this.wasm = wasm;
// 0 is reserved for null data ids.
this.dataIdNextNumber = 1;
this.wasm.tfjs.init();
this.dataIdMap = new tfjsCore.DataStorage(this, tfjsCore.engine());
}
write(values, shape, dtype) {
const dataId = {};
this.move(dataId, values, shape, dtype);
return dataId;
}
numDataIds() {
return this.dataIdMap.numDataIds();
}
async time(f) {
const start = tfjsCore.util.now();
f();
const kernelMs = tfjsCore.util.now() - start;
return { kernelMs };
}
move(dataId, values, shape, dtype) {
const id = this.dataIdNextNumber++;
if (dtype === 'string') {
const stringBytes = values;
this.dataIdMap.set(dataId, { id, stringBytes, shape, dtype, memoryOffset: null });
return;
}
const size = tfjsCore.util.sizeFromShape(shape);
const numBytes = size * tfjsCore.util.bytesPerElement(dtype);
const memoryOffset = this.wasm._malloc(numBytes);
this.dataIdMap.set(dataId, { id, memoryOffset, shape, dtype });
this.wasm.tfjs.registerTensor(id, size, memoryOffset);
if (values != null) {
this.wasm.HEAPU8.set(new Uint8Array(values.buffer, values.byteOffset, numBytes), memoryOffset);
}
}
async read(dataId) {
return this.readSync(dataId);
}
readSync(dataId) {
const { memoryOffset, dtype, shape, stringBytes } = this.dataIdMap.get(dataId);
if (dtype === 'string') {
return stringBytes;
}
const bytes = this.wasm.HEAPU8.slice(memoryOffset, memoryOffset + tfjsCore.util.sizeFromShape(shape) * tfjsCore.util.bytesPerElement(dtype));
return typedArrayFromBuffer(bytes.buffer, dtype);
}
disposeData(dataId) {
const data = this.dataIdMap.get(dataId);
this.wasm._free(data.memoryOffset);
this.wasm.tfjs.disposeData(data.id);
this.dataIdMap.delete(dataId);
}
floatPrecision() {
return 32;
}
// Returns the memory offset of a tensor. Useful for debugging and unit
// testing.
getMemoryOffset(dataId) {
return this.dataIdMap.get(dataId).memoryOffset;
}
dispose() {
this.wasm.tfjs.dispose();
this.wasm = null;
}
memory() {
return { unreliable: false };
}
/**
* Make a tensor info for the output of an op. If `memoryOffset` is not
* present, this method allocates memory on the WASM heap. If `memoryOffset`
* is present, the memory was allocated elsewhere (in c++) and we just record
* the pointer where that memory lives.
*/
makeOutput(shape, dtype, memoryOffset) {
let dataId;
if (memoryOffset == null) {
dataId = this.write(null /* values */, shape, dtype);
}
else {
dataId = {};
const id = this.dataIdNextNumber++;
this.dataIdMap.set(dataId, { id, memoryOffset, shape, dtype });
const size = tfjsCore.util.sizeFromShape(shape);
this.wasm.tfjs.registerTensor(id, size, memoryOffset);
}
return { dataId, shape, dtype };
}
typedArrayFromHeap({ shape, dtype, dataId }) {
const buffer = this.wasm.HEAPU8.buffer;
const { memoryOffset } = this.dataIdMap.get(dataId);
const size = tfjsCore.util.sizeFromShape(shape);
switch (dtype) {
case 'float32':
return new Float32Array(buffer, memoryOffset, size);
case 'int32':
return new Int32Array(buffer, memoryOffset, size);
case 'bool':
return new Uint8Array(buffer, memoryOffset, size);
default:
throw new Error(`Unknown dtype ${dtype}`);
}
}
}
tfjsCore.registerBackend('wasm', async () => {
const { wasm } = await init();
return new BackendWasm(wasm);
}, WASM_PRIORITY);
function createInstantiateWasmFunc(path) {
// tslint:disable-next-line:no-any
return (imports, callback) => {
tfjsCore.util.fetch(path, { credentials: 'same-origin' }).then((response) => {
if (!response['ok']) {
imports.env.a(`failed to load wasm binary file at '${path}'`);
}
response.arrayBuffer().then(binary => {
WebAssembly.instantiate(binary, imports).then(output => {
callback(output.instance);
});
});
});
return {};
};
}
/**
* Returns the path of the WASM binary.
* @param simdSupported whether SIMD is supported
* @param threadsSupported whether multithreading is supported
* @param wasmModuleFolder the directory containing the WASM binaries.
*/
function getPathToWasmBinary(simdSupported, threadsSupported, wasmModuleFolder) {
if (wasmPath != null) {
// If wasmPath is defined, the user has supplied a full path to
// the vanilla .wasm binary.
return wasmPath;
}
let path = 'tfjs-backend-wasm.wasm';
if (simdSupported && threadsSupported) {
path = 'tfjs-backend-wasm-threaded-simd.wasm';
}
else if (simdSupported) {
path = 'tfjs-backend-wasm-simd.wasm';
}
if (wasmFileMap != null) {
if (wasmFileMap[path] != null) {
return wasmFileMap[path];
}
}
return wasmModuleFolder + path;
}
/**
* Initializes the wasm module and creates the js <--> wasm bridge.
*
* NOTE: We wrap the wasm module in a object with property 'wasm' instead of
* returning Promise<BackendWasmModule> to avoid freezing Chrome (last tested
* in Chrome 76).
*/
async function init() {
const [simdSupported, threadsSupported] = await Promise.all([
tfjsCore.env().getAsync('WASM_HAS_SIMD_SUPPORT'),
tfjsCore.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT')
]);
return new Promise((resolve, reject) => {
const factoryConfig = {};
/**
* This function overrides the Emscripten module locateFile utility.
* @param path The relative path to the file that needs to be loaded.
* @param prefix The path to the main JavaScript file's directory.
*/
factoryConfig.locateFile = (path, prefix) => {
if (path.endsWith('.worker.js')) {
const response = wasmWorkerContents;
const blob = new Blob([response], { type: 'application/javascript' });
return URL.createObjectURL(blob);
}
if (path.endsWith('.wasm')) {
return getPathToWasmBinary(simdSupported, threadsSupported, wasmPathPrefix != null ? wasmPathPrefix : prefix);
}
return prefix + path;
};
// Use the instantiateWasm override when system fetch is not available.
// Reference:
// https://github.com/emscripten-core/emscripten/blob/2bca083cbbd5a4133db61fbd74d04f7feecfa907/tests/manual_wasm_instantiate.html#L170
if (customFetch) {
factoryConfig.instantiateWasm =
createInstantiateWasmFunc(getPathToWasmBinary(simdSupported, threadsSupported, wasmPathPrefix != null ? wasmPathPrefix : ''));
}
let wasm;
// If `wasmPath` has been defined we must initialize the vanilla module.
if (threadsSupported && simdSupported && wasmPath == null) {
wasm = tfjsBackendWasmThreadedSimd(factoryConfig);
wasm.mainScriptUrlOrBlob = new Blob([`var _scriptDir = undefined; var WasmBackendModuleThreadedSimd = ` +
tfjsBackendWasmThreadedSimd.toString()], { type: 'text/javascript' });
}
else {
// The wasmFactory works for both vanilla and SIMD binaries.
wasm = tfjsBackendWasm(factoryConfig);
}
const voidReturnType = null;
// Using the tfjs namespace to avoid conflict with emscripten's API.
wasm.tfjs = {
init: wasm.cwrap('init', null, []),
registerTensor: wasm.cwrap('register_tensor', null, [
'number',
'number',
'number',
]),
disposeData: wasm.cwrap('dispose_data', voidReturnType, ['number']),
dispose: wasm.cwrap('dispose', voidReturnType, []),
};
let initialized = false;
wasm.onRuntimeInitialized = () => {
initialized = true;
initAborted = false;
resolve({ wasm });
};
wasm.onAbort = () => {
if (initialized) {
// Emscripten already called console.warn so no need to double log.
return;
}
if (initAborted) {
// Emscripten calls `onAbort` twice, resulting in double error
// messages.
return;
}
initAborted = true;
const rejectMsg = 'Make sure the server can serve the `.wasm` file relative to the ' +
'bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers';
reject({ message: rejectMsg });
};
});
}
function typedArrayFromBuffer(buffer, dtype) {
switch (dtype) {
case 'float32':
return new Float32Array(buffer);
case 'int32':
return new Int32Array(buffer);
case 'bool':
return new Uint8Array(buffer);
default:
throw new Error(`Unknown dtype ${dtype}`);
}
}
const wasmBinaryNames = [
'tfjs-backend-wasm.wasm', 'tfjs-backend-wasm-simd.wasm',
'tfjs-backend-wasm-threaded-simd.wasm'
];
let wasmPath = null;
let wasmPathPrefix = null;
let wasmFileMap = {};
let initAborted = false;
let customFetch = false;
/**
* @deprecated Use `setWasmPaths` instead.
* Sets the path to the `.wasm` file which will be fetched when the wasm
* backend is initialized. See
* https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers
* for more details.
* @param path wasm file path or url
* @param usePlatformFetch optional boolean to use platform fetch to download
* the wasm file, default to false.
*
* @doc {heading: 'Environment', namespace: 'wasm'}
*/
function setWasmPath(path, usePlatformFetch = false) {
tfjsCore.deprecationWarn('setWasmPath has been deprecated in favor of setWasmPaths and' +
' will be removed in a future release.');
if (initAborted) {
throw new Error('The WASM backend was already initialized. Make sure you call ' +
'`setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`');
}
wasmPath = path;
customFetch = usePlatformFetch;
}
/**
* Configures the locations of the WASM binaries.
*
* ```js
* setWasmPaths({
* 'tfjs-backend-wasm.wasm': 'renamed.wasm',
* 'tfjs-backend-wasm-simd.wasm': 'renamed-simd.wasm',
* 'tfjs-backend-wasm-threaded-simd.wasm': 'renamed-threaded-simd.wasm'
* });
* tf.setBackend('wasm');
* ```
*
* @param prefixOrFileMap This can be either a string or object:
* - (string) The path to the directory where the WASM binaries are located.
* Note that this prefix will be used to load each binary (vanilla,
* SIMD-enabled, threading-enabled, etc.).
* - (object) Mapping from names of WASM binaries to custom
* full paths specifying the locations of those binaries. This is useful if
* your WASM binaries are not all located in the same directory, or if your
* WASM binaries have been renamed.
* @param usePlatformFetch optional boolean to use platform fetch to download
* the wasm file, default to false.
*
* @doc {heading: 'Environment', namespace: 'wasm'}
*/
function setWasmPaths(prefixOrFileMap, usePlatformFetch = false) {
if (initAborted) {
throw new Error('The WASM backend was already initialized. Make sure you call ' +
'`setWasmPaths()` before you call `tf.setBackend()` or ' +
'`tf.ready()`');
}
if (typeof prefixOrFileMap === 'string') {
wasmPathPrefix = prefixOrFileMap;
}
else {
wasmFileMap = prefixOrFileMap;
const missingPaths = wasmBinaryNames.filter(name => wasmFileMap[name] == null);
if (missingPaths.length > 0) {
throw new Error(`There were no entries found for the following binaries: ` +
`${missingPaths.join(',')}. Please either call setWasmPaths with a ` +
`map providing a path for each binary, or with a string indicating ` +
`the directory where all the binaries can be found.`);
}
}
customFetch = usePlatformFetch;
}
/** @license See the LICENSE file. */
// This code is auto-generated, do not modify this file!
const version = '2.7.0';
exports.BackendWasm = BackendWasm;
exports.setWasmPath = setWasmPath;
exports.setWasmPaths = setWasmPaths;
exports.version_wasm = version;
Object.defineProperty(exports, '__esModule', { value: true });
})));
//# sourceMappingURL=tf-backend-wasm.es2017.js.map